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Abstract

The representation theory of the exceptional Lie superalgebras
F(4) and G(3)

by
Lilit Martirosyan
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor Vera Serganova, Chair

Professor Joseph Wolf, Co-chair

This thesis is a resolution of three related problems proposed by Yu. I. Manin
and V. Kac for the so-called ezceptional Lie superalgebras F'(4) and G(3). The first
problem posed by Kac (1978) is the problem of finding character and superdimension
formulae for the simple modules. The second problem posed by Kac (1978) is the
problem of classifying all indecomposable representations. The third problem posed
by Manin (1981) is the problem of constructing the superanalogue of Borel-Weil-Bott
theorem.
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Chapter 1

Introduction

This thesis is within the area of Lie theory, algebraic geometry, and representation
theory. Lie superalgebras and their representation theory are important in theoreti-
cal physics. They are used to describe the mathematics of supersymmetry, which is a
theory originated in quantum physics that relates bosons and fermions. The study of
representations of Lie superalgebras also has important applications in other branches
of Lie theory and representation theory.

After classifying all finite-dimensional simple Lie superalgebras over C in 1977,
V. Kac proposed the problem of finding character and superdimension formulae for
the simple modules (see [10]).

Main result 1: The first main result in this thesis is solving this problem in full
for the so-called exceptional Lie superalgebras F'(4) and G(3).

The next problem, also posed by V. Kac in 1977, is the problem of classifying
all indecomposable representations of classical Lie superalgebras (see [10]). Here we
settle it as follows.

Main result 2: For the exceptional Lie superalgebras F'(4) and G(3), we de-
scribe the blocks up to equivalence and find the corresponding quivers, which gives
a full solution of this problem. We show that the blocks of atypicality 1 are tame,
which together with Serganova’s results for other Lie superalgebras proves a conjec-
ture by J. Germoni.

In the geometric representation theory of Lie algebras, the Borel-Weil-Bott (BWB)
theorem (see Theorem 2.3.1) plays a crucial role. This theorem describes how to
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construct families of representations from sheaf cohomology groups associated to
certain vector bundles. It was shown by I. Penkov, that this theorem is not true
for Lie superalgebras. In 1981, Yu. I. Manin proposed the problem of constructing
a superanalogue of BWB theorem. The first steps towards the development of this
theory were carried out by I. Penkov in [16].

Main result 3: One of my results (see Theorem 2.3.2 and Theorem 2.3.3) is an
analogue of BWB theorem for the exceptional Lie superalgbras F'(4) and G(3) for
dominant weights.

Background: The basic classical Lie superalgebras that are not Lie algebras
are:

(i) the series sl(m|n) and osp(m|n);

(ii) the exceptional Lie superalgbras F'(4) and G(3); and

(iii) the family of exceptional Lie superalgebras D(2,1; «).

In [10], Kac introduced the notions of typical and atypical irreducible representa-
tions. He classified the finite-dimensional irreducible representations for basic classi-
cal Lie superalgebras using highest weights and induced module constructions similar
to Verma module constructions for simple Lie algebras. In [11], he found character
formulae similar to the Weyl character formula for typical irreducible representations.

The study of atypical representations has been difficult and has been studied
intensively over the past 40 years. Unlike the typical modules, atypical modules are
not uniquely described by their central character. All simple modules with given
central character form a block in the category of finite-dimensional representations.

Brief history: The problem of finding characters for simple finite-dimensional
gl(m|n)-modules has been solved using a geometric approach by V. Serganova in [21]
and [22], and later J. Brundan in [1] found characters using algebraic methods and
computed extensions between simple modules.

More recently, this problem has been solved for all infinite series of basic clas-
sical Lie superalgebras in [9] by C. Gruson and V. Serganova. They compute the
characters of simple modules using Borel-Weil-Bott theory and generalizing a combi-
natorial method of weight and cap diagrams developed first by Brundan and Stroppel
for gl(m|n) case.
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In [5], J. Germoni solves Kac’s problems for D(2, 1; «). He also studies the blocks
for G(3) using different methods. I solve the above problems for G(3) and F(4),
generalizing the methods of [9].

Strategies used for the exceptional Lie superalgebras F'(4) and G(3): To
solve the aformentioned problems of V. Kac and Yu. I. Manin for the superalgebras
F(4) and G(3), we have used machinery from algebraic geometry, representation
theory, and category theory.

The first step is to study the blocks and prove that up to equivalence there are
two atypical blocks for F'(4), called symmetric and non-symmetric, and one block for
G(3). We find Ext! between atypical simple modules in a block. After finding the
Ext! for simple modules in a block, we prove that the quivers corresponding to the
atypical blocks are of type Ay and Dy, for F'(4) and of type Dy, for G(3) (see The-
orem 2.1.1 and Theorem 2.1.2). Using quiver theorem (Theorem 11.1.4), this leads
to the classification of all indecomposable modules. We proved the formula for the
superdimension for the atypical irreducible representations (see Theorem 10.1.1 and
Theorem 10.1.2). We combined this with results in [23] to prove the Kac-Wakimoto
conjecture (see Theorem 2.2.3) for F'(4) and G(3).

Next, we studied the cohomologies of line bundles over flag supervarieties estab-
lishing a theorem that is a “superanalogue” of the Borel-Weil-Bott theorem for the
classical Lie algebras for dominant weights (see Theorem 2.3.2 and Theorem 2.3.3).
Unlike the Lie algebra case, the cohomology groups for atypical modules are not
always simple modules and they may appear in several degrees. There are three
special atypical simple modules L,,, Ly,, Ly, in the symmetric block of F'(4) and
the block of G(3), and one special simple module L, for the non-symmetric block
of F(4). For other cases the cohomology groups vanish in positive degree and in
zero degree have two simple quotients that are adjacent vertices of the quiver. The
first cohomology appears only for sheaves O,,, O,,, and O,,, and is equal to L,,,
Ly,, and L,, correspondingly. Cohomology group in zero degree for O, is L, for
0 = A1, A2, 19 The cohomology of O,, vanishes in positive degree and in zero degree
it has three simple quotients L,, with 7 =0, 1, 2.

Most complications in the proof were arising for the weights close to the walls
of the Weyl chamber. The main difference from other classical cases was that there
was no analogue of the standard module. Therefore, for the exceptional Lie super-
algebras, one cannot move from any equivalent atypical block to another by the use
of translation functor as in the infinite series of Lie superalgebras in [9]. Instead, the
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translation functor applies only in some cases. I use this in combination with other
techniques including associated variety and fiber functor [3], geometric induction [19]
and [21], V. Serganova’s odd reflections method [20], and formulae for generic mod-
ules by Penkov and Serganova [18].

As for osp(m|n) in [9], I use geometric induction for the study of highest weight
modules, instead of the usual induction that are used in Bernstein-Gelfand-Gelfand
category O, or the Kac modules that were used for the case sl(m|n). The coho-
mology groups H'(G/B,V*)* of the induced vector bundle V = G x5V on the
flag supervariety GG/B are viewed as g-modules for an algebraic supergroup G and a
Borel subgroup B. Penkov’s method [16] is used to construct filtrations of g-modules
by line bundles O, on flag supervariety G/B, which gives an upper bound on the
multiplicities of simple modules L, in the cohomology groups H'(G/B, O%)*.



Chapter 2

Main results

2.1 Classification of blocks

Let C denote the category of finite-dimensional g-modules. And let F be the full
subcategory of C consisting of modules such that the parity of any weight space co-
incides with the parity of the corresponding weight.

The category F decomposes into direct sum of full subcategories called blocks
FX, where FX consists of all finite dimensional modules with (generalized) central
character y. A block having more than one element is called an atypical block. By
FX we denote the set of weights corresponding to central character y.

A quiver diagram is a directed graph that has vertices the finite-dimensional
irreducible representations of g, and the number of arrows from vertex A\ to the
vertex p is dimExtl(Ly, L,,).

Theorem 2.1.1 The following holds for g = F(4):

(1) The atypical blocks are parametrized by dominant weights p of s1(3), such that
o+ pp = aw; + bwy with a = 3n +0. Here, b € Z~o and n € Z>p; w1 and wy are the
fundamental weights of s(3); p; is the Weyl vector for sl(3).

(2) There are two, up to equivalence, atypical blocks, corresponding to dominant
weights p of s(3), such that p+ p; = aw; + bwy with a = b or a # b. We call these
blocks symmetric or non-symmetric and denote by F» or F@ respectively.
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(3) For the symmetric block F®, we have the following quiver diagram, which
15 of type Doy :

X o M

Flaa) .. 0<—>0<—>0<—>0 a<

®
A2

(4) For the non-symmetric block F*  we have the following quiver diagram,
which 1s of type As:

Theorem 2.1.2 The following holds for g = G(3):

(1) The atypical blocks are parametrized by dominant weight p of s1(2), such that
i+ p = aw; with a =2n+1. Here, n € Z>o; wy s the fundamental weight of sl(2);
pu is the Weyl vector for sl(2).

(2) There is one, up to equivalence, atypical block, corresponding to dominant
weight v of s1(2), such that p; + p = awy. Denote it by F°.

(8) For the block F*, we have the following quiver diagram, which is of type Dy :

Ao .’\1

Fe o e ococc<

[ ]
A2

2.2 Character and superdimension formulae

The superdimension of a representation V' is the number sdimV = dimVy — dimV;
(see [14]).

Let X = {x € gi|[z,z] = 0} be the self-commuting cone in gy studied in [3].
For xz € X, we denote by g, the quotient Cy(x)/[x, g as in [3], where Cy(z) = {a €
g|[a, ] = 0} is the centralizer of x in g.
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We proved the following superdimension formula for the exceptional Lie superal-
gebra g = F'(4).

Theorem 2.2.1 Let g = F(4). Let A € FOY and p+ p = aw +bws. If X # i, Ag,
the following superdimension formula holds:

sdim Ly = £2dim L, (g,).

For the special weights, we have: sdim Ly, = sdim Ly, = dim L,(g,). Here,
g, = sl(3).

Similarly, we proved the following superdimension formula for the exceptional Lie
superalgebra g = G(3).

Theorem 2.2.2 Let g = G(3). Let A € F® and pu+ p; = awy. If X # A\, Ao, the
following superdimension formula holds:

sdim Ly = £2dim L, (g.).

For the special weights, we have: sdim Ly, = sdim Ly, = dim L,(g,). Here,
9. = sl(2).

A root « is called isotropic if (o, ) = 0. The degree of atypicality of the weight
A the maximal number of mutually orthogonal linearly independent isotropic roots
a such that (A + p,a) = 0. The defect of g is the maximal number of linearly
independent mutually orthogonal isotropic roots. We use the above superdimension
formulas and results in [23] to prove the following theorem, which is Kac-Wakimoto
conjecture in [14] for g = F'(4) and G(3).

Theorem 2.2.3 Let g = F(4) or G(3). The superdimension of a simple module of
highest weight \ is nonzero if and only if the degree of atypicality of the weight is
equal to the defect of the Lie superalgebra.

The following theorem gives a Weyl character type formula for the dominant
weights. It was conjectured by Bernstein and Leites that formula 2.1 works for
all dominant weights. However, we obtain a different character formula 2.2 for the
special weights A, Ap for F/(4) and G(3).

Theorem 2.2.4 Let g = F(4) or G(3). For a dominant weight X # A1, Ao, let
a € Az be such that (A + p,a) = 0. Then
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6/\+p

: Z sign(w) -w(m). (2.1)

weWw

Dl-ep

0

ChL)\ =

For the special weights A\ = \; with @ = 1,2, we have the following formula:

eMP(2 +e7)
(I4+e)

). (2.2)

2.3 Analogue of Borel-Weil-Bott theorem for Lie
superalgebras F(4) and G(3).

Let g be a Lie (super)algebra with corresponding (super)group G. Let b be the
distinguished Borel subalgebra of g with corresponding (super)group B. Let V be a
b-module.

Denote by V the induced vector bundle G x5 V' on the flag (super)variety G/B.
The space of sections of V' has a natural structure of a g-module. The cohomology
groups H'(G/B,V*)* are g-modules.

Let C'\ denote the one dimensional representation of B with weight A. Denote
by O, the line bundle G x5 C) on the flag (super)variety G/B. Let L, denote the
simple module with highest weight A. See [19].

The classical result in geometric representation theory for finite-dimensional semisim-
ple Lie algebra g states:

Theorem 2.3.1 (Borel-Weil-Bott) If A + p is singular, where X is integral weight
and p is the half trace of b on its nilradical, then all cohomology groups vanish. If
A + p is reqular, then there is a unique Weyl group element w such that the weight
w(A+ p) — p is dominant and the cohomology groups H'(G/B,O%)* are non-zero in
only degree | = length(w) and in that degree they are equal to the simple module L,
with highest weight 1 = w(\ + p) — p.

We proved the following superanalogue for the exceptional Lie superalgebra g =
F(4) for the dominant weights and for specific choice of B.

Theorem 2.3.2 Let g = F'(4).
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(1) For i € F@) with ju # A1, Xy or Ao, the group H(G/B, O})* has two simple
subquotients L, and L/, where (' is the adjacent vertex to j in the quiver Do, in
the direction towards Ag.

At the branching point Ny of the quiver, the group H°(G /B, O3,)" has three simple
subquotients Ly,, Ly, and Ly,. For i =1,2, we have H(G/B, 0} )* = Lj,.

The first cohomology is not zero only at the endpoints A1 and Ay of the quiver and
HY(G/B,0%,)* = Ly,, H(G/B,03,)* = Ly,. All other cohomologies vanish.

(2) For € FP the group H*(G/B,O5,)* has two simple subquotients L, and
> Where 1’ is the adjacent vertex to p in the quiver A in the direction towards Xo.

L

The first cohomology is not zero only in one particular point \g of the quiver and
H'(G/B,0;,)* = Ly, Also, H'(G/B,0;,)* = Ly,. All other cohomologies

vanish.

Similarly, we proved the following superanalogue of BWB theorem for the excep-
tional Lie superalgebra g = G(3) for the dominant weights.

Theorem 2.3.3 Let g = G(3).

For € F* with p # A1, Ay or Xo, the group H°(G/B,0%)* has two simple
subquotients L, and L/, where (' is the adjacent vertex to p in the quiver Do, in
the direction towards Ag.

At the brunching point, the group HO(G/B,(’);O)* has three simple subquotients
Ly, Ly, and Ly,. Fori=1,2, we have H*(G/B, 03 )* = L,,.

The first cohomology is not zero only at the endpoints of the quiver and H'(G /B, O3,)" =
Ly,, HY(G/B,0},)* = Ly,. All other cohomologies vanish.

2.4 Germoni’s conjecture and the
indecomposable modules

The following theorem together with results in [9] for other Lie superalgebras proves
a conjecture by J. Germoni (Theorem 2.4.2).
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Theorem 2.4.1 Let g = F'(4) or G(3). The blocks of atypicality 1 are tame.

Theorem 2.4.2 Let g be a basic classical Lie superalgebra. Then all tame blocks
are of atypicality less or equal 1.

The following theorem together with Theorem 11.1.4 gives a description of the
indecomposable modules.

Theorem 2.4.3 The quivers A and Do are the ext-quiver for atypical blocks F(@P)
and F@ of F(4) and the quiver Dy, is the ext-quiver for atypical block F* of G(3)
with the following relations:

For F@b we have:

dtd” +dd" = (d*)’ = (d")* =0 ,where d* =) " d}*

leZ

For F@% or F* we have the following relations:

dydi =df,df =0, forl>3
didy =dydf =didy =dydy =dydy =didf =dydy =didf =0
dydf =df di,, for1>3

I+1

did;y =djdy, =dydyg.
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Chapter 3

Preliminaries

3.1 Lie superalgebras

The following preliminaries are taken from [13].

All vector spaces are over an algebraically closed field & of characteristic 0. By
a superspace over k, we mean a Zs-graded vector space V = V5 @ Vi. By p(a) we
denote the degree of a homogeneous element a and we called a even or odd if p(a) is
0 or 1 respectively.

A Lie superalgebra is a superspace g = gy g1, with a bilinear map [, | : g®g — g,
satisfying the following axioms for all homogenous a, b, ¢ € g:

(a) [a,b] = —(—1)P@PO)p q] (antzcommutatvzty)
= [[a, ] c] + (—=1)P@r®p [a, c]] (Jacobi identity).

It follows from definition, that gg is a Lie algebra and the multiplication on the
left by elements of gz determines a structure of gg-module on g7.

A bilinear form f on a Lie superalgebra g = gg@®gs is called invariant if it satisfies
the following conditions:

(a) f(a,b) = (—1)P@PO®) (b a) for all homogenous a,b € g (supersymmetry);
(b) f(a,b) =0 if p(a) # p(b) for all homogenous a,b € g (consistency);
(c) f([a,b],¢) = f(a,[b,c]) for all a,b,c € g (invariance).
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A bilinear form f on a Lie superalgebra g is called non-degenerate if f(a,b) =0
for all b € g implies a = 0. It is clear that on a simple Lie superalgebra, the invariant
forms are either zero or non-degenerate, and any two invariant forms are proportional.

A simple Lie superalgebra g = g5 ® g1 is basic classical if gg is a reductive sub-
algebra and if there is a non-degenerate invariant bilinear form for g. All simple
finite-dimensional Lie superalgebras have been classified by Kac in [12]. The ba-
sic classical ones are all the simple Lie algebras, A(m,n), B(m,n), C(n), D(m,n),
D(2,1;«a), F(4), and G(3).

If the representation of gz in g7 is irreducible and g7 # 0, g is said to be
of type II, and if it is a direct sum of two irreducible representations, then it is
of type I. The Lie superalgebras F'(4), G(3) are called exceptional, because like
the five exceptional Lie algebras they are unique and don’t belong to the series.
The exceptional algebras F'(4) and G(3) are of type 1. The Killing form (a,b) =
tr(ad a)(ad b)|g, — tr(ad a)(ad b)|s; on g is non-degenrate for F'(4), G(3).

For the exceptional Lie superalgebras, there exist a distinguished Z-gradation
g = @g; such that g; = 0 for |7| > 2. This gradation is defined by Kac in [12].

Let b be Cartan subalgebra of gj Lie algebra, then g had a weight decompo-
sition g = D,y 0oy With g0 = {2 € g | [h,2] = a(h)z Vh € h}. The set
A = {a € b* | go # 0} is called the set of roots of g and g, is the root space
corresponding to root a € A. For a regular h € b, i.e. Rea(h) # 0 Va € A, we
have a decomposition A = AT UA~. Here, AT = {a € A|Rea(h) > 0} is called the
set of positive roots and A~ = {a € A|Re a(h) < 0} is called the set of negative roots.

The Lie superalgebra g admits a triangular decomposition g =n~ @ h S nt with
nt = D.cat Fa, With n® nilpotent subalgebras of g. Then b = h @ n* is a solvable
Lie subsuperalgebra of g, which is called the Borel subsuperalgebra of g with respect

to the given triangular decomposition. Here, n* is an ideal of b.

We set AF = {a € A*|g, C go} and AT = {a € A¥|g, C g1}. Then the set
AfUA, called the set of even roots and the set AT UAT is called the set of odd roots.

The universal enveloping algebra of g is defined to be the quotient U(g) = T'(g)/R,
where T'(g) is the tensor superalgebra over space g with induced Zs-gradation and
R is the ideal of T'(g) generated by the elements of the form [a, b] —ab+ (—1)P(@P®)pq,
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The following is the Lie superalgebra analogue of Poincar-Birkhoff-Witt (PBW)

theorem: Let g = g5 @ g1 be a Lie superalgebra, aq,...,a, be a basis of gg and
by, ...,b, be a basis of g7, then the elements of the form a’fl . ~-a,’§;”bi1 -+ - b;, with

k; >0and 1 <i; <--- <izs <n form a basis of U(g).

By PBW theorem, U(g) = U(n™) @ U(h) @ U(n*). Let 6 : U(g) — U(h) be the
projection with kernel n=U(g) ® U(g)n™.

Let Z(g) to be the center of U(g). Then the restriction 0|5 : Z(g) = U(h) =
S(h) is a homomorphism of rings called Harish-Chandra map. Since b is abelian,
S(h) can be considered the algebra of polynomial functions of h*.

The (generalized) central character is a map x» : Z(g) — k such that x\(z) =

0(2)(N).

3.2 Weyl group and odd reflections

The Weyl group W of Lie superalgebra g = g5 @ g7 is the Weyl group of the Lie
algebra gg. Weyl group is generated by even reflections, which are reflections with
respect to even roots of g. Define parity w on W, such that Vr € W, w(r) = 1 if
w can be written as a product of even number of reflections and w(r) = —1 otherwise.

A linearly independent set of roots ¥ of a Lie superalgebra is called a base if for
each 8 € X there are Xg € gs and Ys € g_p such that Xg, Y, 8 € ¥ and h generate
g and for any distinct 3,y € ¥ we have [X3,Y,] = 0.

Let {Xp,} be a base and let hg, = [Xg,,Ys,]. We have the following relations
[h, Xp,] = Bi(h)Xp,, [h,Yp,] = —Bi(h)Yp,, and [Xpg,,Yp,] = dihs,. We define the Car-
tan matriz of a base ¥ to be matrix Ay = (Bi(hg,;)) = (as,s,)-

A base where the number of odd roots is minimal is called a distinguished root
base. In that case, the Cartan matrix is also called distinguished Cartan matrix.

In the given base 3, let @ € ¥ is such that a,, = 0 and p(a) = 1. An odd
reflection r, is defined in [20] by:

ro(a) = —a, ro(f) = B if a # B and anp = ag, = 0, and
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ro(B) = B+ a if ans # 0 and ag, # 0, for all 5 € X.
We call a root o € ¥ isotropic, if a,. = 0; otherwise, it is called non-isotropic.

Lemma 3.2.1 (Serganova, [20]) Let g be any basic classical Lie superalgebra. For
an isotropic a € Ay, the set 1o(X) = {ro(5)|6 € L} is a base and every base of g
can be obtained from a given one by a sequence of even and odd reflections.

From this lemma, we obtain different Cartan matrices for the same Lie superal-
gebra.

We also need the following lemma:

Lemma 3.2.2 (Serganova, [20]) Let IT and 1" be two bases, and A+ (IT), AT(IT') be
the corresponding sets of positive roots. If II' = r,(I1), for some root o € I1. Then

AT(IT) = AT(I) N {—a}\{a},

or

AT(IT) = AT(I) N {—a, —2a} \ {«, 20},

depending on whether 2a is a root.

3.3 Representations of Lie superalgebras

The following definitions and results can be found in [15].

A linear representation p of g = g5 @ g1 is a superspace V = Vj @ Vi, such that
the graded action of g on V' preserves parity, i.e. g;(V;) C Viy; for i,j € Zy and
(91, go]v = g1(g2(v)) — (=1)P9P92) go (g1 (v)), where g(v) := p(g)(v). Then, we call V
a g-module.

A g-module is a weight module, if b acts semisimply on V. Then we can write
V = @D,cyp Vi, where V, = {m € V | hm = p(h)m,Vh € b}. The elements of
P(V)={peb* |V, #0} are called weights of V.

For a fixed Cartan subalgebra b of g, we fix b to be a Borel containing . We
have b=hH dnt.



CHAPTER 3. PRELIMINARIES 15

Let A € b*, we define one dimensional even b-module C) = (v,) by letting
h(vy) = A(h)vy, Vh € h and nT(vy) = 0 with deg(vy) = 0.

We define the Verma module with highest weight A as the induced module
M)\ = [ndgC)\ = U(g) ®U(b) C)\.

The g-module M) has a unique maximal submodule I. The module Ly = M, /I,
is called an irreducible representation with highest weight X. 1t is proven in [10] that
Ly, and L), are isomorphic iff \; = A9 and that any finite dimensional irreducible
representation of g is one of L.

A weight A\ € b* is called integral if a; € Z for all ¢ # s, where s corresponds to
an odd isotropic root in a distinguished base.

We denote by A the lattice of integral weights. It is the same as the weight lat-
tice of the gg. The root lattice will be a sublattice of A and is denoted by @). We
know that any simple finite-dimensional g-module that is simisimple over h and has
weights in A, is a quotient of the Verma module with highest weight A € A by a
maximal submodule. X is called dominant if this quotient is finite-dimensional.

Thus, for every dominant weight, there are two simple modules, that can be ob-
tained from each other by change of parity. In order to avoid ”parity chasing”, the
parity function is defined p : A — Z,, such that p(A+ «) = p(\) + p(«) for all & € A
and extend it linearly to all weights.

For a g-module V| there is a functor = such that 7(V) is the module with shifted
parity, i.e. (V) = Vi and n(V); = V. We have C = F @ w(F), where C is the
category of finite-dimensional representations of g and F is the full subcategory of
C consisting of modules such that the parity of any weight space coincides with the
parity of the corresponding weight.

The Dynkin labels of a linear function \ € h* are defined by as; = (A, a), if oy is
an odd isotropic root in a distinguished base and a; = 20‘—“; for other roots in the

(qi
distinguished base.

The following result from [12] is analogous to the theorem on the highest weights
for finite-dimensional irreducible representations of Lie algebras. We state it only in
the case g = F'(4) or G(3):
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Lemma 3.3.1 (Kac,[12]) For a distinguished Borel subalgebra of g = F(4) or G(3),
let e;, fi, hi be standard generators of g. Let X\ € g* and a; = A(h;). Then the repre-
sentation Ly is finite dimensional if and only if the following conditions are satisfied:

For g = F(4),

1) a; € Ly

2) k = (2ay — 3ay — 4ag — 2a4) € Ly ;

3)k<4:a;=0foralliifk=0;k#0;ay=a4=0 fork=2;ay =2a4+1 for
k= 3.

For g =G(3),

1) a; € Ly

2) k = (a1 — 2ay — 3a3) € Zy for g = G(3);

3)k<3:a;=0 foralliif k=0;k+#0;a,=0 fork=2.

For a base ¥, we denote L the simple g-module with highest weight \ corre-
sponding to the triangular decomposition obtained from ..

Lemma 3.3.2 (Serganova, [20]) Let o € h*. Let ¥ = p,(I1) for some odd reflection,
then LY, = L3, where N = X — a if AM(ha) # 0 and N = X\ if A(h,) = 0.

Lemma 3.3.3 (Serganova, [20]) A weight X\ is dominant integral if and only if for
any base X3 obtained from 11 by a sequence of odd reflections, and for any 5 € 3 such
that B(hg) = 2, we have N'(hg) € Zsq if B is even and N (hg) € 2Z>q if B is odd.
Here, LY = LY.

An irreducible finite-dimensional representation of g is called typical if it splits as a
direct summand in any finite dimensional representation of g. Equivalently, a finite-
dimensional irreducible representation is typical if the central character uniquely
determines it. Also it is known that A is a highest weight of a typical representation
if (A + p,a) # 0 for any isotropic a € A7.
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Chapter 4

Structure and blocks for the
exceptional Lie superalgebras F(4)

and G(3)

4.1 Description of F(4)

Let g be the exceptional Lie superalgebra F'(4). The structure, the roots, simple
root systems with corresponding Cartan matrices and Dynkin Diagrams, the Weyl
group, and the integral dominant weights have been studied by V. Kac in [12] and
we describe them in this section. Generators and relations for g = F'(4) are taken
from [2].

The Lie superalgebra g = F(4) has dimension 40 and rank 4. The even part
g5 is B3 ® Ay = o(7) @ sl(2) and the odd part g; is isomorphic to spin; ® sl as a
gg-module. Here spin, is the eight dimensional spinor representation of s0(7) and sl,
is the two dimensional representation of s[(2). The even part gg has dimension 24.
The odd part g7 has dimension 16.

Its root system can be written in the space h* = C* in terms of the basis vectors
{€1, €2, €3,0} that satisfy the relations:

(61‘, Ej) = 5ij s (6, 5) =-3 s (61‘,5) =0 for all Z,j

With respect to this basis, the root system A = Ag & Aj is given by

1
Aj = {£e; t¢j;t€; 1025 and A = {5(:|:61 +ey+e3+0)}
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For F'(4), we see that the isotropic roots are all odd roots.
We choose the simple roots to be Il = {a; = %(—61 —€e—€3+0);a0 = €3;03 =

€a — €3;04 = €1 — €9}, This will correspond to the following Dynkin diagram and
Cartan matrix:

(03] (0D)] Q3 Yy

0o 1 0 o0
Cartan matrix = Ag = _01 _21 —22 _()1
0O 0 -1 2

We recall that the nodes o, ®, @ are call respectively white, gray, and black, and
they correspond respectively to even, odd isotropic, odd non-isotropic roots. The
i-th and j-th nodes are not joined if a;; = a;; = 0 in the Cartan matrix and they are
joined max(|a;;|, |a;;|) times otherwise with arrows towards the i if |a;;| > |a;;| and
no arrows otherwise.

Up to W-equivalence, we have the following six simple root systems for F'(4) with
> being the standard basis.

Y=I1I= {041 = %(—61 —62—63+5);042 = €3,(03 = €3 — €3;04 = €] —62}3
Y= {Ozl = %(614‘624—63—5);0@ = %(—61—624‘634‘6);&3 = €9 — €3,y = 61—62};
Y={au=gm=3at+ea—a—0ia=1i-a+te—a+i);a=—c}

N ={a = j(~ateateati)ia=a-eaa = (a-atea—0)ia=

1 e — R -
3 €1 — € —€3—0);qp =€ — €3;03 = €304 = 0 };
SO ={y =0 =6 — €303 = €1 — 354 = 3(—€1 + &2+ €3 — )}

The following odd roots will be used later:
B = %(—61 — € — €3+ 0;
I = %(—61 — €9 +€3 +5),
5” = %(—61 + €2 — €3 + (5),
6’” = %(—61 + €2+ €3+ (5),
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B = 5.

The following are the Dynkin diagrams and Cartan matrices corresponding to
above root systems:

O 1 0 O
) -1 0 2 0
Cartan matrix = Ay = 0 -1 2 -1
o 0 -1 2
Qq (6%} a3 iy
F(4) —R=—0—o0
2 -1 0 0
] -2 0 2 1
Cartan matrix = Ay» = 0 -2 0 1
0 -1 -1 2
aq (6%} as
F(4)
Qly
0o 3 2 0
) -3 0 1 0
Cartan matrix = Asxn = 9 1 0 1
0o 0 -2 2
aq
(6%) (0%

Qay
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2 =1 0 0
. 3 0 1 0
Cartan matrix = Agiv) = 0 -1 92 —2
0 0o -1 2
aq (6%} a3 iy
F(4) =R—OX0
2 =1 0 0
' 3 0 2 0
Cartan matrix = Ay = 0 -1 2 —1
0 0o -1 2
(a7} (&%) Qs QY

F(4) === 0—-o0

With respect to the root system X, the positive roots are AT = Al U A, where
Ay ={0,ei, et |i <j}and AT = {3(te; £ exte3+0)}.

The Weyl vector is p = pg — p1 = 5(5€1 + 3€2 + €5 — 30), where py = 5(5e1 + e+
€3+ 0) and p; = 24.

The integral weight lattice, which is spanned by fundamental weights \; = €y,
)\2 = € + €9, )\3 = %(61 + € + 63), and )\4 = %(5 of do, is A = %Z(El + € + 63) S
71 @B Ley B %Zé. Also, A/Q = Zs, where @ is the root lattice. We can define parity
function on A, by setting p($) = 0 and p(§) = 1.

Let T; with i = 1,2, 3, denote the generators of s((2). Let M,, = —M,, with

1 < p# q < 7 be generators of so(7). Let F,, with o« = £1 and 1 < 1 < 8 be the
generators of g;. The bracket relations on F'(4) are given by:

[ﬂ; Tm] = iElkak; [ﬂ? Mpq] = 0)

[Mpqa rs] = 5qrMps + 5pqur - 5p7°qu - 6qupr;
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[T, Fop] = %U,é’aFBm (Mg, Fap] = %(%%)wa?

Fi,) = 200 (C®0%) o T; + 102 (C® ) 0 M

37 aB pripg s

[Fozua

where 07 with j = 1,2, 3 are the Pauli matrices, C® = io? is the 2 x 2 charge con-
jugation matrix. The 8-dimensional matrices -, form a Clifford algebra [, 7,] = 2d,4
and C® is the 8 x 8 charge conjugation matrix.

Let I be the 2 x 2 identity matrix, then 7, can be chosen as follows:

N=0' @I
N=0 Q0 @0
3 =0l ®@ot ®ol;
n=0IxI;

V=0 ®a*® I
Yo =0'®0 @0
v=0®I®I.

The Weyl groups W is generated by six reflections that can be defined on basis
vectors as follows: for an arbitrary permutation (ijk) € S, we get three possible
permutations o;(e;) = e;, 0;(e;) = ek, 0i(ex) = e;, and other three defined 7;(e;) =
—ei, Ti(ej) = e;, Ti(ex) = ey all six fixing ¢, also one permutation o(e;) = e; for all ¢
and s(§) = —d. The Weyl group in this case is W = ((Z/2Z)3 x S3) & Z/27Z.

Lemma 4.1.1 A weight A\ = a6, + asey + aszes + agd € X is dominant integral
weight of g if and only if X+ p € {(b1,ba, b3|bs) € 22 X 37 X 3L x 37 | by > by >
by > 0; by > —%; by — by € Z»0;b2 — b3 € Zo; b4=—% = b =by+1&b3=
%, b4:0 — bl—bg—bgz()}.

Proof. Let X = a1€; + aq€y + azes +aqd € X 7.

Since the even roots in IT are § = €3, €3 — €3, €1 — €2. The relations A\(f) € Z>o im-
ply a1 > as > a3 > 0 or equivalently by > by > b3 > 0 and by —by € Z~q, by—bs € Z~y.

Using Lemma 3.3.3, we apply odd reflections with respect to odd roots 3, ', 5", 5"
to A we obtain conditions on a4 or equivalently on by.

The following are the only possibilities:
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(1) TEA(B) # 0, N(8) # 0, X'(8") # 0, X"(8") # 0, XO(3) = 2a; — 4 € Zs,

then a4y > 2 or a4 € %Zzo Or, by > %

(2) IEA(B) # 0, N(B) # 0, X(8") # 0, "(8") = 0, A = X" and AW (8) =
2a4 — 3 € Z>o, implying a4 > % and a4 € %Zzo- Only a4 = g is possible and we have
al—ag—ag,:—%. Ol", b4:0andb1—b2—b3:0.

(2) )\(/B) % 0’ )\/(ﬁ/) # O, )\//(5//) — 0 and )\/// — )\//’ )\///(/8///) — O’ )\4 — )\/// and

A (0) = 2a4 — 3 € Zsg, implying ay > 1 and a4 € %Zzo- Only a4 = 1 is possible
and we have a; = a and a3 = 0. Or, by = —% and by = by + 1, by = %

O

4.2 Description of G(3)

Let g be the exceptional Lie superalgebra G(3). The structure, the roots, simple
root systems with corresponding Cartan matrices and Dynkin Diagrams, the Weyl
group and integral dominant weights have been studied in [12] and we describe them
in this section. Generators and relations for g = G(3) are taken from [2].

The Lie superalgebra g = G(3) is a 31-dimensional exceptional Lie superalgebra
of defect 1. We have gz = G2 @ A;, where G3 is the exceptional Lie algebra, and
an irreducible gg-module gy that is isomorphic to go ® sly, where go is the seven
dimensional representation of GGy and sly is the two dimensional representation of
s[(2). The gy has dimension 17 and rank 3. And g has dimension 14.

We can realize its root system in the space h* = C? endowed with basis {e1, €2, €3, 0}
with €; + €3 + €3 = 0 and with the bilinear form defined by:

(€1,€1) = (€9, €2) = —2(€1,€9) = —(0,0) = 2.
With respect to the above basis, the root system A = Ag & Az is given by
Aj = {te;; £205€¢; — €;}iz; and A7 = {£5; +e; £ 6}
Up to W equivalence, there is are five systems of simple roots for G(3) given by:

H={on =e3+ 00 =€1;03 = €2 — €1},
II'={—e3— 6;—e2 + 0562 — €1},
1" = {e1; 62 — 5; —€1 + 0},
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" ={d;¢e1 — ;69 — €1 }.

oq Qo Qs
G(3) RX—C==0
0O 1 0
Cartan matrix = Ap=| -1 2 -3
0 -1 2
(03] (0] Q3
G(3) R—R==0
0O 1 0
Cartan matrix = Ayy = [ -1 0 3
0 -1 2
aq
%)
G(3)
a3
0 -3 2
Cartan matrix = Asyy = | =3 0 1
-2 -1 2
aq (0D Q3
G(3) O —x==0

2 =20
Cartan matrix = Asyn = | =2 0 3
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The positive roots with respect to 3 are AT = AJ U AT, where
Ay ={e1; e2; —€3; 205 €2 —€1; € —€3; € — €3} and A7 = {0; +¢; + 0}

The Weyl vector is p = pg — p1 = 2€; + 3¢5 — 25, where pg = 2¢; + 3e5 + 0 and
7
1= 55'

Let T; with i = 1,2, 3, denote the generators of s((2). Let M,, = —M,, with
1 < p# q < 7 be generators of s0(7). Let F,, with o« = £1 and 1 < 1 < 8 be the
generators of gi. The bracket relations on F'(4) are given by:

(13, Trn] = i€1miTy; [17, Mpg) = 0;

(Mg, Mys] = 8 Mps + 8ps My — e Mys — 0gs Mipr + £ Epqurso Mu;
T3, Fau] = %U%aFBuQ [Mpm or] = géquap - §5eraq + %qursFas?
[Faps Fq] = 20pq(C0")agT; + 5CapMpq.

Here, 07 with j = 1,2,3 are the Pauli matrices, C = io?

conjugation matrix.

is the 2 x 2 charge

The embedding G5 C s0(7) is obtained by imposing constrains on the generators
M,, given by & M;; = 0, where ;5 are completely antisymmetric and whose non-
vanishing components are

§123 = §145 = 5176 = 5246 - 5257 - 5347 - 5365 =1

The tensors (p,,s are completely antisymmetric and whose non-vanishing compo-
nents are given by

C1247 = C1265 = <1364 = Cl375 = <2345 = <2376 = C4576 =L

The Weyl groups W is the group W = Dy & Z /27, where Dg is the dihedral
group of order 12. It is generated by four reflections: for an arbitrary permutation
(ijk) € S3, we get three o;(e;) = e;, 0i(e;) = ex, oi(er) = e;, one reflection defined
by 7(e;) = —e; for all i and 7(5) = J, also one reflection o(e;) = e; for all ¢ and

o(d) = —0.

The integral weight lattice for gg is A = Ze; @ Zey & 709, which is the lattice
spanned by the fundamental weights w; = 9§, wy = €1 + €3, w3 = €1 + 2¢5 of gg. Also,
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A/Q = {1}, where @Q is the root lattice.
We can define the parity function on A, by setting p(¢;) = 0 and p(J) = 1.

Using Lemma 3.3.3 and Lemma 3.3.1, it is convenient to write down dominant
weights in terms of basis {€, €9, €3,0|€1 + €2 + €3 = 0}:

Lemma 4.2.1 A weight X\ = aie; + as€x + ases + a0 € X1 is a dominant integral
weight of g = G(3) if and only if X+ p € {(b1,ba,b3,b1) € Z X Z X L X (5 + Z)|by >
by > b3, 2by — by — b3 > 0; either by > 0; orif by = —=, then 2by — by — b3 =1; by #
—%; if by = —g, then by — bz = 2 and by — by = 3}.

1
27

Equivalently in terms of basis {e1, €2,0}, we can describe the dominant weights
as XT ={A=(a1,asla3) EZXLXZ|2a1 >ay>a, >0; ag>3;orifaz =2 =
az =2ay; a3 #1; a3 =0 = a; = ay = 0}.

Or equivalently, for X € X if A+ p € {(by,bs,03) € Z X Z x (3 + Z)|2b; >
by > by > 0; either b3 > 0; orif by = then by = 2by — 1; by # —%; if by =
—2 then b; = 2 and by = 3}.

Proof. Using Lemma 3.3.3 as in the case of F'(4). O

1
29

4.3 Associated variety and the fiber functor

Let Gy be simply-connected connected Lie group with Lie algebra gg, for a Lie su-
peralgebra g. Let X = {z € gi|[z,z] = 0}. Then X is a Go-invariant Zariski closed
set in gi, called the self-commuting cone in gz, see [3].

Let S to be the set of subsets of mutually orthogonal linearly independent isotropic
roots of Ay. So the elements of S are A = {ay, ..., ax|(a;, ;) = 0}. Let S = {A €
S| |A| = k} and Sy = 0.

Lemma 4.3.1 (/3]) Every Gy-orbit on X contains an element x = X, + -+ + Xq,
with X; € ga, for some set {ay,...,ap} € S.

The number k in this lemma is called rank of x.

The following theorem is true for all contragradient Lie superalgebras.

Theorem 4.3.2 (/3]) There are finitely many Gy-orbits on X. These orbits are in
one-to-one correspondence with W -orbits in S.
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The correspondence in the above theorem is given by taking an element A =
{1, ..., agl(cu, ;) = 0} of S into Goz, where © = x1 + --- + 2, € X is such that
T; € ga,- This correspondence doesn’t depend on the choice of z. For g = F(4) or
G(3), k is equal to 1. Therefore, we have the following corollary.

Corollary 4.3.3 For an exceptional Lie superalgebra g = F(4) or G(3), the rank of
x € X\ {0} is 1. And every x is Gy conjugate to some X, € g, for some isotropic
root av with [h, X,] = a(h) X, for all h € b.

Proof. Tt follows from the proof of this theorem, that for exceptional Lie super-
algebras, X has two Gg-orbits: {0} and the orbit of a highest vector in g;. The set
S also consists of two W-orbits: () and the set of all isotropic roots in A. For Fy, the
set of all isotropic roots is Ay. For G(3), this set is Ay \ {d}. O

Let X;, = {z € X, rankz = k}. Then X = U<gero Xy and X = U;< X;.

For a g-module M and for x € X, define the fiber M, = Kerxz/Imx as the
cohomology of = in M as in [23]. The associated variety Xy of M is defined in [23]
by setting X, = {z € X|M, # 0}.

Lemma 4.3.4 (/3])Xy is a Go-invariant Zariski closed subset of X, if M is finite
dimensional.

Lemma 4.3.5 (/3]) If M is finite dimensional g-module, then for allx € X, sdimM =
sdimM,,.

We can assume that z = Y X, with X,, € g, for i = 1,...,n. Then, there

is a base containing the roots «a; for i = 1,...,n. We define quotient as in [3]

by g, = Cy(x)/[x,g], where Cy(z) = {a € g|[a,z] = 0} is the centralizer of x

in g, since [z, g| is an ideal in Cy(z). The superalgebra g, has a Cartan subalgra

h = (Keray N --- N Keray)/(kha, ® -+ @ khy,) and a root system is equal to
: ={a€A|(a,q;) =0 for a« # £a; and i = 1,..., k}.

Since Kerx is Cy(x)-invariant and [z, g|Kerz C Imx, M, has a structure of
a g,-module. We can define U(g)” to be subalgebra of ad,-invariants. Then we
have an isomorphism U(g,) = U(g)*/[x, U(g)], which is given by U(g,) — U(g)* —
U(g:)/[z,U(g)]. The corresponding projection ¢ : U(g)* — U(g.) is such that
#(Z(g)) C Z(g,) and thus it can be restricted to a homomorphism of rings ¢ : Z(g) —
Z(g,). The dual of this map is denoted by ¢ : Hom(Z(g.),C) — Hom(Z(g),C).
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Thus, M — M, defines a functor from the category of g-modules to the category
of g,-modules, which is called the fiber functor. By construction, if central character
of M is equal to ¥, then the central character of M, is in ¢—'{x}.

Theorem 4.3.6 (/3]) For a finite dimensional g-module with central character x
and at(x) = k. Xy C Xy,

For x = ) X,, with X,, € g, fori = 1,...,n, we can chose a base containing
the roots a; for i = 1,...,n. This gives h* = (Cay @ ---® Cay,)/(Cay @ - - - ® Cay)
and a natural projection p : (Cay @ --- @ Cay)™ — b, Then v, v/ € p~'(u) imply
Xv = Xo» and ¢~ (x,) = Xu, see [22].

4.4 Blocks
Let g = F'(4) or G(3).

Consider a graph with vertices the elements of Xt and arrows between each two
vertices if they have a non-split extension. The connected components of this graph
are called blocks. All the simple components of an indecomposable module belong to
the same block, then we say that the indecomposable module itself belongs to this
block.

For Lie superalgebras, the generalized central character may correspond to more
than one simple g-module. The category F decomposes into direct sum of full sub-
categories called FX, where FX consists of all finite dimensional modules with (gen-
eralized) central character y. Let F'X be the set of all weights A such that L, € FX.
We will call the subcategories FX blocks, since we will prove they are blocks in the
above sense.

In this section, we describe all integral dominant weights in the atypical blocks,
which are blocks containing more than one simple g-module.

Denote A := w(A + p) — p.
Lemma 4.4.1 (Serganova, [22]) There is a set of odd roots ay,...,ar € Ay and

w1 € b a weight, such that (o;, ;) =0 and (u+ p, ;) = 0. Then m, = {p € h*|x =
Xut = Upew (it + Caq + - -+ + Cay,) .
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If £ = 0 in the above lemma, then yx is called typical, and if £ > 0, then it is
atypical. The number k is called the degree of atypicality of p.

Lemma 4.4.2 The degree of atypicality of any weight for g is < 1.

Recall that X is the cone of self-commuting elements defined above. For a g-
module M and for z € X, recall that M, = Kerx/Imx is the fiber as the cohomol-
ogy of x in M and g, = Cy(x)/[x, g].

Denote by p; the Weyl vector and by w; = %(251 + 2) and wy = %(51 +2/35) the
fundamental weights for sl(3), where f; = €1 — €2 and [y = €3 — €3 are the simple
roots of sl(3).

The following lemma allows us to parametrize the atypical blocks by of g = F(4)
and label them F(®b).

Lemma 4.4.3 If g = F(4) and x € X, then g, = sl(3). For any simple module
M € FX for atypical x, we have

M, = Lfi;j“ ® Li’f;”? B (Lap)®™ @ T(Lpa)o™,

where Lqy is a simple sl(3)-module with highest weight j of s\(3) such that p+ p; =
aw, + bwy. Here, a = 3n + b with (a,b) € N x N and n € Z>o such that a = b or
a>b.

Proof. By Lemma 4.3.1 and Lemma 4.4.2, we can take x = X, with X,, € gq,
and a; = %(61 + €2+ €3 — ) € Ay Then the root system for g, is A, = {€; —€¢;}izj,
i,7 =1,2,3 and it correspond to the root system of s[(3) proving the first part.

Let M € FX be the simple g-module with highest weight A, then (A + p, 5) = 0
for some f € A. We choose w € W, with w(8) = ay, then (w(X + p),a;) = 0 and
w(A + p) — p is dominant with respect to sl(3).

Let w(A+p) = N+ p = are1 +azes +agez +asd. Also, let a+ 1 = (w(h+p), 51) =
a1 —ag and b+ 5 = (w(X + p), B2) = as — as.

Now we have w(A+p) = N + p = a1€; + asea + azes + a4d = (ay + ay, ag + ay, a3+

_ (2a%b | 1 —atb a2 1 _
a4|0) — 2a401 = (557 + 5, =57, =52 — 5]0) — 2a401 = aw; + bwa + p; — 2a401.
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Similarly, there is o € W such that o(w(A+p)) = a(N +p) = X'+ p = o(a1€e; +
QA9€g + as3€s + CL4(S) = (—0,3, —ao, —CL1|CL4) = (—CL4 —daz, —a4 — a9, —Q4 — CL1|0) + 2@40&1 =
(L;—a + %, %, —% — %|O) + 2&40&1 = b(JJl “+ aws + Pl + 2&4&1.

This implies, N € p~!(aw; + bws) or N’ € p~!(bw; + aws), which correspond to
the dominant integral weights of g, = sl(3) since a and b are positive integers. Also,
a—b= —3(as + a4), implying that a = 3n + b.

From above, we have that A, \" € p~'(u), where p = aw; + bwy or bw; + awsy is
a dominant integral weight of g, = sl(3) such that a = 3n 4+ b. From Lemma 4.4.1,
we have x» = x» = ya. By construction of ¢ above, the central character of M, is
in the set ¢~ '{xx}. Also, if X € p~'(u), then ¢(x,) = xar. Therefore, M, contains
Verma modules over g, with highest weights in p(\') for any A such that y, = x,
proving the lemma.

Conversely, for (a,b) € Nx N with a —b = 3n, there is a dominant weight \ € FX

with A+ p = (a+b+1)e; + (b+ 1)ex + €3 + (“£2 + 1), such that p(\) = aw; + bws.

O

Similarly, denote by p; is the Weyl vector and by w; = %61 be the fundamental
weight of s[(2), where §; = €; — €5 is the simple root of sl(2).

The following lemma allows parametrize the atypical blocks by of g = G(3) by
a = 2n+1, with n € Z>( and label them F*°.

Lemma 4.4.4 If g = G(3) and x € X, then g, = sl(2). For any simple M € FX
for atypical x, we have

M, = L™ @ II(Ly) o™,
where L, is a simple sl(2)-module with dominant weight p with p+ p; = aw;. Here,
a=2n+1 with n € Z>.

Proof. Similarly, as for F'(4), by Lemma 4.3.1 and Lemma 4.4.2, we can choose
r = X,, with X,, € go, and a; = —e3 + 6 € Af. Then the root system for g, is
A, = {e — €}izj, 1,j = 1,2 and it correspond to the root system of s[(2) proving
the first part.

Let M € FX be the simple g-module with highest weight A, then (A + p, 5) = 0
for some 5 € A. We choose w € W, with w(f8) = ay, then (w(X + p),a;) = 0 and
w(A + p) — p is dominant with respect to sl(2).
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Let w(A+p) = N+ p = are1 + azes + azd. Also, let a = (w(A+ p), 51) = a1 — as.

Now we have w(A+p) = N +p = ar€1 +asea +azd = (a; — ag, as —a3|0) +2aza; =

(5 +3,—5 — 510) + asar = aw, + p + agay.

This implies, N € p~'(aw;), where aw; correspond to the dominant integral
weights of g, = s[(2) since a is a positive integer. Also, a = a; —ay = 2a3 — 2as,where
as € % + Z, implying that a = 2n 4+ 1 with n € Z.

From above, we have that X' € p~!(u), where y = aw; is a dominant integral
weight of g, = sl(2) such that @ = 2n+ 1. From Lemma 4.4.1, we have x, = y. By
construction of ¢ above, the central character of M, is in the set q@fl{x,\}. Also, if
A € p~t(p), then é(xu) = xx. Therefore, M, contains Verma modules over g, with
highest weights in p(\') for any X' such that y, = x,, proving the lemma.

Conversely, for a € N with a = 2n + 1 and a > 0, there is a dominant weight
A€ FX with A+ p=(a+1)e + (2a+ 1)es + €3+ (32 4 1)4, such that p(\) = awy. O

Now we can describe the dominant integral weights in the atypical blocks.

In the following two theorems, for every ¢, we describe a unique dominant weight
Ae in F@®@) (or F?), such that c is equal to the last coordinate of A, + p. For A, in
F@ with a # b, ¢ is equal to the last coordinate of A, + p if ¢ is positive and to the
last coordinate of \. + p with negative sign if ¢ is negative.

For F'(4), we denote: t; = 2";1’,252 = %Qb,tg = aT_b Note thatifa =b,t; =ty = a
and t3 = 0.

Theorem 4.4.5 Let g = F(4).

(1) It is possible to parametrize the dominant weights N\ with Ly € F(@ by
c € %Zz—l \ {a,%,0} fora > 1 and by ¢ € 5Z>3 U {_73} for a = 1, such that
(A4 p,0) = 3c.

(2) Similarly, it is possible to parametrize the dominant weights \ with Ly € F(@Y
by c € %Z \ {ts, %,tg, —%3, —%2, —t1, }, such that (A + p,d) = 3sign(c) c.

Proof. To prove (1), take A + p = (2a + 1)e; + (a + 1)ea + €5 + (a + 1)0,
then A € F* by Lemma 4.4.3, and (A + p,a) = 0 for a = 1(e1 + & + €5 + ).
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By Lemma 4.4.1 and Lemma 4.4.2, all dominant integral weights in F(*% are in
A={wA+ p+ ka) — plw € W,k € Z}. The last coordinate of dominant integral
weights inAisc::a+1+§ € %Z.

Since for ¢ € {£a, %3, 0}, the element of A with k¥ = 2(c —a — 1) is not dom-
inant for any w € W, we consider the following eight intervals for ¢: (1) a < ¢;

)3 <c<a@)0<c<s (@e=—4 () c<—a(0)—a<e<—§(7)

—5<c<0;(8) c=3.

For every ¢, in the above intervals, we define corresponding Weyl group element
as follows: (1) w. = id, (2) w. = 73, (3) we. = 0173, (4) W = 01027273; (5) w. = 0,
(6) we = 730, (7) w. = 01730, (8) W, = 0109m730. The last four cases give us same
dominant weights as in the first four cases.

Since A+ p = a(e; —e3) + (a+1)a, the dominant integral weight \. corresponding
to this ¢ can be written as follows:

For ¢ € J; = (a,00), Ac + p = a(e; — e3) + 2¢fy, where 51 = %(61 +ete3+9) =
we(a);

Forc € Jy = (§,a), A\e+p = ae1+es)+2cfa, where By = 5(e1+ea—€e3+0) = we(a);

N =

Forc € J3=(0,%), Aetp = a(e1+e2)+2cf3, where 5 = 1(e1—e2+€3+9) = we(a);
We also have the following cases:

Let a =1. For ¢ = —%, Ae + p = e — ez — 2¢fy, where By = %(61 + €+ €3 —0).
Let a > 1. For ¢ = —%, Ae +p = ale; + e2) — 2¢fy, where 5y = %(el — €yt €3—90).

For (2), we take A € F(®® such that A4 p = t€; + taey + t3e3. By Lemma 4.4.3,
A€ XT and (A +p,a) =0 for a = 3(e1 — €3 — €5+ ).
By Lemma 4.4.1 and Lemma 4.4.2, all dominant integral weights in F(®% are in
A={w\+p+ta) — plw e W,k € Z}. Let c:= % € 1Z.
i3 to

Since for ¢ € {ta, %, 13, —%, —%2, —t1, }, the element of A with k = 2¢ is not dom-

inant for any w € W, we consider the following eight intervals for c:
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(D) te<c (2% <e<ty B)tz<e<; (4)0<c<ty (5) =% <e<0;(6)
L <e< -8 (T) —ti<e< =% (8) e < —ty.

For every ¢, in the above intervals, we define corresponding Weyl group element
as follows: (1) w. = 130173, (2) w. = 0173, (3) we = 73, (4) W, = id; (5) w. = o, (6)

we = 030, (7) w, = 01030, (8) w. = T301030.

Then, it is easy to check using Lemma 4.4.3 that w. € W is the unique element
such that A\, + p = w.( A+ p+¢cd) € X+,

In each case, we list the dominant integral weights in F(**) parametrized by c:

Forc € I1 = (tg, OO), /\C—i-p = t1€1—t3€2—t263+2651, where Bl = %(614-62—{—634-5) =
we(@);

Force I, = ( to), Aetp = t1€1 —tzea+tae3+2cP, where By = %(61—1-62—634—5) =
we(av);

For c € [3 (tg, 2) A —|—p = t1€1—|—t2€2—t3€3—|—2653, where 53 %(61—€2+63—|—(S) =
we();

Forc € I, = [0,t3), Ae+p = t1€1+taea+t3e3+2¢54, where §; = %(61—62—634—5) =
we(a);

For c € I5 = (—%”,O), )\c+p = t1€1 +t262 —|—t3€3 — 2(365, where 55 = %(—61 + €9 +
€3+ 0) = —w.();

Forc e I = (—%2, —%3), Aetp = taeg +Ht1€a+1t3e3—2¢0g, where g = B3 = —w.(a);
Forc € I; = (—t1, =), Ae+p = tae1 +tgea+t1e3— 207, where 7 = 5 = —w.(a);
For ¢ € Iy = (—00, —t1), Aetp = ta€g+tzea—t1€3—2cfs, where 5y = £ = —w,(a).
The uniqueness of \. in both cases follows from Lemma 4.4.3.

If A € F@Y is a dominant integral weight, then, we can also write:

)i

Atpe{(BL+c, -2+, -2 4 cc) for c€ I = (£2,
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(252 4 ¢, =552 4 ¢, =2 — c|o) for ¢ € I = (252, =£2);

(2ekb ¢ at2b ¢ —a2b oy cle) for ¢ € [y = (452, 24th);

b

3
(2t 4 ¢ 02— a2t —cle) for ¢ € I, = [0, %52);

b_

(22 4o ot e oot o| — ) for c € I5 = (452, 0);

(2 ¢ 208 o | ) for c € Iy = (— 52, be),

(52—, o5t — . 258 o] — o) for e € Iy = (252, —e322);

(=2 _ ¢ %’ —c, —2“;1’ +c| —c) for c € Iy = (—o0, 2“;1’)}.

O

Remark 4.4.6 For every A\, € F®® or F@b sych that (A+p,8) = 3¢ or (A+p,5) =
—3c with ¢ € J; or I;, we have corresponding 5; € A" is such that (A + p, 3;) = 0.
This B; = w.(«), where w,’s are defined in the above proof.

Theorem 4.4.7 Let g = G(3).

(1) It is possible to parametrize the dominant weights X\ with Ly € F' by ¢ €
(53 + Zs2) U{—2}, such that (A + p,8) = 3c.

(2) Similarly, for a > 0, it is possible to parametrize the dominant weights \ with
Ly € Fbyce (—1+Zx)\{0,%,32}, such that (A + p,d) = 3c.

Proof. (1) Let a = 0. In this case, take XA + p = 2€; + 3es + 20, then A € F' by
Lemma 4.4.4, and (A+p, @) = 0 for @ = €;+€6,+9. By Lemma 4.4.1 and Lemma 4.4.2,
all dominant integral weights in F'' are in A = {w(A + p + ka) — plw € W,k € Z}.
The last coordinate of dominant integral weights in A is ¢ := g+k‘ € %+Z, sok €Z.

Since for ¢ = :I:%, the element of A with k = c—g is not dominant for any w € W,

we consider the following intervals for ¢: (1) 2 < ¢; (2) c=-3;(3) e < —3; (4) c = 2.
For every ¢, in the above intervals, we define corresponding Weyl group element

as follows: (1) w, = id, (2) w. = 037, (3) w. = 0370, (4) w. = 0. The last two cases
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correspond to the same dominant weights as in the first two cases.

Since A+p = 1(e2—e1)+2a, the dominant integral weight A, with last coordinate
c can be written as follows:

ceJi=(3,00), then Ao+ p=3(es —e1) +ca, B=e1 + 6+ 6 =w(a);

c= —g, Ae +p = (273,—3), f=—€ —€+0=w(a).

(2) Let @ > 0. In this case, take A = €; + (a+1)ea + (1 +5)0 — p, then A € F* by
Lemma 4.4.4, and (A+p, @) = 0 for @ = €;+€6,+9. By Lemma 4.4.1 and Lemma 4.4.2,
all dominant integral weights in F* are in A = {w(A + p+ ka) — plw € W,k € Z}.
The last coordinate of dominant integral weights in Aisc:=35+1+k € % + Z, 80
ke Z.

Since for ¢ € {£%,+3}, the element of A with k = ¢ — 1 — £ is not dominant
for any w € W, we consider the following intervals for c: (1) 3 < ¢; (2) ¢ <c¢ < 3¢,
(B)0<c<& (@) e=-45)c<—=23(6) -3 <c< -4 (7)-2<c<0;(8) c=1.

For every ¢, in the above intervals, we define corresponding Weyl group element
as follows: (1) w, = id, (2) w. = 017, (3) w, = 01097, (4) w. = 09; (5) w. = T0O30,
(6) w. = o3010, (7) w. = 090, (8) w, = o30970. The last four cases correspond to

the same dominant weights as in the first four cases.

Since A, 4 p = §(e2 — e1) + ca, the dominant integral weight A, corresponding to
¢ can be written as follows:

Force Ji = (3a,00), \e+p=(c—%,c+ %), B=€+6e+=wl(a);
For c € J, = (3a,2a), \c+p = (a,c+ %,¢), B =646 = w(a);

For c € J3 = (0,%@), Aet+p=(c+3,a,.c),=e+0=wla)
Forc=-1 A+p=(¢+1a-1),8=—-c+6=w/(a)

The uniqueness of \. in both cases follows from Lemma 4.4.4.
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Remark 4.4.8 For every \. € F' or F*, such that (\. + p,d) = 2¢, we have corre-
sponding B = w.(«) € AT is such that (A\. + p, ) = 0, where w.’s are defined in the
above proof.

We have the following theorem:

Theorem 4.4.9 For g = F(4), the atypical blocks are parametrized by dominant
weights p of s1(3), such that p+ p; = aw; + bwe with a =3n+b. Here, b € Z~o and
n € Z>o; wy and we are the fundamental weights of s1(3). We labeled blocks by Flab),

For g = G(3), the atypical blocks are parametrized by dominant weights p of s1(2),
such that p+ p; = aw, with a = 2n+1. Here, n € Z>; wy 1s the fundamental weight
of s1(2). We labeled blocks by F*.

Proof. Follows from Lemma 4.4.3 and Lemma 4.4.4. O
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Chapter 5

Geometric induction and
translation functor

5.1 Geometric induction

We fix a Borel subalgebra b of g, and let V' be a b-module. Denote by V the vector
bundle G x g V over the generalized grassmannian GG/B. The space of sections of V
has a natural structure of a g-module, in other words the sheaf of sections of V is a
g-sheaf.

Let C\ denote the one dimensional representation of B with weight A. Denote
by O, the line bundle G x g Cy on the flag (super)variety G/B. See [8].

The functor I'; from the category of b-modules, to the category of g-modules was
defined by I';(G/B,V) =T1,(G/B,V) := (H'(G/B,V*))* in [19].

Denote by () the Euler characteristic of the sheaf O, belonging to the category
F:

dim(G/B)o ‘
eN) = > (=DT(G/B,0y) : L[L,]
i=0
The following properties of this functor will be useful and have been studied in
[9]:

Lemma 5.1.1 (/9]) If
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15 a short exact sequence of B-modules, then one has the following long exact sequence
..—11(G/B,W)——=T4(G/B,U)—=T14(G/B,V) —=T(G/B,W)—=0

Lemma 5.1.2 (/9]) The module I'o((G/B,V) is the mazimal finite-dimensional quo-
tient of U(g) Qu) V-

Lemma 5.1.3 ([17]) For \ typical weight, Theorem 2.3.1 holds.

Corollary 5.1.4 (/9]) For every dominant weight X\, the module Ly is a quotient of
Fo(G/B,O,\) with [FQ(G/B, O)\) . L)\] =1.

Lemma 5.1.5 (/9]) If L,, occurs in I';(G/B,Oy) with non-zero mulitiplicity, then
p+p=wA+p) = > o5 for some w € W of length i and I C AY.

Lemma 5.1.6 (/17]) Assume for an even root ~y in the base of B, f+p =1, (a+p).
Then T'(G/B,0,) 2 T""Y(G/B, Op).

Lemma 5.1.7 If Ly € FX, then
> (=1)'sdimI'y(G/B,05) = 0.

Proof. We follow similar argument as in lemma 5.2 in [23]. Let A € FX, then
for t € Z, the weight A\ + tJ is integral. The weight A\ 4 t6 is typical for almost all
t. From Lemma 5.1.3, we have I';(G/B, L)) = 0 for i > 0 and I'o(G/B, L)) = L,.
Also, since A + 14 is typical we have:

> (=1)'sdimI'y(G/B, L) = sdim() + t6) = 0.

On the other hand, we have chLy s = e®chLy. Therefore, from Theorem 6.1.3
we have:

> (=1)'sdimI'y(G/B, L) = p(t)
for some polynomial p(t). We have p(t) = 0 for almost all ¢ € Z. Thus, p(0) = 0.
U

Lemma 5.1.8 ([9]) If M is a g-module and V is a B-module, the following holds:
Ii(G/B,VeM)=Ty(G/B,V)® M.
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Lemma 5.1.9 (/8]) For every dominant weight A, let p(w) be the parity of w, then

> (~1)'chTi(G/B, 0y) = “’>Z YiehTs (G B, Ouwire )

i

Let b =0 @®n, where g =n~ @ h @ n, and n is the nilpotent part of b. Consider
the projection

¢:U(g) = U )U®)Un) = Un)U(h)
with kernel U(g)n. The restriction of ¢ to Z(g) induces the injective homomor-

phism of centers Z(g) — Z(h). Denote the dual map by ® : Hom(Z(h),C) —
Hom(Z(g),C).

Lemma 5.1.10 (/9]) If V is an irreducible b-module admitting a central character
X, then the g-module I';(G/B, V) admits the central character ®(y).

Let MX = {m € M|(z — x(2))"v =0,z € Z}.

Corollary 5.1.11 (/9]) For any finite-dimensional g-module M, let MX denote the
component with generalized central character x. Then

T:(G/B, (V& M) %)) = (I;(G/B,V) @ M)X.

5.2 Translation functor

A translation functor T\ ; : FX — F7 is defined by

T (V)= (V&g), for Ve Fx.

Here, (M)™ denotes the projection of M to the block F7. Since g = g*, the left
adjoint functor of 7T} ; is defined by

T, (V)= (Vg for Ve F
For convenience, when its clear, we will denote 1" := T ,
For \ € FX, we also define
Ty-(0y) = Oy @ )" W,

where V® ') is the component with generalized character lying in ®~!(y).
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Lemma 5.2.1 ([9]) We have T'(G/B,T(0,)) = T(I''(G/B,0,)), where T is a

translation functor.

Lemma 5.2.2 Assume T(O,) has a filtration with quotients O,,, i = 1,2 with
o1 is dominant and oy acyclic. Then for all i > 0, we have I';(G/B,T(0,)) =
I',(G/B,O,,).

Proof. We have an exact sequence of vector bundles:

0— Oy, = T(0,,) = Oy — 0,

Since o9 is acyclic, I';(G/B,0,,) = 0 for all ¢« > 0. Thus I';(G/B,T(0,)) =
I';(G/B,O,,).
0

Lemma 5.2.3 Let X is an indecomposable g-module with unique simple quotient

Ly, such that if L, is a subquotient of X implies o < X, then there is a surjection
Fo(G/B, O)\) — X.

Proof. Follows from Lemma 5.1.2. U

Lemma 5.2.4 For A € F@Y (or F%) let T(L)) = Ly and T an equivalence of
categories F(@¥) and FtLO+D) (or F* and F**2) preserving the order on weights.
We have T(I'y(G/B,0,)) =T'y(G/B,Oy).

Proof. From Lemma 5.1.2; I'o(G/B,0,) is a maximal indecomposable mod-
ule with quotient L. Since T is an equivalence of categories, T(I'((G/B, O,))
is an indecomposable module with quotient L. All other simple subquotients of
T(I'y(G/B,0,)) are L, with o < X.

By Lemma 5.2.3, we have a surjection I'o(G/B,Ox) — T(I'o(G/B,0,)). In a
similar way we have a surjection I'o(G/B, O,) — T*(I'o(G/B, Oy)). This proves the
equality. 0
Lemma 5.2.5 (/23]) For any g-modules M and N, we have (M @ N), = M, ® N,.

Lemma 5.2.6 LetT =T, .. Forg= F(4), let x = (a,b) and T = (a+1,b+1) and
forg=G(3), let x=a and T =a+ 2. Then T (L)) # 0 for any X € FX.
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Proof. From definition of translation functor, we have T(L,) = (L) ® g)".
From Lemma 5.2.5, we have (M ® g), = M, ® g, for any g-module M. Thus,
T(Ly), = (Ly®g): = ((L,\)x®gx)‘b—1(7), where (L)), is an g,-module. And g, = sl(3)
or s[(2). This implies T'(Ly) # 0. O

Lemma 5.2.7 Let A\ € FX be dominant. Assume there is exactly one dominant
weight v € F7 of the form A\ +~ with v € A. Then we have T(Ly) = L,,.

Proof. By definition, T'(Ly) = (L ® g)".

By assumption, p is the only b-singular weight in 7'(Ly). Since T'(L,) is contre-
gradient, T'(Ly) = Ly@® M. If M # 0, it must have another b-singular vector. Hence,
M = 0 and the statement follows.

O

Theorem 5.2.8 Assume, for every Ly € FX, there is a unique Ly = T(L)) € FT.
Also assume for each Ly € F7, there are at most two weights Ay and Ay in FX such
that N+~ = X;, i = 1,2 with Ay = X > Ay and g € A. Then the categories FX and
F7 are equivalent.

Proof. We show that translation functor 7" defined by T'(Ly) = (Ly ® g)” is an
equivalence of categories FX and F7.

It is sufficient to show that we have exact and mutually adjoint functors 7" and
T*, which induce bijection between simple modules. Since we already have that T’
maps simple modules in FX to simple modules in F7, we just need to show that 7™
also maps simple modules to simple modules such that T-T* = tdz- and T*-T = idFx.

Thus, we just show that T*(Ly/) = L, for each \' € F.

We have Homgy(T*(Ly ), L,) = Homg(Ly,T(L,)) = Homg(Ly, L,y) = C for A =
1 and 0 otherwise.

Similarly, we have Homgy(L,,, T*(Ly)) = Homg(T(L,), Lx) = Homg(L,s, Ly) =
C for p = X and 0 otherwise.

The b-singular vectors in 7*(L,/) have weights of the form A = N+~ with v € A.
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By assumption of the theorem, all b-singular vectors in 7*(Ly/) are less than or
equal to A in the standard order. Since T*(L,/) is contragradient and the multiplicity
of Ly in T*(Ly) is one, we must have T*(Ly) = Ly & M for some module M. Since
Hom(M, L¢) = 0 for any £ € FX, we have M = 0.

O

Lemma 5.2.9 For the distinguished Borel B and dominant weight \, we have
I'y(G/B,0y) =0 fori> 1.

Proof. Consider the bundle 7= : G/B — G/P, where P is the parabolic subgroup
obtained from B by adding all negative even simple roots. The even dimension of
G/ P equals 1.

On the other hand, 7%(0,) = Ly(p) and 72 (O,) = 0, since A is dominant. Hence,
by Leray spectral sequence (see [9]), we have

where p is the corresponding parabolic subalgebra. 0
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Chapter 6

Generic weights

6.1 Character and superdimension formulae for
generic weights

For g-module M, and V =
define the character of V' by

et Vi the weight decomposition of its quotient, we

chV = Z (dimV,,)e".
pREP(V)

If A € AT is a typical weight, then the following character formula is proven by
Kac and it holds for the exceptional Lie superalgebras:

D, -ef
weW

where Dy = HaeAg(l — e=@)dimga and Dy = HaeAHl + em)dimga,
The generic weights are defined in [16] to be the weights far from the walls of the

Weyl chamber. Here is a more precise definition:

Definition 6.1.1 We define A\, € FX with x = (a,b) or x = a to be a generic weight
ife>92 43 orc< =2 — 22 for P(4) and if ¢ > 3¢ — 2 for G(3).

The following theorems will be used later in the proofs:
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Theorem 6.1.2 (Penkov, [16]) For a generic weight A, the following formula holds:

e

Dy - eP
chLy = S(\) = = ‘ -Zsignw-w( ),
0

Dy = [aea (@ +e7®)
where A(X) is the mazimal set of mutually orthogonal linearly independent real isotropic
roots a such that (A\+ p,a) = 0. The set A(\) is one-element set for F((4) and G(3).

Theorem 6.1.3 (Penkov, [16]) For a finite-dimensional b-module V', the following
formula holds:

Dl-ep

Z(—l)ich(Hi(G/B,V*)*) = Z signw - w(ch(V)e’),

) weW

We first prove the following theorem for generic weights. In later section, we
establish it for all weights.

Theorem 6.1.4 Let g = F(4) (or G(3)). Let A € F@Y (or F%) be a generic
dominant weight and and p+ p; = apy + bus (or and p+ p; = apy ), then following
superdimension formula holds:

sdim Ly = (—1)P"2dim L,(g.).

Proof. From Theorem 6.1.2, we have:

chLy=S(\) = ) (~1)""echL,(go).

nes

where S={pu=XA—>Yala € A} ,a#B=1(e1+e+e+0)}

Computing using definition of sdimV', the above formula and the classical Weyl
character formula we get

sdimLy =Y (=1)'dimL,(go),

HES

where S = { = A=Y ala € AT Ja # 8 =1(e1+ e +e+ )} and [ is the
number of roots « in the expression of y. This is true since for all generic A, we have
(A+p,8) =0.

Computing the formula above, using computer program (see Appendix), we have:
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sdim Ly = (—1)P"2dim L,,(g,).

6.2 Cohomology groups for generic weights for
F(4) and G(3)

Lemma 6.2.1 For a generic weight X € FX, there is a unique o € AT such that
A—a€ FX and (A4 p,a) = 0.

Proof. From Theorem 4.4.5 and Theorem 4.4.7, there is a unique ¢ corresponding
to A. Since A — o will correspond to ¢ — £ for F/(4) and to ¢ — 1 for G(3), there is a
unique such possible A — a. We take a = (3, 3, 1[3) for g = F(4) and o = (1,1|1) for
g = G(3), then it follows from Theorem 4.4.5 and Theorem 4.4.7 that A — a € FX.
0

Lemma 6.2.2 Let A € F@Y (or F) be generic weight and o € AV such that
A—a € F@ (or F%) and (A + p,a) = 0, then

Lo(G/B,0,) : Lx_o] <1 and

To(G/B,0x) : L =0 if € £ A —av
For i >0, we have I';(G/B,0,) = 0.

Proof. If X\ is a generic weight, than the only weights obtained in the form
p+p=wA+p)—> aare A and A — a. One can see this from Lemma 4.4.5 and
Lemma 4.4.7.

Thus, the lemma follows from Lemma 5.1.5 and Lemma 6.2.1, since there is a
unique root a = (3,1, 1[1) with A — a € F@Y (or F?). And w = id is the only
possibility. 0

Lemma 6.2.3 Let A € F@Y (or F*) be generic weight, then we have the ezact
sequence

0 Ly_s I'y(G/B,0y\) — Ly—=0
for a € AT such that (A + p,a) = 0.
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Proof. We know I'y(G/B,O,) is the maximal finite dimensional quotient of the
Verma module M, with highest weight A\. Therefore, [['o(G/B,O,) : Ly] = 1. By
Lemma 6.2.2, we have [I'((G/B,O,) : Ly_,] < 1. To prove the exact sequence, it is
enough to show [['g(G/B,0,) : Ly_a] # 0.

From Lemma 6.2.2, we have 0 = sdimI'o(G/B, O)) = sdimLy + [I'o(G/B,O,) :
Ly_o|sdimLy_,. From Lemma 6.1.4, since A\ is generic we have that sdimL, # 0.
ThU.S, [FQ(G/B, O/\> : L/\_a] 7é 0.

O
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Chapter 7

Equivalence of symmetric blocks in
F(4)

7.1 Equivalence of blocks F) and FZ2?

Let g = F(4). We prove the equivalence of the symmetric blocks FLY and F22)
as the first step of mathematical induction in a of proving the equivalence of the
symmetric blocks F(®® and Flt+batl),

The following is the picture of translator functor from block FY to F22), Tt is
defined by T(Ly) = (L) ® g)??. The non-filled circles represent the non-dominant
weights in the block occurring on the walls of the Weyl chamber. The filled circles
represent dominant weights in the block. The horizontal arrows are maps A — A+,
with v € A is the root above the arrow.

A M1

A2

w2
Ao
A3 1]

3

FLD F(22)
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In this section, we will show that the solid arrows represent the maps Ly +— T'(L))

and use this to prove the equivalence of symmetric blocks

In the above picture o = (%,—% —%\ — %) and A +p = (3,55 — 3)

p = (g>g:é|%)l/\10+p - ( 71i|’> )1 3>‘ = %7§7§|§>75 H1 +P - 37%’%| B %)’
pe+p= (3.3 3l3); /~L0+P—(§ 5 215); 3+P=(§ 12  313)-

are different from the index ¢, which corresponds to

(Note that the indices here a
the last coordinate of A + p.)

Lemma 7.1.1 Any dominant weight X\ € FMYD with X # A\ and Ay can be obtained
from o by adding root B = (3,3, 3|3) finitely many times.

Proof. From Theorem 4.4.5, if a = 1, then J,, J3 = (. Since ¢ # +32 5, we have
A= )\0+Cﬁ, where ﬁ (61 +62+€3+5) 0]
Lemma 7.1.2 For a dominant weight X\ € FOYD with X # X\; for i = 1,2, we have

[i(G/B,0y) =0 fori> 0.
Proof. Assume A # X for s = 1,2 and I';(G/B,0,) # 0 for i > 0. There

is p € FOY dominant weight such that L, occurs in T';(G/B,O,) with non-zero

multiplicity.
For A # ) for s = 1,2, we have by Lemma 7.1.1, A+ p = Ao+ p + nf
(3+%,24+ 2,1+ 212+ %). By Lemma 5.1.5, we have p+p = w(A+p) — >_ ;o for

w € W of length 7. The last coordinate of p + p is in
3

n n 1

——2,—4+2|N=%Z + —.

5 -2y NGk o £

Assume n = 0. The last coordinate of p + p is 2 or i%. By Theorem 4.4.5 and
computation there are only three possibilities u = A; with ¢ = 0, 1,2 and in each case

w = id. This implies I';(G/B, O,,) = 0 for i > 0.

Assume n = 1. The last coordinate of u + p is
5 3
2, =, +—.
2772
By computation there are only four possibilities u = \; with ¢ = 0,1, 2,3 and in each
case either w = id or doesn’t exist. This implies I';(G/B, O,,) = 0 for i > 0.
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Assume n > 1. The last coordinate of u + p is in

n n 1
— =2, =4+ 2| N =Z>4.
[2 72+] 2 24

By computation, only w = id is possible when p + p has last coordinate equal the
last coordinate of A + p minus £. Thus, I';(G/B, O,) = 0 for i > 0. O

Lemma 7.1.3 For a dominant weight A € F(OY with X # \; fori=0,1,2, we have
[To(G/B,0)) : Ly_o] =1 for a unique o € A such that A —a € FD,

Also, we have [I'o(G/B,0,) : L,] =0 for pp # X and pn # X — .

Proof. As in the previous lemma, by Lemma 7.1.1, A+ p = Ao+ p+nf =
B+5,24+ 5,1+ 52+ 3).

The first part of the lemma follows from Lemma 6.2.2.

Assume n = 0. The last coordinate of pu + p is 2 or :I:%. By computation, there
are only three possibilities 4 = \; with ¢ = 0,1,2 and in each case w = ¢d. This
implies [['o(G/B, Oy,), L] = 0 for pn # Ay — cv.

Assume n = 1. The last coordinate of u+ p is 2, g, j:%. By computation there are
only four possibilities p = A\; with ¢ =0,1,2,3. For ¢ = 0, 2, there is unique possible
w = id and set . This implies [I'o(G/B, Oy,), L,] = 0 for pn # A3 — av.

Assume n > 1. The last coordinate of y + p is in [§ — 2,8 +2] N %Z24. By
computation and Lemma 4.4.5, only w = id is possible when 4+ p has last coordinate

equal the last coordinate of A + p minus % or it = A, in each case there is a unique

set I. Thus, I'o(G/B,0,) : L,] =0 for p # X and 1 # A — o for any o € Ag. O

Lemma 7.1.4 For a dominant weight A\ € FUV | we have sdimLy = £2 if X\ # \;
fori=1,2.

Proof. We prove this by induction starting with a generic weight A € F0:1,
From generic formula for superdimension, we have sdimL) = a with a = £2. The
weights in (1Y) can be obtained successively from A by subtracting odd root § from
Lemma 7.1.1.
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By Lemma 5.1.7 and Lemma 7.1.2, we have
0 = sdimI'o(G/B,0y) = sdimLy + [['o(G/B, O)) : Ly_4|sdimLy_,.

Since sdimLy = £2 and [['o(G/B, O,) : Ly_s] < 1 from proof of previous lemma, we
must have [['o(G/B,0,) : Ly_o] = 1 and sdimLy_, = F2. By induction, this way
from generic weight we obtain L,,. Thus, sdimL,, = £2. 0

Lemma 7.1.5 We have I'o(G/B,O,,) = Ly, .

Proof. From Lemma 5.1.5 and Theorem 4.4.5, if L, occurs in I'((G/B, O,,),
then p < A. Thus, [I'0y(G/B,0,,) : L,] =0 for 0 # A;.

We know [['o(G/B,O,,) : Ly,] =1 from Lemma 5.1.4. O

Lemma 7.1.6 We have I'y(G/B,O,,) = Ly,.
Proof. We have
0 = sdiml'o(G/B,0,,) — sdimI'1(G/B, O,,)
and
sdimlo(G/B,O,,) = sdimL,, = 1.

This implies that sdimI'1(G/B,Oy,) = 1. Thus, we either have I'1(G/B,0,,) =
Ly, or I'[(G/B,0,,) = L,,. This is true since I';(G/B,0,,) : L,] = 0 for all
o 7é )\1, )\2.

We have
Dye? w(Ai+p)
chl'o(G/B,0,,) — chl'1(G/B,0,,) = o) E sgn(w)e?' TP

weWw

The expression on the right is not zero, since one can compute that the lowest degree
term in the numerator is not zero. This implies I'o(G/B,0,,) # I''(G/B,O,,).
Thus, Fl(G/B, O)\l) = L/\Q.

O

Lemma 7.1.7 We have sdimL)y, = sdimLy, = 1.
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Proof. This follows from previous two lemmas and since

sdimly(G/B,0,,) = sdimI'1(G/B,O,,).
]
Lemma 7.1.8 The cohomology group U'y(G/B,O,,) has a filtration with quotients

Ly,, Ly, and Ly,.We know that Ly, is a quotient of T'o(G/B,O,,). The kernel of
that quotient has a filtration with subquotients Ly,, Ly,. Also, sdimLy, = —2.

Proof. From previous lemmas, we have sdimL), = £2, sdimL,, = sdimL,, = 1.
We also know from Lemma 7.1.3, [['((G/B,0,,) : L,|] = 0, unless ¢ = \; with
i =0,1,2. From Lemma 5.1.5, we have [['((G/B,0,,) : Ly,] = 1, [I'o(G/B,O,,) :
L>\1] S 1, [Fo(G/B,O)\(J) . L)\Z] S 1.

We have
0 = sdimIy(G/B,0,,) = sdimLy, + [['o(G/B,Oy,) : La,|sdimLy,+

+[F0(G/B,O)\O) : L)\Q]Sdim[o@.
This implies that [['o(G/B,O,,) : Ly, | = [I'0(G/B,O,,) : Ly,] = 1, and sdimL,, =
-9 U

Lemma 7.1.9 We have I'y(G/B,0,,) = Ly, and I'1(G/B,O,,) = Ly, .

Proof. From Lemma 5.1.5, we have [I'o(G/B,O,,) : L,] = 0 for o # \; with
i =1,2. We know [['((G/B,0,,) : Ly,] =1 from Lemma 5.1.4. We need to show
[Fo(G/B7 O)\Q) : L)q] =0.

From Lemma 5.1.9, since Ay = w(A\; + p) — p, with w reflection with respect to
root d, we have

chDo(G/B, Oy,) — chD1(G/B, Oy,) = —chTo(G/B, Oy,) + chD1(G/B, Oy,).

From Lemma 9.1.5, we have I'((G/B, O,,) = L,,. From Lemma 9.1.6, we have
I''(G/B,0,,) = Ly,. From Lemma 5.1.5, we know that [['y(G/B,0,,) : Ly,| = 0.
We also know that [['o(G/B,0,,) : L,,] = 1. The above equation gives

[Fl(G/B’OM) : L>\1] - [FU(G/Ba(OXQ) : L>\1] =1L
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We show that I'y(G/B, O,,) = L,,, which together with previous equality implies
Lo(G/B,0y,) : Ly,] =0 and proves the lemma.

Consider the typical weight g, with p+ p = (3,2,1|1). The module (L, ® g)*V
has a filtration with quotients Oy with A = \; with i = 0,2. As Ay < \g, we have an
exact sequence:

0— Oy — (0, ® g)? '™ 5 0,, = 0.

Applying Lemma 5.1.1, gives the following long exact sequence:

0—=TI1(G/B,0,,) = I'y(G/B,0,,) = (L, ® g)* = I't(G/B,0,,) = 0.

From previous lemma, we have [[o(G/B,0,,) : Ly,] = 1. From the long ex-
act sequence we have [I'1(G/B,0,,) : Ly,| < [['0W(G/B,0,,) : L] = 1. Since

sdimIl1(G/B,0,,) = sdiml'o(G/B,0,,) # 0, we have [['1(G/B,0,,) : L] # 0.
This proves the lemma. U

Lemma 7.1.10 We have T(Ly,) = Ly, for all i # 2.

Proof. By definition, T'(Ly,) = (L, ® g)*%. For each i # 2, there is a unique
dominant weight s; in the block F?2) of the form ); +~ with v € A as its shown in
the picture. Thus, the lemma follows from Lemma 5.2.7.

0

Lemma 7.1.11 We have T(L),) = L,,.

Proof. By definition, T(Ly,) = (Lx, ® g)??. The only dominant weights in
F@2) of the form Ay 4+ 7 with v € A are uy and pp.

It suffices to prove that T'(L,,) does not have a subquotient L, .

We know that Ly, is a quotient of I'y(G/B, O,,) from Lemma 5.1.4. The kernel
of that quotient has a filtration with subquotients Ly,, L, (see Lemma 7.1.8). We
have the following exact sequence:

0—S—TyWG/B,0,,) = Ly, — 0.

Since 7' is an exact functor, we get the following exact sequence:
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0— T(S) — T(FO(G/B, O)\O)) — T(L)\O) — 0.

From Lemma 7.1.10, we have T'(Ly,) = L,,. The kernel T'(S) of that quotient has
a filtration with subquotients T'(Ly,), T(Ly,). By Lemma 5.2.1 and Lemma 5.2.2,
we have T(I'o(G/B, 0,,)) = I'o(G/B,T(0,,)) = I'o(G/B,0,,). The later module
has a unique quotient L,,. Therefore, T'(S) has no simple subquotient L,,. Hence,

T(L,,) also does not have a subquotient L, .
U

Corollary 7.1.12 For any A € FOU | the module T(Ly) € F®? s irreducible of
highest weight X + o for some a € A. Conversely, any irreducible module in F*?
1s obtained this way.

Proof. For any dominant weight A € F(UU with X # Xy, there is a unique a € A
with dominant weight A + o € F®2 . Thus, T(L,) is an irreducible with highest

weight A\ + a. From previous lemma, the corollary follows.
O

Theorem 7.1.13 The blocks F Y and F32) are equivalent as categories.

Proof. From above corollary, for each \; € F(W let L,, = T(Ly,) be the sim-
ple module with highest weight p; € F(32?. We show that 7*(L,,) = L, for each
M € F22),

For all ;1 # po, we have a unique v € A, such that g+~ € FOY. For p = po,
there are two possible v € A such that uo + v € FOU. From the picture above, we
have v = —(3,—%, —3| — 1) or v = —e¢y, such that pg +~ = Ag or Ay.

The theorem follows from Theorem 5.2.8.

7.2 Equivalence of blocks F (@.a) apnd Flatlatl)

In this section, we prove the inductive step of the equivalence of all the symmet-
ric blocks. Let V be a finite-dimensional g-module. We define translator functor
T(V)yr: Fy = F- by T(V)y (M) =(M®V)" as before.
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The following is the picture of translator functor from block F(®®) to Fletlatl),

It is defined by T(L)) = (Ly ® g)@*19*1) The non-filled circles represent the non-
dominant weights in the block occurring on the walls of the Weyl chamber. The
filled circles represent dominant weights in the block. The horizontal arrows are
maps A — A+, with v € A is the root above the arrow. In this section, we will
show that the solid arrows represent the maps Ly — T'(L,).

A +e1 + €2 b1
-1 1
A +e1 + €2 m

3 2
+e1 + €2

A1l M1

As +e1 + €2 s

2 2

+e1 + €2

N : :
2
O+l(er+ex+e3—& kg
Flaa  Asis o]  Flatia+y)

€1 + €3

A£+1 Ha
Aa—1 @ 'LL%+%
N T +e1 + €3 by 1

2

Lemma 7.2.1 For A\ € F@9 et T be an equivalence of categories F** and
Flattath) and T(Ly) = Ly, then T';(G/B,Oy) has a subquotients Ly, with

[FZ(G/B,O)\/) : L)\/S] = [FZ(G/B,OA) : L)\s].

Proof. Assume i = 0. Then I'o(G/B, Oy ) = T(I'y(G/B, O,) from Lemma 5.2.4.
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Assume i > 0. For A # \; with ¢ = 1,2, we have I';(G/B, O,) = 0 for i > 0 from
computation using Lemma 5.1.5.

For t = 1,2, we know from Lemma 5.2.4, I'((G/B,0,,) = L,, since all other
submodules in I'o(G/B, O,,) have highest weight < A; and this is impossible.

Thus, we have sdimI';(G/B, O,,) = sdimI'((G/B, O,,) = sdimLs,,.

For s # 1,2, sdimL,, > sdimL,,, which implies I'i(G/B,0,,) = L,, for
t,k=1,2.

We have
Dlep

0

Chro(G/B, O)\Z) - Chrl(G/B7 O)\Z) =

Z sgn(w)e?ite),

weW

The expression on the right is not zero, since one can compute that the lowest degree
term in the numerator is not zero.

Thus, chl'1(G/B, O,,) # chl'o(G/B, O,,) and we must have I'y(G/B, O,,) = Ly,
with s # ¢. This proves the lemma.
O

Lemma 7.2.2 Let A € F@% be dominant, then there is unique v € A such that
A+ € Flotlatl) s dominant, unless A+ p = (2a+ 3,a+ 1, La+1).

Proof. From Lemma 4.4.5, for given ¢ > —%, there is at most one dominant
A € F@9) with A+ p = (b, ba, bs|c). Assume v € A is such that A +y € Fletbaetl),
then A\ + p + v must have last coordinate ¢+ 1, ¢ & %, or C.

Thus in generic cases, the last coordinate of A + v+ p and A + p are in the same
interval J;. The few exceptional cases, when the last coordinates are in the distinct
intervals, occur around walls of the Weyl chamber, when ¢ = a + %, a+1, 5+ %,
5+ 1. And only for c = a + %, there are two possible ~.

We show that the last coordinates of A +7 4 p and A + p are the same in generic
cases, and thus, there is at most one such v, proving the uniqueness.
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Note that for generic A\, (A + p,a) = 0 and (A + v + p,a) = 0 are true for the
same o € AT (see Remark 4.4.6 above). That implies (v, ) = 0. This is impos-
sible for v = 0. If v is odd then (v,«) = 0 implies v = £a, which is impossible
for A and A+~ would be in the same block. For even root v # d the statement is clear.

For the existence, for each A. the root ~ described in the picture above above
each arrow. O

Lemma 7.2.3 We have T(Ly,) = Ly, 4, for all i # a+ 5 and for the unique v € A
i the previous lemmoa.

Proof. By definition, T((Ly,) = (Ly, ® g)@*12+Y. For each );, there is a unique
dominant weight s; in the block F@+1e+1 of the form \; 4+ v with v € A. Thus, the
lemma follows from Lemma 5.2.7.

O

Lemma 7.2.4 Assume for each A € F(%% T(Ly) is a simple module in F(F1atl),
Then categories F»? and F@t1etD) gre equivalent.

Proof. By hypothesis, for each \; € F@®% T(L,) is a simple module in
Flattatl) " we denote L,, = T(Ly,) the simple module with highest weight p; €
Flatlatl) “We show that T*(L,,) = Ly, for each y; € Flatbaetl),

For all p # [qy1, We have a unique v € A, such that p+~ € F®% . For = Hasl,
there are two possible v € A such that g+v € F@%. From the picture picture above,

we have v = —(3, -1, —1| — 1) or 7 = —¢y, such that Moyl +7 = Aqp1 OF Agyr.

The statement follows from Theorem 5.2.8

U
Lemma 7.2.5 Let g = F(4) and A € F* such that A = (2a+3,a+1, a+1)—p.
Ifa=1,leta=46, and ifa>1, let « = (—%,2,—3|2). Then T(Ly) = L.

Proof. We will assume that blocks F(©9 for ¢ < a are all equivalent. Then using
this assumption we will prove the lemma. This lemma implies the equivalence of
Flaa) and Fletbetl)  Thus, we use a complicated induction in a.

For a = 1, we have the statement from Lemma 7.1.11. Let a > 1. From our
assumption and Lemma 7.2.1, we obtain all cohomology groups for F(»® since we
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know them for (Y from previous section.

From definition, we have A = A, .1 and T(Ly ) = (Ly , ® g)(etlbetl)  Thuys,
a+t3 a+3

the only dominant weights in F@*1a+1 of the form A, 1+ with y € A are fi,, 1
and p, as its shown in the picture.

It will suffice to prove that T'(L,
T(Ly

+1) does not have a subquotient L, 1 Thus,
at 5 atg
a+%) = L, as required.

We know that Ly, ,, is a quotient of I'o(G/B, O,,,,). From inductive assumption,
Lemma 7.1.3, and Lemma 7.2.1, we have the following exact sequence:

0— L)\a_‘_% — FO(G/B7 O)\a+1) — L)\a+1 — 0.

Since T' is an exact functor, we obtain the following exact sequence:

0— T(L)\(H%) — T(Fo(G/B, O)\a+1)) — T(L)\a+1) — 0.

From Lemma 7.2.3, we have T'(L,,,,) = L, ..~ By Lemma 5.2.1 and Lemma 5.2.2,

we have

T(To(G/B,0y,1)) = Lo(G/B, T(Oz,,)) = To(G/B, Oy, )-

The module I'y(G/B, Oy, ) has a unique quotient Ly, . Hence, T(L

1 1 Aapl

. 2 2 2

not have a subquotient L, . O
a+

Theorem 7.2.6 The categories F“? and F@+t1etD) are equivalent for all a > 1.

Proof. This follows from Theorem 5.2.8 together with Lemma 7.2.3 and Lemma 7.2.5.
O



o7

Chapter 8

Equivalence of non-symmetric
blocks in F'(4)

8.1 Equivalence of blocks F*! and F(®2)

Let g = F(4). The following is the picture of translator functor from block F*1

to F®2) It is defined by T(Ly) = (Ly ® g)®?. The non-filled circles represent the
non-dominant weights in the block occurring on the walls of the Weyl chamber. The
filled circles represent dominant weights in the block. The vertical arrows are maps
A= A+, with v € A is the root above the arrow. In this section, we will show
that the solid arrows represent the maps Ly +— T'(L)).

F41)
A As A7 e A5 Ag A3 A2 A Ao A Ay A3 AL AR

7T

a-ala-aifjataiateaa €1 — €3
NSNS sIa
K7 [6 M5 pa g3 M2 M1 ‘ wy o pE pg M
F5:2)
In the above picture ~ = ?E%,l—g)%,—a -3) angl 5\21—11 p = (2,230 N +
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Moo= (5D k= (03125 dy+p = (52 M = (12D

Myt p = (5 5503)i i 0= (5,5, 505)i o+ p = (4,3, 110); i+ p = (4,3,2[1);
15 11 1|9

:U/6+IO_ (77?75’5)

Note that the indices for \ above are different from the index ¢ which represents
the last coordinate of A\ + p.

Lemma 8.1.1 For a dominant weight A € F™Y with A\ = X. such that ¢ > 2
or ¢ < —I we have [Io(G/B,0)) : Ly_o] = 1 for a unique o € A such that
A—a€ F&’l).

Also, we have [I'o(G/B,0,) : L,] =0 for p # X and pn # X — .
Proof. Follows from Lemma 5.1.5 and Lemma 6.2.2. U
Lemma 8.1.2 We have T'(Ly,) = Ly, for alli # 4 and T'(Ly;) = Ly, for alli # 2.
Proof. By definition, T(Ly,) = (Ly, ® g)®?. For each )\;, we have a unique

dominant weight g; in the block F©®2) of the form \; + v with v € A. Thus, the
lemma follows from Lemma 5.2.7. O

Lemma 8.1.3 We have T(Ly,) = L,, and T(Ly,) = Ly,

Ha

Proof. By definition, T(Ly,) = (L, ® g)®®?. The only dominant weights in the
block F®2) of the form Ay 4+ v with v € A are p14 and ps, as its shown in the picture
above.

From Lemma 5.1.4, Ly, is a quotient of ['((G/B, O,,). From Lemma 8.1.1, we
have the following exact sequence:

0— Ly, > To(G/B,0,,) = Ly, =0

Since T' is an exact functor, we obtain the following exact sequence:

0— T(L)\4) — T(Fo(G/B, O)\s)) — T(L)\s) — 0.

From Lemma 8.1.2, we have T'(L),) = L,,. By lemma Lemma 5.2.1 and Lemma 5.2.2,

we have:
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T(To(G/B,0x;)) =To(G/B,T(O;)) = To(G/B, Ops).

The module I'y(G/B, O,;) has a unique quotient L,,. Therefore, T(Ly,) has no
simple subquotient L,,. This is sufficient to prove the lemma.

The proof of the second part of the lemma is exactly the same. O
Theorem 8.1.4 We have an equivalence of categories F*Y) and F>2),

Proof. From previous lemma, for each \; € F4Y T(L,.) is a simple module in

FO2 we denote L, = T(Ly,) the simple module with highest weight 1; € F©®2.

For all yu # ps, i, we have a unique v € A, such that u+ v € F®Y. For

[ = pis, iy, there are two possible v € A such that y+ v € F*V. From the picture
above, we obtain two roots ¥ = —e; and v = —(3, —1, —1| — 1) such that p5 +7 = X5
or Ay and two roots v = —e; and v = — (3, —3, —3| — 3) for pf +~v = A} or N,

The theorem now follows from Theorem 5.2.8.

8.2 Equivalence of blocks F (ab) apnd Flatlb+l)

Let g = F(4). The following is the picture of translator functor from block F®b) to
FlatLb+l) Tt is defined by T(Ly) = (Ly ® g)@+4*+Y. The non-filled circles represent
the non-dominant weights in the block occurring on the walls of the Weyl chamber.
The filled circles represent dominant weights in the block. The vertical arrows are
maps A — A + 7, with v € A is the root above the arrow.

In the picture below, t; are as defined before and represent the indices ¢ corre-
sponding to acyclic weights. Let \; denote the starting vertices of the vertical arrows
and pu; be the corresponding end vertices. In this section, we will show that the solid
arrows represent the maps Ly — T'(Ly).
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]
o~
=

Flatlbt1)

Lemma 8.2.1 For a weight A € F@b) if \-y € F@+1b+D) “then the correspondingey
and cyy~ are either in the same interval J; or adjacent ones.

Proof. Given ¢ € %Z, by theorem 6.5, there is at most one dominant A € F(®b)
with A\, = A, for ¢ € [;, We want to show that both ¢ and ¢ + 74 in the same or
adjacent intervals I;.

Say A+ p = (b1, bg, b3|by), then by = cif i =1,2,3,4 and by = —c if i = 5,6,7,8.

Assume by = ¢ € [; with ¢ = 1,2,3,4, we claim that there is no v € A such
that A+ € FOrLb+) and —(by +74) € I; with i = 6,7,8. If by € I; i = 1,2,3, 4,
then by — by = 2“;1’, while if by € I; 1 = 6,7,8, then by — by = %2” Now, if such ~

2a+b a+2b

exists, we will have by + 71 — by — 74 = 52 + (11 — 74) = “5= + 1, which implies

Y1 — 71 = =% +1 = —n+ 1. The last number must be in the interval [—1, 1], since
~v € A. But this is only possible if n = 1.

Similarly, if —by = ¢ € [; with ¢+ = 6,7,8 and ~ is such that by + vy, € [
with ¢ = 1,2,3,4 we have by — by = %Qb and by + vy — by — g = 2“T+b + 1, and
we get v — vy = Z“T*b +1-— %2” = “T’b + 1 = n+ 1. This is a contradiction
since 71 — 4 € [~1,1], for v € A. It is also not possible to have A € F(@¥ with
/\+p = (bl,b27b3|b4) and —b4 S ]5 and AS A with /\+7 S F(a+l’b+l) and b4 +’74 € ]z
with ¢ = 1,2, 3, since if —by € I5 implies 0 < by < “T_b < ‘%b implying by +v4 € I, or

I5.

The case n = 1 can be checked separately. ([l
The following lemma justifies the above picture.
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Lemma 8.2.2 For A € F@Y  there is a unique v € A such that A+~ € Flathotl)

is dominant, unless)\—l—p:(a%—b%—%,b%—%é “Jg%%—%) 07“)\+p:(a+b+%,a+
1 Ljoash | 1

2221 3 2/

Proof. Assume v € A is such that A\ +v € F@+L+1) e first show that the c
corresponding to A+ + p and A + p is the same in generic cases. By Remark 4.4.6,
this will imply that there is at most one such v, proving the uniqueness.

Assume that the last coordinate of A 4+ p is ¢. Then A 4+ p 4+ v must have last
coordinate c+ 1, ¢ £+ %, or C.

Thus for generic A\, (A + p,a) = 0 and (A + v + p,a) = 0 are true for the same
o € AT (see Remark 4.4.6 above). That implies (y,a) = 0. Thus, v # 6. If v is
odd then (v,«a) = 0 implies v = *«, which is impossible, since then A and X\ + v
correspond to the same central character from Lemma 4.4.1. If v # § is even the
statement is clear.

The few exceptional cases occur around walls of the Weyl chamber, when ¢ =

2 % , 1 2atb , 1 a+2b | 1 2at+b , 1 2a-+b
e 4], R g, e g L R 0 20 2 and 25 4 1. We can see that only

in the second and fifth places there are two such ~. O

Lemma 8.2.3 We have T(Ly,) = L,,, for all \; # A\ with c = %’ +% or Z‘ITH’ + %

Proof. By definition, T'(Ly,) = (L, ®g) TV As one can see from the picture
above, for each i, there is a unique dominant weight z; in F@+10+D of the form \; 4+
with v € A. Thus, the lemma follows from Lemma 5.2.7. U

Lemma 8.2.4 Forc= "2+ =t,+1, we have T(Ly,) = L, , with ¢ =

Similarly, for ¢ = Q“TH’ + % =ty + %, we have T(Ly,) = L, , with ¢’ = 2“T+b = t,.

a+2b __
at2h — ¢,

Proof. By definition, T(Ly,) = (L, ® g)@* ¥+, The only dominant weights
with central character corresponding to block F@+1:0+1) of the form A4~ with v € A
are [, and fio.

Let ¢’ = c—i—%. We know that L, , is a quotient of I'o(G/B, O, ,) from Lemma 5.1.4.
From Lemma 6.2.2 and Lemma 5.1.5, we obtain the following exact sequence:

0— Ly, —To(G/B,0,,,) = Ly, =0

Since T is an exact functor, we have the following exact sequence:



CHAPTER 8. EQUIVALENCE OF NON-SYMMETRIC BLOCKS IN F(4) 62

0—T(Ly,) = T(To(G/B,0,,,)) = T(Lx,) — 0.

From Lemma 8.2.3, we have T'(Ly,) = L,. By lemma Lemma 5.2.1 and
Lemma 5.2.2, we have

T(To(G/B.Oy,,)) = To(G/B.T(0,,)) = To(G/B. 0,.).

The module I'y(G/B,0,,) has a unique quotient L, . Therefore, T(L),) has no

simple subquotient L, , which is sufficient to prove the lemma.

O

Theorem 8.2.5 We have an equivalence between categories F@Y and Flethb+1),

Proof. From previous lemma, for each )\; € FO++D T (L, ) is a simple mod-
ule in Fr+D we denote L,, = T(Ly,) the simple module with highest weight
pi € Fettb+l) We show that the the conditions of Theorem 5.2.8 are satisfied.

For all p1 # A\, € F@H) with ¢ = ¢, + 1 or ¢; + 1, we have a unique v € A,
such that p + v € F@),

From the picture above, for g = A\, € FOTLHD with ¢ = ¢, + 1 or ¢; + 3, there
are two possible v € A such that p + vy € F(@b),

Here, p+~v = A, +1 and Ay, 1 Or p+y = Ay +1 and Ay 41 correspondingly such
that )\t2+% < )\t2+1 and )\t1+% < )\t1+1'

The theorem follows from Theorem 5.2.8.

8.3 Cohomology groups in the block F(*" with
a=>b+ 3.

We let b = 1. In the block F®* the dominant weights close to the walls of the Weyl
chamber are denoted:
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Ao+ p=(4,3,1]2);
Yot o= (30
M+p=(5,535l5)

(Note that indices for A above are different from the index ¢ that corresponds to
the last coordinate of A\ + p. )

Lemma 8.3.1 For all A € F*Y such that A # Ao, we have I't(G/B, 0,) = 0.

Proof. For generic weights, this follows from Lemma 6.2.2. For weights close to the
walls of the Weyl chamber, we compute from Lemma 5.1.5 in a similar way as for
FOD in Lemma 7.1.2 or for generic weights. U

4,1)

Lemma 8.3.2 For non-generic weight A\ = \y € FY | we have an ezact sequence:

0 Ly, Io(G/B,0y,) Ly, 0

Proof. From Lemma 5.1.5, we have [['o(G/B,O,,) : Ly,] < 1land [['((G/B,0,,) :
L)\a] =0 for o 7é )\37 )\4.

Also, we have:
0= sdszO(G/B, O)\4) = Sd’émL)\4 + [Fo(G/B, O>\4) . L)\3]SdimL/\3. (81)
Since, starting with generic weight, we have sdimL,, # 0, this imp less [I'o(G/B, O,,) :

Ly,] # 0, proving the lemma.
0]

Lemma 8.3.3 For non-generic weight A\ = Ay € FY | we have an exact sequence:

0 Ly

; ['o(G/B,0,,) Ly, 0

Proof. From Lemma 5.1.5, we have [['o(G/B,O,.) : Ly,] < land [['4(G/B,O,.) :
LAU] =0 for o 7é )\6, )\7.

Also, we have:

0 = sdiml'y(G/B,O,,) = sdimL,, + [['o(G/B, Ox,) : Lyg|sdimL,,. (8.2)
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Since, starting with generic weight, we have sdimL,, # 0, this implies [['o(G/B, Oy,) :
Ly,] # 0, proving the lemma.
O

(4,1)

Lemma 8.3.4 For non-generic weights A = A3, \¢ € F'*"), we have the following

exact sequences:

0——= Ly, I'o(G/B,Oy,) — Ly, 0

0 Ly, Io(G/B,0y,) Ly, 0

Proof. From Lemma 5.1.5, we have [['o(G/B, O,,) : Ly,] < 1land [['((G/B,0,,) :
Ly, ] = 0for o # A3, Ag. Similarly, we have [['o(G/B,Oy,) : Ly,] < land [['o(G/B,O,,) :
L)\g] =0 for o # )\67 )\0.

Also, we have
0 = sdiml'o(G/B,O,,) = sdimLy, + [I'o(G/B, O,,) : Ly,]sdimLy,,.

From equation 8.1, it follows that sdimL,, # 0, since we have sdimL,, # 0. Thus,
we have

[Lo(G/B,Oy;) : Ly,] # 0,

proving the first exact sequence. Similarly, we have the second exact sequence using
equation 8.2. O

Lemma 8.3.5 For non-generic weight A = \g € F4Y we have Ty(G /B, O,,) = Ly,
and I'1(G/B, Oy,) = Ly,

Proof. From Lemma 5.1.5 and Lemma 5.1.2, we have [['o(G/B,0,,) : Ly,] =1
and [['o(G/B,O,,) : Ly,] =0 for 0 # \g. Also, that I';(G/B, O,,) = 0 for i > 1.

Also, we have 0 = sdimI'o(G/ B, Oy,)—sdimI'1(G/B, O),). Thisimplies I'1(G/B, O,,) #
0. Since Lemma 5.1.5 implies that any simple subquotient of I';(G/ B, O,,) has high-
est weight less than Ao, we must have I'1(G/B, O,,) = Ly,.
U

It remains to understand the cohomology groups for the dominant non-generic
weights i, Ag. These cases are more complicated and we first prove the following
lemma:
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Lemma 8.3.6 For all A € F4Y we have sdimLy = 4d, where d = dim L,(g.),
where 1 1s from theorem Theorem 4.4.9.

Proof. Starting with generic weights A and using the Theorem 6.1.4 for generic
weight, we have sdim L) = +d for generic weight. For the weights close to the walls
of the Weyl chamber, we use the above lemmas and exact sequences to show this.

From exact sequences in Lemma 8.3.2, Lemma 8.3.3, Lemma 8.3.4, we know that
sdimL; = +d for i = 6,0, 2. Since, in each case we know that I'o(G/B, O,,) = 0 and
sdimL; = £d for the other L; in the exact sequence.

To prove that sdim L, = #£d is more challenging. We first apply translation func-
tor 7' to the dominant weights A\, A1, A2, A¢ twice to get dominant weights A, A},
My, A in the equivalent block F(63),

The categories F*V and F©63) are equivalent from Theorem 8.2.5. Thus, by
Lemma 5.2.4, we have [['o(G/B,Oyx) : Ly] = [To(G/B,0,) : L,].

We apply odd reflections with respect to odd roots 3, 5, ", 8" to obtain domi-
nant weights Aj, A7, A\J, A\{ with respect to another Borel subalgebra B”.

We get the following:

Xo+p=(3,33l3);
Xo +p = (54,1]0);
M+ p=(54,2|1);

11 7 53).
AN I
As+p=(5,3313)
N, +p=(7,4,2]3).

After applying the odd reflections we get the following dominant weights with
respect to the new Borel B”:

N
Ao+ 0" =(33:315);
M+ 0" =(5,4,2[1);

N+ p" = (5, %,503);
Ny +p" = (5,5 503);
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N4 g = (T,4,2]3).

From Lemma 3.2.2, the positive odd roots with respect to the new Borel B” are
all the odd roots with first coordinate %

From Lemma 5.1.5 with respect to B”, we have [['((G/B",Oxy) : Ly/] <1 and
[Lo(G/B",Oxy) : L] = 0 for all o # Y, \.

We also have
0= sdimFo(G/B”, O)\/Q/> =
= sdimLyy + [Co(G/B",Oxy) : Lyy]sdimLyy
implying that [[o(G/B",Oxy) : Ly/| = 1 and sdimLyy = +d. Now we have
sdimLy. = sdimLyy = +d. ]

Lemma 8.3.7 For non-generic weight A\ = A\ € FY | we have an ezact sequence:

0 Ly

) [o(G/B,0y,) Ly, 0

Proof. From computation using Lemma 5.1.5, it follows that [['o(G/B,O,,) :
Ly, =[To(G/B,T(O,,)) : T(Ly,)] <2 and [['o(G/B,0y,) : Ly,] =0 for o # Ao, A1.

We also have
0 = sdimlo(G/B,0,,) = sdimLy, + [T'o(G/B,Oy,) : Ly,)sdimLy,,.

From Lemma 8.3.6, we know that sdimL,, = —sdimL,, = £d. We must have
To(G/B,0,,) : Ly,] = 1, proving the lemma. O

We will call an odd reflection r typical with respect to the weight A if r(A) = .

Lemma 8.3.8 ([17]) If an odd reflection r is typical with respect to the weight A,
then PO(G/T(B), OT()\)) = FO(G/B, O)\)

Lemma 8.3.9 For non-generic weight A = Xy € FY | we have an exact sequence:

0—— Ly, I'o(G/B, Oy,) — Ly, 0

Proof. Follows from computation using Lemma 5.1.5, that [['o(G/B,0,,) :
Ly ] <1, [To(G/B,0y,) : Ly, <1,and [['o(G/B,0,,) : Ly,] =0 for 0 # A1, A2, Ae.
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We also know that
0 = sdimI'o(G/B, O,,) = sdimL,,+

—|—[F0<G/B, O)\Q) . L)\I]SdimL)\l + [Fo(G/B, O)\Q) : L)\G]sdimL,\ﬁ.

From Lemma 8.3.6, we know that sdimL,, = £sdimL,, = £sdimL,, = +d # 0.
This implies that one of the numbers [I'o(G/B,O,,) : Ly,] or [[o(G/B,O,,) : Ly,] is
one and another is zero.

We prove [I'0(G/B,0,,) : Ly, =0.

The odd reflections with respect to the weight A, are typical, which means that
the weight doesn’t change. From Lemma 8.3.8, this implies that I'o(G/B,Oy,) =
[o(G/B",0yy). The later module has subquotients Lyy = Ly, and Lyy = Ly,. Thus,
[Fo(G/B, O)\/Q) . LXG] =0.

Since T is an equivalence of categories from Theorem 8.1.4, from Lemma 5.2.4 we
have [I'o(G/B,Oy) : Ly] = [To(G/B,O,) : L,], which proves the exact sequence. [J

8.4 Cohomology groups in the block F(*" with
a=>b+3n, n > 1.

For n > 1, we assume b = 1. The dominant weights close to the walls of the Weyl
chamber have different arrangements in this case and they are correspondingly de-
noted:

M1 +p=(a+2,2,1|ta + 1);
Ay T o= (at 5,505t +3);
Ay o= (a5, 5,50t = 5);
Ms—1+p=(a—1,2,1|t3 — 1);

N o= (bt Lt i),
)\0 +p = (tlatQat3|0),

Ayt p= (i ittt )
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Ay 1tp=(5+35+35531%+3)
Ag oy tp=(G+25+ L5 1g+1);
A—t1+1+p— -1 1|t1—1);

(a,
A,t1+%+p—(a+—a 33l = 3);
)\_tl_%+p_(a+§7a+%7%|tl+)
)‘—t1—1+p_(a+27a+171|t1+1)‘

Lemma 8.4.1 For all A € F(%Y such that X\ # Ny, we have I'1(G/B,0,) = 0.

Proof. For generic weights, this follows from Lemma 6.2.2. For weights close to the
walls of the Weyl chamber, we compute from Lemma 5.1.5 in a similar way as for
FOU in Lemma 7.1.2 or for generic weights. U

Lemma 8.4.2 For non-generic weight X = A\,p1 € F@Y we have an ezact se-
quence:
()—>-L>\t2+1ﬁFO(G/B,O)\tQH)ﬁ-L)\ —0

to+ s

Proof. Follows from computation using Lemma 5.1.5, that [[o(G/B,O,, ,,) :
L,\tﬁ%] <1land [['o(G/B,0Os,,): L] =0 for o # Aty 1 Aty

We also know that

0 = sdiml'o(G/B, 0y, ,,) = sdimLy, ., + [[o(G/B,Os,,.,) : thﬁ%]sdim[z,\tﬁg
Since, starting with generic weight, we know that sdimLy,, , # 0, we must have that
[Lo(G/B,Ox,,) = L +1] # 0, proving the lemma.

to+5

O

Lemma 8.4.3 For non-generic weight A\ = A_;,_1 € F@Y we have an evact se-
quence:
00— L)\fth - F0<G/Bv OA—tlfl) — L)

, —0
—t1—5

Proof. Similar to Lemma 8.4.11. U

Lemma 8.4.4 For non-generic weight A = /\—t1—§ € F@) we have an ezact se-
quence:
0—>L>\7t17% —>F0(G/B,(9>\H51

1 1
-2 —titsz
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Proof. Similar to Lemma 8.3.2. U

Lemma 8.4.5 For non-generic weight X = /\t2+% € F@Y we have an exact se-
quence:
0 —_— L>‘t2+% —_— Fo(G/B, OAtQJF%) —_— L>‘t37% —_— 0

Proof. Similar to Lemma 8.3.3. U

Lemma 8.4.6 For non-generic weight A = A, € F@Y with ¢ € I, we have an ezact

Sequ@ncef
0—— Ly, —=T14(G/B,0,,) —=Ly._g, —=0

2)

Proof. We use Lemma 8.4.5, together with induction. 0

N

where 3, = (%, —%, —

Lemma 8.4.7 For non-generic weight A\ = A, € F®V with ¢ € I; such that c #

to 1 to .
-3 T 9y T 9 T 1, we have an exact sequence.

O —— L)\c —— FO(G/B7 O>\c) - L>\C_67 - 0
3)-

Proof. We use Lemma 8.4.5, together with induction. O

N [—=

where 7 = (3,1, -

Lemma 8.4.8 For non-generic weight A = X\, € F@Y) with ¢ € I5, we have an ezact

sequence.
O I L)\c —— FO(G/B7 OAC) - L>\C_65 - 0

where 5 = (=4, 3, 311).
Proof. We use Lemma 8.4.6, together with induction. 0

Lemma 8.4.9 For A € F@Y such that A = Ny, we have I'o(G/B,0,,) = '1(G/B,0,,) =
Ly,
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Proof. From Lemma 5.1.5, we have that any simple subquotient in I'o(G/B, O,,)
has weight less or equal to Ag. Thus, I'o(G/B, O,,) = Ly,

Also, we have
sdimTo(G/B,0y,) = sdimI'1(G/B,O,,)

and I'g(G/B,O,,) = L,,. Since from above lemma, sdim\ # 0, we have I'y(G/B, O,,) #
0. From Lemma 5.1.5, we can see that any simple subquotient in I'; (G/B, O,,) has
weight less or equal to Ag. This proves the lemma. 0

It remains to understand the cohomology groups for weights with ¢ € I5, and

weights A, with ¢ # -2 — 2, -2 —1 € I;.

We need the following lemma first:

Lemma 8.4.10 We have sdz’mL,\_B_2 = —sdz’mLA_tj.

2 2

Proof. Follows from Lemma 6.2.3 and Lemma 8.4.8 and the fact that the parity
of the weight in [ will coincide with the sign of the superdimension. U

Lemma 8.4.11 For A _« |, A 1 € F(D we have exact sequences:
2 2

NI

0—=1Ly, —=To(G/B,Oy, )—=Ly, ,—=0
-1 -3 -1 -3 3

0—>Ly, ,—Do(G/B,Oy, )—>=Ly, , —0

272 -3t

ta
o=

o

Nl
Nl

Proof. Since Lemma 5.1.5, doesn’t give good description of cohomology groups
in these cases, we first apply translation functor to the dominant weights A_« ,,
2

/
17)‘ tog 19

. . . , /
)\_%Jr%, )\_%2_%, )\_%2_1 twice to get dominant weights A )‘—t—3+— "y
2 2 2 2

t3 ?
5 +1
AI

. a+2,3)
2
-2-1

in the equivalent block F( :

Then we apply odd reflections with respect to odd roots 3, 8", 8”, 8” to obtain
dominant weights \” A ANy A with respect to another Borel sub-

—t3 3,1 ta
2 1 2 T2 2 2 2 1
algebra B //.

We have:
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_1
2

+
4t

m‘w t\)‘l\?

(442,241,212 +1).

A p
At P

After applying the translation functor twice, we have:

\)

T (G+25+1,3 2 —3);
2

N o bp=(G+25+ 1515 +5);

Vg tr=(Gris+ns—slt))

Ny tr=(E+355+555l3+2)

After applying odd reflections we have:

Mgt/ = (G35 +55 -39

Xl%ﬂré—'—pnz(%+27%+1,§—1|%3+%

Ny 40" =G+55+55 55 +1
2 2

N +0"=(G+55+355— 3% +2

— (a3 a1 a_ 1lita 4 1y.

_(2+272+2’2 22+2)’
a
+2,5+

T — T

71

From Lemma 3.2.2, the positive odd roots with respect to the new Borel B” are

all the odd roots with first coordinate %

Now computation using Lemma 5.1.5 with respect to B”, implies:

[Co(G/B", O, ): Ly, ]<2and
"ty ’

- -1

[Lo(G/B",Ox, )Ly, J<1and
-2 T2 72
) . L)\/_/tg] =0.

—2 -5

To(G/B", O,
2

Also,
[Fo(G/BH,OA// ta ) : L)\N ta 1] =1 and

272
) . L)\/_/Li] =0.

2

[Co(G/B 70/\’_’%1

-1

Also,
[Co(G/B", Oy N 1) s Ly =1

t3
22 -
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All other multiplicities are zero.

Since the odd reflections with respect to the weight A _:; , are typical, by Lemma 8.3.8,
2

we have the first equality below. And, since T is an equivalence, by Lemma 5.2.4 we
have the second equality. From Lemma 5.1.5 with respect to Borel B, we have the

equality to 0.

[Co(G/B",Oxr, )i Ly, 1=[0o(G/B,Ox , ):Ly, ]=
— — — —1 ,?,2 — —

5 2 5 5 -1

= [Fo(G/B,OA7t3 2) : L)\ ts 1] <1

27 -2

We also have 0 = sdimI'y(G/B", Oxr . )= sdimLy +[I'o(G/B", Oxr . )
- - -2

N
Nl

Ly, |sdimLyn, = sdimLyn
_ '3 _ Y3 _

t3 t

2 2 2
+ sdimLyr b implying
-2

V)

o
S

sdim Ly = —sdimLy» .
_t3_1 _1t3
272 2
Similarly, we get:
SdimL)\N = —SdimL)\//

We have:

0 = sdimI'o(G/B", Oy L )=
T

= Sdsz}‘thg ) + [FO(G/B//, 0)\/7/1}7372> . L)\L/t3 ]SdimL/\L/tg +

3 B B
"‘[Fo(G/B//,O)\//t ) . L)\//t ]SdimL)\//t
-4 -2 -3 -4-3
From above [I'o(G/B", Oy » ) Lyw - | <land [['o(G/B", Oy - ) Lyw - 1] <
-5 2 -3 1 -5 2 -3 -3
1.
Since sdimLy , L= —sdimLy ,, from Lemma 8.4.10, we must have
2 -2

[Fo(G/BH,OA// s ) : L)\// s ] =1 and [Fo(G/BH,OA// ' ) : L)\// . 1] = 0.
-3 2 -3l -3 2 -3 -3

2
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Again using the fact that the odd reflections were typical with respect to A_+
2
and Lemma 5.2.4, we have:

[FO(G/B,O/\7372) : L’\,B,l] =0.

=1 and [FO(G/37 O)\7272) : L)‘ftg,l]

Similarly, we obtain the second exact sequence.
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Chapter 9

Equivalence of blocks in G(3)

9.1 Equivalence of blocks F' and F*

Let g = G(3). We prove the equivalence of the blocks F! and F? as the first step of
mathematical induction of proving the equivalence of the blocks F* and F%*2. We
follow similar argument as for the symmetric blocks of F'(4).

The following is the picture of the translator functor from block F*! to F3. It is
defined by T'(Ly) = (Ly ® g)3. The non-filled circles represent the acyclic weights in
the block occurring on the walls of the Weyl chamber. The filled circles represent
dominant weights in the block. The horizontal arrows are maps A — X + v, with
~v € Ais the root above the arrow. In this section, we will show that the solid arrows
represent the maps Ly — T'(L)).

+20

f’l \ pa = M% ]:'3

In the above picture we have: Ai+p = (2,3|=32); Aa+p = (2,3[2); do+p = (3,4/2);
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&+p==%§%wu+p=(lﬂ—9;m+p==@ﬂ@wm+p=(&4%
ps+p=(3,55).

Note that the indices are distinct from the index ¢ describing A, they are described
in the picture.

Lemma 9.1.1 Any dominant weight X € F' with X\ # X\; and )y can be obtained
from Ao by adding root = (1,1|1) finitely many times.
Proof. From Theorem 4.4.7, since a = 0, we have J,, J3 = (. If ¢ # £2, which

279

correspond to A, # A1 and Ay, we have A\, = A\g + (¢ — %)B, where 8 = (1,1]1). O

Lemma 9.1.2 For a dominant weight X\ € F* with X # \; for i = 1,2, we have
I';(G/B,0,) =0 fori > 0.

Proof. Assume X # \; for i = 1,2 and [';(G/B, O,) # 0 for i > 0. Then there is
p € F' dominant weight such that L, occurs in I';(G/B, O,) with non-zero multi-
plicity.

For A # X, for s = 1,2, we have by Lemma 9.1.1, A+ p = Ao+ p+nf =
(3+n,4+n|2+n).

By Lemma 5.1.5, we know that p+ p = w(A + p) — Y o, a for w € W of length
i, with I C AT. The last coordinate of -+ p is in

7 7 1 5
— -5 = ~7 +2).
b+n a2+Mm% >7U Q

Assume n = 0. Then the last coordinate of p + p is g or i%. By computation

there are only three possibilities = A; with ¢ = 0,2 and in each case w = id. This
implies [';(G/B, O,,) = 0 for i > 0.

Assume n > 1. Then the last coordinate of pu + p is in

7 7 1

By computation only w = id is possible. Thus, I';(G/B, O,) = 0 for i > 0. d



CHAPTER 9. EQUIVALENCE OF BLOCKS IN G(3) 76

Lemma 9.1.3 For a dominant weight X\ € F' with X # X\; for i = 1,2, we have
Lo(G/B,0y): L) =0 for p# X and p# X\ — « for any a € Ag.

Proof. Similarly to the previous lemma, by Lemma 9.1.1, A+ p= X+ p+nf =
(34 n,44nll+n).

Assume n = 0. Then the last coordinate of u + p is g or j:%. By computation
there are only three possibilities p = \; with ¢ = 0,1,2 and in each case w = id.
This implies [['o(G/B, Oy, ), L,] = 0 for p # Ao — a.

Assume n > 1. Then the last coordinate of u + p is in

7 7 1
By computation only w = id is possible when p + p has last coordinate equal the
last coordinate of A+ p minus 1 or 4 = A, in each case there is a unique set /. Thus,

Lo(G/B,0,)): L,) =0 for p# X and p # XA — « for any o € Ag. O

Lemma 9.1.4 For a dominant weight X € F*, we have sdimLy = £2 if A # \; for
i=1,2.

Proof. We prove this by induction starting with a generic weight A\ € F*. We
have sdimL), = £+2 by computation from generic formula for superdimension. The
weights in F'! can be obtained successively from \ by subtracting odd root 3 from
Lemma 9.1.1.

By Lemma 5.1.7 and Lemma 9.1.2, we have
0 = sdiml'o(G/B,0,) = sdimLy + [['o(G/B,0,) : Ly_s]sdimL,_,.
Since sdimLy = £2 and [I'o(G/B,Ox_a) : Lr—a) < 1 from proof of previous lemma,

we must have [['o((G/B,0,) : Ly_,] = 1 and sdimL,_, = F2. By induction, this
way from generic weight we obtain L,,. Thus, sdimL,, = £2. 0

Lemma 9.1.5 We have I'o(G/B,O,,) = Ly,.

Proof. From Lemma 5.1.5, we have [['((G/B,0,,) : Ly} = 0 for o # \;. We
know [['o(G/B,O,,) : Ly,] =1 from Lemma 5.1.4. O

Lemma 9.1.6 We have I'1(G/B,0,,) = L,,.
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Proof. We have
0 = sdimly(G/B,0,,) — sdiml';(G/B, O,,)
and
SdszO(G/B, O)\l) = Sdi?’rLL/\1 = 1,

since L), is the trivial module. This implies that sdimI';(G/B,O,,) = 1. Hence,
I''(G/B,0,,) = Ly, or I'1(G/B,0,,) = Ly,. This s true since I'1(G/B, O,,) : L,] =
0.

We have
Dlep

0

ChFO(G/Ba 0)\1) - Chrl(G/B, O)\l) = Z Sgn(w)ew()\l—i-p)'

weW

The expression on the right is not zero, since the lowest degree term in the numerator
is not zero by computation. This implies I'o(G/B,O,,) # I'1(G/B,0,,). Thus,
['1(G/B,0y,) = Ly,.

O
Lemma 9.1.7 We have sdimLy, = sdimL,, = 1.
Proof. This follows from previous two lemmas and since
sdimI'o(G/B,Oy,) = sdimI'y(G/B, O,,).
O

Lemma 9.1.8 The cohomology group I'o(G/B,O,,) has a filtration with quotients
Ly,, Ly,, and Ly,.We know that Ly, is a quotient of I'o(G/B,O,,). The kernel of
that quotient has a filtration with subquotients Ly, Ly,.

Proof. From previous lemmas, we have sdimLy, = £2, sdimL,, = sdimL,, = 1.
We also know from Lemma 5.1.5, [['((G/B,0,,) : L,] = 0, unless ¢ = \; with
i =0,1,2. From Lemma 5.1.5, we have [['((G/B,0,,) : Ly,] = 1, [To(G/B,O,,) :
L>\1] S 1, [Fo(G/B,O)\O) : L)\Q] S 1.

We have

0 = sdimI'o(G/B, Oy,) = sdimLy, + [I'o(G/B, Oy,) : Ly, |sdimLy,+
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—|—[F0(G/B, 0)\0) : L)\Q]SdllmLAQ.
This implies that [['o(G/B,O,,) : Ly, ] = [['0(G/B,0,,) : Ly,] =1, and sdimL,, =
_9. 0J

Lemma 9.1.9 We have I'o(G/B,O,,) = Ly, and I'1(G/B,O,,) = L,,.

Proof. From Lemma 5.1.5, we have [['((G/B,0,,) : L,] = 0 for ¢ # \; with
i =1,2. We know [['((G/B,0,,) : L,] =1 from Lemma 5.1.4. We need to show
[Fo(G/B, O)\2> : L>\1] =0.

From Lemma 5.1.9, since Ay = w(A; + p) — p, with w reflection with respect to
root 0, we have

ChFo(G/B, O)\l) — ChF1<G/B, O)\l) = —Chro(G/B, O)\2) + chFl(G/B, O)\Z)'

From Lemma 9.1.5, we have I'o(G/B,O,,) = L,,. From Lemma 9.1.6, we have
I''(G/B,0,,) = Ly,. From Lemma 5.1.5, we know that [['1(G/B,0,,) : Ly,| = 0.
We also know that [['o(G/B,O,,) : L,] = 1. The above equation gives that

T4(G/B,0y,) : Ly, — [[o(G/B, Ox,) : Ly,] = L.

We show that I'y(G/B, O,,) = Ly,, which together with previous equality implies
To(G/B,0,,) : Ly,] =0 and proves the lemma.

Consider the typical weight i, with y+ p = (3,4]2). The module (L, ® g)* has a
filtration with quotients O, with A = \; with i = 0,2. As Ay < A\g, we have an exact
sequence:

0= Oy — (0,29)% ® 0, =0
Applying Lemma 5.1.1, gives the following long exact sequence (add details):

0—=T1(G/B,0,,) = T4(G/B,0,,) = (L, ®g)* = T'((G/B,0,,) — 0.

From previous lemma, we have [[o(G/B,0,,) : Ly,] = 1. From the long ex-
act sequence we have [I'1(G/B,0,,) : Ly,| < [['0W(G/B,0,,) : L] = 1. Since

sdimIl1(G/B,0,,) = sdiml'o(G/B,0,,) # 0, we have [['1(G/B,0,,) : L] # 0.
This proves the lemma. U
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Lemma 9.1.10 We have T'(Ly,) = L,,, for all i # 2,0.

Proof. By definition, T(Ly,) = (Ly, ® g)3. For every \; with i # 2,0, there is
a unique dominant weight in block F? of the form )\; + v with v € A. Thus, the
lemma follows from Lemma 5.2.7. U

Lemma 9.1.11 We have T(L),) = Ly, .

Proof. By definition, T'(Ly,) = (Ly, ® g)°. The only dominant weights in the
block F? of the form \g + v with v € A are ps and puo.

The module L), is a quotient of I'y(G/B, O,,) from Lemma 5.1.4. We obtain the
following exact sequence from Lemma 9.1.3:
0— Ly, > 0(G/B,0,,) = Ly, = 0.

Since T' is an exact functor, we get the following exact sequence:

0—=T(Ly)—= T(To(G/B,0,,)) = T(Ly,) — 0.
We have T(Ly,) = L,,, from Lemma 9.1.10. By lemma Lemma 5.2.1 and
Lemma 5.2.2, we have

T(FU(G/Bv O>\3>> = FO(G/B>T<O>\3)) = FO(G/B’ Ou3)‘

The later module has a unique quotient L,,. Therefore, T'(Ly,) has no simple sub-

quotient L,,, which proves the statement.

O

Lemma 9.1.12 We have T(Ly,) = L

w2

Proof. By definition of translation functor T'(Ly,) = (L, ® g)*. The only dom-
inant weights in the block F? of the form Ay + v with v € A are uy and puq.

We know that L), is a quotient of I'y(G/B, O,,) from Lemma 9.1.11. The kernel
of that quotient has a filtration with subquotients Ly,, Ly,. We have the following
exact sequence from Lemma 9.1.8:

0—S—TyWG/B,0,,) = Ly, — 0.

Since 7' is an exact functor, we get the following exact sequence:



CHAPTER 9. EQUIVALENCE OF BLOCKS IN G(3) 80

0— T(S) — T(FO(G/B, O)\O)) — T(L)\O) — 0.

From Lemma 9.1.11, we have T'(Ly,) = L,,. The kernel T'(S) of that quotient
has a filtration with subquotients T'(Ly,), T(Ly,). By lemma Lemma 5.2.1 and
Lemma 5.2.2, we have T'(I'o(G/B, O,,)) = I'o(G/B,T(0,,)) = I'0(G/B,0,,). The
later module has a unique quotient L,,. Therefore, it follows from the exact sequence
that T'(S) has no simple subquotient L,,. Thus, T'(L),) has no simple subquotient
L,,,. This proves the lemma.

0

Corollary 9.1.13 For any A € F*, the module T(Ly) € F? is irreducible of highest
weight X + a for some o € A. Conwversely, any irreducible module in F? is obtained
this way.

Proof. For any A € F!, with A\ # )y, there is a unique o € A with weight
A+ a € F3 dominant. Thus, T(L,) is an irreducible with highest weight \ + «.

From previous lemma, the corollary follows.
O

Theorem 9.1.14 The blocks F' and F3 are equivalent as categories.

Proof. From previous corollary, for each \; € F', T(L,,) is a simple module in
F?, we denote L,, = T(L,,) the simple module with highest weight u; € F?. We
show that T*(L,,) = Ly, for each p; € F? and T is an equivalence of the categories
F!and F3.

For all p # pg, i3, we have a unique v € A, such that g+~ € F' is dominant.
For p1 = po or ps, there are two possible v € A such that p + € F! as its shown

in the picture above. In these cases, v = 0 or —e; — €5 such that pg + v = A\g or As.
Similarly, v = €; + 0 or —eg such that us + v = A3 or A.

The theorem follows from Theorem 5.2.8.

9.2 Equivalence of blocks F* and F*™

Let again g = G(3). This section is the inductive step of the proof of equivalence of
the blocks of G(3). We prove that all blocks are equivalent and find all cohomology
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groups. This section is similar to the symmetric blocks of F'(4).

The following is the picture of translator functor from block F¢ to Fot2. It is
defined by T(Ly) = (L) ® g)**2. The non-filled circles represent the acyclic weights
in the block occurring on the walls of the Weyl chamber. The filled circles represent
dominant weights in the block. The horizontal arrows are maps A — X\ + -, where
~v € Ais the root above the arrow. In this section, we will show that the solid arrows
represent the maps Ly +— T'(Ly).

+e1 + 2e2
A,% Ho1/2
+e1 + 2e2
)\% H1/2
+e1 + 2e2
)\% H3/2
+e1 + 2e2
Ag M52
: +e1 + 2e2 :
Aa_y Haj2—1
O teate—4 Ha/2
Fa ,\%+1 o) fa+2
T 2€1 + €2
Aayo o Ha /242
A
>\3711,2 l IU/a,/2+3
+2€1 + €
Asa T Fl e H3a _q

Lemma 9.2.1 For A € F*, let T be an equivalence of categories F* and F+? and
T(Ly) = L, then that T';(G/B,Ox) has a subgotients Ly, with [I';(G/B,Oy) :
Ly]=[i(G/B,05) : Ly].
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Proof. Assume i = 0. Then I'o(G/B,Oy) = T(T'o(G/B, 0,)) from Lemma 5.2.4.

Assume ¢ > 0. For A # A\ with ¢ = 1,2, we have I';(G/B,0,) = 0 from
Lemma 5.1.5. For t = 1,2, we know I'((G/B, O,,) = Ly, since [I'((G/B, O,,) : L¢] #
0 for £ < A\;. And there are no dominant weights & < Ay in F* for ¢ = 1. For
t = 2, we have only one such weight, namely A\;. But, [I'o(G/B,0O,,) : Ly,] = 0 by
Lemma 5.1.5.

We know
sdimI'1 (G /B, 0,,) = sdiml'o(G/B,O,,) = sdimLs,,.

And, we know for s # 1,2, sdimL,, > sdimL,,. This implies I'y(G/B,0,,) = Ly,
for s =1, 2.

We have

Dle”

ChFo(G/B7O)\t> - ChFI(G/BJOM) = D
0

Z sgn(w)e?Ce+r)

weWw

The expression on the right is not zero, since one can compute that the lowest degree
term in the numerator is not zero.

Hence, chl'1(G/B,0,,) # chl'((G/B,O,,) implying I'1(G/B, 0,,) = Ly, with
s # t. This proves the lemma.
O

Lemma 9.2.2 Let A € F°* be dominant, then there is unique v € A such that
A+ € Folis dominant, unless X = \. with ¢ = %a—l—l or %CL—F 2. See the diagram
above.

Proof. We have Az, +p = (a+1,2a+1,3a+1) or Asapa +p=(a+2,2a+
2,3a+2).

For every ¢ > —%, there is at most one dominant A € F* with A + p = (by, ba|c).
Assume v € A is such that A+~ € F*2 then \ + p + ~ must have last coordinate
¢+ 1, or ¢. Thus in generic cases, the last coordinate of A + v + p and A + p are in
the same interval J;. The exceptional cases occur around walls of the Weyl chamber,
when ¢ = § + 1, 37“ + 1, 37“ + 2, 3—2“ + 3. And only for the cases 37‘1 + 1, 37“ + 2, there
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are two possible 7.

We show that the last coordinates of A + v+ p and A + p are the same in generic
cases, and thus, there is at most one such v, proving the uniqueness.

Note that for generic A, (A+p, @) = 0 and (A+v+ p, @) = 0 are true for the same
o € AT (see Remark 4.4.8 above). That means (v, ) = 0, and this is impossible for
v = 20, if v is odd then this implies v = 4«, which is impossible since then A\ and
A+ v are in the same block. While when v # 2 is even the statement is clear.

The existence in generic cases: for ¢ € [;, there is a corresponding root ~. 0

Lemma 9.2.3 We have T(Ly,) = Ly, 4+, for all i # 3a+1 or 3a + 2 and for the
unique v € A in the previous lemmoa.

Proof. By definition, T'(Ly,) = (L, ® g)*™2. For every i # 3a+1 or 2a+2, there
is a unique dominant weight y; in the block F**2 of the form \; + v with v € A as
its shown in the picture above. Thus, the lemma follows from Lemma 5.2.7. O

Lemma 9.2.4 Assume for each A € F*, T(Ly) is a simple module in F*2, denoted
Ly =T(Ly). Then categories F* and F**% are equivalent.

Proof. We show that T defined by T'(Ly) = (L, ® g)*™? is an equivalence of
categories F¢ and Fo+2,

By hypothesis, for each \; € F*, T(L,,) is a simple module in F**2 we denote
L,, = T(Ly,) the simple module with highest weight y; € F*™2. We show that
T*(L,,) = L), for each u; € F**2

For all p # fi3a 1, fi3e g, WE have a unique v € A, such that p+~v € F.

For y = [i3a 1, fi3a 4o, there are two possible v € A such that p+ v € F¢ as its
shown in the picture above.

Here we have, 7 = —€; — €2 and § such that fsa g+ = /\3a 41 and )\3a+2 Simi-
larly, we have v = —ey and €; + 6 such that [i3a 1o + v = )\3a P “and A3a+3

From this, the statement follows from Theorem 5.2.8.
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Lemma 9.2.5 Let g = G(3) and A € F* such that A+ p = (a + 2,2a + 2|3a + 2).
Let « = —9. Then T'(Ly) = Ly_q4-

Proof. We will assume that blocks F¢ for ¢ < a are all equivalent. Then using
this assumption we will prove the lemma. This lemma together with the next lemma
implies the equivalence of F* and F*2. Thus, we use a complicated induction in a
similar for the case of F'(4).

From our assumption and Lemma 9.2.1, we obtain all cohomology groups for F¢,
since we know them for F! from the previous section.

By definition, we have A = Az o, A= = pi3 4y, and T'(Ly, ) = (L ®g)* 2.
sa

A%a«k?

The only dominant weights in the block F*2 of the form )\%a oty withy e A
are [, and H3a41-

We know that Ly, - is a quotient of Lo(G/B, Oy, +3) from Lemma 5.1.4. We
2@ 2@

have the following exact sequence from our inductive assumption and from Lemma 9.1.3:

0— L)\%a+2 — Fo(G/B, OA%G+3) - LA%a+3 — 0.

Since T is an exact functor, we have another exact sequence:

0—=T(Ly, )—T([o(G/B,0x, ))—T(Ly, .)—0.
gat2 Ha+3 3a+3

From Lemma 9.2.3, we have T'(Ly, +3) = Ly, - By lemma Lemma 5.2.1 and

sa

Lemma 5.2.2, we have

T(To(G/B, Oz, ) = To(G/B,T(Oxy, ) = To(G/B, Oy

7a+2>'

The module I'y(G/B,0,, ) has a unique quotient L,, . From the last exact
ga 29

sequence, T'(L,, +2) has no simple subquotient L, 2 This proves the lemma.
g@ 2
]

Lemma 9.2.6 Let g = G(3) and X\ € F* such that \+p = (a+1,2a+ 1|3a+1). If
a>1,leta=¢e —6. Then T(Ly) = Ly—_q-

Proof. We will again assume that blocks F° for ¢ < a are all equivalent and
using this assumption we will prove the lemma. This lemma together with the pre-
vious one, will prove the equivalence of F* and F%™2. Thus, we use a complicated
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induction in a.

From our assumption and Lemma 9.2.1, we obtain all cohomology groups for F¢,
since we know them for F! from the previous section.

By definition, A = Az, y, A — o = pa,, and T(Ly, ) = (La,, , ®0)""% The

only dominant weights with central character corresponding to block F%™2 of the
form A%a+1 + v with v € A are 3011 and 1134

We know that Ly, is a quotient of Lo(G/B, Oy, . ) from Lemma 5.1.4. We
at2 Sa+2

have the following exact sequence:

0— LAQGH — I'o(G/ B, OA%H) — L — 0.
2 2

)\%u+2

Since T' is an exact functor, we have:

0= T(Lay, ) = T(Co(G/B, Oxy, ) = T(Ly,

b a+2

) — 0.

From Lemma 9.2.3, we have T'(L,, +2) = Ly, - By lemma Lemma 5.2.1 and
2¢ 29

Lemma 5.2.2, we have
T(Lo(G/B,Oxy, ) = Lo(G/B,T(Oh,y, ) = Lo(G/B, Oy, )-

The module I'y(G/B, O, ,,) has a unique quotient L,, . The last exact se-
2@ 2@
quence implies that T'(L,, +1) has no simple subquotient L, . This proves the
2% 2%

lemma. O

Lemma 9.2.7 The categories F* and F*? are equivalent for all a > 1.

Proof. This follows from Theorem 5.2.8 together with Lemma 9.2.3, Lemma 9.2.6,
and Lemma 9.2.6. O
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Chapter 10

Characters and superdimension

The following lemma summarizes some results from sections 5-8 on the multiplicities
of simple modules L, in the cohomology groups I';(G/B, 0,) = H(G/B, 03)*. It is
used to prove some of the main results in this thesis. Recall that Ay, A1, Ao are the
special weights defined above.

Lemma 10.0.8 For all simple modules Ly € F@Y (or F*) such that X # X, A1, Az,
there is a unique dominant weight p € F@Y (or F*) with p = X\ — Y. | a; with
; € A}“ andn € {1,2,3,4} such that we have an exact sequence:

0—— Ly ——=To(G/B,0y) —= L, —=0
We also have I';(G/B,0,) =0 fori > 0.

10.1 Superdimension formulae

We denote s(\) := p(A) if A = A, with ¢ € [; or J; with i = 1,3,6,8. And s()\) :=
p(A) + 1if A= A, with ¢ € I; or J; with i =2,4,5,7.

Theorem 10.1.1 Let g = F(4). Let A\ € F9 and p+p; = awy +bwy. If X # A1, Mg,
the following superdimension formula holds:

sdim Ly = (—1)*™2dim L, (g.). (10.1)
For the special weights, we have:

sdim Ly, = sdim Ly, = dim L,(g,). (10.2)



CHAPTER 10. CHARACTERS AND SUPERDIMENSION 87

Proof. For generic weight, the theorem follows from Theorem 6.1.4.
For other cases, if A # A\g, A1, Ay we have

0 = sdimH"(G/B,0})* = sdimLy + [H*(G/B,0})* : L,]sdimL,,
where g is the unique dominant weight in Lemma 10.0.8. This gives

sdimLy = —sdimL,,.

From Lemma 10.0.8, we have p = X — 3" | o; with oy € AT and n € {1,2,3,4}.

Thus, if n is even, we have p(u) = p(A), thus in those cases the sign changes.
This occurs each time the last coordinates of 1 and A belong to adjacent intervals.
Thus, the theorem follows. O

Theorem 10.1.2 Let g = G(3). Let A € F* and p+ p, = awy. If X # A1, A, the
following superdimension formula holds:

sdim Ly = (—1)*™2dim L, (g.). (10.3)

For the special weights, we have:
sdim Ly, = sdim Ly, = dim L, (g,). (10.4)
Proof. Similar to the proof for F'(4). O

10.2 Kac-Wakimoto conjecture

A root « is called isotropic if (o, ) = 0. The degree of atypicality of the weight
A the maximal number of mutually orthogonal linearly independent isotropic roots
a such that (A + p,a) = 0. The defect of g is the maximal number of linearly
independent mutually orthogonal isotropic roots. The above theorem proves the
following conjecture by Kac-Wakimoto Conjecture for g = F'(4) and G(3), see [14].

Theorem 10.2.1 The superdimension of a simple module of highest weight X\ is
nonzero if and only if the degree of atypicality of the weight is equal to the defect of
the Lie superalgebra.

Proof. Follows from Theorem 10.1.1 and Theorem 10.1.2. U
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10.3 Character formulae

In this section, we prove a Weyl character type formula for the dominant atypical
weights.

Lemma 10.3.1 For a dominant weight A and corresponding p andn from Lemma 10.0.8,
there is a unique o € W such that A\ + p — o(pu + p) = na for a € Aj satisfying
(A + p,a) = 0. Also, signo = (—1)"1.

If B € A1 is such that (u+ p, ) =0, then o(B) = «.

Proof. This follows from Lemma 5.1.5. U

Theorem 10.3.2 For a dominant weight A\ # Ai, Ag, let a € A1 be such that (A +
p,a) =0. Then

Dy e A+p

Dy

e

chLy = ). (10.5)

Z sign(w) w((

14+e@)

For A = X\; with i = 1,2, we have the following similar formula:

Dy -ef . P24 ™)
hl, = . cW(—————). 10.
chLy 2Dy U;/ sign(w) - w( Tt ) (10.6)

Proof. Let p be dominant weight, then it corresponds to some A and n in
Lemma 10.0.8 such that we have:

0—>L>\—>F0(G/B,O)\)élzuéo .
It follows that ch(I'o(G/B, O,)) = ch(Ly) + ch(L,,).

Assume the formula is true for \. We show that this together with Lemma 6.1.3,
proves the formula for p. Since we can obtain each dominant weight from generic one
by similar correspondence, from Lemma 6.1.2 the formula follows for all dominant
weights.

We have from Lemma 10.3.1:

e>\+p e,u-i—p €>\+p 6)\+p—na

-1 n—1 — —1 n—1 =

1+e @
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6)\+p(1 + (_1)n7167na

- ) _ AP (1 + Z(—l)ie_m).

1+ e«

Using the above equation, we have:

B B _ Dy-ef , Ap e
ch(Lu) = ch(To(G/B, Oy)) = ch(Ly) = —5- %:Vszgnw w(e =
Dy -ef ‘ ehtp n . i
= bo : ZWSZQTL(WU) : (wg)(m + Zl(—l) ety —

we 1=

= 253 sign(u) T P S signtw) w3 (-1,

-8
Dy wew 1+e7?) Dy wew i—1

The second summand is zero as the weights A — i« are acyclic. Thus we get the
required formula.

Similarly, for u = A1, Ao, we have

ch(Ly,) + ch(Ly,) = ch(To(G/B,0y,)) — ch(Ly,) =

Dy - ef Ao+p
_ e Z signw - w(eM P — e—> =
DO weW (1 + @_040)
Dy -ef . eMte - i Xo+p—ia
= o 2 sign(wa) - (wo) (o + D (1) =

weWw i=1

The second summand is zero as the weights A\ + p — i« are acyclic. Thus we get
the required formula for the sum ch(Ly,) + ch(Ly,).

On the other hand, we have

ch(Ly,) — ch(Ly,) = ch(T'o(G/B, O,,)) — ch(I'1(G/B,0,,)) =
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Dy -ef
St -Zsign(w)~w(e“+p).

Dy
weW

Adding both equations above, we get:

6)\14—9(2 + e—ocl)
(14 e )

).

The same proof works for the weight . OJ
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Chapter 11

Indecomposable modules

11.1 Notions from category theory

The following results from category theory have been taken from [6]. A small Abelian
C-linear category A is called nice if morphism spaces are finite-dimensional, if every
object in A has a finite composition series, and if A contains enough projectiles.
Fitting’s lemma holds for nice categories:

Lemma 11.1.1 (Fitting) Let A be a nice category. Then

(i) The endomorphism ring of any indecomposable object is finite dimensional
and local.

(11) Any object satisfies Krull-Schmidt theorem.

(iii) Any indecomposable projective object has a unique simple quotient.

(iv) Any object has a unique up to isomorphism projective cover.

(v) For any object M, the number of isomorphism classes of indecomposable pro-
jective objects P such that Hom (P, M) # 0 is finite.

Let X denote the set of all isomorphism classes of simple objects in A, then
there is a natural bijection between X' and the set of isomorphism classes in inde-
composable projective modules. For A € X', we let S()\) denote the corresponding
simple object and P()\) the projective cover.

By a quiver we mean a directed graph. Given a quiver with vertex set X+, we
can define a C-linear category C(Q). Its objects are vertices of @), the space of mor-
phisms Homcg (A, 1) between two vertices is the space of formal linear combinations
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of paths from A to p, with the composition of morphisms linearly extending the con-
catenations of paths.

By a representation of a quiver (), we mean a finite dimension X t-graded vector
space V' = @ cx+V) and linear maps ¢|y : V\ — V,, corresponding to each arrow
¢ : A — p of the quiver. We get linear maps Homcg (A, 1) — Home(Vi, V,,), which
are compatible with composition. By a morphism of representations we mean a
morphisms of X T-graded spaces that commute with the action of all arrows. Repre-
sentations of () form an abelian category denoted ()-mod.

Let A be a nice category, then FExt-quiver is the quiver (), which has vertex set
the set Xt of isomorphism classes of simple objects and the number of arrows from
vertex A to the vertex p is

dy,. = dimExt'(S(N\), S(w)).

Since A contains enough projective objects, Fat (M, N) is well defined and finite
dimensional vector space for any objects M and N of A.

For two vertices A and p € X, rad(P(u), P(\)) is defined to be the set of all
noninvertible morphisms from P(u) to P(\). Then

rad(P(u), P(\)) = Hom4(P(p), radP()\)).

rad™(P(u), P(\)) is the subspace of rad(P(u), P(\)) consisting of sums of products
of n noninvertible maps between projectives.

Lemma 11.1.2 ([4]) There is a canonical isomorphism

Exth (S(A), S(1)) = HomA(P(p), radP()\) /rad* P(\))*.

Say we have dy, arrows from A to u, denoted by (¢},)i=1...d,- Let Ry, be a

.....

bijection from(¢},)i=1,..4,, to a set of dy, morphisms in rad(P(u), P(\)), such that
the bijection is onto modulo rad?(P(u), P(\)).

Lemma 11.1.3 ([4]) There is a unique well defined family of linear maps
R : Homeg(\, 1) = Hom4(P(N), P(p)),

such that Ryu(¢,,) = Rau(¢,,) and compatible with composition.
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The map R : (A, p) — Ker?é)\u is a system of relations on ). If we let G to be
spectroid of A, then the categories CQ/R and G are equivalent. Here, spectroid of
A is the full subcategory consisting of indecomposable projective modules.

Theorem 11.1.4 (The Quiver Theorem, [{]) Let A be a nice category and @ its
Ext-quiver, and R relations above. There exists an equivalence of categories

e:A— Q/R
such that e(M) = @yex+Homa(P(X\), M) as graded vector spaces.

11.2  Quivers

The following lemma shows that C is a nice category.

Lemma 11.2.1 (/8]) (i) The category C contains enough projective modules.
(ii) Projective and injective modules coinside in C.
(iii) For any A\, p € X T, we have: Ext'(Ly,L,) = Ext*(L,, L)).

A quiver diagram is a directed graph that has vertices the irreducible representa-
tions of g, and the number of arrows from vertex A to the vertex p is dimExtYy (Ly, L,,).

Theorem 11.2.2 Let g = F'(4).

(1)For the symmetric block F*%  we have the following quiver diagram, which
is of type Doy :

(2) For the non-symmetric block F* we have the following quiver diagram,
which 1s of type As:
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Let g = G(3).
(8) For the block F°, we have the following quiver diagram, which is of type Dy :

A1

@
A2

Proof. For u, i’ # A1, Ag, assume p and p’ are the adjacent vertices of the quiver
with > p/. From Lemma 10.0.8 and Lemma 5.1.5, we have

dim Ext' (L, L) = [[o(G/B,0,) : L.
Since the category C is a contravariant, from Lemma 11.2.1, we also have

Ext' (L, L,) = Ext' (L, Ly).

11.3 Projective modules

Lemma 11.3.1 Let g = F'(4) (or G(3)). Then the projective indecomposable mod-
ules in the block F@) (or F*) have the following radical layer structure:

If \i € F@b or \; € F@9) (or F*) with i = 0,1,2. Then Py, has a radical layer
structure:

Ly,
L>\i71 D L)\i+1
L

3

where \;_1 and N1 are the adjacent vertices of A\; in the quiver.
If \; € F©@ with i =1,2. Then Py, has a radical layer structure:

Ly,

3

Ly,
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Ly,

3

For Ao € F(@% (or F®), Py, has a radical layer structure:

Ly,
Ly, @ Ly, ® Ly,
Ly,

Proof. For the top radical layer structure, we have:

Py\/rad Py = soc P\ = Ly,

since projective morphisms in C are injective and have a simple socle (see [24]).

Since rad Py, /rad* Py, is the direct sum of simple modules which have a non-split
extension by Ly,, for the middle radical layer structure, we have:

7“CLCZF))\Z./7”CLCZ2 P)\i = L)\'L—l ) L/\i+1'

Also, since from Theorem 11.2.2, we have:

Extl(L)\iaL)\ifl) ?é O, El’tl(L)\i’L/\
)\ifla)\’i+l-

# 0, and Ext'(Ly,L,) # 0 for o #

i+l)

Similarly, we obtain the middle layer for the special weights.

By BGG reciprocity from [8], we have

(Pr:L=> [Paie) [ L) = [ Lo] - [ev 1 L.

v v

Thus,
. 2 ifp=XN
Py L] = { 1 if p is adjacent to \.
This implies that there are only three radical layers. Therefore, for the bottom
radical layer structure, we have:

rad2 P)\ = L)\.
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11.4 Germoni’s conjecture and the
indecomposable modules

The following theorem together with results in [9] for other Lie superalgebras proves
a conjecture by J. Germoni (Theorem 11.4.2).

Theorem 11.4.1 The blocks of atypicality 1 are tame.

Proof. Follows from Theorem 11.2.2 and Lemma 11.3.1. U

Theorem 11.4.2 Let g be a basic classical Lie superalgebra. Then all tame blocks
are of atypicality less or equal 1.

Proof. Follows from Theorem 11.4.1, since all the blocks for F'(4) and G(3) are of
atypicality less or equal 1. Also, it follows from [9] for other Lie superalgebras. [

For F(@ and for F(@®) Feif | > 3, we let d denote the arrow from vertex with
weight \; to the adjacent vertex Aj on the left in the quiver. And let d;” denote the
arrow in the opposite direction.

These arrows correspond to the irreducible morphisms D/j\[l from Py, to Py,

For F(@9) Fa also let df denote the arrow from vertex A to A3 and d; the arrow
in the opposite direction. Similarly, for i = 1,2, denote by d;" the arrow from vertex
A1 to Ao and d; the arrow in the opposite direction.

The following theorem together with Theorem 11.1.4 gives a description of the
indecomposable modules.

Theorem 11.4.3 The quivers Ay and Ds, are the ext-quiver for atypical blocks

F@b) gnd F@2) of [(4) and the quiver Dy is the ext-quiver for atypical block F* of
G(3) with the following relations:

For F@b we have:

d+d7 + did+ = (d+)2 = (d7>2 =0 ;where d:t — Zdli

leZ
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For F@% or F* we have the following relations:

dyd i, =d df =0, forl >3
didy =dydf =djdy =dydy =dyd; =didi =dydy =dfdf =0

drdf = df,d;.

1+1% 11 for1>3

did;y =djdy, =dydyg.

Proof. The above relations follow by computations in [6] or [7], since the radical
filtrations of projectives are the same. Using Lemma 11.1.2, Theorem 11.2.2, and

Lemma 11.3.1, we obtain the statement.
O
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Appendix A

The following computations were done using Maple 16.01 program.

A.1 Program for computing the superdimension
for generic weights for F'(4)

asi=[-1/2,-1/2,-1/2, 1/2], [-1/2,-1/2, 1/2, 1/2], [-1/2, 1/2,-1/2, 1/2], [1/2,-1/2,-1/2,
1/2], [[1/2,1/2,1/2,1/2], [1/2,-1/2, 1/2, 1/2], [1/2, 1/2,-1/2, 1/2];

for i from 1 to 7 do for j from i+1 to 7 do Iprint(as|i]+as[j]); od; od;

for i from 1 to 7 do for j from i+1 to 7 do for k from j+1 to 7 do lprlnt(as[ |+aslj]+as[k]);
od; od; od;

for i from 1 to 7 do for j from i+1 to 7 do for k from j+1 to 7 do for 1 from k+1
to 7 do Iprint(as[i]+as[j]+as[k]+as[l]); od; od; od; od;

for i from 1 to 7 do for j from i+1 to 7 do for k from j+1 to 7 do for 1 from k+1
to 7 do for m from 1+1 to 7 do Iprint(as|i]+as[j|+as[k|+as[l]+as[m]); od; od; od; od;
od;

for i from 1 to 7 do for j from i+1 to 7 do for k from j+1 to 7 do for 1 from k+1 to 7
do for m from 141 to 7 do for n from m+1 to 7 do lprint(as|[i]+as[j]+as[k|+as[l]+-as[m]+as[n]);
od; od; od; od; od; od;

for i from 1 to 7 do for j from i+1 to 7 do for k from j+1 to 7 do for 1 from k+1
to 7 do for m from 1+1 to 7 do for n from m+1 to 7 do for o from n+1 to 7 do
Iprint(as[i]+as[j|+as[k|+as[l]+-as[m|+as[n]+as[o]); od; od; od; od; od; od; od;

a[0):=[0,0,0,0];

t:=0; for i from 0 to 7 do tot[i]:=0; end do; for ¢ from 1 to 1 do tot[0]:=tot[0] +

expand((1/90)*(2*(w-a[0] [c] [4])+4)* (x-a[0][c][1]) * (y-a[0] [¢] [2])*(z-a[0] [c] [3])* (x-a[0] [c] [1] 4y~
a[0][c][2])* (x-a[0][c] [1]+2-a[0] ] [3])* (y-a0] [c] [2] +2-a[0] [c][3])* (x-a[0] [c][1]-y+a[0][c][2])* (-

a[0][c][1]-z+al0][c][3])* (y-a[0] [c][2]-2+a[0][c][3])); end do;
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for j from 1 to 7 do tot[1]:=tot[1] + expand((1/90)*(2*(w-a[1][]] ]) ) ( [1][J][1])*(y—
al1][j][2])* (z-a[1][j][3])* (-a[1] ] [1]+y-a[1][]][2])* (x-a[1] ] [1]+z-a[1]]} ]
al1][j][3])* (-a[1] [][1]-y+a[1][j][2])* Ce-al[1][i][1]-z-+a[t][j}[3]) * (v-a[1][j

do;

for k from 1 to 21 do tot[2]:=tot[2] + expand((1/90)*(2*(w-a[2][k ][ ]) 4)*(x-
a[2][K][1])* (y-a[2][Kk][2]) *(z-a[2][k][3])* (x-a[2] [K] [1]+y-a[2][K] [2])* (x-a[2
2] IK)[2)+ -2 2) KB * (x al)[K][11y-+a[2] K 21)* (- f2] 4 [ - +af2] [k
z+a2|[k|[3])); end do;

for 1 from 1 to 35 do tot[3]:=tot[3] + expand((1/90)*(2*(w-a[3][1][4])+4)*(x-
al3J[1)[1])* (y-a[3][1][2]) * (z-a[3][1][3])* (x-a[3] ] [1]+y-a[3][1] [2])* (x-a[3] 1) [1]+-z-a[3] 1] [3]) *(y-
a[ﬂ[g[ﬂﬂ-a[i’)ﬂﬂm) (x-a3] [I[1]-y+a[3]1][2])* (x-a[3][] [1]-z+a[3] [I][3]) * (y-a[3] [l][2]-z+a[3][1}[3]));

for m from 1 to 35 do tot[4]:=tot[4] + expand((1/90)*(2*(w- [4] [m][4])+4)*(x-
a4 ] [1])* (-2 ][] 2])*(z-a[a4] an] 3])* (-2l o] [1]-+y-a{4] ][ |
]2 2-a[] ] 31 Geaf] m] 1)+ (4] ] 2] ] 12 4] 3])*(-a 4] 2
z+a[4][m][3])); end do;

for p from 1 to 21 do tot[5]:=tot[5] + expand((1/90)*(2*(w-a[5][p][4])+4)*(x-

a[5][p][1])* (y-a[5][p][2])*(z-a[5][p][3]) * (x-a[5] [p] [1]-+y-a[5][p][2]) * (x-a[5] [p][1]+2-a[5][p][3]) * (¥~
a[5][p][2]+7-a[5][p][3])* (x-a[5][p][1]-y+a[5] [p][2])* J[3] ]

z+al[5][p][3])); end do;

for r from 1 to 7 do tot[6]:=tot[6] + expand((1/90)*(2*(w-
a[6][r][2])* (z-a[6] [r][3]) * (x-a[6] [r][1]+y-a[6] [r][2]) * (x-a[6][r][1] +2-a
a[ﬂ[g@])*(x-a[ﬁ][f][l] -y+al6][r][2])* ( a[6][r][1]-z+a[6][r][3])* (y-a[6][r][2]-z+a[6][r][3]));

for s from 1 to 1 do tot[7]:=tot[7] + expand((1/90)*(2*(w-a[7|[s][4])+4)* (x-a[7][s][1])*(y-
a[7][s][2])* (z-a[7][s][3]) * (x-a[7][s][1]+y-a[7][s][2])* (x-a[7][s] [1] +2- -
a[g[i[?)])*(x—a[?][ s|[1]-y+a[7][s][2])* ( a[7][s] [1]-z+a[7][s][3]) * (y-

t:=tot[0]-tot[1]+tot[2]-tot[3]+tot[4]-tot[5]+tot[6]-tot[7];

—

A.2 Program for computing the superdimension
for generic weights for G(3)

=[0,0,1], [1,0,1], [-1,0,1], [0,1,1], [0,-1,1], [-1,-1,1];
for i from 1 to 6 do for j from i+1 to 6 do lprint(as|i]+as[j]); od; od;
for i from 1 to 6 do for j from i+1 to 6 do for k from j+1 to 6 do lprlnt(as[ |+as(j]+as[k]);
od; od; od;
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for i from 1 to 6 do for j from i+1 to 6 do for k from j+1 to 6 do for 1 from k+1
to 6 do lprint(asli|+as[j|+as[k]+as]l]); od; od; od; od;

for i from 1 to 6 do for j from i+1 to 6 do for k from j+1 to 6 do for 1 from k+1
to 6 do for m from 141 to 6 do lprint(as|i|+as[j]+as[k|+as[l]+as[m]); od; od; od; od;
od;

for i from 1 to 6 do for j from i+1 to 6 do for k from j+1 to 6 do for 1 from k+1 to 6
do for m from 141 to 6 do for n from m+1 to 6 do lprint(as[i]+as[j]+as[k]+as|l]+as[m]+as[n]);
od; od; od; od; od; od;

a[0]:=[[0,0,0]};

t:=0; for i from 0 to 6 do tot[i]:=0; end do; for ¢ from 1 to 1 do tot[0]:=tot[0] +
expand (L/240)*(2*w-2*a[0) [c][3]-+7)* (x-a 0] [c][1])* (y-a[0]el 2] * (x-a[0] ] [L]+y-a 0] [c]2]) (-
x+a[0][c][1]+y-a[0][c][2])*(2*x-2*a[0] [c] [1]-y+a[0] [c] [2]) * (-x+a[0][c][1]+-2*y-2*a [ [c][2]));
end do;

for j from 1 to 6 do tot[l]:=tot[1]
A1) (y-a[1]](20)* -2 1] [1]-+y-al1
y+a[1][j][2])* (-x+a[1][j][1]+2%y-2%a [ il

for k from 1 to 15 do tot[2]:=tot[2]

+ expand((1,/240)*(2*w-2*a[1][j][3]+7)* (x-
J0112D)* (a1 {j] [ +y-a[1][i][2]) * (2*x-2*a[1] [j][1]-
2])); end do;
+ eXpand((1/240) (2*w-2%a[2][k] [3]+7)* (x-
a[2][k][1])* (y-a[2] k] [2])* (x-a[2] (k] [1]+-y-a[2] [k][2]) * (-x+-a[2][K] [1]+y-af2] k] [2])* (2*x-2%a[2] K] [1]-
y+al2][K][2])* (-x+a[2][K] [1]+2%y-2%a[2][K][2])); end do;
for 1 from 1 to 20 do tot[3]:=tot[3] + expand((1/240) (2*w-2*a[3][1][3]+7)*(x-
al3][1)[1])* (y-a[3][1][2]) * (x-a[3] [1][1]+y-a[3] [1][2])* (-x+a[3][] [1]+y-a[3][1][2]) * (2*x-2*a[3][1][1]-
y+al3][[2])* (-x+a[3][][1]+2%y-2%a[3][1][2])); end do;
for m from 1 to 15 do tot[4]:=tot[4] + expand((1/240)*(2*W—2*a[4] [m][3]+7)*(x-
al4][m][1])* (y-a[4][m][2])* (-a[4][m][1]+y-a[4][m] [2])* (-x+a[4] [m] [1]+y-a[4][m][2]) *(2*x
2%a[4][m][1]-y-+a[4][m][2])* (-x+a[4][m] [1]+2%y-2*a[4][m][2])); end do;
for p from 1 to 6 do tot[5]:=tot[5] + expand((1/240)*(2*w- Q*a[ 1[p][3]+7)*(x-
a[5][p][1])* (y-a[5] [p][2])* (x-a[5] [p] [1]+y-a[5][p][2]) * (-x+a[5] [p] [1]-+y-a[5][p][2]) * (2*x-2*a[5][p][1]-
y+a[5][p][2])* (-x+a[5][p][1]+2*y-2%a[5][p][2])); end do;
for r from 1 to 1 do tot[6]:=tot[6] + expand((1/240)*(2*w 2%al6][r][3]+7)*(x-
a[6][x] [1])* (y-a[6][r][2])* (x-a[6][r][1]+y-a[6][1][2]) * (-x+a[6] [r][1]+y-a[6] [r][2]) * (2*x-2*a[6] [r][1]-
y+al6][r][2])* (-x+a[6][r][1]+2%y-2*a[6][r][2])); end do;
t:=tot[0]-tot[1]+tot[2]-tot[3]+tot[4]-tot [5]+tot[6];





