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The need for renewable alternative sources of liquid biofuels has lead to tremendous interest in the
conversion of lignocellulosic biomass to fuel compounds via microbial routes. A key aspect of the
research involves the engineering of robust and stable microbial host platforms that can produce these
compounds at high titer. Impact on growth caused by inhibitory compounds in the deconstructed biomass
and accumulation of toxic metabolic intermediates and final product are bottlenecks that severely limit
product titers. This chapter reviews known sources of toxicity arising from various aspects of this process
and discusses native and heterologous mechanisms of microbial stress response and defense that can be
used to engineer a better production hosts.
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Abstract The need for renewable alternative sources of liquid biofuels has lead to
tremendous interest in the conversion of lignocellulosic biomass to fuel compounds
via microbial routes. A key aspect of the research involves the engineering of robust
and stable microbial host platforms that can produce these compounds at high titer.
Impact on growth caused by inhibitory compounds in the deconstructed biomass
and accumulation of toxic metabolic intermediates and final product are bottlenecks
that severely limit product titers. This chapter reviews known sources of toxicity
arising from various aspects of this process and discusses native and heterologous
mechanisms of microbial stress response and defense that can be used to engineer a
better production hosts.
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1 Introduction

Microorganisms have been engineered to produce an astonishingly large array of
compounds ranging from high value pharmaceuticals, fragrances, and nutritional
supplements to fine chemicals such as amino acids, solvents, and building blocks
for paints, plastics, and polymers (Wackett 2008; Fortman et al. 2008; Klein-
Marcuschamer et al. 2007). While the majority of research focuses on the develop-
ment of optimal biosynthetic enzymes and pathways to convert selected carbon
sources to target end products, the recent focus of microbial metabolic engineering
on the production of bulk commodities, specifically biofuels and compounds
otherwise derived from petrochemical sources (Burk 2010; Ryder 2009; Steen
et al. 2010; Atsumi et al. 2008), has imposed the staggering additional challenge
of maximizing production. Pursuing sustainable, ecologically friendly bio-routes
remains important, but a key metric of success in the microbial production of
biofuel compounds is reaching high production levels at minimal cost to compete
with inexpensive petrochemical and synthetic methods. Several analyses have
emphasized this overarching requirement of high biofuel production levels (Hill
et al. 2006). For example, while typical production levels of n-butanol with clostrid-
ium strains are about 13 g/L, optimization to increase production to 19 g/L was
required to make this process economically viable (Papoutsakis 2008). With ever-
higher levels of production and the use of minimally processed biomass, other
aspects of microbial cellular physiology become acutely significant (Zhang et al.
2009). Growth inhibitory factors from deconstructed lignocellulosic biomass, as
well as the accumulation of toxic intermediates in the biosynthetic pathway and the
final product itself, can limit production. Cellular engineering efforts must therefore
shift to developing microbes that cope with growth inhibition, toxicity, and stress.
Studies of microbial stress response toward these inhibitory factors are key to
elucidating the mechanisms that may be utilized to generate a robust industrial
host that can cope with all aspects of growth and production inhibition. Further-
more, microbial diversity, both in the form of the ever-growing repository of
sequenced genomes as well as bio-prospecting new ecosystems, contains an
immense potential to provide the mechanisms required to tolerate a range of
inhibitory aspects presented by this biofuel production pipeline. This chapter
describes commonly encountered inhibitors and toxic factors generated during the
conversion of lignocellulosic material to biofuel, the corresponding mechanisms
that can be brought to bear on stress mitigation, and the strategies to overcome
current limitations in obtaining stable, engineered hosts for industrial use. While
applicable to all microbial hosts used for large-scale production of compounds from
deconstructed biomass, including S. cerevisiae, this chapter focuses on bacterial
systems as the production host.
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2 Sources of Microbial Stress in Deconstructed Biomass

Lignocellulosic biomass presents the most promising renewable source of feed for
the production of liquid biofuels (Ragauskas et al. 2006). Plant biomass is largely
comprised of cellulose, hemicellulose and lignin (Somerville et al. 2004). While it
would be ideal to use all components of this available material, the present goal of
biofuel programs is to maximize the use of sugar polymers, cellulose, and hemicel-
lulose. Despite the focus on these sugar polymers, most downstream biological
processes (saccharification and microbial conversion) cannot utilize this material
directly. The main factors that contribute to the intractability of lignocellulosic
material are the inaccessibility of cellulose in its crystalline form and the occlusion
of hemicellulose and cellulose by lignin (Himmel et al. 2007; Simmons et al. 2008).
Pretreatment of plant biomass is therefore necessary to simplify the lignocellulosic
material prior to saccharification and microbial conversion. Methods for
deconstructing plant biomass include dilute acid hydrolysis, ammonia fiber expan-
sion, and most recently, the use of ionic liquids. All deconstruction methodologies
generate by-products that are detrimental to microbial growth and/or impact the
bioconversion of sugars to biofuels (Fig. 1).

Dilute acid pretreatment is the most widely utilized and best documented
method for plant biomass deconstruction and is known to generate inhibitory by-
products that fall into three main categories: (1) furan aldehydes (furfural and
hydroxymethylfurfural (HMF)) formed via the degradation of xylose and glucose,
respectively (Klinke et al. 2004; Palmqvist and Hahn-Hagerdal 2000a; Pienkos and
Zhang 2009); (2) organic acids, namely acetic acid produced by the deacetylation of
hemicellulose and lignin, formic and levulinic acids from furans and HMF, respec-
tively, and gluconic acid (Himmel et al. 2007; Palmqvist and Hahn-Hagerdal
2000a); and (3) phenolic compounds and other aromatics from lignin breakdown
(Palmqvist and Hahn-Hagerdal 2000b; Pienkos and Zhang 2009). Detailed studies
have also identified a range of aromatic compounds, aldehydes, ketones, and other
acids (Klinke et al. 2004; Ranatunga et al. 1997).

Ammonia fiber expansion (AFEX) is an alternate strategy to the dilute acid
treatment. AFEX minimizes the formation of sugar degradation products and
converts a greater portion of the cellulose to sugars (Wyman et al. 2009; Lau and
Dale 2009) compared to the dilute acid procedure, though the latter may be more
efficient for biomass with high woody content (Sun and Cheng 2002). Common
inhibitors associated with AFEX are the phenolics derived from depolymerized
lignin and their associated aromatic degradation products (Balan et al. 2009).

Ionic liquid-based pretreatment of cellulose, though suggested as early as 1934
(Swatloski et al. 2002), is a relatively new procedure for deconstructing lignocellu-
losic material (Li et al. 2009; Swatloski et al. 2002) and provides an alternative to
dilute acid processing and AFEX (Liu et al. 2010; Li et al. 2009; Singh et al. 2009).
As the most recent technology to be explored in this context, studies are still
ongoing that will elucidate the composition of the deconstructed plant material
derived from ionic liquid pretreatment. The pros and cons of water-immiscible
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Fig. 1 Sources of common inhibitory compounds and toxic products. Sugar components of
lignocellulosic plant biomass hydrolysates serve as carbon sources, while other components can
have inhibitory impacts. A gram-negative bacterial host (e.g., E. coli) serves as the general host
organism model with central metabolic routes leading to various classes of biofuels. Candidate
biofuel compounds with known microbial toxicity are shown below. Note: the toxicities of sec-
butanol, limonane, and the hydrogenated b-pinene dimer in E. coli have yet to be tested
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ionic liquids have only recently begun to be explored (Park and Kazlauskas 2003;
Li et al. 2009). Specifically, the impact of any residual levels of this reagent in the
deconstructed soup on downstream processes, such as the saccharification steps or
the microbial culture, requires to be studied.

Furan compounds (Fig. 1) have been thoroughly investigated for their impact on
several bacterial hosts, such as Zymomonas mobilis (Ranatunga et al. 1997; Franden
et al. 2009), several E. coli strains (Gutierrez et al. 2002, 2006; Zaldivar et al. 1999)
including the ethanologenic E. coli LY180 (Miller et al. 2009a), and the
solventogenic Clostridium beijerinckii (Ezeji et al. 2007). Very well studied in

Fig. 2 Plasmid consolidation, CIChE, diversity generation, and strain selection process workflow.
Biosynthesis and stress tolerance pathways are condensed into single plasmids using BioBrick
(Anderson et al. 2010; Shetty et al. 2008), or SLIC/Gibson/CPEC (Gibson et al. 2009; Li and
Elledge 2007; Quan and Tian 2009) methodologies. The biosynthetic pathway is then integrated
into the chromosome, using the L-red system, and subsequently expanded in the chromosome via
CIChE (Tyo et al. 2009). The plasmid bearing the stress tolerance pathways is then transformed
into the resulting strain. SRM analysis and performance assessments are conducted for each
biosynthetic and stress tolerance pathway, ensuring that each pathway is at least minimally
functional before proceeding to subsequent diversity generation with MAGE (Wang et al. 2009)
(targeting the chromosomally expanded biosynthetic pathway and potentially other chromosomal
loci), global regulator perturbation (Alper and Stephanopoulos 2007; Alper et al. 2006), and
Golden-gate combinatorial plasmid assembly (Engler et al. 2008, 2009). Candidate strains are
then screened or selected using a high-throughput assay such as a biofuel production biosensor
(Dietrich and Keasling, unpublished data). Selected strains must then be optimized
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S. cerevisiae (Horvath et al. 2001; Liu et al. 2005; Banerjee and Bhatnagar 1981;
Gorsich et al. 2006), the toxicity is mitigated by dehydrogenases that reduce the
aldehydes to their corresponding furan methanols (Petersson et al. 2006).

Lignin depolymerization yields a diverse array of phenolic alcohols, including
coumaryl (no methoxy groups at the position ortho- to the OH- group), coniferyl
(one methoxy group), and synapyl (two methoxy groups) (Fig. 1). Klinke et al.
(2004) provide an extensive review of the toxicities of various alcohol, carbonyl
and acid derivatives of these phenolic compounds, as well as their relative toxicities
based on the number of methoxy groups. Ferulic acid and vanillin are among the
best-studied phenolic compounds. Vanillin, in particular, has been used as an
antimicrobial agent in the food industry (Fitzgerald et al. 2004; Gasson et al.
1998). The primary mechanism of phenolic toxicity universally appears to be the
disruption of cell wall integrity.

Though not as toxic as the furan aldehydes or aromatic compounds, acetic acid is
typically released in significant quantities and has been shown to impact not only
growth but also target compound production. The latter has been documented for Z.
mobilis, where the impact on ethanol production was greater than that explained by
the impact on growth alone (Osman and Ingram 1985). Several studies have
evaluated the effect of weak organic acids on bacterial physiology (Polen et al.
2003; Arnold et al. 2001). Acetic acid toxicity mainly arises from the membrane
permeability of the undissociated acid. Upon entry into the cell, the acid dissociates
and increases intracellular H+ levels, decreasing the transmembrane proton gradient
and disrupting the energy balance that is regulated by the proton motive force
(Axe and Bailey 1995). Among other organic acids, accumulation of formic acid is
another potential source of toxicity and is reported to elicit a very different general
response from that of acetate accumulation (Kirkpatrick et al. 2001). Formic acid is
reported to be more toxic than acetic acid (Pienkos and Zhang 2009) but typically
accumulates at much lower levels during the pretreatment process. As such, most
strain improvement efforts for small organic acids were focused on acetic acid
(Dien et al. 2003; Pienkos and Zhang 2009; Warnecke and Gill 2005).

The most extensive studies examining the impact of a complete deconstructed
soup on microbial host growth and production have focused on S. cerevisiae
(Palmqvist and Hahn-Hagerdal 2000b) and implicate weak acids, phenolics and
furans. Broad groups of inhibitory compounds and biomass hydrolysates have also
been evaluated with ethanologenic E. coli (Klinke et al. 2004), Z. mobilis (Franden
et al. 2009), and solventogenic clostridia (Mitchell et al. 2008). Similar toxic
responses were identified in other bacterial hosts and methods to detoxify the
deconstruction soup are often necessary. For example, overliming is a commonly
used process for dilute acid pretreated material that has been shown to degrade
many aromatic acids and ketones, (Klinke et al. 2004; Palmqvist and Hahn-
Hagerdal 2000a) resulting in the production of gypsum and adding to the process
cost (Galbe and Zacchi 2002). Cho et al. (2009) specifically targeted the peroxide-
based removal of p-coumaric acid, ferulic acid, 4-hydroxybenzoic acid, vanillic
acid, syringaldehyde, and vanillin, and demonstrated a clear improvement in
butanol production using C. berjenkii. While such removal methods have the
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potential to improve microbial conversion yields, they also add cost to the
workflow. Therefore, it is worth examining microbial engineering of more resistant
production strains so that residual amounts of these molecules do not impose any
substantial impact on the microbial host.

3 Targets for Engineering Stress Tolerance from Biomass
Inhibitory Compounds

The studies outlined in the previous sections provide a basis for cellular engineering
for improved tolerance to the classes of inhibitory compounds discussed above.
Dehydrogenases that convert furan aldehydes to less harmful alcohols have been
documented in a wide variety of microbes, including S. cerevisiae, P. putida, and
E. coli. However, despite their ability to metabolize HMF, these strains remain
sensitive to the compound. The E. coli strain EMFR9, derived from the
ethanologenic E. coli strain LY180, showed greater tolerance to furan aldehydes
(Miller et al. 2009a). Analysis of this strain, under exposure to HMF, indicated that
the genes (yqhD and dkgA) encoding two NADPH-dependent alcohol
dehydrogenases that catalyze the conversion of furfural to furan methanol were
repressed (Miller et al. 2009b). Although furan methanol is less toxic than furfural,
the additional draw on NADPH impacted processes that use this cofactor, such as
sulfur assimilation, and lead to a greater growth impact. Therefore, even though
HMF detoxification pathways exist, the cofactors being utilized in the process
should be kept in mind. In this regard, a recent study of an inhibitor tolerant S.
cerevisiae strain found up-regulation in mechanisms that may offset the cofactor
requirement for furfural and HMF reduction (Liu et al. 2009). Alternately, in situ
detoxification strategies have also been explored that involve treating deconstructed
biomass with strains that contain degradation pathways for aldehyde inhibitors
prior to use with the fuel production host (Koopman et al. 2010; Wierckx et al.
2010). For discussions on molecular mechanisms of in situ detoxification of the
aldehyde inhibitors in yeast, see Chap. 1.

In the case of phenolic compounds, several potential mechanisms exist that may
alleviate or provide resistance to these inhibitory compounds. Efflux pumps that
export inhibitory molecules provide a direct tolerance mechanism. Homologs of the
aromatic acid efflux (Aae) pump system from E. coli (Van Dyk et al. 2004) and the
toluene tolerance (Ttg) pumps in P. putida (Ramos et al. 2002) are potential
candidates for the export of phenolic compounds. Modulation of the cell wall
fatty acid composition has also been documented to provide benefit in coping
with the disruptive action of phenolic compounds in E. coli (Keweloh et al.
1991). The metabolism or degradation of phenolic compounds to non-toxic
metabolites is another potential route to mitigate phenolic stress. For example,
phenol peroxidases (laccases) have been used to treat processed biomass (J€onsson
et al. 1998), and laccases from heterologous sources, such as the Bacillus
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licheniformis laccase cotA, have been functionally expressed in E. coli
(Koschorreck et al. 2009). Other degradation mechanisms include decarboxylation,
such as from ferulic acid to vinylguaiacol, a less toxic compound, which has been
demonstrated in Bacillus pumilus (Lee et al. 1998). Interestingly, there are exist
pathways to convert phenolic compounds to central metabolic intermediates, such
as to acetyl-CoA via catechol, that are well documented in bacteria such as
Pseudomonas spp (Feist and Hegeman 1969; Ng et al. 1994; Herrmann et al.
1995). The meta-pathway that converts phenols to catechol and finally to acetyl-
CoA consists of seven steps. Though it may be an elaborate route to obtain
resistance, it provides the additional benefit of converting the inhibitory material
to a central metabolism intermediate that can be channeled into cellular growth and
production. This could be developed to maximize the use of all components of the
lignocellulosic biomass, rather than just the sugar polymers.

With respect to small organic acids, long-term adaptation of E. coli to acetate has
been undertaken and involved changes in metabolism (Holms and Bennett 1971;
Polen et al. 2003) and is impacted by the choice of sugars in the carbon source
(Lasko et al. 2000). Tolerance to these compounds has been studied and engineered
in several host microbes (Dien et al. 2003; Pienkos and Zhang 2009; Warnecke and
Gill 2005). See Chap. 5 for mechanisms of cell defense and tolerance to organic
acid in yeast.

4 Impact of Engineering a Pathway

Commercially viable titers for bio-products can range from several mg/L in the case
of pharmaceuticals to hundreds of g/L for commodity chemicals such as biofuels
and are the primary driving force behind most metabolic engineering efforts.
Reaching these production levels requires a significant amount of pathway optimi-
zation. Strain development is an iterative process whereby pathway manipulation is
followed by system-level studies to identify potential bottlenecks and reveal detri-
mental side effects (Mukhopadhyay et al. 2008). Once it has been successfully
demonstrated that a product of interest can be produced in vivo, achieving econom-
ically viable production levels requires minimizing the generation of less desirable
side products and maximizing carbon flux toward the target product. For example,
improvements in bio-ethanol production in E. coli have utilized many such steps,
and this progress has been very well reviewed (Jarboe et al. 2007).

Most metabolic engineering efforts use a combination of native and heterolo-
gous genes. Examples include the production of the sesquiterpene amorphadiene
(Newman et al. 2006; Martin et al. 2003), 1,3-propanediol (Saxena et al. 2009;
Sauer et al. 2008; Biebl et al. 1999), 1,4-butanediol (Burgard and Van Dien 2007),
iso-butanol (Connor et al. 2010; Cann and Liao 2008), and most recently, fatty acid
ethyl ester production in E. coli (Steen et al. 2010). Understanding how the
incorporation of an engineered exogenous pathway perturbs the host system is
important for overcoming pathway bottlenecks. For example, codon optimization
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of heterologous genes may be required to minimize stress caused by the depletion
of the pool of available charged tRNA (Gustafsson et al. 2004; Welch et al. 2009).
Additionally, the burden of expressing both native and non-native pathways can
cause imbalances in the cellular redox state by altering the cofactor balance or
levels of ATP, which can lead to overflow metabolism (Vemuri et al. 2006).
Imbalances in enzymatic activity can also result in the accumulation of toxic or
inhibitory pathway intermediates, which may drastically reduce cellular growth as
well as production levels. A systematic evaluation in E. coli of intermediate buildup
was conducted for an engineered isoprenoid pathway, converting the five carbon
pyrophosphate intermediate to the final sequiterpene via the 10 and 15 carbon
pyrophosphates, to examine the individual impact of each intermediate (Martin
et al. 2003). The pyrophosphates were found to be highly detrimental to cellular
growth in the order of C5 > C10 > C15, and a highly efficient final enzyme to
convert the C15 farnesyl pyrophosphate to amorphadiene was required to relieve
the system of stress. In another study, the accumulation of 3-hydroxy-3-methyl-
glutaryl-coenzyme A (HMG-CoA) was found to be a bottleneck in the production
of mevalonate via a heterologous pathway in E. coli. Downregulating the
synthesis of HMG-CoA or the overexpression of tHMG1, encoding the enzyme
downstream of HMG-CoA, alleviated the growth impact (Pfleger et al. 2006; Pitera
et al. 2007).

Optimization of heterologous pathways is essential for maximizing production
and minimizing the buildup of toxic intermediates. An elegant approach to alleviate
HMG-CoA stress utilized scaffolding domains from metazoan signaling proteins to
recruit the first three enzymes of the mevalonate pathway; all of which were tagged
with the corresponding peptide ligands (Dueber et al. 2009). The scaffold co-
localizes the enzymes thereby reducing the accumulation of toxic intermediates
while increasing the effective concentrations of pathway intermediates in the
vicinity of the enzymes. Varying the stoichiometry of the scaffold binding domains,
effectively controlling enzyme ratios, resulted in 77-fold more mevalonate than the
unscaffolded system.

In another instance, the host stress response was also a problem in the production
of the p-hydroxy styrene precursor, p-hydroxy cinnamate, in E. coli. Systematic
evaluation of the toxicity of p-hydroxy cinnamate led to discovery of the aromatic
acid efflux genes (aae) (Van Dyk et al. 2004). Overexpression of the aaeAB genes
using an inducible Ptrc promoter resulted in a twofold increase in p-hydroxy
cinnamate tolerance, while the toxicity from p-hydroxy styrene final product was
alleviated using a biphasic reaction system (Sariaslani 2007; Van Dyk 2008).
Recently optimization of p-hydroxy-styrene production using a solvent-resistant
P. putida S12 strain also used an organic phase extraction system and improved
production by twofold (Verhoef et al. 2009).

The accumulation of a particular intermediate does not necessarily indicate if it
is due to excess levels of the upstream enzyme or the low levels of the downstream
enzyme. Methods to compensate often express the limiting enzyme from a second
plasmid and/or tune parameters such as the gene’s promoter and ribosome binding
site or the plasmid’s origin of replication. However, arbitrary enzyme

Control of Stress Tolerance in Bacterial Host Organisms for Bioproduction of Fuels

Aindrila Mukhopadhyay


Aindrila Mukhopadhyay


Aindrila Mukhopadhyay




overproduction can rob the cell of resources that could otherwise be devoted to
generating the target compound. Tools that allow the quantitative interrogation of
target enzymes and diagnostic methods that enable the evaluation of biosynthetic
pathway expression provide key information for resolving pathway bottlenecks.
High throughput mass spectrometric methods, such as selected reaction monitoring
(SRM), are useful for diagnosing and optimizing protein production for biofuel
production (Keasling 2008). Correlation of protein production levels with metabo-
lite titers from different strains is integral to optimizing the productivity and
stability of the engineered microbe (Dueber et al. 2009).

5 Accumulation of Toxic Products

The diversity of microbial biosynthetic pathways allows for a large number of
biofuel candidates to be envisioned, but compounds must meet several criteria to
serve as biofuel targets (Fig. 1). Several recent reviews comprehensively cover the
range of microbially derived compounds that meet these criteria, ranging from
small chain alcohols to alkanes and alkenes (for bio-gasoline) to longer chain
hydrocarbons (for biodiesel) (Wackett 2008; Peralta-Yahya and Keasling 2010;
Lee et al. 2008; Keasling and Chou 2008; Fortman et al. 2008; Chemier et al. 2009;
Antoni et al. 2007) as well as cyclic hydrocarbons that may serve as bio-jet fuel
components (Harvey et al. 2010; Ryder 2009).

Many of these compounds have solvent-like properties presenting a severe
impact on cell growth and consequently limiting product titer. Even ethanol, the
most well-established biofuel, is toxic at some level to the organisms used to
produce it. Exposure to alcohols and solvents has been reported to impact bacterial
growth via a variety of mechanisms including increased membrane fluidity, ion
leakage, changes in fatty acid composition, difficulties in translation, and elongated
cells (Baer et al. 1987; Ingram 1990; Sikkema et al. 1995; Tomas et al. 2004). In
general, toxicity increases with solvent hydrophobicity, which is determined by the
length of the carbon backbone. In general, the toxicity of the alcohol correlates well
with the octanol–water partition coefficient, Pow; at saturating concentrations,
solvents with a log Pow greater than 3.8 are not toxic to E. coli. The degree of
toxicity of an alcohol varies across bacteria, with some bacteria being more affected
by the length of the alkyl chain while others by saturation of the carbon backbone
(fewer double bonds). The majority of toxicity studies propose the cell membrane
as the most affected by organic solvents and as contributing significantly to stress
adaptation. Short- and long-chain alcohols are known to cause stress by desiccation,
and by intercalating into the hydrophobic cell wall fatty acids, respectively. Their
similarities to other well-understood stresses, such as desiccation or hypersalinity,
may suggest gene candidates for engineering fuel tolerant hosts. See Chap. 6 for
more descriptions on microbial stress response to toxic compounds and organic
solvent.
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5.1 Ethanol

Microbial ethanol production from glucose and mixed sugars is now a well-
established process. See Chap. 3 for molecular mechanisms of ethanol tolerance
in yeast. A vast body of literature also focuses on bacterial ethanologenic hosts such
as E. coli and Z. mobilis (Ingram et al. 1998; Jarboe et al. 2007; Lawford and
Rousseau 2003; Lee 1997; Lin et al. 2005; Yomano et al. 1998; Zaldivar et al.
2001). The impact of various other parameters on ethanol production has also been
investigated in E. coli. Examples include choice of sugar (Alterthum and Ingram
1989), acetic acid accumulation (Lawford and Rousseau 1992), inhibitors from
lignocellulosic biomass (Zaldivar and Ingram 1999; Zaldivar et al. 1999, 2000), and
loss of osmolytes (Underwood et al. 2004). Z mobilis is one of the best natural
producers of ethanol and is naturally tolerant to greater amounts of ethanol than
wild type S. cerevisiae or E. coli (Rogers et al. 1984), making it a focal point of
many efforts for optimized ethanol production (Joachimsthal and Rogers 2000).
Z. mobilis’s response to ethanol implicates heat shock response chaperones (Michel
and Starka 1986; Barbosa et al. 1994), and early studies also found the lipid
composition of Z. mobilis to be well suited for ethanol accumulation in having a
large percentage of vaccenic acid in the acyl groups of its polar membrane
phospholipids (Carey and Ingram 1983). However, even in Z. mobilis, the accumu-
lation of ethanol eventually inhibits glucose uptake and conversion (Osman and
Ingram 1985).

5.2 Butanol

Butanol stress has been extensively studied, for example, in solventogenic
Clostridia, which is a native producer. In C. acetobutylicum, transcript analysis
after exposure to 0.75% n-butanol (6 g/L) indicated that the primary response is the
increase of transcripts encoding chaperones, proteases, and other heat shock-related
proteins(Tomas et al. 2004), and further, the overexpression of GroELS chaperones
produced strains with greater n-butanol tolerance (Tomas et al. 2003). To date, the
most optimized butanol production in C. acetobutylicum leads to a titer of about
13.6 g/L while that in C. berjenkii is 19 g/L (Papoutsakis 2008). Several other
clostridial strains are being investigated due to their ability to produce higher levels
of n-butanol, such as C. pasteurianum, which can produce as high as 17 g/L using
glycerol as a carbon source (Biebl 2001). Despite the availability of such natural
producers, it has been argued that metabolic engineering of more tractable indus-
trial hosts such as E. coli may be a better strategy for bio-butanol production. The
main impediment toward this goal is the low concentration at which butanol is toxic
to E. coli. Recent studies have examined the effect of n-butanol and iso-butanol
exposure on E. coli. In the case of iso-butanol, transcript analysis revealed several
key mechanisms including the disruption of quinone function and the involvement
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of global regulators such as ArcA (Brynildsen and Liao 2009). n-Butanol stress in
E. coli DH1 has also been examined in a comprehensive functional genomics study
and was found to elicit strong cell envelope and oxidative stresses as well as cause
perturbations to several ArcA-regulated electron transport and respiratory
mechanisms (Rutherford et al. 2010).

The distribution of response among several major regulons makes it difficult to
engineer all modes of stress relief, suggesting evolution and adaptation as important
strategies to obtain stress-tolerant strains. Such non-targeted approaches were used
in Pseudomonas spp, where n-butanol tolerance was improved from 3% to 6%
(Ruhl et al. 2009). Nevertheless, the identification of genes impacted by n-butanol
exposure in the functional genomics studies enables a systematic approach in which
the corresponding knockdowns or overexpressions can be implemented and
evaluated for improvement in solvent resistance. This targeted strategy has the
distinct advantage of a well-defined approach that may be translated to other hosts.
For example, n-butanol exposure caused a disruption of redox balance, points to
candidates such as the alcohol dehydrogenase YqhD and superoxide dismutases
(Rutherford et al. 2010).

5.3 C5-10 Alcohols and Hydrocarbons

An important class of biofuels can be derived from isoprenoid biosynthetic
pathways. Hemi-, mono-, and sesquiterpenes (C5, C10, and C15, respectively)
have all been suggested as potential fuel candidates. Specific examples include
isopentenol, isopentanol (Connor and Liao 2009), limonene, limonane (from limo-
nene (Ryder 2009)), dimethyl octane (from geraniol (Martin et al. 2007)); farnesane
(from farnesene (Ryder 2009)), hydrogenated pinene dimers (Harvey et al. 2010);
and others (Peralta-Yahya and Keasling 2010). Terpenes have historically been
studied as medicinal, flavoring, and fragrance compounds. Limonene, pinene,
geraniol and citronellol, putative biofuel compound precursors, are associated
with plant extracts and are used in a wide array of cosmetics, insect repellant,
sanitizing agents, and solvent applications. Toxicity of these isoprenoid compounds
has been evaluated in a variety of bacteria such as E. coli, Samonella enterica, and
Staphylococcus aureus (Kim et al. 1995; Trombetta et al. 2005; Cristani et al.
2007). Specific modes of antibiotic resistance have also been evaluated for several
of these compounds. The common household disinfectant, Pinesol, contains a
mixture of cyclic monoterpenes, and its antimicrobial impact on E. coli has been
studied via transcript analysis (Gill et al. 2002). Following up on these initial
studies, it was shown that the derepression of the AcrAB-TolC pump genes
provided a significantly higher resistance to Pine oil (Moken et al. 1997). Similarly,
oxidation-based mechanisms have been found in Pseudomonas aeruginosa for the
metabolism of geraniol and citronellol (Hoschle and Jendrossek 2005).

Very few studies have evaluated the impact of longer carbon chain compounds
on bacterial cultures as the solubility of these compounds drop below measurable
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levels. It is likely that long-chain compounds beyond a certain carbon length no
longer intercalate into the cell wall and will impose no toxic effect on cell growth or
production. Consistent with this, no growth defect was observed for an E. coli strain
developed to produce fatty acid ethyl esters (FAEE) at almost gram per liter scales
(Steen et al. 2010). It is noteworthy, however, that addition of an organic phase to
FAEE production cultures improved production by 1.6-fold (from 427 to 674 g/L),
which may be suggestive of product accumulation causing a push back on the
biosynthetic pathway.

5.4 Targets for Engineering Stress Tolerance from Toxic
End Products

Targeted and systems-level studies in bacterial systems for solvent stress point to
several candidates that may be explored to generate fuel-tolerant hosts. Selection of
ethanol-tolerant E. coli is a much-explored area as is the application of cell-wide
stress response studies and mutagenesis approaches (Ingram 1990; Jarboe et al.
2007; Jeffries and Jin 2000; Alper et al. 2006; Gonzalez et al. 2003; Yomano et al.
1998). Tolerance mechanisms range from modulation of cell wall fluidity (Ingram
and Vreeland 1980; Ingram et al. 1980), expression of chaperones (Barbosa et al.
1994), to the use of osmoprotective agents such as glycine betain (Gonzalez et al.
2003). The response to ethanol is more like salt or desiccation stress in that ethanol
appears to have a water exclusion effect. Consequently, studies implicate the role of
osmoprotectants in stress mitigation (Gonzalez et al. 2003; Underwood et al. 2004).
E. coli shows a similar response in cell wall fatty acid composition in response to salt
and ethanol stresses and pretreatment with salt resulted in greater resistance to
ethanol (Ingram and Vreeland 1980); specifically, an increase in unsaturated fatty
acids was found in response to ethanol stress (Ingram et al. 1980). The opposite
trends were observed during exposure to longer, more hydrophobic solvents such as
hexenol, where pre-exposure to salt had no impact (Ingram et al. 1980). An increase
in trans unsaturated fatty acids in response to both ethanol and NaCl was also found
in P. putida (Loffeld and Keweloh 1996). A previous study found similar trends in
P. putida exposed to toluene and ethanol: an increase in saturated fatty acids in cells
exposed to toluene, but the reverse in cells exposed to ethanol, leading the authors to
suggest that the reduction in saturation in ethanol is a cause rather than a response
(Heipieper and de Bont 1994). Modulation of cell wall fluidity appears to be a key
response in several other microbes such asOenococcus oeni (Grandvalet et al. 2008;
Silveira et al. 2004) and Z. mobilis (Carey and Ingram 1983; Michel and Starka
1986). Genetic engineering of cell wall fatty acid distribution has been used in
several bacteria with measured impact on stress tolerance or sensitivity. Unsaturated
fatty acids in the membrane of the cyanobacterium Synechocystis spp. were
increased by deleting the desaturase genes desA and desD (Sakamoto and Murata
2002; Allakhverdiev et al. 1999) and resulted in an increased salt tolerance.
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Similarly, a knockout in the cis/trans isomerase cti in P. putida DOR-T1E (Junker
and Ramos 1999) resulted in an increased sensitivity to toluene. Finally, the
cyclopropyl fatty acid synthase (cfa) from O. oeni has been used to complement a
corresponding knockout in E. coli to restore ethanol sensitivity (Grandvalet et al.
2008).

Butanol is more hydrophobic than ethanol and does not cause the same type of
water exclusion stress. However, butanol is toxic to E. coli and other bacteria at
much lower concentrations. Being membrane permeable, butanol causes stress at
both cell envelope as well as intracellular levels. Therefore, addressing the
impacted cellular components, as discovered via cell wide studies, might provide
appropriate stress relief. Mechanisms that correct the disrupted redox state of the
cell, such as superoxide dismutases or dehydrogenases (e.g., yqhD), may be effec-
tive. Though these mechanisms have never been directly explored for relieving
butanol stress, they have been effective in dealing with redox stress (Kang et al.
2007; Perez et al. 2008), which is also observed during n-butanol exposure in E. coli
(Rutherford et al. 2010). Deletion of ydhD specifically reduced iso-butanol produc-
tion in E. coli (Atsumi et al. 2009), consistent with its importance in stress from
these target compounds. Cues from other bacteria, such as C. acetobutyliticum,
include the overexpression of GroELS chaperones (Tomas et al. 2003).

A limited number of studies have evaluated the impact of longer chain alcohols,
alkanes, alkenes, cyclic hydrocarbons, and aromatic compounds on bacteria. With
respect to terpenoid compounds, studies in E. coli point to export pumps as a key
mechanism to reduce toxicity. Given its wide substrate range, the AcrAB-TolC
system native to E. coli holds the potential of providing tolerance toward several
terpene compounds (Gill et al. 2002; Moken et al. 1997). Homologous pumps exist
in other more solvent-resistant bacteria and are worthy of examination for engi-
neering host resistance. With respect to solvent tolerance, a large body of knowl-
edge comes from studies in Pseudomonas spp (Ramos et al. 2002). The
involvement of efflux pumps is documented in P. putida DOT-T1E (Ramos et al.
1998), P. putida S12 (Kieboom et al. 1998a,b), P. putida MTB6 (Huertas et al.
2000), P. putida GM73 (Kim et al. 1998), and P. putida F1 (Phoenix et al. 2003)
and is possibly the primary mechanism of solvent tolerance in these bacteria. Of
special note is the versatile, solvent-resistant pump (srp) from P. putida S12, which
was shown to be induced in response to a variety of relevant compounds such as C5-
C9 alkanes (moderate induction) and C5-C8 alcohols (strong induction), as well as
aromatic solvents (Kieboom et al. 1998b). The other key resistance mechanism
reported in several P. putida strains is the increase in cis to trans isomerization of
cell wall fatty acids, which modulates cell wall fluidity. Solvent tolerant E. coli
strains have been reported to demonstrate resistance to cyclohexane at
concentrations typically lethal to the parent E. coli strain (Aono and Kobayashi
1997). Subsequent analysis of these solvent-resistant strains found a decrease in cell
wall hydrophobicity and specifically reported changes in the lipopolysaccharide
content. P. putida strains have also been documented to use vesicles to sequester
and export toxic metabolites (Kobayashi et al. 2000); however, this is neither a
widely observed mechanism nor would it be straightforward to engineer into a
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heterologous host. Alternate responses include metabolism of the offending alkane
(Roling et al. 2002; van Beilen et al. 2001; Spormann and Widdel 2000); however,
with respect to improving product titers, product catabolism is not an ideal strategy
to alleviate the stress.

6 Engineered Controls of Stress Tolerance Pathways

Typical laboratory systems use carefully selected combinations of inducible
promoters, plasmid copy numbers, ribosomal binding sites, and terminators to
expressed genes and pathways (Smolke 2009). Such systems are invaluable for
demonstrating feasibility for a biosynthetic pathway or stress response function.
Furthermore, in the case of high value commodities where the impact on cell
growth due to stress or the cost of maintaining plasmid-borne systems is completely
offset by the value of the target compound, no further engineering may be neces-
sary. In this regard, maximizing the amount of target compound per culture cycle is
necessary to reduce the reliance on scale up alone. Therefore, the longer the host
can perform optimally under production conditions, the greater the yield from a
given quantity of starting material and correspondingly the cost associated with
deconstruction per cycle of production. In such large-scale settings, especially in a
continuous process, it becomes a significant hindrance to (1) maintain a plasmid
using a selection marker and (2) provide a constant concentration of the external
inducer. The elimination one or both may result in significant cost benefit to the
process.

A basic strategy to bypass the cost and effort associated with the addition of the
inducers would entail the use of constitutive promoters that provide a constant level
of gene expression. However, stress response mechanisms may not be the ideal
systems for functional expression under conditions where stress is not present. Even
with the most benign mechanisms, such as the expression of chaperones, constitu-
tive expression burdens the cell with excessive protein production. In most cases,
however, expression of the stress response mechanism comes at an even higher
cost. For example, overexpression of efflux pumps can be toxic to the cell due to
overloading of the protein translocation machinery used to target proteins to the
membrane (Wagner et al. 2007), and careful tuning of pump expression is required
to avoid growth inhibition (Wagner et al. 2008). A better strategy, therefore, is to
have expression systems that are regulated using cellular cues rather than an
externally added inducer. There are at least two interesting approaches for an
internally regulated system. One such system would be where sources of toxicity,
specifically the inhibitory compounds or the accumulating harmful target com-
pound, would be detected and used to trigger the expression of the appropriate
mechanism. The other approach would use regulatory mechanisms that become
active during the conditions imposed by the inhibitory compounds or the
accumulating harmful target compound, and place the genes encoding the resis-
tance mechanism under the control of these regulators.
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To execute the former, sensory proteins that can sense the inhibitory compounds
and effect downstream responses are required. Bacterial two-component systems,
typically comprised of sensor histidine kinase (HK) and a response regulator (RR),
are an ideal mechanism for such a strategy. In these systems, the histidine kinase
functions to sense extra- and intracellular signals and triggers signal transduction
via a phosphotransfer to the cognate RR that in its active phophorylated state
regulates cellular response, often by gene induction (Stock et al. 2000; Galperin
et al. 2001; Gao and Stock 2009). The biodiversity from sequenced organisms
provides a variety of two-component systems (Mascher et al. 2006). These include
systems that sense many relevant compounds discussed in this chapter or conditions
associated with their presence. For example, phenolic and aromatic compounds
serve as signals for the Agrobacterium tumefaciens VirA/VirG system (e.g.,
acetosyringone) (Lee et al. 1995) and the P. putida TodS/TodR (Toluene) (Lau
et al. 1997) (Busch et al. 2007). Acidic pH is sensed by variety of sensors including
the E. coli PhoQ (Bearson et al. 1997), the A. tumefaciens VirA (Gao and Lynn
2005), and the Sinorhizobium ActX (Tittabutr et al. 2006). Sensor kinases are also
known for other pertinent signals or stress responses, such as hexose sugar sensing
by the E. coli UhbP (Island and Kadner 1993; Wright and Kadner 2001; Wright
et al. 2000), cell density or quorum sensing by the E. coli QseC (Sperandio et al.
2002), cell envelope stress by the E. coli CpxA, and redox stress by the E. coli ArcB
(Iuchi et al. 1990; Malpica et al. 2004).

It should be pointed out that heterologous expression of a two-component
system in E. coli may not be sufficient to accomplish signal sensing, transduction,
and gene regulation, and the corresponding response regulator may also require
native sigma factors etc. (Lohrke et al. 2001). However, this problem can be
bypassed by using only the sensory domains of the appropriate two-component
system as a fusion protein with native E. coli systems. Such fusion systems have
been made successfully using the well-characterized EnvZ/OmpR two-component
systems that natively control E. coli’s response to changes in osmolarity (Cai and
Inouye 2002; Kishii et al. 2007). Well-cited examples include fusion sensory HKs
in which the periplasmic and transmembrane domains of chemoreceptor Tar
(aspartate sensor) or Trg (ribose sensor) were fused with the catalytic core of
EnvZ (Baumgartner et al. 1994; Utsumi et al. 1989). The resulting Taz1 and Trz1
proteins enabled response regulator activation to Asp or ribose rather than osmotic
change. In another example, intracellular O2 was sensed by a FixL-EnvZ fusion and
used to induce ompC-gfp (Kumita et al. 2003). Factors to be taken into consider-
ation in order to generate such chimeric sensor histidine kinases for microbial
engineering have been described recently (Salis et al. 2009). The advantage of
such an approach is that it will be highly specific to the inhibitor in question and will
not be triggered by other conditions. The obvious drawback is that a suitable sensor
may not be known (e.g., furfural). However, in such cases, signals that are less
specific (e.g., change in pH) but that correlate with the presence of the toxic
compound or growth stage can be used.

The second strategy uses cues pertinent to the stress response or a pertinent
growth/metabolic condition to control the expression of stress mitigating
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mechanisms. Systems biology studies provide a broad suite of differentially
expressed genes for the conditions of interest. Done with the right controls, these
data sets allow the identification of genes that change specifically in response to the
stressor, in this case, the inhibitors and toxic final products. The regulatory system
that controls the up- or downregulation of the specifically responding genes can
then be used to control the expression of the selected stress response mechanism.
Conditions that correlate with the stress or the growth mode corresponding to target
compound production can be selected, and genes that are differentially modulated
in response to these conditions provide potential targets for this approach. For
example, candidates to drive key pathways would be those that correlate with
sugar utilization (e.g., diauxic shift), cell density (e.g., via quorum sensing), and
stationary phase promoters; all of which are an integral part of culturing conditions
for target compound production.

In E. coli, the availability of gene libraries can also provide powerful strategies
to identify ideal candidates for creating such control systems. An important
resource in this regard is the library of fluorescent transcriptional reporters
generated in E. coli K12, in which gfp (green fluorescent protein) has been placed
under control of about 2,000 native E. coli promoters (Zaslaver et al. 2006). This
library was used to assess promoter function for the glucose–lactose diauxic shift
and could potentially be used to screen for relevant promiscuous or specific pumps
for a wide variety of conditions pertinent to the biofuel production workflow.

7 Robust Engineering of Multiple Tolerance Mechanisms
into the Same Host

As discussed above, it is possible to engineer several classes of stress tolerance
mechanisms into various biofuel-producing hosts. Naturally, it is of more impor-
tance to approach a simultaneous incorporation of multiple tolerance characteristics
and biofuel synthesis pathways into the same host. This approach assumes that each
of the individual stress tolerance and biofuel synthesis pathways has (separately)
been introduced into the host organism, assays have been developed to gauge the
performance of each pathway, the function of each pathway has been verified in the
host, and the associated expression control systems have been minimally optimized.
With those assumptions satisfied, three major challenges arise when attempting to
engineer multiple pathways into a single host: (1) optimizing the performance of a
given biological pathway often adversely affects other pathways in the same cell,
(2) simultaneous optimization of all the pathways is required, and (3) generating
sufficient library diversity within the collective pathways (from which to screen or
select) and maintaining pathway stability become more difficult with each addi-
tional pathway.

In stark contrast with the engineering ideal, biological pathways are generally far
from orthogonal. All activities transpiring within the cell are coupled to a greater or
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lesser extent with each other. Any given stress tolerance or biofuel synthesis
pathway may affect the intracellular environment (available cellular resources,
membrane structure, redox balance, pH, etc.) to the detriment of the other
engineered pathways. For example, adding an AcrA/B-TolC efflux pump to relieve
terpene/limonene toxicity would result in exporting tetracycline from the cell
(Okusu et al. 1996), a side effect that would diminish the expression of a biosyn-
thetic pathway placed under the control of the Ptet promoter. Thus, although a
pathway may have previously been introduced into and optimized for the host
organism, the performance of the pathway might greatly diminish after the intro-
duction of the other pathways of interest.

Since the introduced pathways will likely perturb each other’s performance, this
naturally leads to the requirement to screen or select for the desired function of
multiple pathways simultaneously. At the beginning of this process, it is important
to identify any grossly under-performing pathway(s) (whether stress tolerance or
biosynthetic) and only initiate a systems-wide combinatorial screen/selection once
a minimal level of activity is achieved for every pathway. The effort at this stage
should be modest, because each pathway has previously been demonstrated to be
functional, but some serial re-optimization of pathways that perform extremely
poorly in their new context may be required. The targeted SRM approach
(Anderson and Hunter 2006) could prove invaluable at this point to determine a
functional pathway’s component ratios before placing it in a new context. If other
stress tolerance and biosynthetic pathways dramatically perturb these component
ratios, SRM analysis can be applied in an iterative fashion to improve the under-
performing pathway(s).

When incorporating multiple pathways into a single host, there are potentially
many different parameters to optimize for each gene (gene variant, promoter, RBS,
copy number), and the aggregate parameters must be combinatorially assessed by
each pathway’s assay. However, generating a large and diverse combinatorial
library to screen, or from which to select, for optimal systemic performance, is
rather futile without comprehensive high-throughput assays. Some functional
assays are higher throughput than others, and an immediate concern is that an
assay whose throughput is acceptable for optimizing an individual pathway may not
be feasible for use within the context of a combinatorial screen. Since tolerance
pathways are generally assessed via growth rates under increasing titers of exoge-
nously introduced stress, and are readily transferable to high-throughput screens or
selections, the burden falls predominantly upon assaying the biosynthetic pathway.
In addition, restraint should be applied against over-optimizing stress tolerance
pathways to the detriment of biofuel production. It may be best to exclusively
screen or select for biofuel production, because optimizing production will implic-
itly address any underlying stress tolerance limitations.

While a validated fluorescence-activated cell sorting (FACS)-based assay of
biofuel production would be ideal, such as a recent finding of an intracellular
n-butanol biosensor (Dietrich and Keasling, unpublished data), single cell assays
may not be applicable in all situations, especially if the cellular export of the biofuel
is limiting. A general caveat to screening or selecting for biofuel production in
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batch mode at a small scale is that the results may not be particularly applicable to
continuous culture at an industrial scale, and further strain and culture
optimizations will likely be necessary (Burgard and Van Dien 2007). Finally, in
addition to screening combinations of stress tolerance and biosynthetic pathways, it
can also be very fruitful to perturb global regulators for improved performance
(Alper and Stephanopoulos 2007; Alper et al. 2006).

Before any attempts have been made to incorporate multiple pathways into the
same host organism, stress tolerance and biofuel synthesis pathways are generally
introduced into the cell on one or more replicating plasmid vectors. Since the
number of compatible origins of replication is limited, the pathways of interest,
the genes for which may be distributed across multiple plasmids, must often be
consolidated into one or a few vectors. The traditional approach of restriction
enzyme/multiple cloning site plasmid construction impedes this process, as it
becomes more difficult to find amenable restriction sites with each pathway
added to a given plasmid, and increasingly likely to necessitate the introduction
of silent point mutations to disrupt the undesirable recognition sites. Furthermore,
the traditional implementation of this process will almost certainly vary for each
new combination of stress tolerance and biofuel synthesis pathways (since new
restriction sites will be selected and new point mutations must be introduced), and
therefore, it will often be necessary to restart the process from scratch. An alterna-
tive approach is to employ a standardized assembly strategy, such as the BioBricks
method (Shetty et al. 2008; Anderson et al. 2010), which easily allows for the
concatenation of multiple pathways together, in any combination.

Even though each pathway has already been incorporated into the target host and
minimally optimized, it will likely be necessary to do so again within the context of
all of the other pathways. Consolidating multiple pathways into a single plasmid
(increasing plasmid size) or transforming multiple plasmids into the same host can
affect plasmid copy number. It will generally be required, then, to screen/select
various different combinations as described above. It should be noted that combi-
natorial library creation is potentially at odds with the binary BioBrick assembly
method, because the cumulative library size is limited by number of colonies
pooled after each assembly step (only two sequences are assembled together at
time). However, it is possible to generate combinatorial libraries using other
methods (Li and Elledge 2007; Gibson et al. 2009; Quan and Tian 2009; Engler
et al. 2008, 2009) that allow for concurrent multi-part assembly while maintaining
BioBrick compatibility for downstream applications.

Even after consolidating all of the desired stress tolerance and biosynthetic
pathways into a few plasmids and selecting/screening for optimal combinations
thereof, there remain numerous drawbacks to plasmid systems. Plasmids are not
often utilized in an industrial context, because enforcing antibiotic selection pres-
sure is not cost-effective, introduces additional cellular stress, and potentially
reduces biofuel production. In addition, some plasmids do not segregate in an
ordered fashion (unlike the chromosome), and this segregational instability can
result in plasmid loss and accelerate the spread of mutations through the plasmid
population that curtails the biofuel pathway while allowing the plasmid to
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propagate (Tyo et al. 2009). Note that this concern is generally only applicable to
the biofuel synthesis pathway (which itself may be responsible for cell stress), since
in the presence of the cell-stress, even in the absence of antibiotic selection
pressure, the stability of stress tolerance pathways may not justify significant
concern.

Chromosomal integration is an important route to stabilizing biosynthetic
pathways. While replicating plasmids offers variable copy-numbers to chose from
(e.g., pUC vs. pSC101 AU1(Smolke 2009), chromosomal integrations have historically
been limited to a single copy. Chromosomal integrations with multiple copies have
recently been demonstrated with the chemical induced chromosome expansion
(CIChE) method (Tyo et al. 2009). Whereas it has been relatively facile to generate
combinatorial plasmid libraries (with variable promoters, RBS, etc.) from which to
screen or select, it has been more challenging to accomplish the analogous chromo-
somal modifications. To some extent, with the advent of multiplex automated
genomic engineering (MAGE) (Wang et al. 2009), it is becoming feasible to
achieve combinatorial diversity within the chromosome itself.

Recombination is yet another means available to the host organism to disable
biosynthetic pathways. Cellular recombination machinery can remove (from the
chromosome or a plasmid) portions of a deleterious pathway that contains high-
homology sequence repeats (e.g., a repeated promoter sequence). In addition, since
the aforementioned CIChE methodology relies upon only one repeat flanking, the
pathway to be integrated (Tyo et al. 2009), it is likely that the CIChE process will
not result in chromosomal repeats of the entire pathway if the pathway internally
contains repeated sequences AU2. Perhaps the best defense against undesired pathway
recombination is to avoid sequence repeats altogether, utilizing multiple gene
operons and the minimal number of promoters and terminators, where possible.
When multiple promoters and terminators with similar function are required, it is
advisable to choose those with maximally divergent sequences. An additional
means to mitigate pathway recombination instability is to delete recA, as performed
at the completion of CIChE (and before initiating the MAGE process).

8 Conclusion and Perspectives

A biofuel-producing host must harbor not only the biosynthetic pathway, but also
the carefully engineered tolerance mechanisms to enable stable growth and high
production. Serious consideration of a bacterial host for the production of a bulk
commodity must address issues of pretreatment inhibitors, metabolic engineering
burden and toxicity from target compound. End product toxicity especially is a
common problem in strain engineering for biotechnology applications and is
possibly the most critical in biofuel production due the absolute requirement to
maximize production titer. E. coli engineered to serve as an industrial host to
produce bulk chemicals such as 1,4-butanediol and 1,3-propanediol, had substantial
engineering devoted to improving tolerance was required to make production cost
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effective (Burk 2010; Zeng and Biebl 2010). While the toxicity from some of
current and advanced biofuel candidates are well understood, entire classes of
fuels that can be produced microbially remain to be explored further. For example
recent discoveries of novel pathways enabled the production of hydrocarbons
longer than C15 in E. coli (Beller et al. 2010), and further developments will reveal
if such targets impose toxic limits on the production titer and the strain engineering
required to overcome these.

Eventually, the goals of a well-engineered microbial host system go beyond a
typical laboratory inducer controlled, plasmid borne systems. Beyond just the
deployment of key tolerance mechanisms, not only will the target genes be
expressed using cues from the system, but they will also have more sophisticated
positive and negative feedback controls like those found in native microbial
systems. Such engineered systems would allow more optimal levels of stress
response to be maintained in the face of fluctuating stress conditions and variable
product formation, potentially resulting in a more robust producer (Dunlop et al.
2010). Strategies for developing resistant marker free strains with chromosomally
encoded pathways and tolerance mechanisms are also essential both for generate a
stable host platform and also for ease and safety of use in large industrial scales.

In this chapter, we sought to identify common sources of cellular growth and
toxicities that might be encountered by a biofuel producer and discuss several
targeted approaches that may help in the development of a better producer. How-
ever, other combinatorial and evolutionary strategies also exist to address similar
problems and are a well-reviewed topic (Zhang et al. 2009). Recent studies promise
new strategies that can be brought to bear on strain engineering such as the genome
scale technologies developed for compiling and transplanting a complete myco-
plasma genome into a heterologous host (Gibson et al. 2010). Alternate genome
level approaches are the use of metagenomic fosmids to engineer tolerance to
pretreatment inhibitors (Sommer et al. 2010). The importance of cellular engineer-
ing to optimize microbial physiology beyond the pathway optimization is being
recognized as an important aspect of strain development especially in the conver-
sion of lignocellulosic biomass to biofuels.
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