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Hypercontracts

Inigo Incer1, Albert Benveniste2, Alberto Sangiovanni-Vincentelli1, and
Sanjit A. Seshia1

1 University of California, Berkeley, USA
2 INRIA/IRISA, Rennes, France

Abstract. Contract theories have been proposed to formally support
distributed and decentralized system design while ensuring safe system
integration. We propose hypercontracts, a general model with a richer
structure for its underlying model of components, subsuming simulation
preorders. While general, the new model provides a richer algebra for
its notions of re�nement, parallel composition, and quotient. Further,
it allows the introduction of new operations. Building on top of these
foundations, we propose conic hypercontracts, which are still generic but
come with a �nite description.

1 Introduction

The need for compositional algebraic frameworks to design and analyze reactive
systems is widely recognized. In these frameworks, distributed and decentralized
system design and veri�cation are based on a proper de�nition of interfaces that
support the speci�cation of subsystems having a partially speci�ed context of op-
eration, and subsequently guaranteeing safe system integration. Over the last few
decades, we have seen the introduction of several algebraic frameworks: interface
automata [10,11,12,22,7], process spaces [24], modal interfaces [19,21,20,29,4],
assume-guarantee (AG) contracts [5], rely-guarantee reasoning [17,18,9,15], and
their variants. The interface speci�cations state (i) what the component guaran-
tees and (ii) what it assumes from its environment in order for those guarantees
to hold, i.e., all these frameworks implement a form of assume-guarantee reason-
ing.

These algebraic frameworks share a notion of a component, of an environ-
ment, and of a speci�cation called a contract to stress the give-and-take dy-
namics between the component and its environment. They all have notions of
satisfaction of a speci�cation by a component, and of contract composition.
To unify many contract frameworks, high-level theories have been proposed of
which existing contract theories are instantiations. Bauer et al. [3] describe how
to build a contract theory if one has a speci�cation theory available. Benveniste
et al. [6] provide a meta-theory that builds contracts starting from an alge-
bra of components. Here, several operations on contracts are proposed. Further,
it has been shown how this meta-theory can describe, among others, interface
automata, assume-guarantee contracts, modal interfaces, and rely-guarantee rea-
soning. This meta-theory is, however, low-level, specifying contracts as unstruc-
tured sets of environments and implementations. As a consequence, important
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concepts such as parallel composition and quotient of contracts are expressed in
terms that are considered too abstract�see [6], chapter 4. For example, no closed
form formula is given for the quotient besides its abstract de�nition as adjoint of
parallel composition. This paper introduces a theory, called hypercontracts, that
will address these drawbacks.

Assume-guarantee (AG) contracts [5] require users to state the assumptions
and guarantees of the speci�cation explicitly, while interface theories express a
speci�cation as a game played between the speci�cation environments and im-
plementations. Experience tells that designers �nd the explicit expression of a
contract's assumptions and guarantees natural (see [6] chapter 12), while inter-
face theories are perceived as a less intuitive mechanism for writing speci�cations;
however, interface theories in general come with the most e�cient algorithms,
making them excellent candidates for internal representations of speci�cations.
Some authors ([6] chapter 10) have therefore proposed to translate contracts
expressed as pairs (assumptions, guarantees) into some interface model, where
algorithms are applied. This approach has the drawback that results cannot be
traced back to the original (assumptions, guarantees) formulation.

Further, AG contracts only support environments and implementations that
can be expressed using trace properties; while many attributes of interest can
be expressed using trace properties, there are important system attributes, such
as non-interference [14], that are hyperproperties [8], falling outside the class of
trace properties. Hypercontracts allow environments and implementations to be
expressed using arbitrary hyperproperties.

To elaborate on this point, the most basic de�nition of a property in the
formal methods community is �a set of traces.� This notion is based on the be-
havioral approach to system modelling, in which we assume an underlying set of
behaviors B, and properties are de�ned as subsets of B. In this approach, design
elements or components are also de�ned as subsets of B. The di�erence between
components and properties is semantics: a component collects the behaviors that
can be observed from that component, while a property collects the behaviors
meeting some criterion of interest. Then, a component M satis�es a property P ,
written M |= P , when M ⊆ P , that is, when each behavior of M is in the set of
behaviors satisfying P . Properties of this sort are called trace properties. Several
important design requirements can be expressed with properties, for example,
safety. But there are system characteristics such as mean response times, secu-
rity attributes, and reliability that can only be determined by analyzing multiple
traces . The theory of hyperproperties [8] was introduced to express these more
general design attributes.

Formally, hyperproperties are subsets of 2B. Recall that each element of 2B

de�nes a semantically-unique component. Thus, a component M satis�es a hy-
perproperty H if M ∈ H. An assume-guarantee theory that supports the ex-
pression of arbitrary hyperproperties is a major contribution of this paper.

As we present our theory, we will use the following running example.
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Example 1 (Running example). Consider the digital system shown in Figure
1a3. Here, we have an s-bit secret data input S and an n-bit public input P .
The system has an output O. There is also an input H that is equal to �zero�
when the system is being accessed by a user with low-privileges, i.e., a user not
allowed to use the secret data, and equal to �one� otherwise. We wish the overall
system to satisfy the following requirement: for all environments with H = 0,
the implementations can only make the output O depend on P , the public data,
not on the secret input S.

A prerequisite for writing this requirement is to express: �the output O de-
pends on P , the public data, but not on the secret input S�. We claim that this
requirement cannot be captured by a trace property. Suppose for the sake of
simplicity that all variables are 1-bit-long. A trace property that may express
the independence from the secret for O = P is

P =


(P = 1, S = 1, O = 1),
(P = 0, S = 1, O = 0),
(P = 1, S = 0, O = 1),
(P = 0, S = 0, O = 0)

 .

A valid implementation M ⊆ P is the following set of traces:

M =

{
(P = 1, S = 1, O = 1),
(P = 0, S = 0, O = 0)

}
.

However, the component M leaks the value of S in its output. We conclude that
independence does not behave as a trace property, and therefore, neither does
non-interference. To overcome this, simply list all the subsets of P that satisfy
the independence requirement:

(P=1, S=1, O=1),
(P=0, S=1, O=0),
(P=1, S=0, O=1),
(P=0, S=0, O=0)

 ,

{
(P=1, S=1, O=1),
(P=1, S=0, O=1)

}
,

{
(P=0, S=1, O=0),
(P=0, S=0, O=0)

}

This precisely de�nes a subset of 2B, i.e., a hyperproperty.
In our development, we will use hypercontracts �rst to express this top-level,

assume-guarantee requirement, and then to �nd a component that added to a
partial implementation of the system results in a design that meets the top-level
speci�cation. □

Contributions. We provide a theory called hypercontracts which generalizes
existing theories of AG contracts while treating assumptions and guarantees as
�rst-class citizens. This new AG theory supports arbitrary structured hyper-
properties, including non-interference and robustness.

Our theory of hypercontracts is built in three stages. We begin with a theory
of components. Then we state what are the sets of components that our theory

3 This system is similar to those presented in [28,23] to illustrate the non-interference
property in security
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(a) (b) (c)

Fig. 1: (a) A digital system with a secret input S and a public input P . The
overall system must meet the requirement that the secret input does not a�ect
the value of the output O when the signal H is de-asserted (this signal is asserted
when a privileged user uses the system). Our agenda for this running example
is the following: (b) we will start with two components C1 and C2 satisfying
respective hypercontracts C1 and C2 characterizing information-�ow properties
of their own; (c) the composition of these two hypercontracts, Cc, will be derived.
Through the quotient hypercontract Cq, we will discover the functionality that
needs to be added in order for the design to meet the top-level information-�ow
speci�cation C.

can express; we call such objects compsets�compsets boil down to hyperproper-
ties in behavioral formalisms [23]. From these compsets, we build hypercontracts.
We provide closed-form expressions for hypercontract manipulations. Then we
show how our hypercontract theory applies to two speci�c cases: downward-
closed hypercontracts and interface hypercontracts (equivalent to interface au-
tomata). The main di�erence between hypercontracts and the meta-theory of
contracts [6] is that hypercontracts are more structured: the meta-theory of con-
tracts de�nes a theory of components, and uses these components to de�ne con-
tracts. Hypercontracts use the theory of components to de�ne compsets, which
are the types of properties that we are interested in representing in a speci�c
theory. Hypercontracts are built out of compsets, not out of components.

To summarize, our key contributions are the following: (i) a new model of
hypercontracts possessing a richer algebra than the metatheory of [6] and capable
of expressing any lattice of hyperproperties and (ii) a calculus of conic hyper-
contracts o�ering �nite representations of downward-closed hypercontracts.

2 Preliminaries

Many concepts in this paper will be inherited from preorders. We recall that
a preorder (P,≤) consists of a set P and a relation ≤ which is transitive (i.e.,
a ≤ b and b ≤ c implies that a ≤ c for all a, b, c ∈ P ) and re�exive (a ≤ a for all
a ∈ P ). A partial order is a preorder whose relation is also antisymmetric (i.e.,
from a ≤ b and b ≤ a we conclude that a = b).

Our preorders will come equipped with a partial binary operation called
composition, usually denoted ×. Composition is often understood as a means of
connecting elements together and is assumed to be monotonic in the preorder,
i.e., we assume composing with bigger elements yields bigger results: ∀a, b, c ∈
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P. a ≤ b ⇒ a×c ≤ b×c. We will also be interested in taking elements apart. For
a notion of composition, we can always ask the question, for a, b ∈ P , what is
the largest element b ∈ P such that a× b ≤ c? Such an element is called quotient
or residual, usually denoted c/a. Formally, the de�nition of the quotient c/a is

∀b ∈ P. a× b ≤ c if and only if b ≤ c/a, (1)

which means that the quotient is the right adjoint of composition (in the sense
of category theory). A synonym of this notion is to say that composing by a
�xed element a (i.e., b 7→ a × b) and taking quotient by the same element (i.e.,
c 7→ c/a) form a Galois connection. A description of the use of the quotient in
many �elds of engineering and computer science is given in [16].

A partial order for which every two elements have a well-de�ned LUB (aka
join), denoted ∨, and GLB (aka meet), denoted ∧, is a lattice. A lattice in which
the meet has a right adjoint is called Heyting algebra. This right adjoint usually
goes by the name exponential, denoted →. In other words, the exponential is
the notion of quotient if we take composition to be given by the meet, that is,
for a Heyting algebra H with elements a, c, the exponential is de�ned as

∀b ∈ H. a ∧ b ≤ c if and only if b ≤ a → c, (2)

which is the familiar notion of implication in Boolean algebras.

3 The theory of hypercontracts

Our objective is to develop a theory of assume-guarantee reasoning for any kind
of attribute of reactive systems. We do this in three steps:

1. we consider components coming with notions of preorder (e.g., simulation)
and parallel composition;

2. we discuss the notion of a compset and give it substantial algebraic structure�
unlike the unstructured sets of components considered in the metatheory
of [6];

3. we build hypercontracts as pairs of compsets with additional structure�
capturing environments and implementations.

In this section we describe how this construction is performed, and in the next
we show specialized hypercontract theories.

3.1 Components

In the theory of hypercontracts, the most primitive concept is the component.
Let (M,≤) be a preorder. The elements M ∈ M are called components. We say
that M is a subcomponent of M ′ when M ≤ M ′. If we represented components
as automata, the statement �is a subcomponent of� is equivalent to �is simulated
by.�
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There exists a partial binary operation, ∥: M,M → M, monotonic in both ar-
guments, called composition. IfM ∥ M ′ is not de�ned, we say thatM andM ′ are
non-composable (and composable otherwise). A component E is an environment
for component M if E and M are composable. We assume that composition is
associative and commutative.

Example 2 (running example, cont'd). In order to reason about possible decom-
positions of the system shown in Figure 1a, we introduce the internal variables
O1 and O2, as shown in Figure 1b. They have lengths o1 and o2, respectively.
The output O has length o. For simplicity, we will assume that the behaviors
of the entire system are stateless. In that case, the set of components M is the
union of the following sets:

� For i ∈ {1, 2}, components with inputs H, S, P , and output Oi, i.e., the sets
{(H,S, P,O1, O2, O) | ∃f ∈ (21 × 2s × 2n → 2oi). Oi = f(H,S, P )}.
� Components with inputs H, S, P , O1, O2, and output O, i.e., the set {(H,S,
P,O1, O2, O) | ∃f ∈ (21×2s×2n×2o1 ×2o2 → 2o). O = f(H,S, P,O1, O2)}. We
also consider components any subset of these components, as these correspond
to restricting inputs to subsets of their domains.

In this theory of components, composition is carried out via set intersection. So
for example, if for i ∈ {1, 2} we have functions fi ∈ (21 × 2s × 2n → 2oi) and
components Mi = {(H,S, P,O1, O2, O) | Oi = fi(H,S, P )}, the composition of
these objects is

M1 ∥ M2 =

{
(H,S, P,O1, O2, O)

∣∣∣∣O1 = f1(H,S, P )
O2 = f2(H,S, P )

}
,

which is the set intersection of the components's behaviors. □

3.2 Compsets

CmpSet is a lattice whose objects are sets of components, called compsets.
Thus, compsets are equivalent to hyperproperties when the underlying compo-
nent theory represents components as sets of behaviors. In general, not every set
of components is necessarily an object of CmpSet.

CmpSet comes with a notion of satisfaction. Suppose M ∈ M and H is a
compset. We say that M satis�es H or conforms to H, written M |= H, when
M ∈ H. For compsets H,H ′, we say that H re�nes H ′, written H ≤ H ′, when
M |= H ⇒ M |= H ′, i.e., when H ⊆ H ′.

Since we assume CmpSet is a lattice, the greatest lower bounds and least
upper bounds of �nite sets are de�ned. Observe, however, that although the par-
tial order of CmpSet is given by subsetting, the meet and join of CmpSet are
not necessarily intersection and union, respectively, as the union or intersection
of any two elements are not necessarily elements of CmpSet.
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Example 3 (Running example: non-interference). Non-interference, introduced
by Goguen and Meseguer [14], is a common information-�ow attribute, a pro-
totypical example of a design quality which trace properties are unable to cap-
ture [8]. It can be expressed with hyperproperties, and is in fact one reason
behind their introduction.

Suppose σ is one of the behaviors that our system can display, understood
as the state of memory locations through time. Some of those memory locations
we call privileged, some unprivileged. Let L0(σ) and Lf (σ) be the projections of
the behavior σ to the unprivileged memory locations of the system, at time zero,
and at the �nal time (when execution is done). We say that a component M
meets the non-interference hyperproperty when

∀σ, σ′ ∈ M. L0(σ) = L0(σ
′) ⇒ Lf (σ) = Lf (σ

′),

i.e., if two traces begin with the unprivileged locations in the same state, the
�nal state of the unprivileged locations matches.

Non-interference is a downward-closed hyperproperty [28,23], and a 2-safety
hyperproperty�hyperproperties called k-safety are those for the refutation of
which one must provide at least k traces. In our example, to refute the hyper-
property, it su�ces to show two traces that share the same unprivileged initial
state, but which di�er in the unprivileged �nal state.

Regarding the system shown in Figure 1a, we require the top level component
to generate the output O independently from the secret input S. We build our
theory of compsets by letting the set 2M be the set of elements of CmpSet. This
means that any set of components is a valid compset. The components meet-
ing the top-level non-interference property are those belonging to the compset
{(H,S, P,O1, O2, O) | ∃f ∈ (21 × 2n → 2o). O = f(H,P )}, i.e., those compo-
nents for which H and P are su�cient to evaluate O. This corresponds exactly
to those components that are insensitive to the secret input S. The join and
meet of these compsets is given by set union and intersection, respectively. □

Composition and quotient.We extend the notion of composition toCmpSet:

H ∥ H ′ =

{
M ∥ M ′

∣∣∣∣∣ M |= H, M ′ |= H ′, and

M and M ′ are composable

}
. (3)

Composition is total and monotonic, i.e., ifH ′ ≤ H ′′, thenH ∥ H ′ ≤ H ∥ H ′′.
It is also commutative and associative, by the commutativity and associativity,
respectively, of component composition.

We assume the existence of a second (but partial) binary operation on the ob-
jects ofCmpSet. This operation is the right adjoint of composition: for compsets
H and H ′, the residual H/H ′ (also called quotient), is de�ned by the universal
property (1). From the de�nition of composition, we must have

H/H ′ = {M ∈ M | {M} ∥ H ′ ⊆ H} . (4)

Downward-closed compsets. The set of components was introduced with a
partial order. We say that a compset H is downward-closed when M ′ ≤ M
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and M |= H imply M ′ |= H, i.e., if a component satis�es a downward-closed
compset, so does its subcomponent. Section 4.2 treats downward-closed compsets
in detail.

3.3 Hypercontracts

Hypercontracts as pairs (environments, closed-system speci�cation). A hypercon-
tract is a speci�cation for a design element that tells what is required from the
design element when it operates in an environment that meets the expectations
of the hypercontract. A hypercontract is thus a pair of compsets:

C = (E ,S) = (environments, closed-system speci�cation).

E states the environments in which the object being speci�ed must adhere to
the speci�cation. S states the requirements that the design element must ful�ll
when operating in an environment which meets the expectations of the hyper-
contract. We say that a component E is an environment of hypercontract C,
written E |=E C, if E |= E . We say that a component M is an implementation
of C, written M |=I C, when M ∥ E |= S for all E |= E . We thus de�ne the set
of implementations I of C as the compset containing all implementations, i.e.,
as the quotient:

implementations = I = S/E .

A hypercontract with a nonempty set of environments is called compatible; if it
has a nonempty set of implementations, it is called consistent. For S and I as
above, the compset E ′ de�ned as E ′ = S/I contains all environments in which
the implementations of C satisfy the speci�cations of the hypercontract. Thus,
we say that a hypercontract is saturated if its environments compset is as large as
possible in the sense that adding more environments to the hypercontract would
reduce its implementations. This means that C satis�es the following �xpoint
equation: E = S/I = S/(S/E).

At a �rst sight, this notion of saturation may seem to go against what for
assume-guarantee contracts are called contracts in canonical or saturated form,
as we make the de�nition based on the environments instead of on the imple-
mentations. However, the two de�nitions for AG contracts and hypercontracts
agree. Indeed, for AG contracts, this notion means that the contract C = (A,G)
satis�es G = G ∪ ¬A. For this AG contract, we can form a hypercontract as
follows: if we take the set of environments to be E = 2A (i.e., all subsets of A)
and the closed system specs to be S = 2G, we get a hypercontract whose set
of implementations is 2G∪¬A, which means that the hypercontract (2A, 2G) is
saturated.
Hypercontracts as pairs (environments, implementations). Another way to inter-
pret a hypercontract is by telling explicitly which environments and implementa-
tions it supports. Thus, we would write the hypercontract as C = (E , I). Assume-
guarantee theories can di�er as to the most convenient representation for their
hypercontracts. Moreover, some operations on hypercontracts �nd their most
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convenient expression in terms of implementations (e.g., parallel composition),
and some in terms of the closed system speci�cations (e.g., strong merging).

The lattice Contr of hypercontracts. Just as with CmpSet, we de�ne Contr as
a lattice formed by putting together two compsets in one of the above two ways.
Not every pair of compsets is necessarily a valid hypercontract. We will de�ne
soon the operations that give rise to this lattice.
Preorder. We de�ne a preorder on hypercontracts as follows: we say that C
re�nes C′, written C ≤ C′, when every environment of C′ is an environment of
C, and every implementation of C is an implementation of C′, i.e., E |=E C′ ⇒
E |=E C and M |=I C ⇒ M |=I C′. We can express this as

E ′ ≤ E and S/E = I ≤ I ′ = S ′/E ′.

Any two C, C′ with C ≤ C′ and C′ ≤ C are said to be equivalent since they have
the same environments and the same implementations. We now obtain some
operations using preorders which are de�ned as the LUB or GLB of Contr. We
point out that the expressions we obtain are unique up to the preorder, i.e., up
to hypercontract equivalence.

GLB and LUB. From the preorder just de�ned, the GLB of C and C′ sat-
is�es: M |=I C ∧ C′ if and only if M |=I C and M |=I C′; and E |=E C ∧
C′ if and only if E |=E C or E |=E C′.

Conversely, the least upper bound satis�es M |=I C ∨C′ if and only if M |=I

C or M |=I C′, and E |=E C ∨ C′ if and only if E |=E C and E |=E C′.
The lattice Contr has hypercontracts for objects (up to contract equiva-

lence), and meet and join as just described.
Parallel composition. The composition of hypercontracts Ci = (Ei, Ii) for
1 ≤ i ≤ n, denoted ∥i Ci, is the smallest hypercontract C′ = (E ′, I ′) (up to
equivalence) meeting the following requirements:

� any composition of implementations of all Ci is an implementation of C′; and
� for any 1 ≤ j ≤ n, any composition of an environment of C′ with implemen-
tations of all Ci (for i ̸= j) yields an environment for Cj .

These requirements were stated for the �rst time by Abadi and Lamport [1].
Using our notation, this composition principle becomes

C ∥ C′ =
∧(E ′, I′)

∈ Contr

∣∣∣∣∣∣
I1 ∥ . . . ∥ In ≤ I′, and

E ′ ∥ I1 ∥ . . . ∥ Îj ∥ . . . ∥ In ≤ Ej

for all 1 ≤ j ≤ n


=

∧{
(E ′, I′)

∈ Contr

∣∣∣∣∣
[
I1 ∥ . . . ∥ In ≤ I′, and

E ′ ≤
∧

1≤j≤n

Ej

I1∥...∥Îj∥...∥In

]}
, (5)

where the notation Îj indicates that the composition I1 ∥ . . . ∥ Îj ∥ . . . ∥ In
includes all terms Ii, except for Ij .

Example 4 (Running example, parallel composition). Coming back to the exam-
ple shown in Figure 1, we want to state a requirement for the top-level component
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that for all environments with H = 0, the implementations can only make the
output O depend on P , the public data. We will write a hypercontract for the
top-level. We let C = (E , I), where

E = {M ∈ M | ∀(H,S, P,O1, O2, O) ∈ M.H = 0}
I ={M ∈ M | ∃f∈(2n → 2o).∀(H,S, P,O1, O2, O) ∈ M.H = 0 → O=f(P )}.

The environments are all those components only de�ned for H = 0. The imple-
mentations are those such that the output is a function of P when H = 0.

Let f∗ : 2n → 2o. Suppose we have two hypercontracts that require their
implementations to satisfy the function Oi = f∗(P ), one implements it when
S = 0, and the other when S ̸= 0. For simplicity of syntax, let s1 and s2 be
the propositions S = 0 and S ̸= 0, respectively. Let the two hypercontracts be
Ci = (Ei, Ii) for i ∈ {1, 2}. We won't place restrictions on the environments for
these hypercontracts, so we obtain Ei = M and

Ii ={M ∈ M | ∀(H,S, P,O1, O2, O) ∈ M.si → Oi=f∗(P )}.

We now evaluate the composition of these two hypercontracts: Cc = C1 ∥
C2 = (Ec , Ic), yielding Ec = M and

Ic ={M ∈ M | ∀(H,S, P,O1, O2, O) ∈ M.

(s1 → O1=f∗(P )) ∧ (s2 → O2=f∗(P ))}.

Mirror or reciprocal. We assume we have an additional operation on hy-
percontracts, called both mirror and reciprocal, which �ips the environments
and implementations of a hypercontract: C−1 = (E , I)−1 = (I, E) and C−1 =
(E ,S)−1 = (S/E ,S). This notion gives us, so to say, the hypercontract obeyed
by the environment. The introduction of this operation assumes that for every
hypercontract C, its reciprocal is also an element of Contr. Moreover, we assume
that, when the in�mum of a collection of hypercontracts exists, the following
identity holds:

(
∧

i Ci)
−1

=
∨

i Ci
−1. (6)

Hypercontract quotient. The quotient or residual for hypercontracts C =
(E , I) and C′′ = (E ′′, I ′′), written C′′/C, has the universal property (1), namely
∀C′. C ∥ C′ ≤ C′′ if and only if C′ ≤ C′′/C. We can obtain a closed-form expression
using the reciprocal:

Proposition 1. The hypercontract quotient obeys C′′/C =
(
(C′′)−1 ∥ C

)−1
.
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Proof.

C′′/C =
∨

{C′ | C ∥ C′ ≤ C′′} =
∨(E ′, I ′)

∣∣∣∣∣∣
I ∥ I ′ ≤ I ′′,
E ′′ ∥ I ≤ E ′, and
E ′′ ∥ I ′ ≤ E


=


∨(E ′, I ′)

∣∣∣∣∣∣
I ∥ I ′ ≤ I ′′,
E ′′ ∥ I ≤ E ′, and
E ′′ ∥ I ′ ≤ E


−1


−1

(6)
=

∧(I ′, E ′)

∣∣∣∣∣∣
I ∥ I ′ ≤ I ′′,
E ′′ ∥ I ≤ E ′, and
E ′′ ∥ I ′ ≤ E


−1

=

∧(I ′, E ′)

∣∣∣∣∣∣
E ′′ ∥ I ≤ E ′,
I ′ ∥ I ≤ I ′′, and
I ′ ∥ E ′′ ≤ E


−1

=
(
(C′′)−1 ∥ C

)−1
.

Example 5 (Running example, quotient). We use the quotient to �nd the spec-
i�cation of the component that we need to add to the system shown in Figure
1c in order to meet the top level contract C. To compute the quotient, we use
(10), as the hypercontracts we state consist of subset-closed compsets. We let
C/Cc = (Eq, Iq) and obtain Eq = E ∧ Ic and

Iq ={M ∈ M | ∃f ∈ (2n → 2o)∀(H,S, P,O1, O2, O)

∈ M. ((s1 → O1=f∗(P )) ∧ (s2 → O2=f∗(P ))) → (H = 0 → O=f(P ))}.

We can re�ne the quotient by lifting any restrictions on the environments, and
picking from the implementations the term with f = f∗. Observe that f∗ is a
valid choice for f . This yields the hypercontract C3 = (E3, I3), de�ned as E3 = M
and

I3 ={M ∈ M | ∀(H,S, P,O1, O2, O) ∈ M.

((s1 → O1=f∗(P )) ∧ (s2 → O2=f∗(P ))) → O=f∗(P )}.

A further re�nement of this hypercontract is Cr = (Er, Ir), where Er = M and

Ir ={M ∈ M | ∀(H,S, P,O1, O2, O) ∈ M. ((s1 → O=O1) ∧ (s2 → O=O2))}.

By the properties of the quotient, composing this hypercontract, which knows
nothing about f∗, with Cc will yield a hypercontract which meets the non-
interference hypercontract C. Note that this hypercontract is consistent, i.e.,
it has implementations. As hypercontract re�nements have smaller compsets of
implementations, it is possible for a re�ned hypercontract to lack implementa-
tions. □
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Merging. The composition of two hypercontracts yields the speci�cation of a
system comprised of two design objects, each adhering to one of the hyper-
contracts being composed. Another important operation on hypercontracts is
viewpoint merging, or merging for short. It can be the case that the same design
element is assigned multiple speci�cations corresponding to multiple viewpoints,
or design concerns [5,25] (e.g., functionality and a performance criterion). Sup-
pose C1 = (E1,S1) and C2 = (E2,S2) are the hypercontracts we wish to merge.
Two slightly di�erent operations can be considered as candidates for formalizing
viewpoint merging:

� A weak merge which is the GLB; and
� A strong merge which states that environments of the merger should be envi-
ronments of both C1 and C2 and that the closed systems of the merger are closed
systems of both C1 and C2. If we let C1 • C2 = (E , I), we have

E = ∨{E ′ ∈ CmpSet | E ′ ≤ E1 ∧ E2 and ∃ C′′ = (E ′′, I ′′) ∈ Contr. E ′ = E ′′}

I = ∨

{
I ′ ∈ CmpSet

∣∣∣∣∣ I ′ ≤ (S1 ∧ S2)/E and

(E , I) ∈ Contr

}
.

The di�erence is that, whereas the commitment to satisfy S2 survives under
the weak merge when the environment fails to satisfy E1, no obligation survives
under the strong merge. This distinction was proposed in [30] under the name
of weak/strong assumptions.

3.4 An example on robustness

Now we explore assume-guarantee speci�cations of autonomous vehicles. We
will deal with their safety and the robustness of their perception components.
In order to consider the perception components, we will build our model using
a pair (X,O), where X ∈ S is the input image, belonging to a set S of images,
and O ∈ CS is the classi�cation of the image X, an element of the classi�cation
space CS . To deal with safety, we will consider pairs (v,∆s), where v represents
the state of the vehicle with domain SP , and ∆s is the maximum amount of time
that it takes the vehicle to come to a full stop. Thus, every component M ∈ M
is of the form

M =
{
(X,O, v,∆s) ∈ S × CS × SP × R+

∣∣ ∃f ∈ S → CS . O = f(X)
}
.

As discussed in Seshia et al. [33], certain robustness properties of data-driven
components are hyperproperties. Robustness properties usually take the form
d(x, y) < δ ⇒ D(f(x), f(y)) < ε, where d and D are distance functions. The
property says that points that are close should have similar classi�cations. As
two points are needed to provide evidence that a function is not robust, these
are 2-safety hyperproperties. We will state a speci�cation for our vehicles that
requires their perception components to be robust. Suppose the input space S
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is partitioned in sets Si. We want our vehicle to meet the following top-level
speci�cation:

C =

M,

M ∈ M

∣∣∣∣∣∣
∀(xk, ok, vk, ∆sk), (xl, ol, vl, ∆sl) ∈ M.∧
i

xk, xl ∈ Si → |ok − ol| ≤ ε


 .

Suppose our vehicle obeys the speci�cation Ca given by

Ca =

M,

M ∈ M

∣∣∣∣∣∣
∀(xk, ok, vk, ∆sk), (xl, ol, vl, ∆sl) ∈ M.∧
i

xk, xl ∈ Si → |ok − ol| ≤ εi


 .

This speci�cation says that the perception component in each region Si should
have a robustness εi. Suppose that there is a j ∈ N such that εi ≤ ε for all i ≤ j
and εi > ε otherwise. The contract quotient is Cq = (Eq, Iq), where Eq = Ia and

Iq =

M ∈ M

∣∣∣∣∣∣
∀(xk, ok, vk, ∆sk), (xl, ol, vl, ∆sl) ∈ M.∧
i

xk, xl ∈ Si → |ok − ol| ≤ ε

M ∈ M

∣∣∣∣∣∣
∀(xk, ok, vk, ∆sk), (xl, ol, vl, ∆sl) ∈ M.∧
i

xk, xl ∈ Si → |ok − ol| ≤ εi


,

where we used the horizontal bar to denote the compset quotient. By the de�ni-
tion of the contract quotient, any re�nement of Cq is a solution to our problem,
namely, what is the speci�cation that we have to compose with a speci�cation
Ca in order for the result to meet a goal speci�cation C. We thus compute a
re�nement of the quotient that we just obtained:

Cb =

M,

M ∈ M

∣∣∣∣∣∣∣
∀(xk, ok, vk, ∆sk), (xl, ol, vl, ∆sl) ∈ M.∧
i>j

xk, xl ∈ Si → |ok − ol| ≤ ε


 .

Observe how using the quotient we were able to obtain a speci�cation Cb
that contains exactly what needs to be �xed in the component adhering to
hypercontract Ca in order for it to meet the top-level speci�cation C. Moreover,
the speci�cation Cb does not contain any information about Ca.

One of the uses of hypercontracts is in handling multiple viewpoints. Suppose
that the robust perception speci�cation is given to a vehicle on top of other
speci�cations, such as safety. For example, suppose there is a speci�cation that
says that if the state of the vehicle v is inside a safety set T , then the amount
of time ∆s that it takes the vehicle to come to a full stop is a most P . We can
write the spec

Cs = (v ∈ T,∆s < P ) .
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By using strong merging, we can get into a single top-level hypercontract the
speci�cation of the perception and the safety viewpoints, as follows:v ∈ T,

M ∈ M

∣∣∣∣∣∣
∀(xk, ok, vk, ∆sk), (xl, ol, vl, ∆sl) ∈ M.

∆sk, ∆sl < P ∧
∧
i

xk, xl ∈ Si → |ok − ol| ≤ ε


 .

This speci�cation summarizes the perception and safety viewpoints of the ve-
hicle. As robustness is a hyperproperty, we cannot use AG contracts to reason
about the speci�cations in this example, but hypercontracts enable us to do so.

4 Behavioral modeling

In the behavioral approach to system modeling, we start with a set B whose
elements we call behaviors. Components are de�ned as subsets of B. They contain
the behaviors they can display. A component M is a subcomponent of M ′ if M ′

contains all the behaviors of M , i.e., if M ⊆ M ′. Component composition is

given by set intersection: M ×M ′ def
= M ∩M ′. If we represent the components

as M = {b ∈ B | ϕ(b)} and M ′ = {b ∈ B | ϕ′(b)} for some constraints ϕ and ϕ′,
then composition is M × M ′ = {b ∈ B | ϕ(b) ∧ ϕ′(b)}, i.e., the behaviors that
simultaneously meet the constraints of M and M ′. This notion of composition
is independent of the connection topology: the topology is inferred from the
behaviors of the components.

We will consider two contract theories we can build with these components.
The �rst is based on unconstrained hyperproperties; the second is based on
downward-closed hyperproperties.

4.1 General hypercontracts

The most expressive behavioral theory of hypercontracts is obtained when we
place no restrictions on the structure of compsets and hypercontracts. In this

case, the elements of CmpSet are all objects H ∈ 22
B
, i.e., all hyperproper-

ties. The meet and join of compsets are set intersection and union, respectively,
and their composition and quotient are given by (3) and (4), respectively. Hy-
percontracts are of the form C = (E , I) with all extrema achieved in the binary
operations, i.e., for a second hypercontract C′ = (E ′, I ′), the meet, join, and com-
position (5) are, respectively, C ∧ C′ = (E ∪ E ′, I ∩ I ′), C ∨ C′ = (E ∩ E ′, I ∪ I ′),

and C ∥ C′ =
(

E′

I ∩ E
I′ , I ∥ I ′

)
. From these follow the operations of quotient,

and merging.

4.2 Conic (or downward-closed) hypercontracts

We assume thatCmpSet contains exclusively downward-closed hyperproperties.
Let H ∈ CmpSet. We say that M |= H is a maximal component of H when H
contains no set bigger than M , i.e., if ∀M ′ |= H. M ≤ M ′ ⇒ M ′ = M .
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We let H be the set of maximal components of H:

H = {M |= H | ∀M ′ |= H. M ≤ M ′ ⇒ M ′ = M} .

Due to the factH is downward-closed, the set of maximal components is a unique
representation of H. We can express H as

H =
⋃

M∈H 2M .

We say that H is k-conic if the cardinality of H is �nite and equal to k, and we
write this

H = ⟨M1, . . . ,Mk⟩, where H = {M1, . . . ,Mk}.

Order. The notion of order on CmpSet can be expressed using this notation
as follows: suppose H ′ = ⟨M ′⟩M ′∈H

′ . Then

H ′ ≤ H if and only if ∀M ′ ∈ H
′ ∃M ∈ H. M ′ ≤ M.

Composition. Composition in CmpSet becomes

H ×H ′ =
⋃

M∈H
M ′∈H

′
2M∩M ′

= ⟨M ∩M ′⟩ M∈H
M ′∈H

′
. (7)

Therefore, if H and H ′ are, respectively, k- and k′-conic, H × H ′ is at most
kk′-conic.
Quotient. Suppose Hq satis�es

H ′ ×Hq ≤ H.

Let Mq ∈ Hq. We must have

Mq ×M ′ |= H for every M ′ ∈ H
′
,

which means that for each M ′ ∈ H
′
there must exist an M ∈ H such that

Mq × M ′ ≤ M ; let us denote by M(M ′) a choice M ′ 7→ M satisfying this
condition. Therefore, we have

Mq ≤
∧

M ′∈H
′

M(M ′)
M ′ , (8)

Clearly, the largest such Mq is obtained by making (8) an equality. Thus, the

cardinality of the quotient is bounded from above by kk
′
since we have

Hq =
〈∧

M ′∈H
′

M(M ′)
M ′

〉
M(M ′)∈H

∀M ′∈H
′

. (9)

Contracts. Now we assume that the objects of CmpSet are pairs of downward-
closed compsets. If we have two hypercontracts C = (E , I) and C′ = (E ′, I ′), their
composition and quotient are, respectively,

C ∥ C′ =

(
E
I ′ ∧

E ′

I
, I × I ′

)
and C/C′ =

(
E × I ′,

I
I ′ ∧

E ′

E

)
. (10)
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5 Conclusions

We proposed hypercontracts, a general model of contracts providing a richer al-
gebra than the metatheory of [6]. We started from a generic model of components
equipped with a simulation preorder and parallel composition. On top of them,
we considered compsets (or hyperproperties, for behavioral formalisms), which
are lattices of sets of components equipped with parallel composition and quo-
tient; compsets are our generic model formalizing �properties.� Hypercontracts
are then de�ned as pairs of compsets specifying the allowed environments and ei-
ther the obligations of the closed system or the set of allowed implementations�
both forms are useful.

We specialized hypercontracts by restricting them to conic hypercontracts,
whose environments and closed systems are described by a �nite number of com-
ponents. Conic hypercontracts include assume-guarantee contracts as a special-
ization. We illustrated the versatility of our model on the de�nition of contracts
for information �ow in security and robustness of data-driven components.

The �exibility and power of our model suggests that a number of directions
that were opened in [6], but not explored to their end, can now be re-investigated
with more powerful tools: contracts and testing, subcontract synthesis (for re-
quirement engineering), contracts and abstract interpretation, contracts in phys-
ical system modeling.4 In particular, as monitoring hyperproperties [13] is more
tractable than model checking them, hypercontracts are a promising tool to
enable compositional testing of hyperproperties in reactive systems.

Furthermore, results on contracts were recently obtained in the domain of
control systems. In particular, Phan-Minh and Murray [27,26] introduced the no-
tion of reactive contracts. Saoud et al. [31,32] proposed a framework of assume-
guarantee contracts for input/output discrete or continuous time systems. As-
sumptions vs. guarantees are properties stated on inputs vs. outputs. With this
restriction, reactive contracts are considered and an elegant formula is proposed
for the parallel composition of contracts. Bartocci et al. [2] recently introduced
information-�ow interfaces, a theory that enables assume-guarantee reasoning
over information-�ow properties. Hypercontracts are complementary to this the-
ory, as they support arbitrary classes of hyperproperties. These recent develop-
ments o�er the opportunity of exploring further avenues of research to link these
new concepts.
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