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RESEARCH ARTICLE Open Access

Reliability in evaluator-based tests: using
simulation-constructed models to
determine contextually relevant agreement
thresholds
Dylan T. Beckler, Zachary C. Thumser, Jonathon S. Schofield and Paul D. Marasco*

Abstract

Background: Indices of inter-evaluator reliability are used in many fields such as computational linguistics,
psychology, and medical science; however, the interpretation of resulting values and determination of appropriate
thresholds lack context and are often guided only by arbitrary “rules of thumb” or simply not addressed at all. Our
goal for this work was to develop a method for determining the relationship between inter-evaluator agreement
and error to facilitate meaningful interpretation of values, thresholds, and reliability.

Methods: Three expert human evaluators completed a video analysis task, and averaged their results together to
create a reference dataset of 300 time measurements. We simulated unique combinations of systematic error and
random error onto the reference dataset to generate 4900 new hypothetical evaluators (each with 300 time
measurements). The systematic errors and random errors made by the hypothetical evaluator population were
approximated as the mean and variance of a normally-distributed error signal. Calculating the error (using percent
error) and inter-evaluator agreement (using Krippendorff’s alpha) between each hypothetical evaluator and the
reference dataset allowed us to establish a mathematical model and value envelope of the worst possible percent
error for any given amount of agreement.

Results: We used the relationship between inter-evaluator agreement and error to make an informed judgment of
an acceptable threshold for Krippendorff’s alpha within the context of our specific test. To demonstrate the utility of
our modeling approach, we calculated the percent error and Krippendorff’s alpha between the reference dataset
and a new cohort of trained human evaluators and used our contextually-derived Krippendorff’s alpha threshold as
a gauge of evaluator quality. Although all evaluators had relatively high agreement (> 0.9) compared to the rule of
thumb (0.8), our agreement threshold permitted evaluators with low error, while rejecting one evaluator with
relatively high error.

Conclusions: We found that our approach established threshold values of reliability, within the context of our
evaluation criteria, that were far less permissive than the typically accepted “rule of thumb” cutoff for Krippendorff’s
alpha. This procedure provides a less arbitrary method for determining a reliability threshold and can be tailored to
work within the context of any reliability index.

Keywords: Inter-rater, Inter-evaluator, Reliability, Agreement, Krippendorff’s alpha, Index of reliability, Intercoder,
Interrater, Threshold
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Background
Inter-evaluator reliability is a widely-debated topic relevant
to a variety of fields such as communication, computational
linguistics, psychology, sociology, education, and medical
science, among others [1, 2]. Although the consequences of
evaluator-based tests vary, some evaluator-based tests, such
as those used in medicine, may strongly influence the diag-
nosis and treatment of patients.
Evaluators are typically employed when a desired func-

tional or clinically-relevant value is otherwise unmeasur-
able. In some of these cases, there may indeed be an
objective or ideal “correct” answer, but because the vari-
able is, in principle, unmeasurable, it is impossible to
know how accurate the evaluator is in arriving at this
ideal answer. By generating data using multiple evalua-
tors and comparing responses, we can begin to gauge
the quality of the evaluators, the measurement process,
the generated data, the evaluators, and the resulting con-
clusions [3–6].
Inter-evaluator reliability is discussed using different ter-

minologies across disciplines, with concepts such as evalu-
ator “agreement” and “reliability” used to varying degrees of
consistency. Regardless of the terminology, inter-evaluator
reliability can be described as the likelihood that different in-
fluences such as evaluators, methods, and approaches, will
produce the same results or interpretations [2, 7]. More
formally, the keyterm ‘reliability’ is defined as the ratio of the
variability of what is being measured to the variability of the
measurement process [8]. Therefore, high reliability indicates
that measurement error is small, while low reliability sug-
gests high variability and measurement error. For
evaluator-based tests, inter-evaluator reliability cannot be
measured directly [9]. As the variable of interest is not pre-
cisely known, comparisons between its true variability and
the variability of the measurements cannot be made. Instead,
agreement between evaluators is measured and used as a
proxy to qualitatively infer inter-evaluator reliability [9–11].
The effective usage of inter-evaluator agreement mea-

sures is limited by a lack of standardization in application
and interpretation. For example, many statistics to meas-
ure inter-evaluator agreement (commonly referred to as
“inter-evaluator reliability indices”) have been proposed;
however, because of the specificity required by actual im-
plementation, most are considered unsuitable for general
use [5, 7, 9, 12, 13]. This means that different studies may
often use different reliability indices, which may make
comparisons of their results problematic. Perhaps the
greater limitation with inter-evaluator reliability indices is
the general difficulty in interpreting their numerical out-
comes; understanding these numerical outcomes is critical
to appropriately assessing the trustworthiness of the reli-
ability data. Typically, the possible values for a reliability
index range from 0 to 1, where 0 suggests the absence of
reliability and 1 suggests perfect reliability. Devising a

universal threshold of “acceptability” between 0 and 1, that
works for any dataset independent of context, is not likely
possible [4]. For most indices (e.g., Bennet et al.’s S,
Cohen’s κ, Scott’s π, Krippendorff ’s α) it is commonly sug-
gested that a cutoff threshold value of 0.8 is a marker of
good reliability, with a range of 0.667 to 0.8 allowing for
tentative conclusions [4, 9, 11, 13–16]. Interestingly, these
threshold values are often employed with the knowledge
of their largely arbitrary determination, and used in spite
of suggestions that they are likely unsuitable for
generalization [4, 10, 11, 15, 16]. This can pose the prob-
lem of incorrect interpretation of results, as using an
unacceptably-low agreement threshold can result in unre-
liable data being trusted and increasing the likelihood of
drawing invalid conclusions. Inversely, an overly-strict
agreement threshold may lead to discarding valid findings.
An inappropriate agreement threshold could also preclude
opportunities for exploring and correcting sources of un-
reliability in evaluators and/or evaluation methods. An
ideal threshold value would be derived through analytical
methods that provide a meaningful number in the specific
context of its application and use.
An examination of the literature suggests that the issue

of determining an appropriate reliability threshold is still an
open problem, as few-to-no methodologies have been
adopted for the determination of contextually-relevant
threshold values to facilitate drawing conclusions from
inter-evaluator data [2, 13]. Indeed, other investigators are
still working to tackle this issue. Wilhelm et al. conducted a
simulation study, with themes similar to those described in
this paper, to determine how agreement thresholds impact
the results of reliability studies [17]. The necessity for a so-
lution to this problem is clearly evidenced by a severe lack
of consistency and systematicity in how inter-evaluator reli-
ability measures are interpreted. In fact, we examined seven
clinically-relevant inter-evaluator reliability studies that
have been published since 2015 and found that for 4 of the
7 studies, it was unclear how benchmarks of reliability were
determined (i.e., what constituted a good versus bad score)
[18–21]. The three remaining studies each used a different
source for inter-evaluator reliability interpretation guide-
lines, and thus used slightly different grading scales [22–
24]. Additionally, reliability indices alone cannot tell us the
error inherent to a group of evaluators attempting to meas-
ure a variable of interest. For example, Wilhelm et al.
reviewed articles in two major journals and found that re-
searchers tended to report inter-rater agreement above
0.80, without addressing the magnitude of score differences
between raters [17], which is a central theme of our paper.
In addressing these fundamental gaps, this work de-

velops a methodological framework to bridge the con-
cepts of inter-evaluator reliability (reliability indices) and
the potential measurement error in a functional or
clinically-relevant value. We illustrate and evaluate the
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application of this framework using a quantitative ex-
ample, where evaluators extracted time intervals from
specific cues in video footage. We suggest that using this
methodology, application-specific reliability thresholds
can be determined for most any given task or reliability
index. The development of such a technique may help
unlock acceptable reliability index thresholds, establish
performance benchmarks for evaluator training pro-
grams, and provide context directly to applications of re-
liability indices.

Methods
The methods are presented as a general methods sec-
tion and a quantitative example. The quantitative ex-
ample illustrates the application of the general
methodology, and evaluates the performance of the
techniques presented. It is important to note that the
specific measures used in the quantitative example
(i.e., Krippendorff ’s alpha and percent error) were
chosen for our specific application, and the general
methods described in this paper are not limited to
these reliability and error measures.

General methods
The goal of this work is to develop a methodology to es-
tablish a relationship between a chosen reliability index
and the measurement error of a functional or
clinically-relevant value. Our approach involves generat-
ing a large population of simulated evaluator data, and
then calculating the error and agreement of each against
a reference dataset. This creates a model between evalu-
ator agreement and error, that describes how much error
could be expected based on any given level of agreement
(Fig. 1). The below step-by-step approach describes how
this method is generally applied. The instructions are
intended for investigators with a modest background in
mathematics, statistics, and basic programming (such as

MATLAB). The simulation time will vary based on sev-
eral factors (calculation optimization, dataset size, simu-
lation iterations, etc.). For our quantitative example, the
simulation and calculations took approximately 1 to 2 h
to run on a standard office desktop computer.

Establish a reference dataset
A reference dataset must be established for the evalu-
ator test that is being modelled. The only requirement
for the reference dataset is that it is representative of a
typical dataset from that test. The reference dataset is
not required to be empirical data; rather, the reference
dataset could be generated from a distribution of, or a
distribution parameterized to resemble, a population of
test scores. This reference dataset will be used as a
basis for generating and comparing the simulated
evaluator population. There are no specific require-
ments for the length of the reference dataset. The au-
thors do not wish to conjecture on the appropriate
amount of data to be used when working with reliabil-
ity indices, as the answer is likely context-sensitive, and
has been investigated by others [25, 26]. At a minimum,
it would seem necessary to include at least the same
amount of data that would be used in a practical appli-
cation or research study using that reliability index. For
example, if one were generating a model to provide
context to field applications of inter-evaluator reliability
measures, then using a reference dataset of the same
size that has been determined appropriate for those
field applications would likely provide the most relevant
model. It should be noted that the reference dataset is
not required to be single instance of an evaluator test,
but instead could be a concatenation of results from
multiple independent instances of that test. Mathemat-
ically, we will refer to the reference dataset as Im, where
m is the number of measurements in the dataset.

Fig. 1 The methodological framework to bridge inter-evaluator reliability measures and measurement error in functionally or clinically-relevant
values. Where β and γ represent a chosen value of interest and reliability measure, respectively
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Simulate a population of evaluators
For purposes of simplification, the reference dataset can
now be thought of as a “perfect evaluator.” That is, the
reference dataset is considered to be the result of an
evaluator who is perfectly reliable, and has obtained the
“correct” answer from evaluating the test. As stated
above, the reference data do not need to be correct (or
even empirical data), they are only referred to as correct
for purposes of generating the model because they are
used as a basis of comparison. Their actual correctness
has no bearing on the model’s accuracy or validity. Each
new evaluator is simulated by taking the reference data-
set and introducing Gaussian noise into it. Taylor has
shown that a Gaussian distribution is a valid first-order
approximation of the two observational errors that are
inherent to any system of measurement: systematic er-
rors and random errors [27]. These errors can be mod-
elled by modifying the first (mean) and second (standard
deviation) moments of the Gaussian distribution, re-
spectively [27]. In essence, the Gaussian distribution can
be thought of as an evaluator whose likelihood of mak-
ing a systematic error or random error is described by
the mean and standard deviation of the Gaussian distri-
bution. For example, an evaluator who makes systematic
errors is described by a Gaussian distribution with a
shifted mean (errors are systematically in the same dir-
ection) whereas an evaluator who makes random errors
is described by a Gaussian distribution with a large
standard deviation (errors randomly fall on either side of
the average measurement). In practice, evaluator mis-
takes may not be perfectly Gaussian, but over many sim-
ulated trials, all evaluator errors would tend to a
Gaussian distribution due to the central limit theorem.
A set of random variables from Gaussian distributions

(we will call this set “X ”) must be generated to capture
at least the range of evaluator behavior that may be
practically expected; additional distributions may be gen-
erated to capture more erroneous behavior, but this may
incur additional computation time. The total number of
random Gaussian variables (the size of set X ) generated
will depend on the chosen step-size and range of sys-
tematic error and random error to be investigated, and
this is heavily dependent on the specific task. In many
cases, it may be appropriate to increment systematic
error and random error by the resolution of rating units
used in the test (i.e., the smallest change in measure-
ment an evaluator can make). If a continuous scale is be-
ing used, an appropriate error step-size will have to be
determined; there is no set procedure for determining
the error step-size, and this will have to be done at the
discretion of the investigator. A general rule might be to
use the smallest step-size that is still detectable or has
meaningful relevance to the test (e.g., a step-size of one
nanosecond would be too fine of a resolution for a

human reaction time task, whereas a step-size of a sec-
ond would be too coarse). In the case of nominal data,
where only two rating units are available, the error
step-size may be thought of as a probability step-size. It
should be noted that this method allows for the step-size
and range of systematic error and random error to be
chosen independently.
The chosen values of systematic error to investigate

will be represented by the array μ, and the length of that
array (the chosen range of error divided by the chosen
resolution) will be referred to as, and indexed by, i. Simi-
larly, the values of random error will be represented by
the array σ, and the length of that array will be referred
to as, and indexed by, j. Additionally, the μ and σ arrays
should each contain the value “0,” representing an evalu-
ator who does not make that type of measurement error.
Therefore, the equation

X ij � N μi; σ j
� � ð1Þ

describes an i by j matrix of Gaussian random variables,
where i and j index the mean (μ) and standard deviation
(σ) of the X ij Gaussian distributions from which the ran-
dom variables were generated, respectively. New i * j
Gaussian random variables are generated along the m di-
mension, so that there are i by j random variables for
each m measurement in the reference dataset. Next, the
reference dataset, Im, must be replicated along the i and
j dimensions. Thus, Iijm is a matrix of the reference data
and there are i * j copies of each m measurement, so
that each m measurement can be modified by each ij
Gaussian random variable. The final step is to generate
the simulated evaluator population, I′, calculated as

I 0ijm ¼ Iijm þ X ijm: ð2Þ

Each element of Iijm is modified by a random value
generated from one of the Gaussian distributions, whose
parameters are described by i and j. The result is a
population of simulated evaluators, matrix I’ijm. Each ij
evaluator, whose measurement errors are described by
X ij , has made m measurements. As previously stated,
the evaluator whose μ = 0 and σ = 0 is the perfect evalu-
ator (the initial reference dataset) who will be the basis
of comparison for all other simulated evaluators.
This process relies on the sampling of random vari-

ables (X ijm ), and therefore the simulation should be re-
peated N multiple times. This smooths the randomness
of the data and allows for a more robust model. Our
methodology has no inherent requirements about the
number of times the simulation should be repeated.
Many others have investigated optimal sample sizes for
simulation studies [28, 29], and their work may be con-
sidered when choosing the number of iterations for this
simulation method. In general, increasing the number of
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simulations improves the final result but increases com-
putation time. Thus, the result of the simulation should
be i * j evaluator datasets of length m, where each ijm
combination has been simulated N times (with each
simulation sampling ijm new random variables from the
ij Gaussian distributions).

Create the model
Once the evaluator population has been simulated, agree-
ment and error must be calculated for each of the N * i * j
evaluators. In other words, each combination of i and j
must be compared to the μ = 0, σ = 0 perfect evaluator
(the reference dataset). Our method is not limited to any
particular agreement or error calculation, so this step is
dependent on the reliability index and error calculation
that are most appropriate to the evaluator task. However,
the manner in which agreement and error measures are
calculated should be reflective of how they would be ap-
plied in practice. For example, if the result of an evaluator
test is interpreted by adding all of the evaluator’s individ-
ual scores together, then error should be calculated on this
sum. Alternatively, if an evaluator’s results are interpreted
by averaging all of their individual scores together, then
error should be calculated on this averaged score. Gener-
ally, it is likely that the best method for calculating agree-
ment is to compare each individual score between the
evaluators. However, it is most important that agreement
is calculated in the way that has been deemed most appro-
priate for the practical application or research study, as
this will provide the most relevant model between agree-
ment and error.
Once agreement and error have been calculated for

each evaluator relative to the reference dataset, agree-
ment and error should be averaged by observational
error parameters across all N simulations. That is, every
evaluator who had both the same μ and σ could be con-
sidered to have been the same evaluator (as they were
exactly as probable to make the same mistakes), and
therefore their agreement and error from all N simula-
tions should be averaged together to quantify their aver-
age performance, thus smoothing the simulated data.
This should result in i * j four-dimensional datasets
which each contain an agreement, error, μi, and σj value,
one for each i * j evaluator. The agreement and error of
all evaluators can now be plotted against each other to
model how much error can be expected from an evalu-
ator based on their level of agreement. Optionally, sys-
tematic error (μi) and random error (σj) can be plotted
for each evaluator (e.g., by color or size of markers, see
below for example) to further understand how observa-
tional errors affect agreement and error. It would gener-
ally be expected that an envelope would form;
essentially, this is a boundary that emerges which de-
scribes the most amount of error (worst-case error) an

evaluator could be expected to have, based on their cal-
culated agreement. We demonstrate this below in our
quantitative example. A function may be fit to this enve-
lope which allows a mathematical description relating
agreement and worst-case error.

Quantitative example
This quantitative example is provided to illustrate how
the method is applied, and because it was a practical
challenge that we encountered in our research; the solu-
tion to which was the basis of this general method.
Again, it is important to clarify that the specifics of how
the method is applied (agreement measure, error meas-
ure, etc.) to this evaluator task are not due to inherent
limitations of the method, rather, our selected reliability
index, error measure, error-step size, etc., were chosen
as the most appropriate for our particular evaluator task.

Establish a reference dataset
Three research professionals analyzed video footage,
with the goal of improving internal processes. They
judged and recorded times of two distinct reoccurring
events. The video was obtained under a Defense Ad-
vanced Research Projects Administration research study
and contained footage of an anonymous consented par-
ticipant transferring rubber blocks between two com-
partments of a wooden box. Evaluators worked in
isolation using media player software which allowed for-
ward and backward frame-by-frame scrubbing. They
scanned through the video and determined the times at
which the participant grasped blocks in one compart-
ment and the times at which they released them into the
other compartment. They recorded these video timing
events into a spreadsheet, producing a total of 300 tim-
ing measurements for each evaluator. Each individual
timing event was taken and averaged across the three
expert evaluators to produce a single representative
300-point reference dataset.

Simulate a population of evaluators
We wrote a custom MATLAB (Mathworks, Natick, MA)
script to create 49 unique simulated evaluators by inject-
ing error into the reference dataset. To do this, the script
generated 49 Gaussian distributions, each with different
combinations of mean and standard deviation parameters,
which represented systematic error (μ) and random error
(σ), respectively. In other words, each of the 49 combina-
tions of μ and σ generated a distinct Gaussian distribution,
where each Gaussian distribution represented the obser-
vational errors made by different simulated evaluators.
The analyzed video footage was recorded at 30 frames per
second, so the step-size for μ and σ of the Gaussian distri-
butions was chosen to be 0.033 s (one video frame), the
smallest possible error. The values of μ and σ ranged from
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0 to 0.198 s (0 to 6 video frames), for a total of 49 combi-
nations. In cases where μ was low and σ was high, some
simulated evaluators occasionally selected negative values
(about 0.3% of measurements). While our chosen range of
random error resulted in this unrealistic circumstance, we
wanted to ensure that we captured a sufficient range of
evaluator error to build our model. In our application,
negative and zero-duration timing events were not pos-
sible, so these values were defaulted to 0.033 s (the mini-
mum resolvable time for an event, one video frame). This
introduced a small amount of bias to cases with high ran-
dom error relative to systematic error which can be seen
in the results; we discuss this in more detail below.
Three hundred random numbers were then chosen from

each of the 49 Gaussian distributions and added to the refer-
ence dataset to create 49 new unique hypothetical datasets
each containing 300 modified timing values, as described
above in Eqs. (1) and (2). In other words, each simulated
evaluator made 300 different “mistakes”, one for each of the
300 measurements, with each error drawn from the evalua-
tor’s own Gaussian distribution. Each of the 49 modified
datasets represented a set of 300 imperfect scores generated
by a simulated evaluator. It should be noted that our choice
of using 300 measurements reflects how we would use
inter-evaluator agreement in a practical application. That is,
a complete execution of the test produces 300 measure-
ments, and we would ideally measure inter-evaluator agree-
ment on a full test dataset; thus, we chose to generate our
model using a full 300-measurement dataset.
To smooth the randomness of the data, we repeated this

process 100 times for each of the 49 Gaussian distribu-
tions. We stopped the simulation after 100 iterations, as
this produced a smooth monotonic relationship between
increasing random error and decreasing inter-evaluator
agreement, which we deemed appropriate for our specific
application. This resulted in 4900 unique hypothetical
datasets. These new hypothetical datasets were then used
as the “results” obtained from 49 simulated evaluators,
each completing the video analysis task 100 times.

Create the model
The Krippendorff ’s alpha and percent error were then
calculated for each of the 4900 datasets, pairwise with
the reference dataset, to explore relationships between
Krippendorff ’s alpha, percent error, systematic error,
and random error. We specifically chose Krippendorff ’s
alpha as it was appropriate in the application of our
data, which were time measurements (ratio data type).
Krippendorff explains in detail how Krippendorff ’s
alpha is calculated in his 2011 manuscript [30]. Here,
we briefly summarize the calculation. We wrote a cus-
tom LabVIEW (National Instruments, Austin, TX) pro-
gram which used the coincidence matrix calculation
method (Eq. 3),

α ¼ 1− n−1ð Þ
P

c

P
k ock � δmetric

2
ckP

c

X
k nc � nk � metricδ

2
ck ;

ð3Þ

and verified the accuracy of our program with ReCal OIR
[30, 31]. Equation 3 was used for all Krippendorff ’s alpha
calculations, where n is the total number of measurements
collected, c and k are each a separate index into the same
set of unique values that increment independently to allow
for generation of every allowable pairwise combination.
The allowable pairwise combinations are xc and xk (the re-
liability data, see Eq. 4) for all possible values of c and k
whereas nc and nk are the number of times that xc and xk
are used in total. The number of occurrences of xc and xk
value pairings within the reliability data are represented by
ock. The type of reliability data being used dictates which

“difference function” to use, defined as δmetric2
ck , where

metric is the data type. The difference function for ratio
data is shown in Eq. (4):

δratio
2
ck ¼

xc−xk
xc þ xk

� �2

: ð4Þ

We used the coincidence matrix to calculate Krippen-
dorff ’s alpha because it is the most computationally effi-
cient method (Fig. 2). For our percent error calculations
(Eq. 5, where Theoretical is the reference measurement
and Experimental is the simulated measurement),

Percent error ¼ Theoretical−Experimentalj j
Theoretical

� 100; ð5Þ

we decided what part of the task provided the highest
level of error. In our video rating task, the “speed” phase
(50 timing events out of the 300) where the participant
rapidly moved the blocks from one side of the box to
the other was the most sensitive to timing errors be-
cause the events were so short. A small error in meas-
urement produced a relatively large percent error. In our
task, the individual errors were not important. We were
interested in the total error of the 50 timing events from
the speed phase, so we quantified the percent error of
total time of those events. Using the error measurements
of this subset provided the worst-case baseline to suffi-
ciently capture the percent error for the most difficult
aspects of the task. Also, we were not concerned with
the direction of the error (i.e., whether it was negative or
positive, relative to the reference value), only the magni-
tude of the error, so absolute value of percent error was
used. It is important to understand that this described
procedure for calculating error is not inherent to the
methodology; it is an idiosyncrasy of the task that we are
using to demonstrate the methodology. For another task,
it may be more appropriate to use total error, root mean
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squared error, or some other calculation to quantify the
error of an evaluator. We constructed the model for this
task using the Krippendorff ’s alpha and percent error
calculations.

Model assessment
We wanted to verify that our model accurately described
the relationship between the agreement and error of ac-
tual human evaluators, and also demonstrate the applic-
ability of the model in a real-world scenario. We first fit
a curve (y = − 0.637x1.76 + 1, r2 = 0.999; the curve was
created using Igor Pro v 6.36 Curve Fitting function;
WaveMetrics, Portland, OR) to the model, using the
data points of simulated evaluators who defined the en-
velope, to mathematically define what would be the
“worst-case” percent error for any given Krippendorff ’s
alpha value (see Results). A power law was chosen for
the curve fit as it provided a high r2 for the envelope,
over the range of data that we were interested in. This
is, again, a facet of the methodology that is dependent
on the evaluator task; our methods are generalizable to
allow any form of curve fitting. We then compared the
results of the hypothetical modeling to an actual popula-
tion of evaluators to demonstrate that the model values
reflect the values actually generated by human evalua-
tors. To do this, we assigned the video analysis task to a
new cohort of trained human evaluators (n = 5). We
used the reference dataset from our panel of expert eval-
uators (described above) as a standard of comparison
and calculated Krippendorff ’s alpha and percent error
values for each of the human evaluators to verify their
compliance to the model.
Since the test data that were used to generate the model

were also the same data that the evaluators were scoring,
it was a concern that any comparisons between the evalu-
ators and the model were circular and not generalizable to

new instances of the test. To explore this idea we repeated
all of the simulation steps using a new scoring video of a
different anonymous participant taking the same test,
scored by a new evaluator. All error step-sizes, error cal-
culations, and agreement calculations were methodologic-
ally identical to the original simulation described in
“Quantitative example”. We again plotted the results of
the human evaluators from the original video analysis, to
see if they were still well-explained by the new model, as
well as fit a curve to the new envelope (y = − 0.6251x1.685

+ 1.001, r2 = 0.9998) to determine if there was any change
between the two models in the mathematical relationship
between agreement and error.

Results
The Krippendorff ’s alpha values for the 4900 hypothet-
ical datasets ranged from 0.998 to 0.854 and the percent
error values ranged from 0 to 39.4%. Figure 3 shows the
average Krippendorff ’s alpha and average percent error
of all 49 (averaged) simulated evaluators, with the size
and shading of the markers representing the random
error and systematic error parameters, respectively. For
our evaluator task an increase in systematic error was
correlated to an increase in percent error (Pearson’s r =
0.997, p < 0.001), whereas random zero-mean error did
not correlate to an increase percent error (Pearson’s r =
− 0.025, p = 0.865). This was a result of our task being
specifically concerned with average percent error; simu-
lated evaluators with zero-mean random error produced
modest percent error when averaged over many trials.
As seen in Fig. 3, this result was also evidenced by dar-
ker circles falling farther to the right with larger circles
of the same color aligning vertically. As mentioned
above, flooring our measurements to 0.033 s introduced
a small amount of systematic error into simulated evalu-
ators who were prescribed low systematic error and high

Fig. 2 The general form of a coincidence matrix used for calculating Krippendorff’s alpha. The matrix tabulates all the unique values from the
data and the number of times those values were assigned to a common item by different evaluators
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random error. This can be seen in Fig. 3 as the markers
with increasing random error are staggered to the right
when systematic error is low. This deviance was not a
concern for our specific investigation as we were only
interested in the envelope of the model.

Model assessment
To verify that our model accurately described the evalu-
ator agreement and measurement error relationship of
actual human evaluators, we plotted the Krippendorff ’s
alpha and percent error values collected from our hu-
man evaluators against the performance of the simulated
evaluators. We found that the results of the human

evaluators fell within the envelope defined by the simu-
lated evaluator performance (Fig. 4).
Figure 5 shows the model created using the results of

the new trained evaluator analyzing this new instance of
the block moving task. The original fit from the model
in Fig. 4 still provides an accurate description of the
Krippendorff ’s alpha and percent error relationship (r2 =
0.991). The lighter dotted line is the new fit (y = −
0.6251x1.685 + 1.001, r2 = 0.9998) and is provided for
comparison. The two models are highly similar, and are
nearly identical when considering percent error of 10%
or less. Both models show high agreement and low error
for the tightly clustered six evaluators, who would pass
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shading of the markers representing random error and systematic error, respectively. An envelope exists which describes the upper-bound of
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any of the example Krippendorff ’s alpha thresholds pre-
sented, and one evaluator who has relatively low agree-
ment and excessively high error that would not pass any
of the thresholds.

Discussion
When measuring agreement between evaluators, a de-
cision about what constitutes an acceptable level of
agreement must be made. Historically, interpreting an
agreement measure was ambiguous, as the practical
implications of choosing one threshold over another
were not well-defined. This led to general use of a
0.8 “rule of thumb” value as a threshold, though sev-
eral works have suggested that this cut-off is not
likely suitable for all studies [4, 10, 13–16]. To ad-
dress this issue, we developed a systematic approach
to arrive at a relevant context-specific reliability
threshold, bridging the gap between reliability indices
and the error inherent to the test construct of inter-
est. Our approach simulated the results of a large
population of evaluators. In our quantitative example,
these simulated evaluators “judged” a video analysis
task. Our method injected known tendencies for mak-
ing systematic and random errors, and calculated the
agreement (Krippendorff ’s alpha in our example) and
the error (percent error in our example) between the
simulated data and a reference dataset. This proced-
ure allowed us to relate agreement, which is custom-
arily measured in reliability studies, to the amount of
error from the “true” values, which is more salient
but typically unavailable. In our example, we found
that an envelope existed which defined the maximum
observed percent error for any given value of Krip-
pendorff ’s alpha. We characterized this envelope and
determined its effectiveness and generalizability.

During the evaluation of our quantitative example, we
found that the results of the human evaluators adhered to
the derived threshold envelope and were similar to those
obtained from the simulated data (Fig. 4). As evidenced
through this quantitative example, these findings support
that our proposed techniques have the power to facilitate
meaningful interpretations of reliability indices in a rele-
vant context of measurement error. An additional charac-
teristic of our quantitative example is highlighted in Fig. 6.
Here, the contour plots, generated using the simulated
datasets, show Krippendorff ’s alpha (left) and percent
error (right) values for the investigated combinations of
systematic error and random error. It was demonstrated
that an increase in either systematic error or random error
can lead to a decrease in agreement (lower Krippendorff ’s
alpha), whereas percent error (the “functional value”), on
average, is only affected by systematic error. This is due to
the mathematical nature of random observational errors
(and thus how they were modeled), as they are described
by symmetrical deviations with no net change from the
mean of a Gaussian distribution; therefore, they average to
zero over many trials [27]. This contour plot format can
be more generally applied to other reliability indices or
measures of errors to illustrate the consequences of obser-
vational errors.
Finally, the data highlighted in Fig. 5 were generated

from a new participant being scored by a new evaluator
to verify the generalizability of our techniques. The only
observed difference between this newly generated model
and the original was that the contour plots (not shown)
of Krippendorff ’s alpha and percent error were com-
pressed, as the values from the second test were, on
average, numerically smaller than the first test. This
means that systematic error and random error had rela-
tively greater effects on Krippendorff ’s alpha and percent
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single model is suitable for generalization to other instances of this video analysis task and model generation only requires a typical dataset

Beckler et al. BMC Medical Research Methodology          (2018) 18:141 Page 9 of 12



error. Regardless, the Krippendorff ’s alpha and percent
error relationship generated by this model remained a
valid and useful way to assess evaluator reliability in this
video analysis task. This was evidenced by re-plotting
the human evaluators on the new model, as they fell
within similar error and agreement thresholds as the ori-
ginal model (Fig. 5). These data suggest that once a rela-
tionship between a selected reliability index and
functional measure has been established, that result is
generally applicable to any instance of that same test,
scored by any cohort of evaluators, without need to re-
visit the model.
This example demonstrates the use of our systematic

procedure to both investigate the consequences of differ-
ent agreement thresholds and provide a framework for
researchers to make informed decisions about reliability
in their evaluator-based tests. Modeling a large popula-
tion of evaluators with a variety of prescribed probabil-
ities for making mistakes and then calculating their
resulting error allowed us to describe our chosen agree-
ment measure in the context of how the data would be
used practically. In our example, we generated a stand-
ard of comparison for this specific instance of our test
by employing a group of expert evaluators. Comparing
the experts’ results to the trained evaluators’ results re-
vealed practicable levels of agreement and the error as-
sociated with that agreement. We found that high levels
of agreement (0.99 and up) were regularly achieved and

afforded error of no greater than 5%. Using our model
as a frame of reference we concluded that a Krippen-
dorff ’s alpha threshold of 0.985 should be used for this
task to permit error no greater than 12% while not being
so strict as to potentially throw out useful data. It is crit-
ical to note that the conventional 0.8 rule of thumb
threshold would have been egregiously permissive in our
quantitative example, further reinforcing the need for
application-specific agreement thresholds.
A key strength of our methodology is its high level of

customizability which greatly expands its scope and util-
ity. This procedure should be applicable to most any
agreement measure or evaluator-based task, and may be
uniquely tailored to emphasize the important aspects of
the task or to reflect how the data will be used in prac-
tice. The investigator may choose the step-size of the
simulated evaluators’ errors and the approach for calcu-
lating error (using percent error or a different error cal-
culation entirely, calculating error on individual values
or averages values, etc.) beforehand, based on the spe-
cific needs of that test. Additionally, the investigator is
able to decide how the “true” or reference data that are
used for calculating agreement and error are defined or
generated. It should be noted that the presence of true
or even presumably-true values are not necessary for
using this method, and the values used to generate the
model are not even required to be actual results from
the specific test of interest. The only requirement for
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these reference data is that they are representative of the
types of values resulting from an evaluator judging the
specific test. In our quantitative example, the error
step-size was chosen to be the resolution of the mea-
surements of the test (based on the video frame rate).
We used percent error calculations from a subset of the
measurements which represented a particular metric of
interest. We determined this metric to be most sensitive
to error so using it for our calculations provided us with
a worst-case percent error for any given level of agree-
ment. The “true” or reference values were established by
averaging together the results of the expert evaluators.
Our methodology may provide a useful framework for

establishing agreement benchmarks in evaluator-based
tests, and could be adapted for application in other con-
texts. For example, the reliability of clinical tests which
require human evaluation is a major concern. The accur-
acy and validity of these types of assessments could be
improved by using our methodology. To implement our
methods more generally into a clinical context (or other
evaluator-based applications), a possible approach would
be first building a “true” or reference set of measure-
ments for a typical application of the test. A baseline
panel of expert evaluators could be employed to gener-
ate the reference measurement(s) for that particular ap-
plication. Modeling a simulated evaluator population
from this dataset would establish an agreement-error re-
lationship that could be used as a “grading scale,” to re-
late evaluator quality (inter-evaluator reliability) and
measurement error, that would generally apply in any in-
stance of that test. This process would only need to be
performed once, and the resulting scale could then be
incorporated into training programs for new evaluators
or used to periodically assess groups of existing evalua-
tors as a measure of quality control.
Perhaps the biggest limitation of this work is that the

models generated are inherently more accurate when the
reference data are of similar numerical magnitude to the
data typically obtained from the testing procedure. Al-
though a “one size fits all” solution would be ideal, mul-
tiple models may be necessary if the results of the
evaluator task vary greatly. For instance, in our quantita-
tive example, video footage of a healthy participant trans-
ferring objects with their upper limbs was scored. If this
task were performed with a sensorimotor-impaired par-
ticipant, where scores would be anticipated to differ sig-
nificantly from healthy performance, it may be necessary
to generate a new model built from reference data that are
more reflective of the anticipated sensorimotor-impaired
results. Further work could be done to investigate the
consistency of models over different ranges of numerical
values and how, and to what extent, the models diverge
from the data. This methodology could potentially reveal
strengths and weaknesses of different reliability indices

and possibly inform the selection of an appropriate agree-
ment measure. Our approach of using zero-mean random
error may present as a limitation as it is an idealized cir-
cumstance. This zero-mean approach could perhaps be
replaced with a more nuanced approach exploring the
skew and kurtosis of error distributions to potentially re-
veal additional findings. Skew and kurtosis may have the
potential to model more peculiar erroneous evaluator be-
havior, such as heavy-tailed outlier data, which could be
approximated by increased kurtosis. A particularly
troublesome example would be an evaluator who occa-
sionally selects extreme values in an asymmetric fashion
to intentionally bias the outcome of an evaluation. Our
methodology could be used to model what this behavior
looks like from a reliability perspective, to help detect and
mitigate this type of behavior in the field.
This work aims to provide a generalizable procedure,

yet datasets in evaluator-based scoring activities may be
diverse in size, variability, and data type. Thus, it is not
feasible to devise a universal procedure which can ac-
commodate all possible variants of reliability data. As
such, each individual application of this methodology
requires the discretion of the investigator. Furthermore,
this method could reasonably apply to many data types
(e.g., nominal, interval, ratio), error measurements (e.g.,
percent error, RMS error, mean absolute error), and re-
liability indices (e.g., Cohen’s κ, Scott’s π, Krippendorff ’s
α). We suggest that the quantitative basis of this
method represents an improvement over rule of thumb
conventions for interpreting reliability indices.

Conclusion
By simulating a population of evaluators with predeter-
mined probabilities for making mistakes, we have explored
correlations between evaluator reliability indices and func-
tional test values of interest. We demonstrate this method
using a quantitative example to derive a relationship be-
tween Krippendorff ’s alpha and percent error. Through
this simulation and modeling we assessed the quality of
our human evaluators based on their alpha coefficients.
We propose that this is a reasonable technique for estab-
lishing agreement thresholds to identify suitable evalua-
tors and this technique could be expanded for use in
other evaluator-based tests, or with different agreement
and/or error measurements.
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