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Efficient image annotation is necessary to utilize deep learning object recognition neural networks in nuclear
safeguards, such as for the detection and localization of target objects like nuclear material containers (NMCs).
This capability can help automate the inventory accounting of different types of NMCs within nuclear storage
facilities. The conventional manual annotation process is labor-intensive and time-consuming, hindering the
rapid deployment of deep learning models for NMC identifications. This paper introduces a novel semi-
automatic method for annotating 2D images of nuclear material containers (NMCs) by combining 3D light
detection and ranging (LiDAR) data with color and depth camera images collected from a handheld scan
system. The annotation pipeline involves an operator manually marking new target objects on a LiDAR-
generated map, and projecting these 3D locations to images, thereby automatically creating annotations from
the projections. The semi-automatic approach significantly reduces manual efforts and the expertise in image
annotation that is required to perform the task, allowing deep learning models to be trained on-site within
a few hours. The paper compares the performance of models trained on datasets annotated through various
methods, including semi-automatic, manual, and commercial annotation services. The evaluation demonstrates
that the semi-automatic annotation method achieves comparable or superior results, with a mean average
precision (mAP) above 0.9, showcasing its efficiency in training object recognition models. Additionally, the
paper explores the application of the proposed method to instance segmentation, achieving promising results
in detecting multiple types of NMCs in various formations.

1. Introduction annotation process requires the masks or bounding boxes outlining
the target objects to be manually placed onto the images one by one

Over the past decade, immense progress in object recognition has using bounding box/mask labeling software. Only after that can the

been made by utilizing deep learning algorithms. This growth has
permitted machines to recognize and localize target objects in real
time. This ability finds various applications to improve process effi-
ciency in nuclear safeguards by simplifying time-consuming inspection
tasks (Haddal and Hayden, 2018). One of these applications, crucial
to nuclear material accountancy, is object localization and counting.
For example, a typical nuclear storage facility could contain hundreds
of nuclear material containers (NMCs) lying on the floor or stacked
on shelves. Having a trained object recognition model combined with
other sensor data can be used to locate and estimate the number
of these objects and simplify the workload of inspectors consider-
ably (Salathe et al., 2024). However, preparing an annotated ground
truth dataset to train these object recognition neural network models
is a tedious and manually intensive task. The current standard object
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annotated images be used to train a deep-learning computer vision
model for object recognition. By automating the annotation process, the
entire process from data annotation to object recognition can become
more streamlined, and manual efforts can be minimized.

This paper presents a novel method to create annotated images of
new objects requiring little human intervention. First, the inspector
scans the room with a handheld multi-sensor system and collects a
dataset of target containers. The inspector then marks the locations of
the new target objects on a map created with the LiDAR data. The loca-
tions of the objects are then transferred to the images and the objects’
annotations are automatically created. This procedure will allow deep-
learning models of new types of NMCs to be trained on-site within a
few hours. On-site model training is important as nuclear facilities are
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Fig. 1. Rendering (top) and photograph (bottom) of the CLAMP system.

sensitive and carrying facility imagery outside or uploading onto the
cloud is often not possible.

The following sections will describe the hand-held system and the
collection and annotation of relevant data with the semi-automatic
annotation procedure. It then compares the performance of neural
networks trained with semi-automatically annotated data, commer-
cially annotated data, and manually annotated data. It will be shown
that the semi-automatic annotation process produces annotated data
of similar quality compared to the manually annotated process. This
new annotation procedure would allow for thousands of images to be
annotated in less than 20 min instead of hours, and then allow for the
object recognition neural network model to be trained within the same
day the data is collected.

2. Relevant work

Detecting uncommon objects with specific characteristics such as
NMCs differs from object recognition of common everyday objects en-
countered in fields such as autonomous vehicles and robotics. Training
data for common objects such as people, vehicles, and bicycles can
all be found in open-source annotation datasets such as COCO and
ImageNet (Lin et al., 2014; Deng et al.,, 2009; Tian et al., 2020).
However, there is no existing annotated dataset for any type of NMC.
Furthermore, although most classes of NMC have the same shape and
color, the subtle difference in size and they way their bolts look are
the only few features that distinguish them from each other. Object
recognition labels are generally either in a rectangular bounding box
format or polygon mask format that outlines the edges of the object
shape. The quality of a new ground truth dataset with annotated NMCs
will significantly impact the performance of the object recognition
model trained on it.
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Although there can be drawbacks associated with human-annotated
datasets including time, effort, and errors, this method is often still
used for annotation of new objects that require domain-specific knowl-
edge (Wei et al., 2022). Commonly used methods involved using la-
beling tools such as “Labelimg” or “CVAT” to display the images one
by one and have an annotator manually place and adjust the size
of the bounding boxes or polygon masks on target objects (Tzutalin,
2015; Intel, 2020). Many studies have investigated the impact of vari-
ances and inaccuracies of human-drawn bounding boxes on neural
network performance (Wu et al.,, 2023) and instructions for how to
draw optimal bounding boxes are readily available (Rizzoli, 2021).
To achieve consistent performance with such a manually annotated
dataset, the annotation task needs to be performed by someone trained
in annotating objects for deep learning models. This is not desirable
in safeguard applications as the operators in the field are typically not
trained in proper image annotation techniques, nor do they have the
time to do so.

Many commercial and open-source 2D image and 3D point cloud
annotation tools are available (The MathWorks, Inc., 2022; OU, 2023).
The annotation step can also be outsourced to annotation services
with detailed instructions guiding bounding box drawing such as Ama-
zon Sagemaker (Amazon Web Services, Inc., 2023b). However, the
turnaround time to receive the annotations back from commercial ser-
vices is generally a bit longer and more error-prone than labeling them
internally. Using external services is also not feasible for annotating
classified images.

Efficient annotation approaches minimizing human involvement are
discussed in the literature. One method is to use neural networks to de-
tect objects in images and draw bounding boxes or masks around them
or, in the case of 3D, implement neural network object recognition on
LiDAR point clouds (Chen et al., 2022). These neural networks often
leverage automation techniques to produce training data; for example,
using similarity metrics to validate object type (Radenovic et al., 2019),
or using features of the data, such as whether or not an object is
moving, to generate a label for that object. Other methods utilize key
points of an object to define the physical extent and highlight features
of an object (You et al., 2020). There have also been explorations
on semantically segmenting the precise object contours via foreground
segmentation given approximate object locations (e.g. manually labeled
bounding boxes) in a point cloud, and prior knowledge of object
shapes (Chen et al., 2014). Recently, large commercial companies have
branched into the image annotation space, such as META, with the
“Segment Anything” tool which can create mask segmentation of an
object after a single click by the user; however, it requires a GPU to
efficiently run. Furthermore, the segmented masks do not contain any
class labels (Kirillov et al., 2023).

While these methods hold promise for speeding up the annotation
process or improving precision, many still depend on COCO and Im-
ageNet annotations, and humans are generally required to validate or
edit the annotations. Furthermore, typical safeguard scenarios require
operations in areas with many other similarly shaped and colored
objects; so these methods would not produce high accuracy in locating
and annotating NMCs. Hence, an algorithm that can fill a niche of
efficiently annotating static objects of simple shapes and minimizes
manual effort, time, and annotation domain expertise while retaining
label accuracy is desirable.

3. Data collection
3.1. Sensor system

The Container Localization and Mapping Platform (CLAMP), shown
in Fig. 1, was used to collect the datasets discussed in this work. It is

a free-moving scanning system, that was designed to map an indoor or
outdoor facility and determine how many nuclear material containers
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(NMCs) are present in near real-time when carried through a facility
during an inspection.

Installed sensors are an Advanced Navigation Spatial Inertial Nav-
igation System INS (Advanced Navigation, 2023), an Intel RealSense
D455 depth camera (Intel Corporation, 2023), and a 16-beam Velodyne
PUCK LITE LiDAR (Velodyne Lidar, Inc., 2023). For performing all real-
time computational tasks the sensors are connected to an Intel NUC
i7 edge computer (Simply NUC, 2023). The system is powered by two
99 Wh batteries providing a multi-hour battery life and enabling hot
swapping of batteries to assure uninterrupted operation beyond the
battery life. Including the two batteries, the system weighs around 8 1bs.
In Fig. 1, a CAD drawing of the design and a photograph of the realized
system is shown.

The system’s software stack is dockerized (Docker, Inc., 2023), as-
suring stable and consistent operation. It leverages the Robot Operating
System (ROS) (Open Source Robotics Foundation, Inc., 2023) to collect
time-synchronized sensor data, to process data in real-time for data
quality checks, and to store raw data streams on disk. A local web-
server hosts the User Interface (UI) which gives an operator the ability
to start and stop measurements and to inspect some of the sensor
outputs to assure consistent sensor data quality.

3.2. Data collection

The CLAMP unit was brought to the Nevada National Security
Sites in September 2021 and in May 2024. For each configuration
of containers, the facility was scanned with the CLAMP unit which
simultaneously collects color images, depth images, and 3D LiDAR
data. In Fig. 3 a top-down map from a simple measurement scenario
is shown, and a more challenging scenario is displayed in Fig. 8.

Empty AT-400 containers, stainless steel drums that are typically
used to hold fissile materials (Gilbert et al., 2016), were the only
type of container available during the first data collection campaign
in 2021. Fig. 2 shows an example of AT-400 containers in the facility.
These containers serve as an example NMCs and are small enough to
be reconfigured without the need for heavy machinery. During the
measurements, 12 AT-400 containers were available and 11 different
configurations of the 12 containers were laid out for data collection.
Some configurations had very simple container formations where the
containers were all unobstructed standing upright and individually
scattered across the floor. Some other configurations had more complex
container formations where containers were tightly packed in a big pile
with some laid down on the side and some standing upright. Addition-
ally, in some scenarios, the containers were purposely obstructed by
chairs, pelican cases, and other smaller cylinders during data collection.
The containers were always placed on the floor and never stacked in
this measurement campaign.

In the 2024 measurement campaign, data on 5 additional types of
cylindrical containers were added to further test the feasibility of the
semi-automatic annotation to container localization methodology. All
container types’ names and their approximate sizes are displayed in
Appendix A. Some data was collected indoors and some outdoors and
some AT-400 containers were stacked together on shelves as shown by
Fig. 4.

3.3. Data processing

The LiDAR and inertial measurement unit (IMU) data for each
dataset were processed offline with faster-lio (Bai et al.,, 2022), a
LiDAR-Inertial Odometry toolkit to create a high-fidelity three-
dimensional map of the scene in the form of a point cloud. This point
cloud is essential for the NMC mapping, localization, and counting
analysis, but will be used in the presented work mainly for the semi-
automatic annotation procedure. LiDAR-Inertial Odometry additionally
calculates the poses of the system at any given point in time, and thus
the camera’s location and viewing angle for every image. Furthermore,
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Fig. 3. A top-down view of the resulting point cloud, scale in meters. The black line
displays the trajectory of the system during the measurement.

Fig. 5. Example of AWS annotated images.
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Fig. 6. Examples of mislabeled AWS annotations: Top, containers mislabeled as AT-400
Container by Amazon SageMaker. Bottom, AWS annotations with duplicated bounding
boxes per container and a bounding box not completely covering a container.

thanks to the Realsense camera’s ability to sense depth, each color
image is accompanied by a depth image, defining pixel by pixel how
far away from the camera the represented objects are.

The AT-400 container was selected as the benchmark container
and it is also the most abundant in the collected data. From the 11
different scans of the 2021 measurement campaign, 785 images of
AT-400 containers were selected to comprise the benchmark dataset.
This dataset is randomly split into 262 training images, 262 validation
images, and 261 testing images.

After the 2024 campaign, a second extended dataset was created to
test the semi-automatic annotation performance for labeling various
types of containers by adding 200 images from the 2024 campaign
to each of the original benchmark dataset’s training, validation, and
testing images. Hence, the extended dataset consists of 462 training
images, 462 validation images, and 461 testing images.

3.4. Ground truth and annotation

3.4.1. Amazon SageMaker annotation

The imagery from the benchmark dataset was passed to Ama-
zon Web Services (AWS) Sagemaker Ground Truth annotation ser-
vice (Amazon Web Services, Inc., 2023b). Amazon Sagemaker Ground
Truth annotation service was chosen because it is a very reputable
annotation service; thus, it can serve as a benchmark for commercial
annotation services. The annotation outputs, in the form of bounding
boxes placed around each container, are visualized in an example image
in Fig. 5. The AWS annotated images originally had 4906 labels spread
over the 785 images that were used. However, it was found that some
of the images contained erroneous annotations. Some containers of
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Fig. 7. Examples of Amazon SageMaker producing different incorrect annotations on
the same image: Top, the first round of AWS annotations result. Bottom, the second
round of AWS annotations result.

a different type present in the scene were often mislabeled as AT-
400 containers and some images had duplicate bounding boxes drawn
around the same container. Examples of such false labels are shown
in Fig. 6. Furthermore, when 122 of these images were sent to AWS
again, they were annotated differently than the first time, containing
different sets of false labels. Examples of differences between the two
AWS annotation results can be found in Fig. 7. A second AWS annotated
dataset was created, containing 122 images from the second annotation
request and the remaining 663 images are kept identical to the first
AWS annotated dataset.

3.4.2. Manual annotation

Considerable effort was put into attempting to clean up errors in the
AWS annotations, including multiple rounds of reviews that resulted
in manually removing hundreds of false annotations from each set of
AWS annotations. However, it was found that duplicated bounding
boxes closely overlapping on top of each other were too difficult
to find and correct; thus, all 785 images were manually annotated
with bounding boxes by the authors instead. Therefore, there are four
sets of annotations used in this work: Two annotation sets comprise
the original, unaltered AWS annotations, one fully manually labeled
set, and one with semi-automatic labeled annotations. The manually
labeled annotation set is believed to be the most accurate one and is
used to evaluate and compare the performances of neural networks
trained with annotations created with different methods.
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4. Methodology

The proposed annotation pipeline can be summarized as follows: A
dataset is collected using a new type of NMC or other target objects
placed on the ground. The dataset is processed and a point cloud is
assembled by running the LiDAR-Inertial Odometry algorithm. For each
new type of target object, the operator needs to define the geometric
shape and dimensions in an configuration file. The point cloud is then
presented to the operator in the forms of both a top-down and a
side-view map and allowing the operator to reduce the full map to
a volume containing only objects of interest. This typically removes
clutter from the ceiling and walls so the operator can better zoom in on
the containers. For the second step, the zoomed-in top-down view of the
point cloud is presented to the operator again. This time, the operator
selects the poses of all objects of interest. At that point, the operator
intervention is completed and the algorithm creates a 3D point cloud
model of the object based on the shape and dimensions defined in the
configuration file at the selected location with the selected orientation.
Since a dataset generally contains thousands of images, a blur filter can
select the least blurry images from each video as training images. Then,
the 3D model is projected onto the images. Finally, based on these
projections, the annotations are created and serve as training data for
deep-learning obejct recognition models. As such, the pipeline cannot
be classified as fully automatic, but also requires considerably less user
intervention compared to manual annotation, ergo the semi-automatic
designation of this approach. All scripts for this semi-automatic pipeline
are written in Python3. In the following sections, the various steps will
be presented in more detail.

For this benchmark evaluation, clicking was considered sufficient
for localizing the containers. The blur filters were not used on the
benchmark dataset as images were pre-selected and no further filtering
was done to ensure the exact same images were labeled by different
annotation methodologies for comparison purposes. The rest of the
semi-automatic annotation pipeline was the same as the production
annotation steps described above.

4.1. Estimation of the target object locations

4.1.1. Crop the XYZ ranges of the scene

The full point cloud data of the facility is very large and hinders
the user from focusing on objects of interest. Therefore, the X, Y, and Z
ranges of the point cloud scene are first cut by having the operator click
on two corners of an axis-aligned rectangular cuboid, both in the top-
down view and the side-view of the point cloud scene. Two clicks are
required for each view to uniquely define the cuboid. In the top-down
view, the operator clicks on the top left and the bottom right corner
which indicates the minimum and maximum X and Y range to crop the
point cloud scene as shown in Fig. 8. In the side-view, the operator
indicates the minimum and maximum Z ranges. After applying these
cuts, the following plots are limited to the cropped area, allowing the
user to zoom-in on the objects of interest.

4.1.2. Selection of object poses

The selection of an object’s locations and orientation happens by
presenting the operator with a top-down point cloud view of the facility
and having an operator manually click on a few points on the object’s
surface. It is assumed that the objects to be annotated will mainly
be placed on the ground. However, objects stacked on top of each
other can also be annotated by editing an CSV output file if there are
known heights of the stacked objects. The operator first inputs the
target objects’ dimensions and shapes into a CSV file. The currently
supported shapes are upright cylinders, sideways cylinders, rectangles,
and squares. Other shapes can be added by appending codes in the
script that create 3D geometric models of the user-defined shapes.
Containers that are standing upright and containers lying on their sides
are considered to be two different shapes in the operator input CSV file.
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To select each shape, the operator first presses an associated hotkey
defined in the configuration CSV file; the title of the figure will reflect
the shape that is currently being selected each time a hotkey is pressed.
All points clicked are assumed to be for that selected shape unless the
user presses a new hotkey. In the top-down view, the operator clicks
once for each upright container in the center of the circles forming
the base of the cylinder. The operator needs to click twice on the two
midpoints of the cylinder’s base for containers lying on the side as
shown in Fig. 8; this defines the orientation of the container on the XY
plane of the scene. Although the annotation tool also worked well with
other geometric shapes, for the purpose of NMC inventory accounting,
it is assumed that the only objects of interest are cylindrical.

4.1.3. Computation of estimated centers of containers

Based on the points clicked by the operator, the containers’ centers
in terms of the X and Y coordinates are automatically calculated. It is
assumed that containers are either upright (sitting on the ground plane)
or sideways, lying on the ground plane. The ground plane is found by
finding the plane with the largest support in the point cloud through
the plane segmentation methodology included in Open3D (Zhou et al.,
2018). For an upright container, the central axis is aligned with the
Z axis of the scene; thus, the orientation is unambiguous. Its X and Y
center is where the point is clicked, and the Z center is found by adding
half the height of the container to the ground plane’s Z value. For
sideways containers, the X and Y center is the halfway point between
the two clicked coordinates; the Z coordinate for the center is calculated
by adding the radius of the container to the ground plane’s Z value.
Once the exact center and orientation of each object is known, a 3D
point cloud model of the respective object is placed at that place in the
scene. These 3D models consist of a few thousand points that will be
projected point by point to camera images.

4.2. Selection of least blurry frames

The images from the CLAMP unit are not collected with a video
stabilizer; thus; some of the frames are very blurry. There are two op-
tions included in the labeling tool for selecting images to be annotated.
One is to select the least blurry frame of every N frame where N is a
user-defined integer. The second one is to state the minimum number
of training images to produce, and the tool will automatically calculate
the value of N that produces the minimum defined number of images
after looping through the entire video. The least blurry frame is found
by calculating the Laplacian for every N image and selecting the image
with the maximum Laplacian value (Sagar, 2020).

4.3. 2D projection of point cloud and occlusion removal

The model containers in point cloud form are projected onto each
2D image in the video given the trajectory of the system (position
and orientation as a function of time) and the timestamp of each
video frame. The point cloud in the scene’s 3D coordinate defined with
respect to the global scene. It is first transformed into the camera’s
coordinates, and then hidden point removal is performed to only keep
fractions of the container point clouds that are visible in the camera
image (Katz et al., 2007). The surviving points are projected to pixel
coordinates using the OpenCV projectPoints function (Bradski, 2000) to
form a 2D pixel-mask of the containers. The 2D mask consists of pixels
in the image that map to the geometric 3D point clouds placed in the
scene.
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Fig. 8. Top-down view of the point cloud scene: Two clicks define the X and Y boundaries (shown as an orange rectangular box). Containers are labeled by individual clicks

(shown in red and yellow) after zooming in on the rectangular box.

4.3.1. Occlusion removal

Hidden point removal only accounts for occlusion between the 3-
D model containers and does not account for other objects in the
scene; thus, container point clouds hidden behind annotated objects are
removed, but points hidden behind unannotated objects such as chairs
are not removed by the hidden point removal step. To remove container
masks occluded by unannotated objects, the depth images are used to
determine the distance of each camera pixel from the camera location.
Any pixel with a distance less than the closest edge of the container
including a 25 cm margin must belong to other objects occluding the
container from the camera’s field of view. Hence, those pixels are
removed from the 2D masks of the containers. The 25 cm margin was
obtained through trial and error. The size of the margin can be easily
modified in the configuration file.

4.3.2. Hole filling in point cloud projections

A hull is created with the convexHull function in OpenCV based on
the pixel mask resulting from the previous step. This hull is filled using
the fillPoly function (Bradski, 2000). This step is necessary because the
pixel masks contain holes or gaps due to sparsity in the 3D point cloud
geometric model. The resulting hull fills the entire space that is inside
the outer edges of the pixel mask. The filled polygon mask is projected
onto the selected training image for visualization and inspection. This
process is done for all the NMCs in all images.

4.4. Creation of bounding boxes and mask annotations

Deep learning models for computer vision typically require the
training data to contain image annotations defined in a text file format.

Currently, two different formats are supported: One format is to train
the YOLOvV7 object detection model, and the other format is to train
the YOLOv7 instance segmentation model (Wang et al., 2023). The
YOLOV7 object detection training label format requires the class index,
the normalized x and y centers of the bounding box, and the normalized
width and height of the bounding box. The rectangular bounding boxes’
edges are produced by finding the minimum and maximum x and y
coordinate values of each container’s 2D mask. The class index of the
object is a user-input non-negative integer value. The YOLOV7 instance
segmentation training label format requires the class index and the x
and y coordinates of a polygon that bounds the 2D mask’s outer edge.
The x and y coordinates of the 2D mask outline are produced using the
findContour function in OpenCV (Bradski, 2000). The training images
and the annotations need to have the same file names; the tool uses
the timestamp of the images as the file names for both the images and
annotations.

4.5. Quality check on annotations

At this step, the annotations can be used to directly train a computer
vision model. However, it is good practice to check the annotations to
make sure the bounding boxes and masks are correct. Some of the depth
values in the depth images are erroneous and this can lead to masks
occluded by certain objects not being correctly removed (see an exam-
ple annotated image in Fig. 10). These images are best removed from
the final training dataset through manual inspection. A results viewer
algorithm is run to play the annotated images as a video where both the
masks and bounding boxes are drawn on the images. The operator can
pause the video to remove an image, or manually go through the images
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Table 1

AT-400 object detection model performance comparison.
Training and validation dataset Hyper-parameter Train mAP Validate mAP Test recall@0.2 Test precision@0.2 Test mAP

@0.510U @0.510U confidence threshold confidence threshold @0.510U

First original AWS annotations set Default 0.849 0.851 0.852 0.934 0.900
Second original AWS annotations Default 0.851 0.853 0.866 0.926 0.894
set
Manual annotations Default 0.852 0.853 0.865 0.906 0.908
Semi-automatic annotation tool Default 0.886 0.887 0.870 0.924 0.899
annotations
First original AWS annotations set Optimized 0.851 0.853 0.865 0.928 0.908
Second original AWS annotations Optimized 0.852 0.854 0.870 0.917 0.908
set
Manual annotations Optimized 0.851 0.854 0.866 0.931 0.916
Semi-automatic annotation tool Optimized 0.877 0.880 0.887 0.908 0.914

annotations

Fig. 9. Examples of semi-automatically annotated images. Left, containers in stacks.
Right, four different types of containers.

one by one. The viewer was implemented in Python and allows for
images with issues to be removed from the dataset by pressing a hotkey
during the review process. This process usually takes a few minutes for
each scan of hundreds of images. The remaining annotated images can
be used as the training dataset for either training an object detection
model or an instance segmentation model. Examples of training images
with both bounding boxes and masks produced by the semi-automatic
labeling tool are shown in Fig. 9.

4.6. Deep learning computer vision models

To save time training a neural network and reduce the amount
of training data necessary to achieve good performance, a technique
called transfer learning (Bozinovski, 2020) is leveraged. It requires a
neural network that is already trained on a public dataset with most
of the layers frozen, and only the last couple of layers are allowed to
freely update weights.

4.6.1. AWS rekognition

The first deep learning model considered was AWS “Rekognition”
(Amazon Web Services, Inc., 2023a), a customizable and pre-trained
computer vision platform. Rekognition offers ease of use and direct
linking to other AWS services such as image storage locations and
custom labels from automation tasks. The user just needs to point to
the locations and specify which sets are for training and testing. Rekog-
nition then employs transfer learning and outputs the newly trained
model with performance metrics. Although Rekognition demonstrated
good performance, the lack of user control over model hyperparameters
and training aspects prohibited improving the model. Furthermore, the
Rekognition model is commercial and incurs costs to both train and run
on new datasets.

Fig. 10. An example of occlusion detection errors due to depth measurement inaccu-
racies resulting in three containers masks incorrectly displayed when they should be
mostly behind the chair.

4.6.2. YOLOX and YOLOv7

On the other hand, YOLO models are a widely recognized open-
source deep learning computer vision model producing state-of-the-art
detection accuracies. YOLOX was initially used to benchmark against
Rekognition and it was soon replaced with YOLOv7 which offered im-
proved performance and training speed compared to YOLOX (Ge et al.,
2021; Wang et al., 2022). YOLOV? is a state-of-the-art computer vision
model that performs object detection tasks with the high accuracy
and short prediction time (viso.ai, 2023). YOLOv7’s model architecture
has three main components, a backbone, a neck, and a head. The
backbone is used to extract features of an image, the neck combines
these features and analyzes them, the head predicts the locations and
classes of target objects, and outputs bounding boxes encompassing
the objects (Wang et al., 2022; Roboflow, Inc., 2023). The instance
segmentation model released by YOLOv7 has BlendMask integrated
into YOLOv7 (Chen et al., 2020), and outputs a more precise location
of objects by producing a mask on the pixels that belong to the target
object.

5. Results

5.1. Evaluation of YOLOv7 object detection models trained with various
annotation methods

To compare different annotation methodologies’ impact on object
detection model training, the YOLOV7 object detection model is trained
using the two AWS annotated datasets, the manually annotated dataset
and the semi-automatically annotated dataset. The ground truth used
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Fig. 11. Left, image inference from the best AWS annotations trained model with a false negative. Middle, image inference from manual annotations trained model with a false

negative. Right, image inference from semi-automatic annotations trained model.

for testing are the 261 manually annotated testing images. For consis-
tency, all testing mAP report performance of the trained models on the
same 261 manually annotated images.

5.1.1. YOLOV7 object detection model hyperparameters and runtime

For simplicity, all models are trained with the default image size of
640 x 640 pixels, for 250 epochs, with a batch size of 12. The mod-
els were initially trained using the default YOLOv7 hyperparameters.
This assures consistent outcomes when comparing model performance
for different annotation methods. To further improve the models’ de-
tection performances, these models were also trained with a set of
optimized data-augmentation hyperparameters tuning the model to
use more data augmentation than with the default hyperparameters.
The optimized hyperparameters were found by systematic searches
and successively adjusting data-augmentation hyperparameters that
improved the yolov7 object detection models’ performances. The tuning
of the hyperparameters was done with training images on AT-400
containers that were not part of the benchmark dataset, but it improved
performance for all the models trained in this study as well and was
added for completeness. With more data augmentation, containers are
pasted and rotated more times in the training images than models
with default hyperparameters; thus, the quality of the annotations
will have a greater impact on the model’s performance than models
trained with less data augmentation. Both the default and the optimized
data-augmentation hyperparameters are shown in Appendix B.

The training converges for all eight models, the epoch vs. loss curve
can be found in Appendix C. Each epoch took about 8s to train, thus
the total time required to train a model was around 40 min per model.
The inference time is 5.6 ms per image, which allows for real-time
inferencing. All timing data were measured on a single Nvidia GeForce
RTX 4070 Ti GPU, and will be different on an edge device deployable
in the field.

5.1.2. Metrics

The training, validation, and testing results for the models trained
with both the default and the optimized hyperparameters are shown
in Table 1. The precision is the ratio of the total number of true
positive detections over the total number of detections. The recall is
the ratio of the number of true positive detections versus the number
of ground truth objects. Both metrics depend on the chosen confidence
threshold. By varying the threshold value, different tradeoffs between
precision and recall can be achieved. A threshold-independent metric
is the mAP@0.5I0U, i.e. the mean average precision (mAP) of the
detections with at least a 50 percent intersection over union (IOU)
between the predicted bounding box and the ground truth bounding

box averaged over all classes. The mAP is the metric that generally is
optimized during network training and used for leaderboard scoring in
computer vision challenges.

5.1.3. Performances comparison of various annotation methodologies

The mAPs shown in Table 1 are the average values from running
the model 10 times with 10 different random seeds; with the differ-
ence between the 10 runs being around 0.01. Thus, comparing model
performances using these results is very consistent and reliable. Using
default hyperparameters, the manually annotated dataset performs the
best as expected, and the semi-automatically annotated dataset per-
forms similarly to the first AWS annotation set, with the second AWS
annotation set performing the worst. However, when comparing the
four models trained using the optimized hyperparameters, the semi-
automatic annotated dataset model performed in second place and very
close to the manually labeled model, with an average test mAP being
only 0.2 percent lower; these two models clearly outperform the models
trained with AWS-labeled datasets. Overall, the mAP@0.5I0U of all
models are relatively similar and are all above 90 percent, which is
a very good score for object detection tasks.

Fig. 11 shows example images, where the containers are missed
by the best model trained using the original AWS annotations, but
is successfully predicted by the model trained using manual annota-
tions and semi-automatic annotations. Fig. 12 shows examples where
a false positive prediction was made by models trained using the AWS
annotations and the manual annotations, but not the semi-automatic
annotations.

5.2. Evaluation of YOLOv7 instance segmentation models trained with
various datasets

YOLOV7 instance segmentation models have also been trained with
transfer learning using semi-automatic annotated images. While AWS
is capable of annotating objects in this way, this was not done here
due to the many mistakes found in their object detection bounding
box annotations. Manually labeling images with instance segmentation
annotation as polygon masks would be time intensive and was not
done either. Thus, no AWS or manually annotated dataset is available
to compare instance segmentation performance with. The evaluation
mainly focuses on exploring the difference in accuracy and run time of
the object detection model versus the instance segmentation model, as
well as the impact of the complexity of NMC formations in the training
data on the trained models’ performances. All training, validation, and
testing image annotations resulting from the semi-automatic annotation
tool were manually reviewed for correctness.
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Fig. 12. Left, image inference from the best AWS annotations trained model with two false positives. Middle, image inference from manual annotations trained model with a false

positive. Right, Image Inference from Manual Semi-automatic Annotations Trained Model.

5.2.1. YOLOv? instance segmentation model hyperparameters and runtime

All Models are trained with images of size 640 x 640 pixels, for
350 epochs, with a batch size of 12. The model with the benchmark
dataset was initially trained with default data-augmentation hyper-
parameters, then these hyperparameters were tuned to optimize the
validation results. Both the results with default hyperparameters and
with tuned hyperparameters are reported in Table 2. Since the op-
timized hyperparameters performed better, all models trained using
other datasets were trained directly on the optimized hyperparameters.
Both sets of hyperparameters are shown in Appendix B.

The instance segmentation models were all trained and inferenced
using a single Nvidia GeForce RTX 4070 Ti GPU, and took about 13s
per epoch to train; thus, the total time required to train a model with
transfer learning was close to 80min. All models converged during
training, the epoch vs. loss plots can be found in Appendix C. The
inference time is about 8.7 ms per image, which allows for real-time
inferencing. The durations required for both training and inferencing
are slightly longer than the durations for object detection models.
The instance segmentation model automatically produces bounding box
annotation, derived from the masks predicted by the model. The mAPs
of these bounding boxes are slightly lower for the testing images than
what was observed from the object detection models. Thus, if it is not
necessary to obtain an exact mask on the target objects’ locations, the
object detection model with bounding box outputs is more efficient and
accurate.

5.2.2. Performance comparison of various training datasets

Further explorations were made with the instance segmentation
model to compare the performance of models trained using different
complexities of container formations in training images. The instance
segmentation models trained and validated on the benchmark dataset
comprised 11 scans of various container formations. Another two mod-
els were only trained on images of unobstructed containers not placed
in large piles. This comparison aims to find out how much the model
performance is impacted if the training images contain the same objects
but only in relatively simple formations compared to covering all the
formations present in the testing images. The number of training and
validation images remained at 262 each for the two new training
datasets, but they were all selected from a single scan instead of 11
different scans. In this case, the least blurry image filter was used to
select the least blurry image out of every 10 frames. The training images
and validation images were randomly selected by splitting the full
dataset. One dataset had 12 containers, all individually scattered on the
floor. The other dataset had 12 unobstructed containers placed in rows,
so it is closer to a pile formation. The results for these two datasets are
shown in the last two rows of Table 2. Some example model predictions
for models trained with different datasets and hyperparamaters are
also shown in Figs. 13 and 14. The two models perform significantly

worse than the model trained with the benchmarking dataset. While
their testing precisions at a confidence threshold of 0.2 were only
slightly reduced, the recall values were almost a factor of two smaller.
This shows that the neural network can correctly place masks on
the images but is much more likely to miss or misidentify containers
in arrangements that are not part of the training dataset. It can be
concluded that collecting data of various formations is necessary to
achieve good model performance even with lots of data augmentation
included in the training.

5.3. Evaluation of annotation methodology on various container types

A feasibility study of the semi-automatic annotation methodology
on various container types was done after the 2024 campaign. The
annotated, combined dataset was trained with both the YOLOv7 object
detection model and the YOLOV7 instance segmentation model. Since
it has been shown that the labeling tool is able to produce annotation
quality that is on par with manual annotation, ground truth was
labeled first with the semi-automatic annotation tool and was inspected
manually for correctness. All modelLos are trained with the default
image size, default hyperparameters, and with a batch size of 12 on
a single Nvidia GeForce RTX 4070Ti GPU. The object detection model
was trained for 500 epochs or until convergence with about 15 s per
epoch (full training took about 2.2 h in total). The model required more
epochs to train than training with the benchmark dataset with only
AT-400 containers due to the increased number of container classes.
The instance segmentation model was trained for 350 epochs to reach
convergence with about 26 s per epoch (the full training took about
2.6 h in total). The loss vs. epochs plots for these models can be found
in Appendix C. The inference times of the trained models are similar
to the previously trained object detection and instance segmentation
models; thus, still feasible for real-time detection.

5.3.1. Model performance

The object detection model’s results are shown in Table 3 and the
instance segmentation model’s results are shown in Table 4. It is evident
that both the object detection model and the instance segmentation
model have learned to recognize the different classes of containers.
The object detection model still outperforms the instance segmentation
model. The testing mAPs of the models are all above 0.9 even though
the test images contain complex scenarios such as containers stacked
together, and outdoor and indoor scenes that have not been part of
the training data. Some examples of mask predictions on test images
are shown in Fig. 15. The bottom image shows inference on drone
footage taken outdoors, with the container placed further away than
typically the case during training. Nevertheless, the network was able
to correctly identify the container with relatively high confidence.
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Table 2
AT-400 instance segmentation model performance comparison.
Training dataset Hyper-parameter Train mAP Validate mAP Test Recall @ 0.2 Test precision @ 0.2  Test mAP @ Test mAP (Bounding
@0.510U @0.510U confidence threshold confidence threshold 0.510U Boxes) @0.510U
Original benchmark dataset  Default 0.875 0.839 0.762 0.903 0.822 0.870
hyperparameter
Original benchmark dataset  Optimized 0.867 0.876 0.756 0.918 0.859 0.883
hyperparameter
Unobstructed individually Optimized 0.831 0.788 0.406 0.868 0.477 0.561
positioned containers hyperparameter
Unobstructed containers Optimized 0.980 0.951 0.482 0.849 0.564 0.616
positioned in rows hyperparameter
Table 3
Performance of object detection model (default hyperparameter) trained on multiple container classes.
Object class Train mAP@ Validate mAP@ Test recall@ 0.2 Test precision@ Test mAP@
0.5I10U 0.510U confidence 0.2 confidence 0.510U

AT-400 0.882 0.894 0.843 0.928 0.894

ES-3100 0.952 0.97 0.949 0.946 0.97

9978 0.923 0.953 0.935 0.965 0.953

9975 0.872 0.91 0.836 0.96 0.91

DPP1 0.996 0.978 1 0.847 0.978

DT23 0.946 0.915 0.718 1 0.915

All 0.928 0.937 0.88 0.941 0.937

For both models, the classification accuracy on AT-400 containers
stayed on par with models that were trained with only AT-400 contain-
ers. This demonstrates that the model successfully learned newly added
classes that look similar to AT-400 containers without losing accuracy
in detecting the original AT-400 container classes.

6. Discussions
6.1. Difference between various annotation techniques

Overall, the models trained with all annotation methods performed
very similar with only small differences. The semi-automatic anno-
tations outperformed the AWS annotations, a standard commercial
annotation service, and it performed only marginally worse than anno-
tations that are entirely done manually. Thus, it is a viable technique to
replace the traditional annotation methodology for training computer
vision models on objects with shapes that can be easily replicated
in point cloud forms. The precision of models trained with the semi-
automatic labels is generally worse than models trained with the other
annotation methods. This is expected as the occlusion removal of the
tool is not perfect, and the model trained with the tool could potentially
produce false positive labels. However, models trained with semi-
automatic labels consistently had higher recalls. This could be because
the tool uses a more consistent method of annotating objects, so the
model can learn the pattern of the containers better and misses less
of them. The neural network, trained on semi-automatically labeled
data, was also able to distinguish with high fidelity between different
types of containers. This is crucial for applications in safeguards. The
new annotation methodology allows hundreds to a few thousands
of images to be annotated in 20min on a typical laptop. An object
detection model can be trained in less than 2h with these annotations
using a single Nvidia GeForce RTX 4070 Ti GPU. The entire process
from image annotation to trained object-detecting neural network is
reduced from weeks to a few hours. Furthermore, as has been shown
in the previous section, models trained on semi-automatically labeled
images performs better than models trained on commercial annotation
service and is on par with manual annotations. The semi-automatic
approach also has the benefit of producing both bounding boxes and
polygon masks at once; whereas, it would take even more effort and
cost to create instance segmentation labels with traditional labeling
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methods. The semi-automatically created annotations can be used in
most situations without an intensive manual review, making it an even
simpler procedure and suitable for use at a nuclear facility to label new
container types.

6.2. Other methods explored - Fully automatic annotation

Another method explored to locate the NMCs was using convolu-
tion to automatically locate objects of cylindrical shapes in situations
where they are lying on the ground and with the base of the cylinder
aligned with the ground. In this particular scenario, the centers can
be found by first aggregating the point cloud into an XY histogram.
Then 2D convolution between the histogram and a circular kernel was
performed to find cylindrical clusters of points. The center of mass
of each cluster is the estimated center of the cylinders. Although this
methodology was able to locate the majority of the upright containers
in each dataset, one or two containers were sometimes missed. It is also
not able to capture containers that are lying on its side. Therefore, the
semi-automatic annotation process is more accurate and robust.

6.3. Future improvement and limitations

6.3.1. Explore methods to refine container masks

To refine the masks labeled on target objects, Segment Anything
could be added as a last step to automatically carve out container edges
from bounding boxes or masks to produce tightly bounded masks on
target objects, instead of solely relying on the 3D point cloud models
for mask projection (Kirillov et al., 2023).

Optionally, it is also possible to further refine the object’s pose
by performing an iterative closest point (ICP) search (Zhang et al.,
2021). ICP calculates a translation and rotation of a source point
set/clouds to minimizes the difference between the source and target
point sets/clouds. To implement the ICP algorithm, the 3D geometric
models of hollow containers are placed at the positions marked by
operators, and are used as sources to match the target containers in
the actual LiDAR point cloud. It aims to find the pose of a real-scene
container by rotating and translating a model container. This would
further reduce the burden on operators as it can find the exact poses of
matching cylindrical shapes in the point cloud.

The ICP feature has already been implemented in the script but was
not used for this study as it needs further improvements. Currently,
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Performance of instance segmentation model (default hyperparameter) trained on multiple container classes.

Object class Train mAP@ Validate mAP@ Test recall@ 0.2 Test precision@ Test mAP@ Test mAP (Bounding
0.510U 0.510U confidence 0.2 confidence 0.510U boxes)@ 0.510U

AT-400 0.839 0.865 0.76 0.894 0.814 0.86

ES-3100 0.975 0.971 0.94 0.928 0.954 0.955

9978 0.928 0.933 0.925 0.973 0.952 0.952

9975 0.846 0.878 0.849 0.958 0.88 0.912

DPP1 0.995 0.995 1 0.765 0.964 0.907

DT23 0.906 0.925 0.661 0.799 0.735 0.735

All 0.915 0.928 0.856 0.886 0.883 0.887

Unobstructed Individually Positioned (optimized
hyperparameter)

Unobstructed Positioned in Rows (optimized
hyperparameter)

container_closs1 0.9

Ay

Original Training Data (default hyperparameter) Original Training Data (optimized

hyperparameter)

Fig. 13. Example of testing inference result on models trained with 4 different training
data, where the model trained with simple formations dataset detected pelican case as
a container.

|

ontainer_loss1 0959881 033

contoiner.¢
ZomaineT

container_clgsst

contoiner_classi 0.92

Unobstructed Individually Positioned (optimized
hyperparameter)

Unobstructed Positioned in Rows (optimized
hyperparameter)

container—clags:

&

container_ciass 0.9

Original Training Data (default hyperparameter) Original Training Data (optimized

hyperparameter)

Fig. 14. Example of testing inference result on models trained with 4 different
training data, where the model trained with individually placed containers performed
significantly worse.

both global and local ICP registration are implemented in the current
pipeline respectively. The global ICP registration method chosen is a
random sample consensus (RANSAC) based feature matching method
implemented in Open 3D (Steinbrucker et al., 2011; Rusu et al., 2009;
Choi et al., 2015). The local ICP registration method chosen is the
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9975 0.96

AT400 0.88

Fig. 15. Predictions on test images of multiple classes (top) and on unseen outdoor
scene (bottom).

point-to-plane ICP algorithm, also implemented in Open 3D (Chen and
Medioni, 1992; Besl and McKay, 1992; Park et al., 2017). Fig. 16 shows
the container location before and after the ICP step. In this particular
case, where the operator did not define the initial position of containers
well, ICP helped to find a more accurate position for the container.

However, it has been observed that the current ICP methodology
is prone to errors. Point cloud registration via ICP is error-prone in
orienting objects when the object’s point cloud is noisy or close to
other objects. Fig. 17 illustrates some objects (blue, purple, red) being
oriented incorrectly as a result of using the described ICP algorithm.
Fine-tuning the hyperparameters of the ICP algorithm did not show
much improvement, nor did running local ICP only, or Rigid Coherent
Point Drift (Myronenko and Song, 2010), another powerful registration
approach.

It should be also noted that registration techniques in general do
not seem to perform well on incomplete point clouds or shapes lacking
features. If there are many objects near a fraction of the scene may
never be visible from the LiDARs perspective, leading to challenging
situations for registration approaches. As such it is not clear if cylindri-
cal shapes, although often clearly visible to a human, can be reliably
identified and oriented with current computer vision techniques.
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Fig. 16. Top, manually estimated NMC locations before ICP. Bottom, more accurate
NMC locations after ICP.

6.3.2. Improvement in depth measurement accuracy

Another limitation of the presented work is that the depth camera’s
measurements are not very accurate. It is possible to obtain more accu-
rate depth information from a LiDAR point cloud. This could potentially
improve the tool’s ability to perform more accurate occlusion removal
and annotations like the ones shown in Fig. 10 will be corrected.

6.3.3. Produce pose-estimation model training data

A feature that can be added in the future is to produce keypoint
annotations of target objects along with the existing bounding boxes
and masks. This would allow pose-estimating neural network to also be
trained from the semi-automatic annotation pipeline’s output without
having to creating pose annotation manually. A pose-estimation model
can define the positions and orientations of target objects, which can
be helpful to more robustly localize an object in 3D. Producing the
poses along with the masks and bounding boxes would not add much
additional runtime. A pose-estimation model can also be applied to
reduce any potential misplaced masks due to clicking errors of the
operators and further refine the objects’ orientations as discussed in
Section 6.3.1.

7. Conclusion

A highly automated method of LiDAR-assisted novel object an-
notation was presented that provides high-throughput generation of
training images for 2D object detection models. One key application
for this tool is the inventorying of nuclear material containers (NMCs),
where training data for new object types can be created much faster
than the standard traditional method of manual annotation or waiting
for turnaround of commercial annotation services. Aside from labeling
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Fig. 17. Top, mis-orientation of objects by current ICP algorithm. Bottom, registration
results from rigid CPD with noticeably worse accuracy than current ICP algorithm.

cylindrical containers, this method can be used to annotate any shape
that can be described by a 3D geometric point cloud representation.
This annotation method requires input on approximate container loca-
tions in a 3D map, which is provided by an operator, as such it is a
semi-automatic process instead of fully automated. Based on user input
of each container’s poses, and the scanning system’s pose derived from
LiDAR mapping, container 3D models are projected onto individual
images to create 2-D masks and bounding boxes. The containers’ poses
can also be added into the output in future work. It takes about 20 min
to annotate a scanned dataset of around 800 image frames running
on a standard laptop’s CPU. The performance of the annotation tool
was demonstrated to be on par in quality with manual annotation
and surpass the quality of Amazon Web Services Machine Learning-
assisted annotations. This evaluation has also demonstrated that the
semi-automatic annotation methodology can annotate various types
and sizes of nuclear material containers with high quality. It was also
found that the quality and variation of the training dataset collected
significantly impacted the results of the inferences by the trained
deep learning model. Using an over-simplistic target object setup when
collecting training images does not yield a robust object recognition
model even with high data-augmentation.
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Appendix A. Cylindrical container dimensions

Container name Approximate Approximate
height (cm) diameter
(cm)
AT-400 50 46
ES-3100 50 110
9978 48 91
9975 53 91
DPP1 76 110
DT23 85 93
Appendix B. Model hyperparameters
Hyperparam- Default - Optimized Default - Optimized
eter list Object - Object Instance - Instance
detection detection segmenta- segmenta-
tion tion
Ir0 0.01 0.01 0.01 0.01
Irf 0.1 0.1 0.1 0.1
momentum 0.937 0.937 0.937 0.937
weight-decay  0.0005 0.0005 0.0005 0.0005
warmup- 3.0 3.0 3.0 3.0
epochs
warmup- 0.8 0.8 0.8 0.8
momentum
warmup-bias- 0.1 0.1 0.1 0.1
Ir
box 0.05 0.05 0.05 0.5
cls 0.3 0.3 0.3 0.3
cls-pw 1.0 1.0 1.0 1.0
obj 0.7 0.7 0.7 0.7
obj-pw 1.0 1.0 1.0 1.0
iou-t 0.20 0.2 0.2 0.2
anchor-t 4.0 4.0 4.0 4.0
fl-gamma 0.0 0.0 0.0 0.0
hsv-h 0.015 0.015 0.015 0.015
hsv-s 0.7 0.7 0.7 0.7
hsv-v 0.4 0.4 0.4 0.4
degrees 0.0 45.0 0.0 45.0
translate 0.2 0.1 0.1 0.1
scale 0.9 0.9 0.9 0.9
shear 0.0 0.0 0.0 0.0
perspective 0.0 0.0001 0.0 0.0001
flipud 0.0 0.0 0.0 0.0
fliplr 0.5 0.5 0.5 0.5
mosaic 1.0 1.0 1.0 1.0
mixup 0.15 0.1 0.1 0.1
copy-paste 0.0 0.8 0.1 0.8
paste-in 0.15 0.15
loss-ota 1 1
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Appendix C. Training and validation loss curves

Training/Validation Loss of YOLOv7 Models in Table 1
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