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*
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Gary Nixon
Lawrence Berkeley Laboratory
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April 9, 1973

ABSTRACT

The excitation of discrete nuclear levels in inelastic high
energy scattering is examined using an extension of Glauber's diffrac-
tion theory. Por T =0 levelé a simplé nuclear model is introduced
to obtain predictions for the excitation of collective nuclear levels
which should be useful in interpreting future experiments. The
particular case of (p,p’)- scattering to the 4.4 and 9.6 MeV levels in
012 ‘is discussed and both the absolute megnitudes and the positions
of diffraction minima obtained are in good agreemenf.with experimeﬁtal
data. Excitaﬁion of T = 1 levels by the photoproduction of charged
pions in C12 is computed using a particle-hole description for the

nuclear states. The departure of this process from simple Fermi gas

model predictions as seen in SLAC experiments is explained.

. This work was supported by the U. S. Atomic Energy Commission.

-

In the past twenty years much information has been obtained’én
the ground and excifed states of a wide variety of nuclei. For example,
much has been learned about the systematics of the ground state chargé
density using the known electromagnetic interaction of electrons.
Experiments with hadronic probeé have been more difficult to interpret
as it has not been bossible to easily and clearly separate the effects
due to nuclear structure and those due to the scatteriné mechanism.

At high energies, however, the theoretical treatment of hadron-nuclear
scattering is very much simpler than at low energies. The tﬁeoretical
framework used to'analyze many high energy scattering exéeriments is

the multiple scattering theory 1) of R. J. Glauber and is basically .an

. extension of Fraunhofer diffraction theory to many-body targets. It

is now realized that the effects of ground state nuclear correlations

on coherent processes are small 2) and these reactions are of limited

usefulness in an investigation of nuclear structure. While many

3,k

workers »5) have looked into the incoherent cross section summed
over final nuclear states the excitation of discrete nuclear levels
has received much less attention. Our main purpose here will be to
apply diffraction theory to the excitation of discrete levels.
Although our results are general ahd would apply to the scattering of
most hadrons, we will concentrate mainly on those processes for which
there exists high energy data. For guidance and as check on the use
of the diffraction theory we will use nuclear transition densitities
obtained from inelastic electron écattering data, leaving no free
parameters.

. The nuclear scattering amplitude, as given by the diffraction

theory, can be written in a form which emphasizes multiple scattering-lz

For an A-body target with initial wavefénction u

N and final
i



wavefunction wu_:
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where K,E' are the incident and final momenta, T = K - B is the

momentum transfer, B is the impact parameter, and 5. =X, - kz the

J J
transverse coordinate of the jth nucleon. The profile functions
I"j = FJ.(B" - ?j) are given in terms of the elementary projectile jth

nucleon schttering amplitude fj (@) vy

ry(6) = .2,l¢1k ei?'s'fj(a')'d(z)q _ (3)

and are related to the phase shifts X.J(E')byl" -1 - ek, In the -

expression Eq. (2b) the profile functions are interpreted as the
"elementary” scattering amplitudes, or "vertices."” The terms with a
single amplitude corres§ond to single scattering events, those with
two amplitudes to double scattering, and so on. Glauber 1) first
noted that Eq. (1) satisfies the optical theorem when the projectile-

nucleon interaction can be descrived by real phase shifts as would be

L.

the case if no inelastic channels were open to the projectile. At

high energies, however, it is believed that, for most processes, the

elementary amplitudes are purely imaginary and coﬁsequently the phase

shifts are imaginary. In this case also the use of the scattering

operator in Eq. (2a) for inelastic scattering i £ f is consistent o
with its use for elastic scattering.. Although this observation is not
new 6) it does not appear to be widely known and is therefore given

here. Por imaginary fj profile functions T jA are real and the

optical theorem gives

L '
Op = ¢ ImF;,(q - 0)

K
fdzbél ﬂ(l-rj) -1
.d2b <ui Tﬁr(i - rj) -1
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Note that the first term is just the total elastic cross section.

Inserting a complete set of nuclear states in the first part of the

second term yields

A -
Op = Opragrro * }: &b <%nkf¢~fl(l - Fl) - %;)
nfi =1
Ay N\
/[~‘/(l -T.) uy
[Te-r]

The last term involVesjthe ground state only and is .the contribution

)

from all inelastic channels in the elementary process. The second

term involves excited nucleér stateé and is the contribution from all

nuclear excitations. The important point is that it contains the same

transition operator as does the elastic contribution.

The nuclear scattering amplitude as given by Eq. (1) are

difficult to use as they are 3A + 2 dimensional integrals. We know,

however, that for the case of elastic coherent scattering, one can

greatly simplify the calculatlon with the introduction of an
7). '

equivalent or optical potential Consider the following expansion

for (A)(x ...E;) = u;(fl...E;) ui(;a"';i)
(A)(x . _11 r Sl (X)) 0g(®) - -py(R)] + -
()
where
p () = [dX,---dX, pt(;A)(’?l""_‘;\)
og(X) = [ a&,---ax, u;(;?l...a) ui(;;'l...?A)

-6-

and where § symmetrizes over all the arguments X -«-X Equation (5)

1 A’
is the first term in an exact expansion of the A-body transition
density pﬁA) and has the prope?ties that it is symmetric and correctly
reproduces the off-diagonal matrix elements of all one-body pperators’
[see also Refs. 7) and 8)J The neglected terms in the expansion
contain two-, three-, and up to A-body correlations in the transition
density. Clearly, we have neglectéd any difference between the ground
state single-particle density and the excited state single-particle

density

pf(’?) = d’_‘e""d?A u;(?].”'?A) uf(;{.i"'?A)

As we will see below [see Eq. (6)], the one-body character of the first
term in Eq. (5) will mean its use corresponds to the assumption that
the nuclear transition is direct, i.e.,_takes place during one of the
scatterings. The rest of the scatterings serve to provide only an
absorption factor.

Inserting Eq. (5) into Eq. (1) yields:

(&) (Q,Jf ey ERCECE

A-1
& 0o 1(F - B) (6

fi

X |-

for which A >> 1 Ybecomes

k’
Feg = (k_)

NIH

() [ TV a2 o) r(® - D)

-A d?c’ (X)r (8-
A 1)
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When the range of TI' (that is, the range of the projectile-nucleon

interaction) is small compared to nuclear dimensions we get:

[: dz’ OPT(? Z')

Feo = CE{L)? 2n1> & T, (®) e
(8a)
where
Vo = (A 1) 20) 0@ (@)
v (D) = A_fdeb p,(Byz) I(F - 3) . - (80)

There are several p01nts worth notlng about thls result. First, the
multiple scattering expression Eq. (6) contains A-l scatterings.
This reflects the fact that there is ro scattering from the "vertex"
_fwhlch produces nuclear excitation. Second, Eq. (7) is equlvalent to
a distorted wave impulse calculation. Finally, the result in Eq. (6)
is exactly equivalent to an approximstion first introduced by Lee and

9.

McManus In this approximation a typical term in the multiple

scattering series Eq. (1) is given by

(alryrylo) = (alr;fudalrylo) + (alr;fo)o]rylo)

£ 2<n|ri|o>(o|r3|o)

Inelastic Proton Scattering

Our first application of the results of the diffraction theory
will be to inelastic proton scattering and in particulaf to the highly
collective excitation of the 2° (4.4 MeV) and 3 (9.6 MeV) levels

in p-012 scattering at 1.7 GeV/ec. We will take all the information

-8-

necessary in Eq. (8a) from experimental data. The amplitude f which
is the isoscalar proton-nucleon spin-nonflip amplitude is parametrized
in the form

k o 1.2 -
—La +1) e (9)

b

where the constants are determined from experimental data. [0 = k.25
mb, a = -0.24, a = 5.14(geV/c) " for protons at 1.69 GeV/c.] The
ground state matter density appearing in Eq. (8b) is teken to be the

same as the chaige density measured by electron scattering and is

parametrized in the form

. g _(E)2
Po(l + Tl(%)g)e R > A §16 H

0o/ + e(x'R)/ZD, A>16 . : (10)

o(¥)

o(X)

[The parémeters we need here are, for carbon 10), n=1.25,

10) R_k4.1fm z=0.545 fm.] The

R=1.65 fm, for nickel
transition density p, in Eq. (8c) is the same as that measured by

inelastic electron scatteriné and, although we could take it directly
from experimental data, we will first intréduce a model of the nucleus

as a liquid drop. The reasons for using a nuclear model are twofold.

"First, the model gives us some guidance about the shape of the

transition density and hence allows some information about nuclear
structurg to be extracted frém the hadronQnuclegr scattering data.
Second, it is hoped that when more experimental data becomes available,
this model will be as useful in correlating and understanding some

of the systematics of hadron scattering to discrete collective nuclear
11,12) '

levels as it has been for electron scattering Note that by
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using measured transition densities we have already included nuclear .
e & : representation of the nucleus. We expect a better representation

center-of-mass corrections 7)_as well as the nﬁcleon's finite size. ‘ : e
. : ] would be given by
Folowing reference 12) the matter density in the liquid drop
model is given by N : 1 2
5@ = g(af1e Y Gt -k Llaglfl- 1)
- _ . ) L £,m £Z,m
A 1 O 2 o
p(X) = pyofafl+ Z Cym Tom() - 12 Z lqzm[)- 1x‘ - ‘
£,m : ' £,m . .
>0 250 where g is some function that changes smoothly as x goes through
the surface region 13). For small deformations we get
by = 2 3
Ll-na (3
b3 . pt(a - a( or ) '-ol <f‘z ql&m Yyjm(Qx) l> : (15)
where the nuclear volume is 31& » © 1is the Heaviside step function, r=a-|x - R '
: . . ’ 2>
and sz is given by
In addition, when the range of I 1is not much larger than the dimension
-lwgt m_+ gt £ | ical tation indicates that
) = - of p,, numerical computation indicates tha
sz £, &zm e + (-1) & ;m® . (12) 2
’ + Vt(;{’ ~ -lUx A f(O) Dt("?) (16)

The operators a .and a are interpreted as annihilation and ' :

2m fn

creation o erators”fbr the surface oscillations (s ¢ ) which h
P € s (surface) vhi ave is a fairly good approximation.

Z R
ener w arit -1 and angular momentum (£,m ere th
& Yer P v (1), g ,( ), Y ¢ the In our calculation we choose densities g of the form used to

deformation rameters. The excitation energy and deformation ) ’ :
re & describe electron scattering Eq. (10). The transition density will

parameters are related to the mass density u and surface tension o )
therefore depend upon four parameters Be, Cg, R, N, or z. In order

of the drop b
PRy to get an idea of the general predictions of this model we take BE’ Ce

' 5 : 2 as given by the semi-empirical mass formula 12) and R, 1 as given
"B, = ua /2 c, = oa (¢ - 1)(¢ +2)
i (l ) by elastic electron scattering. Figures 1 and 2 show S.E.M.F. results
1 3 '
2 1 12 for the excitation of four single surfon levels in p-C12 and p-Ni58
g = Cy/By ¢ 2|03 _ '
_ 2(BBCZ) scattering at 1.7 GeV/c. Several points are worth mentioning. First,

: ag expected from a real multiple scattering theory, each level
vhere we have neglected nuclear Coulomb forces. The density given by

) exhibits a seriesof diffraction minime. As in the case of elastic
‘Eq. (11) is discontinuous at the nuclear surface and is not a very good 2) :
: - ) scattering » the depth of these minima is strongly dependent on a.
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Secohd, the diffraction pattern of each level 1s somewhat characteristic
of its angular momentum. Finally, the Blair phase rule 14) is fairly
well satisfied.

The solid curves in Figures 3 and k 'display our results for the

+

27 and 3 levels in p-012 scattering at 1.7 GeV/c. Here the

parameter By, Cg, N, R were obtained from the best fit to inelasﬁic'
electron data 15)(solid lines in Figures 5 and 6) using the same nuclear
model. For u, = 4.k Mev they are R = 1.55 fm, 1 =-0.5,

B, = 11.86 Bé, C, = 1.2k i, end for w, = 9.6 MeV ‘they are

3

B3 = 18.72 B!, C3 = 2.5 C% where the primed

quantities denote the values given by the semi-empirical mass formula.

R=1.65fm, 1 =1.0,

Note that the inelastic eleétron form factors are described very well
over the range of momentum transfer covered in Figures 3 and 4. It

is important for comparisons of this kind that the range of momentum
transfers ﬁe comparable otherwise seeming agreement with experimental

date may be accidentall. The date in'Figure 3 is for the ot (4.4 Mev)

.T Qur calculation is similar to one of ILee and McManus 9) who use the

6)

particle-hole wave functions of Gillet and Melkanoff 1 to compute
‘the transition potential. Their results are similar except that they
predict no diffraction minima. This is due to the fact that their

wavefunctions fit the experimental electron scattering data only for

values of q2 < 2ﬂmf2.

level 17) and in.Figuie 4 is for the sum of the O (7.6 MeV) and
3" (9.6 MeV) levels 17) which were too close to be experimentally
separated. [If the 0" is a two-surfon state its cross section will

be proportional to gu and will therefore be suppressed by & factor

=12~

of §2 (¢ ~ 0.4) relative to the 3 state. The agreement between
calculation and experiment is fairly good. OQur results indicate

: 2
diffraction minima in the region 0.17 <gq

< 0.25(cev/c)°. Tor the 2°
level we see that possibility in thé data but the 3- data does not
extend out far enough fof a comparison. The dashed lines in Figures

3 and 4 give the cross section in the Born apﬁroximation and we see

that agreement is not good. Clearly, rescattering plays an important

role and cannot be neglected.

Charged Pion Photoproduction

In this section we will study the excitation of T = 1 nuclear

levels by the photoproduction of charged pions in 012

(8 Gev). The
multiple scattering operator Eq. (2a) may be generalized to include
processes in which the projectile_undergoés a transition. Using the

results of Ref. 2) we get for pion photoproduction

A A
S Y AN GREA TGRSR D)
i=1 k=141
(178)
ig-(B-5%) .
-8 = ey [ae Y@ (170

and where f&i}(ﬁ) is the elementary pion photoproduction emplitude
on the ith nucleon. We have neglected the extra phase in F due to
the longitudinalAmomentum transfer 4 =~ -(mne)/(Qk) associsted with
a change in mess as 1t.has negligible effect: for photoproduction of -
pions in the several GeV range. In this gxpreséion there are no

terms gorresponding to thé elastic scattering of the photon. This is

because the rhoton is & weak probe (with mean free path 600 fm in .
hY
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nuclear matter) whereas a étrongly intéracting particle haé a'ﬁean
ffee path small compafed to nuclear dimensions.‘ Consequently, we
expect the nuclear amplitude to be dominated completely by the produc-
tion process.and by rescattgring'of the produced particle; _I‘Y’T is an
operator on the target particles with both spin and isospin dependence.

We may use the generalization of Eq: (5) which includes spin and

isospin.S)_to obtain.
. A
k - -i?f-E’ Z ) Y e pury
F = -57 [ d&e f 8(z - z,)r; (b -84
i=1"

A-1

X 11 -f d'z'[d?sf pd(?’ ;z') I‘“N(S'- ™) .(18)
. Z : ‘

vhere we are assuming ‘T, =1, T, = 0. Equation (18) can also be

derivedrs’la)'from & pseudopotential approach under the "weak"

aésumptipn that the »N potentials do not overlap with the production’

potential. This expression also has the expected structure with an
‘incoming ﬁa#efunctionvthat ineludes only A-1 scatterings and a pion

"production potential:"

_ | . |
vm(z’) = -2ki <f Z 8(z - z,) riY“(F’ - E’i) i> L (19)
= - | |

. It may be written in a form involving an opticai potential if we take

the large A 1limit together with the usual assumption that the range

of ™ s small compared to the nucleus. We then obtain

iy P

i « -1 - ]
o -iii"?vﬁ(g QETJ; 42" Vopp(Bz2')

F=-%; dx e (20a) -
VOPT(;';’) = lxa £ +(0) po(® (20b) - 1

If, in addition, we assume. the photo-pion conversion takes place in &

space small compared to the dimension of the transition density, then

i>< L (21)

Equation (20a) is equivalent to the assumption of -a pseudopotential

. A
. Y <f, Z 8(F - X)) fg‘_)_) o)
=1

07% acting in the nuclear Hilbert space which gives the correct

emplitude in Born approximatioﬂ for photoproduction of pions on a

single nucleon:

A
(}m(;"{) = -l z 8(% - i’i') f%_)_. () B (22)

i=1

A calculation of the nuclear amplitude requires (1) the
optical potential which we shall compute from experimental data
(for pions at 8 GeV/c, © =26 mb, & = -0.15) as in the last section,

(2) the elementary amplitude for pion-photoproduction and

fﬂtﬂnN
(3) the nuclear wavé functions.

In general, the nature of high energy hadron processeé is an
open question. However, it has been nofeé that 19320’21), in the case
of charged pion photoproduction, a relatively simple theoretical
description (Born apﬁroximation) of ¢

Trn

much of the experimental data for high energies 23 >v1 GeV and. &mall

exigts which can. reproduce
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momentum transfer q2 < 2m12. ihus, for th we chogse a set of

gauge invariant Feynman graphs, Fig. 7, which we assume play the most
important part in pion photoproductibn. Denoting the photon and pion
foﬁrmomentaby k and q and ﬁhe nucleon initial and final four.mom-

enta by Py and Py the amplitude in the forward direction in the
lab frame is given by

2 i
A qQ/ e N n {2 1 (= - -
fot = [-k (H;;) m] - h 19T B (238)

1
E +m 2 :
o [Ak - Cq'k - 2DP-k - 2mDk] (23b)
. 2m

1 | -
where P = E(Pl + P2);E° is the photon’s polarization and T is

1t

the isotopic spin lowering operator. The invariant amplitudes A, B,

C, D computed fromvthe Feynman. diagrams 22), are found to be fbr n*

production
A = -g\2 1 —>
' (Pl + k)" +nm
l N
B = -TxA . ‘ (24)

(=)
il

-1 .
e VEL{—2Z P S

(, + k)° +n° (&, - k)° + ot

with Hp = 2.79, n, > -1.91, g= & > 1%.6. It is convenlent to

rewrite Eq. (23a) in sphericel tensor form

-16-
1 s '
A A . A . S -
= - 2
R I N O (25)
2e 8=0 =S '
with ooo =1 and G%} the tensor form of the Pauli spin matrices;

p = 1(2) if the photon is polarized perpendicular (parallel) to the

reaction plane and in the forward direction:

0 = Kl,O(p)

Koo(p) =
Kl,l(p) = Fl(spz = iapl) (26)

At small momentum transfers the most important processes in

n+ photoproduction on C12 are the excitation of T =1 levels in
B12 ‘which are believed to be isobaric analogs of various T =1
levels of 012. These latter states are just those which can be

- reached by inelastic electron scattering and photoexcitatioﬁ. For

excitation energies‘ 15 MeV i w < 40 MeV, these processes are dominated
by the excitation of certain highly collective levels called gient
resonances. To describe these levels we will use the particle-hele
model 23) of Brown and ﬁosterli which has been successfully used to
explain the giant dipo;e seen in photoexcitation and to interpret the

12,2&), muon capture 25)

26)

inelastic proton scattering at intermediate energies 7. The nuclear

data from inelgstic electron scattering , and

matrix element required in Eg. (21) is

A
(3 :
M.E. = <fle =1, T, =-1 Z (% - 7‘3) £ (o.) 40 =Ty, = <>
15 |
(27)
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where f‘fn is proportional to T . From the Wigner-Eckart theorem we where the symbol {:: !!) indicates a reduced matrix element with
can write : respect to both isotopic spin and angular momentum. The matrix
1 1 0 . ‘ i s e .. . . . . .
. | A a4 (3) elements (nlzl,]l::MJT::nengz) are now just single particle matrix
M.B. = ’ f,’qf’.MJ' T =1 Z 8(x - x;i) £ +(O) ' elements. We take the coefficients « K corresponding to the
‘\1 -1 o/ f : o1 Yrt ) SJT

dominant T = 1 single particle-hole sﬁates in 012 from avcalculation'
of T. W. Donnelly and which are known to give a reasénable account of
X 1,055 J_i,Ti = ‘0> _ (28) inelasti'c.‘electron scattering 21;‘). They were computed for oscillator
parameter b = 1.64 fm - and are given in Table I. The nuclear photo-

th ,t 2 I ’ ) . - . . sl
( e matrix element is reduced in isospin only) Assuming Coulomb production amplitude can then be written

effects to be small, we can compute the reduced matrix element in

- . . . 7 . i «© i '
Eq. (28) using the wavefunction mentioned above. : : - -iT-X -'Eifz dz VOP’I‘(‘B:z ) *
T, - F , = ax e e YLMgat)
In the particle-hole model the nuclear wave functions are -' = M ’
w _ ‘ : : .
considered to be linear combinations of particle-hole states of given -
- ‘ v : : : ' L 8 J
] : : A L-I-Mf+s 1 £ 1sJ ?
angular momentum J and isospin T: . _ X Z (-1) K, }\.(p)(-l) (2Jf +1)2 F (x)
- - B . . 2=
¥ » v » » A M A -Mf )
- Yoo o E) = ) aFE @R (29)
MM LA OT MM LA (31)
K .
y _ - : : where
Sy -1 . : X2
2 where K stands for the quantum numbers (nlll;jl) (ngzz;je,) with ST 1 x X3 v-(.g) )
. . . = = \C 5+ CQ(F) ¢ for odd parity states
} the labels 1 for particles and 2 for holes, and where ¢ stands b3
Ty for '-pure particle-hole states. The matrix element of any multiplé .2
o . - -@
- operator MJT “1is given by: ] = % D(%{ 2 e b’ for even parity states
' b
o - — (ny2,3))(nt,3,) ™
» i .. .. 2 17117V 27 2v2 and where the coefficients C., C., and D are given in Table II.
0 I (W oMoy ) | = [0 - 1 2
JT.JT. . JOTD JT S
i : ny 131 In, Fig. 8 we show the differential nuclear cross section for the -
) n252‘j.2 excitation of all levels together with experimental data from Ref. 27).
Figure 9 gives the cross section as a function of excitation energy
: .. .. 2 )
X HnlﬂlJl-;MJT-'ngﬂng)l (30) for different momentum transfers. Donnelly finds that to account for

inelastic -electron data, the form factors for odd pé.rity states should
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be reduced by 1/1/5 and those for even parity by 1/2: this has

been done in Figs. 8 and 9. The dashed line gives the contribution
from odd parity states, and the solid line is the result including all
states. TFor compapison, we alsd give the result of the Fermi gas model
and note that the departure of experiment from this model at small
momentum>transfer is accounted for by our particle-hole calculation.
Finally, we mention that we expect the contribution from negative
parity states to be fairly systematic from nucleus to nucleus while the
positive parity ones may be important only in Cle. However, this
would not affect any of our results above‘as the contribution from

these states is small.

Conclusions

We have looked at inelastic pioceéses to see what could be
learned aboﬁt nuclear strﬁcture; For T =0 levels we used a simple
nuclear model to obtain predictions for the excitation of collective
vnuclear oscillations which should prove uséful both as a guide and in
interpreting the experiments'which one can look forward to with the
new meson factory. Further, we showed that in the case of (p,p')
to the k4.4t MeV and 9.6 MeV levels in 012’ where there is data
available, the model together with diffraction theory correctly
describes the data; and we predicted both absolute magnitude and
position of two diffraction minima when the transition densities were
taken from inelas&ic electron scatteringf For the excitation of T =1
levels by the photoproduction of charged pions on Cle we used the
particle-hole model of nuclear excitation. The excltation of these
discrete nuclear 1eve1s.is the most important process at high incident

energy and smell momentum transfer, and we have computed it for the

-20-

first time. The calculation is able to explain the departure of this
process from a simple Fermi gas model prediction as seen in recent

SLAC experiments. For both T =0 and T =1 levels we have seen
that the information on nuclear structure present in the data available

todey is essentially the same as that obtained by electron scattering.-
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Coefficients for Nuclear Form Factors

Table II.
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Table II continued
) nf‘ LSJf

Level Jf ) Form Factor F D
13 1t poLt -0.283
13 1t 0.800
1k ot - i 1-0.658
1 ot 7202 0.557

Fig. 1.
Fig. 2.
Pig. 3.
Fig. k4.
Fig. 5.
‘Fig. 6.
Eig.'7.
Fig. 8.

~26-

FIGURE CAPTIONS
Proton-C12 inelastic cross sections in the center of mass
+ -y - ' :
frame for the 2, 3 , h+, and 5 levels. Nuclear parameters

derived from S.E.M.F. o0 = 44.25 mb, a = -0.24, k = 1.7

GeV/e.

Proton-N158 inelastic cross sections in the center of mass
frame for the 2+, 5-, hf,_and'S levels. DNuclear parameters
derived from S.E.M.F. g = 44,25 mb, - a-= -O.2§, k=1.7

GeV/c.

Cross section for the excitation of the L.k (2%) MeV level

in c'? with protons at 1.68 GeV/c. Nuclear parameters taken

from inelastic elecﬁron scattéring data. . Dashed curve gives
the cross ségtion computed in the Born apprdximaﬁion. pata
from Ref.‘17). _

Same as Fig. 3 for the 9.6 (37) MeV level in c*®. The data
is from Ref. 17) and is the sum of the 7.6 (0%) + 9.6 (")
cross sections (see text for discussion).

Inélastic electron scattering form factor for the L.k (2+)
level in C'?. Solid line was quputed from the same nuclear
model as in Fig. 3. Data from Réf. 15).

Inelastic electfon scattering form factor for the 9.6 (3-_
level in 012; Solid line was computed from the same nuclear
model as in fig. 4. Dpata from Ref. 15).

Feynman diagrams for tﬁe Born approximation. Graphs a, b,

and ¢ contains s, t, and u channel poles, respectively.

‘Cross section for x' production with 8.0 GeV/c photons on

Cle. The dashed curve gives the computed cross section for

only negative parity nuclear levels while the solid line



Fig. 9.
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contains all levels. The dash-dot curve is the prediction of
the Fermi gas model. The dotted ine gives the results of the

Fermi gas model normalized to the data at t = -0.169 GeV/c

~and is presented to show more clearly the difference in

momentum dependence between experiment and. this simple model.
Cross section for n+ production with 8.0 GeV/c photons on
Cl2' as functions of excitation energy for several values of

momentum traﬁsfer. Only the largest cross sections are

presented.
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LEGAL NOTICE

This report was prepared as an. account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor

any of the1r contractors, subcontractors, or their employees, makes _

" any warranty, express or implied, or assures any legal liability or
~ responsibility for the accuracy, comp]etenessor usefulness of ‘any

information, apparatus, product or process disclosed, or represents ‘
that its use would not infringe przvately owned rights.. :
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