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Abstract

Although flow cytometer, being one of the most popular research and clinical tools for 

biomedicine, can analyze cells based on cell size, internal structures such as granularity, and 

molecular markers, it provides little information about the physical properties of cells such as cell 

stiffness and physical interactions between cell membrane and fluid. In this paper, we propose a 

computational cell analysis technique using cells’ different equilibrium positions in a laminar flow. 

This method utilizes a spatial coding technique to acquire the spatial position of the cell in a 

microfluidic channel and then uses mathematical algorithms to calculate the ratio of cell mixtures. 

Most uniquely the invented computational cell analysis technique can unequivocally detect the 

subpopulation of each cell type without labeling even when the cell type shows a substantial 

overlap in the distribution plot with other cell types, a scenario limiting the use of conventional 

flow cytometers and machine learning techniques. To prove this concept, we have applied the 

computation method to distinguish live and fixed cancer cells without labeling, count neutrophil 

from human blood, and distinguish drug treated cells from untreated cells. Our work paves the 

way for using computation algorithms and fluidic dynamic properties for cell classification, a 

label-free method that can potentially classify over 200 types of human cells. Being a highly cost-

effective cell analysis method complementary to flow cytometers, our method can offer orthogonal 

tests in companion with flow cytometers to provide crucial information for biomedical samples.

 Introduction

For decades, flow cytometers have been used to measure physical properties of cells such as 

their size and granularity [1–7]. Although labelling allows further differentiation of cells 

from fluorescent signals [7–13], cell labelling could unintentionally modify the property of 

cells [8] and in some cases affect cell viability [14–15] in addition to adding cost and 
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process complexity. Therefore, significant efforts have been devoted to attaining as much 

cell information as possible without labelling [16–21]. In this paper we demonstrated 

enhanced abilities of label-free detection and analysis of cells in a laminar flow by 

employing innovative computation algorithms. Indeed, there have been numerous successful 

examples [22–23] for applications of computation algorithms to obtain extra cellular 

information from biological samples, as demonstrated in super-resolution microscopy [24–

28] and imaging flow cytometer [29].

Realizing that cells of different physical properties find different equilibrium positions in a 

microfluidic laminar flow [30–39], we can acquire valuable cellular information from cell 

positions in principle. However, up to now such information has not become much useful 

because different types of cells or the same type of cells in different conditions (e.g. drug 

treatments or infections) often produce very small position differences in a fluidic channel. 

To overcome this problem, at first we have to find a scheme to detect very small (a fraction 

of cell size) positional changes. A few years ago, we invented a space-time coding method to 

detect the cell position with better than one micrometer resolution [40–45]. However, we 

still face another challenging problem resulted from the intrinsic inhomogeneity of 

biological cells. In other words, the property variations within the same cell group can be 

comparable to or even greater than the variations between two different cell groups. As a 

result, the distribution plots of two different cell groups may seriously overlap that no 

machine learning methods such as support vector machine (SVM) algorithms are able to 

separate the two groups [41]. The key contribution of this paper is to devise an entirely new 

concept to address this critical issue. Instead of trying to classify each individual cells, we 

detect cells and their properties by groups. For two or more groups of cells with slightly 

different properties, our computation algorithms can (a) determine the cell population of 

each group, and (b) determine the spread and inhomogeneity of the properties within each 

cell group. Using the proposed computation method, we have demonstrated that even though 

the two cell groups have their distribution plots overlapped by 80% or more, one can still 

accurately measure the population of each group of cells in samples of cell mixture. To 

showcase potential applications of the computational cell analysis method, we demonstrate 

such unique capabilities in two examples. For point of care, we count neutrophil in whole 

blood for neutropenia detection, a critical and frequent test for chemotherapy patients [46–

51]. For drug testing based on phenotypical properties, we detect cellular response to drugs 

for target proteins (e.g. G-protein-coupled receptors) [52–53].

 Experimental Method

 Computational cell analysis technique

 1. Measurement of cell position within a microfluidic channel—In a 

microfluidic channel, cells of different physical properties (size, shape, stiffness, 

morphology, etc.) experience different magnitudes of lift and drag force, thus yielding 

different equilibrium positions in the laminar flow [30–39].

To determine the equilibrium position of a particular cell in the microfluidic channel, a 

spatial coding method was used to obtain the horizontal position and the velocity of the cell. 

The design and configuration of the system is illustrated in figure 1. The spatial mask has 
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two oppositely oriented trapezoidal slits with the base lengths being 100um and 50um 
(figure 2(a)). An LED source was used to illuminate from the bottom of the microfluidic 

channel. The transmitted signal was detected by a variable gain photoreceiver made of a Si 

photodiode and a transimpedance amplifier (Thorlab). All light blocking areas on the spatial 

mask was coated with a layer of Ti/Au on a glass slide. When cells flew through the spatial 

mask area, their forward scattering signal gave rise to a characteristic waveform encoded by 

the mask. The microfluidic channel is 5 cm long and has its inlet and outlet at the ends. The 

rectangular cross section of the channel is 100um wide and 50 um high. The mask is located 

at 4.5 cm from the inlet. In the following discussion, we will represent the channel width 

direction as x-axis and channel height direction as y-axis. The intensity modulated FS signal 

by the trapezoidal slits displays 2 peaks, as shown in figure 2(b). The ratio between the 

width of the first peak and the second peak provides information of the cell position in the 

X-axis; and the absolute value of the signal width gives information about cell velocity. 

Knowing the position along the x-axis and the cell velocity, the cell position along the y-axis 

can be obtained using the property of laminar flow that gives rise to a parabolic velocity 

profile represented by the following relation [39–44]:

In the above equation, y is the cell position in the channel height direction (y-axis), h is the 

half channel height, 25µm in this work. x is the horizontal position. V(x, y) is the velocity at 

a specific position. L is the channel width in the horizontal direction, in our case 100 µm. 

Vmax is the maximum velocity occurring at the center of the channel (i.e. x = L/2, y = 0, in 

our case, x = 50 µm, y = 0 µm). The target cells are suspended in PSB buffer solution (ρ = 

103kg · m−3, μ = 1.05 × 10−3Pa · s) The flow rate used in the experiment is 180 µL/min. The 

microchannel hydraulic diameter, Dh = (2W × h)/(W + H), is 66.7 µm, where W and H are 

the width and height of the channel. The Reynolds number is calculated to be 38.1.

 2. Computational cell analysis methods

 Basic algorithms: For a given type of cells in a channel, their equilibrium positions can 

be represented by a characteristic distribution R(x, y). The characteristic distribution can be 

obtained in a diluted sample to avoid any effects caused by cell-cell interactions in the flow. 

Figure 3 shows the characteristic distribution of live MDA-MB-231 cells. Without cell-cell 

interactions in the fluid, the spatial distribution of a sample containing multiple cell groups 

is the linear combination of the characteristic functions of each cell type.

If RA(x, y) and RB(x, y) are the characteristic functions of cell type A and cell type B, the 

spatial distribution, S(x, y), for a mixture of cell A and cell B can be described by Eq. (1) 

where the coefficient, C, is the fraction of cell A in the sample.

(1)
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Since both RA(x, y) and RB(x, y) are normalized over the entire cross section of the fluidic 

channel,

The distribution function S(x, y) for the sample is also normalized as in (2).

(2)

If we already know RA(x, y), RB(x, y) from the training data and measure S(x, y) from the 

sample, we can find from Eq. 1 the only unknown, C, being the population of cell A, which 

is the information of interest.

In practice, the values of RA(x, y), RB(x, y), and S(x, y) at each specific position (x, y) are 

random variables. We divide the whole area of the channel cross section into meshes so the 

sets of random variables RA(x, y), RB(x, y), and S(x, y) follow the relations:

(3)

Due to the statistical nature of the problem, the resulting value of C, calculated at each 

position (x, y), is also a random variable. Thus we can plot the distribution of C, the 

percentage of cell A in the sample, in a histogram. The mean value of the histogram 

produces the most likely percentage for cell A in the sample and the spread of the histogram 

provides a good indication of the quality of the measurement. Figure 5 shows an example of 

the histogram for C.

Therefore, for any cell type possessing even a slightly different physical property than the 

rest of the cells in the sample, manifested by its largely overlapped spatial distribution with 

the rest of the samples, our method is still able to find the relative population of such specific 

cell type in a cell mixture. This is a unique capability of the proposed method.

 Obtaining characteristic functions from practical, non-purified, samples

In some practical cases, pure samples of a single cell type are not always available to allow 

us to obtain the characteristic functions (e.g. RA(x, y), RB(x, y), etc.). Even in the cases 

where one can use cultured cells to produce samples of pure cells, the distributions obtained 

from the cultured cells may be different from the real cells of the same type in physiological 

conditions.
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In the following we describe how one can obtain the characteristic functions (i.e. RA(x, y), 

RB(x, y), etc.) from cell mixtures directly without pure samples. These cell mixtures can 

come directly from patient samples. To elucidate this method, let us start with two (or more) 

samples with different ratios (i.e. C1 and C2) of mixture between cell A and cell B. We 

obtain the following relations:

(4)

For training samples, we can label cells A and B so that one can use a conventional flow 

cytometer to find the cell ratios, C1 and C2 of the two training samples. The left hand side 

(LHS) of Eq. (4) are the measured distribution functions for the two mixtures. Then at each 

position (x, y), we can use Eq. (4) to find the characteristic functions RA(x, y) and RB(x, y) 

for cells A and B since C1 and C2 are already known. Note that we only need to perform the 

above experiment once to establish the “library” of the characteristic functions for all cells 

of interest, and then these characteristic functions can be used for all future analysis of 

samples consisting of various cell mixtures. This process is further illustrated in figure 6.

For a mixture of two cell types with an unknown mixing ratio (C3), we can find its value 

using the same method described above (figure 7).

Note that the distribution function R(x, y) for each sample represents a set of position 

dependent random variables, so the reliability of its value at each position depends on the 

size of the ensemble within each mesh. To assure a good ensemble size at each position and 

to obtain the highest possible spatial resolution for R(x, y), we design meshes using the 

quad-tree algorithm that balances the weight of each mesh and the spatial resolution to yield 

the most distinctive and statistically sound results for cell detection.

 Mesh definition for distribution functions: the quad-tree algorithm

Since the spatial distribution of the cell is not uniform across the channel, the weight of each 

mesh will be inevitably biased if the channel is divided up into meshes of uniform size. In 

such case, the information contained in those meshes with few cells flowing through (i.e. 

fewer data points) is less reliable. Those meshes, which may represent the majority of 

meshes for a distribution function concentrated to a relatively small area, can produce large 

noise and degrade the accuracy and confidence level of the result. On the other hand, for 

those meshes where there are too many cells flowing through, we do not take full advantage 

of the spatial resolution the data offer. To address these issues, we adopt meshes with non-

uniform size based on the quad-tree algorithm [53]. The quad-tree algorithm chooses mesh 

sizes dynamically based on the density of recorded cell positions. The channel is first 

divided into 4 meshes, each of which is further divided into another 4 meshes. Such process 

continues to form a quad tree. Then the number of cells travelling through each mesh in each 

generation of quad in the tree is counted. If the number of cells within an older generation of 
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quad (i.e. larger sized quad) is greater than the threshold for a statistically reliable ensemble, 

the next generation of quad will be used to gain a higher spatial resolution with a reduced 

ensemble size. The process continues until the smallest quads with slightly above threshold 

cell counts are reached. Figure 8 shows how meshes are determined for a spatial distribution 

using the quad-tree algorithm. In this example, the distribution function was obtained by 

flowing 10,000 cells through a 100 µm × 50 µm channel.

 Experimental results

 Detection of the population of live and fixed cells

Without labelling, today’s flow cytometers cannot find the percentage of live and dead cells 

in a culture because the scattering signals (forward, side, and back scattering) between live 

and dead cells overlap significantly in the distribution plot. We demonstrate that in spite of 

the high similarity in their physical properties of live and dead cells, the computation cell 

analysis technique enables us to give an unequivocal answer to the subpopulation of live 

cells from dead cells.

We used live and fixed MDA-MB-231 cells to demonstrate the concept. MDA-MB-231 is a 

cell line for human breast cancer. In the experiment, we fixed one group of cultured MDA-

MB-231 cells and labelled them fluorescently (Propidium lodide), and then mixed these 

fixed cells with live cells in different ratios. Each sample with a specific ratio of live and 

fixed cells was divided into two parts, one running through our device and the other running 

through a commercial flow cytometer. Figure 9(a) shows the distribution plot for forward 

and side scattering signals from a flow cytometer. It was impossible to determine the ratio 

between live and fixed MDA-MB-231 cells from the scattering signals by any gating or 

machine learning algorithms due to the significant overlap of the signals from live and dead 

cells. The only reliable method for a flow cytometer to detect the relative population of live 

cells from dead cells is by fluorescent labelling as shown in Figure 9(b). Next we 

demonstrate how the computation cell analysis method can solve this problem.

To produce characteristic functions for live and dead MDA-MB-231 cells, we ran through 

our system with two samples with 100% live MDA-MB-231 and 100% fixed MDA-

MB-231. Figure 10 shows the characteristic functions of live MDA-MB-231 cells and fixed 

MDA-MB-231 cells over the proposed quad-tree meshes. Figure 11 shows the characteristic 

functions in a way that each mesh was assigned an index according to the ascending value of 

the characteristic function. Figure 11 clearly reveals the differences in the characteristic 

function between live and fixed MDA-MB-231 cells. Then we ran multiple test samples with 

different ratios of live and fixed MDA-MB-231 cells. For each test sample, we ran the 

experiment 10 times, taking 3 minutes for each run, to test the reproducibility and reliability 

of the results. Figure 12 shows comparisons between our method and the flow cytometer 

results by detecting the fluorescent signals of fluorescently labelled fixed cells. The excellent 

agreement and similar repeatability (10 repeats) of the results from both methods 

demonstrate the accuracy and reliability of our label-free computation cell analysis method.
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 Neutrophil counter for point-of-care applications

There are three major types of white blood cells, neutrophil, lymphocyte, and monocyte. 

Neutrophil count is an indicator of patient’s immunity to infections and is particularly 

important for cancer patients undergoing chemotherapy since the treatment can lower 

neutrophil count. Neutropenia develops when the neutrophil count falls below certain levels, 

substantially increasing the risk of infections [46–47]. Therefore, the neutrophil count of 

chemotherapy patients has to be closely monitored, presenting the need for point-of-care 

neutrophil counter without fluorescent labelling. In the following we demonstrate how the 

computation cell analysis technique can count neutrophil in a point-of-care setting.

We performed the experiment using purchased blood from San Diego blood bank. After red 

blood cell lysing, the blood was diluted with 1× PBS solution. Since we were interested in 

neutrophil count, we treated neutrophil as cell A and all non-neutrophil WBCs as cell B. 

Then we represent the characteristic function for neutrophil as RA(x, y) and all non-

neutrophil white blood cells (WBCs) as RB(x, y). To obtain RA(x, y) and RB(x, y), we did 

not use blood samples with 100% pure neutrophils since complete removal of neutrophil 

from the samples can be practically difficult. Instead, we chose two blood samples with 

different neutrophil to non-neutrophil ratios. We used superparamagnetic beads (Dynabeads 

from ThermoFisher) to remove some neutrophils from the blood to produce samples with 

lower than normal amounts of neutrophil, which also simulated neutropenia patients. Using 

the aforementioned protocol, the superparamagnetic beads--Dynabeads CD15--that were 

covalently coupled with an anti-human CD15 antibody were used to deplete human CD15+ 

myeloid cells, predominantly neutrophils, directly from whole blood. Different 

concentrations of Dynabeads CD15 were used to create blood samples having various 

percentages of neutrophil [55].

Using the above mentioned algorithm (see Fig. 6), we obtained the characteristic functions 

of neutrophil and non-neutrophil as shown in Figure 13. From these characteristic functions, 

one could apply Eq. (4) to find the neutrophil ratio from samples of an unknown neutrophil 

population. Again, we have divided each test sample into two parts, one going through our 

device and another going through a commercial flow cytometer (Accuri C6). For each 

sample the test was repeated 10 times. Figure 14 shows the comparison of results from both 

methods. The experiment was designed to cover the whole range of neutrophil ratio to 

simulate healthy samples and samples with different degrees of neutropenia.

Table 1 summarizes results from another set of experiment out of 8 purchased blood samples 

from San Diego blood bank. The excellent agreement between the proposed method and the 

commercial flow cytometer shows that the computational cell analysis device, being a highly 

flexible and versatile technique, can operate as a cost effective, point-of-care neutrophil 

counter.

 Drug response test from cell’s phenotypical characteristics

The computational cell analysis technique is capable of capturing minor changes in cell 

properties (e.g. cell size, shape, granularity, stiffness, surface properties, etc.) that are often 

hard to detect under conventional histology analysis. The unique ability of detecting such 
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otherwise hard-to-detect cell property changes provides valuable insight and complements 

the existing methods in drug discovery. Drug responses of cells, especially the early stage 

response or responses under low drug dosage, may not be obvious and can skip people’s 

attention [9]. We have performed preliminary studies to investigate our method’s capability 

of detecting subtle changes of cell properties under drug treatments.

We divided breast cancer cells (MDA-MB-231) into two groups. For the first group, 15nM 

of Paclitaxel was introduced to around one million cells for 48 hours. As a cytoskeletal drug, 

Paclitaxel stabilizes the microtubule cytoskeleton against depolymerization [56], and is 

reported to affect cell surface roughness and stiffness [57] due to increase in microtubule 

rigidity [56]. As a control group, we introduced no drug to the second group of cells that 

were also cultured for 48 hours. Then the two groups of cells were run through our 

computation cell analysis system, yielding two characteristic functions corresponding to the 

drug treated and untreated cells. In figure 15, the X-axis is the index of the meshes following 

the quad-tree algorithm (see Figure 8), and the Y-axis is the value of characteristic function. 

The difference of the characteristic function between the drug treated and untreated cells 

was presented in figure 15 where each mesh was assigned an index according to the 

ascending value of the characteristic function. Such representation helps us visualize and 

quantify the differences of characteristic functions between cells. From figure 15 we 

observed clear differences between MDA-MB-231 cells with and without Paclitaxel 

treatment, suggesting the fluid mechanic properties of the cells have been affected by the 

drug although the alterations of cell’s phenotypical features were not apparent under 

fluorescent microscope (figure 16).

 Conclusions

In this paper, we report the invention of computational cell analysis as an entirely new 

method of detecting and analyzing cells from their spatial distribution in the microfluidic 

channel. A spatially coded mask was used to obtain the position of each cell by its optical 

scattering center. A mathematical algorithm was developed to calculate the composition of 

the cell mixture in the sample. This method is inherently label free and provides unique 

cellular information complementary to existing flow cytometers. Because the information is 

extracted from computation algorithms, the hardware of the apparatus is simple and 

inexpensive, making it suitable for point-of-care applications and amendable to many 

biomedical applications. To show the versatility of the technique, in this paper we 

demonstrate the functions of counting the population of live and dead cells, counting 

neutrophils from whole blood for neutropenia detection, and detecting cell property changes 

under drug treatments. These are a few examples from a large number of possible 

applications of the technique. We believe the method of computational cell analysis opens a 

new avenue for cell analysis and offers a myriad of opportunities and capabilities 

complementary to the existing methods.
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Fig. 1. 
Experiment setup with space coding method
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Fig. 2. 
(a) Spatial mask design with two oppositely oriented trapezoidal slits. W1 and W2 represent 

the widths of the slits experienced by a cell traversing the mask from different positions. 

Also shown are the anticipated waveforms for cells crossing the mask area via different 

paths. (b) Intensity modulated forward scattering signal by the trapezoidal slits.
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Fig. 3. 
Spatial characteristic function of live MDA-MB-231 cell.
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Fig. 4. 
Illustration of the steps to calculate the cell ratio in a sample of cell mixture. The yellow and 

blue patterns represent the characteristic distributions for cell A and cell B.
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Fig. 5. 
Histogram of the live MDA-MB-231 cell ratio, C.
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Fig. 6. 
Use of cell mixtures as training samples to obtain the characteristic function of specific cell 

type.
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Fig. 7. 
Test Sample Ratio calculation.
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Fig. 8. 
Spatial distribution of live MDA-MB-231 cells using meshes created by the quad-tree 

algorithm.
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Fig. 9. 
(A) Forward and side scattering of live and fixed MDA-MB-231 cells; (B) fluorescent signal 

of live and fixed MDA-MB-231 cells. The cluster on the left was auto fluorescence from live 

cells and the cluster on the right was Propidium lodide labelled fluorescent signal from fixed 

cells.
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Fig. 10. 
Characteristic function for fixed and live MDA-MB-231 cells.
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Fig. 11. 
Characteristic function difference between live(Orange) and fixed(Blue) MDA-MB-231 

cells. The steeper rise in the orange curve indicates that the live MDA cells are spatially 

more concentrated to certain ares in the channel than the fixed MDA cells.
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Fig. 12. 
Measured mean value of live cell percentage in 4 samples. The error bars show the 

variations for 10 repeats for cytometer (Accuri C6).
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Fig. 13. 
Neutrophil and Non-neutrophil characteristic functions.
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Fig. 14. 
Measured mean value of neutrophil percentage over WBCs in 3 samples. The error bars 

show the variations for 10 repeats for each sample using our method and a commercial flow 

cytometer (Accuri C6).
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Fig. 15. 
Difference in characteristic function for MDA-MB-231 cell with (Blue) and without 

(Orange) Paclitaxel treatment. The steeper rise in the blue curve indicates that the Paclitaxel 

treated cells are spatially more concentrated to certain ares in the channel than the untreated 

cells.
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Fig. 16. 
(A) is the fluorescent microscope picture of GFP transfected MDA-MB-231 cells without 

Paclitaxel treatment. (B) is fluorescent microscope picture of GFP transfected MDA-

MB-231 cells with Paclitaxel treatment. It is difficult to tell the morphological differences 

using conventional histology.
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