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Abstract 

Much research effort has been expended improving police 
lineup procedures used in collecting eyewitness identification 
evidence. Sequential presentation of lineup members, in 
contrast to simultaneous presentation, has been posited to 
increase witness accuracy, though analyses based in Signal 
Detection Theory (SDT) have challenged these claims. A 
possible way to clarify the effect of presentation format on 
witness accuracy is to develop SDT-based measurement 
models, which characterise decision performance in terms of 
psychologically-relevant parameters, particularly discrimin-
ability and response bias. A model of the sequential lineup 
task was developed with a “first-above-criterion” decision 
rule, alongside a simultaneous model with a “maximum 
familiarity” decision rule. These models were fit to a corpus 
of data comparing simultaneous and sequential lineup 
performance. Results showed no difference in 
discriminability between the procedures and more 
conservative responding for the sequential lineup. Future 
work will examine criterion setting in the sequential lineup 
and model alternative decision rules.  

Keywords: Eyewitness identification; Signal Detection; 
memory 

Introduction 

Typical six-person lineups used in police investigations 

consist of one suspect, whom police believe may be guilty 

of a crime, and five known-innocents called variously 

“fillers’ or “foils”, selected to resemble the suspect in 

specified ways (Clark, 2012). A witness may identify (ID) a 

person from the lineup or reject the lineup (“the person I 

saw is not here”), and may provide a confidence rating for 

their choice. In experimental mock-crime studies, a lineup is 

referred to as target-present (TP) if it includes the person 

observed by the witness at encoding (the “culprit”) or target-

absent (TA) if it is composed entirely of fillers.  

Possible decision outcomes are expressed as rates or 

proportions over a series of trials. From a TP lineup, 

witnesses may correctly ID the culprit, incorrectly ID a foil 

or incorrectly reject the lineup. From a TA lineup, witnesses 

may correctly reject the lineup or incorrectly ID a foil, 

known as a false alarm.  

The members of a lineup may be presented 

simultaneously, where the witness makes a single decision, 

or sequentially, where the witness makes a yes/no decision 

for each member before seeing the next. In experimental 

studies, the sequential procedure terminates once an ID is 

made, although variations of the procedure are used in 

applied settings (Horry, Palmer & Brewer, 2012). Whether 

presentation format affects witness accuracy has received 

significant research attention (Steblay, Dysart & Wells, 

2011). Initial work by Lindsay and Wells (1985) found that 

the sequential procedure produced a marked reduction in 

false ID rate, a desirable outcome, and a slight reduction in 

correct ID rate compared to the simultaneous procedure. 

Numerous subsequent studies and two meta-analyses 

(Steblay et al., 2011) have supported this pattern of results 

and, although the effect has not always been found (Dobolyi 

& Dodson, 2013) and seems to have weakened with time 

(Moreland & Clark, 2016), evidence for sequential 

superiority has been persuasive enough for the procedure to 

be adopted in the United Kingdom and in many jurisdictions 

in the United States (Clark, 2012).  

Signal Detection Theory Advantage 

Recently, researchers have advocated the use of analyses 

based in Signal Detection Theory (SDT) to evaluate lineup 

procedures (Mickes, Flowe & Wixted, 2012). SDT is an 

approach used to analyse decision performance in a wide 

variety of areas in which a target, such as an enemy jet on 

radar or a tumor on an x-ray, must be discriminated from 

similar non-targets under conditions of uncertainty. In its 

most basic form, it characterises decision performance as 

resulting from two sources; discriminability (d’), related to 

how well a witness can distinguish targets from non-targets, 

and response bias or criterion (c), related to overall 

willingness to make a decision (MacMillan & Creelman, 

2005). Claims of superior performance for the sequential 

procedure have been based on findings of a higher ratio of 

correct ID rates to false ID rates – the so called 

“diagnosticity ratio” – compared to the simultaneous 

procedure (Steblay et al., 2011). However, Mickes et al. 
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(2012) have shown that diagnosticity confounds 

discriminability and response bias. In fact, analysis of lineup 

data using SDT reveals that there are a range of different 

diagnosticity ratios associated with the same lineup 

procedure and that, necessarily, the ratio increases as 

response bias becomes more conservative, i.e. as people 

reject more frequently (Wixted & Mickes, 2012). SDT 

avoids this problem by computing all empirical or 

hypothetical correct ID/false ID pairs, which can then be 

plotted and analysed. Further, formal modelling of the task 

allows estimation of the entire response curve from 

estimated parameters – allowing tests of hypotheses about 

the impact of system variables such as lineup member 

similarity on theoretically relevant parameters. 

Measurement Models  

A measurement model uses theoretically-derived 

mathematical functions to link observed behavioural data to 

psychological constructs. Psychologically meaningful 

model parameters are estimated by fitting the model to 

observed data (Farrell & Lewandowsky, 2010).  

 Palmer and Brewer (2012) sought to address the need for 

formal modelling of the lineup task by fitting a SDT 

compound detection model (SDT-CD; Duncan, 2006) to a 

corpus of studies that compared simultaneous and sequential 

lineup data. The ‘compound’ aspect of SDT-CD refers to 

the fact that a lineup can be decomposed into two decision 

tasks; target detection (is the target present?) and target 

identification (if the target is present, which member is the 

target?). Results showed that the simultaneous and 

sequential lineups did not significantly differ in terms of 

discriminability but that the sequential procedure led to 

more conservative responding.  

However, there were critical aspects of the analyses 

conducted by Palmer and Brewer (2012) that may have 

affected their results. First, the SDT-CD model was 

developed to account for simultaneous presentation of 

stimuli – it does not directly model the sequential procedure. 

For this reason, we develop and apply a formal model of the 

sequential procedure. Second, the best-fitting parameter 

values reported by Palmer and Brewer (2012) may not have 

been optimal as they appear not to have been estimated by 

an optimization procedure. For this reason, we fit the two 

models using a computational optimization routine. Third, 

given distinct models of simultaneous and sequential 

procedures, it is important to explore the dependence of 

each task on the criterion that is set by the witness. Previous 

research (Horry et al. 2012) has highlighted the 

vulnerability of the sequential task to criterion setting so we 

compare the simultaneous and sequential models in terms of 

their dependence on the decision criteria. 

New Models 

Both the simultaneous and sequential models assume an 

underlying unequal variance SDT model based on prior 

recognition memory research (Mickes, Wixted & Wais, 

2007). Figure 1 illustrates this model for a single person 

lineup.  Each member of a lineup is associated with a 

particular value of memory strength or familiarity. Foil 

familiarity on both TP and TA trials is modelled as a 

random draw from a normal distribution (dashed line in 

Figure 1) with mean zero and standard deviation one. Target 

familiarity is modeled as a random draw from a normal 

distribution (solid line in Figure 1), with a mean d’ and 

standard deviation s.  

A decision is made in relation to a decision criterion, c. 

This functions as a ‘choice threshold’ and reflects response 

bias. If familiarity is greater than c, the witness will identify 

the lineup member as the culprit. Otherwise, they reject the 

lineup. The greater the value of c, the more conservative is 

the decision and the less likely that an ID is made.  

The following functions define the hit rate (h) and false 

alarm rate (f), where Φ(.) is the normal cumulative 

distribution function: 

h(c) = 1 – Φ((c – d’)/s) 

f (c) = 1 – Φ (c) 

For an n=1 lineup, h is the correct ID rate and f is the false 

ID rate. 

 

Figure1: Basic representation of the unequal variance 

signal detection model 

 
 

Simultaneous Model (SDT-SIM). In a simultaneous 

lineup, there are n > 1 members where typically, n = 6. Let 

x1, …, xn be the familiarity values of each member of the 

lineup and let m the maximum of these values. The SDT-

SIM model implements the decision rule to choose member 

k if m > c and m = xk, otherwise to reject the lineup. For a 

TP lineup, if a choice is made and member k is the target, a 

correct ID has been made, otherwise, a foil ID has been 

made. Any selection on a TA lineup is a false alarm.  

 

Sequential Model (SDT-SEQ). In a sequential lineup, the 

witness makes a decision for each member, presented in a 

fixed order labelled by indices, from 1 to n. Let K be a 

subset of these indices, such that xi > c for all i  K. If K is 

empty then the lineup is rejected, otherwise the witness 
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chooses member k where k is the smallest (i.e. the first) 

element in K. For a TP lineup, if a choice is made and 

member k is the target then a correct ID has been made, 

otherwise an incorrect ID is made. Any selection on a TA 

lineup is a false alarm.  

  

Summary & Aims 

Despite recent efforts to apply SDT to eyewitness 

identification, there has been no attempt to model the 

sequential lineup task taking account of the differences in 

the decision rule and the importance of criterion setting for 

response probabilities. We offer, to our knowledge, the first 

formal measurement model of the sequential lineup. 

Further, previous research did not use optimization routines 

to find the best fitting parameters for the data, and thus the 

conclusions may be different. Finally, the application of 

formal models in the eyewitness identification domain 

highlights the most important factors likely to impact on the 

rates of false identifications of innocent people and failure 

to detect the presence of a guilty suspect. In summary, the 

aims of the present study are: 

1.  To implement a formal model of the sequential 

lineup procedure (SDT-SEQ). 

2.  To reanalyse the data reported by Palmer and Brewer 

(2012), fitting SDT-SIM to the simultaneous lineup 

results and SDT-SEQ to the sequential lineup 

results. 

3.  To compare SDT-SIM and SDT-SEQ in terms of 

their dependence on parameter values, particularly 

decision criterion.  

 

Method 
Studies Analysed 

A corpus of 22 studies (N = 3871) assembled by Palmer and 

Brewer (2012) that directly compared simultaneous and 

sequential presentation, making 44 data sets in all, was 

reanalysed. Following Steblay, et al.’s (2011) ‘full 

diagnostic design’ inclusion criteria the studies all a) 

manipulated both presentation format and target 

presence/absence, b) showed ID performance above chance 

levels and c) involved only adult participants.  

Statistical Analyses 

SDT-SIM and SDT-SEQ were fit using optimization of 

maximum likelihood (implemented using Matlab 

FMINCON function). This searches parameter space for 

values of d’ and c that best characterise observed decision 

performance. We report goodness-of-fit in terms of the G2 

statistic which is a function of the maximum likelihood and 

distributed as chi-squared. 

 

Statistical Considerations. Due to a lack of confidence 

rating data in many of the studies analysed, the standard 

deviation of the target distribution (s) was not estimated. 

Instead, the value of s was fixed to one. This is a plausible 

assumption in the eyewitness paradigm where each 

participant encodes a single study item (the culprit). The 

greater variance of the target distribution observed in 

recognition memory research may be attributed to encoding 

variability across a range of study items (Mickes et al., 

2007).  

Additionally, Palmer and Brewer (2012), following 

Duncan (2006), used a relative measure of criterion value 

with the zero point positioned between the target and lure 

distributions, i.e. C = c  d’/2. Both absolute (c) and relative 

(C) criteria are reported here. 

Results 

The new models fit the data well; SDT-SIM could not be 

rejected for 19 of 22 simultaneous data sets, as indicated by 

non-significant values of G2. The model was rejected for 

data from Carlson, Gronlund and Clark (2008; Experiment 

2), Lindsay and Wells (1985), and Rose, Bull and Vrij 

(2005). SDT-SEQ was also not rejected for 19 of 22 

sequential data sets but was rejected for data from Carlson 

et al. (2008; Experiment 2),  Lindsay and Wells (1985), and 

Pozzulo and Marciniak (2006). The SDT-CD model was 

also rejected for data from Carlson et al. (2008; Experiment 

2), Lindsay and Wells (1985) and Pozzulo and Marciniak 

(2006), in addition to Greathouse and Kovera (2009).  

 Taking the parameter values estimated for each dataset, 

average values of d’, c and C were calculated over the 

corpus of data, weighted according to sample size. Table 1 

displays the summary results obtained by Palmer and 

Brewer (2012) obtained from fitting the SDT-CD model 

(equivalent to the SDT-SIM model) to data from both 

simultaneous and sequential lineups, compared to the 

summary results obtained by fitting the SDT-SIM model to 

data from both simultaneous and sequential lineups, and 

fitting the SDT-SEQ model to data from sequential lineups. 

  

Table 1: Mean weighted parameter values from SDT-CD, 

SDT-SIM and SDT-SEQ 

 

SDT-CD d' c C 

Simultaneous 1.64 -.06 -.89 

Sequential  1.74 .44 -.43 

SDT-SIM    

Simultaneous 1.37 1.21 .53 

Sequential 1.33 1.53 .87 

SDT-SEQ    

Sequential 1.40 1.55 .85 

 

The first step in our analysis was to fit SDT-SIM to both 

simultaneous and sequential datasets, attempting to recover 

a similar pattern of results to those obtained by Palmer and 

Brewer (2012). Fitting SDT-SIM to all datasets produced a 

similar pattern of estimates to SDT-CD, with a significantly 

higher mean weighted C value for the sequential datasets, as 

indicated by a Welch two-sample weighted t-test, t(36.42) = 

-3.89, p<.05, and no significant difference in mean 
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weighted d’ values between simultaneous and sequential 

datasets, t(41.67) = .34, p = .73.  

The second step was to compare the parameter values 

recovered by fitting SDT-CD and SDT-SIM/SEQ. Figures 2 

and 3 plot the estimated parameter values recovered for each 

data set when fitting SDT-CD to both simultaneous and 

sequential datasets and SDT-SIM and SDT-SEQ to their 

respective datasets. 

 

Figure 2. C vs d’ estimates for all datasets SDT-CD 

 

 
Figure 3. C vs d’ estimates for all datasets SDT-SIM/SEQ 

 

 
 

The difference in y-axis range between Figure 2 and 

Figure 3 indicate that fitting SDT-SIM and SDT-SEQ to 

their respective datasets produced higher criterion estimates 

compared to SDT-CD. Welch two-sample weighted t-tests 

indicated that mean weighted C was significantly higher for 

SDT-SIM, t(36.74) = -16.41, p<.05, and SDT-SEQ, t(38.91) 

=  -9.87, p<.05, compared to mean weighted C from SDT-

CD for simultaneous and sequential datasets respectively. 

There was no difference in mean weighted d’ for SDT-SIM 

compared to SDT-CD as fit to simultaneous datasets, 

t(40.33) = 1.89, p = .06, however mean weighted d’ for 

SDT-SEQ was significantly lower than SDT-CD as fit to 

sequential datasets t(33.76) = 2.11, p<0.5.  

The final stage of the analysis was to compare C and d’ 

values generated by fitting SDT-SIM and SDT-SEQ to their 

respective data types, as displayed in Figure 3. Examining 

Figure 3 reveals a cluster of sequential datasets with higher 

C values than the cluster of simultaneous datasets. A Welch 

two-sample weighted t-test, t(35.03) = -3.53, p<.05, 

indicated that the mean weighted C value of the sequential 

datasets as estimated by SDT-SEQ was significantly higher 

than that of the simultaneous datasets as estimated by SDT-

SIM.  

There are no such patterns evident relative to the 

horizontal axis, with d’ values for most of the datasets 

clustered from approximately 1 to 2. No significant 

difference between the mean weighted d’ values for the 

simultaneous and sequential datasets was found, t(41.54) = -

.28, p = .81. 

Discussion 

The present study developed and fit two SDT-based formal 

measurement models of the simultaneous (SDT-SIM) and 

sequential (SDT-SEQ) eyewitness lineup task to a corpus of 

data collected by Palmer and Brewer (2012) using an 

optimization procedure, and compared the model’s 

dependence on the parameters discriminability (d’) and 

response bias (c) in order to better understand decision 

performance on the lineup task.  

Fitting SDT-SIM to both simultaneous and sequential 

data, following Palmer and Brewer (2012), produced similar 

parameter estimates to those generated by fitting SDT-CD, 

with results suggesting that the sequential procedure 

encourages more conservative responding but does not 

differ in discriminability. Fitting SDT-SIM and SDT-SEQ 

to their respective data types further reinforced this pattern 

of results, supporting the conclusions reached by Palmer 

and Brewer (2012). 

Compared to SDT-CD, SDT-SIM and SDT-SEQ 

produced higher criterion estimates for their respective data 

types while, while SDT-SEQ also produced lower 

discriminability estimates. The difference in parameter 

values between Palmer and Brewer (2012) and the results 

here is likely due to the task and fitting the models using an 

efficient optimization procedure rather than grid search.  

While no discriminability differences were reported here 

or in Palmer and Brewer (2012), previous studies using 

ROC analysis to calculate observed discriminability from 

rating data have shown a discriminability advantage for the 

simultaneous lineup (Dobolyi & Dodson, 2013; Mickes et 

al., 2012). Results here do not necessarily contradict these 

findings, as simulations can generate different shaped ROC 

curves from different ID procedures despite holding 

theoretical d’ constant between them (Rotello & Chen, 

2016). The relationship between theoretical d’ as estimated 

by SDT-SIM and SDT-SEQ and observed “Area Under the 

Curve” measures of d’, as used in ROC analysis, will likely 

be investigated in future work with new data that includes 
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confidence ratings. Regarding theoretical discriminability, 

these results challenge the diagnostic feature detection 

model (Wixted & Mickes, 2014) that proposes a 

discriminability advantage for the simultaneous lineup 

arising from witnesses’ ability to identify diagnostic 

features between lineup members.   

The more conservative decision criterion observed on the 

sequential lineup can be explained by differences between 

its “first-above-criterion” identification rule of SDT-SEQ 

and the “maximum familiarity” rule of SDT-SIM. This 

difference becomes evident as the decision criterion is made 

more lenient. In the limit, the most liberal decision criterion 

(i.e. always choose) in the sequential lineup results in 

selection of the first lineup member, leading to chance 

performance; a correct ID rate of 1/6 for TP lineups and a 

false alarm rate of 1/6 for TA lineups. In contrast, the 

“maximum familiarity” rule of SDT-SIM means that, for the 

most liberal decision criterion, the witness always chooses 

the most familiar lineup member. If d’ > 0, the lineup 

member with maximum familiarity in TP lineups is more 

likely than other members to be the target, leading to a 

correct ID rate greater than 1/6, while for TA lineups the 

false ID rate remains at 1/6. The effect of this difference is 

that in order for ID performance to be comparable between 

simultaneous and sequential lineups, the latter requires a 

more conservative decision criterion.  

Based on the present findings, any performance advantage 

attributed to the sequential procedure is likely due to a 

stricter decision criterion, not improved discriminability. 

This suggests that changes in lineup procedure do not alter 

underlying memory strength. Rather, the quality of memory 

information available to a witness is largely determined at 

encoding by factors such as distance, lighting and exposure 

time (Maclin, Maclin & Malpass, 2001).  The present 

findings also do not support of the proposal that 

performance differences are the result of procedural effects 

on retrieval or reconstructive memory processes taking 

place during a lineup decision as these are likely to affect 

discriminability (Ebbesen & Flowe, 2002). 

Wells (2014) acknowledged the mounting body of 

evidence showing that any perceived sequential lineup 

advantage is the result of a more conservative decision 

criterion but contends that it is more useful in applied 

settings no matter the source of any performance difference. 

As other researchers have noted (e.g. Clark, 2012), 

conservative responding reduces both false IDs and correct 

IDs. If policy makers consider conservative responding in 

the lineup task desirable, such an affect could be achieved 

by simpler means than retraining police to administer 

lineups sequentially, such as instructing witnesses to be very 

careful in their choosing or by only counting IDs made at 

high confidence (Wixted & Mickes, 2012). 

Limitations 

Decision Strategy. The present work uses an absolute 

decision strategy for both the simultaneous and sequential 

models, despite the simultaneous lineup’s long association 

with the so-called relative judgement strategy (Wells, 1984). 

Wells (1984) proposed that the increased innocent suspect 

ID rate of the simultaneous procedure may be due to the 

tendency for witnesses to compare across lineup members, 

selecting the one that most resembles their memory of the 

perpetrator relative to the other members, rather than 

comparing each lineup member directly to their memory of 

the perpetrator as in the absolute decision strategy (cf. 

Wixted & Mickes, 2014). The absolute vs. relative 

distinction has gained some traction in the literature and has 

received some empirical investigation, although the 

superiority of one strategy over the other has not been 

demonstrated (Fife, Perry & Gronlund, 2014). In line with 

our present approach, formal modelling of the relative 

decision strategy could clarify the utility of the 

absolute/relative distinction to understanding lineup 

performance.   

One option for implementing relative judgement is to use 

the difference in familiarity between the lineup member 

with maximum familiarity (m) and the next-most-familiar 

lineup member, which seems to accord with Wells’ (1984) 

description. The rule would be; if this difference score 

exceeds a criterion, then choose the lineup member with 

maximum familiarity, otherwise reject the lineup. We are 

currently developing a formal model based on this rule. 

Future Directions 

Criterion Shift in Sequential Lineup. The present work 

demonstrates that the sequential lineup decisions are 

critically affected by the placement of the decision criterion. 

A further question is whether the decision criterion may 

change over the course of the lineup. In an attempt to 

forestall such changes, Horry, Palmer and Brewer (2012) 

investigated the efficacy of “backloading”, telling the 

witness that they will be viewing more photos than there are 

lineup members. The results indicated that the more 

photographs the witness was told to expect, the more 

conservative were their decision criteria. On non-

backloaded lineups, foil choices increased in the later lineup 

positions. Because Horry, Palmer and Brewer (2012) fit 

SDT-CD to the data to generate parameter estimates, future 

research could explore whether these conclusions remain 

valid after fitting the SDT-SEQ model to these data.  

Conclusion 

This study presents two formal measurement models of the 

simultaneous and sequential lineup tasks, which were fit to a 

large corpus of data using computational optimization. The 

development of a sequential model is particularly 

noteworthy, it being, to our knowledge, the first of its kind 

in the eyewitness literature. Results show no difference in 

discriminability between the two procedures and a more 

conservative decision criterion in the sequential procedure. 

The models offer a means to investigate the effects of 

system variables on eyewitness performance in terms of 

theoretically relevant underlying parameters, demonstrating 

the value of formal modelling in applied research.   
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