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Abstract

Seration is the ability to order a set of objects on
some dimension such as size. Psychological research
on the child's development of seriation has uncovered
both cognitive stages and perceptual constraints. A
generative connectionist algorithm, cascade-
correlation, is used to successfully model these
psychological regularities. Previous rule-based models
of seriation have been unable to capture either stage
progressions or perceptual effects. The present
simulations provide a number of insights about
possible processing mechanisms for seriation, the
nature of seriation stage transitions, and the
opportunities provided by the environment for learning
about seriation.

Introduction

Recent research has indicated that basic phenomena in
cognitive development can be successfully modeled
with connectionist networks (cf. reviews by Bates &
Elman, 1992; Plunkett & Sinha, 1992; Shultz, 1991).
Generative learning algorithms, such as cascade-
correlation (Fahlman & Lebiere, 1990), are
particularly appealing for such simulations since they
implement qualitative increases in network capacity
during learning in addition to quantitative adjustments
of network weights. It has long been held that much
of the child's cognitive development is due to
qualitative shifts in representational capacity (Piaget,
passim), but until recently it has been unclear how
such qualitative changes could be modeled.

A variety of aspects of cognitive development have
been successfully modeled with cascade-correlation
nets, including balance scale phenomena (Shultz &
Schmidt, 1991), causal predictions (Shultz, Zelazo, &
Strigler, 1991), and the acquisition of personal
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pronouns (Shultz, Buckingham, & Oshima-Takane,
1993). Here, we report on the application of cascade-
correlation to another well known cognitive
developmental phenomenon, seriation.

Seriation is the problem of sorting elements
according to their respective values on a dimension.
Sorting is a well studied problem in computer science
with more than a dozen established symbolic
algorithms (Knuth, 1973). Although there have been a
few hand designed neural networks that sort (Atkins,
1989; Chen & Hsieh, 1990), we are presenting the
first connectionist system that learns to sort.

Psychology of Seriation

Inhelder and Piaget (1969) developed the seriation task
in order to demonstrate the presence of stages in the
development of children’s transitive reasoning.
Children were presented with a disordered set of size
graded sticks. After showing that they could identify
the smallest and the largest of these sticks, the
children were asked to build a staircase, i.e., to order
the sticks from smallest to largest. Finally, children
were presented with a few intermediate sticks and were
told to insert these at their correct place in the series.

Four stages were identified in the child’s ability to
construct a series. Examples of these stages are shown
in Figure 1. Each stage was interpreted as resulting
from the presence or absence of radically different
cognitive processes. During a first stage (circa 4 years
old), children made no real effort at ordering the sticks
and either lined them up in the order they appeared or
moved them about randomly.

Children in the second stage (circa 5 years old)
succeeded in combining sticks in terms of local
absolute quantities such as big or small, but were
unable to extend this order over the entire set of sticks.
This led to series of uncoordinated pairs (pairs of large
and small elements), uncoordinated triplets (one large,
one medium, and one small element), seriation based
on the correct alignment of only the tops of the sticks,
roof-top seriation (in which the tops rise and then
descend, or vice-versa), and correct seriation of only
the first few elements.
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Stage 1

Stage 2
Figure 1. Examples of seriation stages.

Stage 3or 4

During a third stage (circa 6 years old), children were
able to construct a series but only through extensive
trial and error; as though they were completing a
difficult jigsaw puzzle piece by piece.

Finally, during the fourth stage (circa 7 years old),
children could construct the series rapidly and with few
errors by applying a systematic strategy that Piaget
called the operational method. Operational seriation
consisted in selecting the smallest unordered stick and
placing it immediately in its appropriate place in the
series under construction.

More stringent studies initially replicated Piaget’s
observations (Elkind, 1964). However, in depth
protocol analyses suggested that seriation was non-
algorithmic and more flexible than Piaget had
suggested (Young, 1976). Retschitzki (1978) claims
that no stage can truly be described by a single
procedure. Random selection strategies are observed in
children of all ages including those well into the
fourth, operational stage (Kingma, 1982). Other
partial seriator characteristics are also present at all
ages (Kingma, 1983).

Moreover, perceptual constraints were found to
influence performance on seriation tasks. If differences
between adjacent sticks are too large, stage 3 seriators
perform at stage 4 since the perceptual information
that stage 3 children rely on is so salient as to allow
them to construct a series reliably and efficiently
(Piaget, 1965). If discriminations between sticks are
too small, seriation performance deteriorates (Elkind,
1964; Kingma, 1984).

Koslowski (1980) found that 4-year-old children
could seriate at a stage 4 level with four elements but
failed to generalize this to the traditional 10 element
task where they were diagnosed as being in stage 1.
She argues that, even though the children failed the
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traditional task, their sorting in the abbreviated task
implies that they were using the required operations
but with less refined size discriminations. Koslowski
suggests that one component along which
development occurs is the precision with which
seriation operations are carried out.

Previous Computational Models

Due to Piaget's early systematic description of
seriation, several symbolic computational models of
seriation performance have been created. As early as
1964, Frey outlined a set of automata that would
incorporate the cognitive structures thought by Piaget
to be present at each stage and that would produce the
observed behavior.

Two rule-based approaches were also published. One
of these (Baylor et al., 1973) was based on the
protocols of three children, each in a different
developmental stage. No transition mechanisms
between stages were specified, although development
was thought to be driven by a progressive
sophistication in the child’s structuring of the
experimental environment, a developmental trend
towards stimulus independence, and a tendency towards
the development of more efficient procedures.

Young’s (1976) rule-based model was designed to
match the idiosyncrasies of individual children at
different ages. He suggested that development occurred
along three different dimensions: selection of an item,
evaluation of that choice, and correction of incorrect
choices. Development was seen as a continuous
process consisting of the acquisition of new rules.
Contrary to Baylor et al.’s model, children do not
acquire more efficient algorithmic procedures but add
more discriminating rules to an existing kernel.

None of these models are truly developmental since
they do not provide a mechanism for passing from one
stage to the next.! Therefore, they fail to capture stage
progressions. Nor do they address the issues
surrounding perceptual saliency. Moreover, these
models are overly rigid in that hand tailored sets of
rules function consistently, thereby failing to capture
the flexibility inherent in children’s protocols.
Connectionist approaches might be better suited to the
modeling of children’s performance on the seriation
task due to their ability to capture rule-like behavior
and perceptual effects without sacrificing flexibility.

1 Anzai (1987) presented a production rule model
that constructed a few new seriation rules from an
initial set of 31 productions. It used two different
learning strategies: backtracking to avoid bad
moves and looking ahead to select good moves.
The model did leam to sort more efficiently, but it
was not evaluated for psychological realism.



Cascade-correlation

Cascade-correlation is a generative algorithm that
builds its own feed-forward network topology when it
needs to (Fahlman & Lebiere, 1990). The network
begins with the minimal topology of an input layer
fully connected to an output layer. Weights are trained
using the quickprop algorithm (Fahlman, 1988) to
minimize the difference between observed and desired
activation across the output units. Quickprop is a
minimization algorithm loosely based on Newton’s
second order method. Information about the current and
previous derivatives are used to construct a local
approximation of the curvature of the potential to be
minimized.

If cascade-correlation fails to reduce the error within
an acceptable criterion, it then proceeds to construct
and insert a hidden unit with inputs from all units in
the network other than the outputs. These input
weights are trained so as to maximize the correlation
between each of several candidate hidden units'
activations and the residual error at the outputs. Once
the correlations reach asymptote, the hidden unit
whose activations correlate best with the error is
installed in the network with trainable connections to
the outputs. Once installed, the weights leading into
the new unit are frozen and can never be changed. The
network then reverts back to the error minimization
phase but with the added power of a new hidden unit
tuned to the residual error. If necessary, the cycle is
repeated until success is achieved.

Simulations

The simulations presented here focus on the ability to
construct a six element series. Although this is fewer
than the 10 elements used by Piaget, it is more than
the four used in abbreviated tasks and corresponds
closely to the number used in the perceptual saliency
studies.

Our models consist of a component devoted to the
processing of seriation information. This component
receives information about the present state of the
series, processes this information, and outputs a
move., A move is defined as the identification of a
stick and of the position to which that stick should be
moved. The move is not actually carried out by the
network, but by auxiliary software that maintains the
array. Psychologically, moves are hypothesized to be
carried out in the environment by an auxiliary motor
component. As in Young’s (1976) model, the entire
seriation performance is constituted by the serial
juxtaposition of independent moves.

The seriation component is composed of two
distinct modules, each processing the same input array
but responding independently (Figure 2). Processing
occurs in parallel; information is only integrated once
it has reached the output units. One module is trained
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to identify which stick to move, whereas the other is
trained to identify where this stick should be placed.
Since the weights in the two modules are updated
independently, behavioral development of the whole
system can be attributed to the interaction of
development in the individual skill modules. The
modules are trained to respond as dictated by Piaget’s
operational procedure, i.e., to move the smallest stick
that is out of order to its correct place.

Where outputs

O?OOOO

Which outputs

000000

O

Hiddens

O O

000000

Array inputs

Figure 2. Schematic representation of the composite
seriation network. The two modules are independent
except for sharing the same input. Here, the which net
has two hidden units and the where net has one hidden
unit.

The which and where modules are each individual
cascade-correlation networks. In the standard cascade-
correlation package, it is not possible to test
performance during the hidden unit recruitment phase.
This does not imply that the network has entered some
kind of hibernation, but that development of the
behavior inferred from the outputs has reached an
asymptote. Thus, during the hidden unit recruitment
phase, the output response is taken to be that given by
the last epoch immediately preceding the phase
transition,

Each seriation component is trained on 120
examples of seriation moves. The input consists of an
array configuration; the output consists of either
which stick should be moved or where a stick should
be moved to, depending on the module. For example,
given the array {1 3 5 6 2 4} the composite networks
learn to identify that the stick in the fifth position
should be moved to the second position. The input is
coded on a bank of six linear units with integer
activation indicating the relative heights of the sticks.
The output is coded on a bank of six non-linear



sigmoid units on which the unit coding the correct
position is turned maximally on and all others are
maximally inhibited. All hidden units have a sigmoid
activation function ranging from -0.5 to +0.5.

Pilot studies revealed that the disorder of the array
presented was important in determining the network's
success. Therefore, the training set consisted of 50
randomly selected arrays whose sum-squared distance
from the target array {1 2 3 4 5 6} was less than or
equal to 20, and 50 randomly selected arrays whose
sum-squared distance was greater than 20.2

This corresponds to the assumption that many of
the events from which the young child learns about
seriation involve nearly seriated arrays. When items
are completely disordered, the child is less likely to
conceive of them in terms of a series and therefore
may not attempt to seriate them. On the other hand, if
items are largely ordered, the child is more likely to
conceive of them as a nearly completed series. Such a
nearly completed series might then serve as a cue for
completion of the ordered series.

In order to reflect the finding that even young
children can seriate small sets of sticks (Koslowski,
1980), 20 randomly selected arrays containing only
three elements (e.g., {0 0 3 1 2 0}) were added to the
training set.

Macroscopic seriation behavior is evaluated by
presenting the network with a standard array {524 1 6
3}, not present in the training patterns.3 The move
output by the network is carried out by moving the
selected stick and adjusting the others in order to fill
the empty slots. The resulting array is then cycled
back as input to the network. Since this system is
deterministic, the cycling process is terminated once
an array has appeared twice. The resulting collection of
arrays constitutes a trace of the network's seriation
performance.

Stage diagnosis requires information on both the
final state of the array and the method used to arrive at
that final array. Diagnosis is controversial, even in
children, as a variety of criteria are used (Kingma,
1982). Here, stages 1 and 2 are diagnosed as described
by Piaget. To distinguish between stage 3 (empirical)
and stage 4 (operational) seriators, both the procedure
used and the number of self-corrections criterion are
simultaneously applied. A network is classified as
stage 4 if it correctly constructs a series according to
the operational method with at most one error from
which it continues using the same operational method,
or if it seriates in the same or fewer moves than
required by the operational method. It is classified as
stage 3 if it constructs a completed series in any other

2 The unbiased population of arrays consists of
151 (21%) low disorder patterns and 569 (79%)
high disorder patterns.

3 This array is maximally disordered from both
decreasing and increasing series (Retschitzki,
1978).
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way. To be classified as a proper stage, a behavior
must last at least four consecutive epochs.

Results

Under these conditions, networks typically exhibited
behavior in all four stages. Figure 3 shows a
representative network progressing through stages 1,
2, 3, and then 4. Seven of the 20 networks progressed
through this four stage sequence, often with a large
overlap between adjacent stages suggesting that, for
some of the developmental period, no single stage is
truly characteristic of the network's behavior. The
transitions are soft, with adjacent stages gradually
merging into one another.

Stage

| mu

0 L] T ] | T L

0 25 50 75 100 125 150
Epoch

Figure 3. Stage diagnosis in one seriation network
across epochs of learning,

Three of the 20 networks progressed through stages
1, 2, and 4. These nets showed some stage 3 behavior,
but it was too weak to be considered as consistent.
Three nets progressed through stages 1, 2, and 3.
These networks often showed an early but brief stint
of stage 4 behavior followed by regressions either to
stage 3 or to even lower level stages. This suggests
that over training may have occurred. Five networks
progressed through stages 1, 3, and 4. Again there was
evidence of stage 2 behavior in some of these nets, but
it was not sufficiently marked to constitute a stage.
The remaining two nets only showed strong behavior
in two of the four possible stages. That is not to say
that other stages were not represented, but that they
were briefly present and only in co-occurrence with
another form of behavior.

A key question that remains to be addressed is
whether these networks respond to perceptual
variations in the same way as children do. To test this,
we ran three additional simulations in which the



training set consisted only of the 100 six element
arrays described earlier. The three simulations differed
only in the size of the difference between adjacent
ordered sticks: 1.0, 0.5, or 0.25. The proportions of
20 networks able to complete a full sort by the end of
training (i.e., be diagnosed as stage 3 or 4) were 0.85,
0.55, 0.15, respectively. Thus, as with children, the
more easily the stick sizes can be distinguished, the
better the network's seriation performance.

Further, 85% of the nets trained with 1.0 size
differences were diagnosed at stage 4, as compared to
only 25% of the nets trained with 0.5 size differences.
This supports Piaget's (1965) view that stage 3
performers would be classed at stage 4 as size
differences between sticks increase.

In order to obtain a better idea of how the
information from the input array is processed by the
network to select and move a stick, Hinton diagrams
were generated at selected epochs that represented
consistent stage behavior. These diagrams provide a
visual display of the strength and sign of the weights
in the network. Hence, it is possible to follow the
weight evolution which leads to the particular solution
settled on by the learning algorithm. Inspection of the
Hinton diagrams revealed no drastic differences in
weights between adjacent stages. Instead, stage
differences were marked by rather small modifications
in the sizes of weights.

The Hinton diagrams also revealed that the building
of a representational structure in the network began by
adjusting weights leading to those units dealing with
the short end of the series and was progressively
extended along the length of the series until finally
appropriate weights were found for those units coding
the larger end of the series. This is consistent with
Trabasso’s (1977) suggestion that children build a
linear order mental representation of the seriation task
by proceeding from the ends of the series inwards.

Discussion

This work contributes to the view that connectionist
methods can be successfully applied to the study of
cognitive development. The present models capture
stage transitions and perceptual effects in seriation,
both of which had eluded previous rule-based models.

This approach to seriation highlights features of the
network and environment which have repercussions for
understanding children’s ability to seriate. A closer
examination of the assumptions of such models might
identify principles which could constitute the
beginnings of a novel theory of cognitive
development, including seriation development.

Two key facets of the learning environment can be
stressed. Our most realistic models are biased towards
lower disorder stimuli in the learning environment.
There is also a bias towards learning from small sets
of elements. A precocious ability to seriate small
arrays could produce the empirical tries characteristic
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of stage 3 on larger arrays if children were applying
the operational method to adjacent subsets of the
series, rather than to the entire serics.

With regard to the processing involved in seriation,
our model points to a modularization of the task into
two independent sub-tasks. One module is devoted to
identifying which element in a set needs to be moved,
whereas the other is devoted to identifying where an
element should be moved. The observed macroscopic
behavior is therefore a result of the interaction of the
developmental states of these two modules.

In contrast, pilot seriation simulations with a non-
modular net failed to both learn seriation and capture
psychological regularities. Ten to 20 hidden units were
often recruited during leamning, yet these nets failed to
develop past stage 2 performance. The success of a
modular approach can be attributed to functional
decomposition (i.e., the elementary components of a
complex function tend to be easier to learn than the
complex function itself) and to greater generalizability
due to the constraints built into the architecture
(Jacobs, Jordan, & Barto, 1991).

The present seriation simulations were the first of
our cascade-correlation simulations of cognitive
development to require modularity. The other
simulations generated psychologically realistic data
with a single, non-modular network. We expect to
have to resort to more modularity as we simulate
larger and more difficult developmental problems.

Our present network model also shows that the
processing involved in seriation can be achieved using
only brain style computational methods. The
underlying principles involved are those of activation
and inhibition rather than the explicit application of
symbolic rules or application of the logical principles
assumed by Piaget.

Analysis of Hinton diagrams of network weights
reveals that seriation development is essentially due to
an increase in the precision of processing rather than
to any fundamental reorganization of processing. This
finding is radically opposed to Piaget's initial
conclusions, but conforms to Koslowski's (1980)
suggestion concerning developmental increases in the
precision with which systematic sorting is applied.

This gradualism stands in contrast to some other
cascade-correlation models in which macroscopic
changes in stage are due to underlying qualitative
changes in network structure (Shultz & Schmidt,
1991). Some developmental changes appear to require
qualitative changes in representational power, whereas
others do not. This is one of several issues in
cognitive development which can be investigated more
easily in neural networks than in children. One
advantage of cmploying generative, as opposed to
static, networks in such simulations is that the
necessity of qualitative change can be assessed.

Finally, the zeitgeist of the connectionist approach
focuses our attention on the need for a tighter
integration of perceptual and cognitive factors when
studying cognitive development. The perceptual effects



simulated in our seriation model are reminiscent of
other perceptual effects found in cognitive
developmental simulations (Shultz & Schmidt, 1991).
Such perceptual phenomena seem particularly difficult
for symbolic rule-based models to cxplain,
Connectionist simulations arc showing that many of
these perceptual effects can be handled within the same
processing system that generates rule-like and stage-
like behaviors.

Insights generated by these simulations will, of
course, need to be tested in research with children.
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