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Abstract

Biological sensory systems share a number of organizing principles. One such

principle is the formation of parallel streams. In the visual system, informa-

tion about bright and dark features is largely conveyed via two separate

streams: the ON and OFF pathways. While brightness and darkness can be

considered symmetric and opposite forms of visual contrast, the response

properties of cells in the ON and OFF pathways are decidedly asymmetric.

Here, we ask whether a simple contrast-encoding model predicts asymmetries

for brights and darks that are similar to the asymmetries found in the ON

and OFF pathways. Importantly, this model does not include any explicit dif-

ferences in how the visual system represents brights and darks, but it does

include a common normalization mechanism. The phenomena captured by

the model include (1) nonlinear contrast response functions, (2) greater non-

linearities in the responses to darks, and (3) larger responses to dark contrasts.

We report a direct, quantitative comparison between these model predictions

and previously published electrophysiological measurements from the retina

and thalamus (guinea pig and cat, respectively). This work suggests that the

simple computation of visual contrast may account for a range of early visual

processing nonlinearities. Assessing explicit models of sensory representations

is essential for understanding which features of neuronal activity these models

can and cannot predict, and for investigating how early computations may

reverberate through the sensory pathways.

Introduction

Visual contrast – a change in the luminance or wave-

length of light relative to a local average – is a primary

signal transmitted by the retina. This is likely because

contrast provides a useful and efficient representation of

behaviorally relevant information (Land and McCann

1971; Laughlin 1981; Shapley and Enroth-Cugell 1984;

Brady and Field 2000). The retina conveys contrast infor-

mation to the brain via two segregated pathways devoted

to brightness (ON) and darkness (OFF) (Hartline 1938;

Kuffler 1953; Werblin and Dowling 1969; Schiller et al.

1986; Westheimer 2007). Intuitively, neurons in the ON

and OFF pathways might be expected to respond similarly

to stimuli of equal and opposite contrast. But in fact, the

contrast response functions of ON and OFF neurons have

systematic differences (Chichilnisky and Kalmar 2002;

Zaghloul et al. 2003; Liang and Freed 2010; Kremkow

et al. 2014; Jiang et al. 2015). ON/OFF asymmetries also

extend to neuronal spatial receptive fields and temporal

properties (Dacey and Petersen 1992; Chichilnisky and

Kalmar 2002; Pandarinath et al. 2010; Ratliff et al. 2010;

Jin et al. 2011; Nichols et al. 2013).

But the computational role that these asymmetries play

in early visual processing is an open question. In this

report, we examine whether differences in ON and OFF

contrast response functions necessarily reflect differences

in their underlying representations of visual information.

This work is motivated by two main observations: (1)

some ON/OFF asymmetries may arise at the level of the

photoreceptor, prior to the point at which bright and

dark information become segregated (Angueyra and Rieke

2013; Kremkow et al. 2014; Carandini 2016), and (2) sev-

eral simple models proposed for physiologically plausible
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contrast encoding contain nonlinearities, but these models

have not been directly compared to the nonlinearities of

ON and OFF neurons (Peli 1990; Tadmor and Tolhurst

2000; Ratliff et al. 2010; Haun and Peli 2013).

Here, we define an explicit computational model of

contrast encoding and directly compare the predicted

responses from this model to a range of previously

reported electrophysiological measurements from different

species (guinea pig and cat) and cell types (retinal gan-

glion cells [RGCs] and lateral geniculate cells). While the

exact details of early visual response characteristics vary

between species (Chichilnisky and Kalmar 2002; Zaghloul

et al. 2003; Liang and Freed 2010; Nichols et al. 2013),

we ask whether a simple model can capture common fea-

tures across species. Surprisingly, we find that many dif-

ferences in the response characteristics of ON and OFF

neurons can be recreated using a single, basic contrast-

encoding model. This is because asymmetries naturally

result from a fundamental neural computation – divisive

normalization (Carandini and Heeger 2012).

Materials and Methods

Model

We employ a generic, yet physiologically plausible con-

trast-encoding model derived from previous definitions of

visual contrast (Fig. 1A) (Peli 1990; Tadmor and Tolhurst

2000; Bex and Makous 2002; Ratliff et al. 2010; Haun and

Peli 2013). The model consists of a linear antagonistic step

that detects spatial changes in luminance, and a nonlinear

normalization step in which the antagonistic output is

divided by the local average luminance (i.e., a 2D divi-

sively normalized difference of Gaussians (DoG)).

Thus, the model response – r, a scalar value – to a par-

ticular stimulus is:
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Figure 1. Measuring luminance contrast. (A) In the model, an image is convolved (*) with both an antagonistic and a low-pass filter. The

antagonistic filter output is divided (normalized) by the low-pass output. Half-wave rectification is used to segregate bright (ON) and dark (OFF)

responses without additional nonlinearities. (B) A disk in equal steps of Weber contrast from 0 to 100%, either decremental/dark (left)

incremental/bright (right). (C, D) Predicted ON and OFF contrast response functions for the antagonistic stage alone (C) and the full model (D).

(E, F) Response functions are shown as in (C, D), except the stimulus background level was increased by a factor of two. The ordinate scales

are matched for C/E and D/F.
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r ¼ f ðx; yÞ � ðgðx; y; rcÞ � gðx; y; rsÞÞ
f ðx; yÞ � gðx; y; rnÞ ; (1)

where the luminance image, f(x,y), is defined over a 2D

lattice of spatial positions with origin (0,0) at the image

center, and where * is the convolution operator. Each

convolution filter, g(x,y;r), is a 2D Gaussian of the form:

gðx; y; rÞ ¼ 1

2pr2
e
�ðx2þy2Þ

2r2 : (2)

Note that for the stimuli described here, the luminance

image and the filter are the same size, so the convolution

is computed at a single point in the center of the image,

and thus the response is a scalar value.

Three different standard deviations (rc, rs, and rn)
determine the relative shapes/sizes of the antagonistic (cen-

ter, surround) and normalization steps, respectively. Modi-

fying these standard deviations changes the spatial extent

over which contrast is computed. To create a family of fil-

ters with different shapes and sizes, rc was fixed in arbitrary

units and rs and rn were varied by scale factors. rs ranged
from 1.259 to 69 rc (1.25, 1.5, 2, 3, 4, 6); rn ranged from

19 to 69 rc (1, 1.25, 1.5, 2, 3, 4, 6). Between these two

parameters, 42 unique model units were analyzed.

While we do not propose this as a literal model of early

visual processing, the DoG filter captures the center-

surround antagonism and the spatial properties of early

visual neuron receptive fields (both RGCs and cells in the

lateral geniculate nucleus [LGN]) (Enroth-Cugell and

Robson 1966; Derrington and Lennie 1984; Croner and

Kaplan 1995). The range of surround/center ratios

explored is consistent with those measured in cat RGCs

(Linsenmeier et al. 1982). The inclusion of normalization

is reflective of the response adaptation that results from

retinal gain control mechanisms (Shapley and Enroth-

Cugell 1984). Note, however, that this model considers

only spatial properties of contrast-encoding, whereas early

visual neurons also encode temporal contrast (e.g., Der-

rington and Lennie 1984; Lee et al. 1989).

After filtering a stimulus, we modeled ON/OFF paralleliza-

tion by performing half-wave rectification that preserved

only the positive (ON) or negative (OFF) outputs. Impor-

tantly, we did not apply any additional nonlinearity after this

rectification, because our goal was to examine the predicted

output in the absence of any explicit bright/dark encoding

asymmetries. Thus, the modeling steps leading up to predict-

ing ON and OFF responses were completely symmetric.

Stimuli

To measure the model contrast response functions, stim-

uli consisted of images of uniform disks on a uniform

background. The background level was either 50 or 100

(arbitrary units), and the disks ranged in Weber contrast

from �100 to 100%. Weber contrast is defined as

100(d � b)/b, where d and b are the luminance of the disk

and background, respectively. The disk diameter was 49

the standard deviation of the model central Gaussian. For

the luminance response analysis (Fig. 4), stimuli instead

consisted of squares on one of three background intensities

(2, 61, or 120), so as to match the Kremkow et al. (2014)

stimulus values in cd/m2. The width of the squares was also

49 the standard deviation of the central Gaussian.

Analysis

For the comparison with guinea pig RGC responses (Zagh-

loul et al. 2003), nonlinearity indices were calculated for

the model units by taking the log of the ratio of the con-

trast response function slope at 50% contrast and 5% con-

trast. Slopes were estimated using finite differences. This

was similar to the nonlinearity indices in Zaghloul et al.

(2003) and other studies (Chichilnisky and Kalmar 2002;

Kastner and Baccus 2013). To ensure that the results were

not specific to this particular index, this calculation was

repeated for slopes measured at contrasts ranging from 20

to 90%.

For the comparison with cat LGN cell responses

(Kremkow et al. 2014), values of luminance half-response

saturation (L50) were computed by finding the target

luminance that resulted in a response that was half as

large as the response at the largest luminance contrast

that was presented for a given stimulus (Rmax). As in the

previous report (Kremkow et al. 2014), these values were

then converted to proportions.

Note that in both studies to which the model predic-

tions were compared (Zaghloul et al. 2003; Kremkow

et al. 2014), the response functions reflect the initial neu-

ronal response to a change in contrast. In Kremkow et al.

(2014), this was the number of spikes recorded in the

100 ms during which the stimulus was flashed on a uni-

form background. In Zaghloul et al. (2003), this was the

instantaneous nonlinearity component of a model fit to

neuronal responses to white noise stimulation (in terms

of spikes per second). Since the Weber contrast of the

Zaghloul et al. (2003) stimulus was not defined, compar-

isons to these data are limited to the nonlinearity indices

described above.

Results

Different contrast response functions for
brights and darks

The contrast response function of a neuron is character-

ized by plotting the average spike rate as a function of

ª 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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the contrast of a stimulus presented within the receptive

field (Fig. 1B). Several different studies have produced

similar conclusions about the contrast responses of pre-

cortical visual neurons to spots of bright and dark con-

trast. First, the responses do not vary linearly as a

function of contrast (Burkhardt et al. 1998; Chichilnisky

and Kalmar 2002; Zaghloul et al. 2003; Kremkow et al.

2014). Second, the nonlinearity is stronger for OFF cells

than for ON cells over the same range of contrast magni-

tudes (Chichilnisky and Kalmar 2002; Zaghloul et al.

2003; Kastner and Baccus 2013). Third, the response of

OFF cells at high contrasts is greater than ON cells (Zagh-

loul et al. 2003; Kremkow et al. 2014).

Each of these features is captured in the contrast

response functions of the model. Response functions from

an example model unit are shown in Figure 1C–F
(rs = rn = 2rc). For ease of comparison, Weber contrast

is plotted in terms of absolute value for bright (ON) and

dark (OFF) contrasts. Model ON responses are shown as

solid red lines and model OFF responses are shown as

dashed black lines. While the antagonistic step in isola-

tion produces linear and symmetric ON/OFF response

functions (Fig. 1C), the inclusion of normalization causes

the model responses to become asymmetric and nonlinear

(Fig. 1D). For this example unit, the response to darks

has an accelerating nonlinearity, and the response to

brights is decelerating. When the background illumination

level is increased by a factor of two, the response function

of the antagonistic stage alone also increases by a factor of

two (Fig. 1C and E). However, the response function of the

full model is unchanged (Fig. 1D and F).

Thus, the inclusion of normalization in the full model

results in contrast constancy within a polarity at the cost

of contrast constancy between polarities. Within a polarity

(bright or dark), contrast responses are the same regard-

less of the overall illumination level – but for a given con-

trast level, the bright and dark responses differ from each

other. This asymmetry arises because of differences

between the values that go into the normalization (eq. 1).

For dark points, the value of the normalization area

decreases as the spot gets darker, and the decreasing val-

ues in the divisor result in a boosting of the OFF

response. For bright points, the reverse is true: as the spot

gets brighter, the divisor gets larger, and the ON response

begins to saturate. This effect is sufficient to create asym-

metric contrast response functions. Note, however, that

this analysis necessarily excludes the modeling of ON

responses to dark contrasts and OFF responses to bright

contrasts, which have additional asymmetries (Chichil-

nisky and Kalmar 2002).

Clearly, the nonlinearity and asymmetry depend on the

parameters of normalization. Figure 2A shows the con-

trast response functions for a sample of the model units

with a range of parameters. Different surround/center

ratios (rs/rc) are shown in each panel (from top to bot-

tom: 1.5, 3, and 6). Icons show the relative extent of the

center and surround, with the size of the disk stimulus

outlined in black. Within the panels, different normaliza-

tion/center ratios (rn/rc) are shown (1, 2, and 4). Several

patterns are clear. First, all model units show the same

general results as in Figure 1: a greater OFF nonlinearity

and a greater OFF response overall. Second, larger sur-

round/center ratios result in larger responses overall. This

is because as the antagonistic surround becomes more

diffuse, the positive lobe of the DoG extends from partial

to full coverage of the stimulus disk, increasing the

response magnitude overall. Third, smaller adaptation/

center ratios result in larger differences between the ON

and OFF response functions.

Figure 2B shows the ratio of the OFF to ON responses

at maximum contrast (100%) for each unit. These values

are the same for each surround/center ratio (three pan-

els), but vary as a function of the normalization/center

ratio (abscissa values). Smaller normalization areas result

in larger OFF/ON ratios. A given normalization area can

be thought of as determining the relative weight given to

the luminance of the disk and the luminance of the back-

ground in the divisor of equation (1). When the normali-

zation area is small, the divisor is mostly determined by

the disk luminance, resulting in more asymmetric

responses for bright and dark disks. When the normaliza-

tion area is large, more weight is given to the back-

ground, which is the same for all disks. Consistent with

measurements from early visual neurons, across normali-

zation areas the OFF/ON ratios at 100% contrast are all

greater than 1 (OFF > ON). This is because, regardless of

the size of the normalization area, the normalization

value for a 100% contrast decrement is always lower than

for a 100% contrast increment on the same background.

Note that this would not be the case if the central region

where the disc is present was excluded from the normali-

zation area. In the current model, the OFF/ON ratio at

100% contrast ranges from 1.1 to 13.7, so some values

are substantially larger than those reported for early visual

neurons (e.g., Zaghloul et al. 2003; Kremkow et al. 2014).

The very large ratio for rn/rc = 1 is affected by the fact

that the 100% contrast dark disk in the stimulus actually

has an intensity value of 0, something that is not typically

the case on physical display systems.

Comparison to contrast response
nonlinearities of retinal ganglion cells

We next compared the nonlinearities of all of the unique

model units to nonlinearities that have been previously

reported from a set of ON and OFF RGCs in the guinea
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pig retina (Zaghloul et al. 2003). Figure 3A–B show his-

tograms of nonlinearity indices computed for the retinal

and model data, respectively. In both cases, the indices

are systematically larger for the OFF units, indicating a

more accelerating nonlinearity. As it was not possible to

exactly match the nonlinearity index measure between the

experimental and model stimuli, these indices were also

computed using several different points along the model

contrast response curve. The same pattern of results was

present regardless of the points used to compute the

model index.

Note, however, that the range of the indices differs

between the models and the RGCs: the RGCs (both ON

and OFF) have a more accelerating nonlinearity than

predicted by this model. ON and OFF nonlinearities

reported in the literature vary, but tend to be larger

than those measured in the model. Chichilnisky and

Kalmar (2002) reported average OFF and ON indices of

1.1 and 0.1 in the primate retina, and Kastner and Bac-

cus (2013) reported average OFF and ON indices of 2.2

and 1.3 in the tiger salamander retina. Thus, while the

greater OFF than ON nonlinearity can be qualitatively

captured by divisive normalization, additional mecha-

nisms may serve to modify or exaggerate this difference.

Comparison to luminance responses in the
lateral geniculate nucleus

A recent report characterized the response properties of

ON and OFF LGN neurons in terms of their luminance

response functions (Kremkow et al. 2014). This function

differs only slightly from traditional contrast response
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measurements – the abscissa on which the spike rates are

plotted is in terms of stimulus luminance against a partic-

ular background luminance, rather than contrast. The

authors reported that OFF luminance responses increased

with approximately the same slope regardless of the

brightness of the surrounding background (see example

unit replotted in Fig. 4A–B). In comparison, the ON

responses on a dark background were much more com-

pressive than the response to the same stimulus on a gray

background (Fig. 4C–D).
It is not immediately obvious whether this constellation

of responses in the LGN suggests different properties than

those typically measured in the retina, and those captured

by the current model. Thus, we compared these data to our

same model. The results for a model example unit are

shown in Figure 3E–H (rs = 3rc and rn = 2rc). Several

features of this unit are reflective of the LGN cells: the

luminance responses for dark spots are similar regardless of

the background level (Fig. 3E–F) and the ON responses are

more compressive on the dark background (Fig. 3G–H).

A population-level comparison revealed several similari-

ties, and one notable difference between the LGN and

model populations. In the LGN population, the relative

luminance at half-response saturation (L50) was similar for

OFF cells on both backgrounds (light/gray background =
0.96), but tended to be much smaller for ON cells on a dark

background (dark/gray background = 0.26) (Fig. 3I–J).
These ratios were similar to the model: light/gray = 1.0,

dark/gray = 0.13 (Fig. 3M–N). The model closely captured

the asymmetric effects of background light level on the

LGN responses.

However, in the LGN population, the responses at maxi-

mum contrast (Rmax) for both ON and OFF cells were

unaffected by background luminance (OFF light/gray

background = 0.96, ON dark/gray background = 1.13)

(Fig. 3K–L). The model predictions for OFF units were in

agreement with the LGN OFF cells (light/gray back-

ground = 1.06), but the predictions for ON units differed

substantially (dark/gray background = 4.90) (Fig. 3O–P).
The reason for this mismatch is clear: the model will always

respond more to greater contrast levels, within a given

polarity. So for ON units, the model predicts a much larger

response to a given luminance if it appears on the darker

background. However, the response of the LGN cells to

120 cd/m2 is very similar on both a dark and a gray back-

ground (Fig. 4C and D).

Thus, while their nonlinearities are well-captured by the

current model, clearly the LGN responses are modulated by

absolute luminance in a way that does not reflect within

polarity contrast constancy. To fully explain these data, an

additional mechanism that selectively boosts ON responses

is necessary. Interestingly, this runs contrary to the com-

mon assessment that early visual processing favors darks

over brights (Ratliff et al. 2010; Kremkow et al. 2014).

Discussion

This report shows that a simple contrast-encoding model

that has been proposed in the literature shares several

bright/dark response asymmetries with precortical visual

processing. These similarities arise without ever directly

fitting the model to a specific dataset, and the same

model predicts features from different species, different

cell types, and different recording preparations.

Other ON/OFF asymmetries

Obviously, there are a range of asymmetries between the

ON and OFF pathways that cannot be accounted for by

the current model. In addition to those highlighted in

the Results, these include the higher baseline firing rate

of ON cells (and the ability of ON cells to signal decre-

ments), the fact that OFF RGCs are more numerous,

and differences in temporal dynamics and receptive fields

(Dacey and Petersen 1992; Benardete and Kaplan 1999;

Chichilnisky and Kalmar 2002; Zaghloul et al. 2003; Pan-

darinath et al. 2010; Ratliff et al. 2010; Jin et al. 2011;

Nichols et al. 2013). Although, with regards to relative

numerosity, it remains unclear if this asymmetry exists

across all species (Baden et al. 2016), and with regards

to temporal asymmetries, other studies have not found

compelling asymmetries between ON and OFF neuronal

responses (Kremers et al. 1993; Benardete and Kaplan

1997). In addition, across the many species that have

been studied, other types of RGCs transmit contrast

information, such as ON-OFF RGC-types that respond

to both light increments and decrements (Masland 2012;

Baden et al. 2016). Examining the role of these proper-
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ties of early visual processing will further our under-

standing of how visual information is represented. New

resources that allow for the detailed prediction and

exploration of retinal responses promise to expand our

ability to examine a range of physiologically plausible

early visual models (Wohrer and Kornprobst 2009; ISET-

bio 2015).

Normalization mechanisms

In the current model, the receptive field is spatially antago-

nistic, but the normalization area is not. While the current

model is a conceptual encoding model for spatial contrast,

rather than a mechanistic model of early visual processing,

this form of normalization may be consistent with retinal

adaptation mechanisms that commence prior to the forma-

tion of antagonistic receptive fields. Here, we will examine

similarities between the current model and photoreceptor

adaptation. Indeed, origins of ON/OFF contrast response

asymmetries at the level of the photoreceptors have been

proposed previously (Angueyra and Rieke 2013; Baden

et al. 2013) and explicitly modeled (Kremkow et al. 2014;

Carandini 2016). Other asymmetries between ON and OFF

neurons (different spatial receptive field properties) have

similarly been suggested to derive from photoreceptor

responses (Kremkow et al. 2014).
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Measurements from cone photoreceptors that have

been adapted to a steady light level show that these cells

hyperpolarize in response to increases in light intensity

and depolarize in response to decreases in light intensity

– relative to a baseline resting potential (Baylor and

Fuortes 1970; Normann and Perlman 1979). The normal-

ized photoreceptor polarization (V) in response to a given

light intensity (Ib) can be generally described by the fol-

lowing equation:

V ¼ Ib
Ib þ Ia

; (3)

where Ia is the stimulus intensity that produces half of

the maximum response. Previous work has shown that

the magnitude of Ia advances systematically when pho-

toreceptors are adapted to greater light levels such that

the dynamic range of cone responses is roughly centered

around the adapted intensity level (Boynton and Whitten

1970; Normann and Perlman 1979).

Figure 5A shows predicted cone response curves for

two different adaptation levels based on this equation.

When plotted in terms of light intensity on a log axis

(left panel), the depolarizing and hyperpolarizing

responses are symmetric and centered around the adapted

value (Ia). When the light intensity levels are converted

to Weber contrast (right panel), it is clear that the depo-

larization in response to dark contrasts (negative values)

is more accelerating than the hyperpolarization in

response to bright contrasts (positive values). Note that

in this case, Weber contrast represents the contrast over

time rather than space (i.e., how much brighter or darker

was Ib relative to the previously adapted light level Ia).

The ON and OFF bipolar cells that form the initial sepa-

ration into ON and OFF pathways either preserve this

polarization (OFF) or invert it (ON). To illustrate this,

Figure 5B superimposes the hyperpolarization and depo-

larization curves from 5A for positive (red line) and neg-

ative (black line) Weber contrasts. The shapes of these

curves are extremely similar to those produced by the

current model (See Fig. 2).

The similarity derives from the fact that these curves

are produced by a normalization factor that includes the

sum of the currently adapted light intensity and a second

brighter or darker light level (eq. 3). This is similar to the

Gaussian normalization used in the current model (eqs. 1

and 2), which averages over both the central stimulus and

surround areas. Thus, these cone responses share the gen-

eral features that produce ON/OFF asymmetries for spa-

tial contrast in the model, but for temporal contrast:

constancy within polarities, but not between them. At

present, these effects are difficult to directly relate

because, for example, in the Kremkow et al. (2014) study,

the background luminance that preceded the onset of

bright and dark stimuli was the same as the luminance of

the surrounding area, thus temporal and spatial contrast

were correlated. However, if one wanted to predict early

visual responses to natural images, it may be reasonable

to use the current model and assume that local spatial

and temporal contrast are correlated in these signals as

well (Ratliff et al. 2010; Cooper and Norcia 2015).

It is also notable that several studies have reported that

OFF pathway cells are actually less sensitive to low con-

trasts than ON cells (Chichilnisky and Kalmar 2002;

Zaghloul et al. 2003). This is contrary to the prediction

of a normalization-driven process, because in this model

the slope and magnitude of the OFF contrast response

function will be greater than the ON slope at all

contrasts.
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illustrate the different nonlinearities providing input to OFF bipolar cells for dark contrasts, and ON bipolar cells for bright contrasts.

2016 | Vol. 4 | Iss. 7 | e12746
Page 8

ª 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

the American Physiological Society and The Physiological Society.

Model of Bright/Dark Asymmetries E. A. Cooper



Cortical asymmetries

Characterizing the principles that govern early visual

responses is essential for understanding retinal process-

ing, but it will also be crucial for interpreting a spate of

recent results showing downstream cortical bright/dark

asymmetries (Yeh et al. 2009; Xing et al. 2010; Polack

and Contreras 2012; Kremkow et al. 2014; Liu and Yao

2014; Veit et al. 2014; Zurawel et al. 2014; Tan et al.

2015). Cortical asymmetries may reflect an extension of

the asymmetries explored here, or may reflect additional

optimizations for patterns in natural images (Ratliff

et al. 2010; Tkacik et al. 2010; Clark et al. 2014; Cooper

and Norcia 2015). To differentiate these possibilities,

rather than model cortical asymmetries via explicitly dif-

ferent ON/OFF mechanisms (Liu and Yao 2014; Zurawel

et al. 2014), it may be valuable to consider to what

extent normalization models can and cannot also predict

these downstream effects. This could provide further

insight into cortical representations of visual contrast at

the level of neuronal populations (Naselaris and Kay

2015). Similarly, normalization has been proposed to

play a role in perceptual asymmetries between brights

and darks, which generally reflect greater sensitivity to

darks (Chubb and Nam 2000; Lu and Sperling 2012;

Haun and Peli 2013).

Conclusion

A simple description of the ingredients for visual contrast

responses is a high priority for understanding visual

encoding. We propose that a symmetric ON/OFF model

that incorporates divisive normalization can provide a

simple and useful starting point.
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