THE REACTION OF POTASSIUM GERMYL WITH ORGANIC HALIDES

Authors
Dreyfuss, R.M.
Jolly, W.L.

Publication Date
1971-06-01
THE REACTION OF POTASSIUM GERMYL WITH ORGANIC HALIDES

R. M. Dreyfuss and W. L. Jolly

June 1971

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE REACTION OF POTASSIUM GERMYL WITH ORGANIC HALIDES

R. M. Dreyfuss and W. L. Jolly

Inorganic Materials Research Division, Lawrence Radiation Laboratory
Department of Chemistry, University of California
Berkeley, California

ABSTRACT

Many organic halides react with potassium germyl in diglyme to give the corresponding organogermanes. However, halides for which nucleophilic substitutions are slow react with potassium germyl to give principally the corresponding hydrocarbons. Data relevant to the mechanism of the latter type of reaction are presented. A method for the preparation and standardization of stock solutions of potassium germyl is described. A new compound, digermymethane (1,3-digermapropane), is reported, and its nmr, mass and infrared spectra are discussed.
The germyl anion, GeH$_3^-$, was first prepared by Kraus and Carney by the reaction of germane, GeH$_4$, with sodium-ammonia solutions.1 Teal and Kraus found the germyl anion to be an excellent nucleophile, capable of converting primary alkyl halides to the corresponding alkylgermanes.2 However, simple displacement did not occur with all organic halides. Sodium germyl and bromobenzene did not yield the expected phenylgermane, but rather benzene and GeH$_2$.3

\[\text{NaGeH}_3 + \text{C}_6\text{H}_5\text{Br} \rightarrow \text{NaBr} + \text{C}_6\text{H}_5 + \text{GeH}_2 \]

Methylene bromide also did not react to give simple germyl anion substitution. The reported products were methylgermane and aminogerma.2

\[2\text{NaGeH}_3 + \text{CH}_2\text{Br}_2 + \text{NH}_3 \rightarrow \text{CH}_3\text{GeH}_3 + \text{GeH}_3\text{NH}_2 + 2\text{NaBr} \]

In each of the latter reactions, a hydrogen atom replaced a halogen atom. It was the aim of this study to determine the types of halides for which this type of reaction occurs, and to investigate the reaction mechanism. Reactions were carried out in diglyme (bis(methoxyethyl)ether) because of the ease of preparation of potassium germyl in this solvent and because of the hope that diglyme might prove to be a more favorable medium than liquid ammonia for germyl anion substitutions and that it might enable us to prepare the elusive compound digermymethane.
Experimental

Reagents. - Germane was obtained from the Matheson Company; its purity was checked by infrared and mass spectrometry and by vapor pressure measurements at -111.6° (180 torr as compared to the literature value, 181 torr). Diglyme (Ansul-Ether 141) was purified by distillation from potassium hydroxide followed by vacuum distillation from lithium aluminum hydride at approximately 40°. Organic halides of reagent grade were used without purification; lower grade materials were purified by distillation from phosphorus pentoxide or by gas chromatography. The identity and purity of volatile substances were determined by infrared spectrometry with Perkin-Elmer Infracord spectrometers (Models 137 and 137B), by mass spectrometry with a Consolidated Engineering Corp. mass spectrometer (Model 21-103C) or a Varian M-66 mass spectrometer, and by gas chromatography with a Varian Aerograph, Model A-90-P.

Preparation and Standardization of Potassium Germyl. - Potassium germyl was prepared in the apparatus shown in Figure 1. A magnetic stir bar and twenty grams of powdered reagent-grade potassium hydroxide were placed in flask A. Sixty or seventy milliliters of diglyme was then pipetted into the flask. The diglyme was degassed at -78° by pumping through stopcock B; stopcock B was then closed. The diglyme slurry was stirred while holding it at 0°, and stopcock B was opened to a section of the vacuum line containing 30 mmols of germane. Stirring was continued for about one hour, during which essentially all the germane was absorbed by the slurry; the remainder was condensed into a -196° trap.
The apparatus was then inverted, a tube leading to a tank of dry nitrogen was attached at stopcock B, and an atmosphere of dry nitrogen was introduced. (The tube was alternately flushed with nitrogen and evacuated several times to ensure the absence of air.) The solution was filtered by gravity flow through the medium-porosity filter C into the long-necked Erlenmeyer flask E. When the filtration was complete, dry nitrogen at atmospheric pressure was introduced through stopcock D, using the same precautions noted above. A and C were removed from E, and E was stoppered with a ground glass sleeve joint attached to an open stopcock. After a few minutes of flushing, the latter stopcock and stopcock D were almost simultaneously closed.

This procedure yielded a clear, colorless solution of potassium germyl which could be stored at 0° without apparent decomposition. The solution was standardized as follows: Using the precautions described above, dry nitrogen at atmospheric pressure was again introduced at stopcock D. When the pressure in the flask slightly exceeded one atmosphere, the flask was unstoppered and seated into a sleeve joint sheath with a sidearm as shown in Figure 2. Dry nitrogen was flushed through the sidearm; this nitrogen and the nitrogen simultaneously flushing the flask vented through the narrow top of the sheath. A long glass pipet was clamped over the solution as shown in Figure 2 and was flushed by drawing in nitrogen with a greased syringe, followed by expulsion of the nitrogen through the side arm of the three-way stopcock. When the system was completely purged of air, the pipet was lowered and potassium germyl solution was sucked up to one of several calibrated marks on the
pipet. The pipet was then redrawn into the sheath, and the stock solution flask was removed and restoppered as before. An identical flask, previously evacuated, was then opened with nitrogen flushing and was fitted to the sheath. After the system had been purged, the potassium germyl in the pipet was transferred to the new flask. The flask was restoppered as before, cooled to -196°, and evacuated.

An excess of degassed water was then distilled onto the frozen potassium germyl solution; the mixture was warmed to room temperature, and the evolved germane was distilled, with pumping, through a -111.6° trap into a -196° trap. The germane was quantitatively measured by PVT measurements, and its purity was checked by vapor pressure and infrared measurements. A known excess of 0.1 M HCl was added to the residue, and the solution was titrated with 0.1 M NaOH to the phenolphthalein endpoint. In accordance with the following hydrolysis reaction,

\[\text{GeH}_3^- + \text{H}_2\text{O} \rightarrow \text{GeH}_4 + \text{OH}^- \]

the germane produced equalled the titrated hydroxide within ±1 percent.

Qualitative Aryl Halide Experiments. An aliquot of 0.2 M KGeH₃ was transferred to a long-necked Erlenmeyer flask as described in the standardization procedure. Excess bromobenzene was condensed onto the frozen solution at -196°, and the mixture was allowed to warm to room temperature. Immediately a white precipitate formed which soon developed a yellow color; after one half hour, the reaction mixture was orange. The solution was then pumped to dryness through traps at -45°, -160°, and -196°. The first trap contained diglyme and benzene, the second,
benzene and digermane, and the third, germane, as indicated by infrared and mass spectra. No trace of any compound containing a carbon-germanium bond was detected in these samples. A similar experiment using iodo-benzene also showed benzene, germane and digermane to be the only volatile products.

Adding the potassium germyl solution dropwise to bromobenzene or iodobenzene in other experiments gave identical results. In an attempt to detect biphenyl formation, the contents of the -45° trap were analyzed by gas chromatography. The retention time of biphenyl was determined using a 4-ft by 1/4-in. 20% silicone GE SF-96 on firebrick column at 230°. Under these conditions, an aliquot of the unknown showed no evidence of biphenyl.

Quantitative Aryl Halide Experiments. Excess chlorobenzene was condensed onto a diglyme solution containing 1.33 mmols of potassium germyl. After two hours at room temperature, a faint yellow cloudiness had appeared. The mixture was then distilled, with pumping, for fifteen minutes; the volatile products were collected in traps at -95° and -196°. A total of 0.132 mmol of germanium (as germane and digermane) was found in the -196° trap. (The digermane was separated by fractional condensation in a -160° trap.) Water was then distilled into the solution, and germane and digermane (1.10 mmols of germanium) were produced. To the contents of the -95° trap was added 10 ml of a solution of toluene in diglyme which contained 1.0 ml of toluene (9.41 mmol) per 100 ml of solution. The mixture was analyzed gas-chromatographically for benzene using the GE SF-96 column at 65°; less than 0.01 mmol was found.
The results of experiments in which excesses of bromobenzene, 4-bromo-m-xylene and 2-bromo-m-xylene were condensed onto potassium germyl solutions are presented in Table I. After the indicated reaction times, the volatile materials were collected in traps at -95° and -196°. The germane and digermene in the -196° traps were separated, identified, and the respective amounts measured. The -95° traps were analyzed for benzene or xylene as described above. The solid residues were dissolved by boiling in a slightly basic 3% H₂O₂ solution. Excess peroxide was destroyed by acidification and further boiling, and the resulting solution then analyzed volumetrically for germanium by the method of Tchakirian. We have no explanation for the low total germanium analyses in the iodobenzene experiments.

Reaction of Bromobenzene with Potassium Germyl-d₄.- Germane-d₄ was prepared from GeCl₄ and LiAlD₄ according to a standard method. A small portion was pyrolyzed, and the hydrogen was analyzed by mass spectrometry; 92 atom percent of the hydrogen in the sample was deuterium.

Reagent grade potassium was distilled from a sidearm into a reaction vessel equipped with a break-off seal and an outlet to the vacuum line. About 0.5 ml of diglyme was distilled from lithium aluminum hydride onto the potassium mirror. Germane-d₄ (0.366 mmol) was condensed in, the vessel was sealed off, and the mixture was allowed to react for three days at -20°. At the end of this time, the solution was warmed to 0°, the vessel was attached to the vacuum line, and the break-off seal was opened. The solution was pumped on through two liquid
Table I
Reactions of Potassium Germyl with Aryl Halides

<table>
<thead>
<tr>
<th>Halide</th>
<th>Rxn. time, min.</th>
<th>KGeH₃ mmols</th>
<th>Germaine + 2xDigermane formed, mmols</th>
<th>Nonvolatile Ge, mmols</th>
<th>Hydrocarbon a formed, mmols</th>
<th>Hydrocarbon KGeH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromobenzene</td>
<td>5</td>
<td>1.33</td>
<td>.597</td>
<td>.72</td>
<td>.85</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>1.33</td>
<td>.589</td>
<td>.74</td>
<td>.81</td>
<td>.61</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1.33</td>
<td>.602</td>
<td>.66</td>
<td>.85</td>
<td>.64</td>
</tr>
<tr>
<td>Iodobenzene</td>
<td>90</td>
<td>1.36</td>
<td>.364</td>
<td>.60</td>
<td>.90</td>
<td>.66</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>1.36</td>
<td>.348</td>
<td>.63</td>
<td>.91</td>
<td>.67</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>1.36</td>
<td>.334</td>
<td>.65</td>
<td>.91</td>
<td>.67</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>1.57</td>
<td>.491</td>
<td>.65</td>
<td>1.01</td>
<td>.64</td>
</tr>
<tr>
<td>4-Br-m-xylene</td>
<td>90</td>
<td>1.57</td>
<td>.555</td>
<td>.90</td>
<td>.82</td>
<td>.52</td>
</tr>
<tr>
<td>2-Br-m-xylene</td>
<td>90</td>
<td>1.57</td>
<td>.517</td>
<td>.88</td>
<td>.50</td>
<td>.38</td>
</tr>
</tbody>
</table>

aBenzene formed in the reactions of the halobenzenes; m-xylene formed in the runs with the bromo-m-xylenes.
nitrogen traps with a Toepler pump; 0.98 mmol of hydrogen (of which 86 atom per cent was deuterium) was collected.

An excess of bromobenzene was condensed onto the potassium germyl, and the solution was allowed to react one half hour at room temperature. The volatiles were then passed through a -95° trap and a -196° trap. The fraction in the -95° trap was analyzed by mass spectrometry and was found to have peaks at m/e values of 78, 79, and 80, with relative intensities 30.2:100:5.7, respectively. A sample of ordinary benzene was shown to have 77, 78, and 79 peaks with relative intensities 19.8:100:7.1; from these data we calculate that 87% of the benzene produced in the above reaction contained one deuterium atom.

Reaction of Phenylsodium with Germyl Bromide in Diglyme. A dispersion of sodium (2.42 mmols) was converted to phenylsodium by reaction with chlorobenzene in p-xylene. (100% yield corresponds to 1.21 mmol of NaC₆H₅.) The stirred slurry of phenylsodium was degassed by pumping, after which a solution of 1.29 mmol of GeH₃Br in 10 ml of diglyme was added quickly. Effervescence began at once and continued for one-half hour. The mixture was then cooled to -196° and Toepler-pumped through traps at -22°, -95°, and -196°; 0.082 mmol of hydrogen was collected. Water was then condensed onto the reaction mixture and the mixture warmed to room temperature and Toepler-pumped through the cold traps; this time 0.256 mmol of hydrogen was collected. The other volatile products of the reaction were germane, digermane, trigermane, benzene and methyl vinyl ether as determined by infrared and mass.
spectroscopy. No phenylgermane was detected. The hydrogen produced in the reaction presumably was a result of unreacted sodium metal in the slurry.

Neopentyl and Neophil Halides.- About 1.5 mmols of neopentyl chloride (1-chloro-2,2-dimethylpropane), obtained from Matheson, Coleman and Bell and purified by gas chromatography, was condensed onto an equal number of millimoles of potassium germyl solution. A slight cloudiness appeared after several hours at room temperature, but analysis of the volatiles showed that essentially no reaction had taken place.

About 1.5 mmols of neopentyl bromide, obtained from K and K Laboratories and purified by gas chromatography, was condensed onto an equal number of millimoles of potassium germyl solution. A white cloudiness formed within a few minutes at room temperature; this soon became slightly yellow. After two hours, the volatile products were analyzed and were found to consist of germane, digermane and an approximately 1:1 mixture of neopentane and an alkylgermane, probably neopentylgermane. An attempt was made to separate the latter two compounds using the silicone GE SF-96 chromatograph column at room temperature. The neopentane was isolated as the pure compound (identified by comparison of its ir spectrum with that of a known sample of the material); the alkylgermane had an ir spectrum with the most intense bands at 845 and 2100 cm\(^{-1}\), typical of alkylgermanes. However, the bands found in neopentane were also present; therefore there is some doubt as to the purity of the isolated alkylgermane. The mass spectrum of this material
contained an envelope of peaks at m/e 141-147 and a much more intense envelope from m/e 120-135. The first band could be due to ions of formula C_5GeH_{x+i}, while the second could be due to C_4GeH_{x+}, the most stable carbonium ion formed by fragmentation of neopentylgemane.\[11\]

Neophil chloride (1-chloro-2-methyl-2-phenylpropane) was obtained from Fluka A. G. It did not react with potassium germyl. Neophil bromide was prepared by bromination of the chloride Grignard reagent. In separate experiments, potassium germyl solutions (0.2 and 0.01 M) were added dropwise to equivalent amounts of neophil bromide. The reaction was allowed to proceed two hours, during which time a yellow-white precipitate formed. The volatiles were analyzed by gas chromatography using a 20-ft by 3/8-in. silicone SE-30 on chromosorb W column at 110°. Some tert-butylbenzene, but no iso-butylbenzene could be detected.

Haloalkane Experiments.—Bromomethane (1.62 mmols) was condensed onto a frozen solution of 1.12 mmols of potassium germyl. The reaction vessel was warmed, with shaking, to room temperature. After five minutes a white precipitate had formed. The volatile materials were Toepler-pumped for two hours through a -78° trap and two -196° traps. No non-condensible gas was found. The contents of the -196° traps were pumped through a -160° trap; 0.034 mmol of germane was isolated. The contents of the -160° trap were passed through a -111.6° trap, and 1.07 mmols of methylgermane was obtained (v.p. 47 mm at -83°, literature value 12 46.3 torr). A trace of dimethylgermane and 0.40 mmol of bromomethane were found in the residue.
The same experiment was carried out using iodomethane. Again, an essentially quantitative formation of methylgermane was found (1.12 mmols KGeH$_3$ yielded 1.10 mmols CH$_3$GeH$_3$). However, about 0.01 mmol of methane was found.

The results of several experiments with di- and trihalomethanes are summarized in Table II. In most cases the halide was distilled from phosphorus pentoxide onto the frozen potassium germyl solution at -196°, and the reactants were allowed to warm to room temperature. In other cases, potassium germyl solution was added dropwise through a dropping funnel to the pure halide, and in one case, a 1% solution of the dihalide in diglyme was added dropwise to the germyl solution. After reaction had proceeded for the stated period of time, the volatile materials were fractionally condensed using -45°, -111.6°, -160°, and -196° traps. Infrared spectra of the contents of the -45° trap indicated solvent and traces of organogermanes which were then discarded. The -196° trap contained germane and the -160° trap methylgermane; these were identified by their ir spectra and vapor pressures, and were quantitatively measured. The -111.6° trap contained digermylmethane, dihalomethane, digermane, digermylethane, and digermylpropane, as indicated by mass and ir spectrometry. The latter mixture was treated in either of two ways to effect isolation of pure digermylmethane. Digermane and dibromomethane could be removed by hydrolysis overnight with a saturated aqueous solution of potassium hydroxide (the water being subsequently removed by passing through magnesium perchlorate) or by gas chromatography. Either method is effective; however hydrolysis
Table II
Reactions of Potassium Germyl with Di- and Trihalomethanes

<table>
<thead>
<tr>
<th>Organic halide</th>
<th>Time, hr</th>
<th>KGeH$_3$ Halide</th>
<th>GeH$_4$ KGeH$_3$</th>
<th>CH$_2$GeH$_3$ KGeH$_3$</th>
<th>CH$_2$(GeH$_3$)$_2$ KGeH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$Br$_2$</td>
<td>2</td>
<td>.25</td>
<td>.034</td>
<td>.20</td>
<td>.025</td>
</tr>
<tr>
<td>CH$_2$Br$_2$</td>
<td>12</td>
<td>.45</td>
<td>.060</td>
<td>.25</td>
<td>-</td>
</tr>
<tr>
<td>CH$_2$Br$_2$</td>
<td>2</td>
<td>1.0</td>
<td>.038</td>
<td>.27</td>
<td>.06</td>
</tr>
<tr>
<td>CH$_2$Br$_2$</td>
<td>4</td>
<td>2.0</td>
<td>.076</td>
<td>.37</td>
<td>.06</td>
</tr>
<tr>
<td>CH$_2$Br$_2$</td>
<td>2</td>
<td>.06</td>
<td>.18</td>
<td>.23</td>
<td>-</td>
</tr>
<tr>
<td>CH$_2$Br$_2$</td>
<td>0.2</td>
<td>2.0</td>
<td>.17</td>
<td>.14</td>
<td>.04</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>2</td>
<td>3.5</td>
<td>.12</td>
<td>.081</td>
<td>.05</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>4</td>
<td>2.0</td>
<td>.16</td>
<td>.061</td>
<td>.07</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>0.5</td>
<td>2.0</td>
<td>.13</td>
<td>.032</td>
<td>-</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>0.5</td>
<td>2.0</td>
<td>.072</td>
<td>.045</td>
<td>.05</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>2</td>
<td>1.0</td>
<td>.41</td>
<td>.028</td>
<td>.07</td>
</tr>
</tbody>
</table>

a Halide condensed onto potassium germyl;
b Germyl added dropwise to halide;
c Halide solution added dropwise to potassium germyl;
d These values are only approximate; they are estimates of yield of 90% pure compound;
e A trace of methyl bromide could be detected by ir as a product of this reaction;
f A significant amount of dichloromethane was formed in this reaction.
is easier for greater than 0.2 mmol of product. Dichloromethane proved impossible to separate from digermylmethane; using the 20-ft by 3/8-in. silicone SE-30 column a one-minute difference in retention times was obtained after twenty minutes. Even then the peaks overlapped to a small extent. The other germylalkanes were not detected chromatographically, yet they were detected by mass spectrometry.

Digermylmethane Mass Spectrum. - The mass spectrum, obtained with a Varian M-66 mass spectrometer, is recorded in Table III. Sample pressure was 5 x 10⁻⁷ torr; sample temperature was 90° at the inlet and 125° at the analyzer. The electron energy was 70 eV, and the electron current was 30 μA. The peaks may be grouped into envelopes corresponding to the ions GeHₓ⁺ (m/e 70-80), GeCHₓ⁺ (m/e 82-96), Ge₂Hₓ⁺ (140-156), and Ge₂CHₓ⁺ (152-172). The reported spectrum of disilylmethane shows analogous envelopes, including one corresponding to the anomalous ion Si₂Hₓ⁺.¹³

Digermylmethane nmr Spectrum. - The spectrum of a neat sample prepared from dichloromethane was recorded on a Varian A60 spectrometer and consisted of a 1:2:1 triplet and a 1:6:15:20:15:6:1 septet, 3.84 ppm and 0.33 ppm downfield from external tetramethylsilane, respectively; J_C-H-Ge-H was 4.00 Hz. Three tiny peaks could be detected under the expanded septet; these may have been part of a quartet, of which one peak was hidden by the digermylmethane peaks. Such a feature would be expected for contamination by digermylthene. The spectrum of digermylmethane is entirely analogous to that reported for disilylmethane.¹⁴
Table III
Mass Spectrum of Digermylmethane

<table>
<thead>
<tr>
<th>m/e</th>
<th>Intensity</th>
<th>m/e</th>
<th>Intensity</th>
<th>m/e</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>169</td>
<td>4.2</td>
<td>152</td>
<td>1.4</td>
<td>89</td>
<td>42</td>
</tr>
<tr>
<td>168</td>
<td>2.1</td>
<td>151</td>
<td>2.1</td>
<td>88</td>
<td>24</td>
</tr>
<tr>
<td>167</td>
<td>23</td>
<td>150</td>
<td>6.3</td>
<td>87</td>
<td>27</td>
</tr>
<tr>
<td>166</td>
<td>21</td>
<td>149</td>
<td>10</td>
<td>86</td>
<td>16</td>
</tr>
<tr>
<td>165</td>
<td>52</td>
<td>148</td>
<td>18</td>
<td>85</td>
<td>6.3</td>
</tr>
<tr>
<td>164</td>
<td>55</td>
<td>147</td>
<td>16</td>
<td>84</td>
<td>1.4</td>
</tr>
<tr>
<td>163</td>
<td>87</td>
<td>146</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>83</td>
<td>145</td>
<td>10</td>
<td>80</td>
<td>1.4</td>
</tr>
<tr>
<td>161</td>
<td>100</td>
<td>144</td>
<td>15</td>
<td>79</td>
<td>1.4</td>
</tr>
<tr>
<td>160</td>
<td>87</td>
<td>143</td>
<td>3.5</td>
<td>78</td>
<td>1.4</td>
</tr>
<tr>
<td>159</td>
<td>85</td>
<td>142</td>
<td>4.2</td>
<td>77</td>
<td>2.8</td>
</tr>
<tr>
<td>158</td>
<td>58</td>
<td>141</td>
<td>3.5</td>
<td>76</td>
<td>2.8</td>
</tr>
<tr>
<td>157</td>
<td>47</td>
<td>140</td>
<td>3.5</td>
<td>75</td>
<td>5.6</td>
</tr>
<tr>
<td>156</td>
<td>23</td>
<td></td>
<td></td>
<td>74</td>
<td>16</td>
</tr>
<tr>
<td>155</td>
<td>16</td>
<td>93</td>
<td>2.8</td>
<td>73</td>
<td>5.6</td>
</tr>
<tr>
<td>154</td>
<td>2.8</td>
<td>92</td>
<td>2.1</td>
<td>72</td>
<td>9.9</td>
</tr>
<tr>
<td>153</td>
<td>3.5</td>
<td>91</td>
<td>31</td>
<td>71</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>31</td>
<td>70</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Digermylmethane Infrared Spectrum. - The infrared spectrum of digermylmethane was recorded on Perkin-Elmer Infracord spectrometers (Models 137 and 137B). A 10-cm NaCl cell with a sample pressure of 10 mm was used, and the spectrum was recorded from 4000 to 650 cm\(^{-1}\). The sample was then transferred to a KBr cell, and the spectrum was recorded from 800 to 400 cm\(^{-1}\). The observed bands, with tentative vibrational assignments, are listed in Table IV.

The assignments were made by analogy with previous assignments for related compounds, notably disilylmethane\(^{15}\) and methylgermane.\(^{16}\) In digermylmethane, the Ge-C asymmetric stretch has a high frequency, 680 cm\(^{-1}\), compared to Ge-C stretches in methylgermane, 601.6 cm\(^{-1}\), and in ethylgermane,\(^{17}\) 610 cm\(^{-1}\). However, this shift is consistent with that observed for the silyl analogs. In disilylmethane the C-Si asymmetric stretch frequency is 773 cm\(^{-1}\) whereas in methylsilane,\(^{18}\) it is 701 cm\(^{-1}\).
Table IV
Infrared Spectrum of Digermylmethane

<table>
<thead>
<tr>
<th>Band cm⁻¹</th>
<th>Intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>w</td>
<td>CH₂ stretch</td>
</tr>
<tr>
<td>2160</td>
<td>sh</td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>vs</td>
<td>GeH₃ stretch</td>
</tr>
<tr>
<td>2030</td>
<td>sh</td>
<td></td>
</tr>
<tr>
<td>1380</td>
<td>w, br</td>
<td>CH₂ scissor</td>
</tr>
<tr>
<td>1140</td>
<td>w</td>
<td>CH₂ twist</td>
</tr>
<tr>
<td>1060</td>
<td>mw</td>
<td>CH₂ wag</td>
</tr>
<tr>
<td>1050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>960</td>
<td>br, sh</td>
<td>GeH₃ asym. deformations</td>
</tr>
<tr>
<td>880</td>
<td>br, m</td>
<td></td>
</tr>
<tr>
<td>840</td>
<td>vs</td>
<td>GeH₃ sym. deformation</td>
</tr>
<tr>
<td>755</td>
<td>br, m</td>
<td>CH₂ rock</td>
</tr>
<tr>
<td>680</td>
<td>s</td>
<td>Ge-C asym. stretch</td>
</tr>
</tbody>
</table>
Results and Discussion

Potassium germyl reacts with organic halides in two different ways. The reaction which produces an organogermane undoubtedly involves nucleophilic attack by a germyl anion on a carbon atom, with simultaneous halide ion displacement. The reaction which produces a hydrocarbon and GeH$_2$ polymer probably involves nucleophilic attack by a germyl anion on a halogen atom, with simultaneous or subsequent formation of a C-H bond and cleavage of a Ge-H bond. A possible mechanism for the latter, hydrogen-substitution, reaction is indicated below.

$$\text{RX + GeH}_3^- \rightarrow \text{R}^- + \text{XGeH}_3 \rightarrow \text{RH} + \text{X}^- + \frac{1}{n}(\text{GeH}_2)_n$$

Halogen-atom-attack mechanisms have been proposed for many reactions of organophosphines19,20 and for the reaction of organic halides with potassium triphenylsilyl21 and sodium triphenylgermyl22.

The hydrogen substitution reaction predominates in cases where one would expect halide ion displacement by the germyl anion to be slow. Consequently high yields of the hydrogen-substituted products are obtained in the reactions with aromatic halides,23 neopentyl and neophil halides,24 and dihalomethanes.25 However, even in the case of iodo-methane, a trace of the hydrogen-substituted product, methane, is obtained; it appears that the two types of reaction always occur simultaneously.

In the reaction of potassium germyl-d$_3$ with bromobenzene, it was observed that the hydrogen atom that replaced the bromine atom was
originally bonded to germanium. This means that a phenyl anion, if it is formed, deprotonates the nascent bromogermane in preference to the solvent, diglyme. However, we have observed that when sodium phenyl is introduced to diglyme containing excess bromogermane, the principal reaction is the cleavage of the diglyme.\(^{26}\) Hence we conclude that no free phenyl anion is formed in the reaction of the germyl anion with bromobenzene. For a carbanion-type mechanism to be valid, a concerted reaction, in which germyl anion deprotonation occurs almost simultaneously with bromine cation removal, must be assumed. Perhaps a four-center activated complex\(^{27}\) is formed; such a mechanism is almost equivalent to a cage reaction\(^ {28}\) in which the phenyl anion reacts with bromogermane before it can be dispersed and react with the solvent. This type of mechanism is indicated below.

\[
RX + \text{GeH}_3^- \rightarrow \left[\begin{array}{c}
R-\text{GeH}_2 \text{GeH}_2
\end{array} \right]^+ \rightarrow \text{Rh} + X^- + \frac{1}{n}(\text{GeH}_3)^n
\]

Both the hydrogen-substitution reaction and the germyl-substitution reaction accelerate as one goes from a chloride to a bromide to an iodide but the acceleration is more pronounced in the former than in the latter reaction. Thus much more benzene is obtained from bromobenzene than from chlorobenzene, more methylgermane is obtained from dibromomethane than from dichloromethane, and a detectable amount of methane is obtained from iodomethane, but not from bromomethane. The trends in rates may be explained by considering the activated complexes in the two types of reaction. Nucleophilic attack by germyl anion at either
carbon or halogen results in an activated complex in which the carbon-halogen bond is partially broken. The carbon-iodine bond is weaker than the carbon-chlorine bond; therefore both types of reaction are enhanced when a carbon-iodine, rather than a carbon-chlorine, bond is involved. However, there are further effects (which do not apply to the nucleophilic attack on carbon) that enhance nucleophilic attack on halogen when one goes from a chloride to an iodide. Because iodine is less electronegative than chlorine, a bonded iodine atom is more susceptible to attack by an anion that is a bonded chlorine atom. Furthermore, iodine is "softer" than chlorine and therefore might be expected to react more readily with the soft germyl anion. Thus one would expect that the overall accelerative effect of going from a chloride to a bromide to an iodide would be more pronounced for the hydrogen-substitution reaction than for the germyl-substitution reaction.

It should be pointed out that a free-radical mechanism, analogous to that proposed for the reaction of organic halides with organotin hydrides, will account for most of the experimental results. Trace amounts of peroxo compounds in the diglyme solvent could act as initiators. However, in the reaction of neophyl bromide, the intermediate neophyl radical would be expected to rearrange to yield iso-butylbenzene; only tert-butylbenzene was formed. Also, one might expect phenyl radicals to cleave the diglyme in the reaction of bromobenzene with potassium germyl-d₃; however, no such cleavage products were found. These two negative observations are consistent with a radical mechanism if one assumes that abstraction of a germanium-bonded hydrogen by the
intermediate radical is so fast that all other reactions, including rearrangement, are precluded.

Certain mechanisms for the hydrogen substitution reaction can be ruled out. The aromatic halide substitutions cannot be explained by a benzene32 intermediate because of the observed reactivity of 2-bromo-m-xylene toward potassium germyl. Organogermane formation and subsequent decomposition to GeH$_2$ and hydrocarbon is ruled out because phenylgermane33 and digermymethane34 are known to be stable compounds, even in basic solution. Finally, nucleophilic attack on carbon by a hydrogen atom of the germyl anion would be expected to show the same trends as nucleophilic attack by the germanium atom of the germyl anion; one would expect the same relative yields of hydrocarbon and organogermane regardless of the organic halide involved. This result was not found.

In addition to undergoing the germyl and hydrogen substitutions, dihalo- and trihalomethanes react in yet another way with potassium germyl, i.e., to form digermylethane and digermylpropane. The latter products can be explained by the deprotonation of the halomethanes by potassium germyl. Indeed, the yield of GeH$_4$ increases on going from dibromomethane to dichloromethane to trichloromethane, in accord with the expected acid strengths of the halomethanes. The carbanions formed can go on to attack unreacted halomethane, forming haloethanes, halopropanes, etc., which then react with germyl anion for form the corresponding digermylalkanes.

\[
\text{CH}_2X_2 + \text{GeH}_3^- \rightarrow \text{GeH}_4 + \text{CHX}_2^-
\]
\[
\text{CHX}_2^- + \text{CH}_2X_2 \rightarrow \text{CH}_2XCHX_2 + X^-
\]

\[
\text{CH}_2XCHX_2 + 3\text{GeH}_3^- \rightarrow \text{GeH}_3\text{CH}_2\text{CH}_2\text{GeH}_3 + \frac{1}{n}(\text{GeH}_2) + 3X^-,
\]

e tc.

Acknowledgement: This research was supported by the U.S. Atomic Energy Commission.
References

(2) G. K. Teal and C. A. Kraus, ibid., 72, 4706 (1950).
(3) S. N. Glarum and C. A. Kraus, ibid., 72, 5398 (1950).
(5) Materials available from Varian Aerograph, Walnut Creek, California.

(22) a. C. A. Kraus and H. S. Nutting, ibid., 54, 1623 (1932).

See p. 293.

(27) Ref. 24, p. 79.

(28) Ref. 24, p. 475.

(34) Unreported observations
Fig. 1 Apparatus for the preparation and filtration of KGeH_3 solutions.
Fig. 2 Apparatus for pipetting KGeH_3 solutions.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.