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Chapter 1

Introduction

There is growing demand in the turbomachinery industry to make more data driven

decisions. The days of old, where accepting the idea stemming from the loudest voice in the

room, are over.

In 2018 and 2019, Data Science was considered by many the “sexiest” job in the United

States, and businesses and educational institutions were struggling to keep up with the emerging

field. In 2020, much of this is still true; however, educational institutions such as UCSD have built

data science centers and now offer master’s degrees in the subject. Businesses now have teams

of data scientists at the ready to massage data. For context, I am currently employed by Solar

Turbines, and I am assumed to be a data scientist by many in the company although my exact title

is Research Engineer. Whatever the case, I have had first hand experience at a large company

developing and deploying machine learning models to solve real world problems. Throughout

this text, I will insert concise opinions that did not appear in the original published texts with the

goal of giving perspective gained over the past five years both from the commercial and academic

lenses of view. It is my hope that this will provide the reader with interesting ideas to think

about as well as stand as a time capsule of what role data science and machine learning play in
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application to connected devices at the close of the decade.

Currently, a plethora of research is being done on gas turbine (GT) monitoring as evidenced

by the large increase in total papers published in the past five years at the ASME Turbomachinery

Exposition Conferences. This dissertation aims to add to that growing body of research. Primarily,

the goal has been to discover methods for formulating, tracking and solving current problems in

the industry. In the Introduction, a concise background discussion about the topics researched in

the main body of this text is provided.

1.1 Gas Turbine Monitoring and Fault Detection

1.1.1 Gas Turbine Condition Monitoring

GT performance prediction has been broadly classified into two approaches [SBW08],

model-based and model-free. The model-based and model-free approaches each have their merit.

Model-free approaches can lead to interesting conclusions, some inconsistent with the physical

reality of a GT system. I first hand experience with output of model-free approaches, both

acceptable and non-acceptable. Chapter 2 shall take a model-based approach, where expert

knowledge of the GTs being modeled is an input during model creation.

In either case, monitoring and diagnostic activities help owners of GTs to identify devi-

ations from normal operation, thus allowing operators to act before major malfunctions occur

[VP12]. The newest paragon of architecture for such monitoring and analysis in the indus-

trial turbine setting is an incorporation of an on-site and a remote based monitoring system

[SR15]. The on-site logic continuously monitors control sensors and actuator positions. As

part of the architecture, automated data acquisition and transmission systems on-site work to

transfer the gathered data to the remote monitoring locations. From these remote monitoring

stations, the sampled analog engine measurement data can be further analyzed by algorithms

too intricate or memory intensive for on-site feasibility as well as by system experts or for post
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processing [DSR+13][MKGC91][KNG92]. As is true with any modeling endeavor, the key to

the performance of the technique is having a model that accurately reflects the nominal operating

performance of the actual engine [SR15].

1.1.2 Diagnostics and Machine Learning for Condition Monitoring

Engine diagnostic monitoring and health management for GTs has been implemented,

starting in the mid-1970s, in various forms. Algorithms and implementation have evolved

significantly as both engines and computational capabilities have become more efficient, complex

and powerful. Much of the early development of such methods was born out of the aerospace

industry’s engine’s safety requirements[Vol14]; however, recent years have seen significant

contributions from industrial applications. Advances in technology have enabled a proliferation

of smaller, cheaper and more accurate sensors that are capable of generating a wealth of data for

the analysis of the condition and overall health of an engine. This increase in engine data has lent

itself to analysis by algorithms, ever-increasing in sophistication.

The definition of “Equipment Health Management” (EHM) has many subtle variations

one can find when surveying the field of definitions; however, these can usually be distilled into

three primary components [Vol14]:

1. monitoring

2. diagnostics

3. recommendations

The first component, monitoring, is the act of periodically observing the machine state while

keeping a record of the observations. Monitoring can be done at the machine or remotely,

depending on the machine setup. The current industry standard is to have the capability of

remote monitoring, in which sensor values are captured at a given sampling frequency and then
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bundled, sent to a remote source and stored[JRS+16]. Typically, monitoring is done with intent

to determine if the currently observed machine state is at a nominal state or close to nominal state.

This introduces the second component of engine health management, diagnostics. Diagnostics,

according to Merriam-Webster [MW16], can be defined generally as “investigation or analysis of

the cause or nature of a condition, situation or problem.” Thus, by definition, diagnostics can only

take place after a problem or condition has been observed.

Observation of a state that departs from the specified nominal state requires the ob-

server to determine or classify what “departure” actually entails. This is a critical difference

in the data science and machine learning vernacular. The distinction is that of unsupervised

learning compared with supervised learning. In supervised learning, one has both the inputs

and the outputs whereas, in unsupervised learning, one only has the inputs. These problems are

fundamentally different. Here is an analogy: consider a man who weighs 225 pounds, is six feet

tall and has a resting heart rate of 60 beats per minute (BpM) and a woman who weighs 115

pounds, is five and a half feet tall, and has a resting heart rate of 37 BpM. The question to answer

is, are these people healthy? Let’s further say you have a sample of 50 people, with measurements

of height, weight and resting BpM. In the unsupervised case, there does not exist a per person label

of healthy or unhealthy. Statistical methods can be employed to find deviations, but a deviation is

not necessarily unhealthy. To definitively decide, labels are necessary. Once a label is available,

the problem moves from the unsupervised class to the supervised class, and a host of algorithms

can be employed to construct prediction functions. The point is that crossing the threshold from

unclassified data to classified data is non-trivial and may be subjective. Generally, an expert

must be employed to help classify enough data that supervised learning algorithms can become

effective. The last decade saw the Internet of Things (IoT) flourish, and smart (i.e., wirelessly

connected) devices have grown exponentially. Indeed, this is core technology for any remote

monitoring, EHM strategy. However, data from analog sensors in time are unclassified/unlabeled.

The problem of turning unclassified data into classified data will be of large interest in coming
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years as applications of machine learning attempt to penetrate further into the IoT space.

The ability to classify unclassified data, at least in part, depends on the sophistication of the

monitoring system, as well as the experience of the expert performing the investigation[VCZ+04].

Determining a label for the data is equivalent to providing a result/recommendation of (or based

on) the diagnosis of the equipment’s departure from a nominal operating state. That is, the

diagnosis is the label of healthy or unhealthy. This final piece is when value is truly added from

the standpoint of the equipment owner [GE15]. The equipment owner, armed with the result

and/or recommendation, is then able to make educated decisions on what action to take next, as it

relates to the afflicted equipment, in order to satisfy business requirements.

With the above definition of EHM in place, it is easy to see how various algorithms can

be used to aid in this process. In the 2016 ASME Turbo Expo, a new, vogue term called the

“digital twin” emerged in keynote addresses. This term refers to the application of algorithms

which simulates the processes of the GT system to a high degree of accuracy. In fact, there are

many applications of generalized modelling and simulation of GTs [W.R83][HA13][M.T09].

Delving further into the analysis of the GT as it relates to EHM, one finds more direct appli-

cations of algorithms to specific sections of the GT for degradation detection. Indeed, neither

degradation and anomaly detection nor gas path analysis are new topics for algorithmic based

analysis[HLBC16][R.K01]. There are numerous mathematical tools that can be employed with

computers to aid in the analyzing of the monitored machinery, many of which can be found in Lee,

Wu et all [LWZ+13]. In much of the literature on EHM, application of such algorithms are used

directly to ascertain the state of the machine[LWZ+13][SBW08][MKGC91][IR16]. However,

a critical step that is often overlooked or under emphasized in application of these methods is

understanding the source of the measurements and how changes to this source can change the

measurements and ultimately, the conclusions drawn. For example, many authors state that fuel

flow is a critical parameter in gas path analysis [R.K01][HA13]. When looking at typical fuel

flow time series data, it is easy to fall prey to the idea that the measurement has a great deal of
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noise in it. However, this idea can be misleading. As will be seen later in chapter 3, different fuel

valves have subtly different flow characteristics, which can lead an engineer to make incorrect

conclusions about degradation when looking at data from a fleet of engines. Care must be taken

when applying algorithms to fleets of data, and the investigator should be aware of physical

differences in machines and what effects these differences produce in data. Indeed, machine

learning practitioners are still bound by the laws of physics in the IoT space, an often foreign

concept to fledgling practitioners.

1.2 Hybrid Prediction Models and Applications

Hybrid models are models that combine both physics and data driven methods. One

instantiation of the idea is to constrain a model form to only take on values that are possible in

reality. Piecewise models are excellent examples of this. In fact, many neural networks use this

idea repeatedly, a reason they often perform well when given enough data to learn from.

Further applications fall into the realm of mathematical modeling, where the investigator

comes up with some form of a mathematical model to fit experimental data. Often the model will

have coefficients that are found by fitting the model to the data. In our view, this is another form

of a hybrid model. With this idea of a hybrid model, then hybrid models and so-called first order

physics models can be quite similar but remain different. First order physics models are models

that are derived from known physical laws. However, often there are still parameters that must be

estimated based on a given physical setup. An excellent example of this is the well known Plank

equation for Blackbody radiation. As the story goes, Plank had some data and one afternoon after

a lunch party, sat down with pencil and paper and developed an equation that modeled the data.

Years later, a physics based derivation showed that the model form was well founded in physical

law [Pic08].
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1.2.1 Hybrid Models for Predicting Gas Lower Heating Values

In the GT gas path (the pathway that air and fuel are mixed and combusted) fuel plays an

important role in calculating the total usable energy the GT can produce. In particular, there are

two properties that can be used to accurately tell how much energy is available and how much

quantity of fuel is necessary to achieve that output, the lower heating value (LHV) and the specific

gravity (SG) of the gas. The LHV is a measure of the calorific chemical energy available in a

fixed amount of fuel, and the SG is a measure of the density of the fuel.

Heating values can be determined in a number of ways, with complexity and accuracy

depending on the given method. The heating value of a fuel can be determined experimentally

by employing an adiabatic bomb calorimeter, which measures the enthalpy change between

reactants and products[SA05]. Prediction of heating values of lignocellulosics and carbonaceous

materials from proximate analysis is another standard procedure[CMRMR01]. In addition to

these methods, there exist correlation based methods that use tables and elemental analysis of

fuels[SC02]. In Chapter 4 we employ a hybrid model to estimate the most likely LHV value,

given some operational data from the GT. The model is a composite of a first principles model

and an error function. The error function is a data driven, second order polynomial model that is

fit to the difference of the observations and predicted values from the first principles approach.

The final prediction is the sum of the error function and first principles model. As will be shown,

this hybrid approach is superior to the first principles model by itself, due mainly to the fact that

it offers many more degrees of freedom and can be fit to observations.

1.2.2 Hybrid Models for Estimating Upper Bounds on Fuel Flow and

CO2 Emissions in the Presence of Compressor Fouling

Axial compressor degradation in the industrial GT is well documented in the literature.

Up to 70%-85% of GT usable power loss can be attributed to compressor fouling [MHFW89],
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where compressor fouling is defined as the adherence of particles to airfoils and annulus surfaces.

The fouling process is well documented; see [KB12] and [LS86] for example.

The main effects of axial compressor fouling reported in the literature include a reduction

in air flowrate, reduction in pressure ratio and loss of efficiency [LS86, MPSV10, JPSM18]. Kurz

and Brun note that for a given shaft speed of a fouled compressor, each subsequent stage will see

a lower Mach number (due mainly to higher temperature). In a fouled compressor, the net effect

of this is that stages will work at lower than design efficiencies, and in whole, overall efficiency

will be reduced. C. B. Meyer-Homji et. al. [MHBS13] note that as compressor efficiency drops,

the axial compressor consumes even more power for a given flow and pressure ratio, effectively

lowering the GT’s output while increasing the fuel flow.

The primary approach to modeling compressor fouling used extensively in the literature

is the adaptive modeling technique. The procedure involves scaling nominal compressor map

components to match observed engine performance data. For compressor fouling, this includes

using multiplicative factors applied to the corrected mass flow of air, pressure ratio and the

compressor efficiency [SMP89, ARDM12, HLD+18]. The scaled values are then used to calculate

changes in performance metrics, such as lost power and increased heat rate [KB12].

To regain lost performance due to fouling, operators must decide how and when to wash

the compressor or ramp up the fuel demand. Compressor washing will be discussed further in

Section 1.3.1. Ramping up power demand (and consequently, fuel demand) only works if the

engine was not previously at full load, or if the operator is willing to risk over-firing the engine

for a given period of time. In either case, the effect is an incremental increase in fuel flow and

correspondingly additional emissions. The literature often characterizes these increases indirectly

as part of an overall fuel calculation for a given fouled state. In many studies, the values range

from 0%-3% [ARDM12, HLD+18, ELITG15]

Chapter 5 details compressor fouling and simulation and asks what the cost of fouling is

in terms of additional fuel and additional CO2. The model developed is hybrid; it is derived from
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first principles alone, however, has a multiplicative coefficient for use in fitting data.

1.3 Optimization Techniques Applied to Gas Turbines

1.3.1 Optimized Maintenance Scheduling

GTs have become an integral part of the energy sector both in the US and abroad. Indeed,

according to the US Energy Information Administration, projections of the energy consumption

of Natural Gas have risen considerably. The Administration notes, “Natural gas use increases

more than other fuel sources in terms of quantity of energy consumed, led by demand from the

industrial and electric power sectors” [EIA17]. It is clear from this statement that US natural

gas fired power plant output is expected to grow in coming years, independent of US energy

policy. With this expected growth in mind, pursuing the operation and maintenance of GTs and in

particular, industrial GTs, is more important now than ever.

Many power plant components deteriorate over time, and the component may have fully

or almost fully recoverable deterioration with some basic maintenance. For example, compressors

experience many forms of deterioration such as increased tip clearances, changes in airfoil

geometry and changes in airfoil surface quality [R.K01]. Brun and Kurz point out that the first

two degradation mechanisms generally result in non-recoverable degradation but that the third,

airfoil surface quality changes, can at least be partially recovered with washing of the compressor

blades. Another set of examples are found by considering air or oil filters and associated losses as

a result of fouling. In industrial GTs, air inlet filter blockage can build up causing a pressure drop

at the inlet of the compressor, which in turn can drive performance loss [SCBS09]. Performance

loss can manifest indirectly as well. Consider degraded lube oil filters due to clogging from

impurities. This leads to pressure loss in the lube oil system, which leads to decreased oil flow

rates across bearings, resulting in longer oil dwell times and increased oil exit temperatures

[MHT83]. Many modern control systems have bearing oil exit temperature threshold values
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that if breached, will cause the engine to shutdown. Often, reducing the load on the engine will

lead to decreased drain temperatures that allow the engine to continue running but at reduced

load, an indirect form of recoverable performance degradation. Finally, similar scenarios occur

in fin tubed air heat exchangers, where debris buildup can lead to decreased airflow through

the heat exchanger and reduced heat rejection [WHTT17], causing lube oil temperatures to rise

throughout the engine, with the same effect as oil filter degradation.

These examples illustrate various mechanisms of component degradation that is often

fully or at least partially recoverable by performing a maintenance session. Further, after selection

of an appropriate performance metric, many of these scenarios have linear or quasi-linear rates of

degradation which can be modeled using a discontinuous sawtooth function. The sawtooth name

comes from the constant decline with sporadic jumps up due to maintenance being performed.

This function will be defined in Chapter 6 and revisited in Chapter 7. The bottom plot in Figure

1.3 shows a typical sawtooth signal.

The working example in this dissertation will focus on recoverable fouling of axial

compressors due to particle deposition (as discussed in Section 1.2.2), and assumes that the

performance degradation is fully recoverable upon performing a maintenance session. So called

hot section degradation is not considered. We note that the time scales of nonrecoverable

degradation are usually much longer than those of recoverable degradation. Indeed, I have

seen field data in which time scales can be up to a factor of five or greater. Therefore, in the

optimization procedure, the relative effect of nonrecoverable degradation can be assumed constant

(i.e., in a given period where optimization shall be applied which is limited by the length of time

in which accurate forecasts are available). Thus, for a given optimization period, by making the

assumption that at the beginning of the period, the GT has no non-recoverable degradation, we

are merely biasing the degradation by a constant offset, which has no effect on the optimization

procedure or calculated result in regards to optimal number of maintenance sessions. Lastly,

the method developed in Chapter 6 can be applied to any of the aforementioned degradation
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mechanisms as long as a performance related instrumentation is available and a performance

metric can be defined.

Compressor degradation is well documented in the literature, and in more recent years, the

emergence of economic optimization utilizing compressor washing has been observed. Frequent

on-line washing has been proposed as a cost effective method for keeping compressor blades

clean, and is a nice alternative to off-line washing. However, many experimental evaluations

have shown that such a cleaning regime does not return the same level of performance as off-line

washing [BGFK15]. This has primarily been attributed to the fact that on-line washes are only

effective in the first few stages [Boy12]. The degradation rate has been shown to depend heavily

on the amount of contaminants entering the compressor through inlet air filters, and to a lesser

extent, on the load at which the turbine is operating. The rate of degradation is not entirely

unique, but is most often in reference to the calculated isentropic (or polytropic) efficiency of

the compressor [BG07]. The effect of performance degradation can equivalently be seen by

observing increases in heat rate for a fixed power output, ambient conditions, and fuel properties.

Yet another way to observe the degradation rate is by forming the ratio of measured compressor

discharge pressure to the theoretical discharge pressure given by a high fidelity engine simulation

model or a well trained machine learning model, set with the same initial and boundary conditions.

The general form of the degradation rate can be seen in Fig. 1.1, where Aretakis et al. give an

illustration of the different forms of degradation. We observe that the degradation rate with and

without on-line washing may be approximated over a wash interval as locally linear. In Fig. 1.2,

Boyce et al. show isentropic efficiency degradation calculations for a set of compressors running

side by side, in which one received no washing over a six month period of time (lower data) and

the other received regular washing (upper data). Figures 1.1 and 1.2 show that degradation rates

can be approximated with linear functions, and if load and inlet filtration do not vary significantly,

the degradation rate can be fixed in time. We will use this fixed degradation rate as a basis for the

optimization of maintenance session scheduling in the method developed in Chapter 6.
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Figure 1.1: Image Credit: Aretakis et al. [ARDM12]. Depicts different degradation rates of
compressor isentropic efficiency with various cleaning methods applied.

Figure 1.2: Image Credit: Boyce [BG07]. Depicts degradation of compressor isentropic
efficiency for two engines (side by side at site) over 6-month period where no compressor
washing occurs (bottom curve) and where regular on-line washing occurred (top curve). The
rate of degradation when no washing occurs can be approximated by a line, giving a linear rate
of degradation.

12



1.3.2 The Mathematics Behind Minimal Cardinality Piecewise Linear

Models with Applications to Degradation Rate Modeling

Numerous signals in applied science and systems analysis take the form of a so called

sawtooth signal. This is a signal that is piecewise-linear (PWL), where each segment has the

same negative slope, and which yields a “sawtooth” shape when plotted in time. At a given

discontinuity, the difference between one point of the function or another can take on any positive

real value. The first and second plots in Figure 1.3 shows a typical example of noisy data

generated by a system which produces a sawtooth signal in time. The data was generated by

adding noise to a underlying sawtooth function with a given set of discontinuities. In the next

section, we give various examples of physical system that can produce such sawtooth signals.

1.3.3 Physical Systems Producing Sawtooth Signals

In monitoring a gas turbine power plant’s output, output power can degrade from nominal

levels due to compressor fouling. Accretion of particle deposits on compressor blades disrupt

the aerodynamic properties of the airfoils and lead to less power output [AHdO19]. This reduces

the plant’s ability to generate enough power to meet electrical load requirements and increases

running costs due to lost efficiency [TMBK14]. Tracking of gas turbine efficiency produces

shallow quadratic curves in time with ostensibly random positive jumps. These jumps occur when

maintenance is performed and results in the return of efficiency. In industry, these curves are

approximated by PWL functions with constant slope which yield sawtooth signals in time. In

many cases, a daily degradation rate is sought, and when maintenance records are not available,

maintenance interventions must be estimated from historical data.

In CO2 capture technology, there exist performance parameters that indicate capturing

effectiveness. Amine plants treat the flue gas streams coming from combined heat and power

plants using solvent based CO2 capture technology. One way to detect solvent degradation is
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achieved by monitoring the solvent viscosity, which over time exhibits increases as the solvent

becomes less potent [FFdC+17]. The increase in solvent viscosity follows linear growth until the

solvent is replaced and a jump occurs in the monitored signal as it returns to baseline. Again, a

rate of degradation is often sought from historical data.

Diverse examples of signals that can be approximated by sawtooth signals can be found

in the literature and include applications such as monitoring marine vessels efficiency[Log11] or

photovoltaic cell efficiency [JKVN16]. Sawtooth signals appear in various engineering planning

activites, such as pavement maintenance planning [TS94]. Another application is to signals of

constant magnitudes that can non-continuously jump to new magnitudes, such as the signals

found in communication signal processing.

1.3.4 Existing Piecewise-Linear Function Approximation Methods

The general method of using PWL functions to approximate more complex functions

is a well studied problem. Recent contributions have used mixed-integer linear programs with

PWL functions to approximate multidimensional functions such as the Environmental Protection

Agency’s complex emissions model [MF10]. The application of convex programming has been

investigated for special cases of PWL fitting. A general unconstrained version is described by

solving the least squares problem [BV04]. Additionally, progress has been made by applying

a least squares partition algorithm which is based on the so-called Max-affine function. This

solution of the general PWL problem results in application of an iterative PWL fitting algorithm.

The algorithm developed is heuristic but shown to be reliable when many iterations are performed

with varied initial points [SPB08]. Magnani and Boyd show that as the number of sub-domains

increase, then the Root Mean Squared Error (RMSE) tends to 0. This method has been applied to

finding minimal PWL representations for quadratic cost functions by applying a constraint on

the number of possible segments of the PWL function [AMM13]. Toriello et. al. found that a

number of related works concentrate on the modeling of the given piecewise linear function and
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of subsequent incorporation of the function into a mixed-integer program [TV12]. Further work

has developed bounds on deviations of the PWL function from the nonlinear multivariate function

[RK15]. In each of the applications of PWL fitting methods above, noiseless data is assumed.

That is, the measured data is assumed to perfectly represent the true underlying function, and the

question is how to find an optimal representation of the underlying function by a PWL function.

In the case of noisy data, the problem of fitting PWL functions to data generated by a

nonlinear function increases in difficulty. There is considerably less information in the literature

of the application of PWL function fitting with noisy data. Ingle et. al. develop a slope estimation

algorithm for PWL data that is corrupted by Gaussian noise. The method employs the use of

stochastic hidden Markov model to find breakpoints and Bayesian maximum a posteriori approach

to estimate a discrete set of slopes, which are then utilized in a dynamic programming algorithm

for posterior density maximization[IBSV15]. Another recently proposed method is that of fitting

jump models to allow for temporally ordered data with noise. This method alternates between two

steps, estimating parameters of multiple models and estimating the temporal sequence of model

activation until convergence [BBPB18]. One theoretical shortcoming of fitting PWL functions to

noisy data is the lack of guarantees of total model complexity; that is, a bound on the number

of piecewise components emitted by a fitting method and a predefined tuning parameter. This

complexity problem will be of primary concern in Chapter 7, where a proof will be given for

the developed solution, showing that the solution is of minimal cardinality and hence model

complexity.

We close the Introduction with a thought from Albert Einstein, my hero. “Try not to

become a man of success, but try rather to become a man of value”. In performing research for

this dissertation, I have attempted to create a valuable work for colleagues and future researchers.

Without further ado, let us proceed to the research.
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Chapter 2

Fault Detection Using Reduced Rank

Linear Engine Models

2.1 Introduction

In this chapter, we will develop a rank reduced model that yields much more flexibility in

input and output parameters. Such a model is superior to high-fidelity physics based models in

applications such as near real-time monitoring. In addition, high-fidelity models cannot run when

certain required input measurements such as ambient temperature or fuel energy content are not

available, rendering the high-fidelity model useless. The motivation comes from the discussion in

Sections 1.1.1 and 1.1.2.

We will first create a training set of data using a high-fidelity, physics based turbine model

iterated over the expected operating regime with expected nominal values for the required input

variables. Then we will implement a PCA analysis yielding the principle components and singular

values that are proportional to the variances of the principle components [WAL03] [DHS01].

From this, we produce a reduced rank model using Total Least Squares that maps static behavior
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of a turbine operating in closed loop. We note that this procedure is not quite principle component

regression. In principle component regression, one fits the principle components to the response,

or dependent variable [JWHT13]. In this chapter, we make no assertion of a dependent variable

and instead minimize the orthogonal distances from the subset of selected measurements to a

plane. In doing so, we do not introduce bias into the model. Selection of measurement variables

are driven by sensors typically found in the field. We then formulate a minimal variance predictor

that operates on measurement data and that is capable of incorporating both uncertainties and

domain knowledge of measurement noise and accuracy, to enable refinement of the model. This

allows the user to introduce bias into specific model inputs based on existing knowledge of

sensors or specific operating conditions. Next, a comparison of predictions of the operational

parameters to the actual measurement data is done. A calculation of how close the field engine is

operating to the reference model is introduced by implementing the Mahalanobis distance. The

Mahalanobis distance is a χ2 statistic, and enables the user to quantitatively assess how close an

engine under investigation is operating to the best model prediction. We perform an analysis of

the residues to infer the health of the engine and show that the errors observed in modeling are

within 3% variance and zero mean and approximately follow a Gaussian distribution. Finally, a

discussion around how Binomial or non-Gaussian residual distributions indicate degradation and

can be used to select candidates for further investigation of faults.

2.2 Chapter Notation

n Number of variables

k Time [sample number]

N Number of sample data points

ϕϕϕ Individual observation vector

zzz Vector of reduced variables
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Φ Matrix of observations after standardization

TLS Total Least Squares

SVD Singular Value Decomposition

(A,bbb) Model parameters

yyy Individual measurement vector

zzz Reduced parameter vector

Ẑ Reduced rank prediction model

ρ2 Mahalanobis distance statistic

C User Defined input matrix

∑η User defined measurement error

ζζζ Model errors

2.3 Total Least Squares Modeling Algorithm

We seek to build a model of n variables, or parameters. The variables can be combinations

of input and output data generated from a reference model of high fidelity or actual measurement

machine data from an engine in the field. For example, common parameters into any model of a

gas turbine include ambient temperature and pressure, compressor discharge pressure, downstream

combustor temperature, and fuel properties. To begin with, we will take input from a high fidelity

performance model. Let n,k ∈ N where n is the number of variables used in the model and k is a

given time instance, then we have

ϕϕϕ(k)T =

(
ϕ1(k) ϕ2(k) · · · ϕn(k)

)
∈ Rn×1 (2.1)
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With N data points, an aggregate data matrix Φ is constructed as

Φ =

[
ϕϕϕ(1) ϕϕϕ(2) · · · ϕϕϕ(N)

]
∈ Rn×N (2.2)

To mitigate numerical errors, we normalize or standardize the set of data per variable so that Φ is

a set of normalized or standardized vectors of data.

2.3.1 Creating TLS Models From Data

We now turn our attention to TLS modeling of the supplied data. The modeling can be

represented equivalently in two forms, one explicit involving additional variables, zzz, and one

implicit in which linear relationships are sought involving only the original variables, ϕϕϕ. These

models take the form

ϕϕϕ = Azzz+bbb+ζζζ (2.3)

BT
ϕϕϕ = ccc+ εεε (2.4)

where ζζζ and εεε represent zero mean perturbations or noise terms.

The rationale behind such model is that the data supplied are not fully independent and

hence, there exists a reduced coordinate system such that the data can be represented. That is,

the measurements relating to the gas turbine performance are limited in their degrees of freedom.

Note that models (2.3) and (2.4) do not assume an a priori division of the data into inputs and

output, but rather seek only to find relationships between the observed variables. Such an idea

is closely related to the one in Principal Component Analysis. Indeed, the determination of the

above model parameters to be described in the next section can be thought of as a specialized

version of principal component analysis. In this chapter we will focus primarily on the application

of this technique to gas turbines and the algorithms for implementation of these models.

20



Explicit Algorithm

With ϕϕϕ assembled in (2.2), the (A,bbb) parameters define the model and ζζζ describes the

modeling error. We estimate the parameters (A,bbb) from data as follows. First, define

b̂bb :=
1
N

N

∑
k=1

ϕϕϕ(k), b̂bb ∈ Rn×1, (2.5)

as the extended expectation (empirical mean). In order to estimate A we subtract b̂bb from the data

by defining Φ̄ as

Φ̄ = Φ− b̂bb =

[
ϕϕϕ(1)− b̂bb ϕϕϕ(2)− b̂bb · · · ϕϕϕ(N)− b̂bb

]
∈ Rn×N (2.6)

Now compute the singular value decomposition (SVD) of Φ̄

Φ̄ =UΣV T , UUT = I, VV T = I, (2.7)

with Σ ≥ 0 diagonal. In order to distinguish between signals and noise partition U and Σ as

follows:

U =

[
U1 U2

]
Σ =

Σ1 0

0 Σ2

 (2.8)

where the first block of U , i.e. U1, and the matrix Σ1 have r columns where r < n and are chosen

as the columns associated with the first r singular values such that σ1,σ2, ...,σr� σr+1σn ≥ 0. It

is based on this partitioning that we estimate

Â :=U1, Â ∈ Rn×r (2.9)

The remaining m = n− r columns of U2 and the associated matrix Σ2 characterize the model
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Figure 2.1: Singular Values of Covariance Matrix plotted on logarithmic scale. Three different
turbine engine-types are shown. In each case, we have a rank two matrix.

errors. Indeed, it is possible to show that

Σ̂ϕ = Â Σ̂z ÂT + Σ̂ζ, Σ̂z =
1

N−1
Σ

2
1, Σ̂ζ =

1
N−1

U2Σ
2
2UT

2 .

where Σ̂x denotes the sample covariance matrix of the signal x, and that because σr� σr+1 we

have that

ρ
2
ζ
= trace(Σ̂ζ) =

1
N−1

n

∑
k=r+1

σ
2
k (2.10)

is small.

Indeed, Figure 2.1 shows examples of the singular values obtained in the modeling of

three different turbine engine-types. Note the logarithmic scale on the y-axis. Therefore, of the

five selected operating parameters, only two are necessary to describe most of the variation of
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the system, as indicated by the two non-zero singular values. However, this is specific to our

selection of operating parameters and the operating ranges (for example, power output range) that

data were collected over. The rank of the model can change based on the selection of operating

parameters and operating ranges to be input into the model. Additionally, we would like to point

out that in this model, the separation of singular values is easily identified, but that may not

always be true. Indeed, we were delighted to see a linear model fit our industrial gas turbine

data so well. More often, especially in analyzing aircraft engines, one linear model may not be

appropriate for the entire operating range. It is common practice for aircraft engines to use a

family of linear models and controllers for take-off, ascent, cruise, etc [KT04].

In the following sections we no longer distinguish between the model parameters (A,bbb)

and their estimates (Â, b̂bb) as computed in this section.

2.3.2 Calculating Predictions Based on Measurements

Once the model is fit to the reference data set, we then seek to make predictions by

applying the trained model to either validation data or measurements from equipment in operation.

With the model parameters (A,bbb) calculated using some reference model data set, assume that a

set of measurement data, yyy(k), is available comprising the entire set or a subset of the variables in

the model, ϕϕϕ. Let

yyy(k) =Cϕϕϕ(k)+ηηη(k), yyy(k) ∈ Rp×1 (2.11)

be a p-vector of measurements at time instance k, with ηηη representing noise (or uncertainty) on

the measurement. For example the matrix C is the identity matrix when yyy(k) is a measurement of

the entire set of variables ϕϕϕ(k). In the same vein, it can be adapted to represent incomplete or

redundant measurements.

Similar to the model data matrix Φ in (2.2), define a set of Ny measurements collected in
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Table 2.1: Model and Measurement Covariances

Model Covariances Measurement Covariances

Σz =
1

N−1Σ2
1 Σy =CΣϕCT +Ση

Σζ =
1

N−1(U2Σ2
2UT

2 ) Ση = user defined

Σϕ = 1
N−1

(
AΣzAT +Σζ

)

the matrix Y as

Y =

[
yyy(1) yyy(2) · · · yyy(Ny)

]
∈ Rp×Ny (2.12)

To examine how the measurement data compares to the reference model we construct predictions

for the reduced order coordinate ẑzz and the full order data vector ϕ̂ϕϕ.

In the present section we consider the linear predictors written in the form

ϕ̂ϕϕ(k) = Kϕyyy(k)+Lϕ, (2.13)

ẑzz(k) = Kzyyy(k)+Lz (2.14)

where (Kϕ,Lϕ) and (Kz,Lz) are parameters to be calculated to produce optimal prediction. Once

ϕ̂ϕϕ and ẑzz are available, estimates of the errors εεε(k) and ζζζ(k) may also be calculated.

It is possible to show that the values of the gains in (2.13) and (2.14) that produce

predictors are optimal in the least-squares sense[KSH00]. The gains are computed from the

covariance matrices listed in Table 6.1 by the formulas

Kϕ =
(
ΣϕCT)

Σ
−1
y ϕ = bbb−KϕCbbb (2.15)
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With (2.15), the prediction from (2.13) may be written in matrix form as

Φ̂ = KϕY +Lϕ (2.16)

Similarly,

Kz =
(
ΣzATCT)

Σ
−1
y Lz =−KzCb (2.17)

With (2.17), the reduced order prediction from (2.14) may be written in matrix form as

Ẑ = KzY +Lz (2.18)

To evaluate the model fit, the modeling errors ζζζ need to be examined. The modeling

errors and descriptive statistics require calculation of the covariances of the measurements and

predictions. We will investigate this later in the chapter.

2.4 Fitting Models to Reference Data Generated from High

Fidelity Engine Models

In this section we will show and discuss our fits of our explicit models to our high-fidelity

engine models to produce our reference models. In vogue language, this is the training phase of

the machine learning process.

2.4.1 The Effectiveness of Our Models

It is well known that gas turbine high-fidelity models are nonlinear [Mat96]. We were

surprised to find that linear models so accurately captured the operating behavior of our engines.
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Figure 2.2: High Fidelity Turbine Model represented by black points. Reduced Rank Model Fit
displayed as blue plane.

What we are seeing is that we lose the full degrees of freedom in operating parameters due to

implementation of closed-loop control. Therefore, we were able to accurately model field based

operating measurements subject to closed-loop control using linear models. In Figure 2.2, we see

our model fit overlaid with the high-fidelity turbine model in three operating dimensions. As can

be seen, while nonlinearity does exist, it is minimal across the selected operating parameters.

In Figure 2.3, we show three different turbine models, plotted in the same operating

parameter space. The data come from the high-fidelity engine models and illustrate the variation

in operating regimes in parameter space per turbine model. Note that the selected engine-types

vary in power output from 5 MW to 14 MW.

Figure 2.4 shows the same three turbine engine-types plotted after applying a linear

transformation and normalization to the raw measurements. Again, nonlinearities can be seen;

however, again we see that this is minimal and thus, approximations with linear models may be

applied. This shows that with the correctly defined linear transformation and normalization, we

can represent three different turbine engine-types by the same underlying model with minimal loss

in operating data resolution. We note that this was unexpected; here we see that three different
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Figure 2.3: High-fidelity mathematical models for three different turbine engine-types in three
operating parameters.

Table 2.2: Prediction Residuals from Model Fit

Parameter Turbine 1 Turbine 2 Turbine 3

ζ1 0.0011 0.0014 0.0011
ζ2 0.0038 0.0031 0.0035
ζ3 0.0029 0.0037 0.0028
ζ4 0.0027 0.0031 0.0024
ζ5 0.0029 0.0026 0.0024

engine-types are effectively the same engine when properly standardized and normalized.

In Table 2.2 we present a comparison of the individual turbine model fits. We fit models

to each engine-type individually, using the same operating parameters and underlying model

developed above. For a first check, we then make predictions by using our training data as the

input to the model to produce predictions. From this, we produce residues by taking the 2-norm

of each individual parameter and its prediction. We expect the residues to be very small due to

the narrow band of operation our selected engines run in. Note that industrial turbines generally

have more limited ranges of operations compared with aircraft engines. Note that in an industrial

environment, a process like this can be mimicked in order to keep the number of underlying

mathematical models small compared to the number of turbine configurations in the field. This
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Figure 2.4: High-fidelity mathematical models for three different turbine engine-types after
applying linear transformation and normalizations of data from Figure 2.3.

provides practicality in applying the following techniques for turbine condition monitoring to a

large fleet of turbines.

In the examples shown above, we are utilizing five operating parameters; however, as can

be seen above, the model is fully scalable if the user wishes to include new operating parameters

into the model. In doing so, it is possible the rank may change but this does not alter any of the

conclusions presented here. In fact, it is worth mentioning that by construction, a reduced rank

model eliminates the so called curse of dimensionality by utilizing only the most significant axes

of information produced by the non-zero singular values [JWHT13].

2.5 Condition Monitoring Applications using TLS Models

Condition based monitoring has become incredibly popular in recent years. There has

been a big push in the industrial gas turbine industry to create and implement algorithms for

fault identification and prediction [Sch14] . This type of data analysis demand has propelled the

advancement of conditioned monitoring and condition based maintenance. Here we present some
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applications of condition monitoring using the model derived in the section describing Total Least

Squares modeling.

The condition of the engine can be inferred by comparing the static operating point of

the engine to the TLS predictions. The errors or residuals, can be trended over time to identify

gradual or step changes in the engine condition as compared to predicted performance. During

this process we may implement rolling T-tests on the given window of data to ascertain whether

statistical changes have occurred in the operating condition of the turbine.

For the remainder of the chapter we will perform a full analysis on two individual turbines,

one that has been identified as healthy and one that has been identified as having a fault. Both

turbines are of the same engine-type, and have similar configurations so that comparisons can be

made.

2.5.1 Chi Squared for Goodness of Fit

Very often, when applying a model to real data, one begins the analysis by asking if

the measurement is consistent with the model. We may answer this question by calculating

the statistics of the measurement. If yyy is a measurement vector, then ŷyy =Cϕ̂ϕϕ+ η̂ηη =Cbbb and the

covariance matrix is Σy = E{(yyy− ŷyy)(yyy− ŷyy)T}. From these, we have

0 < ρ
2(yyy) = (yyy− ŷyy)T

Σ
−1
y (yyy− ŷyy)<< T

where T is some small, predefined threshold value. Note that the region is an ellipsoid with

component mean values of 0 and our statistic, ρ2(yyy) is sometimes referred to as the Mahalanobis

distance [And85]. If each component measurement follows a Gaussian distribution, then ρ2(yyy) =

χ2(yyy) and T may be chosen to be the corresponding value of the probability that y lies in the

ellipsoid of radius ρ(yyy). For example, with n = 5, then T = χ2
0.95(yyy) = 11.07.

In Figures 2.5 and 2.6, we display the probability that a given measurement fits the
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Figure 2.5: χ2 probability of measurement to model fit applied to the case study: good engine.
Note probability well above 95%.

Figure 2.6: χ2 probability of measurement to model fit applied to the case study: bad engine.
Note probability rarely exceeds 90%, a strong indication that the machine is not functioning
properly.

model, by evaluating the chi-squared statistic for each observation in time. These figures can be

created by numerically computing the table of the chi squared values at differing probabilities, for

example 0, 0.05, 0.1, ... , 1 for a given set of degrees of freedom and then interpolating a given

ρ2(yyy) to the table. Our good turbine has probability of 95% or above, while our bad turbine is

routinely close to 0%.

The chi squared statistic can be used as an overall measure of observation agreement with

the model and an early predictor of turbine health changes. The data include both shutdown and

startup data, which partially accounts for our good engine displaying some points below our
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threshold value at 90%. In practice, the operator would use judgment on how many data points

need to be below the threshold value before the determination would be that the engine warrants

a closer investigation. For example, an operator may require five consecutive hours of operation

where model agreement is below the threshold value before a more thorough investigation is

warranted. In that scenario, our good engine would be flagged once whereas our bad engine

would be flagged for more than 97% of its operation.

2.5.2 Residual Analysis

Above we noted the usefulness of the chi squared statistic; however, while this can lead an

operator to the conclusion some part of the turbine is degrading or malfunctioning, it does not give

any additional information as to what component of the turbine is degrading or malfunctioning.

In order to facilitate a diagnosis of the root cause, we must examine the individual residuals. That

is, for our inputs into the model, p1, ..., pn, our model returns p̂1, ..., p̂n so that we may define the

component residual, ri = pi− p̂i for i = 1,2, ...,n.

In industry, tracking of time series values of sensors is common, and some systems such

as the InSight System of Solar Turbines even has virtual parameter tracking. In few instances,

changes in the state of a single variable can lead to the root cause of a malfunction; however,

many malfunctions or faults are a result of multiple components becoming worn, fouled or broken.

In these problems, tracking of a single parameter may not provide enough resolution to identify

the cause, especially early on when an operator may have a chance to fix the problem before

component failure and engine shutdown.

The advantage of analyzing the residues produced from the model and measurements

is that we have an easily calculated benchmark for each measurement and the combinations of

residues gives greater resolution to an operators fault analysis. Our method is superior to common

OLS regression, as OLS regression will return only a prediction of a single variable. Indeed, using

a reduced rank model allows one to produce estimates for each input variable while not biasing
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Figure 2.7: Time series residuals for our case study: good turbine. From the normalization,
errors are represented as percent error. ζi corresponds to Pi, and is generated by taking the
predicted value minus the measurement. The red lines are the 95% confidence intervals based
upon the high fidelity mathematical models.

any single input variable’s significance in the calculation. Continuing with our case study, we

present Figures 2.7 and 2.8. We use C = I since all parameters are available with data. Note that

our healthy engine has operating error compared to the model within ±5%, which shows normal

operation. The threshold value for residuals is based on empirical testing of a set of 24 engines

we have data for and that we can determine the health of. A different story is seen in Figures 2.9

and 2.10. Here we see departures in the residuals across multiple parameters. Specifically note

the scale of the y-axis for ζ4, [-2,2]. In many situations, it is not immediately identifiable what

the cause of these changes were by simply examining the operating parameters. In our case study,

we have chosen our unhealthy engine to be one with a malfunctioning sensor. The sensor is faulty

from time t = 0 through t = 6000 and then malfunctions completely from then on. Note that in

the range t = 0 to t = 6000, our residues show only minor deviations but our ρ2 statistic shows

very low probability that our measurements fit the model of a healthy engine. We turn to the

either ηηη or C to reduce the confidence in a given measurement variable or remove it entirely. We

may perform a type of sensitivity analysis by varying the individual parameter’s contribution and
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Figure 2.8: Distribution of residual values, ζi for our case study: good turbine. The red lines
are the 95% confidence intervals based upon the high fidelity mathematical models.

Figure 2.9: Time series residuals for our case study: bad turbine. From the normalization,
errors are represented as percent error. ζi corresponds to Pi, and is generated by taking the
predicted value minus the measurement. The red lines are the 95% confidence intervals based
upon the high fidelity mathematical models.
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Figure 2.10: Distribution of residual values, ζi for our case study: bad turbine. The red lines
are the 95% confidence intervals based upon the high fidelity mathematical models.

then by performing appropriate statistical tests on the average residual values for a given time

interval. Returning to our case study, we see that one particular parameter seems to be the culprit

causing large residue values. Once we decrease our confidence in the parameter by altering the

corresponding component of ηηη, all other parameters fall back in line with our acceptable residue

tolerances as seen in Figure2.11. Note, the parameter of interest is still significantly out of range,

but this is what we expect by altering ηηη if in fact, there is a fault we are trying to isolate. Hence,

we conclude that the fault must be associated with this particular parameter and is independent of

the other parameters. We could have tried removing the suspected culprit parameter by setting

the corresponding diagonal value of C to 0 from 1. Then, C3,3 = 0, and our predictions are made

without information from parameter 3. This is another key difference in our modeling technique;

through the power of linear predictors and reduced rank models, we are able to predict out an

original training parameter if we do not have field data corresponding to it, or if we wish to

mitigate that parameter’s effect on our predictions.

To summarize, we have just taken turbine sensor input, all of which are varying to different

degrees, then applied our model with varying levels of confidence in the input parameter’s
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Figure 2.11: Time series Residuals for our case study: bad turbine, after altering η. Note the
decrease in ζ3 and ζ5. ζ4 remains well out of range, as expected based on changing η. The
remaining parameters’ errors are now closer to zero mean indicating normal operation.

contribution until we have found an optimal confidence such that the input parameter residues

have reduced back within acceptable tolerance ranges. The fact that the optimal confidence

weighting is isolated to reducing a particular input parameter’s confidence weight allows us to

conclude where the fault exists.

2.6 Conclusion

In this chapter, we first created a training set of data using a high-fidelity, physics based

turbine models over the expected operating regime. We then identified the required complexity

of the model by implementing singular value decomposition on the covariance matrix of the

training data. From this, we derived a reduced rank model using Total Least Squares that maps

static behavior of a turbine operating in closed loop. We then formulated a minimal variance

predictor that operates on measurement data and that is capable of incorporating uncertainties and

domain knowledge of measurement noise and accuracy to further refine the model. Following

this, comparisons of predictions of the operational parameters to the actual measurement data

were made and analysis of the residues was conducted to infer the health of the engine. We
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calculated how closely the field engine is operating to the reference model by implementing the

Mahalanobis distance and observing that errors from modeling were within 1% variance and zero

mean as well as near Guassian in distribution. This gave us our 95% confidence intervals for our

residue analysis. We discussed how binomial or non-Gaussian residual distributions of field data

indicated degradation. To test our method, we selected two turbines, one healthy and one with a

known fault and performed the above analysis process to both turbines and presented the results

side by side for reader comparison. We showed how a sensitivity analysis could be performed on

the user confidence in individual measurement inputs and how this allows a user to hone in on the

root cause of a malfunction.

Future work should aim to untangle residue variation information. It is likely that while

performing the sensitivity analysis, the variation of measurement confidence weights may not

yield a single contributor as was shown in the case study. Some early experimentation with

known faults has shown promising results. By applying additional machine learning classification

methods to the individual residuals, we can describe certain faults that the classification methods

have been trained for. We plan to continue investigating this track of analysis.

Chapter 2, in full, is a reprint of the material as it appears in ASME Turbo Expo 2016.

Allen, Cody; de Oliveira, Maurcio, ASME 2016. The dissertation author was the primary

investigator and author on this paper.
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Chapter 3

Gas Turbine Machinery Diagnostics: A

Brief Review and a Sample Application

3.1 Introduction

Chapter 3 proposes using machine learning algorithms in the identification of specific

components of the GT system. The motivation for this idea continues to come from Sections

1.1.1 and 1.1.2. The utility of such an application is evident in instances when an operator or

owner is trying to monitor the health of many of the same line of turbines in his or her fleet, and

needs to know which turbines have which specific parts. A service provider of EHM falls into this

category. Note that EHM providers can be both Original Equipment Manufacturers (OEMs) and

non OEM’s. In the case of the OEM, original engineering documents should be available in any

analysis. However, it is possible that such information is incorrect or that parts have been replaced

without all documentation being updated. Such a case arises when a customer has monitored the

health of their turbine on their own for the first part of the turbine’s life and then for the second

part elected to have the OEM take over monitoring responsibility. In these circumstances, not all
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of the applicable maintenance records are readily available. In the case of non OEM’s, the EHM

provider may not even have access to engineering documents. In either case, it can be difficult or

impossible to ascertain specific component information.

This chapter seeks to highlight the importance of understanding the source of measurement

data to be used in EHM algorithms. First, we tour the space of mathematical algorithms commonly

used in industry for the monitoring of mechanical systems and in particular, rotating machines

and gas turbines. The remainder of this chapter is a more in depth look at three ‘classification

type’, machine learning algorithms which will be utilized in a case study that follows. In the

case study, a subset of 25 gas turbines is selected, in which each fuel valve installed on each

machine is known. Machine learning techniques are implemented in order to classify which

fuel valves are installed on which engines, and results are examined and analyzed. The Chapter

concludes with ideas to extend the accuracy of these methods as well as future research areas for

such applications of machine learning methods.

3.2 Chapter Notation

ML Machine Learning

FT Fourier Transform

WT Wavelet Transform

AR Autoregression

ARMA Autoregressive Moving Average

NN Neural Network

HMM Hidden Markov Modeling

SVM Support Vector Machine

LR Logistic Regression

DT Decision Tree

KF Kalman Filter
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IoT Internet of Things

OEM Original Equipment Manufacturer

EHM Equipment Health Monitoring

3.3 Machine Learning Algorithms for Equipment Health

Management

Statistical Learning refers to a vast set of tools for understanding data [JWHT13]. A

direct definition of machine learning comes from Murphy: “Machine Learning is a set of methods

that can automatically detect patterns in data, and then use the uncovered patterns to predict

future data, or to perform other kinds of decision making under uncertainty.” [Mur12]. Broadly

speaking, ML methods fall within two broad categories: supervised or unsupervised learning.

Supervised learning refers to situations in which there are data consisting of inputs and output(s).

In this case, information is obtained by relating the inputs to the corresponding outputs, where

the relation is generated by the particular ML algorithm chosen. In the unsupervised case, the

data only contain inputs. The association between inputs and outputs cannot be directly inferred,

and instead, relations about the inputs are created.

Machine Learning as defined above is not a novel idea; in previous decades, the process

of identifying relationships between inputs and outputs of a system has been called system

identification, artificial intelligence, and pattern classification [Lju99]. In the remainder of this

section, some common algorithms for machine monitoring applied to rotary machinery systems

are discussed. This section ends with a brief review of some standard classification algorithms

that will be used in the presented case study.

Lee, Wu, et al present a summary table of so called “Prognostic Health Management” tools

that relate common learning/identification algorithms to typical rotating machinery components.

The following sets of machine components and their common failures, algorithms for detection,
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come primarily from the exquisite work of Lee, Wu et al [LWZ+13]. The addition of a valve

section seeks to keep the structure of Lee, Wu et al. The technical details of the algorithms

listed in each of the following subsections can be found in textbooks on machine learning and/or

frequency domain analysis [Lju99][TH09][Mur12][Cha12]:

Bearings: Typical issues and failures include the outer-race, inner-race, roller or cage.

Common measures include vibration signals, oil contaminant inspection and, less commonly,

acoustic signals. Common features seen in data are vibration characteristic frequencies, metal-

lic debris and sharp pulses of high intensity. Common detection algorithms include Fourier

Transforms (FT), Wavelet Transforms (WT), Autoregression (AR) Frequency Spectrum, Neu-

ral Networks (NN), Hidden Markov Modeling (HMM), Support Vector Machines (SVM) and

Principle Component Analysis (PCA).

Gears: Typical issues and failures include manufacturing error, teeth missing or teeth

erosion, and gear cracks. Common measures include vibration signals and oil contaminant

inspection. Common features seen in data are vibration characteristic frequencies and metallic

debris quantity. Common detection algorithms include Fourier Transforms (FT), Wavelet Trans-

forms (WT), Autoregression (AR) Frequency Spectrum, Neural Networks (NN), Hidden Markov

Modeling (HMM), Support Vector Machines (SVM) and Kalman Filters (KF).

Shaft(s): Typical issues and failures include unbalance, bends, cracks and misalignment

resulting in rub. Common measures include vibration signals and harmonic frequency compo-

nents. Common features seen in data are vibration characteristic frequencies and system modal

characteristics. Common detection algorithms include Fourier Transforms (FT), Autoregressive

Moving Averages (AR)MA, Neural Networks (NN), and Support Vector Machines (SVM).

Lastly, we introduce a mechanical element that does not rotate, and so does not generate

waveform data as the other elements do. This inclusion serves two purposes: (1) to show that

algorithms and machine learning can be applied to non-rotating machinery data, and (2) to show

that many of the same algorithms are used regardless of the dynamics of the system.
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Valves: Typical issues and failures include deadband, hysteresis and stiction (sticking due

to friction)[Rue99]. Common measures include upstream/downstream pressures, temperatures,

command and position feedback signals. Common features seen in data are response frequency

shifts and time domain statistical characteristics. Common detection algorithms include Neural

Networks (NN), Support Vector Machines (SVM), and various Regression applications.

3.3.1 Algorithms

As seen by the definitions stated at the beginning of this section, ML algorithms are

also supposed to make decisions as well as recognize patterns. Loosely speaking, this describes

classification algorithms. These algorithms classify data sets (or rather, partition data in parameter

space and associate the various partitions with some type of identifier) and can be both supervised

or unsupervised algorithms. In the table below, a summary of algorithms available in the

MATLAB® classification learner is presented. We discuss briefly the mechanics of the three

chosen algorithms which will be presented in the case study later in this chapter. The three

algorithms were chosen on the following basis: they needed to be available in the Matlab machine

learning library and there needed to be both linear boundaries and non-linear boundaries.

Algorithms In Matlab Classification GUI

Decision Trees (CART)

Discriminant Analysis

Logistic Regression

Support Vector Machines

Nearest Neighbor

Ensemble Methods

Decision Trees: Decision trees are a way of stratifying the predictor space into n non-

overlapping, exhaustive regions , Rk, such that ∪n
k=1Rk = R , where R is the entire predictor
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space. Classification decision trees can be used to predict a qualitative or discrete response. In

implementation, after the tree algorithm has been trained, an observation is assigned the value

of the most commonly occurring class of training observations in the region to which it belongs

[JWHT13]. To “grow” or train a classification tree, recursive binary splitting is used. To perform

recursive binary splitting, all predictors X1, ...Xq and all possible division points for each predictor

are considered. Choice of the predictor and division point are determined based on some form of

minimized error. The most popular choice of error function for classification trees is the Gini

Index, G = ∑
W
k=1 2pwk(1− pwk) where W is the number of classes in the response and pwk is the

proportion of training observations in the wth region, from the kth class. Here, 2pwk(1− pwk) can

be seen to be the variance of a binomial random variable[And85], so the Gini Index method seeks

to minimize total variance across the k classes. Another relatively popular choice for minimizing

error is the Cross-Entropy function; see [Mur12].

Logistic Regression: Logistic regression gets its name from the underlying function

that generates the classifications, the logistic function, ŷ = ea0+a1x1+···+apxp

1+eb0+b1x1+···+bpxp , where xk is the

kth predictor and 0 < ŷ < 1. To make a classification, a threshold value T is chosen, where

0 < T < 1, such that if 0 < ŷ < T , ŷ = 0, otherwise ŷ = 1. By construction, this function is a

binary classifier, although there are ways to use it for more than two classes [JWHT13]. Since

the function is nonlinear, finding the coefficients ak,b j is typically done by using a numerical

minimization technique on the objective function, argmin
ak,b j

f (y− ŷ), with f = ‖·‖l , some specified

l-norm. Popular optimization algorithms include but are not limited to ‘Newton - conjugate

gradient’, ‘Levenberg Marquardt’, ‘Iteratively reweighted least squares’ and the ‘BFGS’ methods.

These methods and more can be found in [JN06].

Support Vector Machines: The support vector machine algorithm is a variant of the

support vector classifier, which is the implementation of the soft margin classifier algorithm.
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Specifically, the soft margin classifier satisfies an optimization on M:

max
β0,β1,...,βp,ε1,ε2,...,εp

M

subject to
p

∑
j=1

β
2
j = 1,

yi(β0 +β1xi1 +β2xi2 + ...+βpxip)≥M(1− εi),

εi ≥ 0,
n

∑
i=1

εi ≤C

The support vector machine brings in kernel functions, f (x) = β0+∑
n
i=1 αiK(x,xi), where

K(x,xi) represents the kernel function. The constraints must be adjusted accordingly; for example,

yi( f (x)) > M(1− εi). Popular kernels are the polynomial kernel K(xi,x′i) = (1+∑
p
j=1 xi jxi′ j)

d

and the radial kernel K(xi,x′i) = exp(−γ∑
p
j=1(xi j−xi′ j)

2). For a more technical review of SVMs,

see [TH09].

3.4 Case Study: Gas Valve Classification

In this section, we present a case study: the classification of the type of fuel valve in

use in an industrial gas turbine, based only on standard signals measured on a gas turbine. A

priori knowledge is used that the population of data has only two possible valve types, and so an

individual set of data points at time t, is categorized as valve 1 or valve 2.

This case study and the motivation for this chapter come from real life lessons learned

from attempting to jump from raw machine output data to engine condition monitoring [C.A16].

In this previous study, uncertainty in the fuel flow measurements was attributed to insufficient

knowledge about the engine systems under investigation, specifically that there were different

fuel valves present in the same fleet. Recognizing that the crucial step of understanding how the

data was generated had been overlooked, we sought to classify the fuel valves present in the fleet
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in question.

The choice of the fuel valve classification to illustrate the proposed machine learning

algorithms is indeed a practical one. From the perspective of the OEM, maintenance records are

not always available. Customers can and do replace hardware on their own without leaving a

sufficient paper trail. As an example, consider a customer who has monitored the health of their

turbine on their own for the first part of the machine’s life and then for the second part elected

to have the OEM monitor the machine. In this case, it is often found that not all maintenance

records are available. Furthermore, even when knowledge of the valve part is available, it is still

useful to classify the operation of the valve as healthy or unhealthy. Such a classification can

be done using the same techniques as proposed in the two-valve case study. These realizations

provide the current problem statement. Can specific components of a gas turbine be predicted

using machine learning techniques?

This case study attempts to provide an initial answer to this question. A fleet of 25 similar

turbines is analyzed, where it is known that each turbine has one of two possible fuel valves

installed. The fuel used in the sample fleet is known to be of similar composition but time varying.

Using measurements of the pressures and temperatures of the gas, command of the fuel valve

and standard operating parameters like shaft speed, power and ambient conditions, three separate

types of ML models are trained and used to classify a given engine’s fuel valve as “valve 1” or

“valve 2”. The first classification approach uses data from a high fidelity engine simulation, in

which site conditions and engine setpoints were assumed. The second classification approach uses

actual field engine data from the fleet of engines. In both cases, the three chosen ML algorithms

are trained and then applied to the fleet. Lastly, results and conclusions are discussed.

3.4.1 Classification Algorithms

In this section, a subset of ML classification algorithms is used to identify the fuel valve in

use, “valve 1” or “valve 2”. This is a supervised learning problem, and requires data to “train” the
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selected model to be used in creating predictions. The implementation of the selected algorithms

are carried out in MATLAB® using the add-on toolbox: Statistics and Machine Learning. The

process of selecting variables or (features as they are sometimes referred to) selecting and training

the model and then validating the predictions is carried out through this toolbox.

The pre-programmed classifiers make base assumptions in order to provide ease of use.

In certain algorithms these assumptions can be manipulated. There is additional functionality

residing in the actual function calls, meaning that if one is willing to do some programming to

implement the classifier functions directly, one will have more options available to change base

assumptions. The more seasoned ML practitioner will be able to modify base assumptions to

better tune the algorithm in order to classify more accurately.

3.4.2 Data Used in the Case Study

The data used in the first classification is generated from a high fidelity, physics-based

simulation model. The data generated from this process is not always the expected value of a

given operating point, but rather can be the minimum value required given other conditions of the

engine. For example, a supply pressure may be x (psig), where x is the minimum value needed

to provide the other operating variables supplied in the simulation. Care has been exercised in

trying to reduce the number of parameters that are susceptible to this type of output, but certain

parameters such as upstream pressure are outputs of the simulation like this. Identical inputs

are used in the simulation except for which valve is assumed on the engine, and hence, which

valve geometry is used. Ambient conditions such as elevation and pressure losses in various

components of the engine are held constant for each valve simulation, and are representative of

typical values at sea level.

Figure (3.1) shows some key normalized operating values for the two fuel control valves.

At lower command positions, the inlet and outlet pressures are all but on top of each other, and

the two valves exhibit very little deviation in operational modes. Figure (3.2) reveals that other
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Figure 3.1: Normalized Operating Values for Control Valves.

parameters exhibit more separation. Notably, the normalized fuel flow for varying compressor

discharge pressure levels and command positions yield different operating points in 3D space.

3.4.3 The Reality of Field Data

A subset of 25 engines is selected to have valve classifications performed. These engines

all run on the described fuel type, and are assumed with high confidence to have one of the two

valves we have trained our classification models on. For each of the given engines, the number of

operating data points differs. At this point, some modeling decisions and assumptions must be

made in order to arrive at our overall goal of taking a given set of measurements from an engine

forward to a prediction of which valve the engine is running.

The data generated by the 25 selected machines come from real, operating Solar units

around the world. As such, the systems may have degradation, may have noise on the sensor

readings, or may have valves other than the two expected in this sub fleet. Additionally, not all of

these units come from the same geographic location, and so, ambient conditions may be different
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Figure 3.2: Normalized Operating Values for Control Valves.

for the given units at various times (elevations are relatively similar). With this stated, some

assumptions are made regarding the data:

– The valves that were found in Solar engineering schematics are the current valve in use at

customer locations. From this, we assume there are only two possible valves in use for any

given engine, and every engine has one and only one valve.

– The majority of the data generated by a given engine has been generated by a clean and

healthy engine, and more specifically, a clean valve, free of degradation. This fuel is known

to foul injectors and valves, which will change the dynamics of the valve flow. However,

we assume that this type of data is insignificant due to regular maintenance and cleaning of

the selected group of engines.

– The fuel type and composition across the fleet is similar. This assumption is problematic,
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as the fuel’s specific gravity and lower heating values can vary. In fact, the wobbe index on

coke oven gas, the fuel in this study, can vary up to 30% in extreme cases [JRS+16].

3.5 Training and Model Validation

MATLAB®’s classifier GUI makes training the ML models exceptionally easy. When

starting a new session, the GUI automatically makes the user select which variables to use in

the model generation process and what type of validation to perform. For each classification

algorithm, 10-fold cross validation is performed. This means that for a given data set, the data is

partitioned into 10 equal sized subsets, then 9 of the 10 sets are used to train while the 10th set is

used to measure accuracy. This is repeated until each“hold out” set has been used once to measure

accuracy. Then, the 10-fold accuracy is the simple average of each individual experiment’s

accuracy. This method gives an implicit sense of confidence in the algorithm’s use on new data

and is a standard practice in ML [TH09]

The actual process of training the algorithm and then validating is carried out behind the

scenes by Matlab. Once the user has decided which algorithm to train, he or she may open the

“Advanced Settings” for the given algorithm, if available. In this window, additional properties

particular to the chosen learning algorithm may be changed. For example, in the DT’s advanced

settings, two possible selections are the number of maximum branches to grow and which splitting

criterion will be implemented. In the SVM advanced settings, one may choose the type of kernel

function to be implemented along with various data scaling options. After the user is satisfied

with the settings to be implemented for the learning algorithm, one simply pushes the “Train”

button, and as if by magic, the classifier is trained. The displayed accuracy is the 10-fold accuracy

produced from the algorithm validation that Matlab performs. Of note, when implementing these

algorithms in the Matlab command line, a deluge of data is returned in structure elements. One

has access to the model, model coefficients, standard measures of error, accuracy metrics and
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Figure 3.3: Predicted Valve based on Decision Tree method.

statistical measures of interest such as t-values and confidence intervals, when applicable.

Figure (3.3) shows the results of using the DT classifier, in which the Gini Index splitting

criterion has been used, and a max number of splits was set to 10. The DT model achieves 88.1%

accuracy in the 10-fold cross validation. Similar visualizations can be created for the LR and

SVM models. The LR model achieves 95.8% accuracy while the SVM model achieves 94.6%

accuracy. The boundary of the two valves is non-linear, so we expect SVM to do well since

its kernel function is quadratic. The LR model does well, although it is a linear classifier in its

boundary. The DT approximates a nonlinear boundary with a collection of linear partitions but

does well at 88.1% accuracy.

The learned classifiers appear accurate, based on the 10-fold cross validation, with the

lowest accuracy at 88.1% given by the DT classifier. Based on these results, it seems reasonable

to think that application of the algorithms to actual field data will yield worthwhile results.
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Figure 3.4: Unit A: normalized operating values compared with training data for classification
algorithms.

3.5.1 Field Experiments and Results: Model Training from Simulation

Data

Now that base assumptions have been addressed, a presentation of the results follows.

Three specific units will be presented for illustration purposes. Unit A represents a well running

unit, where the fuel system is healthy and the valve is assumed to be valve 2 based on engineering

documents. Unit B represents a well running unit where the fuel system is healthy. Unit B’s

valve is assumed to be valve 1, although this could not be confirmed due to missing engineering

documents. Lastly, Unit C represents a unit with either a fouled valve or varying Wobbe index (or

both). Unit C’s valve is assumed to be valve 1 according to engineering documents.

Figure (3.4) appears to be in-line with expectations of the fuel curve of valve 1, but note

that the valve is actually classified as valve 2! This is a good example of how a projection from

6-D space to 2-D space can give misleading information, as it pertains to classification algorithms.
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Figure 3.5: Unit B: normalized operating values compared with training data for classification
algorithms.

Figure (3.5) shows Unit B has some more variation than did Unit A, but is almost

completely below both training curves. The resulting classification does agree with the closer of

the two valves, as Unit B is classified as valve 1.

Lastly, figure (3.6) shows Unit C with a dirty fuel system, or degraded valve. Again,

the data is almost completely below both training curves but also contains decreased pressures

between 0.8-1 command. This may be data pertaining to a fouled valve; however, the source

of this uncharacteristic portion of the data is outside the scope of this chapter but is included to

illustrate the non-ideal nature of real field data.

The reader may be wondering about how the valve command can be up to 140% open.

This is due to the normalizations that occurred at the onset. In order to keep all values unbiased,

normalizations based on the training data maximum values were used. Simulation values of

command position never reached 100% full open, and so normalized values on real engines

exceed 1.
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Figure 3.6: Unit C: normalized operating values compared with training data for classification
algorithms.

Figure (3.1) shows the results of the experiment for all 25 units. The percentage for

a given classifier and unit number is the percentage of operating points classified as “valve

2” for that unit’s operating data. Any value over 50% is classified as “valve 2”. A weighting

algorithm is used to arrive at the final percentage for use in predicting the valve. As is seen, this

implementation results in 64% accuracy in predicting the correct valve. This is a far cry from the

mid-90s percent correct found when learning the training model. The most notable observation

that can be made is that when the data is visualized in a 2D projection, almost all of the data is

below both training curves. In other dimensions, similar results are seen. This suggests that data

assumptions are at least partially incorrect. It is likely that the valves have some fouling, based

on the type of fuel being run through them. It is also likely that the gas composition is not the

same for each of the units. However, even with these assumptions violated, the data appears to be

relatively in line with the general curves seen in the projections. That is, it seems that with some

scaling or translational shifts, the data will line up better to our training curves, which should
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generate higher accuracy. While this is an interesting path forward, and well worth pursuing, it

will not be pursued in this chapter. Instead, new training data is chosen, the models retrained and

results analyzed.

Table 3.1: Full results of the three classification algorithms. Algorithms trained on data
generated by high fidelity physics simulation software. Percentage for a given classifier is the
percentage of operating points classified as “valve 2”. Any value over 50% is classified as
“valve 2”, which is indicated with a “1” instead of “0”. A weighting algorithm is used to arrive
at the final percentage for use in predicted valve.

3.5.2 Retraining Using Field Data from the Fleet

From the presented results, it is clear that the real data is not as easy to classify as the

data generated from the high fidelity physics simulation. However, curiosity got the better of

us, and we wondered if this was actually true. A decision was made to change the training data

from that given by the high fidelity simulation to two selected engines from the sub fleet of 25

engines. That is, two engines were selected, one with valve 1 and one with the valve 2, that seem
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Figure 3.7: Training Data: data from two different engines, one with valve 1 and one with
valve 2.

like candidates with little to no degradation, and healthy fuel systems, to be the training data

for the classification algorithms. In selecting the two training engines, an effort was made to

select engines that were most representative of the fleet; that is, machines that captured the mean

running modes of the fleet. In selecting the valve 1 training engine, there was not much choice

but in selecting the valve 2 engine, and thus such an engine was selected. Figure (3.7) displays

the 3D projection of 3 of the 6-parameters used in training the classifiers. Note that there appears

to be more separation between the two engines, and hence, two valves, which should allow the

classifiers to determine a relatively robust boundary condition.

3.5.3 Field Experiments and Results: Model Training from Field Data

The process is as it was above, in which 10-fold cross validation is used in training the

models, and the DT, LR and SVM models are trained and used for predictions. The model

assumptions, data assumptions and model selection parameters are the same as well. Figure
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Figure 3.8: Training Data: data from two different engines, one with valve 1 and one with
valve 2.

(3.8) shows the output of the trained SVM classifier; it achieves 100% accuracy in 10-fold

cross validation for the two training engine’s data! While this seems remarkable, enthusiasm is

contained as we remember how high the accuracy was on the training set but how low the accuracy

was on the real data as in our previous experiment above. Similarly, the LR model achieves full

separation and 100% accuracy while the DT model has some points that are misclassified and

yields an accuracy of only 99.7%. With these newly trained classifier models, the previous test

units are re-examined.

Figure (3.9) shows how Unit A compares with the two training engines. After normaliza-

tion of the parameters, it is seen that Unit A runs on the higher side of valve 2 in the projection of

valve command versus outlet pressure. As the figure would suggest, this valve is classified as

valve 2, an accurate classification by the ML classifiers.

Figure (3.10) shows how Unit B compares with the two training engines. After normaliza-

tion, it is seen that this unit runs on the middle to lower side of valve 2 in the projection of valve
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Figure 3.9: Unit A: normalized operating values compared with training data for classification
algorithms. Training data from real engines.

Figure 3.10: Unit B: normalized operating values compared with training data for classification
algorithms. Training data from real engines.
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Figure 3.11: Unit C: normalized operating values compared with training data for classification
algorithms. Training data from real engines.

command versus outlet pressure. This unit is classified as valve 2; however, this unit is one of the

two with an uncertain valve. The authors suspect it is valve 1; however, the classifiers suggest it

as valve 2. Further investigation would need to be done here to ascertain the true valve type.

Figure (3.11) shows how Unit C compares with the two training engines. After normaliza-

tion, it is seen that this unit runs in the middle of valve 2 and valve 1 in the projection of valve

command versus outlet pressure. This unit is the one with major noise on the data, potentially

from degradation or poor running conditions. The classifiers determine that this valve is valve

2; however, its real identity is valve 1. When the suspected contaminated data is removed, the

confidence in the valve being valve 2 actually increases considerably, which is not intuitive.

Since our “actual” valve classifications come from original engineering drawings and schematics,

it is possible a customer could have had the valve replaced without notifying Solar. This is

one possible reason for the discrepancy in this valve classification. Another is simply that the

classifiers are not able to fully delineate between the two valves. Even more so to question is
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the selection of the representative engines for training the decision boundaries between the two

valves! Recall that we only had 2 “actual” valve 1’s, and two that were suspected to be valve 1,

but not “confirmed”. This constraint on engine and thus, valve selections for training may have

lead us to train on an engine that truly is not representative of the parameter space of valve 1

engines. This uncertainty is hard to affirm without additional valve 1 data.

After running the fleet of 25 engines through the classification algorithms, we produce

the same table of results as seen in table (3.1), and in table (3.2). Immediately, a much higher

accuracy is noticed, 80% as opposed to 64%. The improvement suggests that the original

models, trained on the high fidelity physics simulations, perhaps had wrong assumptions built

into them. As noted above, there were a number of issues with the simulation data, such as gas

fuel composition assumptions and site condition assumptions that would influence the simulation

outputs. In addition to accuracy of classifications, a user may be interested in the percentage of

false-positives or false-negatives which can be computed easily and are often useful depending

on the ramifications of mis-classification. The false positive rate (classifier identifies valve 2

when actually valve 1) for the field trained classifiers is 12%, and the false negative rate (classifier

identifies valve 1 when actually valve 2) is 8%.

An interesting question that arises is the question of whether fuel valve degradation is

implicitly learned by the classifiers. That is, if there was some degradation in the data of the sub

fleet, but degradation was also present in the two selected engines for training, perhaps these

degradation states were implicitly encoded in the classifiers, so that the boundaries would account

for this, something that simulation data certainly does not account for. Validation of this question

would require a more detailed set of data from the selected packages, and likely an inspection of

the valve, along with complete maintenance records to ascertain the state of the valve over the

period of time in which data was generated. This is beyond the scope of this chapter, but would

be worthwhile to understand in the future.
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Table 3.2: Full results of the three classification algorithms. Algorithms trained on data from
two selected engines of the sub fleet of 25 engines. Percentage for a given classifier is the
percentage of operating points classified as “valve 2”. Any value over 50% is classified as
“valve 2”, which is indicated with a “1” instead of “0”. A weighting algorithm is used to arrive
at the final percentage for use in predicted valve.
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3.6 Conclusion

This chapter has reviewed, in part, the current state of equipment health management and

prognostic health management techniques in use in industrial settings for rotating machinery,

and in particular, gas turbines. A presentation of application categories and types of components

was given, along with relevant numerical algorithms and/or machine learning techniques used in

analysis. In addition, it was shown how easily some of these algorithms can be implemented by

using commercial computation environments. We presented a case study trying to predict the

type of fuel valve in use on a given engine, which was part of a fleet of industrial gas turbines, by

using only system signals such as pressures and command positions. The results suggested that it

is certainly possible to identify the type of valve in use in a turbine system, if the selection class

contains a small number of particular valve types and if there is enough variation in the operating

space of the different valves.

The results of the case study reveal that both high fidelity model data and field data can

be useful. While the high fidelity model data did not fit well with most of the field data, it was

noted that gas composition variability was a salient factor. There are many advantages of the

high fidelity model data though, namely that a tremendous amount of operating points can be

generated with ease, the entire range of the machine can be explored, and inputs such as gas

composition can be varied. Future work aims to create better simulation data that can be used as

part of the training data for the learning methods.

Worthy of noting is the ability of machine learning classifiers to identify machine compo-

nents based on a sample of running points. For each time t, the specified operating points were

input into the various classifiers, and the output of valve type was recorded. A weighting method

between the various classifier’s output was devised and used to arrive at a final classification for a

given engine’s valve. The weighting method can be a simple average of the given classifiers or

biased towards specific classifiers. This process has been performed with minimal input from an
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engineering perspective. That is, for identification of a mechanical component that involves a

process such as compressible gas flow through a valve, very little knowledge of fluid mechanics,

thermodynamics or chemistry was needed to make a prediction on the type of valve in use, with

relatively good accuracy. However, this statement excludes the requirement of knowing what

valve type is actually in use, what measured parameters would be relevant to the analysis, and

what type of gas fuel is in use for a given engine. Of course, to perform supervised learning, all

of these items are necessary. This shows that optimal performance is found in the intersection of

engineering knowledge and machine learning knowledge.

Indeed, the inclusion of additional engineering knowledge is very likely to increase the

accuracy level significantly. For example, including the fuel flow or the valve CDA will provide

additional information to the learning algorithms and result in better classification accuracy.

Future work will begin to include additional engineering knowledge into the learning models.

Fuel composition, fuel flows, enthalpy, specific heats and known valve CDAs provide additional

degrees of freedom for the learning algorithms to use in creating decision boundaries, which

should yield better accuracy in classification. This opens the door for going beyond classification

and into the realm of component analysis, a necessary but often complicated area to study[Mat96].

Chapter 3, in full, is a reprint of the material as it appears in ASME Turbo Expo 2017.

Allen, Cody; de Oliveira, Maurcio, Holcomb, Chad; ASME 2017. The dissertation author was

the primary investigator and author on this paper.
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Chapter 4

Gas Fuel Lower Heating Value Prediction

Using Hybrid Models

4.1 Introduction

Chapter 4 continues the pursuit of robust diagnostics for monitoring the health of GTs.

However, in this chapter we seek to unify physics based models with data driven models by

creating hybrid models as discussed in Sections 1.2 and 1.2.1. As an application, we will estimate

gas fuel lower heating value (LHV).

Gas fuel comes from myriad of sources, with many molecular composition variations. The

energy content, or calorific value of a fuel is expressed in terms of its heating value. Generally, in

GT combustion, the gas fuel LHV is of higher importance. Informally, the LHV of a gas fuel

represents a measure of heat that will occur from complete combustion of the given fuel.

In GT fuel control, a common control method is to implement a calculated calorific rate of

gas fuel flow into the combustor [DS18, GG19, HLC14], which requires pressures, temperatures,

effective areas and fuel properties such as LHV and specific gravity (SG). With the calorific flow
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rate known, the required air mass flow can be calculated to produce the stoichiometric air to fuel

ratio in the combustor. The engine controller can control guide vanes as well as the fuel control

valve(s) to produce this ratio at various power loads. A change in gas composition usually leads to

a change in gas properties, which produces variation in mass flow rates through the combustor. In

particular, variation of the enthalpy drop in expansion occurs as well as variation in the flow rate

at the turbine inlet, which propagates through to affect turbine/compressor matching [CLM05].

LHV and SG may be combined into a single parameter WI = LHV√
SGair

, called the Wobbe Index,

that provides a measure of interchangeability of fuel gases.

The higher a gas’s WI, the greater the heating value of a fixed quantity of gas that will flow

through an orifice of a given diameter in a given interval of time. It is customary to provide WI

without units, even though it has the dimensions [Btu/scf]. The usefulness of the WI is that if two

different gas fuel compositions have the same WI, the pressure drop in a given fuel system will be

the same for both gases and in general direct substitution is possible where no change to the fuel

system control is required. [RXK12]. A general design criterion for WI variation is to require

changes in the fuel control system; that is, changes to set points or updates to fuel properties,

when the WI changes from the initial value for which the controller is calibrated. Therefore,

knowledge of both the LHV and SG are necessary for precise operation of GTs, especially when

gas fuel supply varies in molecular composition.

In combustion theory, the enthalpy of formation can be defined as the energy released or

absorbed when the compound is formed from its elements, where the compound and elements

occur at the standard reference temperature and pressure. The enthalpy of formation is generally

determined by use of statistical thermodynamics combined with observed spectroscopic data

[MSBB10]. These methods are beyond the scope of this chapter, and instead we will be more

interested in the enthalpy of combustion. The enthalpy of combustion, h̄RP, is defined as the

difference between the enthalpy of the products and the enthalpy of the reactants, assuming

complete combustion is achieved for a given temperature and pressure [MSBB10]; that is,
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h̄RP = ∑P neh̄e−∑R nih̄i where the n’s correspond to the respective coefficients of the reaction

equation giving the moles of reactants and products, per mole of fuel. From this, the heating value

can be defined as the magnitude of the enthalpy of combustion [Bej88]. The higher heating value

(HHV) is obtained when all the H2O formed as a result of combustion is in liquid form whereas

the lower heating value (LHV) is obtained when all the H2O formed as a result of combustion

takes the form of a gas. The higher heating value exceeds the lower heating value by amount

commensurate to the magnitude of energy that would be released were all H2O in the products

condensed into liquid, which is sometimes referred to as the latent heat [Sko09]. Note that the

energy characterized by the latent heat is not recovered in the combustion process.

In the present situation, we would like to obtain an estimate of LHV. The fuel composition

is unknown; therefore, the above calculation which utilizes the moles of reactants is not available.

Instead, an approach utilizing energy balances through multiple sections of a gas turbine will

be implemented, which yields an equation containing LHV as an explicit variable. Multiple

sections are included so the resulting energy balance equation contains only parameters commonly

measured on an industrial GT. We will take a least squares approach to optimization of LHV

estimate. We develop a parametric model of the error produced by the general energy balance

equation across many sets of varied fuel data which produces a global error function. This global

error function can then be applied to new sets of data where gas fuel properties are unknown, to

estimate LHV to high accuracy.

We use a high fidelity physics based simulation to test our method and build the global

error function capable of spanning wide ranges of WI fuels. We validate our method using a

standard machine learning technique of validation [JWHT13], k-fold cross validation. Figure

(4.1) is presented below and provides the engine station numbering system we shall use in this

presentation as well as the control volumes that will be necessary for our energy balance method.

The method developed in this section is part of a general control scheme for fuel

flow in a GT, and is patent pending in the US: US Patent Application number 15852411.
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Figure 4.1: Engine station numbering

4.2 Chapter Notation

Q̇cv Net rate of energy transfer by heat across control volume

Ẇcv Net rate of energy transfer by work across control volume

excluding flow work

KEnet Net kinetic energy

PEnet Net potential energy

ṁi Total mass flow through inlet i

ṁe Total mass flow through outlet e

hi Total specific enthalpy through inlet i

he Total specific enthalpy through outlet e

Tn Absolute temperature at station n

cp,n Heat capacity of gas at station n where pressure is constant

Psection Power produced or consumed by section

h̄RP Enthalpy of combustion
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LHV Lower Heating Value of gas

ηb Burner efficiency

WI Wobbe Index

F Fuel to air ratio in burner

f LHV estimation error function

4.3 Theoretical Modelling

We start our estimation of LHV by developing a simplified energy balance which will

provide us with an explicit formulation of LHV. First let us review the first law of Thermodynamics

[MSBB10], applied to a 1D control volume with multiple inlets i and outlets e,

dEcv

dt
= Q̇cv−Ẇcv +∑

i
ṁi

(
hi +

V 2
i
2

+gzi

)
−∑

e
ṁe

(
he +

V 2
e
2

+gze

)

where Q̇cv is the net rate at which energy is being transferred in by heat transfer at time t, and Ẇcv

is the net rate at which energy is being transferred out by non-flow work at time t. Then at steady

state (or quasi-equilibrium), we find

Q̇cv−Ẇcv = ∑
e

ṁe

(
he +

V 2
e
2

+gze

)
−∑

i
ṁi

(
hi +

V 2
i
2

+gzi

)
(4.1)

Equation (4.1) is the basis of the energy balance equation we will develop in this section. We will

apply this to each of the control volumes in our derivation. Note that in the following analyses,

the net potential energy, PEnet = ∑e ṁeze−∑i ṁizi ≈ 0 and is dropped from all calculations.

Additionally, the net kinetic energy, KEnet =
(

∑e ṁe
V 2

e
2 −∑i ṁi

V 2
i
2

)
<< (∑e ṁehe−∑i ṁihi) and

is also dropped from all calculations. Therefore, we shall use the approximate energy balance
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form in the following derivations

Q̇cv−Ẇcv = ∑
e

ṁehe−∑
i

ṁihi (4.2)

It will be fruitful to briefly review enthalpy calculation procedures. Recall, for an ideal gas with

constant composition, enthalpy is only a function of temperature[Sko09], where dh
dT =Cp(T ) or

dh =Cp(T )dT . Integration provides

h(T2) = h(T1)+
∫ T2

T1

Cp(T )dT = hre f +
∫ T2

Tre f

Cp(T )dT

where h(T1) = hre f = 199.97[kJ/kg] and Tre f = 200K. Since integration is a linear operator, we

find by superposition [Apo74], that this is an equivalent representation of finding the enthalpy

change between two arbitrary stations m and n:

∫ Tn

Tm

Cp(T )dT = h(Tn)−h(Tm) = h(Tn)+(−hre f +hre f )−h(Tm)

= (h(Tn)−hre f )− (h(Tm)−hre f )

=
∫ Tn

Tre f

Cp(T )dT −
∫ Tm

Tre f

Cp(T )dT

For each station prior to the burner, we have airflow only; hence, our specific heat function is that

of air. We use the following approximate function for modeling the specific heat of air [MSBB10]

Cp(T ) =
(
β0 +β1T +β2T 2 +β3T 3 +β4T 4) R̄

Mair

where T is in K and Cp(T ) has units [kJ/kg].

To begin our energy balance derivations we first reference Figure 4.1 from which we

obtain our station numbers. We have established three control volumes that partition the engine
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Table 4.1: List of coefficients for specific heat function Cp(T ).

Coefficient Value
β0 3.653
β1 −1.337 ·10−3

β2 3.294 ·10−6

β3 −1.913 ·10−9

β4 0.2763 ·10−12

flow paths. Based on the control volumes, we have the following relations for mass flows

ṁ7.0 = ṁ3.0 + ṁb ṁ3.0 = ṁ2.0 + ṁ f ṁ1.0 = ṁ2.0 + ṁb (4.3)

Consider CV Burner and write down the energy balance for this control volume. Note that

there is no work other than flow work for this control volume, therefore Ẇ2.4,3 = 0 and

Q̇burn = (ṁ2.4 + ṁ f )h3.0− ṁ2.4h2.4. The additional heat generated in the burner is a result of

the combustion process. The total combustion energy is partially a function of the supplied fuel

LHV, where the LHV is defined as the amount of heat released by combusting a specified quantity

(initially at 25◦C) of a fuel and returning the temperature of the combustion products to 150◦C,

which assumes the latent heat of vaporization of water in the reaction products is not recovered.

Therefore, the theoretical heat generated in the burner can be calculated as Q̇burn = ṁ f LHV .

Using these two quantities, we can construct burner efficiency. For non-recuperated

engines, we let h2.4 = h2.0 = h2. Burner efficiency is then given by:

ηb =
Q̇actual

Q̇theoretical
=

(ṁ2.4 + ṁ f )h3.0− ṁ2.4h2.4

ṁ f LHV
=

ṁ2((1+
ṁ f
ṁ2
)h3−h2)

ṁ f LHV

=

(
1+ ṁ f

ṁ2

)
h3−h2

ṁ f
ṁ2

LHV

=
(1+F)h3−h2

ṁ f
ṁ2

LHV
(4.4)
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Where F =
ṁ f
ṁ2

is the fuel to air ratio the burner sees. We will return to equation (4.4) shortly. We

now consider the control volume CV Turbine. The turbine produces work as a result of the gas

flowing through it. Using an energy balance, we have

−Ẇturb ≈ ṁ7.0h7.0− (ṁ3.0h3.0 + ṁbhb) = ṁ3.0

(
ṁ7.0

ṁ3.0
h7.0−h3.0−

ṁb

ṁ3.0
hb

)
⇔

h3 ≈
ṁ7.0

ṁ3.0
h7.0−

ṁb

ṁ3.0
hb +

Pturb

ṁ3.0
(4.5)

where Ẇturb = Pturb is total power generated by the turbine. Now consider the control volume

around the compressor, CV Compressor. The compressor consumes work as gas is sucked and

compressed through it. Using an energy balance and noting that , we have

Ẇcomp = ṁ2h2 + ṁbhb− ṁ1h1

where mb is the mass flow that exits the compressor as bleed flow and hb is the resulting enthalpy

of this flow. Then,

Ẇcomp ≈ ṁ2h2 + ṁbhb− ṁ1h1 with, h2 ≈
Pcomp

ṁ2.0
− ṁb

ṁ2.0
hb +

ṁ1

ṁ2.0
h1 (4.6)

Using equations (4.5) and (4.6) and the mass flows found in equations (4.3), we have

(1+F)h3.0−h2.0 ≈ (1+F)

(
ṁ7.0

ṁ3.0
h7.0−

ṁb

ṁ3.0
hb +

Pturb

ṁ3.0

)
−
(

Pcomp

ṁ2.0
− ṁb

ṁ2.0
hb +

ṁ1

ṁ2.0
h1

)
= (1+F)

(
(ṁ3.0 + ṁb)h7.1− ṁbhb

ṁ3.0
+

Pturb

ṁ2.0 + ṁ f

)
−
(

Pcomp− ṁbhb +(ṁ2.0 + ṁb)h1

ṁ2.0

)
= EP +EE −EA +Eb (4.7)
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where,

EP = (1+F)
Pturb

ṁ3.0
−

Pcomp

ṁ2.0
=

(
1+

ṁ f

ṁ2

)
Pturb

ṁ2.0 + ṁ f
−

Pcomp

ṁ2.0
=

Pturb−Pcomp

ṁ2.0
=

Psha f t

ṁ2.0

EE = (1+F)
ṁ3.0 + ṁb

ṁ3.0
h7.1 = (1+F)h7.1 +(1+F)

ṁb

ṁ3.0
h7.1

= (1+F)h7.1 +

(
1+

ṁ f

ṁ2

)
ṁb

ṁ2.0 + ṁ f
h7.1 = (1+F)h7.1 +

ṁb

ṁ2.0
h7.1

EA =
ṁ2.0 + ṁb

ṁ2.0
h1 = h1 +

ṁb

ṁ2.0
h1

Eb =
ṁb

ṁ2.0
hb− (1+F)

ṁb

ṁ3.0
hb =

ṁb

ṁ2.0
hb−

(
1+

ṁ f

ṁ2

)
ṁb

ṁ2.0 + ṁ f
hb =

ṁb

ṁ2.0
hb−

ṁb

ṁ2.0
hb = 0

and it follows that,

(1+F)h3.0−h2.0 ≈ EP +EE −EA +Eb =
Psha f t

ṁ2.0
+(1+F)h7.1 +

ṁb

ṁ2.0
h7.1−

(
h1 +

ṁb

ṁ2.0
h1

)
=

Psha f t

ṁ2.0
+(1+F)h7.1−h1 +

ṁb

ṁ2.0
(h7.1−h1) (4.8)

Plugging equation (4.8) into equation (4.4) we have

LHV =

(
1+ ṁ f

ṁ2

)
h3−h2

ṁ f
ṁ2

ηb
≈

Psha f t
ṁ2.0

+(1+ ṁ f
ṁ2
)h7.1−h1 +

ṁb
ṁ2.0

(h7.1−h1)
ṁ f
ṁ2

ηb
(4.9)

as desired.

4.4 A Method for Estimating Lower Heating Value

This section discusses the energy balance equation that is the basis of our LHV estimation.

We state the balance equation across the burner which can be found in most gas turbine related
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technical books [Mat96][Kia02]

ηb =
Q̇actual

Q̇theoretical
=

(ṁ2.4 + ṁ f )h3.0− ṁ2.4h2.4

ṁ f LHV
(4.10)

From this equation, we can make use of control volumes through the compressor and turbine and

apply energy balances to work out the approximation:

(ṁ2.4 + ṁ f )h3.0− ṁ2.4h2.4

ṁ f LHV
≈

Psha f t
ṁ2.0

+(1+ ṁ f
ṁ2
)h7.1−h1 +

ṁb
ṁ2.0

(h7.1−h1)
ṁ f
ṁ2

LHV
(4.11)

In equation (4.11) we are using the convention Pturbine = Psha f t +Pcompressor +Plosses, where

Plosses << Psha f t +Pcompressor and are dropped in the approximation. Written another way, we

have

LHV =

Psha f t
ṁ2.0

+(1+ ṁ f
ṁ2
)h7.1−h1 +

ṁb
ṁ2.0

(h7.1−h1)
ṁ f
ṁ2

ηb
(4.12)

Equation (4.12) yields a direct solution to solving for the LHV of the fuel. However, there are

two unknowns in (4.12), ηb and LHV . With only one equation, and the goal being to estimate

LHV, we assume a reasonable value of ηb and proceed.

With an assumption of burner efficiency and a set of N data points, we have an over-

determined system. However, to find the optimal LHV given our set of data, we may perform a

least squares fit. Define the following quantities:

x = LHV A =
ṁ f

ṁ2.4
ηb b =

Psha f t

ṁ2.4
+

(
1+

ṁ f

ṁ2.4

)
h7.1−h1 +

ṁb

ṁ2.4
(h7.1−h1) (4.13)

The problem of solving for LHV in (4.13) takes on the familiar form Ax = b, which has a least
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squares solution[Str88].1

x = (AT A)−1AT b (4.14)

so that x = LHVo, the optimal LHV, in equation (4.14). While this does yield the optimal LHV in

a least squares sense, we very well may have an error percentage that is unfavorable, where the

error percent is given as

eLS = 100
(

LHVo−LHVreal

LHVreal

)
(4.15)

This is due to the approximations that were made in deriving equation (4.11). A natural

question is, can we make this estimate better without introducing the complexities that were

approximated? The next subsection provides a solution to this new problem in the form of

modeling the error function.

4.4.1 Error Modeling and More Accurate Estimates of LHV

In the previous section, we were able to write down an energy balance that provided the

base calculation for LHV. We then cast the problem as a least squares problem when given N > 1

sets of data points and solved for the optimal LHV value, LHVo. We last checked the percent

error, eLS and noted that eLS may be larger than acceptable for engineering purposes. In this

section, we describe a method for reducing eLS without having to alter the approximations that

were made to derive equation (4.11).

We know that in solving Axxx = bbb, we found the optimal xxx in the least squares sense, which

means ||Axxx−bbb||2 = eeeLS has been minimized. Therefore, we return to equation (4.12) where the

real LHV value is used to see what can be done about errors introduced from our approximation

of the thermodynamics.
1If the columns of A are independent, AT A is invertible
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Consider the scalar case, equation (4.12), then for each set j of data points. Let,

E j =

(
Psha f t

ṁ2.4
+

(
1+

ṁ f

ṁ2.4

)
h7.1−h1 +

ṁb

ṁ2.4
(h7.1−h1)

)
j

|e j|=

∣∣∣∣∣
(

LHVreal
ṁ f

ṁ2.4

)
j
ηb−E j

∣∣∣∣∣≥ 0 (4.16)

where e j is the error introduced from our approximate modeling for data set j and not the same

as eLS. Moving back into matrix form and rearranging equation (4.16), we find

Axxx = bbb− eee (4.17)

and from the above discussion, we wish to find a function f (·) = e. We choose a second order

polynomial function due to the shape of modeling errors (shown in Figure 4.3).

e j = f (T1( j),Psha f t( j)) = α1T1( j)+α2T 2
1 ( j)+α3Psha f t( j)+α4P2

sha f t( j)+α5T1( j)Psha f t( j)

(4.18)

Now that we have defined f , we need only fit the parameters αi. This can be done easily using

any scripting language such as Matlab or Python, and could even be done in Excel with enough

perseverance. The essential point is that the data used to fit the parameters, that is, the “ training

data”, must span a wide range of LHV values, and to be safe, a wide range of SG values. This

can be summed up by spanning a wide range of Wobbe Index values. Once this data is collected,

estimating each αi is a simple least squares estimate.

To summarize, the process of fitting f should go as follows:

Algorithm 1 (Solution Algorithm). 1. Create fuel compositions either by hand or using So-

lar’s GFS tool
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2. Import the set of fuels into a high fidelity simulation such as Solar’s performance simulator

and for each specified fuel, run the simulation and save the results

3. Using the true LHV (specified by the fuel), create equation (4.16) in matrix form

4. Concatenate all error vectors into a single error vector

5. Build matrix A: A =

[
T1 T 2

1 Psha f t P2
sha f t T1Psha f t

]
6. Solve the Ax = b problem for x∗ = LHVo

4.5 Model Corrections

4.5.1 Estimating LHV from a Single Set of High-Fidelity Data

For this first example, we will have a gas composition that yields LHVreal = 18827 and

SG = 0.6748. Our goal is to estimate LHV to highest degree of accuracy. Our engine is the

Taurus 60, rating 7901, conventional combustion. If SoLoNOx engines are used, this analysis will

only work at full load when the bleed valve is closed. Note that Solar’s performance simulation

data needs to be converted to correct units before modeling can occur; we will show both English

Engineering units as well as SI units.

To get correct values of W2.4, we rely on bleed flow percentages developed and maintained

by Solar’s Engine Performance group. Then, we have W2.4 =WC2 = (1−bleed%)WC. When

calculating the fuel to air ratio, one must use FAR =WF/WC2 to get the true fuel to air ratio the

burner sees.

After performing the calculations above, and using equation (4.11), we can calculate the

point wise LHV values shown in Figures (4.2) and (4.4).

We see that while the error is not atrocious, it is still beyond what we would normally

want to see in an engineering calculation. This motivates the least squares calculation discussed
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Figure 4.2: Example point wise LHV calculation from energy balance equation. Actual LHV =
18827 [btu/lbm], point wise mean value LHV = 19028 [btu/lbm].

above. The result of this calculation is seen in Figure 4.5 where the energy balance error resulting

from our least squares fit is shown as a function of sequential data points.

From Figure 4.5, we see that we have approximately 1.5% error. However, we still have

not found LHV to satisfactory accuracy. Therefore, we use our error model to remove the error

present in our calculation. In reviewing Figure 4.7, we find that error in our LHV calculation has

dropped considerably, from 1.5% to -0.0767% error!!

Now, the reader may be thinking, “Of course the error is gone, the model is over-fit to the

data ... etc,” since it was built on this specific data set. To that we respond, you are absolutely

right. It is not until we train f across multiple data sets with varying fuel compositions and then

apply it to a fuel it has not seen that we will really determine how valuable this approach is. We

do this in the next section.
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Figure 4.3: Example point wise LHV calculation from energy balance equation. Actual LHV =
18827 [btu/lbm], point wise mean value LHV = 19028 [btu/lbm]. Note the slight curvature in
both the T1 and Power coordinates. This led to the choice of a quadratic function f in these
variables to model the error.
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Figure 4.4: ,
point]Example point wise LHV calculation from energy balance equation using only 90% - 100%
load data points. Actual LHV = 43792 [kJ/kg], point wise mean value LHV = 44804 [kJ/kg].

Figure 4.5: Energy balance equation error using LHVo (see eq. 4.16). Actual LHV = 43792
[kJ/kg], least squares LHV = 44440 [kJ/kg], 1.48% error.

77



Figure 4.6: Energy balance real equation error and f model of error.

Figure 4.7: ,
least squares LHV = 43791.54]Energy balance equation error using LHVo after f has been applied.
Actual LHV = 43791.88 [kJ/kg], least squares LHV = 43791.54 [kJ/kg], -0.0013% error.
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Figure 4.8: Selected fuels bulk properties, LHV and SG.

4.5.2 Fitting f Across Varying Fuels

We wish to build a global function f which can account for many variations in fuel

compositions, and specifically, variations in (LHV,SG) pairs. Recall, in Section 4.4.1, we defined

the function f in equation (4.18), which was

f (T1,Psha f t) = α1T1 +α2T 2
1 +α3Psha f t +α4P2

sha f t +α5T1Psha f t

and gave an algorithm for solving for the coefficients in Algorithm 2.

We now see why a quadratic function was chosen, since the errors appear to have slight

quadratic characteristics as seen in Figure (4.3). This characteristic is persistent across varying

fuels. We have assembled 47 different fuel compositions and run the corresponding Solar

performance simulation with the procedure outlined at the end of Section 4.4.1 with conditions

specified at the beginning of this section. Figures 4.8 and 4.9 present the fuel data, showing SG,

LHV and WI for each individual fuel composition.

The process of finding gas fuel compositions is a tedious one. In order to get realistic

compositions, one must mine through Solar’s GFS tool. There is a search feature where one can
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Figure 4.9: Selected fuels WI.

search for “Taurus 60” engines, but from there, must select each study separately to see the fuel

specifications. In order to build the data set for f , we went through GFS studies from 5/1/17 to

8/1/17 and tried to select fuels that differed in both LHV and SG. No attempt was made to force

variation of unique molecules present in the gas composition, nor was there any attempt to limit

gas compositions to non-compound molecular constituents. Once the GFS study numbers are

known, one can load these into the Solar performance simulation to specify the fuel composition

and then run the simulation with the conditions given. At this point, the simulation results can

be saved as .csv file format to be brought into a computing environment. We continue with the

process in Section 4.4.1 to finish fitting f to the large data set.

In determining the effectiveness of our method defined in Section 4.4, we will use a global

f and test it against various sets of hold out data. This process is called cross validation, which

we briefly explain below.

We are using k-fold cross validation [JWHT13] here. We select 43 of the 47 data sets to

train f , then for the remaining 4 data sets, we calculate LHVo using f by combining results from

equations (4.14) and (4.17). Therefore, for a given iteration we have,
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LHV
ṁ f

ṁ2.4
ηb =

Psha f t

ṁ2.4
+

(
1+

ṁ f

ṁ2.4

)
h7.1−h1 +

ṁb

ṁ2.4
(h7.1−h1)− f (4.19)

with the following identifications, from equations (4.13), we find the update as

b̄ =
Psha f t

ṁ2.4
+

(
1+

ṁ f

ṁ2.4

)
h7.1− ch1 +

ṁb

ṁ2.4
(h7.1−h1)− f

and then

LHVo = (AT A)−1AT b̄ (4.20)

We then continue this process k−1 more times, each time choosing a new set of 4 hold out data

sets that have not previously been used. We continue this process until all engines have been used

as hold out data.

The median error in performing cross validation is -0.276% which is remarkably

better than using equation (4.13) by itself.

4.6 Conclusion

In this chapter we applied a hybrid approach to the application of physics based models

and purely data-driven models. We started with first principles to derive a physics based model.

We then gathered a large range of WI fuels along with their LHV and SG values and used these

fuels to produce an error set based on the physics only model. We then developed an error

function that we fit to the error from the physics only model. Adding the error model to the

physics only model gave us the hybrid model which produced superior accuracy.

The hybrid model cross validation accuracy is excellent, and shows that we can estimate
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LHV from high fidelity physics simulation data for the selected engines. We note that nothing has

stopped us from creating two global functions, f1 and f2, one for high Wobbe fuels and one for

low Wobbe fuels. In doing so, the errors get smaller still, but to the small error already observed,

we accept a single function, f . Further research will aim to test this method out on actual field

data, with varied WI fuels.

Chapter 4, in full, has been written based on patent application number 15852411. The

dissertation author was the primary investigator and author on this patent application.
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Chapter 5

Axial Compressor Fouling and its Effect on

Gas Turbine Fuel Consumption and

Emissions

5.1 Introduction

Chapter 5 continues the hybrid modeling approach. In this chapter we develop an equation

that accurately models fuel flow based on compressor performance parameters. The motivation

for this chapter stems from the discussion in Section 1.2.2 as well as part of the problem defined

in Section 1.3.1.

Our primary goal is to generally quantify the incremental difference in fuel flow attributed

to compressor fouling. We additionally show how this can be used in optimizing compressor wash

schedules and used to estimate bounds on the emissions associated with running in a fouled state.

Our results provide operators of gas turbines with a set of equations that can be used to accurately

calculate additional fuel consumption due to fouling but also predict the costs associated with
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running in fouled states as it pertains to fuel and emissions.

Section 5.3 provides a literature review of how axial compressor fouling has been applied

in simulations and how these applications compare with measurements from fouling field data.

Section 5.4 contains a derivation of a physics based equation to calculate the increase in fuel

consumption dependent on the compressor performance parameters: air mass flow (ṁa), isentropic

efficiency (ηc) and pressure ratio (Prc). By subtracting the nominal fuel flow for the given state of

the GT and surrounding, we are able to quantify the additional fuel flow resulting from running

the GT in its fouled state. In Section 5.5 we validate our equation using test cell data from Solar

Turbines and a gas turbine simulation using the Numerical Propulsion System Simulation (NPSS)

software. Section 5.6 applies the derived equation to optimizing compressor wash programs and

predicting increases in CO2 emissions.

5.2 Chapter Notation

Zc Zaba site scaling factor

V̇ Compressor volume flow

ηp Compressor polytropic efficiency

ηc Compressor isentropic efficiency

ηt Turbine isentropic efficiency

ηb Combustor efficiency

Pa Ambient Pressure

Pi Stagnation pressure at station i

Ti Stagnation temperature at station i

∆Ti j Ti−Tj

δx Aerodynamic scaling factor for component x

ĉx(·,·) Estimated specific heat (constant x) over temperature range (·, ·)

84



R Gas specific gas constant

γ̂x Specific heat ratio for section x from ĉx(·,·)

ṁ f Mass flow of fuel

ˆ̇m f Estimated Mass flow of fuel

K Nondimensional flow correction coefficient

QR Lower Heating Value of Fuel

ṁa Mass flow of air

Prx Pressure ratio across station x

Ẇsh Shaft Output Power

Ω Reduced order set of nonlinear equations

αi Compressor performance parameter i

x∗ Value of parameter x at nominal condition

ζ Scaling factor

nx Number of moles of a specified substance x

Mx Molar mass of substance x

mx Mass of substance x

Kp Chemical Equilibrium constant for gaseous mixture

ma(24) Simple 24 hour moving average

5.3 Review of Fouling Relationships

It is clear that compressor fouling leads to overall loss in performance. For the industrial

gas turbine, this can be of large consequence to revenue as power generation applications often

rely on nominal performance to meet their production needs [HTSS11]. As mentioned in the

introduction, additional fuel flow can be supplied to the combustor in an attempt to regain lost

shaft power at the expense of higher turbine inlet temperatures. However, this can only occur up
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to a limit, as additional heat beyond the material limits would reduce the remaining useful life of

hot section components [GAF+18].

A literature review conducted by the authors led to some insight in how degradation is

generally imposed by researchers and the effect it typically has. Often, to simulate degradation,

multiplicative constants are applied to typical compressor map parameters to scale the compressor

map [MHFW89, KBW09, MHBS13, K+18, BK18]. However, one must be careful in how these

factors are applied as physical laws must be maintained for a simulation’s results to be valid with

reality. To ensure this, we have also included data from field studies [BK18, Zab80, IPF+14]

as well as field data from Solar Turbines. In the papers we reviewed, most applications of

degradation have been in line with actual field data. We present results compiled from a number

of published papers as well as data from a Solar Turbines’ engine in Figures 5.1 and 5.3. We first

introduce the following notation and definition:

Definition 1 (Compressor Performance Parameters). Define η∗c , ṁ∗a and P∗rc to be the nominal

compressor performance parameter values at full load. Then, the compressor performance

parameters are

α1 = ṁa/ṁ∗a α2 = Prc/P∗rc α3 = ηc/η
∗
c

As an example, applying a 1% reduction in compressor pressure ratio yields,

Prc = P∗rc−0.01P∗rc = 0.99P∗rc = α2P∗rc and α2 = 0.99 = Prc/P∗rc

The data shown in Figure 5.1 indicates that the relationship between reduction in compressor air

mass flow percent and reduction in compressor pressure ratio percent is approximately 1:1.

The data shown in Figure 5.2 has wider variation than Figure 5.1. However, there is

strong agreement between the two field data sources, namely Zaba et. al. [Zab80] and Igie et.

al. [IPF+14]. From the field data and simulations, we conclude that the relationship between

86



Figure 5.1: Relationship of multiplicative constants applied to compressor mass flow of air and
compressor pressure ratio. Note that square markers indicate actual measured data, whereas
circle markers are values from simulations. Sources with X .5 indicate when a source had two
different simulations.

Table 5.1: Figures 5.1, 5.2 and 5.1 References

[1] [MHFW89]
[6][6.5] [MHBS13]

[13][13.5] [KBW09]
[14] [K+18]
[15] [BK18]
[17] [IPF+14]
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Figure 5.2: Relationship of multiplicative constants applied to compressor mass flow of air and
compressor isentropic efficiency. Note that square markers indicate actual measured data,
whereas circle markers are values from simulations. Sources with X .5 indicate when a source
had two different simulations.
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Figure 5.3: Relationship of multiplicative constants applied to compressor pressure ratio and
compressor isentropic efficiency. Note that square markers indicate actual measured data,
whereas circle markers are values from simulations. Sources with X .5 indicate when a source
had two different simulations.
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compressor air mass flow percent reduction and compressor isentropic efficiency percent reduction

is approximately 2:1.

The data shown in Figure 5.3 again has wider variation. However, when limiting the

compressor pressure ratio percent reduction to 3%, the field data appear linear, with slopes

ranging from approximately 1 to 3. In general, we conclude the relationship between compressor

pressure ratio percent reduction and compressor isentropic efficiency percent reduction is approx-

imately 2:1, which, when coupled with the conclusions from Figure 5.3, further supports the 1:1

relationship between compressor air mass flow percent reduction and compressor pressure ratio

percent reduction found from Figure 5.1.

Stating these observations in terms of Definition 1, the relationships identified in the

literature are given in the following remark.

Remark 1. Empirical compressor fouling rules estimated from previous compressor fouling

simulations and field data can be established according to Definition 1 as:

α1 ≈ α2 ≈ 2α3−1. (5.1)

The primary conclusion we have drawn from the literature review is that fouling multi-

plicative factors have approximately linear relationships in the 0%-5% fouling regime. Indeed,

the linear relationship between efficiency and airflow was studied by Zaba et. al., in which they

derived an empirical relationship between compressor volume flow decrease (∆V̇ ) and polytropic

efficiency decrease (∆ηp) due to fouling, expressed as

∆V̇
V̇

= Zc
∆ηp

ηp
(5.2)

Isentropic efficiency can be written as a function of polytropic efficiency and pressure ratio

(assuming constant specific heat ratio). We can relate (5.2) to isentropic efficiency, by holding

pressure ratio constant. The effect is that for a given pressure ratio, small changes in polytropic
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Figure 5.4: Relationships between polytropic and isentropic efficiency for constant pressure
ratios. The relationships are linear and the slopes have small changes for wide ranges of
pressure ratio.

efficiency correlate linearly with changes in isentropic efficiency. If we then allow for small

changes in pressure ratio, the linear relationship persists, with nearly negligible changes in slope.

These effects are observed in Figure 5.4.

When taken together, we conclude that a linear relation adequately models small changes

in ηp and Prc, which lead to small changes in ηc. Therefore (5.2) supports the linear relationships

found in (5.1).

We note that site specific causes influence these relationships. Hepperle et. al studied

some of these effects as they relate to (5.2) and concluded that the linear relationship was indeed

valid and that the slope varied between 1.5-2.5, depending on site conditions [HTSS11].

We conclude this section with a look at the Solar engine data reported among the findings

in Figure 5.5 with data from a Titan 250 engine operating in Asia. In the figure, an online water

wash is observable 05-2019.
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Figure 5.5: Solar Turbines Titan 250 compressor fouling that occurred at site. The fouling rate
can be seen to be approximately linear until the final days of data, when the pressure ratio
fouling rate becomes nonlinear.

Consider the moving average data before the water wash. In terms of (5.1), Figure 5.5

shows that α̂3 ≈ 0.9925, which leads to a calculation of α̂2 = 0.985, quite close to the observed

value α2 = 0.981.
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Figure 5.6: Standard station numbering

5.4 Calculating Fuel Mass Flow Based on Fouling

Parameters

Industrial gas turbines produced by OEMs typically undergo myriad tests before delivery

to the customer. During these tests, the test rig is usually outfitted with a wide array of calibrated

measurement devices, providing a richer set of valuable data upon completion of these tests. We

will utilize this augmented data set to calculate least squares estimates for various parameters of

our model at the nominal state. We shall use the standard [Mat96] numbering system throughout

this chapter, presented in Figure 5.6.

We approximate the pressure drop across the combustor as a percentage of the compressor

discharge pressure by scalar δcomb in (5.3). The exhaust outlet pressure drop can similarly be

expressed with scalar δex in (5.4), applied to ambient pressure. This type of approximation can be

applied to the inlet as well; however, compressor inlet pressure is monitored on most industrial

gas turbines in operation, alleviating the need for this approximation.

P4 = δcombP3 with, 0.9 < δcomb < 1 (5.3)

P5 = δexPa with, 1 < δex < 1.10 (5.4)

Prc = P3/P2 (5.5)
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These scalar values are assumed to negligibly vary at full load between nominal operation and

degraded operation; thus, we set these as constants, determined from an engine’s test certification

data.

The equations used to simulate steady state GTs can be found in various textbooks

[Mat96, SRC01, Boy12] and are not reproduced here. Note that bleed air is assumed a small

fraction of the total flow through the gas path, and is neglected. The error imposed by this

assumption is mitigated when we consider the reduced order model, by inclusion of a flow

correction coefficient, K, in section 5.4.1.

Since we are interested in fouling at full load operation, we assume a constant value for

ηt , allowing us to isolate compressor fouling. Both QR and R are known constants. Then, given

the values of Pa, ṁa, Prc, ηc, and Ẇsh, a solution vector s̄ss can be obtained by numerical simulation,

where

s̄ss = (ṁ f ,P3,P4,P5,T3,T4,T5,cp23,cp34,cp45,cv23,cv34,cv45,γc,γt)

yielding all gas path parameters of interest.

5.4.1 Steady State Gas Turbine Simulation: Reduced Order

Our first goal is to derive a closed form equation that quantifies the incremental change of

fuel flow resulting directly from compressor fouling. Such an equation can be used by operators

of GTs who do not have engine design software or full thermodynamic models of their machinery,

to track changes in fuel consumption attributable to compressor fouling.

The full set of equations used to simulate a GT cannot be solved analytically to give fuel

flow as a function of compressor performance parameters, due to nonlinearities in temperature

variables in the specific heat equations. In order to find a reduced set of equations, we fit a linear

regression model to the specific heat functions over the two temperature intervals of interest,

94



namely (T2,T3) and (T5,T4) as seen in (5.6)-(5.8), where the regression variables are α2 and α3.

ĉp23(α2,α3) = 0.24986+0.00472α2−0.00889α3 (5.6)

ĉp34(α2,α3) = 0.30599+0.00450α2−0.03758α3 (5.7)

ĉp45(α2,α3) = 0.32912−0.00439α2−0.04778α3 (5.8)

The data used to fit these functions comes from numerically solving the standard set of equations

for 48 unique fouling cases, where α1, α2 and α3 have been allowed to independently decrease

by a maximum of 4%.

To validate the specific heat functions, a simple gas turbine was modeled using the

Numerical Propulsion System Simulation (NPSS) environment. We will discuss the specifics of

the model in a later section. The maximum error from (5.6)-(5.8) compared with the full NASA

CEA function values yielded from the NPSS simulation gave

max
T∈(Ti,Ti+∆T )

|cp,NASA− ĉp| ≤ 1×10−3%

where i is an integer indicating a GT station number. This result indicates excellent agreement in

the temperature ranges of the GT simulation.

The low error magnitude is to be expected. As the compressor fouls, the temperature

intervals (T2,T3) and (T5,T4) become slightly elongated, but since the ĉp equations (5.6)-(5.8)

are fit over this range, the slight increase has minimal effect on accuracy.

We substitute the corresponding ĉp equations into the standard equations to find our

reduced set of equations Ω. Note that the primary difference between Ω and what we refer to as

a full set of equations are those equations linking the Cp, Cv and γ equations with the ideal gas

model.
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Ω =



0 = T2P
γ̂c−1

γ̂c
rc −T2−ηc∆T32

0 = ∆T54−T4ηt

(
P

γ̂t−1
γ̂t

rt −1
)

0 = (ṁa + ṁ f )ĉp45∆T45−Ẇsh− ṁaĉp23∆T32

0 = ĉp34((ṁa + ṁ f )T4− ṁaT3)−ηbQRṁ f

0 = δcombP3−P4

0 = δexPa−P5

0 = P3−PrcP2

where γ̂ = ĉp/(ĉp−R) and ĉp = ĉp(α2,α3) as defined in equations (5.6)-(5.8). Then, Ω is a

system of 7 equations in 7 unknowns, and in particular, is linear in ṁ f . This allows us to solve

the system in closed form for ṁ f as a function of fouling parameters and parameters typically

measured on an industrial GT.

5.4.2 Incremental Fuel Mass Flow as a Result of Compressor Fouling

A closed form equation for the fuel mass flow, based on compressor pressure ratio,

compressor isentropic efficiency, and the mass flow of air, is derived by solving Ω algebraically.

The solution is given as the mass flow function (MFF) and relies only on inputs that are

generally measured on a typical industrial gas turbine with exception to compressor airflow, and

is presented below in equation (5.9),

ˆ̇m f (ṁa,Prc,ηc,T2,P2,Pa,Ẇsh) = K
ĉp34

(
a+ bc

d

)
P

1
γ̂c

rc ηbηcQR

(5.9)
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where

a = ṁaT2

(
Prc +(ηc−1)P

1
γ̂c

rc

)
b = δcombP2Prc

(
δexPa

δcombP2Prc

) 1
γ̂t

c = ĉp23ṁaT2

(
Prc−P

1
γ̂c

rc

)
+ηcẆshP

1
γ̂c

rc

d = ĉp45ηt

(
−δexPa +δcombP2Prc

(
δexPa

δcombP2Prc

) 1
γ̂t

)

K = non-dimensional flow correction coefficient (5.10)

where the terms not appearing as arguments to the function are known constants.

To isolate the effect of compressor fouling, we hold Pa and Ẇsh constant. We expect

Ta ≈ T2. We assume P2 variation is negligible as fouling occurs in the range considered and

that the significant portion of changes in air mass flow come from changes in air velocity. This

assumption has been confirmed using the compressor stage stacking technique, in which inlet

velocity triangles have airflow reductions represented by reductions in the magnitude of absolute

and relative velocity vectors [MHFW89, LS86]. Furthermore, application of Bernoulli’s equation

through the inlet supports this claim. Taken together, the result provides us with the fuel mass

flow equation dependent only on compressor parameters:

ˆ̇m f = ˆ̇m f (Prc, ṁa,ηc)

and the change in fuel mass flow resulting solely from compressor fouling is given by the
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incremental fuel mass flow equations,

∆ ˆ̇m f = ˆ̇m f (ṁa,Prc,ηc)− ˆ̇m f (ṁ∗a,P
∗
rc,η

∗
c) (5.11)

%∆ ˆ̇m f = 100
( ˆ̇m f (ṁa,Prc,ηc)

ˆ̇m f (ṁ∗a,P∗rc,η∗c)
−1
)

(5.12)

Taken together, (5.9)-(5.12) fully quantify the incremental difference in fuel flow due to

compressor fouling, for a given load and ambient condition.

5.5 Validation of the Mass Flow Function with Test Cell Data

and Simulations

The mass flow function (5.9) has a non-dimensional flow correction coefficient K (5.10).

This value can be estimated from test cell data by implementing a least squares criterion given a

data set with varying loads and a fuel blend similar to the expected site fuel blend. The coefficient

calibrates for modeling simplifications, such as bleed flows out of the compressor and into the

turbine, in solving Ω for ˆ̇m f .

5.5.1 Test Cell Validation

To validate (5.9), we have collected 18 Solar Turbines Titan 130 engines’ test cell data

and used the least squares approach to estimate individual values of K for each engine. Every

engine is from the same engine power rating, where both conventional and SoLoNOx engines

have been included. Furthermore, we have assembled one complete test run per engine that will

be used to estimate that engine’s K value. Typical results are shown in Figure 5.7. We have

included data ranging from 50%-100% maximum load to show how well (5.9) performs even

when the full load assumption is violated.

As can be seen in Figure 5.7, the agreement of equation (5.9) is best at full load, which is
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Figure 5.7: Engine # 6 test cell data. The top plot shows the % maximum load throughout the
test. The bottom plot shows percent error between measured flow and calculated flow from
equation (5.9), where α1 = α2 = α3 = 1. Note that for the duration of the test, T2, P2 and Pa

vary less than 0.5%.

expected since full load data dominates the data set with which we apply least squares. That is

to say, equation (5.9) has excellent agreement with measured data at or slightly below full load

operation as intended.

We show each individual engine’s K value in Figure 5.8. The conventional data set

contains two outliers, for which we have not yet identified the cause. Once the outliers are

removed, both the conventional and SoLoNOx engines have nearly identical estimated K values.

Remarkably, there is strong evidence that the K value is not dependent on the combustion

system, nor is it dependent on the specific engine. This suggests that equation (5.9) captures the

general physics of the GT and that our modeling assumptions are not too restrictive.

The total error is presented in Figure 5.9, given in %, from all 18 of the test cell data sets

(approximately 20 hours running time, with a 2Hz sampling rate with load between 100%-50%

of maximum load). The error is calculated as
( ˆ̇m f−ṁ f

ṁ f

)
×100 where ˆ̇m f is the calculated flow

99



Figure 5.8: Estimated K values from Solar Turbines’ test cell data using least squares
estimation.

Figure 5.9: Error from test cell data. 93.8% of error is within ±1% of zero. Errors breaching
this band occur when the engine is running at part load.
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and ṁ f is the measured flow. As can be seen, the significant majority of error is within ±1%

error, indicating excellent agreement at nominal conditions. Surprisingly, the deviation observed

between 90% - 50% load is quite small. The error making up the “tails” of the distribution in

Figure 5.9 are traceable to non-full load operation, where the largest error is observed at 50%

load and is approximately 5.5%.

5.5.2 NPSS© Simulation

We develop a NPSS model of a simple cycle turbo shaft with attached generator to further

validate equation (5.9) and perform fouling simulations. The industrial gas turbine model requires

a number of initial conditions or design values to be specified initially which are listed in Table

6.1. Note that the turbine design pressure ratio is presented as P4/P5 in the table. The values

found in table 6.1 will remain constant unless otherwise noted.

Table 5.2: NPSS Model Initial Conditions.

Ambient Static Pressure 14.696 [psia]
Ambient Static Temperature 519 [◦R]
Inlet Pressure Loss % 20%
Cmp. Design Pressure Ratio 14.7
Cmp. Design Air Mass Flow Rate 45.2 [lbm/s]
Cmp. Design Isentropic Efficiency 0.85
Fuel LHV 21496 [btu/lbm]
Combustor Pressure Loss % 2.5%
Combustor Efficiency 0.98
Turbine Design Pressure Ratio 11.07
Turbine Design Efficiency 0.895
Exhaust Outlet Pressure Loss Percent 2.68%
Shaft Design Speed 10000 [rpm]
Generator Design Efficiency 0.95
Electric Load In 5395 [kW]

101



NPSS Simulation Notes

In the design simulation, there is no assumed fouling and the NPSS model is in “Design

Mode”. The NPSS solver is set up with independent variable as fuel mass flow rate and dependent

variable as overall shaft net torque. The fuel mass flow rate is varied to achieve an overall shaft net

torque of zero at the design condition. Requiring zero net shaft torque ensures that a mechanical

steady state condition has been reached.

In the off-design simulation, the NPSS model is set to “off-design” mode and is put into

“audit-mode” and prescribed fouling conditions are given as initial conditions. Here, the NPSS

audit factors are invoked as positive scalar values less than unity, which represent the compressor

performance parameters in Definition 1. The NPSS solver adds dependent variable, static exhaust

outlet pressure, and independent variable, turbine pressure ratio. Requiring a specific exhaust

outlet pressure constrains the flow through the gas path to be physically consistent based on

design assumptions. Varying the turbine pressure ratio to an off-design point ensures that the

turbine efficiency remains constant, which isolates the effect of various degrees of compressor

fouling.

NPSS Simulation

The NPSS simulation results are found by allowing α1, α2, and α3 to vary independently

of each other and without respect to time. In general, the fouling parameters increase with

the simulation number. While these factors are certainly coupled through aerodynamic and

thermodynamic relationships as shown in Figures 5.1, 5.2, and 5.3, by allowing them to vary

independently we are able to validate the agreement between NPSS and (5.9).

Figure 5.10 presents the set of 216 different fouling regimes and their corresponding fuel

flow, as a percent of nominal flow, calculated with the NPSS fouling simulation. The nominal fuel

flow is given in the first simulation and carried through as the dotted orange line for reference.
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Figure 5.10: NPSS simulation output with αi varied independently along with predictions from
(5.9). Note the red squares indicate points where the fouling relationships (5.1) are satisfied.
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Black circles represent the NPSS output and green x’s are the output from the MFF equation (5.9).

The K value was fit by applying a least squares criterion to the total NPSS output. The total error

follows a Gaussian distribution with zero mean and maximum error of less than ±0.2%, showing

remarkably good agreement between (5.9) and NPSS.

We highlight with red squares the points consistent with the observations in (5.1), to show

the effect of aerodynamic and thermodynamic couplings gleaned from data. These points are

required to satisfy |α1−α2| ≤ 0.01 and 0.02≥ α3−α1 ≥ 0 for the range of α1 ∈ [0.95,1]. Select

constrained simulation results are given in Table 5.3. It can be immediately concluded that as

fouling becomes more severe, additional fuel flow must be supplied to supplement the losses in

the compressor when holding output power and ambient conditions steady.

As seen by the results, simply allowing the compressor performance parameters to vary

independently produces a wide grid of possible changes in fuel flow, both positive and negative.

However, only a small band of simulation values appear in line with data found in the literature.

For the most severe fouling case, where (α1,α2,α3) = (0.95,0.95,0.97), equation (5.12)

gives

%∆ṁ f = 2.14%

which appears in agreement with values reported in the literature.

5.6 Diagnostics, Compressor Wash Optimization and

Estimated Emissions

Section 5.5 has shown that equation (5.9) accurately calculates fuel flow. Therefore,

both (5.11) and (5.12) can be trended in time to provide a diagnostic of incremental fuel flow

attributable to compress fouling. This provides operators of GTs a diagnostic that identify and/or
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Table 5.3: Simulation Results With αi Constraints. Mass flow units in [lbm/s].

α1 α2 α3 ṁ f ,NPSS ˆ̇m f %∆ ˆ̇m f

1.00 1.00 1.00 0.8155 0.8167 0.15%
0.98 0.98 0.99 0.8215 0.8220 0.81%
0.98 0.97 0.99 0.8235 0.8239 1.04%
0.97 0.97 0.99 0.8218 0.8220 0.80%
0.97 0.97 0.98 0.8275 0.8274 1.47%
0.97 0.96 0.98 0.8294 0.8294 1.71%
0.96 0.96 0.98 0.8278 0.8274 1.47%
0.96 0.95 0.98 0.8298 0.8294 1.71%
0.95 0.95 0.98 0.8281 0.8275 1.47%
0.95 0.96 0.97 0.8317 0.8309 1.89%
0.95 0.95 0.97 0.8338 0.8329 2.14%

corroborate the severity of compressor fouling. One implementation is to solve for the αi for

i = 1,2,3 parameters necessary to match an observed fuel flow; that is, solve the minimization

problem,

min
α1,α2,α3

||ṁ f − ˆ̇m f ||2

for a given data set to estimate the severity as exhibited by the αi parameters. However, this

approach may have more than one solution. Another implementation is to use the rules found

in (5.1) and substitute them into (5.9) to find ˆ̇m f (α3,T2,P2,Pa,Ẇsh) which then depends only on

commonly measured parameters. Therefore, multiple diagnostics can be constructed using (5.9)

in some form.

In this section, we use the rules in (5.1) substituted into (5.9) unless otherwise specified.

We find a first order approximation for the percent change in compressor isentropic efficiency and

percent change in fuel flow, holding ambient conditions and output power constant. In the range

of parameters observed on smaller industrial gas turbines (30 MW or less), we can state (5.12) as,

%∆ ˆ̇m f ≈−ζ(%∆ηc) (5.13)
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where %∆ηc = α3− 1 ≤ 0 and ζ ∈ [0.65,0.75]. Considering the example from section 5.5.2,

ζ = 0.687.

Equation (5.13) offers a linear function such that we can impose α3 = α3(t), so that

changes in fuel can vary in time with varying levels of compressor fouling. This time varying

property becomes necessary when making predictions into the future, such as when an operator

decides how to create a compressor wash schedule or tries to predict how much additional

emissions could come from running in a fouled state. We discuss details of both scenarios in the

next sections.

5.6.1 Optimizing Compressor Wash Schedules

An optimal compressor wash program can be found by solving the general minimization

problem [ARDM12, AHdO19],

min
n

LP(t0, t,n) = min
n

(∫ t

t0
Cdeg(τ,n)dτ+nCM

)

where LP(t0, t,n) is the lost profit function representing total cost, [t0, t] is the interval of interest,

n is the number of washes in the interval, Cdeg(τ) is some function describing economic cost of

fouling and CM is a fixed cost of maintenance. In the case Cdeg(τ,n) does not include varying fuel

flow attributed to fouling, we can augment the problem statement by including (5.9) or (5.13). To

do this, we must first parameterize fouling in time.

It is well documented in the literature that compressor fouling can be approximated by a

decreasing linear function [HTSS11, BK18, MMG14, ARDM12, Igi17]. Using Definition 1 and

a set of field data, we can estimate the decline of isentropic efficiency by fitting θ to data such that

α3(t)η∗c = ηc(t) = η
∗
c−θt (5.14)
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where θ > 0 is now the unit of fouling for the specified unit of time and we require that 0 <

η∗c−θt < 1 to be consistent with physical reality. We substitute (5.14) into (5.13), to find

%∆ ˆ̇m f ≈−ζ(%∆ηc(t)) =−ζ
ηc(t)−η∗c

η∗c
×100 = ζ

θt
η∗c
×100 (5.15)

Equation (5.15) provides the approximate ratio of observed fuel flow to nominal flow per unit

time, at the constant ambient conditions. Therefore, we can integrate the result in time, for some

initial time t0, with reference to (5.12)

∫ t

t0
ˆ̇m f (τ)dτ≈ ṁ∗f

∫ t

t0

(
ζθ

η∗c
τ+1

)
dτ =

ζθṁ∗f
2η∗c

(t2− t2
0)+ ṁ∗f (t− t0) (5.16)

where the first term in (5.16) represents the accumulated flow due to fouling (the fouling term)

and the second term is the nominal accumulated flow.

Given some function P(t) representing the cost of fuel [$/lbm] in time, the fouling term

can be directly plugged into the general compressor wash optimization problem statement to

capture the effect of fouling in time,

min
n

LP(t0, t,n) = min
n

(∫ t

t0
P(τ)

ζθṁ∗f
η∗c

τ+Cdeg(τ,n)dτ+nCM

)

Note that the fouling term in (5.16) produces quadratic growth in time. Therefore, for a linear

rate of fouling in isentropic efficiency, θ, and a fixed fuel price, P(t) = P, the fuel cost associated

to fouling will grow quadratically in time. Should the fuel price be rising over the period of

consideration, the cost will grow faster than quadratically.

It is worth mentioning that the time interval considered [t0, t] is not constraining. Interme-

diate intervals can be used, where piecewise linear functions can approximate non-steady ambient

conditions and corresponding changes in fuel flow. Then, [t0, t] =
⋃N

i=0[ti, ti+1] with t = tN where
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N parameterizes the number of subintervals considered. With this, we have,

∫ tN

t0
ˆ̇m f (τ)dτ =

N−1

∑
i=0

∫ ti+1

ti
ˆ̇m f ,i(τ)dτ

where ˆ̇m f ,i represents (5.9) for given conditions in interval [ti, ti+1].

Consider the example in section 5.5.2 where ṁ∗f = 0.8167[lbm/s], η∗c = 0.85, and ζ =

0.687. Suppose isentropic efficiency degrades linearly by 4% over six months and that the GT

runs continuously. We can calculate an approximate cost of fouling by converting ṁ∗f to [lbm/day]

and assuming this value is a good proxy to daily fluctuations. If not, first create subintervals

as discussed above. Continuing, we find ṁ∗f = 70,563[lbm/day]. Plugging these values into

equation (5.16),

ζθṁ∗f
2η∗c

(t2− t2
0) =

0.687(2.2)(70563)
2(0.85)(104)

(1802) = 203,259[lbm]

therefore an approximately additional 203,000 [lbm], or 1.6%, of fuel are consumed due directly

to fouling over the six month period. From US Energy Information Administration, the US

Natural Gas Industrial price had an average value of 3.43 [$/103 f t3] from May to October in

2019. If we approximate natural gas here to be methane, with density ρ = 0.03547[lbm/ f t3], then

P = 0.0967[$/lbm] and the final cost of fuel due directly to fouling over six months is $19,655.

Industrial GTs used for power generation are often dual fuel, capable of running on either natural

gas or diesel fuel. For a GT running primarily on diesel, the total cost due to fouling could be

significantly higher. The example shows that the cost of additional fuel due to fouling is certainly

germane in the compressor wash optimization problem and should be included.

The above connection with compressor wash optimization uses (5.13), which is derived

from (5.9) and (5.1). Using (5.9) directly and without imposing (5.1), requires each of the

compressor performance parameters of Definition 1 to become time varying, which is a topic of

further research.

108



5.6.2 Estimating Additional CO2 Due to Fouling

Equation (5.9) provides an estimate of fuel flow and (5.11) provides the incremental

difference between nominal and fouled flow rates. These equations can be used to calculate

bounds on additional emissions of CO2 by applying chemical and mass equilibrium equations

when the fuel composition is known. At high enough firing temperatures, CO exists only in

trace amounts and almost every carbon atom either binds to oxygen to form CO2 or exits as

an unburned hydrocarbon molecule. This conclusion comes from analysis of the equilibrium

constant for the equilibrium equation,

CO2 −−⇀↽−− CO+0.5O2 where,

Kp(Tcomb)≤ Kp(1800K)≈ e−8.497 ≈ 2.04×10−4

where the adiabatic flame temperature is Tcomb ≤ 1800K = 3240◦R. Note that Kp = f (Tcomb) for

some function f and experimental values of Kp show that f is an increasing function [MSBB10]

of temperature and very small values of Kp imply equilibrium favors the reactants [AJ08], which

is CO2 in this case.

Recall that mx = nxMx where nx is the number of moles of substance x and Mx is the

molecular weight of substance x. Consider nx moles of a hydrocarbon fuel of molecular form

CvHw. This fuel molecule contains v carbon atoms, therefore an upper bound on the number of

moles of CO2 emitted by combustion of nx moles is given by

nCO2,act ≤ nxv (5.17)

and correspondingly, an upper bound on the mass [lbm] of CO2 emitted by combustion of nx
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moles is

mCO2,act ≤ nxv
MCO2

MCV HW

(5.18)

where nCO2,act is the actual number of moles of CO2 and mCO2,act is the actual mass [lbm] of CO2

produced by combustion.

We can approximate the total additional mass [lbm] of CO2 due to fouling by utilizing

equation (5.16). Taking the time derivative, we have ṅx = ṁx/Mx. Utilizing the bounds in (5.17)

and (5.18), we have,

ṁCO2,act = ṅCO2,actMCO2 ≤ ṅxvMCO2 =

( ˆ̇m f

MCV HW

)
vMCO2 (5.19)

and by integrating in time, it follows,

mCO2,tot = mCO2,nom +mCO2, f oul ≤ v
MCO2

MCV HW

∫ t

t0
ˆ̇m f (τ)dτ (5.20)

where mCO2,tot is the total accumulated mass of CO2 such that mCO2,nom is the nominal accumu-

lated mass and mCO2, f oul is the accumulated mass attributable to fouling. Applying (5.20) and

utilizing the fouling term found in (5.16), it follows

mCO2, f oul ≤ v
(

MCO2

MCV HW

)
ζθṁ∗f
2η∗c

(t2− t2
0) (5.21)

Continuing with the example in section 5.6.1, the fuel considered is CH4 so that v = 1,

and the total mass of CO2 emitted due to fouling is calculated to be

mCO2, f oul =
44.01
16.04

(203,259) = 557,695[lbm].

which is a 1.6% increase in CO2 emissions attributable directly to compressor fouling.
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5.7 Conclusion

This chapter has accomplished multiple goals. First, we have established approximate

relations between axial compressor performance parameters and their evolution during compressor

fouling based on a literature review. Second, we have derived a physics based, hybrid equation

(5.9) for predicting the increase in fuel consumption given a specified level of axial compressor

fouling and scrupulously validated our equation with both field and simulation data.

Next, we used the derived function (5.9) and rules extracted from literature, (5.1), to

deduce a simple approximation, (5.13), which can be directly placed into compressor wash

optimization objective functions, to increase the accuracy of the cost minimization problem, as

shown in section 5.6.1. We found the increase in accumulated fuel flow attributable to fouling

scales quadratically for set fuel prices, and produces appreciable increases in total fuel cost given

a long enough time period and an aggressive enough fouling rate. Future research should assess

the magnitude of the quadratic growth for various rates of fouling.

The final contribution showed how (5.9) can be used to approximate upper bounds on

CO2 emissions. Section 5.6.2 derived upper bounds on the expected CO2 mass attributable to

fouling by utilizing equation (5.9). The accumulation of CO2 was shown to similarly be quadratic

assuming a general hydrocarbon fuel molecule.

Future research should validate or amend the rules in (5.1) with data and underlying

physics as well as find methods to make all of the parameters in Definition 1 time varying.

Chapter 5, in full, is a reprint of the material as it appears in ASME Turbo Expo 2020.

Allen, Cody; de Oliveira, Maurcio; Balaji, Puru; Holcomb, Chad; ASME 2020. The dissertation

author was the primary investigator and author on this paper.
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Chapter 6

Estimating Recoverable Performance

Degradation Rates and Optimizing

Maintenance Scheduling

6.1 Introduction

Chapter 6 changes topics from the earlier chapters. In this chapter the attention turns to

optimization. In particular, we will be interested in finding optimal rates of degradation and using

these rates to create optimized maintenance schedules. These ideas were introduced in 1.3.1 of

the Introduction.

Section 6.3 will discuss a statistical method for extracting the constant rate of degradation,

α, from observed data. By identifying maintenance sessions in the data and removing those

corresponding data points, we will show that when measurement noise is distributed normally, α

is simply the expected value of the observations.

Section 6.4 deals with optimizing maintenance schedules. In section 6.4.1, we derive

112



a total lost profit function based on recoverable degradation of a component and forecasts of

economic conditions. In section 6.4.4, we discuss a method of dissecting the overall optimization

interval into smaller independent intervals where we enforce uniform spacing which allows us to

provide a closed form solution to the maintenance scheduling problem within a smaller interval.

We briefly discuss the operator’s choice at the beginning of each interval to perform maintenance

or continue operating; however, included in this work is an optimal scheduling algorithm assuming

an operator always starts a new interval. This results in the overall optimization method, in which

we solve each sub-problem over a specified interval and combine the solutions to yield the final

solution.

We conclude the chapter with a numerical example which compares the optimal solution

to a “best case” scenario of uniform intervals to aid in understanding the process of determining

the optimal maintenance schedule as well as illustrate the efficacy of the methods described in

this chapter.

6.2 Chapter Notation

IID Independent and Identically Distributed

E[·] Expected Value

∼ N(·, ·) Follows Gaussian Distribution

(ti, ..., tn) Vector of Specified Times

δ(t) Discrete Delta Function

e(t) White Noise Function

u(t) Unit Step Function

DT (t) Difference Function Over Set T

er f (t) Error Function

α Actual Rate of Degradation

113



α̂ Estimated Rate of Degradation

βi Actual ith Wash Recovered Performance Percent

β̂i Estimated ith Wash Recovered Performance Percent

ni Number of Washes in Interval i

n∗i Optimal Number of Washes in Interval i

Cm Cost of Materials for One Maintenance Session

Cd Cost of Downtime for One Maintenance Session

CM Total Cost of 1 Maintenance Session

Pmax(·) Theoretical Maximum Power Function

Pmeas(·) Observed Maximum Power Function

MP(·) Market Price of Energy Function

C(·) Specific Cost of Energy Function

Q(·) Relative Profit Function

R(·) Realized Relative Profit Function

Cdeg(·) Cost of Degradation Function

PMT (·) Performance Metric Function

LP(·) Lost Profit Function

ti,p Maximum Postponement Time for Interval i

6.3 Degradation Rate Identification

In this section we discuss the need to estimate a degradation rate, or slope, necessary for

the optimized maintenance schedule developed in section 6.4. We start by describing a general

problem statement, then discuss a statistical solution. We then show that the task of estimating a

degradation slope of a given component is a special case of the general problem and the result
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follows immediately.

Before describing an identification process, we discuss the importance of an accurate

estimation of the degradation rate. Our degradation rate, α, will be a major component of our

optimization schedule, and final solution. We will show later in the chapter that the optimal

number of maintenance sessions varies non-linearly on α; in particular, we will find the optimal

number of maintenance sessions in interval i, n∗i , varies as n∗i ∼ α1/2 which highlights the

importance of accurately estimating a robust degradation rate. Overestimates of α will result in

more frequent maintenance sessions and additional maintenance costs whereas an underestimate

of α will result in less frequent maintenance sessions and lost profit due to loss of efficiency.

For increased clarity, we summarize the method of identifying α before describing it in

mathematical detail. We first establish a mathematical model of the degradation and recovery

process. Then we will use simulated data to fit the parameters of the degradation model, and

specifically, to estimate the degradation rate, α. We do this by making an assumption that the noise

from the measured degradation signal is normally distributed about the identified mathematical

model. From this assumption, we may utilize the mathematical properties of the expectation and

variance operators to show that our reset (or maintenance sessions) will tend to be the largest

spikes when looking at consecutive differences in the performance metric function. Once these

maintenance sessions have been identified, they can be removed from the data set. The remaining

data then represents observations of the degradation rate plus noise. From our assumptions, α

will be the expected value, or mean, of this data set. The remainder of this section provides the

necessary rigor to support these claims.

6.3.1 Estimating Degradation Model Parameters

We begin with a parameterization of a constant degradation rate Performance Metric

function, PM(t). Let T = (t0, t1, t2, ..., tn) such that t0 < t1 < · · ·< tn, and consider a function of
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the form

gT (t) =−αt +
n

∑
i=0

u(t− ti)βi

where α > 0, βi > 0 for each i = 0,1,2...,n scalars and u(t) is the Heaviside step function, or unit

step function[Rob12],

u(t) =


0 t < 0

1 0 < t

Then, gT (t) creates a “sawtooth” function when plotted in 2D. For example, Fig. 6.1 shows

a function gT (t), hiding behind actual observations, which have been simulated and represent

measurement noise.

Figure 6.1: Top: Example sawtooth function and observations. The function was generated
with T = (0,392,619), N = 2, α = 0.004, β0 = 4.732, β1 = 4.4967 and β2 = 3.4919. The
observations are generated by adding zero-mean Gaussian white noise with 0.5625 variance to
the function. Bottom: Difference values. Threshold value set to 3σD, where σD = 2.961 is the
standard deviation of the set of difference values.

Note that if we further specify an interval over which gT (t) is valid, [T0,T1) for example,

where we set T0 = t0 and T1 = tn and we require for each 0 < i ≤ n, βi = α(ti− ti−1), then we
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define

PMT (t,n) = α

(
−t +

n

∑
i=1

u(t− ti)(ti− ti−1)

)
(6.1)

and call this the constant degradation rate, performance metric function. This function will be our

parameterized version of PM(t) in section 6.4.1. We analyze the more general case of unknown

structure on the βi values in this section, and note that equation (6.1) is a specific case of the

general problem.

In the case of a function without measurement noise, identification of the constant slope

α is trivial, as the slope is given by almost any consecutive pair of points; that is, consecutive

points that do not include a maintenance session. However, now consider the function when

measurement noise is present,

fT (t) = gT (t)+ e(t) (6.2)

where e(t) is zero mean white noise, i.e., a sequence of IID random variables sampled from a

normal (Gaussian) distribution[Lju99]. Hence, e(t)∼ N(0,c), where c > 0. Now, the difference

between a consecutive pair of points leaves α plus or minus some measurement noise, fT (t)−

fT (t−1) =−α+ e(t)− e(t−1) for almost any t. Recall that the difference of two IID random

variables is itself an IID random variable. Indeed, X ∼ N(µx,σ
2
x) and Y ∼ N(µy,σ

2
y) then for

Z = X−Y we find,

E[Z] = E[X−Y ] = E[X ]−E[Y ] = µx−µy

Var[Z] =Var[X−Y ] =Var[X ]+Var[Y ] = σ
2
x +σ

2
y

Hence, if e(t) ∼ N(0,c), then e(t)− e(t − 1) ∼ N(0,2c). Define the difference function as
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DT (t) = fT (t)− fT (t−1), then we have,

DT (t) = fT (t)− fT (t−1)

=−αt + e(t)+
n

∑
i=0

u(t− ti)βi−

(
−α(t−1)+ e(t−1)+

n

∑
i=0

u(t− (ti +1))βi

)

=−α+ e(t)− e(t−1)+βiδ(t− ti)

and if we consider the expected value of DT (t),

E[DT (t)] =−α+E[e(t)− e(t−1)]+βiδ(t− ti) =−α+βiδ(t− ti)

where δ(t) is the discrete delta function.

We have just shown that the expected value of the difference of fT (·) at two consecutive

time values, t and t−1, is almost always −α, except when t = ti, in which case we have −α+βi

instead. Hence, if we can find each βi, we will be able to calculate α by subtracting βi at t = ti

from the difference of fT (t) and fT (t−1) and calculating the mean value.

We now turn our attention to estimating the beta values. We again look at the difference

DT (t) =−α+ ẽ(t)+βiδ(t− ti)

where ẽ(t)= e(t)−e(t−1)∼N(0,2c). In the case that t = ti ∈ T , we have DT (t)=−α+ ẽ(t)+βi

or βi = DT (t)+α− ẽ(t).

We have 0 < α� 1, which is generally true for reasonable time scales. If we expect

βi�Var(ẽ(t)), then from this simple representation, we see that there is a high likelihood that

βi ≈ DT (t), since ẽ(t) is zero mean. Therefore, for most data sets we can set,

β̂i = DT (ti) (6.3)

118



as our approximation to the true βi. Then, β = (β0, ...,βn) is constructed by choosing the J largest

values, where J is a user decision, and then setting n = J.

Usually, a reasonable choice of J can be made by plotting the difference values along with

the actual degradation measurements, and superimposing a threshold value. A good starting point

for the threshold value is usually given by

T hreshold = kσD = k
√

2c (6.4)

where k ∈ (2,3), c = var(e(t)) at some specified time t, and n << N, where N is the number

data points. It can be shown (see [AW05]) that the probability a normal deviate lies outside

(µ−kσ,µ+kσ) is Pk (|x−〈µ〉| ≥ kσ) = 1−er f (k/(
√

2)), where er f (·) is the error function. For

example, let ẽ(t) = e(t)− e(t−1) ∼ N(0,σ2) and consider k = 3. Then, er f (3/
√

2) ≈ 0.9973

so the probability that a deviate, ẽ(t) at specified time t, lies outside of the range (−3σ,3σ) is

1− 0.9973 = 0.0027, which is the familiar result taught in elementary statistics classes. The

bottom of Fig. 6.1 shows an example of a threshold value of 3σD.

The threshold value yields two values, which we set equal to β̂1 and β̂2, and provides

corresponding time locations, t1 and t2. From these values, we are able to remove the β̂i values

from DT (t) at t = ti to yield the set D∗T . We take the mean value of the resulting set and find

α̂ = E[D∗T ] = mean(D∗T )

Additionally, one could choose to use the median value or the mean value of the inner quartiles

of data to estimate α̂. These two alternatives are easier to implement but do not identify the βi

values. The β̂i values are a direct estimate of the recoverable performance from a maintenance

session and are usually desirable to identify, which is why we perform the process outlined.

The final result of this process applied to our simulated data is given in Fig. 6.2 where

we have used our estimates β̂i and α̂ to reconstruct the sawtooth function. The results from our
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Figure 6.2: Example sawtooth function, observations and estimated sawtooth function. From
the method outlined, we find α̂ = 0.00395, β̂0 = 4.732, β̂1 = 4.15 and β̂2 = 3.528.

method, α̂ = 0.00395, β̂0 = 4.732, β̂1 = 4.15 and β̂2 = 3.528 are well within a reasonable range

and provide estimates that can be used in our economic analysis.

Lastly, consider if the function starts from fT (0) = 0, with the expectation that mainte-

nance will return full performance, then this is simply a special case of the general sawtooth

function. Therefore, in the problem of degradation estimation, βi = α(ti+1− ti), and the selection

threshold for β̂i values returned from DT (t) can be imposed based on how much time has passed

since the previous wash. Simple iteration starting with an initial set of β̂i’s and estimation of α̂

leads to a robust statistical solution.
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6.4 Condition Based Maintenance and Optimized

Scheduling

In this section we describe a method of finding the optimal maintenance schedule based

on an operator’s relative cost model. Recall that the goal of the chapter is to present both a method

of degradation rate identification as well as a framework for finding an optimal maintenance

schedule. The methods do not place a restriction on the complexity or form of a cost model.

However, the optimization problem complexity will vary based on the complexity of the economic

model. We provide a derivation of the relative cost model and then optimize which provides a

simple and tractable result.

6.4.1 Deriving the Overall Lost Profit Function

For the given component, the maintenance required to restore recoverable performance

is usually a repeatable process with little variation. Therefore, the process generally has a fixed

cost of material as well as an average amount of time to complete the task. Let Cm be the cost of

materials for one maintenance session, including all costs for parts and the overall average cost of

the labor of the technician (since the time to perform maintenance is fixed, if the technician is not

working overtime, this cost should have little variation from its average). Let Cd be the cost of

downtime; that is, the average lost revenue from not operating while maintenance is performed.

Note that the difference in time scales between a single maintenance session versus the interval

of time between maintenance is usually large enough that averaging Cd is justified. Then,

CM =Cm +Cd (6.5)
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is the cost of performing one session of maintenance. For the remainder of this section, we

assume that the component of interest is the axial compressor of a gas turbine in order to write

down a specific cost model. The process developed could be repeated with small variations for

different, critical components, such as a heat exchanger.

Define Pmax(t) to be the maximum power output of the gas turbine at standard conditions

[Mat96] at time t. This value generally comes from a high fidelity gas turbine model. Let Pmeas(t)

be the maximum measured power corrected to standard conditions. Define the performance

metric as

PM(t) =
Pmeas(t)
Pmax(t)

It is clear that PM should be between 0 and 1. Due to measurement noise and model simplifica-

tions, this value is sometimes slightly above 1; however, this is of minor concern in the present

conversation.

In application to a specific component, the user must have this measure as it relates to

the component’s degradation, or a function that relates the component degradation to the power

degradation. Note that in our example for compressor degradation, we have the following

Prmeas(t)
Prmax(t)

∝
Pmeas(t)
Pmax(t)

that is, the ratio of compressor discharge pressures is linearly related to the ratio of powers.

Therefore, one may be substituted for the other in the lost profit function without fundamentally

changing the optimization output.

Now, define Q(t) to be the relative profit generated at time t by utilizing non-degraded

maximum power, Pmax(t). Then, the following model which has been adapted from [ARDM12]
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describes time t profit,

Q(t) = (MP(t)−C(t))Pmax(t)

where MP(t) is the market price of energy, C(t) is the specific cost of energy production from the

turbine and Pmax(t) is the energy produced by the turbine, all at time t. Similarly, define R(t) be

the relative profit generated at time t by utilizing measured maximum power, that is, the realized

relative profit,

R(t) = (MP(t)−C(t))Pmeas(t)

The function C(t) will depend on fuel costs at time t as well as fuel consumed at time t.

We assume that fuel properties are constant, which is reasonable for a power plant running on

sales gas. The fuel consumed at time t is partially dependent on the state of degradation present

in the compressor. However, these incremental increases in fuel mass flow are low enough in

the range of PM(t) where most operators allow the turbine to run at, that we assume they can be

parameterized in time by the operator. Hence, we assume the function C(t) can be created based

on an operator’s forecast fuel purchase prices and is dependent only on time. Therefore at time t,

the lost profit, or cost of degradation, is

Cdeg(t) = Q(t)−R(t) = (MP(t)−C(t))(Pmax(t)−Pmeas(t)) = Q(t)(1−PM(t))

and the total lost profit as a result of recoverable degradation during the interval (t0, t) is

LP(t0, t,n) =
∫ t

t0
Cdeg(τ)dτ+nCM =

∫ t

t0
Q(τ)(1−PM(τ))dτ+nCM

=
∫ t

t0
Q(τ)(1−PMT (τ,n))dτ+nCM (6.6)
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where we use the parameterization of the performance metric function (6.1) to see the dependence

of the LP function on the number of maintenance sessions.

We have established an operating, relative cost function for the time interval (t0, t), namely,

LP(t0, t,n). The optimization problem is then easily stated,

min
n

LP(t0, t,n) such that, n∗ = argmin
n

LP(t0, t,n) (6.7)

and the minimizing argument, n∗ represents the optimal number of maintenance sessions given

our lost profit function and is ultimately what we aim to calculate.

6.4.2 Using Forecasts in Bounded Time Intervals

The functions MP(t) and C(t) are very specific to location and plant operation and must

be developed by the operator. Usually, there are discrete forecasts of each over a given period

of time or parts of each over a given period of time, e.g., forecasts for both electricity and fuel

prices. Development of these functions is beyond the scope of this chapter.

For a given plant, suppose MP(t) and C(t) can be evaluated for given discrete times,

(t̂0, t̂1, ..., t̂k) using forecasts of spot price and fuel cost. These can be used to produce sets

MP = (MP(t̂0),MP(t̂1), ...,MP(t̂k)) and C = (C(t̂0),C(t̂1), ...,C(t̂k)). Using a zero-order hold

method [Lju99], we can make piecewise constant functions for both MP(t) and C(t). The zero-

order hold method converts a discrete-time signal to a continuous time signal by holding each

sample value constant for one sample interval. We can similarly estimate average values of

Pmax(t) in each interval, since it is a reference value generated from a high fidelity gas turbine

model. Then for t ∈ (t̂i, t̂i+1) as described in section 6.3.1, we have,

Q(t) = (MP(t)−C(t))Pmax(t) = (MP(t̂i)−C(t̂i))Pmax(t̂i) = Qi,i+1
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where Qi,i+1 is constant in interval (t̂i, t̂i+1). By combining adjacent times (i.e., sample intervals)

where Q(ti) ≈ Q(ti+1) ≈ ·· · ≈ Q(ti+ j), we can set Q(t) = Qi, j =
1

j+1 ∑
j
q=0 Q(tq) where we are

taking the simple average of Q(t) over the time interval (t̂i, t̂i+ j).

Then, the end result of this process is a set of constants Qi,i+1 which correspond to

intervals defined by (t0, t1, ..., tz) with z ≤ k, where usually z� k. For example, in the interval

defined by t ∈ (t2, t3), we have Q(t) = Q2,3 which is constant.

Let us now return to the lost profit model (6.6), where we set t = tz to be the last unit of time

in which we have forecasts. From equation (6.1), PMT (t,n) = α(−t +∑
n
i=1 u(t− ti)(ti− ti−1)).

Utilizing the additive property of the Riemann integral [Apo74], we find,

LP(t0, tz,n) =
∫ tz

t0
Q(τ)(1−PMT (τ,n))dτ+nCM

=
z−1

∑
i=0

∫ ti+1

ti
Qi,i+1(1−PMT (τ,ni+1))dτ+nCM

=
z−1

∑
i=0

Qi,i+1

∫ ti+1

ti
(1−PMT (τ,ni+1))dτ+nCM

=
z−1

∑
i=0

Qi,i+1

∫ ti+1

ti

(
1−α

(
−τ+

ni+1

∑
j=1

u(τ− t j)(t j− t j−1)

))
dτ+CM

z−1

∑
i=0

ni+1 (6.8)

In equation (6.8), index i represents intervals of constant Q(t), whereas index j represents wash

intervals, which occur within a given interval defined by index i. That is, for specified i, we have

interval (ti, ti+1) and within this interval, a wash schedule that partitions the interval into a set of

ni+1 subintervals.

We see that the total lost profit function due to recoverable degradation is now primarily

an integral of the performance metric in time.
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6.4.3 Evaluating the Total Lost Profit Function

We would like to solve the global minimization problem given in equation (6.8). With the

conditions imposed from section 6.4.2, we were able to set Q(τ) =Qi,i+1 over the interval (ti, ti+1),

allowing us to pull that term out from under the integral. In doing so, all that remains to integrate

is 1−PMT (t,ni+1) in the interval of interest. This causes problems, since our parameterization

of PMT (t,ni+1) involves the unknown number of maintenance sessions, ni+1, which is to be

optimized. We propose solving the local optimization problem in each interval and treating the

global minimization as a shortest path problem where the path depends on washing or not washing

at the transition of interval to interval. This does not guarantee a globally optimal schedule, but

does provide locally optimal schedules which when combined provide a global schedule.

In order to carry out the minimal path problem, we first introduce an equivalent form of

PMT (t,ni+1). Consider the interval (ti, ti+1) where i is fixed and let ∆ti+1 = ti+1− ti. The definite

integral can be represented by a transformed version of the function PMT (t,ni+1); namely, a

shift down one unit, and a reflection of the function across the x-axis in Cartesian coordinates.

Geometrically, this produces a sequence of triangles based on the x-axis. Along each triangular

segment, we have a linear function shifted right on the x-axis by the starting point of the segment,

yielding,

∫ ti+1

ti

(
1+ατ−

ni+1

∑
j=0

u(τ− t j)α∆t j

)
dτ =

ni+1−1

∑
j=0

∫ t j+1

t j

α(τ− t j)dτ (6.9)

where ti = t j

∣∣∣
j=0

and similarly, ti+1 = t j

∣∣∣
j=ni+1

, upon integrating,

ni+1−1

∑
j=0

∫ t j+1

t j

α(τ− t j)dτ =
α

2

ni+1−1

∑
j=0

(
τ

2
∣∣∣t j+1

t j
−2t jτ

∣∣∣t j+1

t j

)
=

α

2

ni+1−1

∑
j=0

∆t2
j+1 (6.10)
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Therefore, we find a sum of quadratic terms that represent an equivalent area as the original form

over the fixed interval (ti, ti+1). Then, in this interval, the (i+1)-interval, we have the area under

the integral as,

Qi,i+1
α

2

ni+1−1

∑
j=0

∆t2
j+1

where each t j, with j = 0,1, ...,ni+1−1 are times when a maintenance session is conducted. If

we require that each of the sub-intervals defined by (t j, t j+1) have uniform length, qi+1 = ∆t j+1

for each j, and it follows that ni+1qi+1 = ti+1− ti = ∆ti+1. Utilizing this fact,

Qi,i+1
α

2

ni+1−1

∑
j=0

∆t2
j+1 = Qi,i+1

α

2

ni+1−1

∑
j=0

q2
i+1 = Qi,i+1

α

2
q2

i+1

ni+1−1

∑
j=0

= Qi,i+1
α

2

(
∆ti+1

ni+1

)2

ni+1

= Qi,i+1
α

2
∆t2

i+1
1

ni+1
(6.11)

which is a convex function in ni+1 when Qi,i+1 > 0; that is, when the relative profit is positive.

Note that since i is fixed, ∆ti+1 = ti+1− ti is a known quantity, therefore equation (6.11) can be

evaluated. We bring this result into the context of the lost profit model, equation (6.8), for the

given interval to find,

LPi+1(ni+1) = Qi,i+1
α

2
∆t2

i+1
1

ni+1
+ni+1CM (6.12)

6.4.4 Optimizing the Total Lost Profit Function

In the previous section, we derived an equivalent form of the LP function that is dependent

only on ni+1, where the other values are constants for the interval (ti, ti+1). Since ni+1CM is clearly

convex, LPi+1(ni+1) is convex in ni+1, and can be minimized by simply taking the derivative with
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respect to ni+1 and setting the result equal to zero.

0 =
dLPi+1

dni+1

∣∣∣
ni+1=n∗i+1

and, n∗i+1 = argmin
n

LPi+1(ni+1)

In solving for the optimal ni+1, we find,

n∗i+1 =

(
αQi,i+1(ti+1− ti)2

2CM

)1/2

(6.13)

By convexity, (6.13) is the global minimizer[BV04], and if we shift to the closest integer about

ni+1, we are still guaranteed optimality of the solution. Thus, we have solved the local minimiza-

tion problem for the interval (ti, ti+1).

In the solution for the local minimizer, the interval (ti, ti+1) was general; therefore, this

solution can be applied to every interval determined by a constant value, Qi,i+1 . In parameterizing

this optimization, we have implicitly required that at the beginning of every new interval defined

by Qi,i+1, we perform a maintenance session. As a result of this, we are actually imposing a lower

bound on number of maintenance sessions. In fact, the minimum number of maintenance sessions

will be equal in count to the number of intervals where Qi,i+1 is constant; that is, the z intervals

we created in section 6.4.2 and correspondingly, we will perform at least z maintenance sessions.

Within a given interval (ti, ti+1), where we have calculated the solution n∗i+1, there is

some flexibility in timing when maintenance is performed. From the geometry of the solution,

within a given interval, the LP function is a set of same size triangles as discussed in the previous

section. The triangle congruency within a given interval means that the overall area will not

change if we slide the triangles in the given interval. See figure 6.3 for a depiction of this

geometry. This realization which is dependent on the constant linear degradation, allows us to

slide a given triangle to match the previous interval’s final triangle height. Note that the number

of maintenance sessions does not change; hence, this gives the operator the option of postponing

a wash. Therefore, a beginning interval wash may be postponed a maximum amount of time
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Figure 6.3: Note that once the triangle areas are specified, congruency allows sliding within an
interval without change in overall area. The blue length scales sum to the orange length scale
which shows how we can slice the final triangle and slide a portion to the beginning of the
interval allowing for some flexibility in when the first maintenance session is performed for a
new interval. Note that the number of washes is unchanged. The bottom plot shows the
maximum postponement length ti+1,p = (∆t j+1)i+1.

equal to the width of a subinterval, which is known once n∗i+1 has been calculated. That is, for

interval (ti, ti+1) and corresponding solution n∗i+1, the maximum postponement time from the

interval start is

ti+1,p =
∆ti+1

n∗i+1
=
(
∆t j+1

)
i+1

where ti+1,p is the maximum time an operator can postpone the initial interval maintenance

session from the beginning of interval (ti, ti+1).

The imposition of a minimum number of maintenance sessions is the main drawback of

requiring a maintenance session at or close to the beginning of each period. However, it is this

exact requirement that has allowed us to decouple the intervals where Qi,i+1 changes. This yields

a local and independent solution to the optimization problem in each interval. We then combine
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the solutions to form the global solution. With this in mind, when defining periods over which

Q(t) is constant, the operator should keep z as small as possible.

For a given interval, (ti, ti+1), if the solution (6.13) results in n∗i+1 < 1, then the selection

of intervals should be revisited. In the case that the intervals cannot be approximated by constants

over a sufficient length such that n∗i+1 ≥ 1, then our solution method will not guarantee optimality

and the operator must make a judgment of whether to perform maintenance at the beginning of

the session or not.

6.4.5 Example of Optimal Maintenance Schedule

We end this section with a short example. The reference data is mostly taken from

[ARDM12] where we have modified some parameters to better reflect current pricing and costs.

In table 6.1, we give the problem initial values. Note that the degradation rate would have been

calculated from field data using the method in the previous section.

Table 6.1: Reference Example Data.

Total time duration 365 Days
Washing duration 5 hours
Plant Nominal Power 5.7 MW
Fuel Flow for Nominal Power 0.5556 lbm/s
Wash Cost 3000 US$
Other Costs 525 US$
Degradation Rate 0.0095 % / day

In this example, we allow the fuel price and market price of energy to vary throughout our

year time frame

C(t) = 5.7+
1
2

cos
(

2π

365
(t−200)

) [
$

MMBTU

]
MP(t) = 55+5cos

(
2π

365
(t−180)

) [
$

MWh

]
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In Fig. 6.4, the relative profit function Q(t) is given along with our approximations using

the zero order hold constant model. Recall, a zero order hold simply sets a constant value for a

specified range of time until the constant is updated, a common technique in signal processing.

Figure 6.4: Using data from table 6.1 we produce Q(t) and Qi,i+1. Here, there are 4 intervals
we have chosen where we approximate Q with the constant model. Interval selection is a user
choice.

In Fig. 6.5, we see the lost profit functions LPi+1,w. Note that for each interval, LPi+1,w <

LPi+1,nw so that n∗i+1 is found from the wash model, which is shown in the figure. The optimal

number of washes per interval comes from the minimum integer of each of these curves.

In finding our optimal set of washes per period, namely, nnnwww = (n∗1,n
∗
2,n
∗
3,n
∗
4) = (2,6,2,5),

we see that over the year period, 15 washes are called for. Additionally, the times between washes

for the given interval can be calculated in days, (28,23,27,24).

These wash points are plotted in Fig. 6.6 against our profit models and show the optimal

washing schedule.
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Figure 6.5: LPi+1,w models given over each interval for i > 1. The optimal number of washes
per interval comes from the minimum integer of each of these curves. Note that each curve is
convex, a key characteristic necessary for optimality.

For comparison, we will consider a static model where the wash intervals are equally

spaced throughout the year. The operator would need to choose a method for determining the

time between washes to implement such a schedule. In the example above, the LP function is

calculated on a daily basis and then summed for the entire period, where the total number of

washes in the 365 days has been predefined, and hence, so has the wash times. Figure 6.7 shows

the effect of different sized, constant length wash intervals.

The values shown are the percentage increase in the lost profit model from the value of the

lost profit model using the optimal washing schedule. For this particular example, the best case,

constant interval wash schedule, results in 2.14% loss of the year’s relative profit as compared

with 0% loss of relative profit if using the optimal wash schedule. To be clear, this 2.14% is the

incremental difference in lost profit for using the best, albeit not optimal, wash schedule in which

132



Figure 6.6: Depiction of overall wash schedule. Red vertical lines indicate washes or
maintenance sessions. Within each sub-interval, time between washes varies, based on the
solution of the optimization problem.

Figure 6.7: Comparison of percentage of LP functions. Shown is the value
(LPpreset/LPopt −1) ·100. Top is full view, bottom is zoomed into area of interest.
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the intervals are set constant throughout the year.

Note that while 2.14% may not seem like a major savings, we have used the best case

scenario for such an approach. This interval length is not known a priori by the operator and

would have to be arrived at before such a maintenance schedule was implemented. If the operator

chooses longer or shorter intervals between washes, then the percentage can grow considerably.

For example, if the operator chooses to wash twice a month, or 24 times in the year, the percentage

increases to 13.6%. Similarly, if the operator washes every other month, for 6 washes throughout

the year, the percentage jumps to a staggering 49.4%. These values are of course for this specific

example, however, the “take home message” remains: a non optimal number of maintenance

sessions can severely increase lost profits due to the nonlinear nature of the cost model, or put

plainly, a non optimal number of maintenance sessions can have a large impact on a company’s

net income.

The example in this section, in which the optimal maintenance schedule is compared with

possible preset maintenance schedules of interest, elucidates the opportunity that an optimal,

condition based maintenance schedule can provide the gas turbine operator.

6.5 Conclusion

In this chapter we have presented a framework for finding the optimal number of main-

tenance sessions for an asset that has recoverable degradation over time. We have shown that

when forecasts of revenue and running costs are available, an economic lost profit model can

be developed based on recoverable degradation. We then made some assumptions regarding

operation, which allowed a single variable lost profit economic model to be derived, and we recast

the optimization problem into a form that can be solved analytically. This lost profit model was

shown to be convex in n, where n was the number of maintenance sessions in a given interval

of time. The solution to each local lost profit model minimization solved the local scheduling
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problem. Combining these locally optimal solutions produced a global maintenance schedule.

We concluded with providing an example case of the optimal scheduling solution and provided a

numerical simulation where all intervals are chosen to be of uniform size for comparison.

Our closed form solution is qualitatively equivalent to that given by Aretakis and Roume-

liotis et al. [ARDM12] where they solved the problem iteratively. This provides additional

validation of our method and solution. Quantitatively, our solution differs due to differences in

the cost models used.

In addition, a method for asset degradation rate identification was developed. A discussion

of the merit of the degradation rate identification followed, in which statistical expectations were

discussed at length and general guidelines of rate identification were presented. These two main

thrusts together compose a total solution to the maintenance scheduling problem as proposed in

this chapter.

Lastly, the method outlined in this chapter has two drawbacks; namely, the requirement of

a linear degradation rate and that we cannot guarantee global optimality, only local optimality.

Future research will generalize the linear degradation rate, allowing for more accuracy in modeling

true component degradation; in particular, generalizing the linear degradation rate to a quadratic

degradation rate or a piece-wise linear degradation rate, as these types of profiles have been

observed at various field applications. Additionally, future work aims to cast the degradation rate

identification into an optimization problem, as opposed to solely relying on statistical methods.

Chapter 6, in full, is a reprint of the material as it appears in Journal of Gas Turbines and

Power. Allen, Cody; de Oliveira, Maurcio, ASME 2018. The dissertation author was the primary

investigator and author on this paper.
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Chapter 7

A Minimal Cardinality Solution to Fitting

Sawtooth Piecewise Linear Functions

7.1 Introduction

One inherent difficulty of fitting a sawtooth function to data is the fact that a perfect fit is

always possible if one does not constrain the maximum number of discontinuities or jumps. See

for example, the bottom plot in Figure 1.3 and Remark 3. One approach to limit the number of

jumps is to solve a least-squares problem with an additional constraint on the cardinality of the

set of jumps. The resulting problem, discussed Section 7.3, is non-smooth and nonconvex, given

its combinatorial nature.

Made popular by techniques like LASSO regression [Tib96], we proceed by relaxing this

cardinality constraint into a convex 1-norm constraint on the vector of jumps. Unlike LASSO

regression, we prove that the cardinality of the optimal solutions obtained through the proposed

relaxation is a monotonic function of the parameter of the relaxation. Our main result, Theorem 1,

along with discussion on connections with LASSO regression is presented in Section 7.4. In
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Section 7.5, we explore this result to propose an algorithm for the solution of sawtooth least-

square estimation problems based on a series of convex relaxations. Technical proofs of the

main result and supplemental results appear in Sections 7.6 and 7.7. We close the chapter with

some conclusions and discussion on possible extensions of the main result to broader function

approximations.

7.2 Chapter Notation

n Total number of sample points available

fαβ General sawtooth piecewise linear function

‖·‖0 Non zero cardinality of ·

‖·‖v Standard v−norm for v > 0

J Removal Set

J̄i The ith element in set J̄

X Matrix X

Xi The ith column of matrix X

xxx General vector in Rs where s is given in text

(xxx)i The ith component of vector xxx

xxx∗m Optimal xxx vector for given bound m

E Expectation operator of random variable

A(·) The active set for the given solution

zzz� xxx Component-wise product, result is a vector

λ Lagrangian constant

eeey Zero vector with solitary 1 at component y
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7.3 Problem Formulation

The sawtooth function fitting problem considered in the present paper is a special form of

the general PWL function fitting problem.

Definition 2 (Sawtooth function). Let r ∈ N and the discontinuity points t j, t j+1 > t j, j =

0, · · · ,r−1, be given. Define fαβ : [t0,∞) 7→ R such that

fαβ(t) =


β0−α(t− t0), t ∈ [t0, t1)
β0 +β1−α(t− t0), t ∈ [t1, t2)...
∑

r−1
j=0 β j−α(t− t0), t ∈ [tr−1,∞)

(7.1)

and α≥ 0,β j ≥ 0 for j = 0,1, ..,r−1.

Remark 2. Without loss of generality, we can assume that fαβ(t0) ≥ 0, in which case we can

impose β0 ≥ 0. If fαβ(t0) ≤ 0 we can choose c ≥ fαβ(t0) and consider the shifted sawtooth

function f̄αβ = fαβ + c.

Definition 3 (Cardinality). Let xxx ∈ Rn and define ‖xxx‖0 to be the number of non-zero entries of xxx.

Let fαβ be given as in Definition 2. Suppose that we are given n, possibly noisy ordered

samples of fαβ, that is, Ŷ = {(t̂i, ŷi), i = 0, · · · ,n− 1}, in which t0 ≤ t̂i < t̂i+1, i = 0, · · · ,n− 1.

Later in the paper we will constrain these samples to be drawn periodically. One data fitting

problem is then

min
α∈R+,β∈Rr

+

J(α,β) =
1
2

n−1

∑
i=0

( fαβ(t̂i)− ŷi)
2 (7.2)

where J(α,β) is the residual sum of squares (RSS) [TH09]. The optimization problem in (7.2)

has a convex quadratic cost and linear constraints, making it a convex quadratic program [JN06],

which can be efficiently solved if the r discontinuity points t j, j = 0, · · · ,r−1, are known a priori.

However, we are interested in the much more challenging problem in which we do not

have prior knowledge of the discontinuities. In order to address this problem we shall let r = n,
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β ∈ Rn, ti = t̂ j, that is we shall allow one discontinuity for every sample point, and equip the

above least-squares problem with an additional cardinality constraint. The resulting problem of

interest is the following constrained optimization problem

min
α∈R+,β∈Rn

+

{
1
2

n−1

∑
i=0

(
fαβ(t̂i)− ŷi

)2 : ti = t̂ j, ‖β‖0 ≤ s≤ n

}
, (7.3)

in which s≤ n limits the number of discontinuities in the sawtooth function. Problem (7.3) is no

longer convex due to the cardinality constraint.

Remark 3. In practice s� n, because when s = n problem (7.3) is trivial. Indeed, if s = n,

ŷ0 ≥ 0 and α = max{maxi(ŷi−1− ŷi)/(t̂i− t̂i−1),0} ≥ 0 then

β0 = ŷ0 ≥ 0, βi = ŷi +α(t̂i− t̂0)−
i−1

∑
k=0

βi ≥ 0, i = 1, . . . ,r−1

is feasible1 with cost

0≤ J(α,β) =
1
2

n−1

∑
i=0

(
fαβ(t̂i)− ŷi

)2
=

1
2

n−1

∑
i=0

(βi−α(t̂i− t̂0)− ŷi)
2 = 0

so that it must also be optimal. An example of such a solution is presented at the bottom plot in

Figure 1.3. Clearly large values of s will lead to over-fitting.

Before proceeding, and for simplicity, we shall further constrain the sample points, t̂i,

i = 0, · · · ,n−1, to be drawn periodically, that is t̂i = t̂0+ iTs, where Ts > 0 is the sampling period.

As we will show later, it seems that this assumption can be safely removed, but doing so leads to

distracting technical complications. With that assumption in mind, define matrices A ∈ Rn×n+1

1The proof follows trivially by induction and is omitted for brevity.
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and E ∈ Rn×n+1, and vectors xxx ∈ Rn+1 and yyy ∈ Rn, as follows

A =



0 1 0 0 · · · 0

−1 1 1 0 · · · 0

−2 1 1 1 · · · 0
...

...
...

... . . . ...

1−n 1 1 1 · · · 1


, E =

[
0 I

]
, ŷyy =



ŷ0

ŷ1

ŷ2

...

ŷn−1


, xxx =



α

β0

β1

...

βn−1


(7.4)

in which I is the n×n identity matrix so that Exxx = β. Using the above notation Problem (7.3)

can be rewritten as

min
xxx

{
1
2
‖Axxx− ŷyy‖2

2 : ‖Exxx‖0 ≤ s, xxx≥ 0
}
. (7.5)

It is this compact formulation that will be used in the rest of the paper.

7.4 Main Result and Connections to LASSO Regression

The problem of explicitly imposing a constraint on the cardinality of the optimal solution

is a difficult problem in general. Perhaps the best, well known heuristic is the LASSO (Least

Absolute Shrinkage and Selection Operator) regression [Tib96]. The LASSO heuristic replaces

the cardinality constraint in a least-squares regression problem by a 1-norm constraint, as in:

min
xxx

{
1
2
‖Axxx− ŷyy‖2

2 : ‖xxx‖1 ≤ m
}

(7.6)

where m ∈ R+, which is a constrained convex quadratic program. Here the matrix A can have

arbitrary structure. The LASSO approach has one goal: to restrict how large the coefficients

may grow, and one side-effect, which is to limit how many of the coefficients are non-zero. The

inclusion of the 1-norm constraint promotes sparsity in xxx. See [Mur12, Tib96] for a more in depth

discussion.

140



Returning to Problem (7.5), for the remainder of this paper we will be concerned with the

following relaxation of the sawtooth minimization problem (7.5):

min
xxx

{
1
2
‖Axxx− ŷyy‖2

2 : ‖Exxx‖1 ≤ m xxx≥ 0
}

(7.7)

in which A, E, xxx, and ŷyy are as in (7.4), and the non-convex cardinality constraint has been relaxed

into the convex 1-norm constraint. The relaxed problem, (7.7), is a convex program. Note that

(7.7) is more constrained than the general LASSO problem, due the the non-negativity constraint

on xxx. As in the LASSO problem, the choice of m is non-trivial. Larger values of m provide the

minimization room to choose non-zero βi’s which can lead to overfit. As m→ ∞, the problem

behaves as Problem (7.3) with s = n and the optimal cost approaches 0 (see Remark (3)), similar

to results in [SPB08]. Unlike the LASSO problem, the cardinality of the solution to the relaxed

Problem (7.7) is a non-decreasing function of the bound m. This result, which is presented in the

next Theorem, is the main contribution of the present paper.

Theorem 1. Let matrices A and E be as in (7.4) and consider

xxx∗m = argmin
xxx

{
1
2
‖Axxx− ŷyy‖2

2 : ‖Exxx‖1 ≤ m, xxx≥ 0
}
. (7.8)

If m̄ is the smallest m > 0 such that there exists xxx∗m̄ satisfying

Axxx∗m̄ = ŷyy, ‖Exxx∗m̄‖1 ≤ m̄, xxx∗m̄ ≥ 0, (7.9)

Then
∥∥Exxx∗m1

∥∥
0 ≤

∥∥Exxx∗m2

∥∥
0 for any m1 and m2 such that m1 ≤ m2 < m̄.

Proof of Theorem 1 will require considerable technical developments. This theorem

ensures that one can obtain minimum cardinality solutions by solving convex problems parame-

terized by a decreasing sequence of scalars. Such a property is rare, arising from special structure

inside the particular matrix A from (7.4). In order to illustrate this fact we calculated and plotted
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Figure 7.1: Cost function (left axis) and cardinality (right axis) of the optimal solutions to the
relaxation (7.7) for a matrix A with structure as in (7.4) and a randomly generated matrix A.
Note the monotonicity of the cardinality present in (a) and absent in (b).

the cost function and the cardinality of the optimal solutions obtained from the relaxation (7.7)

for a matrix A with structure as in (7.4) (the one from the numerical example in Section 7.5) and

a randomly generated matrix A in Figures 7.1a and 7.1b, respectively.

7.5 Application to Least-Squares Fitting

In this section we will illustrate how Theorem 1 can lead of efficient solutions to the

least-squares cardinality constrained Problem 7.3. In order to make the discussion more concrete,

assume that the vector of periodic measurements, ŷyy, is such that ŷyy = ȳyy+ γγγ, in which the entries of

ȳyy are such that yi = fαβ(t0 + iTs), i = 0, · · · ,n−1, that is ȳyy = Ax̄xx for some (unknown) x̄xx, and the

entries of the noise vector γγγ are independent random variables γi, i = 0, · · · ,n−1, with zero mean

and known variance σ2. We seek to obtain a vector close to x̄xx by solving a series of relaxations in

the form of the convex Problem (7.7). Start by calculating the expected value of the function

E
{
‖Ax̄xx− ŷyy‖2

2

}
= E

{
‖γγγ‖2

2

}
= nσ

2. (7.10)
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Given a large number of samples, one would therefore expect that the least-squares fitting error

would be close to (1/2)nσ2. The above discussion suggests the following method for finding the

closest least-square fit.

Algorithm 2 (Sawtooth Least-Squares). Let A, E, xxx, ŷyy as in (7.4), and ε > 0, σ > 0 be given.

Perform the following steps:

1. Calculate m̄ = minxxx{‖Exxx‖1 : Axxx = ŷyy, xxx≥ 0}.

2. Calculate mσ = minxxx{‖Exxx‖1 : ‖Axxx− ŷyy‖2 ≤ nσ2, xxx≥ 0}.

3. Determine the largest m∗ ∈ [mσ, m̄] such that ‖Exxxm∗‖0 = ‖Exxxmσ
‖0.

4. Set r = ‖Exxxm∗‖0, t = {i : xxxi+2 > 0, i = 0, · · · ,n}, and solve the least-squares regression

Problem 7.2.

The rationale behind the above algorithm is that Theorem 1 guarantees that m∗ and xxxm∗ is

the smallest least-squares solution of the relaxation Problem (7.7) with cardinality ‖Exxxm∗‖0 =

‖Exxxmσ
‖0. The optimizations in Steps 1, 2 and 4 amount to solving a linear program, a constrained

convex quadratic program, and a standard least-squares regression, respectively, all of which

can be done efficiently. The search in Step 3, thanks to Theorem 1, is also simple because the

cardinality of the solution is monotonic in m.

Below we present a numerical example to illustrate the above discussion. MATLAB and

Yalmip were used for numerical solutions of all optimization problems [Löf04]. For this example,

31 data points were generated for a sawtooth as in Definition 2 with

α = 0.7, r = 4, β = {4,5,5,7} t = {0,8,14,23}

and noise was added to each data point drawing from a zero-mean independent Gaussian distribu-

tion with variance σ2 = 0.64, resulting in the samples already shown in Figure 1.3. Algorithm 2
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Figure 7.2: Optimal cost (blue) and cardinality (orange) of the relaxation (7.7) as a function of
the relaxation parameter m = ‖Exxx‖1. Marks correspond to the points generated by Algorithm 2.
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Figure 7.3: Optimal cost and cardinality of the relaxation (7.7) (Algo. 1 step 3) and
corresponding RSS (7.2) (Algo. 1 step 4) as a function of the optimal relaxation cardinality
s = ‖Exxxm‖0.
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Figure 7.4: Original sawtooth and noisy samples and fits based on the optimal solution of the
relaxation (7.7) for s = 8 and s = 4.

applied to this data set produces

m̄≈ 93.4, mσ ≈ 17.97, m∗ = 19.45.

The optimal solution to the relaxation (7.7) and the corresponding cardinality is shown in Figure

7.1a. This figure is zoomed in around mσ in Figure 7.2 to show mσ (diamond), m∗ (circle) and

the corresponding cardinality in more detail. The location of the jumps, the cardinality of the

solution, and the estimated α, denoted α̂, associated with m∗ are

r = ‖Exxxm∗‖0 = 9, t = {000,5,888,12,111444,15,222333,24,25}, α̂≈ 0.635

Note how all jumps present in the original noise-free sawtooth (marked in bold) are still present

at the solution. The resulting RSS (7.2) obtained in Step 4 is about 6.4, which is, as expected,

lower than the upper bound guaranteed by the relaxation (7.7), as the algorithm produces

RSS≈ 6.4≤ 1
2
‖Axxxm∗− ŷ‖ ≈ 8.4≤ 1

2
‖Axxxmσ

− ŷ‖= 1
2

nσ
2 = 9.6.

The final fit is shown in Figure 7.4, in which the additional jumps lead, in this case to a small

level of over-fitting.

One way to reduce this potential over-fitting resulting from the gap between the least-

residual and the upper-bound produced by the relaxation is to select m based on the lower bound
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produced by solving the regressions (7.2) for xxxm for values of m≤ mσ ≤ m∗ instead of the upper

bound given by the relaxation.

Indeed, as suggested by the plot in Figure 7.3 which shows the minimal RSS obtained

based on the optimal upper bound solution xxx∗m with cardinality s∗, a choice of m that brings the

minimal RSS closer to the expected variance in this example is m∗l with cardinality s∗l , marked

by squares in Figures 7.2 and 7.3. The location of the jumps and the cardinality of the solution

associated with m∗l are

r = ‖Exxxm∗l ‖0 = 4, t = {000,888,111444,222333}, α̂≈ 0.68

Note that this adjustment can also be done efficiently because it is based on the optimal solution

of the relaxation, xxx∗ and m∗, and not on a full combinatorial search for a given cardinality. This

adjusted fit captures exactly the jumps on the original sawtooth.

Finally, note that Figures 7.3 also suggests a simple criterion for selecting the best fit

when σ is not known a priori. In the spirit of methods like Principal Component Analysis

(PCA) [TH09], a selection based on the point at which there is a significant jump on the relaxation

fitting cost seems to be a good choice. In this example, such a point also leads to a choice of

m = m∗l and ‖Exxxm∗l ‖0 = 4.

7.6 Proof of Theorem 1

In order to characterize the optimality of the cardinality constrained Problem (7.5), we

need to assert certain properties of the relaxed Problem (7.7). First is that the inequality involving

m is always binding at the optimal solution.

Lemma 1. Let m < m̄ and xxx∗m be as Theorem 1. Then ‖Exxx∗m‖1 = m.

Proof. Suppose ‖Exxx∗m‖1 < m < m̄. In this case, the constraint ‖Exxx‖1 ≤ m in Problem (7.8) is not
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active at the optimal solution, therefore

xxx∗m = argmin
xxx

{
1
2
‖Axxx− ŷyy‖2

2 : xxx≥ 0
}
.

However, by the construction in Remark 3, it follows that Axxx∗m = ŷyy. But since m̄ is the smallest

m such that there exists xxx with Axxx = ŷyy and xxx≥ 0, then m≥ m̄ > m, a contradiction. Therefore,

‖Exxx∗m‖1 = m.

With Lemma (1) in mind, whenever m≤ m̄ we can rewrite (7.8) as

xxx∗m = argmin
xxx

{
1
2
‖Axxx− yyy‖2

2 : ‖Exxx‖1 = m, xxx≥ 0
}

(7.11)

in which an equality replaces the inequality ‖Exxx‖1 ≤ m. now consider perturbations to the

solutions to Problem (7.11) in the form

xxx∗ε = argmin
xxx

{
1
2
‖Axxx− yyy‖2

2 : ‖Exxx‖1 = m− ε, xxx≥ 0, ε > 0
}
. (7.12)

Define the set of active positive constraints at xxx∗m for a given m as

A(xxx∗m) = {i : (xxx∗m)i = 0}, (7.13)

in which (xxx∗m)i denotes the ith element of vector xxx∗m. Our next goal is to prove that ‖Exxx∗ε‖0 ≤

‖Exxx∗m‖0 for all small enough ε > 0. We will do so by proving that for all 0 < ε≤ ε where

ε = max{ε > 0 : A(xxx∗ε) = A(xxx∗m)} . (7.14)
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it is true that

δxxx∗ = xxx∗ε− xxx∗m ≤ 0. (7.15)

Indeed, (7.15) implies that entries of xxxε must always be less than or equal to the corresponding

entries of xxx∗m and it follows that if (xxx∗m)i = 0 for some i, then (xxx∗ε)i = 0 as well, proving that

‖Exxxε‖0 ≤ ‖Exxx∗m‖0, for all 0 < ε≤ ε̄.

We shall now invoke the KKT conditions of optimality [BV04] for Problems (7.11) and

(7.12) as an intermediate step in the proof of property (7.15). The next lemma provides for

an explicit calculation of δxxx∗ through a set of linear equations derived from the conditions of

optimality.

Lemma 2. Let A be as in (7.4), xxx∗m, xxx∗ε as in (7.11) and (7.12), the active set A(xxx∗m) be as in (7.13),

and a positive ε > 0 as in (7.14). Assemble the matrices

FT
m =

[
eeei

]
, i ∈ A(xxx∗m), Gm =

[
eeei

]
, i 6∈ A(xxx∗m), FmGm = 0,

where eeei is the ith column of the n+2×n+2. All solutions to the equation

GT
mAT AGm GT

mccc

cccT Gm 0


www

v

=

 000

−ε

 ,

in which

cccT =

(
0 1 1 · · · 1

)
∈ Rn+1 (7.16)

are such that www≤ 0 for all 0 < ε < ε and δxxx∗ = xxx∗ε− xxx∗m = Gmwww≤ 000.

Proof. Let xxx∗m, λ∗m ∈ R, and zzz∗m ∈ Rn+1 be the optimal primal and dual solutions satisfying the
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KKT conditions associated with Problem (7.11), that is

AT A ccc −I

cccT 0 0




xxx∗m

λ∗m

zzz∗m

=

AT yyy

m

 , xxx∗m ≥ 0, zzz∗m ≥ 0, zzz∗m� xxx∗m = 0, (7.17)

where � denotes entrywise product. Since this is a standard convex quadratic program the KKT

conditions are necessary and sufficient for optimality when Slater’s constraint qualification is

satisfied [BV04], which is trivially satisfied by vector xxx such that xi = m/(n−1) for i = 2, ...,n.

The values of xxx∗m, λ∗m, and the nonzero entries of zzz∗m, denoted z̄zz∗m, satisfying (7.17) can be

equivalently calculated by solving the problem


AT A ccc −FT

m

cccT 0 0

Fm 0 0




xxx∗m

λ∗m

z̄zz∗m

=


AT yyy

m

000

 . (7.18)

Because Fm is full row-rank and Lemma 4, the above set of equations is nonsingular, meaning

that a solution (xxx∗m,λ
∗
m, z̄zz
∗
m) exists and is unique.

Similarly, optimal solutions to problem (7.12) satisfy

AT A ccc −IT

cccT 0 0




xxx

λ

zzz

=

 AT yyy

m− ε

 , xxx≥ 0, zzz≥ 0, zzz� xxx = 0, (7.19)
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and, for all 0 < ε≤ ε, also the reduce linear algebra problem


AT A ccc −FT

m

cccT 0 0

Fm 0 0




xxx∗ε

λ∗ε

z̄zz∗ε

=


AT yyy

m− ε

000

 , (7.20)

where z̄zz∗ε denotes a vector with the nonzero entries of zzz∗ε , since xxx∗m and xxx∗ε share the same associated

active set.

From the above discussion, it follows that δxxx∗= xxx∗ε−xxx∗m, δλ∗= λ∗ε−λ∗m, and δzzz∗= zzz∗ε−zzz∗m,

must satisfy


AT A ccc −FT

m

cccT 0 0

Fm 0 0




δxxx∗

δλ∗

δz̄zz∗

=


000

−ε

000

 , (7.21)

where δz̄zz∗ denotes the nonzero entries of δzzz∗. Because Fmδxxx∗ = 000, one has that δxxx∗ = Gmwww. Upon

pre-multiplication of the first two block-equations of (7.21) by the full-rank matrix

GT
m 000

000 1

, the

value of www and δλ∗ can be determined by solving the reduced linear algebra problem [GMW19]

GT
mAT AGm GT

mccc

cccT Gm 0


 www

δλ∗

=

 000

−ε


Then, by Lemma 17, www≤ 0, and the fact that Gm is a partition of the identity matrix, it follows

that δxxx∗ = Gmwww≤ 0 as claimed.

Because the constraint set in Problem (7.11) is polyhedral, there is only a finite set of active

sets (7.13) for all m ∈ [0, m̄], each active set spanning a finite sub-interval in [0, m̄]. Therefore,

one can apply Lemma 2 and inequality (7.15) repeatedly on all active sets from m2 < m̄ towards
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m1 ≤ m2 to conclude that ‖Exxx∗m1
‖0 ≤ ‖Exxx∗m2

‖0, thus proving Theorem 1.

7.7 Technical Linear Algebra Results

In this section we develop the additional technical results necessary for the proof of

Lemma 17, which is the final step in completing the proof of Theorem 1. The first couple of

lemmas are concerned with the structure and rank of some key matrices.

Lemma 3. Let A be defined as in (7.4), then rank(A) = rank(AT A) = n.

Proof. Since A has n rows, rank(A)≤ n. By inspection, the set of columns 2 through n+1 form

a linearly independent set and rank(A)≥ n. Therefore rank(A) = rank(AT A) = n.

Lemma 4. Let A be as in (7.4) and ccc as in (7.16) and define

W =

AT A ccc

cccT 0

 ∈ Rn+2×n+2. (7.22)

The rank of W is n+2, that is W is full rank.

Proof. Let

U =

 000 ccc

cccT 0

 , V =

AT A 000

000 0

 , W =U +V.

rank(U) = 2 and, by Lemma 3, rank(V ) = n. Furthermore, one can show that R(U)∩R(V ) =

{000}, where R(X) denotes the range space of X . Therefore, by the rank-sum theorem [HJ13],

rank(U +V ) = rank(U)+ rank(V ) = n+2.

Lemma 5. Let W be as in (7.22). Define Tn+2 ∈ Rn+2×n+2, vvv ∈ Rn+1, D ∈ Rn+1×n+1, and
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V ∈ Rn+2×n+2, as in

Tn+2 =



−1 0 0 · · · 0 0

−1 1 0 · · · 0 0

−1 1 1 · · · 0 0
...

...
... . . . ...

...

−1 1 1 · · · 1 1

0 0 0 · · · 0 1


, vvv =



−1

0

1
...

n−2

1−n


, D =

I 000

000 −1

, V =

α vvvT

vvv D

, (7.23)

Then

W = T T
n+2V Tn+2. (7.24)

If n≥ 3 then α = n(2n2−4n+3)/6≥ 2.

Proof. One can verify the particular structure of the matrices in (7.23). Regarding the value of α,

the first entry of T T
n+2V Tn+2 is

(T T
n+2V Tn+2)1,1 = α+n+2

n−2

∑
i=2

i = α+n(n−2).

Likewise, the first entry of AT A is

(AT A)1,1 =
n−1

∑
i=1

i2 =
(n−1)n(2(n−1)+1)

6
.

Equating the two expressions one obtains

α =
(n−1)n(2(n−1)+1)

6
−n(n−2) = n(2n2−4n+3)/6

which, for n≥ 3, implies that α≥ 2.
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Lemma 6. Let n≥ 3. The matrices Tn+2 and V defined in (7.23) are nonsingular and have as

inverses

T−1
n+2 =



−1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

... . . . . . . ...
...

0 0 · · · −1 1 −1

0 0 · · · 0 0 1


, V−1 =

 β−1 −β−1vvvT D−1

−β−1D−1vvv D−1 +β−1D−1vvvvvvT D−1

 ,

in which β = α− vvvT D−1vvv = (n−1)2 ≥ 4.

Proof. The inverse of Tn+2 can be directly calculated from (7.23). Now, define β = α− vvvT D−1vvv.

Since D−1 = D, it follows that

vvvT D−1vvv = vvvT Dvvv =
n

∑
i=1

v2
i − v2

n+1 = 1+
n−2

∑
i=1

i2− (n−1)2

and

β = α− vvvT D−1vvv =
n−1

∑
i=1

i2−n(n−2)−

(
1+

n−2

∑
i=1

i2− (n−1)2

)

= 2(n−1)2−n(n−2)−1 = (n−1)2 > 0

which, for n≥ 3, implies that β≥ 4 > 0. Since D is nonsingular and the Schur complement of V

is β = α− vvvT D−1vvv > 0, V is nonsingular.

Definition 4. Let J ⊂ {2, . . . ,n+1} and define the matrix

G =

[
eeei

]
, i 6∈ J, G ∈ Rn+1×κJ , (7.25)
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where κJ = n+1−|J|, and |J| is the cardinality of the set J.

Lemma 7. Let n ≥ 3, G ∈ Rn+1×κJ be as in Definition 4, and Ḡ = diag(G,1). The matrix

TG = ḠT Tn+2Ḡ ∈RκJ+1×κJ+1 is nonsingular and there exists a matrix HG ∈Rn+2×κJ+1 such that

Tn+2 Ḡ = HGTG with, HG = Tn+2 ḠT−1
G . (7.26)

Furthermore, when n+1 6∈ J, then

TG = TκJ+1. (7.27)

When n+1 ∈ J then

TG = TκJ+1− eκJ eT
κJ+1, T−1

G = T−1
κJ+1 + eκJ eT

κJ+1. (7.28)

Proof. Existence of HG and TG as in (7.26) follows from the fact that G and Ḡ are full rank.

Hence, TG is nonsingular. Property (7.27) follows from the fact that G is a partition of the identity

matrix and the product ḠT T Ḡ simultaneously eliminates corresponding columns and rows of T .

The inverse property (7.28) in the case n+1 ∈ J follows from the block-triangular structure of

TκJ+1.

Using Lemma 7, it will be possible to factor the matrix

WG =

GT AT AG GT ccc

cccT G 0

= ḠT (T TV T
)

Ḡ

in the form

WG = T T
G VGTG, VG = HT

GV HG. (7.29)
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Despite the heavy notation required to express the above relationships, the resulting matrices HG

and VG can be simply calculated by inspection of the index set J. We illustrate such calculations

in the next subsections.

7.7.1 The construction of HG

For simplicity of notation, and when no confusion is possible, we will let H = HG.

Recall that the set J, from Definition 4, is the set of indices marking the columns to be removed

by multiplication by G. Let ji be the ith element in J so that 1 < j1 < j2 < · · ·< jkJ .

Algorithm 3. Let H(0) = In+2, j0 = 0, and i = 1, and follow the steps:

1. Let H(i) be equal to H(i−1) with the column ji removed and set column ji−1 in H(i) to be

equal to the sum of columns ji−1 and ji from H(i−1).

2. Subtract one from each ji ∈ J, i≥ i−1.

3. If i < kJ , let i← i+1 and go to Step 1. If i = kJ and jkJ 6= n+1, go to Step 4. Otherwise

add eeen+1 to the last column of H(kJ) and go to Step 4.

4. Let H = H(kJ) and stop.

The above algorithm applied to the following example in which n = 6 and J = {2,3,6},

155



kJ = 3, leads to H(0) = I8 and:



1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


︸ ︷︷ ︸

H(1)

→



1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


︸ ︷︷ ︸

H(2)

→



1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


︸ ︷︷ ︸

H=H(3)

The above algorithm is well defined and works even when n+ 1 ∈ J. In fact, the reason for a

different choice of TG in (7.28) is precisely so that the corresponding HG could be computed by

the above algorithm in all cases. For example, when n = 6 and J2 = {2,3,7}, the resulting H is

given by

HT = (H(3))T =



1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1


.

note the presence of the nonzero element at n+1×κJ +1, which occurs due to the additional

term in TG in the case n+1 ∈ J.

Lemma 8. Let H be constructed as in Algorithm 2 and

J̄ = {1, . . . ,n+3}− J.
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Then H has full column rank, |J̄|= n+3−|J|= κJ +2, and

θi = ‖(H)i‖1 = J̄i+1− J̄i ≥ 1, i = 1, . . . ,κJ,

with,

θκJ+1 =

{‖(H)κJ+1‖1 = 1 n+1 6∈ J
‖(H)κJ+1‖1 = 2 n+1 ∈ J

Furthermore

(θ1−1)(θ1−3)≥
{0, 2 6∈ J,
−1, 2 ∈ J

Proof. That H has full column rank follows from Algorithm 2. Since both J and J̄ are ordered

in increasing order, J̄i+1− J̄i ≥ 1. Similarly, θκJ+1 is found from Algorithm 2. By construction

J̄1 = 1.

Suppose 2 6∈ J. Then, J̄ = {1,2,? · · ·?} so that θ1 = J̄2− J̄1 ≥ 1

Suppose 2 ∈ J, then, J̄ = {1,q,? · · ·?} and q≥ 3, then θ1 = J̄2− J̄1 ≥ 2 from which the

result follows upon substitution into (θ1−1)(θ1−3).

For example, let n = 6, then if n+1 6∈ J,

J = {2,3,6} , J̄ = {1,4,5,7,8,9} , θ =

(
3,1,2,1,1

)

otherwise, if n+1 ∈ J

J = {2,3,7} , J̄ = {1,4,5,6,8,9} , θ =

(
3,1,1,2,2

)
.
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7.7.2 The construction of VG = HT
GV HG

A key observation is right multiplication of a matrix by the HG generated in Algorithm 2

corresponds to the application of Algorithm 2 to the columns of that matrix. Likewise, left

multiplication by HT
G applies Algorithm 2 to the rows of the matrix. Let VG = HT

GV HG.

For the examples above, when n = 6, J = {2,3,6} or J = {2,3,7}, we have, respectively,

VG =



31 1 5 4 −5

1 1 0 0 0

5 0 2 0 0

4 0 0 1 0

−5 0 0 0 −1


or, VG =



31 1 2 7 −1

1 1 0 0 0

2 0 1 0 0

7 0 0 2 1

−1 0 0 1 0


.

It will be at times also convenient to partition HG as done before with V in (7.23) in the

form

HG =

 1 000

hhh1 U

 , (7.30)

so that

VG =

1 hhhT
1

000 UT


α vvvT

vvv D


 1 000

hhh1 U

=

α+hhhT
1 (2vvv+Dhhh1) (vvvT +hhhT

1 D)U

UT (vvv+Dhhh1) UT DU

 .
note that UT DU is square with dimension κJ−1 and that hhh1 6= 0 only if 2 ∈ J, in which case

hhh1 =

[
1 · · · 1 0 · · · 0

]
,
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with the first ‘0’ at location J̄2. This means that

UT Dhhh1 = 0, Dhhh1 = hhh1, hhhT
1 hhh1 = θ1−1, hhhT

1 vvv =
1
2
(θ1−4)(θ1−1)

and

VG =

ᾱ v̄vvT

v̄vv D̄

=

α+(θ1−1)(θ1−3) vvvTU

UT vvv UT DU

 . (7.31)

7.7.3 The construction of D̄

Lemma 9. Let D̄ be as in (7.31). Then

D̄ = Q−2eκJ eT
κJ
. (7.32)

with Q =UTU � 0 and Q ∈ RκJ×κJ . Furthermore, partition Q = diag(Q1,Q2), in which Q1 is

the top diagonal submatrix of dimension κJ−2 in Q and Q2 is the lower 2×2 matrix in Q. Then

Q1 = diag(θ2, . . . ,θκJ−1) (7.33)

and

Q2 =


I2, n+1 6∈ J,θκJ 1

1 2

 , n+1 ∈ J.
(7.34)

where θ is as in Lemma 8.

Proof. Follows from the particular structure of H and its properties from Lemma 8 and the fact

that when n+ 1 6∈ J, the operation UT DU is a sum of select diagonal elements of the identity

159



matrix inside D, which is what the θi’s represent. The modification for the case n+ 1 ∈ J is

necessary because in that case the sum involves the ‘−1’ element at the last entry of D.

Lemma 10. Let v̄vv be as in (7.31), U and D̄ as in (7.30). Define uuu = D̄−1v̄vv. Then

v̄i−1 =
1
2
(J̄i+1− J̄i)(J̄i+1 + J̄i−7)≥−1, i = 2, . . . ,κJ

ui−1 =
v̄i−1

θi
=

1
2
(J̄i+1 + J̄i−7) i = 2, . . . ,κJ−1

with,

v̄κJ =

{−(n−1), n+1 6∈ J
−1, n+1 ∈ J

uκJ−1 =

{n−2, n+1 6∈ J
−1, n+1 ∈ J

uκJ =

{n−1, n+1 6∈ J
1
2(J̄κJ+1− J̄κJ)(J̄κJ+1 + J̄κJ −5), n+1 ∈ J

Furthermore,

ui ≥ 1+ui−1 i = 2, . . . ,ν,

where ν = κJ if n+1 6∈ J or ν = κJ−2 if n+1 ∈ J and

v̄κJ−1 ≥ 2n−5

when n+1 ∈ J.
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Proof. Start by expanding v̄vv =UT vvv for i = 2, . . . ,κJ to obtain

v̄i−1 =
J̄i+1−1

∑
k=J̄i

vk−1 =
J̄i+1−1

∑
k=J̄i

k−3 =
J̄i+1−1

∑
k=J̄i

k−3
J̄i+1−1

∑
k=J̄i

1

=
J̄2

i+1− J̄i+1− J̄2
i + J̄i

2
−3(J̄i+1− J̄i)

=
1
2
(J̄i+1− J̄i)(J̄i + J̄i+1−7)

By Lemma 8, J̄2 ≥ 2 and J̄i+1− J̄i ≥ 1 so that J̄3 ≥ 3. Therefore, we find that J̄i + J̄i+1−7≥−2

and the result follows. now let uuu = D̄−1
1 v̄vv such that

ui−1 =
v̄i−1

θi
, i = 2, . . . ,κJ−1

use Lemma 8 to write

ui−1 =
v̄i−1

J̄i+1− J̄i
=

1
2
(J̄i+1 + J̄i−7) .

Therefore,

ui−ui−1 =
1
2
(J̄i+2 + J̄i+1−7)− 1

2
(J̄i+1 + J̄i−7) =

1
2
(J̄i+2− J̄i)≥ 1

and by construction of J̄, J̄i+1 ≥ J̄i+1 and the result follows. note that the special cases identified

follow immediately from (7.23) and Lemma 9.

Let n+1 ∈ J, then J̄κJ ≤ n. Consider v̄κJ−1,

v̄κJ−1 =
1
2
(J̄i+1− J̄i)(J̄i+1 + J̄i−7)

≥ 1
2
(n+2−n)(n+2+n−7)

= 2n−5
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completing the proof.

We need the elementary calculation given in the next lemma before proceeding,

Lemma 11. Let p,q ∈ N with q≥ 1. Then,

1
q+1

(
p+q

∑
i=p

i

)2

≤
p+q

∑
i=p

i2− q
2

Proof. We have,

1
q+1

(
p+q

∑
i=p

i

)2

=
1

q+1

(
(q+1)p+

q

∑
i=0

i

)2

= (q+1)p2 +2p
q

∑
i=0

i+
1

q+1

(
q

∑
i=0

i

)2

and,

p+q

∑
i=p

i2 = (q+1)p2 +2p
q

∑
i=0

i+
q

∑
i=0

i2

Therefore, all that needs to be shown is that 0≤ ∑
q
i=0 i2− q

2 −
1

q+1

(
∑

q
i=0 i

)2.

q

∑
i=0

i2− q
2
− 1

q+1

(
q

∑
i=0

i

)2

=
q(q+1)(2q+1)−3q

6
− q2(q+1)

4

=
q

12
(q2 +3q−4)

and has roots q =−4 and q = 1. For 1≤ q, q
12(q

2 +3q−4)≥ 0.

Lemma 12. Let vvv be as in (7.23) and v̄vv be as in (7.31). For i ∈ Z such that 2≤ i≤ κJ ,

v̄2
i−1

θi
≤

J̄i+1

∑
k=J̄i

v2
k
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Proof. By construction in Lemma 8, J̄ is a set of increasing integers, 1 ≤ J̄1, and J̄i < J̄i+1 for

i = 1,2, ...,κJ . Recall, v̄i−1 = ∑
J̄i+1−1
k=J̄i

vk−1 = ∑
J̄i+1−1
k=J̄i

k−2. Then, by Lemma 11 with p = J̄i−2,

q = Ji+1− Ji−1 and Lemma 8, we have for any i = 2, ...,κJ ,

v̄2
i−1

θi
=

1
J̄i+1− J̄i

(
J̄i+1−1

∑
k=J̄i

vk−1

)2

=
1

J̄i+1− J̄i

(
J̄i+1−1

∑
k=J̄i

k−2

)2

≤
J̄i+1−1

∑
k=J̄i

(k−2)2− J̄i+1− J̄i−1
2

≤
J̄i+1−1

∑
k=J̄i

v2
k−1

Lemma 12 shows the squared components of v̄vv divided by the number of terms composing

the component, is always less than or equal to the sum of the squared components going into it,

up to the final two components of v̄vv.

Lemma 13. Let v be as in (7.23), v̄vv be as in (7.31). Then,

(θ1−1)(θ1−3)+ vvvT vvv− v̄vvT Q−1v̄vv≥ 0 (7.35)

Proof. Recall θ1 ∈ N and from Lemma 9 that Q =

Q1 0

0 Q2

 where Q1 =

(
θ2 · · · θκJ−1

)
and Q2 depends on whether n+1 ∈ J. Apply Lemma 12 to each term of v̄vv with corresponding

terms of vvv, then

v̄vvT

Q−1
1 0

0 0

 v̄vv≤ vvvT

In−θκJ
0

0 0

vvv. (7.36)
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Partition U =

U1 0

0 U2

 so that U2 ∈ R2×2. If n+1 6∈ J, by Lemma 8, Q−1
2 = I2 =U2. Then,

v̄2
κJ−1 + v̄2

κJ
= v̄vvT

0 0

0 Q−1
2

 v̄vv = vvvT

0 0

0 U2

vvv = v2
n + v2

n+1. (7.37)

If n+1 ∈ J, we have Q2 =

θκJ 1

1 2

 with Q−1
2 = 1

2θκJ−1

 2 −1

−1 θκJ

 and,

vvvT

0 0

0 IθκJ+1

vvv =
θκJ+1

∑
j=1

v2
n+2−i =

θκJ+1

∑
j=1

(n− i)2

and,

v̄vvT

0 0

0 Q−1
2

 v̄vv =
2v̄2

κJ−1 +2v̄κJ−1 +θκJ

2θκJ −1

Direct calculation shows that v̄κJ−1 = θκJ(n−θκJ −1)+θκJ(θκJ −1)/2. Consider,

vvvT

0 0

0 IθκJ+1

vvv− v̄vvT

0 0

0 Q−1
2

 v̄vv

=

θκJ+1

∑
j=1

(n− i)2−
2v̄2

κJ−1 +2v̄κJ−1 +θκJ

2θκJ −1

=
(θκJ −1)(6−12n+6n2 +(6n−5)θκJ −θ2

κJ
+θ3

κJ
)

6(2θκJ −1)

=
(θκJ −1) f (n,θκJ)

6(2θκJ −1)

Since n+1∈ J, we have that n≥ θκJ ≥ 2. Then, 2θκJ−1 > θκJ−1 > 0. Since 6n2−12n+6≥ 0
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as well as 6n−5≥ 1, we have

f (n,θκJ)≥ θ
3
κJ
−θ

2
κJ
+θκJ ≥ 0

where θ3
κJ
−θ2

κJ
+θκJ = θκJ(θ

2
κJ
−θκJ +1)≥ 0 ∀θκJ ∈ R, and we conclude

v̄vvT

0 0

0 Q−1
2

 v̄vv≤ vvvT

0 0

0 IθκJ+1

vvv (7.38)

Therefore, in either case, we have

v̄vvT Q−1v̄vv = v̄vvT

Q−1
1 0

0 0

 v̄vv+ v̄vvT

0 0

0 Q−1
2

 v̄vv

≤ vvvT

In−θκJ
0

0 0

vvv+ vvvT

0 0

0 IθκJ+1

vvv = vvvT vvv (7.39)

Recall, (θ1− 1)(θ1− 3) ≥ 0 for θ1 6= 2, which can only occur if 2 ∈ J by Lemma 8.

Therefore, if 2 6∈ J, the result follows.

If 2 ∈ J, then θ1 ≥ 2 and correspondingly, the first column of UT is 000. Therefore,

v̄1 = (UT )1vvv does not contain the first term of vvv, v1 =−1, and since v̄vv =UT vvv, it follows v̄vv does

not contain this term either. Therefore, by the inequality above, we may remove this term from

vvvT vvv so that

(θ1−1)(θ1−3)+ vvvT vvv− v̄vvT Q−1v̄vv≥−1+ vvvT vvv− v̄vvT Q−1v̄vv≥ 0.

yielding the result.

Lemma 14. Let the index set J be as in Definition 4, β > 0 as in Lemma 5, and VG and its
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partition ᾱ, vvv, and D̄ be as in (7.31). Then

β̄ = ᾱ− v̄vvT D̄−1v̄vv≥ β > 0.

Furthermore, VG is nonsingular and

V−1
G =

 β̄−1 −β̄−1v̄vvT D̄−1

−β̄−1D̄−1v̄vv D̄−1 + β̄−1D̄−1v̄vvv̄vvT D̄−1

 .
Proof. From Lemma 9, we have D̄ = Q−2eκJ eT

κJ
. From (7.23), we have vvvT D−1vvv = vvvT vvv−2(n−

1)2. If n+1 6∈ J, both D̄ and Q are diagonal matrices, therefore,

v̄vvT (D̄−1−Q−1)v̄vv =−2v̄vvT eeeκJ eeeT
κJ

v̄vv =−2(n−1)2

from which it follows,

β̄−β = ᾱ− v̄vvT D̄−1v̄vv− (α− vvvT D−1vvv)

= (θ1−1)(θ1−3)− (v̄vvT Q−1v̄vv−2(n−1)2)+ vvvT vvv−2(n−1)2

= (θ1−1)(θ1−3)+ vvvT vvv− v̄vvT Q−1v̄vv

By Lemma 13, (θ1−1)(θ1−3)+ vvvT vvv− v̄vvT Q−1v̄vv≥ 0, and the result follows.

now assume n+1 ∈ J, then n≥ θκJ ≥ 2 and v̄κJ =−1. Recalling v̄κJ−1 = θκJ(n−θκJ −

1)+θκJ(θκJ −1)/2, we find,

v̄vvT (D̄−1−Q−1)v̄vv =
−2

2θκJ −1

(
v̄κJ−1 −1

) 1 −θκJ

−θκJ θ2
κJ


v̄κJ−1

−1


=−

θ2
κJ
(1−2n+θκJ)

2

2(2θκJ −1)
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Therefore,

β̄−β = ᾱ− v̄vvT D̄−1v̄vv− (α− vvvT D−1vvv)

= (θ1−1)(θ1−3)+ vvvT vvv− v̄vvT Q−1v̄vv−2(n−1)2 +
θ2

κJ
(1−2n+θκJ)

2

2(2θκJ −1)

≥
θ2

κJ
(1−2n+θκJ)

2

2(2θκJ −1)
−2(n−1)2

= fθκJ
(n)

where the inequality follows from Lemma 13. After some algebra we have,

fθκJ
(n) = 4−2θκJ +θ

2
κJ
+2θ

3
κJ
+θ

4
κJ

+(−8+16θκJ −4θ
2
κJ
−4θ

3
κJ
)n+(4−8θκJ +4θ

2
κJ
)n2

note that the n2 term, 4−8θκJ +4θ2
κJ
= 4(θκJ−1)2 is always positive, and that fθκJ

(n) is a strictly

convex function of n since θκJ ≥ 2. The global minimum occurs at n = θ2
κJ
−3θ3

κJ
and is always

negative. Hence, when θκJ ≥ 2 we have, fθκJ
(n)≥ fθκJ

(0) = 4−8θκJ +θ2
κJ
+2θ3

κJ
+θ4

κJ
≥ 0 and

the result follows. note that V−1
G comes from the matrix inversion Lemma [HJ13]. Since D̄ is

nonsingular and its Schur complement β̄ > 0, VG is nonsingular.

We now have the machinery necessary to address problem (7.48), that is

T T
G VGTG

xxx

λ

=

GT AT AG GT ccc

cccT G 0


xxx

λ

=

 000

−ε

=−εeeeκJ+1.

From Lemma 6 the last column of T−T
G is always eeeκJ+1, so that

TG

xxx

λ

=−εV−1
G T−T

G eeeκJ+1 =−εV−1
G eeeκJ+1 (7.40)
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The terms in the right-side equation above can be explicitly calculated.

Lemma 15. The product

V−1
G eeeκJ+1 = β̄

−1uκJ

 −1

uuu− β̄www/uκJ

 (7.41)

where, uκJ = n−1 > 0, www = eeeκJ if n+1 6∈ J, and uκJ = v̄κJ−1 +θκJ > 0, www = θκJ eeeκJ − eeeκJ−1 if

n+1 ∈ J.

Proof. Using V−1
G from Lemma 14

V−1
G eeeκJ+1 = β̄

−1

 −v̄vvT D̄−1eeeκJ

(β̄D̄−1 + D̄−1v̄vvv̄vvT D̄−1)eeeκJ

 .

We have uuu = D̄−1v̄vv = D̄−1UT vvv from which it follows

uuuuuuT =

[
u1uuu u2uuu · · · uκJ uuu

]
= D̄−1v̄vvv̄vvT D̄−1

Therefore, letting www = β̄D̄−1eeeκJ ,

(β̄D̄−1 + D̄−1v̄vvv̄vvT D̄−1)eeeκJ = www+uκJ uuu

and v̄vvT D̄−1eeeκJ = uuuT eeeκJ = uκJ which leads to (7.41).

Let n+1 6∈ J. From Lemma 9, it follows that D̄−1eeeκJ =−eeeκJ , then

uκJ = uuuT eeeκJ = v̄vvT D̄−1eeeκJ =−v̄vvT eeeκJ =−v̄κJ =−vn+1 = n−1
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and

www = β̄D̄−1eeeκJ =−β̄eeeκJ =

(
0 · · · 0 −β̄

)T

.

now let n+1 ∈ J. From Lemma 9, D̄−1eeeκJ = eeeκJ−1−θκJ eeeκJ , so that

uκJ = uuuT eeeκJ = v̄vvT D̄−1eeeκJ = v̄κJ−1− v̄κJ θκJ = v̄κJ−1 +θκJ

since v̄κJ =−1. Furthermore,

www = β̄D̄−1eeeκJ = β̄(eeeκJ−1−θκJ eeeκJ) = β̄

(
0 · · · 0 1 −θκJ

)T

,

concluding the proof.

Corollary 1. Let uuu be as defined in Lemma 10 and vvv as in (7.23), then u1 ≥−1.

Proof. From Lemma 8, min(J̄2) = 2 and min(J̄3) = 3, therefore by Lemma 10, we have u1 =

v̄1
θ2

= 1
2(J̄3 + J̄2−7)≥−1

We are now ready to prove the main result of this section.

Lemma 16. Let TG be as in Lemma 7 and VG be as in (7.31) and ε > 0. Then

xxx

λ

=−εT−1
G V−1

G eeeκJ .

is such that xxx≤ 000.

Proof. From Lemma 7,

T−1
G = T−1

κJ+1 +ζeeeκJ eeeT
κJ+1,
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where ζ = 0 if n+1 6∈ J and ζ = 1 if n+1 ∈ J. One can then show using Lemma 15 that

zzz = β̄u−1
κJ

T−1
G V−1

G eeeκJ

in which the entries of zzz are given by

z1 = 1,

zi = ui−1−ui−2 ≥ 0, i = 2, . . .κJ−1

zκJ = uκJ−1−uκJ−2− β̄wκJ−1/uκJ +(ζ−1)(uκJ − β̄wκJ/uκJ)

zκJ+1 = uκJ − β̄wκJ/uκJ ,

with u0 =−1. That zi ≥ 0, i = 1, . . .κJ−1, follows from Corollary 1, for i = 2, and Lemma 10,

for i = 2, ...,κJ−1. Since

xxx

λ

=−εβ̄
−1uκJ zzz

and ε > 0, β̄ > 0, and uκJ > 0, it remains to show that

zκJ = uκJ−1−uκJ−2− β̄wκJ−1/uκJ +(ζ−1)(uκJ − β̄wκJ/uκJ)≥ 0.

When n+1 6∈ J, then by Lemmas 10 and 15

uκJ−1−uκJ−2 ≥ 1 uκJ = n−1, wκJ−1 = 0, wκJ = 1, ζ = 0
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so that

zκJ ≥ 1− (n−1)+
β̄

n−1
≥ 1− (n−1)+

(n−1)2

n−1
= 1≥ 0,

where the penultimate inequality follows from the fact that β̄ ≥ β = (n− 1)2, as shown in

Lemmas 5 and 14.

The case when n+1 ∈ J is more involved. From Lemmas 10 and 15

uκJ−1 =−1, wκJ−1 =−1 wκJ = θκJ ζ = 1

and it follows,

zκJ =
β̄

uκJ

−1−uκJ−2

Substituting uκJ and uκJ−2 from Lemma 10

zκJ =
β̄

v̄κJ−1 +θκJ

− v̄κJ−2

θκJ−1
−1 =

β̄− (v̄κJ−1 +θκJ)
(

v̄κJ−2
θκJ−1

+1
)

v̄κJ−1 +θκJ

From Lemma 14

β̄ = ᾱ− v̄vvT D̄−1v̄vv

= α+(θ1−1)(θ3−1)−

(
v̄2

1
θ2

+
v̄2

2
θ3

+ · · ·+
v̄2

κJ−2

θκJ−1
−2v̄κJ−1−θκJ

)

≥ α−1+2v̄κJ−1 +θκJ −

(
v̄2

1
θ2

+
v̄2

2
θ3

+ · · ·+
v̄2

κJ−2

θκJ−1

)

171



where the last inequality comes from Lemma 8. Therefore

zκJ ≥
yκJ

v̄κJ−1 +θκJ

in which

yκJ = α−1+ v̄κJ−1−

(
v̄2

1
θ2

+
v̄2

2
θ3

+ · · ·+
v̄2

κJ−2

θκJ−1

)
− v̄κJ−2

θκJ−1
(v̄κJ−1 +θκJ). (7.42)

From Lemmas 8 and 10, θκJ ≥ 1 and v̄κJ−1 ≥ 0. Therefore, zκJ will be non negative if yκJ ≥ 0. If

we are able to prove that

(
v̄2

1
θ2

+ · · ·+
v̄2

κJ−2

θκJ−1

)
+

v̄κJ−2

θκJ−1
(v̄κJ−1 +θκJ)≤

1
6
(
2n3−9n2 +7n−6

)
(7.43)

then substituting α from Lemma 5, v̄κJ−1 ≥ 2n−5 from Lemma 10, and (7.43) into (7.42), one

obtains for n≥ 3,

yκJ ≥
n
6
(2n2−9n+13)+2n−6− 1

6
(
2n3−9n2 +7n−6

)
= 3n−5≥ 0,

which will complete the proof. All that remains to prove is (7.43). Let J be such that, for p ∈ Z

and 0≤ p≤ n−2, it holds that

{n+1− i}i=p
i=0 ⊆ J and J∩{n− p}= /0

so that n+ 1 ∈ J and J ⊂ {2,3, ...,n+ 1}. With J parameterized in this way, we can offer
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alternative calculations of v̄κJ−1 and θκJ based on v̄vv =UT vvv from (7.31) and Lemma 8,

θκJ = p+2 (7.44)

v̄κJ−1 = vn +
p

∑
i=0

vn−1−i = n−2+
p

∑
i=0

n−3− i

= (n−3)(p+2)− p(p+1)/2+1 (7.45)

It is also clear from Lemma 10,

v̄κJ−2

θκJ−1
≤Vn−2−p = n−4− p. (7.46)

Furthermore, repeated application of Lemma 12 along with (7.46) yields

(
v̄2

1
θ2

+ · · ·+
v̄2

κJ−2

θκJ−1

)
≤ 1+

(n−4− p)(n−3− p)(2n−7−2p)
6

(7.47)

Therefore, consider the left-hand side of (7.43),

(
v̄2

1
θ2

+ · · ·+
v̄2

κJ−2

θκJ−1

)
+

v̄κJ−2

θκJ−1
(v̄κJ−1 +θκJ)

≤

(
v̄2

1
θ2

+ · · ·+
v̄2

κJ−2

θκJ−1

)

+(n−4− p)((n−3)(p+2)− p(p+1)/2+1+ p+2)

≤ 1+
(n−4− p)(n−3− p)(2n−7−2p)

6

+(n−4− p)((n−3)(p+2)− p(p+1)/2+ p+3)

= fn(p)

where the first inequality follows from (7.44), (7.45), and (7.46), and the second inequality
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follows from (7.47). The resulting upper bound fn(p) is the following polynomial on p

fn(p) =
p3

6
−
(n

2
−1
)

p2 +

(
5
6
− 3n

2

)
p+
(

n3

3
− 3n2

2
+

7n
6
−1
)
.

note that fn(p) is cubic in p and the leading coefficient is positive. Taking the derivative of fn

yields a convex quadratic, and setting it equal to zero, we identify the local minima and maxima

of fn(p),

p1 = n−2−
√

7/3−n+n2 p2 = n−2+
√

7/3−n+n2.

When n≥ 3, it is straightforward to show that

p1 < 0, and p2 > n−2≥ 1

and d f/d p < 0 for p ∈ [0,n− 2]. Therefore, the maximum of fn(p) occurs at p = 0, and we

have,

fn(p)≤ max
p∈[0,n−2]

fn(p) = fn(0) =
1
6
(2n3−9n2 +7n−6)

which proves (7.43).

7.7.4 The Final Connection

Recall, we delayed proof of Lemma 17 in Section 7.6. Section 7.7 has developed all of

the technical results necessary to prove the Lemma. We conclude this section with a proof of

Lemma 17.
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Lemma 17. Let G be of the form in Definition 4. For any ε > 0,

GT AT AG GT ccc

cccT G 0


xxxG

λG

=

 000

−ε

 (7.48)

has a unique solution (xxxG,λG) and xxxG ≤ 000.

Proof. We have,

WG

xxxG

λG

= T T
G VGTG

xxxG

λG

=

 000

−ε


Since TG and VG are both invertible by Lemmas 6 and 14, we have,

xxxG

λG

= T−1
G V−1

G T−T
G

 000

−ε

=−εT−1
G V−1

G eeeκJ

and by Lemma (16), it follows that the solution xxxG ≤ 0 and is unique.

7.8 Conclusions

In this paper we have devised a method for estimating the parameters of a sawtooth

function from a noisy data set by solving a series of convex relaxations. Our main result is a proof

that the cardinality of the set of jumps in the estimated sawtooth function is a non-decreasing

function of the parameter of a corresponding relaxed convex constraint. This result is significantly

stronger than comparable relaxation strategies, such as the popular LASSO regression, in which

minimal cardinality solutions are sought but not guaranteed. This problem’s solution is of general

interest in engineering, physics and applied mathematics and minimal cardinality solutions have

gained more attention with the rise in applications of Machine Learning. Indeed, any PWL signal
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with a constant negative slope of any magnitude is well defined by our problem structure.

The main result is dependent on the structure of the problem setup, in particular the matrix

A, which parameterizes the flow of time for given PWL signals. In future work, the structure

of the A matrix can be further investigated, and more generalized requirements may be found

that continue to enforce the minimal cardinality result, which is of prime interest in optimization

problems and the rapidly growing field of data science. We conjecture that the key property

enabling proof of the cardinality result comes from the unique, “stepped” structure of AT A.

Chapter 7, in full, is a reprint of the material as it was submitted to Journal of Optimization

Theory and Application. Allen, Cody; de Oliveira, Maurcio, Springer 2020. The dissertation

author was the primary investigator and author on this paper.
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Chapter 8

Conclusion

This dissertation has attempted to add some useful modeling techniques, interesting results

and thought provoking discourse to the body of literature of gas turbines, particularly, industrial

gas turbines. In the so-called age of machine learning and data science, our goal has been to marry

together the physics of the 20th century with the new algorithms and computational resources

of the 21st century. In our attempt we have taken the hybrid approach in that we have utilized

known relationships and equations all the while trying to use data to fit model parameters, both

physics based and non-physics based. We believe we have shown enough evidence for the reader

to conclude that this hybrid approach to modeling physical systems is superior to just one or the

other by themselves.

This dissertation has left many closely related problems for future research. Indeed, as

most research goes, we have only peeled back some of the layers of the onion, but there are yet

others. One example is in the use of implementing the reduced rank models and the Mahalonobis

distance. The method provided was heuristic in nature and further investigations may lead to

better rules for classifying healthy or unhealthy machines. Another example is in the optimization

of maintenance schedules and the requirement of linear slopes of degradation. Further research
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could extend the method developed here to include nonlinear degradation functions. A final

example is the extension of the minimum cardinality theorem. Our theorem depends on the

special structure of the matrix A, and the parameterization of the sawtooth function. It is our

belief that this matrix structure can be exploited further to more generalized functions, while

retaining the cardinality theorem.

Lastly, we leave the reader with our thoughts on applying machine learning generally to

physics. There is indeed a blurry line between where machine learning starts and physics ends.

After all, most of physics is mathematical models in some form, where optimization may be used

to solve for coefficients. In the time it has taken to perform all of the research contained within,

there has been an exponential increase in the number of research papers published that utilize

machine learning algorithms like neural networks. While this is leading to better modeling of

physical systems, a certain clarity of thought and simplicity in understanding is lost with these

pieces of work. The smallest of useful neural networks are quite complex, and typically have

very little describable properties relating directly to the physical systems they model. In my

opinion, the use of these algorithms and machine learning in general is leading to lazy thinking.

In science it is not sufficient to model a system to a given degree of accuracy; this is not where the

scientist stops. Science was developed to uncover the truths of nature, and to transcribe them into

physical laws. Black box modeling does not achieve this goal. It is up to us, the new generation

of scientists, to remember this credo, and to not stop searching for simple, elegant truths and laws

of natures. I finish with a quote, “The important thing is to not stop questioning, curiosity has its

own reason for existing,” - some really smart guy named Albert Einstein.
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