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Uncovering Sociological Effect Heterogeneity Using Tree-Based 
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2California Center for Population Research, Los Angeles, CA, USA

3Center for Social Statistics, Los Angeles, CA, USA

4Pennsylvania State University, University Park, PA, USA

Abstract

Individuals do not respond uniformly to treatments, such as events or interventions. Sociologists 

routinely partition samples into subgroups to explore how the effects of treatments vary by 

selected covariates, such as race and gender, on the basis of theoretical priors. Data-driven 

discoveries are also routine, yet the analyses by which sociologists typically go about them are 

often problematic and seldom move us beyond our biases to explore new meaningful subgroups. 

Emerging machine learning methods based on decision trees allow researchers to explore sources 

of variation that they may not have previously considered or envisaged. In this article, the authors 

use tree-based machine learning, that is, causal trees, to recursively partition the sample to 

uncover sources of effect heterogeneity. Assessing a central topic in social inequality, college 

effects on wages, the authors compare what is learned from covariate and propensity score–

based partitioning approaches with recursive partitioning based on causal trees. Decision trees, 

although superseded by forests for estimation, can be used to uncover subpopulations responsive 

to treatments. Using observational data, the authors expand on the existing causal tree literature by 

applying leaf-specific effect estimation strategies to adjust for observed confounding, including 

inverse propensity weighting, nearest neighbor matching, and doubly robust causal forests. 

We also assess localized balance metrics and sensitivity analyses to address the possibility of 

differential imbalance and unobserved confounding. The authors encourage researchers to follow 

similar data exploration practices in their work on variation in sociological effects and offer a 

straightforward framework by which to do so.
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Heterogeneity in response to life events and circumstances is common. Individuals differ 

both in pretreatment characteristics (i.e., pretreatment heterogeneity) and in how they 

respond to a common treatment, event, or intervention (i.e., treatment effect heterogeneity). 
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Treatment effect heterogeneity has important implications for social research and policy. 

The study of effect heterogeneity can yield valuable insights into how scarce social 

resources are distributed in an unequal society (e.g., Brand 2010; Brand and Xie 2010; 

Heckman, Humphries, and Veramendi 2018; Heckman, Urzua, and Vytlacil 2006), how 

events differentially affect populations with different expectations of their occurrence (e.g., 

Brand et al. 2019; Brand and Simon Thomas 2014; Clark, Knabe, and Rätzel 2010; Turner 

1995), and what factors may explain response heterogeneity, including differential selection 

(e.g., Heckman and Vytlacil 2007; Zhou and Xie 2019, 2020). We may want to identify the 

most responsive subgroups to determine which individuals benefit most from, or are most 

harmed by, a treatment. In some cases, the same disruptive event could have significant 

consequences for some populations but less or even no effect among others (Brand et al. 

2019). If policymakers understand patterns of treatment effect heterogeneity, they can more 

optimally assign different treatments to balance competing objectives, such as reducing costs 

and maximizing outcomes for targeted groups (Athey and Imbens 2019; Davis and Heller 

2017).

Sociologists routinely partition their samples into subgroups by individual characteristics to 

explore how the effects of events or interventions vary across the population. Researchers 

often, for example, assume that effects vary by race and gender and indicators of 

socioeconomic status, like education or income. Despite their ubiquity, such interactions 

may not represent the most meaningful variation in effects or the partitions that are 

most consequential for a relationship of interest. Indeed, many researchers report stratified 

estimates by gender or race when the differences between groups are not statistically or 

substantively significant. Long-standing theoretical priors, strong convention, and biases that 

one should examine differences by particular characteristics often drive these decisions. 

The practices researchers use to examine heterogeneity via stratified groups or interaction 

effects also regularly fail to consider the causal assumptions and possible differential 

selection processes underlying subpopulation differences in estimated effects. That is, 

differences in effects across subgroups could be due to differential response to treatment 

or due to differential selection on unobserved variables (Carvalho et al. 2019; Kaufman 

2019). Social scientists interested in causal inference also explore how effects vary by 

the likelihood of selection into treatment, including stratified analyses by propensity score 

strata, nonparametric methods of effect variation by propensity scores, or exploring variation 

across different parameters of interest that indicate selection into treatment (Brand and 

Simon Thomas 2013; Heckman et al. 2006; Morgan and Winship 2014; Xie, Brand, and 

Jann 2012). These latter approaches encourage researchers to interpret effects on the basis 

of both observed and unobserved selection into treatment (Brand et al. 2019; Brand and 

Xie 2010; Heckman and Vytlacil 2007; Zhou and Xie 2019, 2020). In both covariate- 

and propensity score–based partitioning methods, however, analysts determine the key 

subgroups.

Empirical papers are written largely to suggest that decisions about which subgroups to 

explore occur before any data analyses. Indeed, much social scientific inquiry labors under 

the delusion that methods of discovery reflect conjectural inspiration. In actuality, it is 

often difficult to know ex ante the subgroups most responsive to events or interventions. 

Social scientists routinely explore their data, running tens or hundreds of regressions to 
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determine if subgroups of potential interest show meaningful differences in effect estimates, 

and then proceed to selectively report the effect estimates of those that do (known as p-

hacking).1 Conventional tests of statistical significance, however, are performed conditional 

on a null distribution derived from a hypothesis defined ex ante. When a large number 

of tests are performed without multiple testing correction, or when hypotheses are not 

prespecified, this type of statistical inference is invalid. Likewise, if researchers select 

which interactions to report as a result of exploratory analyses, and do not draw on 

cross-validation procedures or multiple-testing adjustments, they are subject to incorrectly 

rejecting a correct null hypothesis. Such ad hoc searches for responsive subgroups may 

reflect noise within the data rather than true response variation. Studies have shown that 

p-hacking, along with selective publication, is a substantial problem leading to misleading 

conclusions (Brodeur, Cook, and Heyes 2020). Additionally, undocumented serendipitous 

manual specification search procedures lack transparency and reproducibility (Freese and 

Peterson 2017). Finally, covariates may be most informative when considered jointly, in 

complex and nonlinear ways (e.g., upper income white individuals with strong religious 

beliefs, rather than white individuals). It is generally unclear which of the large number of 

possible covariate thresholds and interactions are best to consider.

We argue for an alternative data-driven approach based on machine learning that will 

help uncover essential sources of effect heterogeneity and more transparently depict the 

analyses that lead to a focus on particular subgroups. Machine learning methods, that is, 

computational and statistical approaches to extracting patterns and trends from data, are 

rapidly and dramatically affecting social science methodology (see recent reviews by Athey 

2019; Brand, Koch, and Xu 2020; Molina and Garip 2019). Data-driven machine learning 

enables researchers to be systematic in the model selection procedure and fully describe the 

process by which the model was selected, which enables reproducibility. These advantages 

will likely make supervised machine learning procedures an integral part of empirical 

sociological practice going forward.

Statisticians and social and computer scientists have recently made progress in merging 

machine learning methods and causal inference. Because the goal of accurate prediction 

of response variables (typical of machine learning) differs from the goal of obtaining 

unbiased estimates of causal effects, machine learning methods must be tailored to causal 

objectives. Recent work has adapted tree-based methods to explore sources of treatment 

effect variation. Decision trees are a widely used machine learning approach that recursively 

split the data into increasingly smaller subsets where data-points bear greater similarity 

(Brand et al. 2020). The resulting hierarchical data structure can be represented with a 

tree. These models are attractive for social science applications because they are simple 

to understand and interpret. “Causal trees,” introduced in Athey and Imbens (2015, 2016), 

are decision trees adapted to uncover treatment effect heterogeneity. They allow researchers 

to identify subpopulations that respond differently to treatments by searching over high-

dimensional functions of covariates and their interactions. Analysts use this approach to 

uncover key subpopulations that they had not prespecified and that may or may not accord 

1.p-Hacking is the practice whereby researchers select the models that yield significant results. Because journals generally prefer to 
publish statistically significant results, researchers have strong incentives to select ways of analyzing their data by p-hacking.
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with conventional sociodemographic partitions and theoretical priors. This method benefits 

from ease of use and interpretability and can be an effective tool for sociological inquiry and 

discovery.

In this article, we focus on the utility of causal trees for uncovering treatment effect 

heterogeneity in observational data. We apply causal trees to a key topic in the social 

inequality literature, the distributional effects of college on low-wage work over the life-

course. Within the causal tree and forest literatures, there are limited examples of how to 

effectively apply these algorithms to observational data of sociological relevance. We use 

three different approaches for adjusting for confounding and estimating effects within leaves 

of the causal tree: inverse propensity weighting (IPW), nearest neighbor matching, and 

mapping estimates from a doubly robust causal forest. In addition, we consider localized 

(i.e., partition-specific) propensity score imbalance and apply localized sensitivity analyses 

to explore the effect of differential unobserved confounding. Next, we explore what we learn 

from causal trees relative to more conventional techniques for identifying treatment effect 

heterogeneity, namely covariate and propensity-score stratified effects. In our case study, 

we conclude that conventional stratified analyses (or interactions) do not identify some of 

the most responsive, and theoretically interesting, subgroups highlighted by the causal tree. 

We encourage researchers to follow similar practices in their work on exploring variation in 

sociological effects using observational data, and we provide straightforward guidelines and 

data visualization techniques by which to do so.

UNCOVERING HETEROGENEOUS TREATMENT EFFECTS

Let us consider a setup with units i = 1, . . . n, a pretreatment covariate vector Xi, a response 

Yi, and a binary treatment indicator Wi ∈ {0, 1}. We assume potential outcomes for each 

unit Y i
0, Y i

1  and define the unit-level treatment effect as

τi = Y i
1 − Y i

0, (1)

where we never observe both outcomes: Wi = 1 indicates that the unit received the treatment, 

and Wi = 0 that the unit received the control. Observational data are used to identify causal 

associations of social processes that are not easily subject to experimental manipulation. 

Using observational data, we invoke an “unconfoundedness” or “selection on observables” 

assumption that once we condition on X, there are no additional confounders between the 

treatment and the outcomes of interest (Imbens and Rubin 2015):

W i∐ Y i
1, Y i

0 ∣ Xi. (2)

As it is generally infeasible to condition on X in a fully nonparametric way, methods for 

estimating treatment effects under unconfoundedness often entail treating nearby units in the 

x-space as matches for the target treated unit. One approach to determine nearby cases is 

to use the propensity score to approximate the assignment mechanism (Imbens and Rubin 

2015). A propensity score is the probability of treatment conditional on a set of observed 

covariates:
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e(x) = pr W i = 1 ∣ Xi = x . (3)

The propensity score provides a summary measure of estimated selection into treatment. 

Machine learning methods, including classification and regression trees (CART), neural 

networks, and random forests, have increasingly been used to estimate propensity scores 

(Lee, Lessler, and Stuart 2009; McCaffrey, Ridgeway, and Morral 2004; Westreich, Lessler, 

and Funk 2010). If we know e(x), we can estimate average treatment effects using methods 

such as IPW or propensity score matching.

Covariate and Propensity Score–Based Partitioning

Our goal is to identify how treatment effects vary across a population. Sociologists 

routinely use regression interaction terms or stratified analyses to explore subgroup variation 

by selected theoretically motivated covariates. Let us refer to this practice as covariate 

partitioning. We define a conditional average treatment effect (CATE) using covariate 

partitioning by the average difference in potential outcomes within prespecified subgroups:

τ(x) = E Y i
1 − Y i

0 ∣ Xi = x . (4)

Such analyses generally amount to an ad hoc partitioning of the sample on the basis of 

factors presumed to account for variation (e.g., race, socioeconomic status), or by post hoc 
interpretations if variation across groups is serendipitously found. An alternative approach to 

assess effect heterogeneity is to partition the sample into strata of the estimated propensity 

score to determine whether subpopulations with lower or higher estimated probabilities of 

treatment differ in their treatment effects (Brand and Simon Thomas 2013; Xie et al. 2012). 

We define a CATE using propensity score–based partitions as

τ(e(x)) = E Y i
1 − Y i

0 ∣ e Xi = e(x) . (5)

Tree-Based Machine Learning

Machine learning is a computational and statistical approach to extracting patterns and 

trends from data (Brand et al. 2020). Supervised learning algorithms learn to predict 

response variables from covariates.2 A supervised learning model is first trained in one 

data set and then evaluated in another. Model selection is dictated by a model’s ability to 

generalize to unseen data in this evaluation set. An overfit model fits too closely to the 

training data, explaining idiosyncratic patterns (i.e., noise) in those data but generalizing 

poorly to new data. Thus, a learning algorithm must be flexible enough to fit the training 

data, yet not so complex that variance is high when fit to new data. Regularization 

approaches (e.g., shrinkage penalties) can reduce overfitting and model complexity to 

improve generalization. During training, supervised learning algorithms optimize in-sample 

2.Supervised learning tasks involving a continuous outcome are regression tasks, and those involving a categorical outcome are 
classification tasks. Unsupervised algorithms do not use data on dependent variables.
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performance for a loss function (also called objective or cost function), often the mean 

squared error (MSE) for regression tasks. After training, researchers use evaluation metrics 

to assess out-of-sample predictive performance of the model.

Decision trees are among the most widely used supervised machine learning algorithms. 

Decision trees recursively partition the data along covariate thresholds into increasingly 

smaller subsets where data bear greater similarity (i.e., have a smaller variance, entropy, 

or Gini coefficient) (Breiman et al. 1984). A tree represents the resulting hierarchical data 

structure. At each decision, splits are chosen by selecting a covariate and threshold that 

minimize the in-sample loss function (e.g., the MSE) within the remaining subsample of 

data. Cross-validation is used to select hyperparameters (e.g., for pruning the depth of a 

tree) that maximize predictive power without overfitting the data. Decision trees are easy 

to understand and interpret because they are “white box” algorithms, yielding a visually 

interpretable decision process.

As with all algorithms, however, decision trees have disadvantages. At each partition 

decision, the tree optimizes the loss function conditional only on the current subset of 

data, rather than on the heterogeneity of the complete data set. Although computationally 

inexpensive, this “greedy” design choice means that trees are not guaranteed to find a 

globally optimal solution. Random forests build on the decision tree algorithm by averaging 

over a large number of decision trees (Breiman 2001; Ho 1995). Each decision tree 

in the forest is constructed not on the original sample but by repeatedly resampling 

training data with replacement and generating a consensus prediction (i.e., bootstrap 

aggregating or “bagging”). Even with bagging, greedy trees tend to use the same features 

for similar decision sequences. Random forests thus combine bagging with a covariate 

resampling scheme that forces greedy trees to explore different decision sequences with 

other covariates. In other words, at each split, a given tree in the forest can only choose 

from a random subset of covariates. Random forests have gained popularity because of their 

predictive performance and ease of use.

Recursive Partitioning Using Causal Trees

Machine learning methods have been increasingly adapted to objectives for estimating 

causal effects in social science applications (for a review, see Athey 2019). This rise of 

machine learning to estimate causal effects has been closely trailed by interest in applying 

algorithms to estimate heterogeneous causal effects. Some scholars have proposed methods 

that formulate the search for effect heterogeneity as a variable selection problem using a 

least absolute shrinkage and selection operator (LASSO) (Imai and Ratkovic 2013; Tian et 

al. 2014). The treatment indicator is interacted with any number of covariates, and LASSO 

regularization is used to search for the most predictive interactions. Other algorithms for 

fitting heterogeneous response functions include approaches based on decision trees, such as 

Bayesian additive regression trees and Bayesian forests (Chipman, George, and McCulloch 

2010; Hill 2011; Taddy et al. 2016) and CART and random forests (Foster, Taylor, and 

Ruberg 2011; Su et al. 2009; Zeileis, Hothorn, and Hornik 2008).

We focus here on the sociological utility of the causal tree algorithm developed by Athey 

and Imbens (2016) for identifying effect heterogeneity. Athey and Imbens extended decision 
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trees to causal settings using a potential outcome approach and provided a framework for 

uncovering effect heterogeneity. A tree, or partitioning Π, corresponds to a partitioning 

of the covariate space X. In standard decision trees, each leaf l represents the average 

value of Y for units in that leaf. If there are k covariates and N observations, we partition 

the covariate space X into M mutually exclusive leaves l1, . . . lM where we estimate the 

outcome for an individual in leaf lM as the mean of the outcome for training observations in 

that leaf. This partitioning process is repeated until a regularization penalty selected through 

cross-validation limits the depth of the tree. The resulting leaves contain a group of units 

with similar values of Y.

Applying the potential outcome approach to decision trees to instead generate causal trees 

requires altering the objective function. In a causal tree, we want the best prediction of 

the treatment effect τ, not the outcome Y as in the standard regression tree algorithm. 

The causal tree algorithm is thus an adaptation of decision trees for causal inference that 

attempts to partition the data to minimize heterogeneity in within-leaf treatment effects 

(i.e., differences in potential outcomes), rather than minimizing heterogeneity within-leaf 

(observed) outcomes. The difficulty in predicting the leaf-specific treatment effect is that we 

have no “ground truth,” or no observed value of the true treatment effect, as we do when 

predicting the value of an observed outcome Y. This issue reflects the fundamental problem 

of causal inference: we do not observe the causal effect for any unit.

In addition to adapting the objective to maximize treatment effect heterogeneity across 

leaves, Athey and Imbens (2016) advanced “honest” estimation. In honest estimation, we 

split the sample and use different data for selecting the partitions of the covariate space 

X and for estimation of leaf-specific effects. That is, we construct a tree using a training 

sample Str, and we estimate leaf-specific treatment effects using an estimation sample 

Ses. Notably, the criteria for constructing the partitions and cross-validation change in 

anticipation of honest estimation.3 Athey and Imbens introduced a modified expected MSE 

for the tree construction loss function that accounts for both honest estimation and the move 

to minimizing the MSE of treatment effects rather than outcomes:

−EMSEτ(x) = 1
Ntr ∑

i ∈ Str
τ2 Xi; Str, Π

− 1
Ntr + 1

Nes ∑
l ∈ Π

SStr(1)
2 (l)
p(l) +

SStr(0)
2 (l)

1 − p(l) ,
(6)

where Ntr and Nes are the sample size of the training sample and estimation sample, 

respectively; Π is a potential partition of the covariate space; SStr(1)
2 (l) and SStr(0)

2 (l) are 

the sample variances for the treated and control units in leaf l, respectively; and p(l) 
is the proportion of treated units in leaf l. The first term is the variance of treatment 

3.Using adaptive estimation, spurious extreme values of the outcome (or in our case, the treatment effect) are likely to be placed 
into the same leaf as other extreme values, and thus the leaf-specific means or effects are more extreme than they would be in an 
independent sample (Athey and Imbens 2016). Loss of precision due to smaller sample size for estimation is overshadowed by the 
gain in minimizing bias.
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effects across leaves; we prefer leaves with heterogeneous effects. The second term is the 

uncertainty about leaf treatment effects; we prefer leaves with good fit, or leaf-specific 

effects estimated precisely. Honest estimation accounts for the uncertainty associated with 

the yet to be estimated leaf-specific treatment effects by including a penalty term for 

leaf-specific variance. As indicated by the sign, there is a trade-off between these two terms: 

we prefer tree topologies where leaves capture distinct heterogeneous effects, but where the 

effect is estimated precisely within leaves. We prune the tree using cross-validation, just as 

in standard regression trees, but the performance of the tree is based on treatment effect 

heterogeneity rather than predictive outcome accuracy. Honest estimation enables standard 

asymptotic properties in leaf-specific treatment effects.4 We define a CATE in the causal tree 

as the average difference in treated and control potential outcomes within leaves:

τ(x; Π) = E Y i
1 − Y i

0 ∣ Xi ∈ l(x; Π) . (7)

Causal trees can find heterogeneous effects, but they cannot guarantee that confounding 

within leaves is addressed in observational studies. Athey and Imbens (2016) contended 

that causal trees can be adapted to observational studies under the assumption of 

unconfoundedness by adjusting for estimates within leaves. The functions defined above 

can be modified with adjustments such that the weighted function balances the units in 

the treated and control groups. We use inverse propensity weights in an effort to ensure 

that the tree structure represents differential response to treatment rather than differential 

confounding by observed covariates. Once constructed, the tree is a function of covariates. 

Using a distinct sample to conduct inference, the “problem reduces to that of estimating 

treatment effects in each member of a partition of the covariate space,” in which case we 

need to “modify the estimates within leaves to remove the bias from simple comparisons 

of treated and control units” (Athey and Imbens 2016:7358–59; see also Hirano, Imbens, 

and Ridder 2003). For demonstration, we use IPW, nearest neighbor matching, and a doubly 

robust causal forest (generalized random forest [grf]), where we estimate one causal forest 

and average the estimated treatment effects within partitions.5 We assess propensity score 

balance within each partition to determine whether we have differential imbalance and 

whether our adjustment strategy succeeds in balancing observed selection into treatment.

Our detection of treatment effect heterogeneity hinges on our input covariates. Input 

covariates should be pretreatment, that is, potential moderators and not post-treatment 

mediators. We include all covariates used in estimation of the propensity of treatment. 

Following VanderWeele (2019), we include covariates presumed to cause the treatment, 

the outcome, or both, and any proxy for an unmeasured variable that is a common cause 

of both the treatment and the outcome. We exclude known instrumental variables. And 

following Hahn, Murray, and Carvalho (2020), we include the propensity score as one of 

the input covariates. As Imbens and Rubin (2015) outlined in their iterative procedure, we 

also exclude variables that do not add to the estimation of the likelihood of treatment. Fewer 

4.Traditional decision trees are not concerned with standard errors on leaf-specific treatment effects because interpreting leaf-specific 
effects is not the motivation behind construction of the tree.
5.Alternative approaches for adjustment, such as two-stage least squares, are possible for estimating leaf-specific effects.
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input covariates will result in less precise detection of heterogeneity, but even a small set can 

yield informative patterns.6

Our approach for using a causal tree to uncover treatment effect heterogeneity with 

observational data proceeds as follows: (1) input data with selected covariates; (2) draw 

a random subsample for training Str and retain a holdout sample for estimation Ses; (3) 

split the sample for k-fold cross-validation to regularize the tree in Str; (4) grow a tree 

via recursive partitioning in Str that maximizes heterogeneity across leaves and minimizes 

heterogeneity within leaves using adjustment (i.e., IPW); (5) feed the estimation sample into 

the leaves; and (6) estimate leaf-specific treatment effects in Ses using adjustment strategies, 

such as IPW, matching, and causal forests (grf). Figure 1 depicts this causal tree work flow.

Causal trees benefit from empirical discovery, important statistical properties, and 

interpretability. In contrast to methods that treat heterogeneity as a variable selection 

problem, trees search over possible combinations and thresholds of pretreatment covariates. 

In so doing, we uncover responsive subpopulations that we may not have considered prior 

to analysis. Moreover, in contrast to approaches that split the study population on the 

basis of outcome predictions, causal trees are optimized for treatment effect estimation 

within partitions of the covariate space and use sample splitting for “honest estimation” 

to provide leaf-specific, asymptotically unbiased estimates of average treatment effects 

with confidence intervals. In addition to these statistical guarantees, the causal tree is a 

particularly attractive tool for social science applications because the criteria used to make 

partitions are transparent to the end user. That is, the ability to plot the decision pathways of 

a causal tree renders it a powerful tool not just for uncovering treatment effect heterogeneity 

but also for interpreting and visualizing that heterogeneity.

As stated earlier, a disadvantage of single decision trees is that greedy optimization means 

the reported tree may not be the only valid tree or even the globally optimal tree. Different 

sample splits can result in different partitions and tree structures. To address these issues, 

Wager and Athey (2018) propose a causal forest for estimating treatment effects in the 

potential outcome framework assuming unconfoundedness with asymptotic guarantees. 

Several recent machine learning methods also flexibly combine supervised learning of 

the response variable with supervised learning of the propensity score to estimate average 

treatment effects. For example, Nie and Wager (2019) described a general class of two-step 

algorithms for heterogeneous treatment effects estimation in observational studies, and 

Athey, Tibshirani, and Wager (2019) proposed a grf that generates a doubly robust causal 

forest. This approach fits two separate regression forests to estimate e( ⋅ ) and m( ⋅ ) and then 

uses predictions from these two first-stage forests to grow a causal forest. We hereafter refer 

to this approach as a doubly robust causal forest or grf.

Causal forests (grf) have attractive properties for estimating heterogenous response functions 

yet lack the benefit of interpretability and identification of responsive subgroups. Although 

6.Similarly, larger sample sizes will enable more precise detection of treatment effect heterogeneity, but even a smaller sample size 
can yield informative patterns. We have a sample of about 4,000 cases, with about 800 treated units, and this sample yields interesting 
results. Researchers using a very large sample may increase the minimum number of treated and control units within leaves to limit the 
depth of the tree.
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a causal forest (grf) does not give us a single, easily interpretable tree, we can generate 

useful metrics of heterogeneity, including an omnibus test of heterogeneity. We can also 

plot covariate importance by assessing the covariates chosen most often by the causal forest 

algorithm (i.e., a count of the proportion of splits on the variable of interest) and thus reveal 

the strongest determinants of the structure of the trees in the forest (O’Neill and Weeks 

2018). Moreover, we can use the causal forest (grf) algorithm to estimate CATEs, including 

CATEs within partitions defined by covariates, propensity scores, or causal trees.

Overlap and Unconfoundedness

Estimating causal effects using observational data hinges on the overlap and 

unconfoundedness assumptions (D’Amour et al. 2020). Treatment effects are unidentified 

in regions that have no overlap. Matching methods restrict inference to the region of overlap, 

or common support; that is, we discard units that do not match, or the treated units with 

no comparable control units and the controls units with no comparable treated units, on the 

basis of observed covariates. Yet estimated treatment effects may be biased by unobserved 

covariates. Whether unconfoundedness is a reasonable assumption is a substantive issue, 

which depends on the quality of the covariates in capturing potential selection bias. Yet 

we recognize that even with a rich set of pretreatment covariates, potential confounders 

remain. Partitioning by propensity scores, selected covariates, or leaves within causal 

trees may involve differential selection bias. Because partitioning by propensity scores 

involves estimating subpopulation treatment effects by observed selection into treatment, the 

approach encourages attention to potential violations to the unconfoundedness assumption 

across partitions (see Zhou and Xie 2019, 2020). However, researchers evaluating covariate-

stratified estimated treatment effects often fail to consider the possibility that unobserved 

confounding may differ across subgroups.

Here we relax the unconfoundedness assumption and conduct sensitivity analyses for 

differential hidden confounding within partitions defined by propensity scores, covariates, 

and leaves within the causal tree (Rosenbaum 2002). We subtract a bias factor from the point 

estimate and confidence interval of the treatment effects obtained under unconfoundedness 

(Arah 2017; Gangl 2013; VanderWeele and Arah 2011). The bias term is equal to the 

product of two parameters:

B = γλ, (8)

where

γ = E(Y |U = 1, W = w, X) − E(Y |U = 0, W = w, X) (9)

and

λ = P(U = 1|W = 1, X) − P(U = 0|W = 0, X) . (10)

That is, γ is the mean difference in the outcome associated with a unit change in 

an unobserved binary confounder, U, and λ is the mean difference in the unobserved 

confounder between treated and control units. Alternative approaches for sensitivity analyses 
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are also possible (e.g., Cinelli and Hazlett 2020), but they follow the same general logic. 

Other strategies may more explicitly consider unobserved confounding that affects our 

conclusions as to treatment effect heterogeneity.

EMPIRICAL APPLICATION

To demonstrate the approach, we assess heterogeneity in the effect of college on reducing 

low-wage work over a career. The effects of college on wages is a key area of interest 

in social inequality research (Hout 2012). By focusing on low-wage work, we shift 

attention to how college may circumvent disadvantaged labor market outcomes for particular 

subpopulations. Some rhetoric suggests limiting college for segments of the population, 

particularly more disadvantaged students on the margin of school continuation (e.g., Caplan 

2018). If we observe benefits for disadvantaged students that match, or even exceed, those 

of more traditional college students, we gain insight into whether college pays off for 

this subpopulation of potential college-goers. We draw on observational data and a highly 

selective treatment condition, completing college, to illustrate the use of causal trees and 

forests with observational data. We address four research questions: (1) Does college reduce 

the proportion of time in low-wage work over a career? (2) Does the effect of college 

on low-wage work vary by propensity score strata and by key covariates that influence 

the likelihood of completing college (i.e., parental income, mother’s education, measured 

ability, and race)? (3) Does the effect of college on low-wage work vary by subgroups we 

had not considered? and (4) How sensitive are the treatment effect estimates to unobserved 

confounding across partitions?

Our analysis proceeds as follows. First, we present descriptive statistics of the full 

sample. Second, we assess average effects of college on reducing low-wage work using 

three adjustment strategies: IPW, matching, and causal forest (grf). Third, we evaluate 

heterogeneous effects of college on reducing low-wage work for subgroups defined by the 

propensity of college, parental income, mother’s education, measured ability, and race, again 

using IPW, matching, and causal forest (grf). We estimate one causal forest for the full 

population, and then average those estimates within partitions. We compare balance metrics 

across partitions. Fourth, we evaluate heterogeneous effects for subgroups identified by the 

causal tree, using the same adjustment strategies and balance metrics. We offer descriptive 

statistics to help interpret the subgroups identified by the causal tree. We also discuss tree 

stability and offer a covariate importance plot from a causal forest. Fifth, we assess the 

sensitivity of partition-specific effect estimates to unobserved confounding.

Data and Descriptive Statistics

We use data from the Bureau of Labor Statistics 1979 to 2014 waves of the National 

Longitudinal Survey of Youth 1979 cohort. These nationally representative longitudinal data 

provide information on respondents’ sociodemographic background, achievement, skills, 

educational attainment, and long-term earnings trajectories from early to late career; the data 

have been widely used to assess the effects of college on wages. We restrict the sample to 

individuals who were 14 to 17 years old at the baseline survey in 1979 (n = 5,582) and who 

had completed at least the 12th grade (n = 4,548). These sample restrictions ensure that all 
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variables we use to predict college are measured precollege and that we compare college 

completers with those who completed at least a high school education. About one fifth of 

the sample completed college by age 25. We focus on the proportion of time spent in a low-

wage job from 1990 to 2014, when respondents were roughly between the ages of 25 and 

50. We measure low-wage work as less than two thirds of the median hourly wage for that 

year (Presser and Ward 2011). In Table 1, we report covariate means by college completion. 

We use covariates known to affect the likelihood of college completion, including measures 

of race, residence, parents’ income, parents’ education, father’s occupation, family structure, 

cognitive ability,7 college-preparatory program, psychosocial skills, juvenile delinquency, 

educational expectations and aspirations, school characteristics, and family formation. 

Descriptive statistics on our precollege covariates suggest well-documented socioeconomic 

differences in educational attainment.8

Average Effects of College on Low-Wage Work

In Table 2, we report estimates of the average effect of college completion on proportion 

of time in low-wage work over a career. We compare the unadjusted estimate to estimates 

adjusted by IPW, nearest neighbor matching on the basis of the linear propensity score (i.e., 

logit(e(x)))9 with four control units per treated unit, and causal forests (grf).10 To estimate 

the propensity of college, we use a random forest. We include the measures described in 

Table 1.11 We find that college completion is associated with a significant 22 percentage 

point reduction in the proportion of time spent in a low-wage job across a career, an estimate 

that is reduced to about 19 percent using IPW and about 17.5 percent using matching and 

causal forest (grf). Appendix Figure A1 is an algorithm display detailing the steps of the 

causal forest estimation for the estimate reported in Table 2. More detailed code is available 

on Github. We perform an omnibus test for treatment effect heterogeneity, indicated by 

the line in Appendix Figure A1 for differential forest prediction, which suggests evidence 

at the p = .07 level for heterogeneity. Although this test does not indicate evidence for 

heterogeneity at the conventional .05 level, it remains plausible that the agnostic omnibus 

test is not capturing important heterogeneity along specific partitions of the covariate space 

(Athey and Wager 2019). We next assess possible sources of heterogeneity.

7.Ability is measured by the 1980 Armed Services Vocational Aptitude Battery, adjusted for age and standardized. We also include a 
measure indicating whether data were imputed.
8.Respondents who completed college are more likely to come from families with highly educated parents, high incomes, both 
parents present, and fewer siblings. They also have higher average cognitive test scores and are more likely to have enrolled in 
college-preparatory classes. They attend more advantaged high schools, have higher educational expectations and aspirations, and 
have friends with higher educational expectations. College graduates are also less likely to have started families during adolescence.
9.The linear propensity score is preferable to the raw score because the former does not penalize differences in pretreatment covariates 
at the tails of the propensity score distribution (Imbens and Rubin 2015). For example, on the raw propensity score scale, a treated unit 
with e(x) = 0.10 is considered as close to a control unit with e(x) = 0.11 as to a control unit with e(x) = 0.09. But in terms of the 
covariates, the treated unit tends to be closer to the former than to the latter. The linear propensity score, by transforming e(x) back to 
the scale of the covariates, does not suffer from this issue.
10.Here we weight to produce an average treatment effect. Researchers may also be interested in estimating average treatment effects 
on the treated.
11.Other propensity score specification methods may also be used. For example, a more interpretable alternative to the random forest 
is to adopt an iterative procedure suggested by Imbens and Rubin (2015).
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Heterogeneous Effects of College on Low-Wage Work: Propensity Score and Covariate 
Partitioning

We examine stratified effects of college completion by propensity score strata and several 

a priori theoretically motivated covariates: parental income, mother’s education, ability, and 

race. We construct three propensity score strata to assess effects for low-, middle-, and 

high-propensity college-goers, where low ranges from 0 to less than .2, middle from .2 to 

less than .5, and high from .5 to 1. In addition, we partition by covariates that strongly 

influence selection into college and indicate levels of socioeconomic advantage: parental 

income, mother’s education, measured ability, and race. We divide parental income and 

ability into terciles of the distributions; divide mother’s education into categories of less than 

high school, high school degree, and some college or more; and divide respondents’ race 

into black, Hispanic, and white.

Figure 2 is a heatmap of estimated effects based on stratified models using IPW, where blue 

indicates larger treatment effects (i.e., larger negative effects indicating reductions in the 

proportion of time in low-wage work associated with a college degree) and yellow indicates 

smaller treatment effects (i.e., less negative effects, nearing zero). Table 3 reports estimated 

effects using IPW, matching, and a causal forest (grf); that is, we generate a causal forest 

(grf) and then average the estimated treatment effects within each partition. As shown in 

Figure 2 and Table 3, we find the largest effects of college on reducing low-wage work for 

respondents with a low propensity to complete college, low ability, low parental income, 

low mother’s education, and for black and Hispanic individuals. The effects of college 

on low-wage work for the most advantaged individuals are significant but smaller.12 For 

example, we find a more than 20 percentage point lower proportion of time in low-wage 

work for college-educated workers with a low propensity of college versus a 10 percentage 

point lower proportion for those with a high propensity. The IPW estimates are somewhat 

larger than for matching and causal forest (grf), but the estimates are very similar for 

matching and causal forest (grf).13

Next we attend to possible differential violations of covariate balance across subgroups. 

Figure 3 provides balance metrics defined by standardized mean propensity score 

differences across each of our partitions defined by propensity scores, parental income, 

mother’s education, ability, and race. If the numbers are close to zero, we achieve balance 

across covariates. We report raw differences and the balance achieved by causal forest (grf) 

estimation. In every case, we substantially reduce the raw imbalance by grf. The remaining 

imbalance is not zero, but it is generally no greater in the subgroups in which we observe 

large effects than in the subgroups in which we observe smaller effects. For example, the 

bias is close to zero for black respondents but relatively larger for Hispanic and white 

respondents. It is larger in the high propensity score and socioeconomic strata than in 

12.We report Welch’s (unequal variances) t tests between estimated IPW coefficients in Appendix Table A1. Estimates based on the 
contrasts that we draw generally significantly differ from one another.
13.The largest difference between the matching and causal forest (grf) estimates occur for low parental income and for black 
respondents. Among these groups, matching suggests larger effects than the causal forest (grf). However, the pattern of results across 
groups remains the same. That is, for both estimation strategies, we find larger effects for low parental income than for high, and for 
black respondents compared with white respondents.
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the low strata. Thus, although we are concerned about remaining imbalance, we are less 

concerned about differential imbalance that explains the patterns in heterogenous effects.

In the Appendix Figure A1 algorithm, we also report the best linear prediction of the CATE 
onto the propensity score from the causal forest. This suggests the effect of college on 

reducing low-wage work significantly decreases as the propensity of college increases, from 

a roughly 20 percentage point reduction for the lowest propensity of college to no effect 

for individuals with the highest propensity. R and Stata packages are available to generate 

these results. We also developed several possible causal tree visualizations that researchers 

can use, including an interactive tree (for our application, see https://htetree.shinyapps.io/

hte_tree_ipw/, developed in collaboration with Stephanie Yee and Tony Chu of R2D3, http://

www.r2d3.us).

Heterogeneous Effects of College on Low-Wage Work: Recursive Partitioning Using 
Causal Trees

Figure 4 and Table 4 depict results of the causal tree for the effect of college completion 

on the proportion of time in low-wage work. The estimates displayed in the leaves of 

Figure 4 are based on IPW.14 Table 4 reports alternative estimates using nearest neighbor 

matching and a causal forest (grf). We include the 22 covariates described in Table 1 as 

well as the estimated propensity score as input splitting covariates, using the criteria to 

select covariates described earlier. We limit the depth of the tree by requiring at least 20 

treated and 20 control units per leaf.15 Researchers may use a larger number of treated 

and control observations, such as 30 or 50, depending on sample size. Holding sample size 

constant, a larger minimum number of units will limit the depth of the tree and detection 

of heterogeneity. A larger sample size will enable more precise effect estimates within 

partitions and possible better adjustment of confounding. With more cases, researchers may 

use a larger number of control than treated observations to ensure better matches within 

partitions. We use 50 percent of the sample to train the data and grow the tree structure, and 

we reserve the remaining 50 percent of the sample as a holdout sample for estimation of 

leaf-specific treatment effects within that tree. The causal tree is color coded to indicate the 

size of the association, with blue indicating larger (negative) effects and yellow indicating 

smaller effects (nearing zero) (color coding in the online version). The color coding aligns 

with the results we report in Figure 2. As with the covariate and propensity partitioning, we 

estimate one causal forest for the full population and then average those estimates within the 

partitions. Appendix Figure A2 shows the baseline steps of the causal tree estimation, with 

more detailed code leading to the results in Table 4 (also available on Github).

The primary division depicted in Figure 4 occurs for mother’s education, with individuals 

whose mothers had less than a high school degree having larger negative effects of college 

on time spent in low-wage work. Individuals whose mothers have less than a high school 

degree have a 23 percentage point reduction in low-wage work, compared with a 12 

percentage point reduction among those whose mothers have at least a high school degree. 

14.An R Markdown file is available on Github and available upon request. We are also developing Stata programs to implement these 
methods.
15.Larger leaves render results more consistent across samples yet depict less heterogeneity.
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The largest effects accrue to respondents whose mothers did not complete high school, who 

grew up in large families, and who have low social control (i.e., in the top quartile of the 

low control distribution): a 34 percentage point reduction in low-wage work. For individuals 

with mothers with at least a high school degree and low ability (in the bottom quartile of 

the ability distribution), we see a similarly large effect (a 35 percentage point reduction). 

For respondents with less educated mothers who grew up in large families, yet had higher 

social control (below the top quartile of the low control distribution), we find larger effects 

for women than for men (26 percentage point lower proportion vs. a 13 percentage point 

lower proportion). We find substantially smaller effects for individuals whose mothers had 

less than a high school education but who came from smaller families. Respondents with 

mothers with at least a high school degree and relatively higher ability (above the bottom 

quartile of the ability distribution) have the smallest effect (a 9 percentage point reduction 

in low-wage work).16 Our substantive conclusions remain largely the same using alternative 

adjustment strategies (see Table 4).

Figure 5 provides balance metrics defined by standardized mean differences in propensity 

scores across each of our partitions defined by our causal tree. Again, we report the raw 

imbalance and the balance achieved by causal forest (grf) estimation. We substantially 

reduce the raw imbalance across leaves by our grf estimates. Leaves 3 and 9 are the most 

responsive partitions, yet the imbalance is no different here than in the less responsive 

partitions. Thus, again, although we are concerned about remaining imbalance, we are less 

concerned about differential imbalance that explains the patterns in heterogenous effects. 

Appendix Table A2 provides tests of significance across leaves, suggesting significant 

differences across most leaves.

As noted earlier, tree stability is a concern. That is, we may get different trees if we 

generate different random splits of the training and test data. To test tree structure stability, 

we generate 100 causal trees with different random splits of the training and test data. 

We find that 95 percent of the time we get the tree structure we present above with only 

one modification to the depth; that is, 36 percent of the time we do not see the split on 

gender. We thus shade the gender-partitioned estimates in Table 4. We get two additional 

trees accounting for the remaining 5 percent of trees. Thus, the tree we present in Figure 4 

appears to be reasonably stable in our application.

We also run causal forests (grf) with 4,000 trees. Figure 6 is a plot of covariate importance 

from a causal forest (grf), which can yield insight into how the ensemble of trees is making 

decisions. The x-axis indicates relative importance scores; we are concerned only with the 

relative strength across covariates. The covariates displayed at the top of the plot are the 

strongest determinants of generating the structure of the trees in the forest. The results 

suggest that parental income, ability, propensity of college, and father’s education are most 

important. School disadvantage, mother’s education, social control, and family size follow, 

with the remaining variables having minimal relative importance in terms of determining the 

structure of the trees. The covariates that generate the primary splits in the causal tree in 

16.We report Welch’s (unequal variances) t tests between estimated IPW coefficients in Appendix Table A2. As with Appendix Table 
A1, estimates based on the contrasts that we draw generally significantly differ from one another.
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Figure 6 are a subset of those identified here. This gives us confidence that the covariates 

selected by the tree are key axes of heterogeneity.

In summary, more disadvantaged subpopulations, or those on the margin of school 

continuation, experience larger effects of college on reducing low-wage work. We identify 

this pattern across the various partitioning strategies. Yet the groups identified by the causal 

tree are not necessarily those we would identify by our theoretical priors. For example, 

although we consider strata on the basis of mother’s education in Table 3, we did not 

specifically consider individuals with mothers without a high school degree and who grew 

up in large families and had low social control, nor those with high school–educated mothers 

yet low ability.17 We should not go too far, however, in interpreting the selection of variables 

used for the splits (Athey and Imbens 2019). Instead, we should focus on the populations 

identified by the splits.

Table 5 provides leaf-specific selected covariate descriptive statistics. We report the most 

important covariates as defined by the covariate importance plot in Figure 6. Let us consider 

the subgroups in leaves 3 and 9 with the largest estimated treatment effects, that is, those 

whose mothers did not complete high school and who grew up in large families and had 

low social control (leaf 3), and those with more educated mothers who had low measured 

cognitive ability (leaf 9). In leaf 3, parental income is below average, school disadvantage 

is above average, and measured cognitive ability is below average. Fathers and mothers 

have below average levels of education. Three fourths of fathers have less than a high 

school degree, and all mothers have less than a high school degree (by definition of the 

leaf). About two thirds are black or Hispanic. In leaf 9, parental income is about average, 

school disadvantage is average, and measured ability is below average (more than a standard 

deviation below). Father’s education is about average, with three fourths having a high 

school degree or more, and mother’s education is above average, with all mothers (by 

definition of the leaf) holding a high school degree. About one fifth of mothers and fathers 

attended some college. More than two thirds are white. In both leaves 3 and 9, respondents 

report low social control, but particularly in leaf 3 (which is defined by low control). We 

thus have two distinct responsive subpopulations: individuals who are socioeconomically 

disadvantaged (i.e., leaf 3) and individuals with average socioeconomic status and below 

average measured cognitive ability (i.e., leaf 9). Almost 95 percent have a low propensity 

for college (in the bottom third of the propensity score distribution) in both leaves 3 and 9. 

Propensity of college is a key summary measure of responsiveness to college in reducing 

low-wage work.

Leaves 7 and 10 are the least responsive subgroups. Individuals in leaf 10 have high levels of 

parental income, low levels of school disadvantage, high ability, and educated parents. More 

than 40 percent have college-educated fathers, and one third have college-educated mothers. 

Individuals in leaf 10 have the highest levels of advantage and the highest propensity of 

college among the partitioned subgroups. These individuals are most likely not at risk for 

17.The causal trees did not identify many dichotomous covariates, such as race, as indicating key subpopulations, as the tree prefers 
to split on continuous covariates. We note, however, that the subpopulations identified have strong correlations with variables like 
race. This tree also did not identify the propensity score as a key partition, yet these subpopulations are highly correlated with those 
stratified by propensity scores.
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working in low-wage jobs whether or not they attend and complete college. They can 

draw on their advantaged background to avoid such employment. Individuals in leaf 7 have 

average levels of parental income, school disadvantage, and ability, and below average levels 

of parent’s education, but they tend to be only children. These respondents may also be at 

a low risk for low-wage work if parents are more likely to assist an only child in securing 

employment.

Sensitivity Analyses

Tables 6 and 7 report sensitivity bounds on the estimated causal forest (grf) coefficients 

reported in Tables 3 and 4, respectively. The effect reaches nonsignificance when the 

unobserved confounder has a sizable difference between individuals who do and do not 

complete college (λ) or a strong effect on the proportion of time in low-wage work (γ). 

Suppose, for example, that idleness, unobserved in our data, increases the time in low-wage 

work over a career, and is lower among individuals who complete college than among those 

who do not. When λ equals −10 percent, we assume that the prevalence of idle individuals 

is 10 percent lower in the college-educated group than in the non-college-educated group. 

When γ equals 10 percent, we assume that idle individuals have a 10 percentage point 

higher level of low-wage work than those who are not idle (all else equal). We let the values 

of γ range from 10 to 40 percent and fix the value of λ at −10 percent.18

In Table 6, the effect of college on reducing low-wage work remains significant for the 

most disadvantaged college completers at each value we consider, even when unobserved 

differences have a substantial impact on low-wage work (γ = 40) and the prevalence 

of the unobserved factor differs between college graduates and non–college graduates by 

10 percent (λ = −10). Estimates also remain significant for the middle propensity score, 

parental income, and middle and high mother’s education subpopulations, and for Hispanic 

and white respondents. Effects among individuals with a high propensity of college and 

high parental income are more sensitive to confounding when γ = 40. Table 7 provides 

sensitivity bounds on the estimated effects across leaves defined by the causal tree. The 

sizable leaf-specific estimates associated with the most responsive subpopulations are robust 

to unobserved confounding. For example, the largest estimate in leaf 3 remains significant 

even if the confounding variable reduced low-wage work by 40 percent (γ) and differed by 

10 percent among college graduates and non–college graduates (λ).

DISCUSSION

Heterogeneity in response to an event or intervention is to be expected. We cannot 

reasonably presume that individuals respond identically to life events. We aim to understand 

heterogeneity, both in the characteristics that predispose some groups to experience 

particular events and how those characteristics govern differential response to events. One 

long-standing approach in sociology is to determine subgroups of interest who we theorize 

should respond differently and then test those possibilities in our data. There are many 

advantages to doing so, as we may have theoretical interest in whether black or white 

18.The sensitivity results when γ is negative and λ is positive are the same as those we present here, so there is no loss of information 
by not including the opposite sign.
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individuals, or men or women, or people who grew up in low-income versus high-income 

families are differentially affected by particular events. For example, we may want to know 

whether low-income students benefit more or less from college than high-income students, 

because our policies target recruitment of students by social class categories and we want 

to estimate the expected gain. We may likewise want to know whether students with a low 

estimated propensity of college benefit more or less, as such knowledge of the stratification 

process sheds light on the consequences of the unequal distribution of scarce resources. 

Such analyses also give us insight into how selection into treatments may confound the 

relationships we observe across subgroups.

Yet social scientists do not always know a priori which characteristics govern the 

distribution of responses. Often our data can tell us something we had not thought of 

before performing the analyses. Indeed, a great deal of the excitement of empirical social 

scientific work lies in unexpected discovery. Data-driven discoveries are common, but the 

analyses by which sociologists typically go about them are problematic. Indeed, researchers 

may estimate tens or hundreds of alternative specifications behind the scenes, without 

an established way to correct for the specification search process. It is difficult to be 

systematic or comprehensive in specifications when proceeding in an ad hoc way. Such 

procedures result in p-hacking and lack transparency and reproducibility. Most sociological 

analyses that explore covariate interactions also neglect how combinations of covariates and 

nonlinear interactions may best identify key subpopulations of interest. These analyses are 

thus limited in the subgroups considered, and they seldom move us beyond our expectations, 

and inherent biases, to consider new meaningful groups.

In this article, we used causal trees, a tree-based machine learning algorithm, to uncover 

sources of treatment effect heterogeneity. Uncovering heterogeneity using decision trees 

represents an especially promising use of machine learning methods for causal inference 

(Athey and Imbens 2017). Causal trees allow researchers to identify subpopulations that 

respond differently to treatments by searching over high-dimensional functions of covariates 

and their interactions. The algorithm partitions the data to minimize heterogeneity in within-

leaf treatment effects. We used honest estimation, splitting the sample into subsamples to 

determine the model and estimating effects. Strategies such as these will increasingly be 

needed to justify analytic decisions in applied work (Athey 2019). Applying causal trees 

to observational data, we demonstrated how to use various adjustment strategies to address 

confounding within leaves, including IPW, nearest neighbor matching, and doubly robust 

causal forests. Other covariate adjustment strategies are possible to estimate leaf-specific 

effects. We compared results based on causal trees with traditional strategies based on 

conventional covariate and propensity score partitioning.

Our empirical application addresses a central question in research on social inequality, 

the effect of college on wages. We identified sources of heterogeneity in effects and 

unanticipated subgroups of notable interest. For example, instead of simply focusing on 

effect differences by mother’s education, as we did in our covariate partitioning, our 

recursive partitioning approach based on causal trees revealed a particularly responsive 

subgroup of individuals whose mothers had less than a high school degree, who grew up in 

large families, and who had low social control. Moreover, not all individuals whose mothers 
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had more than a high school degree were equally less responsive. Those with low measured 

cognitive ability were particularly responsive. We thus identified responsive subgroups with 

different characteristics. The responsive subgroups identified by the causal tree, however, 

shared a low propensity of college. We also described distinct subgroups whose likelihood 

of low-wage work was less affected by college, that is, individuals with high levels of 

socioeconomic advantage and people with average background characteristics yet low levels 

of parental education.

The automation of some empirical tasks does not absolve our responsibility to carefully 

consider covariate imbalance, confounding, and the interpretation of estimated effects. 

In estimating heterogeneous treatment effects under unconfoundedness, we assume that 

the treatment effect varies by the subgroups identified and not by unobserved factors. 

We also face the possibility that the unconfoundedness assumption does not hold in our 

analyses, and that effects may be differentially biased across partitioned subgroups. In our 

application, for example, we know that continuing schooling is a highly selective process. 

Of the possible unobserved factors, some are systematic, reflecting individuals’ resistance to 

continuing their schooling. Expanding on the existing causal tree literature, we demonstrated 

several adjustment strategies at the estimation stage. We also assessed localized covariate 

balance, and we performed localized sensitivity analyses to assess the effect of differential 

unobserved confounding.

It is well known in the machine learning literature that predictions based on a single tree 

are sensitive to noise in the training set. The “greedy” optimization produces high-variance 

solutions. Minor modifications to the input data can produce large effects on the tree 

structure. Forests, or ensemble methods that average over many trees, tend to have lower 

variance than single decision trees. However, ensemble methods are black-box algorithms. 

The decrease in variance comes at the cost of interpretability. Causal trees are useful 

for uncovering interpretable responsive subpopulations. The tree-based machine learning 

literature, however, is rapidly evolving. New work in the literature on causal trees and 

forests continues to try and identify a “best” tree from the forest, to allow an interpretable 

tree similar to the causal tree we present here, while addressing the instability of single 

decision trees and retaining the advantages of the causal forest (e.g., see https://github.com/

grf-labs/grf/issues/281). New approaches may ultimately result in a preferable tree structure. 

Still, the general principles we describe will continue to be applicable.

Our predetermined ideas as to which groups matter surely stifle social scientific progress. 

In this article, we adopted a machine learning approach based on decision trees to studying 

causal effects that allows us to uncover treatment effect heterogeneity and avoids common 

data-driven dangers. Machine learning algorithms are attractive for generating models where 

there may be numerous interaction effects a priori unknown to researchers. Causal trees 

offer a straightforward, intuitive analog to conventional covariate partitioning routinely 

used by sociologists, yet with more defensible statistical properties and reproducible search 

procedures, yielding the opportunity for meaningful data-driven discovery. These properties 

make causal trees a substantively powerful tool for sociological applications. Additional 

approaches will emerge that offer improvements to our understanding of treatment effect 

heterogeneity. We urge sociologists interested in variation in effects to apply these 
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techniques to engage more explicitly with methods of discovery and improve research 

practices for exploring effect heterogeneity.
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APPENDIX

Figure A1. 
Causal forest (generalized random forest) algorithm.
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Figure A2. 
Causal tree algorithm.

Table A1.

t Tests for Propensity and Covariate Partitioning Results

(a) (b)

Propensity score (a) Low

(b) Mid −2.41

(c) High −3.12 2.41

Parental income (a) Low

(b) Mid −1.81

(c) High −3.36 −1.87

Mothers’ education (a) Less than high school

(b) High school −3.32

(c) College or higher −3.06 .36

Ability (a) Low

(b) Mid −2.46

(c) High −2.91 −.04

Race (a) Black

(b) Hispanic .40

(c) White −1.36 −1.97
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Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to individuals who 
were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed at least the 12th grade (n = 4,548), 
and who had no missing data on the outcome (n = 4,382). College completion is measured as a 4-year degree completed by 
age 25. Cells indicate unequal-variances t-test values for tests of difference between each of the pairs of subgroup effects.

Table A2.

t Tests for Recursive Partitioning Results

Leaf Legend Leaf 1 2 3 4 5 6 7 8 9 10

L1: mothers’ education < 
12

1

L2: L1 & number of 
siblings ≥ 2

2 −.67

L3: L2 & low control ≥ 10 3 −1.94 1.30

L4: L2 & low control < 10 4 −.45 −.94 −1.89

L5: L4 & female 5 .34 −.10 −.97 .63

L6: L4 & male 6 −.86 −1.22 −1.93 −.47 −.96

L7: L1 & number of 
siblings < 2

7 −1.59 −1.92 −2.55 −1.17 −1.60 −.65

L8: mother’s education ≥ 12 8 −2.19 −3.04 −4.41 −.91 −1.60 −.09 .77

L9: L8 & ASVAB scale < 
−.44

9 1.91 1.30 .06 1.89 .99 1.94 2.55 4.18

L10: L8 & ASVAB scale ≥ 
−.44

10 −2.99 −.94 −5.13 −1.44 −2.06 −.05 −.43 −1.25 4.86

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to individuals who 
were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed at least the 12th grade (n = 4,548), 
and who had no missing data on the outcome (n = 4,382). College completion is measured as a 4-year degree completed by 
age 25. Cells indicate unequal-variances t-test values for tests of difference between each of the pairs of leaves represented 
by the leaf number. ASVAB = Armed Services Vocational Aptitude Battery; L = leaf.
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Figure 1. 
Causal tree work flow.

Note: We estimate leaf-specific treatment effects using inverse propensity weighting, nearest 

neighbor matching with four control units per treated unit on the linearized propensity score, 

and causal forests (grf). CATE = conditional average treatment effect.
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Figure 2. 
Covariate and propensity score–based partitioning: effect of college completion on the 

proportion of time in low-wage work.

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample 

is restricted to individuals who were 14 to 17 years old at the baseline survey in 1979 (n = 

5,582), who had completed at least the 12th grade (n = 4,548), and who had no missing data 

on the outcome (n = 4,382). College completion is measured as a 4-year degree completed 

by age 25. Estimated treatment effects are based on inverse propensity weighting. Standard 

errors are in parentheses. In the online version, blue indicates largest treatment effects, and 

yellow indicates smallest treatment effects. HS = high school.
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Figure 3. 
Propensity score balance metrics by covariate and propensity score–based partitioning.

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample 

is restricted to individuals who were 14 to 17 years old at the baseline survey in 1979 (n 

= 5,582), who had completed at least the 12th grade (n = 4,548) and had no missing data 

on the outcome (n = 4,382). College completion is measured as a 4-year degree completed 

by age 25. The x-axis indicates standardized mean propensity score differences for raw and 

generalized random forest (grf) adjusted samples within each partition. The y-axis indicates 

the partition. HS = high school.

Brand et al. Page 29

Sociol Methodol. Author manuscript; available in PMC 2023 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Recursive partitioning using a causal tree: effect of college completion on the proportion of 

time in low-wage work.

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample 

is restricted to individuals who were 14 to 17 years old at the baseline survey in 1979 

(n = 5,582), who had completed at least the 12th grade (n = 4,548), and who had no 

missing data on the outcome (n = 4,382). College completion is measured as a 4-year degree 

completed by age 25. Treatment effects are estimated by inverse propensity weighting. 

Standard errors are in parentheses. Blue indicates largest treatment effects, and yellow 

indicates smallest treatment effects. ASVAB = Armed Services Vocational Aptitude Battery; 

HTE = heterogeneous treatment effect.
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Figure 5. 
Propensity score balance metrics by recursive partitioning using a causal tree.

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample 

is restricted to individuals who were 14 to 17 years old at the baseline survey in 1979 (n = 

5,582), who had completed at least the 12th grade (n = 4,548), and who had no missing data 

on the outcome (n = 4,382). College completion is measured as a 4-year degree completed 

by age 25. The x-axis indicates standardized mean propensity score differences for raw and 

generalized random forest (grf) adjusted samples within each partition. The y-axis indicates 

the partition.
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Figure 6. 
Covariate importance plot based on a causal forest (generalized random forest) of the effect 

of college completion on the proportion of time in low-wage work.

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample 

is restricted to individuals who were 14 to 17 years old at the baseline survey in 1979 (n = 

5,582), who had completed at least the 12th grade (n = 4,548), and who had no missing data 

on the outcome (n = 4,382). College completion is measured as a 4-year degree completed 

by age 25. The x-axis indicates relative importance scores; we are concerned only with the 

relative strength across covariates. The covariates displayed at the top of the plot are the 

strongest determinants of generating the structure of the trees in the forest. ASVAB = Armed 

Services Vocational Aptitude Battery.
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Table 1.

Descriptive Statistics of Precollege Characteristics and Wage Outcome

Non–College Graduates College Graduates

Mean S.D. Mean S.D.

Sociodemographic factors

 Male (binary 0/1) .497 — .504 —

 Black (binary 0/1) .160 — .069 —

 Hispanic (binary 0/1) .066 — .026 —

 Southern residence at age 14 (binary 0/1) .325 — .029 —

 Rural residence at age 14 (binary 0/1) .239 — .186 —

Family background factors

 Parents’ household income ($100s) (continuous 0 to 75) 190.959 110.173 286.006 150.934

 Fathers’ highest education (0 to 20) 11.389 3.114 14.234 3.240

 Mothers’ highest education (0 to 20) 11.345 2.412 13.317 2.437

 Father upper-white-collar occupation (0/1) .175 — .507 —

 Two-parent family at age 14 (binary 0/1) .712 — .847 —

 Sibship size (continuous 0 to 19) 3.296 2.262 2.534 1.641

Cognitive and psychosocial factors

 Cognitive ability ASVAB (continuous −3 to 3) −.125 .673 .606 .553

 High school college-preparatory program (0/1) .236 — .485 —

 Rotter locus of control scale (continuous 4 to 16) 9.031 2.259 8.124 2.139

 Juvenile delinquency activity scale (0 to 1) .815 .389 .714 .452

 Educational expectations (binary 0/1) .309 — .825 —

 Educational aspirations (binary 0/1) .434 — .879 —

 Friends’ educational aspirations (binary 0/1) .358 — .740 —

School factors

 School disadvantage scale (0 to 99) 21.684 17.859 12.742 12.638

Family formation factors

 Marital status at age 18 (binary 0/1) .068 — .003 —

 Had a child by age 18 (binary 0/1) .061 — .002 —

Wage outcome

 Proportion of time in low-wage work .398 .363 .207 .246

 Weighted sample proportion .81 .19

 n 3,531 851

Note: Data are from the National Longitudinal Survey of Youth (NLSY) 1979 cohort. The sample is restricted to individuals who were 14 to 17 
years old at the baseline survey in 1979 (n = 5,582), who had completed at least the 12th grade (n = 4,548), and who had no missing data on the 
outcome (n = 4,382). College completion is measured as a 4-year degree completed by age 25. All descriptive statistics are weighted by the NLSY 
sample weight. ASVAB = Armed Services Vocational Aptitude Battery.
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Table 2.

Effect of College Completion on Proportion of Time in Low-Wage Work

Wage Outcome Unadjusted IPW NN Matching Causal Forest (grf)

Proportion of time in low-wage work −.223*** (.013) −.189*** (.016) −.174*** (.023) −.176*** (.024)

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to individuals who were 14 to 17 years old 
at the baseline survey in 1979 (n = 5,582), who had completed at least the 12th grade (n = 4,548), and who had no missing data on the outcome 
(n = 4,382). College completion is measured as a 4-year degree completed by age 25. Estimates are based on IPW, NN matching with four control 
units per treated unit on the linearized propensity score, and on a causal forest (grf). grf = generalized random forest; IPW = inverse propensity 
weighting; NN = nearest neighbor.

***
p ≤ .001 (two-tailed tests).
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Table 4.

Effects of College Completion on Proportion of Time in Low-Wage Work: Recursive Partitioning Causal Tree

IPW NN Matching Causal Forest (grf) n

L1: mothers’ education < 12 −.225*** (.041) −.261*** (.034) −.220*** (.042) 1,832

L2: L1 & number of siblings ≥ 2 −.264*** (.041) −.291*** (.034) −.251*** (.045) 1,645

L3: L2 & low control ≥ 10 −.343*** (.045) −.372*** (.056) −.318*** (.063) 800

L4: L2 & low control < 10 −.189** (.068) −.099 (.150) −.176*** (.064) 845

L5: L4 & female −.255** (.079) −.263** (.091) −.179** (.065) 425

L6: L4 & male −.133 (.099) −.130 (.142) −.170** (.098) 420

L7: L1 & number of siblings < 2 −.037 (.111) −.110 (.070) −.043 (.123) 187

L8: mother’s education ≥ 12 −.124*** (.021) −.140*** (.023) −.150** (.029) 2,550

L9: L8 & ASVAB scale < −.44 −.347*** (.049) −.381*** (.050) −.355* (.102) 490

L10: L8 & ASVAB scale ≥−.44 −.086*** (.022) −.089*** (.018) −.100* (.026) 2,060

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to individuals who were 14 to 17 years old 
at the baseline survey in 1979 (n = 5,582), who had completed at least the 12th grade (n = 4,548), and who had no missing data on the outcome 
(n = 4,382). College completion is measured as a 4-year degree completed by age 25. Estimates are based on IPW, NN matching with four control 
units per treated unit on the linearized propensity score, and causal forest (grf) estimates applied to each partition. ASVAB = Armed Services 
Vocational Aptitude Battery; grf = generalized random forest; IPW = inverse propensity weighting; L = leaf; NN = nearest neighbor. Shading 
indicates instability in the partitions.

*
p ≤ .05

**
p ≤ .01, and

***
p ≤ .001 (two-tailedtests).
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Table 7.

Sensitivity Parameters for Recursive Partitioning Results

Partitions

Sensitivity Parameters Treatment Effects

γ λ CATE CI

L1: mothers’ education < 12 10% −10% −.210 (−.293 to −.127)

20% −10% −.200 (−.283 to −.117)

40% −10% −.180 (−.263 to −.097)

L2: L1 & number of siblings > 2 10% −10% −.241 (−.329 to −.153)

20% −10% −.231 (−.319 to −.143)

40% −10% −.211 (−.299 to −.123)

L3: L2 & low control ≥ 10 10% −10% −.308 (−.431 to −.185)

20% −10% −.298 (−.421 to −.175)

40% −10% −.278 (−.401 to −.155)

L4: L2 & low control < 10 10% −10% −.166 (−.291 to −.041)

20% −10% −.156 (−.281 to −.031)

40% −10% −.136 (−.261 to −.011)

L5: L4 & female 10% −10% −.160 (−.352 to .032)

20% −10% −.150 (−.342 to .042)

40% −10% −.130 (−.322 to .062)

L6: L4 & male 10% −10% .133 (.427 to −.162)

20% −10% .143 (.437 to −.152)

40% −10% .163 (.457 to −.132)

L7: L1 & number of siblings < 2 10% −10% −.033 (−.273 to .207)

20% −10% −.023 (−.263 to .217)

40% −10% −.003 (−.243 to .237)

L8: mother’s education ≥ 12 10% −10% −.140 (−.197 to −.083)

20% −10% −.130 (−.187 to −.073)

40% −10% −.110 (−.167 to −.053)

L9: L8 & ASVAB scale < −.44 10% −10% −.345 (−.546 to −.145)

20% −10% −.335 (−.536 to −.135)

40% −10% −.315 (−.516 to −.115)

L10: L8 & ASVAB scale ≥−.44 10% −10% −.090 (−.140 to −.039)

20% −10% −.080 (−.130 to −.029)

40% −10% −.060 (−.110 to −.009)

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to individuals who were 14 to 17 years old at 
the baseline survey in 1979 (n = 5,582), who had completed at least the 12th grade (n = 4,548), and who had no missing data on the outcome (n = 
4,382). College completion is measured as a 4-year degree completed by age 25. ASVAB = Armed Services Vocational Aptitude Battery; CATE = 
conditional average treatment effect; CI = confidence interval; L = leaf.
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