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Statistical Inference for G-indices of Agreement 

 

Abstract 

The limitations of Cohen's kappa are reviewed and an alternative G-index is recommended 

for assessing nominal scale agreement. Maximum likelihood estimates, standard errors, and 

confidence intervals for a two-rater G-index are derived for one-group and two-group designs. A 

new G-index of agreement for multi-rater designs is proposed. Statistical inference methods for 

some important special cases of the multi-rater design also are derived. G-index meta-analysis 

methods are proposed and can be used to combine and compare agreement across two or more 

populations. Closed-form sample size formulas to achieve desired confidence interval precision 

are proposed for two-rater and multi-rater designs. R functions are given for all results.  

Keywords: nominal agreement, multi-rater agreement, interval estimation, meta-analysis, sample 

size planning 
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1. Introduction 

The assignment of mutually exclusive nominal ratings to a set of objects by different raters 

is a very common activity in many fields of research. For example, suppose two deliberately 

selected raters assign every object in a population of objects to one and only one of r clearly defined 

nominal categories. The ratings can then be summarized in an r x r contingency table of population 

proportions where 𝜋𝑖𝑗 is the population proportion of objects assigned to category i (i = 1 to r) by 

Rater 1 and category j (j = 1 to r) by Rater 2, 𝜋𝑖+ is the population proportion of objects assigned 

to category i (i = 1 to r) by Rater 1, and 𝜋+𝑖 is the population proportion of objects assigned to 

category i (i = 1 to r) by Rater 2.   

If the population of objects is large or if the rating process is time consuming or costly, it 

may be necessary to obtain a random sample of n objects from the population and have each rater 

classify the sample of n objects. When two raters each classify a random sample of n objects, the 

resulting classifications can be summarized into an r x r table of observed frequency counts where 

𝑓𝑖𝑗 is the number of sample objects assigned to category i (i = 1 to r) by Rater 1 and category j         

(j = 1 to r) by Rater 2,  𝑓𝑖+  is the number of sample objects assigned to category i (i = 1 to r) by 

Rater 1, and 𝑓+𝑖 is the number of sample objects assigned to category i (i = 1 to r) by Rater 2. The 

observed frequency counts can be used to estimate the population proportions in the r x r 

contingency table. Specifically, the maximum likelihood estimates of 𝜋𝑖𝑗, 𝜋𝑖+, and 𝜋+𝑗 are 𝑓𝑖𝑗/𝑛, 

𝑓𝑖+/𝑛, and 𝑓+𝑖/𝑛, respectively. 

In the two-rater design, one measure of agreement is the proportion of objects that are 

assigned to the same nominal category by both raters. This proportion is 𝜋𝐴 = ∑ 𝜋𝑖𝑖
𝑟
𝑖=1  and its 

maximum likelihood estimate is 𝜋̂𝐴 = ∑ 𝑓𝑖𝑖/𝑛𝑟
𝑖=1 .  
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2. Chance-corrected Measures of Agreement 

As a measure of agreement, 𝜋𝐴 exaggerates the degree of agreement between two raters 

because 𝜋𝑖𝑖 can be greater than 0 even if both raters classify the objects in a purely random manner. 

A general chance-corrected measure of agreement (Scott, 1955) is defined as  

                                                                  𝜅 =  
𝜋𝐴 − 𝜋𝑅

1 − 𝜋𝑅
            (1) 

where 𝜋𝑅 is the proportion of agreements that would be expected if the two raters had assigned the 

classifications independently and at random. The maximum value of 𝜅 is 1, representing perfect 

agreement, and the minimum value of 𝜅 is −𝜋𝑅/(1 −  𝜋𝑅).  

Different definitions of 𝜋𝑅 define different chance-corrected measures of agreement. Scott 

(1955) sets 𝜋𝑅 = ∑ 𝜋𝑖
2𝑟

𝑖=1 , Bennett, Alpert and Goldstein (1954) set 𝜋𝑅 = 1/r,  and  Gwet (2008) 

sets 𝜋𝑅 = ∑ 𝜋𝑖(1 − 𝜋𝑖)
𝑟
𝑖=1 /(𝑟 − 1) where 𝜋𝑖 = (𝜋+𝑖 + 𝜋𝑖+)/2. The chance-corrected measure of 

agreement proposed by Krippendorff (1970) also sets 𝜋𝑅 = ∑ 𝜋𝑖
2𝑟

𝑖=1  but makes a small-sample 

adjustment to the estimate of 𝜋𝐴. For r = 2, Scott's measure of agreement is also called intraclass 

kappa (Shoukri, 2011). The most well-known and widely used chance-corrected measure of 

agreement in the social sciences is Cohen's kappa (Cohen, 1960) where 𝜋𝑅 = ∑ 𝜋+𝑖𝜋𝑖+
𝑟
𝑖=1 .  

The population value of Cohen's kappa is denoted here as 𝜅𝑐. A maximum likelihood 

estimate of 𝜅𝑐, denoted as 𝜅̂𝑐, is obtained by replacing 𝜋𝐴 with 𝜋̂𝐴 = ∑
𝑓𝑖𝑖

𝑛

𝑟
𝑖=1  and replacing 𝜋𝑅 with 

𝜋̂𝑅 = 
∑ 𝑓+𝑖𝑓𝑖+

𝑟
𝑖=1

𝑛2
 in Equation 1. An approximate large-sample standard error of 𝜅̂𝑐 was derived by 

Fleiss, Cohen, and Everitt (1969) which can be used to construct a Wald confidence interval for 

𝜅𝑐.  

SAS and Stata compute the Wald confidence interval for 𝜅𝑐. The cohen.kappa function 

in the psych R package also computes the Wald confidence interval for 𝜅𝑐. The Wald confidence 
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interval for Cohen's kappa (𝜅𝐶) is known to have poor performance characteristics (Flack, 1987; 

Blackman & Koval, 2000). Although several alternative confidence interval estimation methods 

for 𝜅𝑐 have been proposed (see Lee & Tu, 1994), bootstrap confidence intervals for 𝜅𝑐 appear to 

be the best option (Klar et al., 2002). Lee and Tu (1994) found that a sample of at least n = 100 

objects must be rated before the Wald confidence interval for 𝜅𝑐 can be expected to perform 

properly. The simulation results of Klar et al. (2002) suggest that the bootstrap confidence interval 

for 𝜅𝑐 should not be used for n < 35. 

Cohen's kappa is widely used but has several limitations. Feinstein and Cicchetti (1990) 

explain how 𝜅̂𝑐 can have a very low value even when 𝜋̂𝐴 is close to 1. For example, with 𝑓11 = 97, 

𝑓12 = 0, 𝑓21 = 2, and 𝑓22 = 1, there is near perfect agreement between the two raters but 𝜅̂𝑐 = .492. 

With 𝑓11 = 80, 𝑓12 = 20, 𝑓21 = 0, and 𝑓22 = 0 there is high agreement between the two raters but    

𝜅̂𝑐 = 0. Warrens (2010) shows that 𝜅̂𝑐 is paradoxically larger when 𝜋𝑖+ ≠  𝜋+𝑖. For example,            

𝜅̂𝑐 = .40 with 𝑓11 = 35, 𝑓12 = 15, 𝑓21 = 15, and 𝑓22 = 35 where 𝜋𝑖+ =  𝜋+𝑖, but 𝜅̂𝑐 paradoxically 

increases to .45 with 𝑓11 = 35, 𝑓12 = 0, 𝑓21 = 30, and 𝑓22 = 35 where 𝜋̂𝐴 is unchanged but 𝜋𝑖+ ≠

 𝜋+𝑖. Maclure and Willett (1987) argue that 𝜅̂𝑐 should not be use with r > 2.  

Cohen's definition of 𝜋𝑅 = ∑ 𝜋+𝑖𝜋𝑖+
𝑟
𝑖=1  is perhaps its most serious weakness as a measure 

of nominal agreement. This definition implies that Rater 1 would assign objects to category i with 

probability 𝜋+𝑖 and Rater 2 would assign subjects to category i with probability 𝜋𝑖+ if both raters 

were simply guessing. However, 𝜋𝑅 = ∑ 𝜋+𝑖𝜋𝑖+
𝑟
𝑖=1  is estimated using sample data in which raters 

typically are not guessing. For example, if r = 3 and Rater 1 classifies 20% of the objects in 

category 1, 45% in category 2, and 35% in category 3, Cohen's kappa assumes that these exact 

same marginal proportions would be obtained if Rater 1 was simply guessing. Green (1981) argued 

that 𝜋𝑅 = ∑ 𝜋+𝑖𝜋𝑖+
𝑟
𝑖=1  could be justified in the arguably unrealistic situation where a rater would 
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"guess at a rate equivalent to the proportion of time they have determined the presence of a 

characteristic when they were not guessing". Except for the chance-corrected measure of 

agreement proposed by Bennett, Alpert and Goldstein (1954), all of the other measures of 

agreement also use an estimate of 𝜋𝑅 in situations where raters are typically not guessing. 

Furthermore, estimating 𝜋𝑅 = ∑ 𝜋+𝑖𝜋𝑖+
𝑟
𝑖=1  introduces another source of sampling variability into 

𝜅̂𝑐 which degrades the small-sample performance of the Wald confidence interval for 𝜅𝑐.  

For r = 2, Byrt, Bishop, and Carlin (1993) define prevalence as 𝜋11 −  𝜋22 and bias as        

𝜋𝑖+ − 𝜋+𝑖  and then show that a bias adjustment to 𝜅𝑐 is equal to the intraclass kappa. They also 

show that a bias adjustment combined with a prevalence adjustment to 𝜅𝑐 is equal to the Bennett-

Alpert-Goldstein index. For r = 2, Blackman and Koval (1993) show that intraclass kappa is a 

large-sample approximation to an intraclass reliability of a single rater from a one-way ANOVA, 

while Cohen's kappa is a large-sample approximation to an intraclass reliability of a single rater 

from a two-way ANOVA. In an interrater reliability study, the intraclass reliability coefficient 

describes the reliability of a single rater assuming parallel measurements (McDonald, 1999). 

Parallel measurements are assumed to be homoscedastic and this assumption is violated in the case 

of r = 2 if 𝜋𝑖+(1 − 𝜋𝑖+) ≠  𝜋+𝑖(1 − 𝜋+𝑖). Although Cohen's kappa is arguably an inappropriate 

measure of interrater agreement, it is an appropriate measure of interrater reliability in the special 

case of r = 2 and homoscedasticity. 

 Some of the controversy and debate regarding interrater agreement stems from a failure to 

distinguish between interrater agreement and interrater reliability (Kottner & Stiener, 2011). One 

of the claimed limitations of 𝜅𝑐 is the attenuation that occurs in a 2 x 2 table when 𝜋+1 or 𝜋1+ is 

close to 1 or 0. Although the attenuation of 𝜅̂𝑐 is an inappropriate characteristic for a measure of 

interrater agreement, it is a perfectly appropriate characteristic for a measure of interrater reliability 
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because reliability cannot be large if there is little variability in the ratings, and the variability of 

the dichotomous ratings will be small when 𝜋̂+1 or 𝜋̂1+ is close to 1 or 0. The problem of assessing 

interrater agreement rather than interrater reliability is addressed here.  

3. G-index for Two Raters 

As noted above, the chance-corrected measure of agreement proposed by Bennett, Alpert 

and Goldstein (1954) sets 𝜋𝑅 = 1/r. This value for 𝜋𝑅 assumes two independent raters, if they were 

simply guessing, would select one of the r categories with probability 1/r so that the joint 

probabilities in the r x r contingency table under random and independent ratings is 1/r2. The sum 

of the r joint agreement probabilities gives 𝜋𝑅 = 1/r. This definition of 𝜋𝑅 is a sensible assumption 

for random nominal scale classifications and is consistent with signal detection theory (Wickens, 

2002, p. 95) when choosing among r alternatives under a pure noise condition. Setting 𝜋𝑅 = 1/r is 

also consistent with the conceptualization of chance agreement proposed by Lawlis and Lu (1972), 

Maxwell (1977), and Grove et al. (1981). Hayes and Krippendorff (2007) criticize using 𝜋𝑅 = 1/r. 

They argue that any category that is unused by both raters will "inflate" the Bennet-Alpert-

Goldstein coefficient but not Cohen's kappa. However, a category that is unused by both raters 

indicates perfect agreement for that category and it is appropriate that the Bennet-Alpert-Goldstein 

coefficient reflects this agreement.  

The population chance-corrected measure of agreement proposed by Bennett, Alpert and 

Goldstein (1954) and Brennan and Prediger (1981), and referred to by Holley and Guilford (1964) 

as a G-index of agreement, will be denoted here as 𝜅𝐺 . Setting 𝜋𝑅 = 1/r in Equation 1 gives 

                               𝜅𝐺  =   
𝜋𝐴 − 1/𝑟

1 − 1/𝑟
  = (𝑟𝜋𝐴 – 1)/(r – 1)                                 (2) 

and has a possible range of -1/(r – 1) to 1. The maximum likelihood estimate of 𝜅𝐺  is 

                                         𝜅̂𝐺  = (𝑟𝜋̂𝐴 – 1)/(r – 1)            (3) 
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where 𝜋̂𝐴 = ∑ 𝑓𝑖𝑖/𝑛𝑟
𝑖=1  is the unbiased maximum likelihood estimate of 𝜋𝐴. The estimator of 𝜅𝐺  is 

a unbiased maximum likelihood estimator because it is a linear function of the unbiased maximum 

likelihood estimator of 𝜋𝐴. An approximate standard error for 𝜅̂𝐺  given below  

                              SE(𝜅̂𝐺) = [r/(r – 1)]√𝜋̂𝐴(1 − 𝜋̂𝐴)/𝑛          (4) 

which is a linear function of the standard error of 𝜋̂𝐴. In the above example where 𝑓11 = 97, 𝑓12 = 

0, 𝑓21 = 2, and 𝑓22 = 1, the estimate of 𝜅𝐺  (Equation 3) is .96 and appropriately describes the near 

perfect agreement between the two raters.  

The following 100(1 – 𝛼)% adjusted Wald confidence interval for 𝜅𝐺  is proposed here  

                        [r/(r – 1)][𝜋̂𝐴
∗ ± 𝑧𝛼/2√𝜋̂𝐴

∗(1 − 𝜋̂𝐴
∗)/(𝑛 + 4)] – 1/(r – 1)         (5) 

where 𝜋̂𝐴
∗ = (𝑓𝐴 + 2)/(𝑛 + 4) and 𝑓𝐴 = ∑ 𝑓𝑖𝑖

𝑟
𝑖=1 . The ci.qrater R function in the online 

Supplementary Materials computes Equations 3, 4 and 5.  

Although a point estimate of 𝜅𝐺  was proposed decades ago (Bennett, Alpert, & Goldstein, 

1954), little progress has been made in terms of statistical inference for 𝜅𝐺 . For the special case of 

r = 2, a standard error of 𝜅̂𝐺  is given in Shoukri (2011) as  

                                              (1 – 𝜅̂𝐺
2)/n           (6) 

which can be algebraically re-expressed in the form of Equation 4. For r = 2, this standard error 

could be used to compute the following 100(1 – 𝛼)% Wald confidence interval for 𝜅𝐺  

                                        𝜅̂𝐺 ± 𝑧𝛼/2SE(𝜅̂𝐺).           (7) 

It can be shown that Equation 7 can be expressed in the form of Equation 5 where the interval 

estimate in brackets is the traditional Wald confidence interval for a population proportion. Agresti 

and Coull (1998) showed that the traditional Wald confidence interval has poor performance 

characteristics under realistic conditions and they proposed an adjusted Wald confidence interval. 
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With sample sizes as small as n = 10, the 95% Agresti-Coull confidence interval had an average 

coverage probability close to .95 and a worst-case coverage probability no less than .92 across the 

entire range of possible population proportion values (Agresti & Coull, 1998). The interval 

estimate in brackets of Equation 7 is the Agresti-Coull confidence interval and hence Equation 5 

inherits all of its performance characteristics because 𝜅𝐺  is a linear function of 𝜋𝐴. The "exact" 

Clopper-Pearson confidence interval for 𝜋𝐴 also could be used in place of the Agresti-Coull 

confidence interval in Equation 5 (see Conclusion section). Note that Cohen's kappa cannot be 

expressed solely in terms of 𝜋𝐴 and hence the Agresti-Coull or Clopper-Pearson confidence 

intervals cannot be used to obtain a confidence interval for Cohen's kappa. 

4.  Comparing Agreement in Two-group Designs 

Assessing interrater agreement from two independent groups can answer a wide variety of 

interesting research questions. The two-group design can be experimental or nonexperimental. A 

two-group nonexperimental design could consist of two types of randomly sampled objects (e.g., 

male vs female students) that are classified into r categories by the same two raters. In a two-group 

experimental design, a single sample of objects is randomly divided into two groups and each 

group could be rated by different types of raters (e.g., expert vs novice) or under differing rating 

conditions (e.g., complete vs incomplete case files). Methods for comparing two or more 

independent intraclass kappa values have been proposed by Donner, Eliasziw, and Klar (1996) and 

Donner and Zou (2002). 

Let 𝜅𝐺𝑗 denote the population value of the G-index that will be estimated from 

subpopulation j in a two-group nonexperimental design or from condition j in a two-group 

experimental design. It is easy to show that the difference 𝜅𝐺1 − 𝜅𝐺2 can be expressed as               

[r/(r – 1)](𝜋𝐴1 − 𝜋𝐴2) where 𝜋𝐴𝑗 is the population proportion of agreements that will be estimated 
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in group j. The following 100(1 – 𝛼)% adjusted Wald confidence interval for 𝜅𝐺1 −  𝜅𝐺2 is 

proposed here 

                             [r/(r – 1)][𝜋̂𝐴1
∗ − 𝜋̂𝐴2

∗ ± 𝑧𝛼/2√
𝜋̂𝐴1

∗ (1 − 𝜋̂𝐴1
∗ )

𝑛1 + 2
+

𝜋̂𝐴2
∗ (1 − 𝜋̂𝐴2

∗ )

𝑛2 + 2
]                     (8) 

where 𝜋̂𝐴𝑗
∗  = (𝑓𝐴𝑗 + 1)/(𝑛𝑗 + 2). Note that the confidence interval in brackets is the adjusted Wald 

confidence interval for a difference between two independent proportions developed by Agresti 

and Caffo (2000) which has been shown to have excellent small-sample properties under a wide 

range of conditions. With sample sizes as small as 10 per group, the 95% Agresti-Caffo confidence 

interval had an average coverage probability close to .95 and a worst-case coverage probability no 

less than .92 in the 10,000 conditions they considered (Agresti & Caffo, 2000). The ci.diff R 

function in the online Supplementary Materials computes Equation 6. 

5. Multi-study Designs 

A small sample of objects might be necessary if the ratings are costly or time consuming. 

However, a confidence interval for 𝜅𝐺  might be uselessly wide if the sample size is too small. One 

way to obtain a more accurate estimate of 𝜅𝐺  is to statistically combine agreement estimates from 

two or more independent studies. Combining parameter estimates from two or more studies is 

called a meta-analysis, and Vacha-Haase (1998) referred to a meta-analysis of reliability estimates 

as reliability generalization. Bonett (2010) developed statistical methods for combining and 

comparing Cronbach alpha reliability coefficients from two or more studies. The logic and 

rationale for reliability generalization also applies to interrater agreement with the goal of 

obtaining a more precise and generalizable estimate of agreement and also to assess the degree to 

which an agreement index might vary across different types of raters, different rating conditions, 

or different types of rated objects.  
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Sun (2011) showed how the classical fixed-effect and random-effects meta-analysis 

methods (see Borenstein et al., 2009) can be used to obtain a confidence interval for an average of 

two or more population Cohen kappa values. The varying-coefficient meta-analysis method 

(Bonett & Price, 2015) is used here to obtain a confidence interval for an average of G-index values 

from multiple populations. The varying-coefficient model does not require the unrealistic 

assumptions of the classical fixed-effect and random-effects meta-analysis methods. Unlike the 

traditional fixed-effect model, the varying-coefficient model does not assume effect-size 

homogeneity, and unlike the random-effects model the varying-coefficient model does not assume 

randomly selected studies or effect size standard errors that are uncorrelated with the effect sizes 

(see Bonett & Price, 2015 for more details). 

Let 𝜅𝐺𝑗 represent the population G-index value that has been estimated in study j                      

(j = 1 to m).The following 100(1 – 𝛼)% adjusted Wald confidence interval for ∑ 𝜅𝐺𝑗/𝑚𝑚
𝑗=1  is 

proposed here 

                             ∑ 𝜅̂𝐺𝑗
 ∗ /𝑚𝑚

𝑗=1  ± 𝑧𝛼/2√∑ 𝑆𝐸(𝜅̂𝐺𝑗
 ∗ )2/𝑚2𝑚

𝑗=1                                             (9) 

where  𝜅̂𝐺𝑗
 ∗  = (𝑟𝜋̂𝐴𝑗

∗  – 1)/(r – 1), 𝑆𝐸(𝜅̂𝐺𝑗
 ∗ ) = [r/(r – 1)]√

𝜋̂𝐴𝑗
∗ (1 − 𝜋 ̂𝐴𝑗

∗ )

𝑛𝑗 + 4/𝑚
 , and 𝜋̂𝐴𝑗

∗ = (𝑓𝐴𝑗 + 2/𝑚)/(𝑛𝑗 +

4/𝑚). Note that ∑ 𝜅𝐺𝑗/𝑚𝑚
𝑗=1  = [r/(r – 1)]∑ 𝜋𝐴𝑗/𝑚𝑚

𝑗=1  – m/(r – 1) and hence the endpoints of 

Equation 9 are linear functions of the endpoints of the adjusted Wald confidence interval proposed 

by Price and Bonett (2004) for a linear function of independent proportions. The Price-Bonett 

confidence interval is a generalization of the Agesti-Coull confidence interval and has been shown 

to have excellent small-sample properties under a wide range of conditions. In meta-analysis 

applications with m = 5, 15, or 30 studies and sample sizes as small as 10 per group, the 95% Price-

Bonett confidence interval had an average coverage probability close to .95 and a worst-case 
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coverage probability no less than .938 in the 13,500 conditions they considered (Price & Bonett, 

2004). The ci.meta R function in the online Supplementary Materials computes Equation 9 using 

the sample sizes and number of agreements from each study.  

Important differences in 𝜅𝐺𝑗 values across the m populations could be due to differences in 

rating conditions, rater characteristics, or characteristics of the rated objects. A linear contrast of 

𝜅𝐺𝑗 values can be expressed as ∑ ℎ𝑗𝜅𝐺𝑗
𝑚
𝑗=1  where the ℎ𝑗  values are specified by the researcher and 

∑ ℎ𝑗
𝑚
𝑗=1  = 0. For example, in a meta-analysis of m = 5 comparable interrater agreement studies 

where the first three studies rated the behavior of high school students and the last two studies 

rated the behavior of college students, the researcher might want to estimate (𝜅𝐺1 + 𝜅𝐺2 + 𝜅𝐺3)/3 

– (𝜅𝐺4 + 𝜅𝐺5)/2. This linear contrast can be specified with contrast coefficients ℎ1= 1/3, ℎ2 = 1/3, 

ℎ3 = 1/3, ℎ4 = -1/2, and ℎ5 = -1/2. 

The following 100(1 – 𝛼)% adjusted Wald confidence interval for ∑ ℎ𝑗𝜅𝐺𝑗
𝑚
𝑗=1  is proposed 

here 

                                         ∑ ℎ𝑗𝜅̂𝐺𝑗
 ∗𝑚

𝑗=1  ± 𝑧𝛼/2√∑ ℎ𝑗
2𝑆𝐸(𝜅̂𝐺𝑗

 ∗ )2𝑚
𝑗=1                                                 (10) 

where 𝜅̂𝐺𝑗
 ∗  and 𝑆𝐸(𝜅̂𝐺𝑗

 ∗ ) are defined above with m set equal to the number of non-zero ℎ𝑗  values as 

recommended by Price and Bonett (2004). Note that ∑ ℎ𝑗𝜅𝐺𝑗
𝑚
𝑗=1  = [r/(r – 1)]∑ ℎ𝑗𝜋𝐴𝑗

𝑚
𝑗=1  and hence 

the endpoints of Equation 10 are linear functions of the endpoints of the adjusted Wald confidence 

interval proposed by Price and Bonett (2004) for a linear function of independent proportions. The 

Price-Bonett confidence interval has been shown to have excellent performance characteristics. 

With sample sizes as small as 20 per group, the 95% Price-Bonett confidence interval had an 

average coverage probability close to .95 and a worst-case coverage probability no less than .920 

across 10,000 population proportion values and several different types of linear contrasts (Price & 
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Bonett, 2004). The ci.contrast R function in the online Supplementary Materials computes 

Equation 10.  

6.  Multi-rater Designs 

If q different and deliberately selected raters each classify a random sample of objects into 

r categories, the results can be summarized in a 𝑟𝑞 contingency table. A G-index of agreement for 

any two raters can be computed by collapsing the 𝑟𝑞 table into an r x r table for the two raters of 

interest and then applying Equations 3, 4, and 5.  

A G-index of agreement among all q raters is defined here as 

              𝜅𝐺(𝑞) =   
𝜋𝐴  –  𝜋𝑅

1 − 𝜋𝑅
   =  

𝜋𝐴  –  1/𝑟𝑞−1

1 − 1/𝑟𝑞−1
  = (𝑟𝑞−1𝜋𝐴 – 1)/(𝑟𝑞−1 – 1)       (11) 

where 𝜋𝐴 = ∑ 𝜋𝑖𝑖…𝑖
𝑟
𝑖=1  is the probability of unanimous agreement among the q raters and 𝜋𝑖𝑖…𝑖 is 

the probability of unanimous agreement among the q raters for one of the r categories. Assuming 

random and independent ratings, the joint probabilities in the 𝑟𝑞 contingency table is 1/𝑟𝑞 so that 

the probability of random agreement in any of the r categories is 𝜋𝑅 = ∑ 1/𝑟𝑞𝑟
𝑖=1   = 1/𝑟𝑞−1. Note 

that 𝜋𝐴 satisfies the definition of agreement among multiple raters given by Hubert (1977).   

The maximum likelihood estimate of 𝜅𝐺(𝑞) is 

                                    𝜅̂𝐺(𝑞) = (𝑟𝑞−1𝜋̂𝐴 – 1)/(𝑟𝑞−1 – 1)                    (12) 

where 𝜋̂𝐴 = ∑ 𝑓𝑖𝑖…𝑖
𝑟
𝑖=1 /𝑛 is the maximum likelihood estimate of 𝜋𝐴. The approximate standard 

error for 𝜅̂𝐺(𝑞) given below is a function of the variance of 𝜋̂𝐴. 

                       SE(𝜅̂𝐺(𝑞)) = [𝑟𝑞−1/(𝑟𝑞−1 – 1)]√𝜋̂𝐴(1 − 𝜋̂𝐴)/𝑛        (13) 

The following 100(1 – 𝛼)% adjusted Wald confidence interval for 𝜅𝐺(𝑞) is proposed here 

          [𝑟𝑞−1/(𝑟𝑞−1 – 1)][𝜋̂𝐴
∗ ±  𝑧𝛼/2√𝜋̂𝐴

∗(1 − 𝜋̂𝐴
∗)/(𝑛 + 4) ] – 1/(𝑟𝑞−1 – 1)                 (14) 
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where 𝜋̂𝐴
∗ = (𝑓𝐴 + 2)/(𝑛 + 4) and 𝑓𝐴 =∑ 𝑓𝑖𝑖…𝑖

𝑟
𝑖=1 . Like Equation 5, Equation 14 uses the Agresti-

Coull adjusted Wald confidence interval for a single population proportion. The ci.qrater R 

function in the online Supplementary Materials computes Equation 14.  

6.1 Three-rater Design (r = 2) 

Consider a q = 3 rater design with r = 2. The three pairwise G-indices are denoted as 𝜅𝐺{1,2}, 

𝜅𝐺{1,3}, and 𝜅𝐺{2,3}. The average of all pairwise measures of agreement is an alternative multi-rater 

measure of agreement proposed by Hubert (1977). It can be shown for the special case of q = 3, 

using straghtforward but tedious algebra, that 𝜅𝐺(3) = (𝜅𝐺{1,2} + 𝜅𝐺{1,3} + 𝜅𝐺{2,3})/3.  

In some applications it will be informative to compare 𝜅𝐺{1,2}, 𝜅𝐺{1,3}, and 𝜅𝐺{2,3}. For 

example, if Raters 1 and 2 are novices and Rater 3 is an expert, confidence intervals for               

𝜅𝐺{1,2} – 𝜅𝐺{1,3}, 𝜅𝐺{1,2} – 𝜅𝐺{2,3}, and 𝜅𝐺{1,3} – 𝜅𝐺{2,3} will provide information regarding the 

direction and the magnitude of these pairwise differences. The three G-indices in a 3-rater design 

with r = 2 can be expressed as 

                              𝜅𝐺{1,2} = 2(𝜋111 + 𝜋112 + 𝜋221 + 𝜋222) − 1                              (15) 

                              𝜅𝐺{1,3} = 2(𝜋111 + 𝜋121 + 𝜋212 + 𝜋222) − 1                                  (16) 

                              𝜅𝐺{2,3} = 2(𝜋111 + 𝜋211 + 𝜋122 + 𝜋222) − 1                                  (17) 

and it follows that the pairwise differences in these G-indices can be expressed as 

                        𝜅𝐺{1,2} – 𝜅𝐺{1,3} = 2(𝜋112 + 𝜋221) − 2(𝜋121 + 𝜋212)                            (18) 

                        𝜅𝐺{1,2} – 𝜅𝐺{2,3} = 2(𝜋112 + 𝜋221) − 2(𝜋211 + 𝜋122)                            (19) 

                        𝜅𝐺{1,3} – 𝜅𝐺{2,3} = 2(𝜋121 + 𝜋212) − 2(𝜋211 + 𝜋122)                            (20) 

Maximum likelihood estimates of 𝜅𝐺{1,2}, 𝜅𝐺{1,3},  and 𝜅𝐺{2,3} and the pairwise differences in          
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G-indices are obtained by replacing 𝜋𝑖𝑗𝑘 in Equations 15-20 with the maximum likelihood estimate 

𝜋̂𝑖𝑗𝑘 = 𝑓𝑖𝑗𝑘/𝑛.  

An approximate standard error of each pairwise difference is derived by first collapsing the 

23 table of multinomial proportions into three mutually exclusive categories. For example, from 

Equation 18 the three categories needed to assess 𝜅𝐺{1,2} – 𝜅𝐺{1,3} have probabilities of 𝜋1 = 𝜋112 +

𝜋221, 𝜋2 = 𝜋121 + 𝜋212, and 𝜋3 = 1 – (𝜋1 + 𝜋2). Using the variances and covariances of a 

multinomial distribution (Bishop, Finberg, & Holland, 1976, p. 442), an approximate standard 

error of  𝜅̂𝐺{1,2} – 𝜅̂𝐺{1,3} is 

                       SE(𝜅̂𝐺{1,2} – 𝜅̂𝐺{1,3}) = √4{𝜋̂1 + 𝜋̂2 − (𝜋̂1 − 𝜋̂2)2}/𝑛                              (21) 

where 𝜋̂1 =  (𝑓112 + 𝑓221)/𝑛 and 𝜋̂2 =  (𝑓121 + 𝑓212)/𝑛. An approximate standard error of     

𝜅̂𝐺{1,2} – 𝜅̂𝐺{2,3} is given by Equation 21 with 𝜋̂1 =  (𝑓112 + 𝑓221)/𝑛 and 𝜋̂2 =  (𝑓211 + 𝑓122)/𝑛, 

and an approximate standard error of 𝜅̂𝐺{1,3} – 𝜅̂𝐺{2,3} is given by Equation 21 with 𝜋̂1 =  (𝑓121 +

𝑓212)/𝑛 and 𝜋̂2 =  (𝑓211 + 𝑓122)/𝑛. 

A 100(1 – 𝛼)% adjusted Wald confidence interval for 𝜅𝐺{1,2} – 𝜅𝐺{1,3} is  

                              2[𝜋̂1
∗ – 𝜋̂2

∗ ±  𝑧𝛼/2√{𝜋̂1
∗ + 𝜋̂2

∗ − (𝜋̂1
∗ − 𝜋̂2

∗)2}/(𝑛 + 2)]      (22) 

where 𝜋̂1
∗ =  (𝑓112 + 𝑓221 + 1)/(𝑛 + 2) and 𝜋̂2

∗ =  (𝑓121 + 𝑓212 + 1)/(𝑛 + 2). The confidence 

interval for 𝜅𝐺{1,2} – 𝜅𝐺{2,3} is given by Equation 22 with 𝜋̂1
∗ =  (𝑓112 + 𝑓221 + 1)/(𝑛 + 2) and 

𝜋̂2
∗ =  (𝑓121 + 𝑓212 + 1)/(𝑛 + 2), and the confidence interval for 𝜅𝐺{1,2} – 𝜅𝐺{2,3} is given by 

Equation 22 with 𝜋̂1
∗ =  (𝑓121 + 𝑓212 + 1)/(𝑛 + 2) and 𝜋̂2

∗ =  (𝑓211 + 𝑓122 + 1)/(𝑛 + 2). The 

adjusted Wald confidence interval in brackets of Equation 22 was developed by Bonett and Price 

(2012) and was shown to have excellent small-sample properties under a wide range of conditions. 

With sample sizes as small as n = 15, the 95% Bonett-Price confidence interval had an average 
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coverage probability that was slightly greater than .95 and a worst-case coverage probability no 

less than .910 in the 25,000 conditions they considered (Bonett & Price, 2012). The 

agree.3rater R function in the online Supplementary Materials computes Equation 22 for all 

three pairs of raters and also computes Equation 14 for 𝜅𝐺(3).   

6.2  Four-rater Design (r = 2) 

The case of q = 4 raters with r = 2 has received special attention in the literature (Donner 

et al, 2000; McKenzie et al., 1996; Williamson & Manatunga, 1997; Banerjee, Capozzoli, 

McSweeney & Sinha, 1999) because some of the research questions that can be answered using 

the two-group design described previously might be answered more economically using a one-

group design with four raters. The four rater design can be used to compare the agreement between 

two different types of raters such as two novice raters and two expert raters or two male raters and 

two female raters.  

A G-index for any two raters in a 4-rater design can be computed by collapsing the 24 table 

into a 2 x 2 table for any two raters of interest and then applying Equations 3, 4, and 5. The focus 

here will be the comparison of agreement between the first two raters (𝜅𝐺{1,2}) with the last two 

raters (𝜅𝐺{3,4}).  These two G-indices in a 4-rater design can be expressed as 

       𝜅𝐺{1,2} = 2(𝜋1111 + 𝜋1121 + 𝜋1112 + 𝜋1122 + 𝜋2211 +  𝜋2221 + 𝜋2212 + 𝜋2222) − 1      (23) 

       𝜅𝐺{3,4} = 2(𝜋1111 + 𝜋1211 + 𝜋2111 + 𝜋2211 +  𝜋1122 +  𝜋1222 + 𝜋2122 + 𝜋2222) − 1       (24) 

and it follows that the difference between these two G-indices can be expressed as 

                                       𝜅𝐺{1,2} – 𝜅𝐺{3,4} = 2(𝜋1 − 𝜋2)         (25) 

where 𝜋1 =  𝜋1121 + 𝜋1112 + 𝜋2221 + 𝜋2212 and 𝜋2 = 𝜋1211 + 𝜋2111 + 𝜋1222 + 𝜋2122. The maximum 

likelihood estimate of 𝜅𝐺{1,2} – 𝜅𝐺{3,4} is obtained by replacing the population proportions in 

Equations 23 and 24 with their maximum likelihood estimates.  
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Applying the same approach used to derive Equation 22 gives the following approximate 

standard error of 𝜅̂𝐺{1,2} – 𝜅̂𝐺{3,4}  

                       SE(𝜅̂𝐺{1,2} – 𝜅̂𝐺{3,4}) = √4{𝜋̂1 + 𝜋̂2 − (𝜋̂1 − 𝜋̂2)2}/𝑛                              (26) 

and the following 100(1 – 𝛼)% adjusted Wald confidence interval for 𝜅𝐺{1,2} – 𝜅𝐺{3,4}  

                              2[𝜋̂2
∗ – 𝜋̂2

∗ ±  𝑧𝛼/2√{𝜋̂1
∗ + 𝜋̂2

∗ − (𝜋̂1
∗ − 𝜋̂2

∗)2}/(𝑛 + 2)]       (27) 

where 𝜋̂1 and 𝜋̂2 are maximum-likelihood estimates, 𝜋̂1
∗ = (𝑓1121 + 𝑓1112 + 𝑓2221 + 𝑓2212 +

1)/(𝑛 + 2) and 𝜋̂2
∗ =  (𝑓1211 + 𝑓2111 + 𝑓1222 + 𝑓2122 + 1)/(𝑛 + 2). Note that the adjusted Wald 

confidence interval in brackets is a Bonett-Price confidence described in Equation 22. The 

ci.4rater R function in the online Supplementary Materials computes the maximum likelihood 

estimate and confidence interval for 𝜅𝐺{1,2} – 𝜅𝐺{3,4} requiring only the sample size, 𝑓1 = 𝑓1121 + 

𝑓1112 + 𝑓2221 + 𝑓2212, and 𝑓2 = 𝑓1211 + 𝑓2111 + 𝑓1222 + 𝑓2122 as input.  

 The above results for q = 3 and q = 4 raters can be applied to designs with q ≥ 4 raters by 

collapsing a 2q table into a 23 table if the comparison involves three raters or a 24 table if the 

comparison involves four raters. For example, with q = 5, an estimate and confidence interval for 

𝜅𝐺{1,3} – 𝜅𝐺{3,4} is computed from a 23 table for Raters 1, 3, and 4, and an estimate and confidence 

interval for 𝜅𝐺{1,3} – 𝜅𝐺{4,5} is computed from a 24 table for Raters 1, 3, 4, and 5.  

7.  Benchmark G-index Values 

When reporting the numerical results for a measure of agreement, it is common to also 

provide a verbal description of the strength of agreement. Altman (1991), Fleiss, Levin, and Paik 

(2003), and Landis and Koch (1977) have each suggested their own benchmark verbal descriptions 

for different point estimates of Cohen's kappa. Landis and Koch (1977) suggested that a Cohen 

kappa value within one of the following six ranges < 0, 0 to .20, .21 to .40, .41 to .60, .61 to .80, 

or .81 to 1.0 represents a "poor", "slight", "fair", "moderate", "substantial", or "almost perfect" 
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agreement, respectively. The Landis-Koch benchmarks are frequently used to describe a point 

estimate of an agreement index. This practice is misleading because point estimates contain 

sampling error of unknown magnitude and direction. Benchmark descriptions should be applied 

to an interval estimate rather than a point estimate. Although the Landis-Koch benchmark scale is 

appealing because of its six very specific descriptive categories, a confidence interval is likely to 

cover two or more of these categories unless n is large. Fleiss, Levin, and Paik (2003) proposed a 

three category scale for Cohen's kappa where values below .4 represent "poor" agreement, values 

between .40 and .75 represent "good" agreement, and values greater than .75 represent "excellent" 

agreement. Some researchers might find the Fleiss scale to be too crude for their purposes. 

A four category benchmark scale is proposed here for the G-index. A G-index value within 

one of the four ranges < .25, .25 to .50, .51 to .75, and .76 to 1.0 could be described as "poor", 

"fair", "good", and "excellent", respectively. A confidence interval is less likely to include more 

than two descriptive categories in a four category scale than a six category scale. For example, a 

confidence interval of [.581, .824] would be described as "moderate, substantial, or almost perfect 

agreement" using the Landis-Koch scale and would be described as "good or excellent agreement" 

using the proposed scale.  

8.  Sample Size Planning 

Sample size planning is one of the most important components in the design of an interrater 

agreement study. If the number of objects sampled is too small, the confidence interval for the 

population agreement index could be uselessly wide. Several methods to approximate the sample 

size requirement when assessing Cohen's kappa have been proposed (Bujang & Baharun, 2017; 

Cantor, 1996; Donner & Eliasziw, 1992; Flack et al., 1988). The available sample size methods 

for Cohen's kappa are of limited value because they require assumptions about the classification 

probabilities of each rater in addition to the value for 𝜅𝑐. Closed-form sample size formulas are 



19 
 

derived here that approximate the required sample size to obtain 100(1 − 𝛼)% confidence 

intervals for 𝜅𝐺 , 𝜅𝐺1 −  𝜅𝐺2,  and 𝜅𝐺(𝑞) with desired precision. These closed-form formulas are 

particularly useful because they do not require assumptions about the classification probabilities 

of each rater. 

Larger sample sizes give narrower confidence intervals and it is possible to approximate 

the sample size that will give the desired width (w) of a confidence interval for a specified level of 

confidence. The sample size needed to obtain a 100(1 − 𝛼)% confidence interval for 𝜅𝐺  (Equation 

5) having a desired width (upper limit minus lower limit) equal to w is approximately  

                n' = 4(𝜅̃𝐺 + 
1

𝑟 − 1
)(1 − 𝜅̃𝐺)(𝑧𝛼/2/𝑤)2        (28) 

where 𝜅̃𝐺  is a planning value of 𝜅𝐺 . Equation 28 was derived from Equation 4 where 2𝑧𝛼/2SE(𝜅̂𝐺) 

is the approximate width of Equation 5. Setting this width to w, solving for n, and then replacing 

𝜅̂𝐺  with 𝜅̃𝐺  gives Equation 28. A planning value of 𝜅𝐺  is obtained from expert opinion, pilot 

studies, or previously published research. Setting 𝜅̃𝐺  = (r – 2)/[2(r – 1)] maximizes Equation 28 

and is useful in applications where no prior information about 𝜅𝐺  is available.  

The width of Equation 5 tends to be greater than 2𝑧𝛼/2SE(𝜅̂𝐺), especially in small samples 

or if 𝜋̂𝐴 is close to 0 or 1, and hence n' tends to understate the required sample size. Following the 

general approach of Bonett and Wright (2000), a more accurate sample size approximation is   

                                                           𝑛 = 𝑛′(𝑤0/𝑤)2                                                    (29) 

where 𝑤0 is the width of Equation 5 computed using n = n' and the value of 𝜋̂𝐴
∗ implied by 𝜅̃𝐺 .The 

size.ci.qrater R function in the online Supplementary Materials computes Equations 28 and 

then adjusts the result using Equation 29.  

The sample size per group needed to obtain a 100(1 − 𝛼)% confidence interval for      

 𝜅𝐺1 − 𝜅𝐺2 (Equation 8) in a two-group design having a desired width of w is approximately 
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                                 𝑛′ = 4𝑣(𝑧𝛼/2/𝑤)2          (30) 

where v = (𝜅̃𝐺1 +
1

𝑟 − 1
)(1 −  𝜅̃𝐺1) + (𝜅̃𝐺2 +

1

𝑟 − 1
)(1 −  𝜅̃𝐺2) and 𝜅̃𝐺𝑗 is a planning value of 𝜅𝐺𝑗. If 

no prior information is available, 𝜅̃𝐺1 and 𝜅̃𝐺2 can be set to (r – 2)/[2(r – 1)] which maximizes 

Equation 30. Equation 30 was derived by setting 2𝑧𝛼/2√𝑆𝐸(𝜅̂𝐺1)2 + 𝑆𝐸(𝜅̂𝐺2)2  equal to w, 

solving for n, and replacing 𝜅̂𝐺𝑗 with 𝜅̃𝐺𝑗. 

The width of Equation 8 tends to be greater than 2𝑧𝛼/2√𝑆𝐸(𝜅̂𝐺1)2 + 𝑆𝐸(𝜅̂𝐺2)2, especially 

in small samples or if either 𝜋̂𝐴1 or  𝜋̂𝐴2 is close to 0 or 1, and hence 𝑛′ tends to understate the 

required sample size per group. The size.ci.diff R function in the online Supplementary 

Materials computes Equations 30 and then adjusts the result using Equation 29.   

The sample size needed to obtain a 100(1 − 𝛼)% confidence interval for 𝜅𝐺(𝑞) (Equation 

14) having a desired width of w is approximately  

              𝑛′ = 4(𝜅̃𝐺(𝑞) + 
1

𝑟𝑞−1 − 1
)(1 −  𝜅̃𝐺(𝑞))(𝑧𝛼/2/𝑤)2       (31) 

where 𝜅̃𝐺(𝑞) is a planning value of 𝜅𝐺(𝑞). Equation 31 was derived from Equation 13 where 

2𝑧𝛼/2SE(𝜅̂𝐺(𝑞)) is the approximate width of Equation 14. Setting this width to w, solving for n, 

and then replacing 𝜅̂𝐺(𝑞) with 𝜅̃𝐺(𝑞) gives Equation 31. Setting 𝜅̃𝐺(𝑞) = (𝑟𝑞−1 – 2)/[2(𝑟𝑞−1 – 1)] 

maximizes Equation 31 and is useful in applications where no prior information about 𝜅𝐺(𝑞) is 

available.  

The width of Equation 14 tends to be greater than 2𝑧𝛼/2SE(𝜅̂𝐺(𝑞)), especially in small 

samples or if 𝜋̂𝐴 is close to 0 or 1, and hence n' tends to understate the required sample size. The 

size.ci.qrater R function in the online Supplementary Materials computes Equation 31 and 

then adjusts the result using Equation 29. 
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9.0 Illustrative Examples 

The online Supplementary Materials contains R functions that will compute confidence 

intervals for:  1) 𝜅𝐺  (Equation 5), 2) 𝜅𝐺1 − 𝜅𝐺2  in two-group designs (Equation 8), 3)  

∑ 𝜅𝐺𝑗
𝑚
𝑗=1 /𝑚  in meta-analysis applications (Equation 9), 4) a general linear contrast of 𝜅𝐺𝑗 in 

multiple group designs (Equation 10), 5) 𝜅𝐺(𝑞) in multi-rater designs (Equation 14), and 6) 

pairwise comparisons in 3-rater (Equation 22) and 4-rater designs (Equation 27). The online 

Supplementary Materials also contain R functions that will compute the sample size requirements 

to: 1) estimate 𝜅𝐺  with desired precision (Equation 28), 2) estimate 𝜅𝐺1 − 𝜅𝐺2 with desired 

precision (Equation 30), and 3) estimate 𝜅𝐺(𝑞) with desired precision (Equation 31). The following 

examples are adapted from the author's statistical consulting files. 

9.1 Two Raters in One-Group Design 

Two research assistants classified a random sample of n = 90 open-ended questionnaire 

responses into r = 3 predetermined categories and 82 of the 90 responses were classified into the 

same categories by both research assistants. The command ci.qrater(.05, 90, 82, 3) 

computes Equations 3-5 and returns a point estimate for 𝜅𝐺  of .867 with a 95% confidence interval 

of [.747, .934]. 

9.2 Two Raters in Two-group Design 

Two school psychologists evaluated a random sample of 𝑛1 = 75 case files for boys and a 

random sample of 𝑛2 = 60 case files for girls. Each psychologist rated each child as having or not 

having (r = 2) ADHD symptoms. The psychologist ratings agreed in 70 of the 75 cases for the 

boys and in 45 of the 60 cases for the girls. The command ci.diff(.05, 75, 70, 60, 45, 

2) computes Equation 8 and returns a 95% confidence interval for the difference in agreement for 

boys and girls of [.112, .609]. This function also returns point estimates of .867 and .500 with 95% 
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confidence intervals of [.697, .948] and [.252, .685] for boys and girls, respectively. In this 

example where the two ratings are dichotomous, Cohen's kappa and intraclass kappa are 

questionable measures of interrater agreement but they are valid measures of interrater reliability. 

To obtain point and interval estimates of Cohen's kappa and intraclass kappa, the frequency counts 

in the two 2x2 contingency tables for boys and girls are required. Suppose the frequency counts 

for boys are 𝑓11 = 65,  𝑓12 = 4,  𝑓21 = 1, and 𝑓22 = 5.  The point estimates are .631 and .630, and 

the 95% Wald confidence intervals are [.336, .926] and [.331, .928] for Cohen's kappa and 

intraclass kappa, respectively. Suppose the frequency counts for girls are 𝑓11 = 35,  𝑓12 = 8,  𝑓21 = 

7, and 𝑓22 = 10.  The point estimates are .395 and .395, and the 95% Wald confidence intervals are 

[.142, .649] and [.141, .649] and for Cohen's kappa and intraclass kappa, respectively.  

9.3 Meta-analysis of Two-rater Studies 

Suppose two published studies used two raters to assess interrater agreement for the 

absence or presence (r = 2) of gender stereotype behavior in educational children's TV shows. The 

first published study used a random sample of 𝑛1 = 50 episodes and reported agreement in 41 of 

the 50 episodes. The second published study used a random sample of 𝑛2 = 70 episodes and 

reported agreement in 58 of the 70 episodes. The three commands f = c(41, 58), n = c(50, 

70), and ci.meta(.05, f, n, 2) computes Equation 9 and returns a point estimate for 

(𝜅𝐺1 + 𝜅𝐺2)/2 of .648 with a 95% confidence interval of  [.488, .766]. 

9.4 Linear Contrast in a Three-study Design 

Suppose the above meta-analysis included a third published study that sampled episodes 

of non-educational children's TV shows. The third study used a random sample of 𝑛3 = 90 episodes 

and reported agreement in 85 of the 90 episodes. The four commands f = c(41, 58, 85), n 

= c(50, 70, 90), h = c(-.5, -.5, 1), and ci.contrast(.05, f, n, h, 2) 
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computes Equation 10 and returns a point estimate for 𝜅𝐺3 – (𝜅𝐺1 + 𝜅𝐺2)/2 of .240 with a 95% 

confidence interval of [.071, .412]. This result suggests that interrater agreement is greater for non-

educational than educational TV shows. 

9.5 Four-rater Design 

  Four parole officers (q = 4) evaluated the parole application files of 100 prisoners and there 

was a unanimous grant or deny (r = 2) agreement in 87 of the 100 files. The command 

ci.qrater(.05, 100, 87, 4, 2) computes Equations 12-14 and returns a point estimate 

for 𝜅𝐺(4) of .851 with a 95% confidence interval of [.758, .912]. 

9.6  Three-rater Design 

A school psychologist (Rater 1), a teacher (Rater 2), and a principal (Rater 3) evaluated a 

sample of 300 high school students with disciplinary problems and gave a suspension or a non-

suspension recommendation (r = 2) for each student. The ci.3rater function requires a vector 

of the eight frequency counts in the 23 contingency table (see comments in the ci.3rater 

function about how to order the frequencies). In this example suppose the frequency counts are 

100, 6, 4, 40, 20, 1, 9, and 120. The two commands f = c(100, 6, 4, 40, 20, 1, 9, 

120) and ci.3rater(.05, f) computes Equations 21 and 22 and returns 95% confidence 

intervals for 𝜅𝐺{1,2} – 𝜅𝐺{1,3}, 𝜅𝐺{1,2} – 𝜅𝐺{2,3}, and 𝜅𝐺{1,3} – 𝜅𝐺{2,3} of  [.006, .127], [-.407, -.189], 

and [-.462, -.266], respectively. These results indicate that the agreement between the school 

psychologist and teacher is greater than the agreement between the school psychologist and 

principal. The results also indicate that the agreement between the teacher and the principal is 

greater than the agreement between the school psychologist and teacher as well as the agreement 

between the school psychologist and principal. 
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9.7 Comparison of Two-rater Agreement in Four-rater Design 

Two graduate students (Raters 1 and 2) and two undergraduate students (Raters 3 and 4) 

were trained to code open-ended responses for the absence or presence (r = 2) of a particular 

ideological theme in newspaper articles. Suppose these four raters coded 300 articles and 

frequency counts of 𝑓1 = 78 and 𝑓2 = 52 are extracted from the 24 table (see Equation for 27 for 

definition of 𝑓1 and 𝑓2). The command ci.4rater(.05, 300, 78, 52) computes Equations 

26 and 27 and returns a point estimate 𝜅𝐺{1,2} – 𝜅𝐺{3,4} of .173 with a 95% confidence interval of 

[.024, .320]. 

9.8 Sample Size Requirements for Two-rater and Three-rater Designs 

A proposed study will use two master teachers (q = 2) to provide dichotomous ratings 

(meets expectations or needs improvement) for a sample of student teachers based on classroom 

observations. Setting 𝜅̃𝐺  = .90, r = 2, 𝛼 = .05, and a desired confidence interval width of .25, 

size.qrater(.05, .9, 2, .25, 2) computes Equations 28 and 29 and returns a sample 

size requirement of 71 student teachers to be rated by two master teachers.  The researcher is also 

considering using three master teachers to rate each student. Setting 𝜅̃𝐺  = .90, r = 2, 𝛼 = .05, and 

a desired confidence interval width of .25, size.qrater(.05, .9, 2, .25, 3) computes 

Equation 31 and 29 and returns a sample size requirement of 42 student teachers to be rated by 

three master teachers.    

9.9 Sample Size Requirement for Two-group Design 

The interrater reliability for two expert raters will be compared with the interrater reliability 

of two novice raters. The expert raters will classify one random sample of newspaper articles 

regarding educational reform into three different categories. The novice raters will perform the 

same task using another random sample of newspaper articles. Setting 𝜅̃𝐺1 = .80, 𝜅̃𝐺2 = .7, r = 3, 
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𝛼 = .05, and a desired confidence interval width of .30, size.diff(.05, .8, .7, 3, 

.3)computes Equation 30 and 29  returns a sample size requirement of 107 per group. The two 

expert raters should evaluate one random sample of 107 newspaper articles and the two novice 

raters should evaluate a second random sample of 107 newspapers articles.  

10. Conclusion 

The G-index of agreement is an attractive alternative to Cohen's kappa for the assessment 

of nominal scale agreement. The new confidence interval and sample size methods presented here 

parallel the methods developed for Cohen's kappa over the last 50 years. The R functions in the 

online Supplementary Materials can be used to apply the new methods presented here for the          

G-index of agreement so that researchers will now be able to perform the same types of inferential 

and sample size analyses that are currently available for Cohen's kappa.  

All of the proposed confidence intervals are based on adjusted Wald confidence intervals 

which have been shown to have excellent performance characteristics in terms of expected 

coverage probability, worst-case coverage probability, and expected confidence interval width 

(Agresti & Coull, 1998; Agresti & Caffo, 2000; Bonett & Price, 2012; Price & Bonett, 2004). 

Newcombe (2013) describes alternatives to the adjusted Wald confidence intervals that have 

different performance characteristics that might be more desirable in certain applications. For 

example, the Clopper-Pearson confidence interval for a single population proportion tends to be 

substantially wider that the adjusted Wald interval but it has a worst-case coverage probability that 

is guaranteed to be no less than 1 – 𝛼. If worst-case coverage probability is the primary concern, 

then the adjusted Wald confidence intervals (the terms in brackets) in Equations 5 and 14 could be 

replaced with Clopper-Pearson confidence intervals. If any current or newly-developed confidence 

interval for a single proportion, a difference of independent proportions, a difference of paired 
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proportions, or a linear function of proportions is considered to be more appropriate than an 

adjusted Wald confidence, then that confidence interval can be used in place of the adjusted Wald 

intervals used here.  

The results in sections 3, 4, 5, and 6 are general for r ≥ 2, but the results in sections 6.1 

and 6.2 are limited to r = 2. Future research could extend the results in sections 6.1 and 6.2 to the 

general case of r ≥ 2.  
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Supplementary Material:  R functions 

 

ci.qrater <- function(alpha, n, f, q, r) { 

 # Computes adjusted Wald confidence interval for G with 

 # q = 2 raters and r-category ratings or for G(q) with  

 # q > 2 raters and r-category ratings. 

 # Arguments: 

 #   alpha:  alpha level for 1-alpha confidence 

 #   n:      sample size 

 #   f:      number of objects rated in unanimous agreement  

 #           (f11...1 + f22...2 + ... + frr...r) 

 #   q:      number of raters 

 #   r:      number of rating categories 

 # Returns: 

 #   ML estimate, SE, and adjusted Wald confidence interval for G or G(q) 

 z <- qnorm(1 - alpha/2) 

 a <- r^(q - 1) 

 p.ml <- f/n 

 p <- (f + 2)/(n + 4) 

 G.ml <- a*p.ml/(a - 1) - 1/(a - 1) 

 se.G.ml <- a*sqrt(p.ml*(1 - p.ml)/n)/(a - 1) 

 se <- sqrt(p*(1 - p)/(n + 4)) 

 LL <- a*(p - z*se)/(a - 1) - 1/(a - 1)  

 UL <- a*(p + z*se)/(a - 1) - 1/(a - 1)  

 out <- t(c(G.ml, se.G.ml, LL, UL)) 

 colnames(out) <- c("Estimate", "SE", "LL", "UL") 

 return(out) 

} 

 

 

Example 1 (two raters and three categories) 

 

ci.qrater(.05, 90, 82, 2, 3)  

      Estimate         SE        LL        UL 

[1,] 0.8666667 0.04499657 0.7469308 0.9339203 

 

 

Example 2 (four raters and two categories) 

 

ci.qrater(.05, 100, 87, 4, 2)  

      Estimate         SE       LL        UL 

[1,] 0.8514286 0.03843468 0.757998 0.9123317 

 

 

 

 

ci.diff <- function(alpha, n1, f1, n2, f2, r) { 

 # Computes confidence interval for a difference in G-index values for two   

 # raters and r-category ratings estimated from two independent samples. 

 # Arguments: 

 #   alpha:  alpha level for 1-alpha confidence 

 #   n1:     sample size for group 1 

 #   f1:     number of objects rated in agreement in group 1  

 #   n2:     sample size for group 2 

 #   f2:     number of objects rated in agreement in group 2  

 #   r:      number of rating categories 

 # Returns: 

 #   ML estimate and adjusted Wald confidence intervals 

 z <- qnorm(1 - alpha/2) 

 a <- r/(r - 1) 

 p1.ml <- f1/n1;    p1 <- (f1 + 2)/(n1 + 4) 

 G1 <- a*p1.ml - 1/(r - 1) 

 se1 <- sqrt(p1*(1 - p1)/(n1 + 4)) 

 LL1 <- a*(p1 - z*se1) - 1/(r - 1);   UL1 <- a*(p1 + z*se1) - 1/(r - 1)  

 p2.ml <- f2/n2;    p2 <- (f2 + 2)/(n2 + 4) 

 G2 <- a*p2.ml - 1/(r - 1) 

 se2 <- sqrt(p2*(1 - p2)/(n2 + 4)) 

 LL2 <- a*(p2 - z*se2) - 1/(r - 1);   UL2 <- a*(p2 + z*se2) - 1/(r - 1)  

 p1.d <- (f1 + 1)/(n1 + 2);  p2.d <- (f2 + 1)/(n2 + 2) 
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 se.d <- sqrt(p1.d*(1 - p1.d)/(n1 + 2) + p2.d*(1 - p2.d)/(n2 + 2)) 

 LL3 <- a*(p1.d - p2.d - z*se.d);     UL3 <- a*(p1.d - p2.d + z*se.d)  

 out1 <- t(c(G1, LL1, UL1)) 

 out2 <- t(c(G2, LL2, UL2)) 

 out3 <- t(c(G1 - G2, LL3, UL3)) 

 out <- rbind(out1, out2, out3) 

 colnames(out) <- c("Estimate", "LL", "UL") 

 rownames(out) <- c("G1", "G2", "G1 – G2") 

 return(out) 

} 

 

 

Example 

 

ci.diff(.05, 75, 70, 60, 45, 2)  

         Estimate        LL        UL 

G1      0.8666667 0.6974555 0.9481141 

G2      0.5000000 0.2523379 0.6851621 

G1 – G2 0.3666667 0.1117076 0.6088621 

 

 

 

 

ci.3rater <- function(alpha, f) { 

 # Computes ML estimates and adjusted Wald confidence intervals for G{1,2}, G{1,3} 

 # G{2,3}, G{1,2}-G{1,3}, G{1,2}-G{2,3}, G{1,3}-G{2,3}, and G(3) for three 

 # dichotomous ratings. 

 # Arguments; 

 #   alpha;  alpha level for 1-alpha confidence 

 #   n;      sample size 

 #   f;      vector of frequency counts from 2x2x2 table 

 #           f = [f111, f112, f121, f122, f211, f212, f221, f222] 

 #           first subscript represents rating of rater 1 

 #           second subscript represents rating of rater 2 

 #           third subscript represent rating of rater 3 

 # Returns; 

 #   ML estimates and adjusted Wald confidence intervals for G-indices 

 z <- qnorm(1 - alpha/2) 

 f111 <- f[1]; f112 <- f[2]; f121 <- f[3]; f122 <- f[4] 

 f211 <- f[5]; f212 <- f[6]; f221 <- f[7]; f222 <- f[8] 

 n <- sum(f); 

 p12.ml <- (f111 + f112 + f221 + f222)/n;     p12 <- (f111 + f112 + f221 + f222 + 2)/(n + 4) 

 p13.ml <- (f111 + f121 + f212 + f222)/n;     p13 <- (f111 + f121 + f212 + f222 + 2)/(n + 4) 

 p23.ml <- (f111 + f211 + f122 + f222)/n;     p23 <- (f111 + f211 + f122 + f222 + 2)/(n + 4) 

 G12.ml <- 2*p12.ml - 1;                      G12 <- 2*p12 - 1 

 G13.ml <- 2*p13.ml - 1;                      G13 <- 2*p13 - 1 

 G23.ml <- 2*p23.ml - 1;                      G23 <- 2*p23 - 1 

 se.G12 <- sqrt(p12*(1 - p12)/(n + 4)) 

 se.G13 <- sqrt(p13*(1 - p13)/(n + 4)) 

 se.G23 <- sqrt(p23*(1 - p23)/(n + 4)) 

 p1.ml <- (f112 + f221)/n;   p1 <- (f112 + f221 + 1)/(n + 2) 

 p2.ml <- (f121 + f212)/n;   p2 <- (f121 + f212 + 1)/(n + 2) 

 p3.ml <- (f211 + f122)/n;   p3 <- (f211 + f122 + 1)/(n + 2) 

 G12_13.ml <- 2*(p1.ml - p2.ml);             G12_13 <- 2*(p1 - p2) 

 G12_23.ml <- 2*(p1.ml - p3.ml);             G12_23 <- 2*(p1 - p3) 

 G13_23.ml <- 2*(p2.ml - p3.ml);             G13_23 <- 2*(p2 - p3) 

 se.G12_13 <- sqrt((p1 + p2 - (p1 - p2)^2)/(n + 2)) 

 se.G12_23 <- sqrt((p1 + p3 - (p1 - p3)^2)/(n + 2)) 

 se.G13_23 <- sqrt((p2 + p3 - (p2 - p3)^2)/(n + 2)) 

 p123.ml <- (f111 + f222)/n;                 p123 <- (f111 + f222 + 2)/(n + 4) 

 G3.ml <- (4*p123.ml - 1)/3;                 G3 <- (4*p123 - 1)/3 

 se.G3 <- sqrt(p123*(1 - p123)/(n + 4)) 

 LL.G12 <- 2*(p12 - z*se.G12) - 1;           UL.G12 <- 2*(p12 + z*se.G12) - 1 

 LL.G13 <- 2*(p13 - z*se.G13) - 1;           UL.G13 <- 2*(p13 + z*se.G13) - 1 

 LL.G23 <- 2*(p23 - z*se.G23) - 1;           UL.G23 <- 2*(p23 + z*se.G23) - 1 

 LL.G12_13 <- 2*(p1 - p2 - z*se.G12_13);     UL.G12_13 <- 2*(p1 - p2 + z*se.G12_13) 

 LL.G12_23 <- 2*(p1 - p3 - z*se.G12_23);     UL.G12_23 <- 2*(p1 - p3 + z*se.G12_23) 

 LL.G13_23 <- 2*(p2 - p3 - z*se.G13_23);     UL.G13_23 <- 2*(p2 - p3 + z*se.G13_23) 

 LL.G3 <- (4/3)*(p123 - z*se.G3) - 1/3;      UL.G3 <- (4/3)*(p123 + z*se.G3) - 1/3 

 out1 <- t(c(G12.ml, LL.G12, UL.G12)) 

 out2 <- t(c(G13.ml, LL.G13, UL.G13)) 
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 out3 <- t(c(G23.ml, LL.G23, UL.G23)) 

 out4 <- t(c(G12_13.ml, LL.G12_13, UL.G12_13)) 

 out5 <- t(c(G12_23.ml, LL.G12_23, UL.G12_23)) 

 out6 <- t(c(G13_23.ml, LL.G13_23, UL.G13_23)) 

 out7 <- t(c(G3.ml, LL.G3, UL.G3)) 

 out <- rbind(out1, out2, out3, out4, out5, out6, out7) 

 colnames(out) <- c("Estimate", "LL", "UL") 

 rownames(out) <- c("G{1,2}", "G{1,3}", "G{2,3}", "G{1,2}–G{1,3}", "G{1,2}–G{2,3}", 

 "G{2,3}–G{1,3}","G(3)") 

 return(out) 

} 

 

 

Example 

 

f = c(100, 6, 4, 40, 20, 1, 9, 120)  

ci.3rater(.05, f) 

                 Estimate          LL         UL 

G{1,2}         0.56666667  0.46601839  0.6524027 

G{1,3}         0.50000000  0.39564646  0.5911956 

G{2,3}         0.86666667  0.79701213  0.9135142 

G{1,2}–G{1,3}  0.06666667  0.00580397  0.1266464 

G{1,2}–G{2,3} -0.30000000 -0.40683919 -0.1891873 

G{2,3}–G{1,3} -0.36666667 -0.46222023 -0.2662566 

G(3)           0.64444444  0.57382971  0.7068720 

 

 

 

 

 

ci.4rater <- function(alpha, n, f1, f2) { 

 # Computes adjusted Wald confidence interval for G{1,2} - G{3,4}  

 # with 2-category ratings. 

 # Arguments: 

 #   alpha:  alpha level for 1-alpha confidence 

 #   n:      sample size 

 #   f1:     f1211 + f2111 + f1222 + f2122 

 #   f2:     f1121 + f2221 + f1112 + f2212 

 #           first subscript represents rating of rater 1 

 #           second subscript represents rating of rater 2 

 #           third subscript represent rating of rater 3 

 #           fourth subscript represent rating of rater 4 

 # Returns: 

 #   ML estimate, SE, and adjusted Wald confidence interval for  

 #   difference in G-indices(G{1,2} - G{3,4}) 

 z <- qnorm(1 - alpha/2) 

 p1.ml <- f1/n;                   p1 <- (f1 + 1)/(n + 2) 

 p2.ml <- f2/n;                   p2 <- (f2 + 1)/(n + 2) 

 diff.ml <- 2*(p1.ml - p2.ml);    diff <- p1 - p2 

 se.ml <- sqrt((p1.ml + p2.ml - (p1.ml - p2.ml)^2)/n) 

 se.diff <- sqrt((p1 + p2 - (p1 - p2)^2)/(n + 2)) 

 LL <- 2*(diff - z*se.diff) 

 UL <- 2*(diff + z*se.diff)   

 out <- t(c(diff.ml, se.ml, LL, UL)) 

 colnames(out) <- c("Estimate", "SE", "LL", "UL") 

 return(out) 

} 

 

 

Example 

 

ci.4rater(.05, 300, 78, 52)  

      Estimate         SE         LL        UL 

[1,] 0.1733333 0.03767502 0.02432764 0.3200432 
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ci.meta <- function(alpha, f, n, r) { 

 # Computes confidence interval for average G-index estimated 

 # from m studies.  

 # Arguments: 

 #   alpha:  alpha level for 1-alpha confidence 

 #   f:      m x 1 vector of agreement frequencies 

 #   n:      m x 1 vector of sample sizes 

 #   r:      number of rating categories 

 # Returns: 

 #   estimated averages, standard errors, confidence intervals  

 m <- length(f) 

 z <- qnorm(1 - alpha/2) 

 nt <- sum(n) 

 p.ml <- f/n;                     p <- (f + 2/m)/(n + 4/m) 

 G.ml <- (r*p.ml - 1)/(r - 1);    G <- (r*p - 1)/(r - 1) 

 ave.G.ml <- sum(G.ml)/m;         ave.G <- sum(G)/m 

 var.G <- (r/(r - 1))^2*p*(1 - p)/(n + 4/m) 

 se.ave <- sqrt(sum(var.G)/m^2) 

 LL <- ave.G - z*se.ave 

 UL <- ave.G + z*se.ave 

 out <- cbind(ave.G.ml, LL, UL) 

 cat(paste("Total sample size =", nt), fill = TRUE) 

 cat(paste("Confidence level =", (1 - alpha)), fill = TRUE) 

 colnames(out) <- c("Estimate", "LL", "UL") 

 return (out) 

} 

 

 

Example 

 

f = c(41, 58) 

n = c(50, 70) 

ci.meta(.05, f, n, 2) 

Total sample size = 120 

Confidence level = 0.95 

      Estimate       LL        UL 

[1,] 0.6485714 0.487966 0.7663075 

 

 

 

 

ci.contrast <- function(alpha, f, n, h, r) { 

 # Computes confidence interval for a linear contrast of G-indices  

 # estimated from m studies.  

 # Arguments: 

 #   alpha:  alpha level for 1-alpha confidence 

 #   f:      m x 1 vector of agreement frequencies 

 #   n:      m x 1 vector of sample sizes 

 #   h:      m x 1 vector of contrast coefficients 

 #   r:      number of rating categories 

 # Returns: 

 #   estimated averages, standard errors, confidence intervals  

 m <- length(f) - length(which(h==0)) 

 z <- qnorm(1 - alpha/2) 

 nt <- sum(n) 

 p.ml <- f/n 

 p <- (f + 2/m)/(n + 4/m) 

 G.ml <- (r*p.ml - 1)/(r - 1) 

 G <- (r*p - 1)/(r - 1) 

 con.G.ml <- t(h)%*%G.ml 

 con.G <- t(h)%*%G 

 var.G <- (r/(r - 1))^2*p*(1 - p)/(n + 4/m) 

 se.con <- sqrt(t(h)%*%(diag(var.G))%*%h) 

 LL <- con.G - z*se.con 

 UL <- con.G + z*se.con 

 out <- cbind(con.G.ml, LL, UL) 

 colnames(out) <- c("Estimate", "LL", "UL") 

 return (out) 

} 
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Example 

 

f = c(41, 58, 85) 

n = c(50, 70, 90) 

h = c(-.5, -.5, 1) 

ci.contrast(.05, f, n, h, 2) 

      Estimate         LL        UL 

[1,] 0.2403175 0.07122621 0.4123622 

 

 

 

 

size.ci.diff <- function(alpha, G1, G2, r, w) { 

 # Computes the sample size per group required to estimate a difference  

 # in G-indices (two-rater) in 2-sample design with desired precision. 

 # Arguments:  

 #   alpha:  alpha level for 1-alpha confidence  

 #   G1:     planning value of G-index in group 1 

 #   G2:     planning value of G-index in group 2 

 #   r:      number of rating categories  

 #   w:      desired confidence interval width 

 # Returns: 

 #   required per group sample size 

 z <- qnorm(1 - alpha/2) 

 v <- (G1 + 1/(r - 1))*(1 - G1) + (G2 + 1/(r - 1))*(1 - G2) 

 n0 <- ceiling(4*v*(z/w)^2) 

 p01 <- ((r - 1)/r)*(G1 + 1/(r - 1)) 

 p02 <- ((r - 1)/r)*(G2 + 1/(r - 1)) 

 p1 <- (p01*n0 + 1)/(n0 + 2) 

 p2 <- (p02*n0 + 1)/(n0 + 2) 

 se <- sqrt(p1*(1 - p1)/(n0 + 2) + p2*(1 - p2)/(n0 + 2)) 

 LL <- (r/(r - 1))*(p1 - p2 - z*se) 

 UL <- (r/(r - 1))*(p1 - p2 + z*se)  

 w0 <- UL - LL 

 n <- ceiling(n0*(w0/w)^2) 

 return(n) 

} 

 

 

Example 

 

size.ci.diff(.05, .8, .7, 4, .3) 

[1] 93 

 

 

 

 

size.ci.qrater <- function(alpha, G, r, q, w) { 

 # Computes the sample size required to estimate a G-index in a 

 # 1-sample design (two or more raters) with desired precision. 

 # Arguments:  

 #   alpha:  alpha level for 1-alpha confidence  

 #   G:      planning value of G-agreement 

 #   r:      number of rating categories  

 #   w:      desired confidence interval width 

 #   q:      number of raters  

 # Returns: 

 #   required sample size 

 z <- qnorm(1 - alpha/2) 

 n0 <- ceiling(4*(G + 1/(r^(q - 1) - 1))*(1 - G)*(z/w)^2) 

 a <- r^(q - 1) 

 p0 <- ((a - 1)/a)*(G + 1/(a - 1)) 

 p <- (n0*p0 + 2)/(n0 + 4) 

 se <- sqrt(p*(1 - p)/(n0 + 4)) 

 LL <- a*(p - z*se)/(a - 1) - 1/(a - 1)  

 UL <- a*(p + z*se)/(a - 1) - 1/(a - 1)  

 w0 <- UL - LL 

 n <- ceiling(n0*(w0/w)^2) 

 return(n) 

} 
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Example 1 (three rating categories and two raters) 

 

size.ci.qrater(.05, .8, 3, 2, .25) 

[1] 69 

 

 

Example 2 (two rating categories and three raters) 

 

size.ci.qrater(.05, .8, 2, 3, .25) 

[1] 59 

 

 

 

 

 

 




