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A B S T R A C T

Acute intoxication with organophosphate cholinesterase inhibitors (OPs) is a significant human health threat,
and current medical countermeasures for OP poisoning are of limited therapeutic efficacy. The rat model of
acute intoxication with diisopropylfluorophosphate (DFP) is increasingly being used to test candidate com-
pounds for efficacy in protecting against the immediate and long-term consequences of acute OP toxicity. In this
model, rats are typically pretreated with pyridostigmine bromide (PB), a reversible cholinesterase inhibitor, to
enhance survival. However, PB pretreatment is not likely in most scenarios of civilian exposure to acutely
neurotoxic levels of OPs. Therefore, the goal of this study was to determine whether PB pretreatment sig-
nificantly increases survival in DFP-intoxicated rats. Adult male Sprague Dawley rats were injected with DFP
(4mg/kg, s.c.) or vehicle (VEH) followed 1min later by combined i.m. injection of atropine sulfate (2 mg/kg)
and 2-pralidoxime (25mg/kg). Animals were pretreated 30min prior to these injections with PB (0.1mg/kg,
i.m.) or an equal volume of saline. DFP triggered rapid and sustained seizure behavior irrespective of PB pre-
treatment, and there was no significant difference in average seizure behavior score during the first 4 h following
injection between DFP animals pretreated with PB or not. PB pretreatment also had no significant effect on
survival or brain AChE activity at 24 h post-DFP exposure. In summary, PB pretreatment is not necessary to
ensure survival of rats acutely intoxicated with DFP, and eliminating PB pretreatment in the rat model of acute
DFP intoxication would increase its relevance to acute OP intoxication in civilians.

1. Introduction

Cholinesterase inhibiting organophosphorus compounds (OPs)
figure prominently in the civilian chemical threat spectrum (Jett and
Spriggs, 2018). Credible scenarios of civilian exposure to acutely neu-
rotoxic levels of OPs include intentional release in a terrorist attack,
accidental release in a natural disaster or industrial accident (Jett and
Spriggs, 2018), or self-poisoning with OPs, with the last accounting for
about one-third of the world’s suicide cases (Mew et al., 2017; Pereira
et al., 2014). Current medical countermeasures for OP poisoning are of
limited therapeutic efficacy (Jett, 2016; Rosenbaum and Bird, 2010),
and there is a real need for improved treatments to terminate OP-in-
duced seizures and mitigate long-term neurological sequelae in survi-
vors (Jett and Spriggs, 2018).

Preclinical models are critical tools in drug discovery, and the rat
model of acute intoxication with diisopropylfluorophosphate (DFP) is

increasingly being used to test candidate therapeutics for efficacy in
mitigating the immediate and long-term consequences of acute OP in-
toxication (Deshpande et al., 2010; Pessah et al., 2016; Pouliot et al.,
2016). While less potent than the OP warfare agents, DFP has nearly
identical neurotoxic effects (Pouliot et al., 2016; Siso et al., 2017;
Sogorb et al., 2015), and is itself considered a credible threat agent (Jett
and Spriggs, 2018). The rat model of acute DFP intoxication typically
includes pretreatment with the carbamate pyridostigmine bromide (PB)
(Deshpande et al., 2010; Li et al., 2011; Pouliot et al., 2016) to enhance
survival of intoxicated animals (Kim et al., 1999). PB is FDA-approved
for military use as a prophylactic to increase survival during combat
situations when exposure to the OP warfare agent soman is anticipated
(Lorke and Petroianu, 2019). PB is a reversible cholinesterase inhibitor,
and its protective action is presumed to be mediated by reversible
carbamylation of the active site of AChE to prevent soman from binding
to and irreversibly inhibiting AChE (Lorke and Petroianu, 2019).
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However, prophylactic use of PB is not an option in most scenarios of
civilian exposure to acutely neurotoxic levels of OPs. Thus, questions
have been raised as to whether inclusion of PB pretreatment in the rat
model represents a realistic model of civilian mass casualties or suicides
involving OPs. Therefore, the goal of this study was to determine
whether PB pretreatment is needed to ensure survival of DFP-in-
toxicated rats.

2. Materials and methods

2.1. Materials

DFP was purchased from Sigma-Aldrich (St. Louis, MO, USA), and
confirmed to be ˜90 + 7% pure using previously described NMR
methodology (Gao et al., 2016). On the day of experimentation, DFP
was prepared in sterile, ice-cold phosphate buffered saline (PBS,
3.6 mM Na2HPO4, 1.4mM NaH2PO4, 150mM NaCl, pH 7.2) within
5min of injection into animals. Pyridostigmine bromide (> 98% pure)
was purchased from TCI America, Portland, OR, USA; atropine sulfate
(> 97% pure) and 2-pralidoxime (2-PAM,> 97% pure) were pur-
chased from Sigma-Aldrich. All four compounds were aliquoted upon
receipt from the manufacturer and stored at −80 °C. Under these
conditions, DFP is stable for at least 400 days (Heiss et al., 2016).

2.2. Animal exposures

All animal experiments were performed in accordance with the
National Institutes of Health Guide for the Care and Use of Laboratory
Animals (NIH publication No. 8023, revised 1978) following protocols
approved by the University of California-Davis Institutional Animal
Care and Use Committee. Adult male Sprague Dawley rats (50–60 days
old, 225–250 g, Charles River Laboratories, Hollister, CA) were in-
dividually housed in standard plastic shoebox cages in facilities fully
accredited by AAALAC International under controlled environmental
conditions (22 ± 2 °C, 40–50% humidity, 12 h light-dark cycle). Food
and water were provided ad libitum. Experiments were repeated in two
cohorts of animals.

Animals were randomly divided into groups using a random number
generator. For seizure and survival studies, two groups were set up: (1)
DFP pretreated with saline; and (2) DFP pretreated with PB. For AChE
studies, two additional groups were set up: (3) vehicle for DFP (VEH)
pretreated with saline; and (4) VEH pretreated with PB. In this study,
PB was tested at 0.1 mg/kg, which is a commonly used dose in this
model (Ferchmin et al., 2014; Kim et al., 1999; Li et al., 2011; Rojas
et al., 2015; Siso et al., 2017) that is relevant to the human dose
equivalent of PB prophylaxis for soman intoxication (Lorke and
Petroianu, 2019). Animals were injected i.m. with PB (0.1 mg/kg in
sterile isotonic saline) or an equivalent volume (100 μl) of sterile iso-
tonic saline 30min prior to injection of either DFP (4mg/kg, s.c.) or an
equivalent volume (300 μl) of vehicle (sterile PBS, s.c.). One min later,
all animals were administered a combined i.m. injection of atropine
sulfate (2 mg/kg) and 2-pralidoxime (2-PAM, 25mg/kg) in sterile
saline. At 4–5 h post-exposure, all DFP animals were administered 10ml
of 5% dextrose in sterile saline (s.c., Baxter Healthcare Co., Deerfield,
IL, USA) to replace lost fluids and prevent hypoglycemia, and then re-
turned to their home cages and provided soft chow (Pessah et al.,
2016).

2.3. Outcomes assessment

Seizure behavior was continuously monitored for 4 h after DFP or
VEH injection and scored using a 5-point scoring metric (Fig. 1) by
individuals blinded to experimental group. Seizure scores were col-
lected at 5min intervals from 0 to 120min post-DFP and at 20min
intervals from 120 to 240min post-DFP. The average seizure score was
calculated as a time-weighted average of the animal’s individual seizure

scores across the 240min of observation.
At 24 h post-exposure, a subset of animals was deeply anesthetized

with 5% isoflurane to collect brain tissue for acetylcholinesterase
(AChE) analyses. Deeply anesthetized animals were transcardially
perfused with 100ml PBS, brains were quickly removed and the cere-
bellum dissected out, flash frozen on dry ice and stored at −80 °C. On
the day of analysis, samples were thawed on ice, and then homogenized
in lysis buffer (0.1M phosphate, pH 8.0 containing 0.1% Triton) using a
Dounce homogenizer, centrifuged at 13,400 x g, and the supernatant
collected for analysis. AChE activity was determined using the standard
Ellman assay (Ellman et al., 1961) with 5,5′-dithio-bis(2-nitrobenzoic
acid) (DTNB) and acetylthiocholine iodide (ASChI) as substrate; 100 μM
tetraisopropyl pyrophosphoramide was included in the assay to inhibit
pseudocholinesterase. AChE activity was normalized using protein
concentration as determined using the BCA assay as described by the
manufacturer (Pierce, Rockford, IL).

2.4. Statistical methods

Time of death post-exposure (in h) was captured for animals that
died during the first 24 h following DFP exposure. All animals still alive
at 24 h were censored at that time. Kaplan-Meier curves used to illus-
trate the survival patterns of DFP animals with (n= 49) or without PB
pretreatment (n=112) were compared using the Wilcoxon test, which
is more appropriate when the survival curves cross. Average seizure
scores were collected for most but not all DFP animals and these data
were compared between DFP animals pretreated with PB (n=44)
versus saline (n=109) using the Wilcoxon rank sum test, a non-para-
metric test, since the underlying assumption of normality was violated
in the data. AChE activity data were analyzed using one-way ANOVA
with a post hoc Sidak’s multiple comparisons test.

3. Results

DFP triggered seizure behavior within minutes of exposure that was
sustained for hours in both animals pretreated with PB and those that
were not (Fig. 2A). To determine whether PB treatment significantly
altered seizure behavior, we compared the average seizure score be-
tween the animals that were pretreated with PB versus the animals that
did not receive PB pretreatment (Fig. 2B). We found that there was no
significant difference in the average seizure scores between these
groups (p=0.7). In DFP animals pretreated with PB (n=44), the
mean seizure score was 2.54 (0.61 SD) and the median score (25–75
percentile) was 2.71 (2.45–2.92). In DFP animals not pretreated with
PB (n=109), the mean seizure score was 2.56 (0.71 SD) and the
median was 2.77 (2.33–2.90).

At 24 h post-exposure, 89 of 112 (79.5%) DFP animals not pre-
treated with PB were still alive, while 43 of 49 (87.8%) DFP animals
pretreated with PB were still alive. Fig. 3A illustrates the survival
curves for the two groups, which were not significantly different
(p= 0.3). AChE activity at 24 h post-exposure was measured in the
cerebellum of a subset of animals (n=6–9 per group) (Fig. 3B). In VEH
animals, the AChE activity in this brain region was approximately
24–25 μmol substrate/min/mg protein; however, acute DFP intoxica-
tion reduced AChE levels to approximately 6–7 μmol substrate/min/mg
protein. There were significant differences between the VEH and DFP
animals pretreated with PB and between the VEH and DFP animals not
pretreated with PB [(17.83. (15.48–20.17) (adjusted p value
=<0.001) and 17.84 (15.53–20.16) (adjusted p value =<0.001),
respectively]. In contrast, there were no significant differences between
VEH animals that received PB pretreatment versus those that did not,
nor were there significant differences between DFP animals that re-
ceived PB pretreatment versus those that did not. The mean difference
in the VEH animals in the Sideks test was -0.739 with a 95% confidence
interval of difference that was -3.182 to 1.705 (adjusted p value=
0.9515). Similarly, in the DFP animals, the mean difference was -0.721
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(-2.934 – 1.492) (adjusted p value=0.9320).

4. Discussion

Numerous laboratories have demonstrated that the rat model of
acute DFP intoxication recapitulates the neurotoxic effects observed in
preclinical models of acute intoxication with OP warfare agents (de
Araujo Furtado et al., 2012; Pereira et al., 2014), including rapid and
profound inhibition of AChE, seizures that rapidly progress to status
epilepticus, and widespread neurodegeneration, neuroinflammation, and
oxidative stress that persists in multiple brain regions for days to weeks
post-exposure (Deshpande et al., 2010; Hobson et al., 2017; Kim et al.,
1999; Li et al., 2011; Liang et al., 2018; Pouliot et al., 2016; Rojas et al.,
2015; Siso et al., 2017; Wu et al., 2018). The rat model of acute DFP
intoxication typically includes pretreatment with PB and post-exposure
treatment with atropine sulfate and 2-PAM (Deshpande et al., 2010; Li
et al., 2011; Pouliot et al., 2016), which are thought to be necessary for
animals to survive the peripheral cholinergic symptoms of acute OP
intoxication (Kim et al., 1999). We have previously reported that post-
exposure treatment with atropine sulfate and 2-PAM is required for
DFP-intoxicated animals to survive (Pessah et al., 2016). In contrast, the
data shown here indicate that pretreatment with PB is not required nor
does it enhance survival of adult male rats acutely intoxicated with

DFP.
At the dose used in these studies (0.1 mg/kg, i.m.), PB pretreatment

did not significantly alter DFP inhibition of AChE activity in the cere-
bellum at 24 h post-exposure. This is consistent with reports that PB
does not penetrate the CNS (Lorke and Petroianu, 2019). OPs are
thought to trigger seizures via inhibition of AChE in the brain (Chen,
2012), thus, the lack of effect of PB pretreatment on DFP inhibition of
brain cholinesterase activity is consistent with the observation that PB
pretreatment also had no significant effect on seizure behavior in DFP-
intoxicated animals during the first 4 h post-exposure. One caveat is
that we did not assess seizures by electroencephalography (EEG);
however, it has been demonstrated that in rats acutely intoxicated with
DFP, seizure behavior is highly correlated with abnormal EEG activity
indicative of seizure activity (Pouliot et al., 2016).

Our findings indicate that PB pretreatment does not significantly
enhance survival at 24 h. However, a key question is whether PB pre-
treatment significantly improves survival at later time points. While we
did not collect data to address this question as part of this study, our
laboratory’s experience with hundreds of DFP animals indicates
that> 90% of DFP animals that survive the first 24 h post-exposure will
survive for months post-exposure irrespective of PB pre-treatment.
Collectively, these data support the elimination of PB pretreatment
from the rat model of acute DFP intoxication to increase its relevance to

Fig. 1. Schematic illustrating the DFP exposure paradigm. A. Adult Sprague Dawley rats were administered either pyridostigmine bromide (0.1 mg/kg) or an
equivalent volume (100 μl) of vehicle (isotonic saline) via i.m. injection. Thirty min later, animals received a s.c. injection of DFP (4mg/kg) or vehicle (PBS) followed
1min later by a combined i.m. injection of atropine sulfate (2mg/kg) and 2-PAM (25mg/kg). B. Seizure behavior was scored during the first 4 h post-injection using
a modified Racine scale. SLUD indicates any of the following symptoms of cholinergic crisis: salivation, lacrimation, urination or defecation.

Fig. 2. Pyridostigmine bromide (PB) pretreatment has no significant effect on DFP-induced seizure behavior. A. Seizure scores were obtained at 5min
intervals during the first 120min following administration of DFP, and at 20min intervals between 120 and 240min post-exposure. Data points correspond to the
mean seizure score (± S.D.) at each observation point (n= 109 DFP - PB and 44 DFP+PB). B. Average seizure score over the 4 h post-exposure in DFP animals
pretreated with 0.1 mg/kg PB or not. Each dot represents the average seizure score of an individual animal; the box, the 25%-ile to 75%-ile; the horizontal bar, the
median; and the bars extend to the smallest and largest data points within 1.5 interquartile range (IQR) of the edges of the box. (n=109 DFP - PB; 42 DFP+PB).
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civilian scenarios of acute OP intoxication. Moreover, because PB in-
teracts with AChE in the periphery, thereby potentially modifying ef-
fects of DFP on peripheral targets that influence CNS pathology (no-
tably cardiac and immune function), inclusion of PB pretreatment in the
rat DFP model has the potential to confound translation of animal
model data to the human situation.
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