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ABSTRACT OF THE DISSERTATION

Something Valid This Way Comes:
A Study of Neologicism and Proof-Theoretic Validity

By

Will Stafford

Doctor of Philosophy in Philosophy

University of California, Irvine, 2021

Dean’s Professor Kai Wehmeier, Chair

This dissertation consists of three chapters:

Chapter 1 Is a logicist bound to the claim that as a matter of analytic truth there is an

actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the

answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture

in which only a potential infinity was posited. However, this project was abandoned due

to apparent failures of cross-world predication. We re-explore this idea and discover that

in the setting of the potential infinite one can interpret first-order Peano arithmetic, but

not second-order Peano arithmetic. We conclude that in order for the logicist to weaken

the metaphysically loaded claim of necessary actual infinities, they must also weaken the

mathematics they recover.

Chapter 2 There have been several recent results bringing into focus the super-intuitionistic

nature of most notions of proof-theoretic validity. But there has been very little work evalu-

ating the consequences of these results. In this chapter, we explore the question of whether

these results undermine the claim that proof-theoretic validity shows us which inferences

follow from the meaning of the connectives when defined by their introduction rules. It is

ix



argued that the super-intuitionistic inferences are valid due to the correspondence between

the treatment of the atomic formulas and more complex formulas.

Chapter 3 Prawitz (1971) conjectured that proof-theoretic validity offers a semantics for

intuitionistic logic. This conjecture has recently been proven false by Piecha and Schroeder-

Heister (2019). This article resolves one of the questions left open by this recent result by

showing the extensional alignment of proof-theoretic validity and general inquisitive logic.

General inquisitive logic is a generalisation of inquisitive semantics, a uniform semantics for

questions and assertions. The chapter further defines a notion of quasi-proof-theoretic va-

lidity by restricting proof-theoretic validity to allow double negation elimination for atomic

formulas and proves the extensional alignment of quasi-proof-theoretic validity and inquisi-

tive logic.
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Introduction and Background

The problem now becomes that of finding the
proof of the proposition, and following it back to
the primitive truths. If, in carrying out this
process, we come only on general logical laws and
on definitions, then the truth is an analytic one.

— Frege, Die Grundlagen der Arithmetik 1884

This dissertation explores two attempts to explain the oft-claimed special character of mathe-

matical and logical knowledge. These projects are logicism in the philosophy of mathematics

and proof-theoretic validity in the philosophy of logic. There is a naturalness in treating these

two projects together. For, despite their differences, they both share a wish to recognise the

special character of mathematical or logical knowledge by showing how it follows from our

understanding of the concepts involved. We might gloss this as the knowledge being ana-

lytic. Both projects do this by appealing to expansive and not uncontroversial notions of

definition.

This dissertation consists of three chapters exploring the limits of these two projects. In

both cases we find the formal results offer a mixed blessing to the philosophical projects. In

the first chapter, we explore logicism and a response to the ontologically inflationary nature

of their distinctive definitions by making a connection to modern work on the potentially

infinite. The next two chapters address proof-theoretic validity. The second chapter examines

the consequences of recent results which show that proof-theoretic validity isn’t a semantics
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for intuitionistic logic. The third chapter shows that it is, in fact, a semantics for generalised

inquisitive logic. The rest of this introduction provides a background to this work and a

more detailed summary of the results.

0.1 Logicism

We turn first to logicism. Logicism is the view that mathematics can be reduced to logic

and definitions. Logicism has its origins in the work of Frege, who over the course of his

career developed a background logic, motivated the reduction of arithmetic to logic, and

then tried to offer a formal proof of this result. Frege’s logicism was restricted to arithmetic

and analysis (by contrast, he thought geometry was not so reducible).

At the core of Frege’s idea is a peculiar type of definition called abstraction principles. Frege

motivates them with the example of parallel lines (Beaney 1997, p. 111). If you were to say

what makes two lines parallel, you might say their direction. But we can instead take things

the other way around. Lines form equivalence classes of parallels. Every line is parallel

to itself (reflexive). If one line is parallel to another then the other is parallel to the first

(symmetric). And if one line is parallel to a second and the second is parallel to a third

then the first is also parallel to the third (transitive). Which is all to say that we can group

all and only the lines that are parallel to one another. And what do each of the lines in a

group share with one another? The simple answer is their direction. An abstraction principle

gives the identity conditions of a property like direction based on an equivalence relation like

‘parallel’. For this case, the abstraction principle would be:

The direction of line a is the direction of line b iff a is parallel to b.

2



Frege’s insight is that we can use an abstraction principle like the above to introduce or define

a new kind of object. In this case, we could use the relation parallel to define directions.

This is how abstraction principles are used as definitions.

In §64 of theGrundlargen, Frege considers whether cardinality can be defined by the following

abstraction principle called Hume’s Principle:

The number of A is the number of B iff there is a bijection from A to B.

A bijection is a function which is one-to-one (injective) and onto (surjective). It takes every

item in the domain to exactly one item in the range and every item in the range is the result

of applying the function to some item in the domain. Hume’s Principle can be motivated by

considering how we might check without counting that there are the same number of knives

and forks. We can do this by lining the knives and forks up one next to the other. If every

fork is next to a knife, and every knife is next to a fork, then we know we have the same

number of each. And in this case, we have described a bijection between the two.

Frege does not, in fact, use Hume’s Principle as a definition, instead deciding it needs

proof (Frege 1884, §64). His reason has become known as the Caesar problem because he

motivates it by asking how we know that Julius Caesar is not identical to the number 4

(Frege 1884, §56). Hume’s Principle only gives us identity conditions for numbers when we

consider them as the number of a particular concept. It does not tell us how to deal with

identity statements of the form ‘The number of countries in the United Kingdom is Julius

Caesar.’ Modern logicists of the Fregean sort do not take this worry as seriously as Frege

did. A common response is that identity conditions like the above are ruled out by sortal

considerations (Hale and Wright 2001b). Julius Caesar is just a different sort of thing from

a number and so identity conditions concerning both are necessarily false.
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For Frege however, the concern led to the dropping of Hume’s Principle in favour of another

abstraction principle called Basic Law V which was supposedly a law of logic. Basic Law V

regards the extension of concepts (Frege 1893). The equivalence relation it uses is ‘having the

same objects fall under’. So, for example, ‘US presidents as of 2020’ and ‘male US presidents

as of 2020’ are different concepts for easy counterfactual reasons (Hilary could have been

president) but they have the same objects falling under them. Basic Law V uses that to

define the extensions of concepts.

The extension of A is the extension of B iff A has the same objects falling under it as B.

Then Hume’s Principle can be proven from Basic Law V. Using Hume’s Principle one can

define zero, successor, plus, times, and natural number and show that the standard axioms

of arithmetic (Peano arithmetic) hold of those defined terms. But there is an unresolvable

problem with the project as laid out so far. This is because Basic Law V is inconsistent. It was

Russell who discovered this and sent the proof to Frege (Russell 1967). The inconsistency

is as follows. We have the concept R = {C | C is not in the extension of C}, where ‘the

extension of’ is defined by Basic Law V. Then we can ask if R is in the extension of R. If it

were then it follows that it is not and if it was not then it follows that it is.

This inconsistency was thought to be fatal to logicism in the Fregean spirit. However, it was

discovered by Wright (1984) that the proof in Frege’s work appeared to only use Basic Law

V to derive Hume’s Principle and then carried on without it. It was later confirmed that

there was a consistent proof of what is called Frege’s Theorem (Heck 1993): the result that

arithmetic is reducible to Hume’s Principle and second-order logic. Or more properly that

Peano arithmetic can be interpreted in Hume’s Principle plus second-order logic. This led

to a revival of the logicist project with a new challenge: to explain why Hume’s Principle

can be used given that Frege himself did not think so.
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We can describe the challenge faced by the neologicist as follows: To show something is

analytic you are allowed two sets of tools, the first are principles that are taken to be a part

of the meaning of the terms you use. In the luckiest scenario, these are stipulative definitions.

The second tool is what resources can be applied to see what follows from the first category.

And the logicist needs to explain where its various principles fall.

For the logicist, there are the definitions of natural number, successor and so on that fall

in the first category. And they are good candidates for such work because they have nice

properties for definitions such as conservativity. And in the second category sits second-order

logic, which is a controversial choice of tool to explicate following from because the logicist

wants to claim it is simply logic, but others see it as set theory in disguise. However, at

least second-order logic is certainly the right kind of tool for the second category. The real

challenge is with Hume’s Principle, which controls the behaviour of the cardinality operator

in the system. Hume’s Principle does not appear to be a good candidate for logic, that is to

fall into the second category. If it was, then the logicist position would not be interesting.

That arithmetic follows from logic given that cardinality is logical is a weaker view. So, it

seems it must fall into the first category, that is it must be justified by our understanding of

cardinality or must, for these purposes, stipulatively define cardinality. And it is fair to say

that this is the route taken by neologicists where Hume’s Principle is, for example, described

as analytic of our concept of number (Wright 1984).

But there are two prominent objections to using Hume’s Principle in this manner. The

first is called the Bad Company Objection (Dummett 1991a, pp. 188–9). The basic idea

is that Hume’s Principle cannot be a method of definition because acceptable definition

schemas have to satisfy the principle: for any substitution of definiens and definiendum, the

resulting principle is consistent. The motivation for this is relatively easy to spell out. If

a definition is something we can just stipulate then the very minimum condition one can

place is that it should not result in falsehoods. Yet an inconsistent principle is as far away
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from this ideal as is possible. It results in all falsehoods. This relatively lenient condition

is violated by abstraction principles because, as we saw, Basic Law V is inconsistent. The

Bad Company Objection then argues that Hume’s Principle cannot be a definition because

the schema it is a case of can be used to generate inconsistent principles. This has led to

a large literature attempting to restrict abstraction principles to some consistent collection

which are acceptable principles for definition. Of course, these matters are not as clear cut

as they are presented here, and consistency is always relative to a system. Basic Law V for

example is consistent in a setting with predicative comprehension.

We will not attempt to tackle the Bad Company Objection here but rather try to respond

to a distinct worry about ontological inflation (Boolos 1997). To explain this worry we need

to see that Hume’s Principle has hidden existential import. On any model in which Hume’s

Principle is true, there will be an infinity of objects in the domain. This is because in any

model the fact that the cardinality operator is treated as a function gives you one object

(the number of the empty concept). Then, having one object, it follows that there is the

collection of only that object which Hume’s Principle tells us has a number distinct from the

number of the empty concept. And so, you have two distinct objects. But now the number

of the collection of those two objects is, via Hume’s Principle, distinct from the previous two

objects and so on until you have an infinity of objects. It is argued that no definition or

analytic truth can have this existential nature. We cannot define into existence an infinity

of object nor is it known a priori that such an infinity exists. It is this objection which is

addressed in Chapter 1.

It is fair to say that fewer solutions have been proposed to address the inflationary worry

than the problem of Bad Company. This can be seen in Hale and Wright’s response:

To require of an acceptable abstraction that it should not be (even) weakly infla-

tionary [that is require a countable infinity] would stop the neo-Fregean project

6



dead in its tracks, before it even got moving (as it were). It will be clear that

I think there is no good ground to impose such a requirement, and I shall not

discuss it further. (Hale and Wright 2001a, pp. 417–8)

In Chapter 1, a potential line of response to the inflationary worry is evaluated. It builds on

a suggestion considered and then abandoned by Hodes, that the logicist might benefit from

turning to the modal setting.

The intellectual background to Hodes’s project lies in Putnam, who put forward the idea

that mathematics can be founded in modal logic and that this foundation may deserve

something like the title “logicism”. Putnam is motivated by scepticism of Platonism (Putnam

1967a, p. 11; Putnam 1967b, p. 17), while still wishing to retain a bivalent logic (Putnam

1967a, p. 16). Putnam distinguishes between two pictures of mathematics. The first is

the mathematical object picture, which is the view that mathematics reduces to set theory

and possibly arithmetic and that these theories make true existential claims about sets

and numbers (Putnam 1967a, p. 9). The second is the modal logical picture, on which

mathematical propositions have the form ‘�(ϕ(P̄ ) → ψ(P̄ ))’, where P̄ are all the relations

occurring in the relevant axioms and the theorem, ϕ(P̄ ) is the conjunction of the relevant

axioms and ψ(P̄ ) is the theorem (Putnam 1967a, pp. 9–10). This view is a modal version

of Russell’s “if. . . thenism” (Russell 1903, §5) because of this Putnam thinks it doesn’t entail

the actual existence of mathematical objects.

Putnam claims that the modal logical picture and the mathematical object picture are

in a sense equivalent. This is because we can translate the existential claims made by

the mathematical object picture into a modal claim without changing the truth value of

mathematical claims:

7



‘Numbers exist’; but all this comes to, for mathematics anyway, is that (I) ω-

sequences are possible (mathematically speaking); and (2) there are necessary

truths of the form ‘if α is an ω-sequence, then. . . ’[.] (Putnam 1967a, pp. 11–12)

So we avoid any appeal to the actual existence of mathematical objects and instead appeal

to their possibility.

Hodes offers a view that is similar to Putnam’s: on both theories, the mathematical object

picture turns out to be just another way of talking about an ontologically less demanding

modal theory (Hodes 1984, pp. 148–9; Hodes 1990a, p. 248). However, Hodes is far more

sceptical about the existence of an infinity of numbers than Putnam is. Hodes is concerned

that without the mathematical object picture there is no reason to think that there are

infinitely many objects (Hodes 1984, pp. 148–9; Hodes 1990a, pp. 248, 259). He rejects

the idea that we can justify the existence of an infinity of things by appeal to the infinity

of points in space or the like (Hodes 1984, p. 148). And given this, he is concerned that

mathematics appears to make claims that are true only on infinite models. Prima facie the

truth of such statements requires the existence of an infinity of objects and so could be false

if such objects do not exist.

Hodes’s response to this worry is to urge that ‘[a]rithmetic should be able to face boldly

the dreadful chance that in the actual world there are only finitely many objects’ (Hodes

1984, p. 148). This makes Hodes one of the few in the tradition following Frege to take

the inflationary worry seriously. His solution is to appeal to modality and in particular,

the modality that seems to be implicit in our idea of numbers; the idea of it always being

possible to add one (Hodes 1990b, p. 378).

Hodes views the uses of number-words as a façon de parler. They are a useful way of talking

about number quantifiers. So, a statement such as ‘2 + 2 = 4’ is just a manner of speaking

about the fact that [∃2x Px∧∃2x Qx∧∀x¬(Px∧Qx)]→ ∃4x (Px∨Qx) (Hodes 1984, p. 144;

8



Hodes 1990a, p. 247; Hodes 1990b, pp. 364–5; Hodes 1991, p. 160). The picture is completed

when we add the modal component to allow for the possibility that they are arbitrarily large

finite sets. Hodes (1984, p. 149) gives an example of the arithmetic statement ‘7+5=12’ on

this picture :

∀X∀Y�((∃5x Xx ∧ ∃7x Y x ∧ ¬∃x(Xx ∧ Y x))→ ∃12x(Xx ∨ Y x)). (1)

This leads him to claim in 1984 that ‘Mathematics is higher-order modal logic’ (Hodes 1984,

p. 149). We can understand Hodes as attempting to offer a view in the spirit of Frege and

Fregean neo-logicism. As it offers a picture on which one could commit to the truth of Hume’s

Principle as a definition of number while rejecting the idea that it implied that any actual

objects were in fact numbers. However, by 1990 Hodes writes ‘I tentatively conclude that

an Individual-Actualist who accepts the Alternative theory does best to accept an actual

infinitude’ (Hodes 1990b, p. 391). This, he claimed, was due to problems with cross-world

predication.

Distinct from Hodes’ work there have been advances in formally modelling the potentially

infinite. Linnebo has shown that one can address philosophical questions related to naïve

comprehension by working in a modal setting where the set defined by comprehension maybe

merely possible (2013; 2018). This allows certain paradoxes to be avoided and set theories

can be interpreted into this setting. Linnebo (2018) also considers the case of arithmetic

but he considers ordinals, not cardinals like those generated by Hume’s Principle. Linnebo’s

success raises the question of whether a project like Hodes’ can be reattempted in a modified

modal setting.

In Chapter 1 I attempt to achieve this. There it is shown that by placing Hume’s Principle in

a setting modelling the potentially infinite a weak version of Frege’s Theorem can be proven.

In particular, the theorem can be proven for first-order arithmetic. However, it is shown that

9



it cannot be strengthened to second-order arithmetic. This result gives a concrete answer

to the role the assumption of an actual infinity of objects is having in Frege’s theorem. It

is not, as Wright suggested, that the project cannot even get of the ground without this

assumption, but rather this assumption (and in particular the set of all numbers) is needed

for the higher-order content of the theorem. This does not necessarily close the logicist off

from committing to only a potential infinity. But if they choose too they will have to restrict

what mathematics they take to be analytic.

0.2 Proof-Theoretic Validity

The logicist in the philosophy of mathematics essentially presupposes that logic is in good

standing. It is the tool they use to discover what flows from their definitions. But why

it can be assumed is left unexplained. And as we saw one of Frege’s own axioms of logic

was inconsistent. This may suggest that something more needs to be said about the nature

of logic. The next project we turn to does just that. The idea of using proof-rules as

definitions is older than the tradition of proof-theoretic semantics but within that tradition,

it has become clearly articulated. The simple idea is that certain terms, such as the logical

connectives, can be defined in terms of proof-rules. Once so defined logical tautologies,

validities, and consequence relations will then follow from the definitions.

The most naïve approach to this allows any set of rules to be used to define a connective. But

it was shown by Prior that this isn’t possible (Prior 1960). He offered a connective, TONK,

that had the introduction rule for disjunction and the elimination rules for conjunction. In

a system with at least one tautology, this connective allows anything to be proven by its

introduction and then elimination. We can think of this as starting something like a Bad

Company Objection for proof-theoretic semantics. It is natural to ask how proof-rules can

be used as definitions if they can be inconsistent? And as with the Bad Company Objection,
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this leads to a series of attempts to remove the poorly behaved definitions. Belnap (1962)

gave the influential suggestion that we should only be allowed to add sets of rules that are

conservative. A rule is said to be conservative if when added to a system it does not allow us

to prove any statement in the old vocabulary that could not be proven before it was added.

Informally we can think of a conservative set of rules as only saying things about what they

themselves define. It is fair to say that spelling out which sets of rules can be taken as

definitions and which cannot is the main concern of proof-theoretic semantics.

Under that banner, there are two complementary approaches. The first involves the institut-

ing of certain conditions on acceptable sets of rules, most notably harmony, and the second,

proof-theoretic validity, involves taking only a smaller set of rules as definitional and using

that to generate which other rules can be used. What is true on both approaches is that

definitions are given by proof-rules. What is less clear is what resources they assume we are

allowed to extract. For the logicist, this was of course logic, but it would not do for that

to be assumed by the proof-theoretic semanticist. Instead, they must assume some notion

of consequence, or ’following from’ that is more primitive, epistemologically, than the logic

they are trying to demonstrate follows from the definitions.

For the first approach, it is relatively easy to spell out what ‘following from’ amounts to.

Tautologies, validities and so on follow from the definitions if the relevant witness in the

form of a proof can be constructed by concatenating the rules together. While finding such

a witness will be as difficult as finding proofs in various systems , it seems clear that the idea

of concatenation of rules is a more primitive explication of following from than a full-blown

logic. As spelling out this second condition will prove to be a matter of some difficulty for

proof-theoretic validity it is worth pausing to explore why the second approach is needed at

all.

The first approach generally requires that the rules for a connective be broken into two

groups, the introduction and elimination rules, and that these two groups of rules are in
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harmony with one another. In its broadest possible sense harmony is the property that

Prior’s counterexample TONK failed to have: it is the requirement that the elimination

rule is not stronger than the introduction rule. The notion of harmony first appears in

Dummett’s work where he offers two explications of it. The first, in agreement with Belnap,

is that conservative sets of rules are harmonious (Dummett 1991b, p. 219). The second

is that the introduction and elimination rules are harmonious if local detours (where a

connective is introduced then eliminated) can be removed (Dummett 1991b, pp. 247–8).

However, Dummett’s final position is the rather disappointing view that harmony is an

intuitive property not easily formalized:

The two complementary features of any [linguistic] practice ought to be in har-

mony with each other: and there is no automatic mechanism to ensure that

they will be. The notion of harmony is difficult to make precise but intuitively

compelling: it is obviously not possible for the two features of the use of any

expression to be determined quite independently. (Dummett 1991b, p. 215)

Here we consider what a formalisation of Dummett’s notions of harmony might look like.

Steinberger claims that the notion of harmony requires two features (Steinberger 2011,

p. 620). First, an appropriate balance between the grounds used to introduce the connec-

tive and the consequences of eliminating it. This can fail in two ways: Weak E-disharmony

occurs when the elimination rule does not make full use of the power of the introduction

rule. Strong E-disharmony occurs when the elimination rule is too strong and allow the

drawing of conclusions not justified by the introduction rule. Second, no new consequences

should be deducible which do not contain the new connective. In other words, it should be

conservative.

We get the following suggestions on how to formalise harmony from Steinberger.
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1. Total Harmony A connective is totally harmonious relative to a system if its addition

to the system is a conservative extension.

2. intrinsic harmony A connective is intrinsically harmonious if there is a systematic way

to remove detours in proofs. Another name for this is local peaks levelling.

3. ideal harmony This is intrinsic harmony plus stability. Stability comes from Dummett’s

work and is supposed to stop an elimination rule from being too weak but also has no

formal definition. It will be discussed below.

4. Normalizability A system of connectives are normalizable just in case they have a

normal form theorem.

The goal now is to assess these different notions. First, let us turn to total harmony. Stein-

berger has two objections to this notion of harmony. The first is that it doesn’t protect

against weak E-disharmony. A conservative system can be ensured by adding a connective

with an elimination rule that derives much weaker conclusions that the introduction rule

would permit (Steinberger 2011, p. 265). The second problem with this notion, according to

Steinberger, is that it doesn’t relate to the right things. Harmony should be a property of a

connective but total harmony is a property of a connective and a system of other connectives

and axioms. Whether or not a connective is conservative will depend on the system it is

added too (Steinberger 2011, p. 265).

Let us now turn to intrinsic harmony. The first problem with intrinsic harmony is that

it also doesn’t protect against weak E-disharmony (Steinberger 2011, p. 269). The second

objection is that the meaning of connectives which are intrinsically harmonious can change.

Steinberger illustrates this idea with an example. Take quantum ‘or’, which we will write

∗. The connective ∗ is governed by the rules for disjunction with one modification, in

both premises of ∗-elimination the hypothesis discharged must be the only assumption used.

These rules are intrinsically harmonious. Now ∗ differs from ∨ by being weaker. Of particular
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interest, the distributive laws don’t hold; that is A∧(B∗C) does not imply (A∧B)∗(A∧C).

Steinberger points out that if one adds ∨ to a system consisting of ∧ and ∗ the resulting

system is not a conservative extension as one can then prove the distributive law for ∗.

The addition of ∨ to the system essentially collapses ∗ into ∨, as one can now prove the

unrestricted ‘or’ elimination rule for ∗. It is for this reason that ∗ is claimed to be at fault

(Steinberger 2011, pp. 268–9).

Steinberger says that normalization is preferable to conservativeness as an explication of

harmony intended to “ensure the global well-functioning of the logical fragment” (Steinberger

2011, p. 632). Dummett thought that normalization implied conservativeness. But, as

Steinberger points out, there are normalization results for classical logic. And the addition

of classical ¬ is not a conservative extension of the system without it. So classical logic is

not conservative in the relevant sense (Steinberger 2011, pp. 633–4). Further, normalization,

like conservativeness, is a property of a system as a whole, not of individual connectives and

this makes it unacceptable for him (Steinberger 2011, p. 634).

Ideal harmony, the last of notions of harmony we will look at, is easily put aside. Steinberger

does not define stability and there has been little progress towards such a definition in the

literature. Instead stability is a black box in which a future explication of Dummett’s notion

can be placed. As it isn’t clear what ideal harmony would amount to, it is not currently an

adequate notion of harmony.

This situation suggests that another approach is needed if we want a formal (as opposed to

informal) account of proof-theoretic semantics. This leads to the second approach, proof-

theoretic validity. The hope of proof-theoretic validity is that it will offer a clear way of

finding introduction and elimination rules that have the desired property such as harmony.
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Proof-theoretic validity was first put forward by Prawitz building on ideas found in Gentzen.

Gentzen suggested the following claim about the connection between the introduction and

elimination rules:

The introductions represent, as it were, the ‘definitions’ of the symbols concerned,

and the eliminations are no more, in the final analysis, than the consequences of

these definitions. This fact may be expressed as follows: In eliminating a symbol,

we may use the formula with whose terminal symbol we are dealing only ‘in the

sense afforded it by the introduction of that symbol’. (Gentzen 1935, p. 80)

Using our analysis from earlier we can take Gentzen to be claiming that the introduction

rules fall in the first category of definitions. How we then find what follows from them is

alluded to but left undefined. What Prawitz did was to spell out precisely what follows from

the definitions.

The key idea behind proof-theoretic validity is that a rule should be permitted if whenever

there is a proof containing it we can find another proof with the same conclusion without

the rule. The actual definition is more complicated because a condition needs to be added

for proofs that contain assumptions. The definition as we work with it in this dissertation

is:

Definition 0.1. (Prawitz 1973, p. 236; Schroeder-Heister 2006, pp. 543–4) An argument

D is an S-valid derivation for a set of rules S describing the behaviour of the atomic formulas

if one of the following conditions holds:

Atomic case If D is a closed argument ending in an atomic formula then it is S-valid if it

contains only rules in S.

Closed introduction case If D is a closed argument ending in an introduction rule then

it is S-valid if the arguments for the premises of the introduction rule are S-valid.
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Closed non-introductory case If D is a closed argument which does not end in an intro-

duction rule then it is S-valid if there is a S-valid argument with the same conclusion which

does end in an introduction rule.

Open case If D is an open argument of A with open assumptions A0, . . . , An it is S-valid if

for all S ′ which are acceptable extensions of S and all closed S ′-valid arguments D0, . . . ,Dn

of A0, . . . , An, the following argument is S ′-valid:

D0

A0

. . .

. . .
Dn

An

D
A

We will discuss in detail the motivations for the definition later in Chapter 2. But it is

worth pausing to spell out what role I take this definition to play. Proof-theoretic validity is

supposed to spell out what tools we are allowed to use to figure out what follows from the

definitions we are given, in this case, introduction rules.

It was mentioned that this should be epistemically better justified than the logic it is supposed

to justify. And we saw in the case of harmony the relatively uncontroversial choice was

concatenation. At first glance proof-theoretic validity is a complex and confusing notion.

What reason could we have to think that we can help ourselves to it? I take the answer

to be that while appearing complicated, proof-theoretic validity is justified by the theory of

meaning that the proof-theoretic semanticist is committed to. So the atomic case is justified

because non-logical terms are taken to have inference rules as there meanings as well. The

closed introduction case is justified because introduction rules give the definitions of the

connectives. And the open case is justified because the meaning of an assertion is given by

a proof and so the meaning of an assumption is given by hypothesising that there is a proof.

I think a good argument can be given that, for an inferentialist about meaning, these con-

ditions are justified by the theory of meaning they subscribe to. And as such they are more

primitive epistemically than the logic justified. However, the condition for closed proofs that
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do not end in an introduction rule is harder to justify. In most presentations of proof-theoretic

validity, this condition would take the form:

Closed non-introductory case* If D is a closed argument which does not end in an

introduction rule then it is S-valid if there is a S-valid argument D′ with the same conclusion

which does end in an introduction rule and a set of transformations T such that D′ is

the result of applying the transformations to D.

Here we see the notion of a transformation added. You can think of a transformation on a

proof as a function that takes a proof as input and returns another proof. Perhaps the case

of closed non-introductory proofs can be justified by appeal to transformation. If so, the

use of transformations must be shown to be an acceptable means of discovering what follows

from the meaning of the introduction rules. For this discussion, we will talk about formal

arguments, or just arguments, when we want to refer to a potential formal proof which may

or may not be valid.1 We will use the term valid proof, or just proof, for those arguments

that satisfy the conditions of proof-theoretic validity.

A quick note on what transformations are. It is agreed that transformations must preserve

the conclusion of the argument and that they must not add assumptions. But after that

point, there is little agreement on the requirements. Both Dummett and Prawitz claim that

transformations must be effective (Prawitz 2006, p. 514; Dummett 1991b, p. 264). However,

that is the only additional condition Dummett places, while Prawitz has several others.

Firstly, he requires that transformations commute with substitution. This means that we

must not end up with a different proof if we first substitute one formula for another and then

apply a justification vs. applying the justification then the substitution. This condition is

also required by Schroeder-Heister. Prawitz has one further requirement on transformations

and that is that there must never be two transformations that could be applied at one time.

1Formally an argument is a tree with points labelled by formulas and a discharge function.
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This condition appears to be placed to make proofs of normalisation easier and does not

appear to have a robust philosophical explanation (Schroeder-Heister 2006).

Prawitz initially offers the following justification of the transformations used in normalisa-

tion: the applications of the transformations preserve identity of proof. If this were true

it would be a great explanation of why the reductions were meaning preserving. After all,

if one proof is valid due to the meanings of the terms involved and a apparently distinct

proof, despite apparent differences, is the same proof in another guise, then it is still valid

due to the meanings of the terms involved. But why think this is true? In the confines of

the justification involved in normalisation, it is easy to think of the transformations as just

removing unnecessary steps unrelated to the reasoning displayed by the proof. You can think

of two proofs of the same conclusion from the same premises as being distinct if they show

different methods of reasoning from the premises to the conclusion. Given this picture, it

is tempting to think that normalisation preserves identity because the inclusion of a detour

does not so much show a different way of reasoning as an error in a chain of reasoning which

is really identical to the normalised proof. We should be suspicious of this claim, however,

because non-normal proofs can be substantially shorter, and we may see this neither as an

error nor as a replication of the reasoning in the related normal proof.

The second argument in favour of identity can be given via the Curry-Howard isomorphism,

as normalisation corresponds to beta reduction λx.M(N) = M [x/N ] (Prawitz 1971). In

beta reduction the two functions are equal and equality in the lambda calculus is more fine-

grained than mere extensional identity. It might be argued that given the Curry-Howard

isomorphism the question of identity in proofs can be reduced to the question of identity of

algorithms. And further it might be argued that these questions can be resolved by identity

in the lambda calculus because it is more fine-grained than extensional alignment.

However, regardless of these arguments, this picture falls apart in the context of arbitrary

transformations, which would only preserve identity if proofs were identified by their sets of
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assumptions and conclusion. Anyone who wished to support a claim like this would need to

explain why proofs should be identified merely with the argument they make valid. When

we were considering the plausibility of normalisation-preserving proof the criticism wasn’t

that the condition was too strict but rather that it identified arguably distinct proofs. This

suggests that such a claim would be hard to defend.

Prawitz offers an alternative suggestion in later work. He proposes that we change what it

is to be a proof to incorporate the need for transformations (Prawitz 2014, p. 273). On this

picture what we would normally think of as a proof is incomplete. If you take an argument

(that is a potential proof), then this is considered an argument skeleton and we cannot under

Prawitz’s proposal assess whether or not it is valid. To assess validity, we need to also have

a set of transformations. Then if it is valid when only these transformations are used, we

say the argument skeleton plus the set of transformations is valid. The trick here is to try

and remove the question of why we can use the transformations. This is done by moving the

transformations from a part of the definition of validity to a part of the proof itself. When it

comes to the proof-rules as opposed to proofs themselves Prawitz says they are valid when

there is a set of transformations2 such that the one-step proof of the rule plus the set of

transformations is valid.

It is worth noting that this definition of argument is odd. It certainly wouldn’t coincide

with what most people do when they write proofs, even with what most logicians do when

they write formal proofs. But we might put two responses forward on Prawitz’s behalf.

The first is that most people couldn’t formalise their proofs. Yet to the extent we think

they are engaged in precise reasoning; we might say that they are still demonstrating the

reasoning found in the formal proof. Similarly, while most people couldn’t give the set of

transformations needed to reduce their proofs perhaps they still demonstrate reasoning that

contains these transformations. Secondly, Prawitz thinks intuitionistic logic is the proof-

2Prawitz’s exact wording makes it sound like only one justification is allowed. But that cannot be correct
as even the intuitionistic rules will require permutation and conversion for validity.
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theoretically valid logic. But most work is done in classical logic. It is clear then that it

is not an issue to depart from standard practice. So perhaps here too the suggestion is a

revision rather than a part of current practice.

Still, the revision will not work, and the reason is simple. The elimination rules were supposed

to follow from the meaning of the introduction rules. But now we have this extra part,

the justification. In what sense do the transformations follow from the introduction rules?

Prawitz offers no story here. And one does not seem possible. The elimination rules are

valid because via proof-theoretic validity we can show that they are eliminable in favour

of the introduction rules alone. But the transformations aren’t eliminable. They simply

don’t follow from the meaning of the introduction rules. So, this move does not resolve the

problem.

Dummett’s answer is simple. He claims to do away with transformations and instead he

asks only that another closed proof can be found, with the same conclusion, which is valid

(Dummett 1991b, Ch. 11). This leads to the definition we gave initially. However, the talk

of getting rid of transformations is in a sense however only terminological. This is because

we can allow for Dummett’s definition by simply being as liberal as we like in what counts

as a transformation and then asking what is valid given all these transformations. And

Dummett’s does place one requirement on how we find the second proof: that the second

proof is found in an effective manner.

Dummett’s reason that we can use arbitrary transformations is that Dummett takes the

finding of a second proof as evidence that a rule is eliminable. We can think of this in

terms of meaning or content. A rule really can’t have more content than a second rule if we

can remove any occurrence of it in favour of the second rule, even if we remove it by finding

another proof. Of course, it would now need to be shown that the whole procedure preserved

content. And so, we are left with the same issue we were involved with earlier. Why does

the move from one proof to another preserve content?
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All that is to say, some issues remain to be resolved in explaining why proof-theoretic va-

lidity can be used as a tool to find what follows from the introduction rules that define

the connectives. But recent results on what tautologies follow from proof-theoretic validity

have raised a more serious challenge to the idea that it captures a notion of following from

that should be unproblematic for the inferentialist. When proposing proof-theoretic validity

Prawitz made the following conjecture (Prawitz 1971; Prawitz 2014, p. 270):

Conjecture 0.1 (Prawitz). Proof-theoretic validity aligns extensionally with the validities

of intuitionistic logic.

This conjecture was also thought to be exceedingly plausible by Dummett (Dummett 1991b,

p. 270). However, a collection of formal results show that proof-theoretic validity actually

aligns extensionally with some superintuitionisitic logic. The consequences of these results

are taken up in Chapter 2. There it is shown that Harrop’s rule, one of the rules that is

proof-theoretically valid, isn’t harmonious under the most popular views of harmony. This

would seem to have the worrying consequence that proof-theoretic validity and harmony,

despite intending to be complimentary explications of the same idea, are in conflict with one

another.

Chapter 2 aims to show that the superintuitionistic validities are the result of the treatment of

the atomic formulas and how this treatment corresponds to disjunction free sentences. This

shows that the conflict about the meaning of the logical connectives as treated by proof-

theoretic validity and harmony is only apparent. The extra information being extracted

comes from the atomic formulas not the connectives.

Another question left open by the failure of Prawitz’s conjecture is what logics do in fact

align with the common definition of proof-theoretic validity. This question is answered in

Chapter 3. There I prove a surprising connection between proof-theoretic validity and in-

quisitive logic. Inquisitive logic is the logic of inquisitive semantics which provides a uniform
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semantics for questions and answers (Ciardelli and Roelofsen 2011). I show that one variant

of proof-theoretic validity is extensionally equivalent to generalised inquisitive logic and I

offer a modified version of proof-theoretic validity which is extensionally equivalent to in-

quisitive logic. These two chapters taken together give a clearer idea of what proof-theoretic

validity commits us too and what the consequences of their brand of ‘following from’ are.

They also help to spell out the consequences of the recently discovered connection between

proof-theoretic validity and superintuitionistic logics.
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Chapter 1

The Potential in Frege’s Theorem

Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity

of objects? If Hume’s Principle is analytic then in the standard setting the answer appears

to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a

potential infinity was posited. However, this project was abandoned due to apparent failures

of cross-world predication. We re-explore this idea and discover that in the setting of the

potential infinite one can interpret first-order Peano arithmetic, but not second-order Peano

arithmetic. We conclude that in order for the logicist to weaken the metaphysically loaded

claim of necessary actual infinities, they must also weaken the mathematics they recover.

1.1 Introduction

1.1.1 Potentially Infinite Models

In the non-modal setting, Frege (1893; J. Burgess 1984; Boolos 1986; Heck 1993) essentially

proved that second-order Peano arithmetic, PA2, is interpretable in the theory HP2, which
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consists of the Second-order Comprehension Schema and Hume’s Principle:

∀X, Y (#X = #Y ⇔ ∃ bijection f : X → Y ). (HP)

Hume’s Principle characterises the cardinality operator #, read ‘the number of’ or ‘oc-

tothorpe’, as a type-lowering function that takes equinumerous second-order objects to the

same first-order object. This definition can be motivated in the finite case by examples

such as checking one has the same number of knives and forks by setting them out in pairs.

Formally, Frege’s result is:

Theorem 1.1 (Frege’s Theorem). There is a translation from the language of PA2 to the

language of HP2 that interprets PA2 in HP2.

The formal definition of the theories mentioned here can be found in Appendix 1.8. Frege’s

Theorem has traditionally been regarded as philosophically important because it is supposed

to show that we can derive all arithmetical theorems from an epistemically innocent system.

This requires that Hume’s Principle is analytic. However, on the usual semantics, Hume’s

Principle is only true on domains with at least a countable infinity of objects. This commits

logicists like Frege to the analytic existence of an actual infinity of objects (Boolos 1998, pp.

199, 213, 233; Hale and Wright 2001a, pp. 20, 292, 309; Cook 2007, p. 7).

A commitment to a potential infinity, in contrast, isn’t a commitment to how many things

there actually are, just how many are possible. This is a much safer area in which to make

analytic claims. Here we show that some but not all of the mathematics of the actual infinite

is recoverable in the setting of the potential infinite. And so, to avoid problematic ontological

commitments the logicist must also weaken the mathematics they recover.

To do this we must decide how to represent Hume’s Principle. Below we will define ‘the

number of’ operator # in a semantic manner. However, we are convinced that this is simply

a convenience and we can think of our models as defining # as satisfying Hume’s Principle
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with the additional criteria that this function is rigid across worlds. An axiomatization would

consist of the following modification of Hume’s Principle:

�∀X, Y (#X = #Y ⇔ ∃ bijection f : X → Y ),

plus a principle to rigidify the # operator. This would require working in a hybrid modal

logic where worlds could be saved and recalled such as Williamson (2013, p. 370).1 However,

we leave the details of this approach for future work. As the modification is so minimal,

the move to the potentially infinite doesn’t undermine the justifications offered for Hume’s

Principle. The syntactic priority thesis can still be argued for as we can identify the behaviour

of terms in a modal setting as well as in a non modal setting. Similarly if we think that

abstraction principles offer implicit definitions then this justification works as well in the

modal setting.

The rigidity of the octothorpe is important for the success of the project here. However, by

assuming that it is rigid we are presuming that ‘the number of’ operator is rigid. Whether

this is the case in natural language is an empirical question (e.g. Stanley 1997). We do not

address this issue here, but two things are worth noting. First the question of the rigidity

of ‘the number of’ is not the same question as e.g. whether the number of planets varies

between worlds. This is because we do not apply the operator to predicates but rather to

sets which do not vary their membership across worlds. The second is that this setting does

rule out the possibility of multiple different number structures in the different worlds, e.g.

the numbers being von Neumann ordinals in one world and Zermelo ordinals in another.

This means that a certain kind of referential indeterminacy which has a prominent place in

philosophy of mathematics cannot be addressed in this setting as we have presumed against

it (Benacerraf 1965; Button and Walsh 2018, ch. 2).

1For those familiar with hybrid systems the axioms needed is ↑ �∀ X, y ↓ [#X = y → �#X = y].
However, this will not play a role in what follows.
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To set up our result, we define a set of second-order Kripke models, which we will call

potentially infinite models. This idea comes from Hodes (1990b, p. 379), although he does

not place exactly these constraints on the accessibility relation. We want the models to be

nearly linear sequences of worlds (if there are two worlds neither of which accesses the other,

there is a third world they both access), where later worlds are possible from the perspective

of earlier worlds but not the other way around. Each of these worlds should contain only a

finite number of objects as we are assuming actual infinities are impossible, and the number

of objects should increase from one world to the next. Each world will have its own second-

order domain, which as the worlds are finite, will be the full powerset. The octothorpe will

implement Hume’s Principle by taking sets of the same cardinality to a unique object and

this object will not change from one world to the next. We define the models formally as

follows:

Definition 1.1. A potentially infinite (PI) model is a quadrupleM = 〈W,R,D, I〉 in the

modal signature with second-order quantification and with # and a as the only non-logical

symbols, such that the following conditions are met:

1.1.1. W is countably infinite and R is a directed partial order,2

1.1.2. the first-order domain of w, written D(w), is non-empty and finite for all w ∈ W ,

1.1.3. for each n ≥ 1, the range of the second-order n-ary relational quantifiers at w is

P(D(w)n) consisting of all subsets of the n-th Cartesian power (D(w))n of D(w),

1.1.4. if w, s ∈ W such that R(w, s) and w 6= s, then D(w) ( D(s),

1.1.5. the function a : ω → D (where D is
⋃

w∈W D(w)) assigns to each number n a distinct

element an in one of the first-order domains, and for all w ∈ W , the cardinality of X

is n if and only if #X = an at w. More formally, for # and all w the interpretation

function is defined as follows: I(#, w) = {〈X, a|X|〉 | ∃s ∈ W X ∈P(D(s))}.
2An order R is directed if for all w, s ∈W there exists an t ∈W such that R(w, t) and R(s, t).
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0 0 1 0 1
2

0 1
2 3

(a) The minimal model

0 1 2 · · ·

0 1 · · ·0 2 1 2 · · · · · ·

0 1 2 · · ·0 1 3 · · ·

(b) The subset model

Figure 1.1: Examples of potentially infinite models

Remark 1.1. Three brief remarks on this definition:

First, conditions 1.1.1-4 define a PI model as a directed partial order of ever-increasing finite

domains. This means that if we have several objects existing in different possible worlds we

can always move to a world where they all exist.

Second, condition 1.1.5 defines the cardinality operator # using metatheoretic cardinality |X|.

It is sufficient for Hume’s Principle to hold that # picks-out cardinality, and so condition

1.1.5 ensures that all potentially infinite models are models of Hume’s Principle. One reason

we need P(D(w)2) from 1.1.3 is because the quantifier over graphs of functions in Hume’s

Principle ranges over this set.

Third, condition 1.1.5 also ensures that the interpretation of the octothorpe is rigid. That

is, the octothorpe is interpreted as the same relation at every world. Because of this nothing

will be lost if we write #X = x and don’t specify the world of evaluation. In fact, while

we define #X using the ai’s, we could have instead simply defined it as rigid and satisfying

Hume’s Principle and this along with directedness would ensure the ai’s exist.

This definition can obscure the simplicity of the idea here, as such it helps to give several

examples. The simplest potentially infinite model we can construct is the following:

Example 1.1. The minimal potentially infinite model is (ω,≤, D, I) where D(n) = {0, . . . ,n}

and the interpretation function I interprets octothorpe as cardinality in the metalanguage.3

3I will use bold face numbers for the numbers in the metalanguage.
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That is, I(#, w)(X) = n if and only if |X| = n. The minimal model is illustrated in Fig-

ure 1.1a. When working with such a model we see that a number can be missing from a

world even if a set of that cardinality is present. So I(#,1)({0}) = 1 and 1 ∈ D(1), but

I(#,1)({0,1}) = 2 and 2 /∈ D(1) even though {0,1} ⊆ D(1).

A less simple but similarly elementary model makes use of the non-empty finite subsets of

the natural numbers. This model helps illustrate a non-linear R relation:

Example 1.2. Let the subset model be (P(ω)<ω − {∅},⊆, D, I) where D(X) = X and

again the octothorpe is cardinality. The subset model is illustrated in Figure 1.1b. Note that if

we have worlds X0, . . . , Xn we can always find an accessible world whose domain is
⋃n

i=0Xi.

For example, {0,1}, {3}, {100, . . . ,200} are all finite subsets of the natural numbers, none

of which access each other, however, their union {0,1,3,100, . . . ,200} is also a world, which

they all access.

It is easy to generate unintended models from these two cases. Using the minimal model,

for example, we can define the 3-0 swap model:

Example 1.3. The 3-0 swap model takes 0 and 3 in the domain of the minimal model and

switches them around. So D(0) = {3}, D(1) = {3,1}, D(2) = {3,1,2}, D(3) = {3,1,2,0}

and then for all n ≥ 3, we have that D(n) exactly as it is in the minimal model.

These models should help illustrate the intuition behind the potentially infinite models. They

will also be helpful when we need counterexamples to claims later in the chapter.

We can now define satisfaction for potentially infinite models using a standard semantics

for quantified modal logic, such as in Fitting and Mendelsohn (1998). Three things to note

first: (1) Our quantifiers are actualist, but free variables may be assigned to objects in any

world. (2) Set variables are interpreted rigidly across worlds. That is the membership of a

set doesn’t change depending on the world. (3) To simplify the notation, instead of variable
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assignments, we work as though we had a rigid name for every object in the models. Recall

thatM, w � ϕ means that given any replacement of free variables with the added constants

we evaluate ϕ as true inM at world w. With this in place, the notion of potentially infinite

models induces a natural validity relation, which we define as follows:

Definition 1.2. We say that ϕ is true in all potentially infinite models, or �PI ϕ, if for

all potentially infinite modelsM and worlds w ∈ W we haveM, w � ϕ. We define ϕ �PI ψ

as for all modelsM and worlds w ∈ W , ifM, w � ϕ thenM, w � ψ.

The consequence relation here is defined locally rather than globally (Fitting and Mendelsohn

1998, p. 21). This is because the deduction theorem holds for the local consequence relation

but not the global one (Fitting and Mendelsohn 1998, p. 23).

1.1.2 Main Results

We will now state our two main results which together show that we can interpret the first-

order theories of first-order Peano arithmetic PA1 and first-order true arithmetic TA1, but

not the second-order theories of second-order Peano arithmetic PA2 and second-order true

arithmetic TA2, in theories defined in terms of potentially infinite models. A deductive theory

for second-order modal logic with rigid operators would be unwieldy and the complications

caused by it would be likely to obscure the insights provided by the Kripke semantics. Hence,

we leave development of a deductive theory for future work. We can define a theory just in

terms of the potentially infinite models. This theory will be stronger than anything we could

produce deductively because it does not admit nonstandard models of the natural numbers.

Because of this we will call it the external theory of the potentially infinite or EPI:

EPI = {ϕ | �PI ϕ}. (1.1)
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To capture something closer to what can be deduced from the models we need to use the

model-theoretic validity relation defined above, relativised to a weak metatheory. The theory

ACA0 is a subsystem of PA2 which only has comprehension for first-order formulas. More

information about this theory can be found in Appendix 1.8. Since we can code finite sets

of natural numbers as natural numbers in ACA0, we can define the property of being a

potentially infinite model in this theory, along with the associated validity notion �PI. This

gives us the internal theory of the potentially infinite or IPI:

IPI = {ϕ | ACA0 ` ‘�PI ϕ’}. (1.2)

Intuitively, this theory is every formula that can be proven valid on potentially infinite

models, given the weakest metatheory that can formalise the models. A full definition is

given in Appendix 1.9.4 The definition of interpretation is traditionally restricted to theories

in the same logic, whereas in this setting EPI and IPI are theories in second-order modal logic

but PA1, PA2, TA1, and TA2 aren’t modal theories. So, to state and prove our main results

we need a more general notion of generalised translation and interpretation which captures

those interpretations which involve not just different theories but different logics. This is

defined in section 1.5. Our first main result is:

Theorem 1.2. (i) There is a generalised translation from the language of PA1 to the

second-order modal language with octothorpe that interprets TA1 in EPI.

(ii) There is a generalised translation from the language of PA1 to the second-order modal

language with octothorpe that interprets PA1 in IPI. Further, this is a PA1-verifiable

generalised interpretation.

4We picked the weakest theory because we are interested in what is deducible from PI models and if we
strengthen the metatheory IPI will be strengthened in ways that reflect what the metatheory thinks about
finite sets (which can code consistency statements).
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This result is proven in Section 1.5. The translation used is based on one offered by Linnebo

(2013) in the setting of modal set theory. The key difference, compared with the standard

notion of translation, is that “for all” is translated as “necessarily for all” and, similarly, “there

is” is translated as “possibly there is.”

The first theorem shows that the PI models capture a significant amount of mathematics.

However, we cannot strengthen the result to second-order theories of arithmetic as our second

main theorem shows:

Theorem 1.3. (i) There is no generalised translation from the language of PA2 to the

second-order modal language with octothorpe that interprets TA2 in EPI.

(ii) There is no generalised translation from the language of PA2 to the second-order modal

language with octothorpe that PA2-verifiably interprets PA2 in IPI.

For both EPI and IPI, the results follow from the fact that PI models are Π1
1 definable. And

this follows because all of the worlds are finite. Because of this, PI models are representable

in reasonably weak theories of second-order arithmetic. But then limitive results about what

theories can represent about themselves will stop theories that can represent EPI and IPI being

interpretable into EPI and IPI.

These results are important because they show that less mathematics is analytic on the philo-

sophical perspective which motivates the potentially infinite models than on the traditional

perspective. The external theory cannot recover TA2 but only TA1. And the internal theory

cannot recover PA2 but only PA1. Further, PA2 has traditionally been the target of Fregean

interpretation results as it allows for the recovery of analysis and much of mathematics.5

Analysis can be coded in second-order Peano arithmetic, as real numbers can be coded as

sets of rationals, which in turn can be coded as naturals. This means that Frege’s theorem

already accounts for a larger expanse of mathematics than it might first appear. If we try to
5Demopoulos (1994, 238 n26) points out that Frege often uses arithmetic when he means something

broader including analysis.
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avoid the claim that it is analytic that there are actually infinitely many objects, however,

it then seems we will not have managed to recover as much mathematics. If we are looking

to show that mathematics is analytic, we have moved further from our goal.

However, we have still captured a substantial chunk of our most frequently used mathematics.

Feferman (2005, p. 613) has argued that all scientifically applicable analysis can be developed

in PA1 or a conservative extension of it.6 If this is correct then we can still recover the

mathematics for which an explication of its truth is most philosophically fruitful, namely

the mathematics which we rely on when we act in the world. One might wonder why a

logicist would care about whether or not the mathematics recovered is used. But it seems

we should keep an open mind to different parts of mathematics being justified in different

ways. Maybe something as fundamental as first-order arithmetic turns out to be analytic,

but it seems unlikely that the same is true of the higher reaches of set theory. With this in

mind, it should not be damaging that not all mathematics turns out to be analytic.

1.1.3 A Diversity of Modal Logicisms

The idea of using the potentially infinite as a foundation of logicism has a pedigree in the work

of Putnam and Hodes, and more recent work on modal foundations of mathematics and on

variants of Frege’s theorem in different logics. Putnam suggested that by accepting a modal

picture of mathematics we could avoid being Platonists about the numbers or committing

to how many objects there actually are. This is stated most clearly when he writes:

6For example, “By the fact of the proof-theoretical reduction ofW to [PA1], the only ontology it commits
one to is that which justifies acceptance of [PA1]." (Feferman 2005, p. 613) Feferman works in a system W
which contains types for the naturals, the cross product and partial functions. The full classical analysis of
continuous functions can be carried out in W . (Feferman 2005, p. 611)

32



‘Numbers exist’; but all this comes to, for mathematics anyway, is that (I) ω-

sequences are possible (mathematically speaking); and (2) there are necessary

truths of the form ‘if α is an ω-sequence, then. . . ’[.] (Putnam 1967a, pp. 11–12)

Hodes took on this idea, but he was sceptical of the existence of actual infinities. He thought

that ‘[a]rithmetic should be able to face boldly the dreadful chance that in the actual world

there are only finitely many objects’ (Hodes 1984, p. 148). His solution made use of the idea

of the potentially infinite rather than the actually infinite. He appealed to modality and in

particular the modality that seems to be implicit in our concept of number: the idea that it

is always possible to add 1 (Hodes 1990b, p. 378).

However, by 1990, Hodes concluded that the reduction of mathematics to higher-order modal

logic had failed. Hodes describes the problem as follows:

The problem is simple: relative to [a model of Hume’s Principle] for a type-0

variable v, ♦(∃v)(N(v)& . . . ) “moves us” to other worlds u and then has us seek

a witnessing member of [the natural number in the model] in [the domain of u];

we may find one, but then have no way “back” to w to see what hold [sic] for it

there. (Hodes 1990b, p. 388)

So we might know that there possibly exists a number with a property, but in Hodes’s system,

we have no way of returning to our original world to use what we have found. For example,

if we find the number of a set in some world, we have no assurance that this number is

available for us to talk about in the world the set came from. It is only known that it is the

number of the set in the world the number exists in. The difficulty identified here is with

cross-world predication, which occurs when we want to say something about an object in

one world and how it relates to objects in another world (Kocurek 2016).
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In what follows we will show that the problem is not with cross-world predication per se.

Both by working directly with the models, but also by allowing the octothorpe to be rigid,

we can mimic some of the effects of cross-world predication. Yet in this setting we recover

some but not all of the arithmetic recovered by Frege’s theorem. Indeed, our main results,

Theorems 1.2 and 1.3, show that the situation is more complicated than Hodes suggested,

and that a partial realisation of his project is possible.

There are two recent trends in the study of logicism which this project is connected to. First,

Studd (2016) has suggested that the modal setting is an attractive one for the logicist be-

cause it would help to solve the bad company objections. Unlike here, Studd’s is concerned

with inconsistent abstraction principles and in particular set abstraction. This is interest-

ingly connected to the naïve conception of set because one can think of the unrestricted set

Comprehension Schema as similar in spirit to a modal version of Basic Law V. While work in

this area goes back to Parsons (1983), it has been pursued recently by Linnebo (2013; 2018).

Much of Linnebo’s work has been on set theory. The concerns there are very different from

ours, as it make little sense in set theory to worry about the actual infinite not existing and

set theory is generally treated in first-order logic.The work in this chapter takes inspiration

from the results presented in Linnebo (2013) and (2018) and makes use of a similar method

of translating between the modal and non-modal setting. However, while the dynamic ab-

straction principles discussed by Linnebo (2018) resemble the behaviour of the number of

operator, his preferred abstraction principle for arithmetic is ordinal abstraction (Linnebo

2018, Ch. 10.5), whereas in this chapter we work with a modal version of Hume’s Princi-

ple, a cardinality principle. There is further work showing that restricting comprehension is

successful in making Basic Law V consistent (Wehmeier 1999; Wehmeier 2004; Walsh 2012;

Walsh 2016).

Second, there has been a lot of recent work on whether Frege’s Theorem still holds when

the logic is modified in certain ways. Bell (1999) and Shapiro and Linnebo (2015) have
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shown that Frege’s Theorem is available in the intuitionistic setting. J. P. Burgess (2005)

and Walsh (2016) found that a version of Frege’s Theorem is possible in a certain predicative

setting. Kim (2015) proves a version of Frege’s Theorem in a modal setting. This employs

an axiomatised version of the ‘the number of F ’s is n’ as a binary relation, instead of the

traditional type-lowering ‘number of’ operator. Kim recovers the axioms of PA but finds that

a restricted version of HP2 holds. The modality used is S5 and meant to represent logical

possibility, not potentiality. Because of this Kim’s system does not have the same structure

of our models, where the numbers slowly grow. Closer in spirit to the work here is that

on finite models of arithmetic by Mostowski (2001). There he considers initial sequences of

the natural numbers and what holds over all such models. These have a clear connection

to the minimal model discussed above. Urbaniak (2016) has taken Mostowski’s models and

worked with them in a modal setting. They have shown that Leśniewski’s typed, free logic

with modal quantifiers, which proves a predicative version of HP2, can interpret PA2. Our

setting is quite different from that of Urbaniak’s paper as Leśniewski’s typed, free logic differs

dramatically from the one we work in here. The work in this chapter proceeds by looking at

whether a version of Frege’s Theorem is available in a classical second-order modal setting.

Unlike these other results, we find that a modal version of Frege’s Theorem for PA2 is not

possible, as shown by Theorem 1.3.

1.1.4 Outline of chapter

This chapter is organised as follows. Section 1.2 expands the potentially infinite models’ lan-

guage to include the language of arithmetic. In Section 1.3 we show that using the expanded

language the potentially infinite models satisfy a weak theory of arithmetic equivalent to

a modal version of Robinson’s Q. In Section 1.4 we define the inductive formulas of the

language and show that induction holds for them. This allows us to show Theorem 1.2, that

TA1 is interpretable in our external theory and PA1 is interpretable in our internal theory,
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c = #X ∪ Y

(c) Diagram of when c is the
addition of b and c.

Figure 1.2: Diagrams demonstrating the definition of successor and addition

in Section 1.5. In Section 1.6 we show that no natural interpretation of PA2 is possible by

proving Theorem 1.3.

1.2 Definitions for a Modal Grundlagen

Just as Frege in the Grundlagen defined the numbers and the relations on them using only

the ‘number of’ operator, here we show how modified versions of Frege’s definitions can

do this in the setting of the potentially infinite.7 Proving that these definitions satisfy the

usual arithmetical axioms will occupy us in §§1.3–1.4. In this section we simply set out the

definitions themselves and say a word about their motivation. While entirely rigorous, it is

our hope that, as in the Grundlagen, the definitions will be intuitive and correspond to our

understanding of cardinal numbers.

The first definition is easy and does not require any of the modal apparatus. We simply let

0 = #∅. This follows Frege (1884, §74 p. 87) explicitly, who said that zero is “the Number

which belongs to the concept ‘not identical with itself’". Next we must define the successor,

7This has some precedent in Hodes (1990, p. 383). However, whereas we (and Frege) first define successor
and then use this to build the other definitions, Hodes takes ‘less than or equal to’ as his primitive. In his
system a number N (understood as a higher-order object) is less than or equal to another number N ′ just
in case it is possible that there are two other second-order objects A and A′ each with the same number
of objects as N and N ′ respectively and A is a subset of A′. That this has parallels with the definition of
successor offered here will be clear on inspection.
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as the other definitions rely on it. The definition here is like the one offered by Frege, but

it differs by allowing the sets which witness that one object is the successor of another to

be merely possible. This is to ensure that if an object is ever the successor of another, then

it is the successor of that object in every world where they both exist. This property will

be important in the proof of induction. The definition of successor, in plain terms, is: one

object is the successor of another just in case it is possible that there are two sets, which

differ by one object and the successor is the number of the larger set, and the predecessor

is the number of the smaller set. Figures 1.2a and 1.2b illustrate the two ways this can be

done, resulting in two definitions of the successor:

Definition 1.3.

Sxy ≡ ♦∃G, u[Gu ∧ (y = #G) ∧ (x = #(G− {u}))] (1.3)

S ′xy ≡ ♦∃F, u[¬Fu ∧ (x = #F ) ∧ (y = #(F ∪ {u}))] (1.4)

The first of these definitions simply adds the possibility operator to the definition of successor

suggested by Frege (1884, §76 p. 89). These definitions are equivalent: to see this, simply

consider F = G− {u} and G = F ∪ {u}.8 In what follows we will simply use the definition

that is most convenient and will write S for both.

The definition of addition is similarly intuitive. The relation + holds between three objects

a, b, and c such that it is possible that there are disjoint sets X and Y of cardinality a and

b respectively, and c is the cardinality of X ∪ Y , the union of the two disjoint sets. This is

illustrated by Figure 1.2c and can be written formally as:

8For easy of readability, we will use set theoretic notation as a convenient short hand for concepts formed
using the language of the model. So F ∪ {u} is used for the concept given by Xx↔ (Fx ∨ x = u).

37



Definition 1.4.

+(a, b, c) ≡ ♦∃X, Y (a = #X ∧ b = #Y ∧ c = #X ∪ Y ∧ (X ∩ Y ) = ∅) (1.5)

For c to be the result of multiplying a and b we need a set B of cardinality b and for each

element x of B a set Ax of cardinality a. The Ax’s must all be disjoint. And c must be the

cardinality of the union of all the Ax’s. To define the Ax’s we define a binary relation P that

holds between x in B and all y in Ax. So Ax is {y | Pxy}.

Definition 1.5.

×(a, b, c) ≡ ♦∃X,P [#X = b ∧ ∀x ∈ X(#{y | Pxy} = a)

∧ ∀x, y ∈ X(x 6= y → {z | Pxz} ∩ {z | Pyz} = ∅) ∧#
⋃
x∈X

{y | Pxy} = c] (1.6)

The definition of the natural numbers is more complicated and require us to define the notion

that one number follows another in the ordering of the natural numbers. We will make use

of Frege’s definition from the 1879 Begriffsschrift (1967, §III pp. 55 ff; 1884, §79 p. 92 ff).

Russell and Whitehead (1910, p. 316) called this relation the ancestral relation because a

good example of what it does is define the relation ‘ancestor of’ from the relation ‘parent

of’. The strong ancestral of ϕ holds between two objects a and b just in case b is contained

in every set such that the set is closed under ϕ and the set contains everything a bears ϕ

to. So, we can define someone’s ancestors as everyone who is in every set that contains their

parents and the parents of everyone in the set. It is not guaranteed that a bears this relation

to itself, and so we also define the reflexive weak ancestral.

Definition 1.6 (The strong ancestral).

ϕ+(a, b) ≡ ∀X[(∀x, y(Xx ∧ ϕ(x, y)→ Xy) ∧ ∀x(ϕ(a, x)→ Xx))→ Xb].
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Definition 1.7 (The weak ancestral).

ϕ+=(a, b) ≡ ϕ+(a, b) ∨ a = b.

Using this definition, we define a natural number as an object that is some finite number of

successor steps from 0, assuming 0 exists.

Definition 1.8 (Natural Number).

Nx ≡ S+=0x ∧ ∃y(y = 0).

This definition closely parallels Frege’s, though the definition of S is different. The existence

claim is added because in the modal setting 0’s existence cannot be assumed. For example,

0 does not exist at worlds 0, 1, and 2 in the 0-3 swap model, and, as 0 is not a member

of infinitely many finite subsets of the natural numbers, 0 does not exist at infinitely many

worlds in the subset model. In these worlds nothing is a natural number.

1.2.1 Some useful results

The following six lemmas will help explain the behaviour of N in the models. We admit

the proofs as they do not pose any particular difficulty. For the following Lemmas, recall

Definition 1.2 where �PI ϕ was defined as ϕ is true in all worlds in all potentially infinite

models. First, note that the set defined by N at a world satisfies the antecedent of S+0x.

Intuitively, the idea here is that if x is in every set containing 0 and closed under S, and

Sxy, or S0y, then y must also be in every set with these properties.

Lemma 1.1. �PI ∃x(x = 0)→ ∀y(S0y → Ny))

Lemma 1.2. �PI ∀x, y(Nx ∧ Sxy → Ny)
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It follows immediately from this that if x exists at a world and at that world Ny and Syx

then Nx. However, that doesn’t mean N is the set of all numbers across all worlds as N

only holds of objects which exist at the world of evaluation. This contrasts with our other

definitions where the objects need not exist at the world.

Lemma 1.3. |=PI Nx→ ∃y y = x

This is because the quantifiers in N are plain rather than having modals in front of them.

This is important because if we put the modals in front everything is a number!

We informally extend our definition of the interpretation function I to I(N, s) = {x ∈ D(s) |

M, s � Nx}. Note that by Lemma 1.3 we have {x ∈ D(s) | M, s � Nx} = {x ∈ D | M, s �

Nx}, where D is the domain of the model not the world.

Recall that ai is the unique element in D such that if |X| = i then I(#, w)(X) = ai as

defined in 1.1.5. We can now explicitly describe the interpretation of N at a world w in

terms of the ai’s, that is, the set I(N, w):

Lemma 1.4. Let w be a world and let n be the first number such that an /∈ D(w). Then if

n > 0, it follows that {0, a1, . . . , an−1} = I(N, w), and further, n = 0 iff I(N, w) = ∅.

This result shows us how the differences between our modal setting and the traditional non-

modal setting of the Grundlagen become most stark in the case of the interpretation of the

natural numbers at a world. Two things are worth highlighting. The first is that N is finite

at every world, since it is a subset of the domain of the world, and the domain of every world

is finite. The second is that objects that are not in N at one world can ‘become’ numbers

at later worlds. This doesn’t happen in the minimal model, where I(N,n) = D(n) at every

world. But it does in the subset model. For example, I(N, {2,100}) = ∅, I(N, {0,1,3}) =

{0,1} and I(N, {0,1,2,3,100}) = {0,1,2,3}. This distinguishes ¬N(x) from the other

relations which have a certain stability; if objects stand in these relations at one world, then

they do so in all worlds in which they all exist. The formal definition of stability is given
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as Definition 1.8. This difference is caused by there being no possibility operator at the

beginning of the definition of N. Despite this, once something is a number it remains one:

Lemma 1.5. �PI S(x, y)→ �S(x, y) holds, as does �PI S
+(x, y)→ �S+(x, y), �PI S

+=(x, y)→

�S+=(x, y) and �PI Nx→ �Nx.

It is also worth noting that even though some cardinalities may not be numbers at ever

world, the cardinality of every set eventually becomes a natural number.

Lemma 1.6. For all w ∈ W and X ⊆ D(w), there is a world s such that R(w, s) and

#X ∈ I(N, s).

This is because # is a function, first-order converse Barcan holds, and the accessibility

relation is directed. With these preliminary results we can now show our definitions satisfy

a simple theory of arithmetic.

1.3 Proving Modalized Robinson’s Q

In what follows we will prove that the modalized axioms of Robinson’s Q are true on all

PI models (cf. Definition 1.2). Robinson’s Q is a weak theory of arithmetic that defines

successor as an injective function that never returns 0 and gives a recursive definition of

addition and multiplication. By “modalized" we mean that we write “necessarily for all" for

“for all" and “possibly there is” for “there is”. In other words, it is what results when we

apply the Linnebo translation (mentioned in the introduction) to the axioms of Robinson’s

Q. The theory PA1 is obtained by adding the mathematical induction schema to Q. We deal

with PA1 and the proof of the induction schema in Section 1.4.9

9A list of the non-modalized axioms can be found in Appendix 1.8. While what we show here is that these
axioms are in the theory EPI, each of the proofs that follow can be formalised in ACA0 (cf. Appendix 1.9).
That this is possible will ensures that all axioms proven here are also in the theory IPI (from Section 1.1.2).
This is a key point in the proof of Theorem 1.2.ii which we complete in section 1.5.
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Figure 1.3: Diagram for the behaviour of successor and addition

First we will show that our relations define the graphs of functions. The easiest case is

successor.

Lemma 1.7 (S1). �PI �∀x, y, z ∈ N((Sxy ∧ Sxz)→ y = z).

Proof. Let s ∈ W and x, y, z ∈ I(N, s) satisfy the antecedent. As x is the predecessor in both

relations it follows by directedness that there is a w ∈ W , such that R(s, w) where there are

X,X ′ ⊆ D(w) and #X = x = #X ′. As such there is a bijection g : X → X ′. There will

also be a, b ∈ D(w) such that a /∈ X, b /∈ X ′, and y = #X ∪ {a} and z = #X ′ ∪ {b}. As

a /∈ X and b /∈ X ′ we can construct h such that for all u ∈ X, h(u) = g(u) and h(a) = b.

Clearly h is a bijection, so y = #X ∪ {a} = #X ′ ∪ {b} = z.

Lemma 1.8 (S2). �PI �∀x ∈ N♦∃y ∈ N Sxy.

Proof. As illustrated in Figure 1.3a, let s ∈ W and x ∈ I(N, s), it follows that x = an

for some n and, by Lemma 1.4, {0, . . . an−1} ( D(s). Further, an = #{0, . . . an−1} and

an /∈ {0, . . . an−1}. Thus, there must be a further world w accessible from w1 and a y ∈ D(w)

such that y = #{0, . . . an−1} ∪ {an}. It follows that Sxy at w. By Lemma 1.5 x ∈ I(N, w).

As N is closed under successor by Lemma 1.2, we have that y ∈ I(N, w). And since R is

transitive, w is accessible from s.

These two proofs offer a general outline of the reasoning for addition and multiplication. For

S1 this strategy is to show that whatever x is the sets assigned to y and z will have the same
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cardinality. Where as for S2 one simply needs to construct a set of the correct cardinality.

For this reason we do not give the proofs for the next four lemmas.

Lemma 1.9 (A1). �PI �∀x, y, z, z′ ∈ N(+(x, y, z) ∧+(x, y, z′)→ z = z′).

Lemma 1.10 (A2). �PI �∀x, y ∈ N♦∃z ∈ N + (x, y, z).

Lemma 1.11 (M1). �PI �∀x, y, z, z′ ∈ N(×(x, y, z) ∧ ×(x, y, z′)→ z = z′).

Lemma 1.12 (M2). �PI �∀x, y ∈ N♦∃z ∈ N × (x, y, z).

We also need to show that 0 meets the right conditions to be a constant.

Lemma 1.13 (Z1). �PI ♦∃x ∈ N(x = 0 ∧�∀y(y = 0→ y = x)).

Proof. By the definition of N, it follows that 0 ∈ I(N, s) for any world s with 0 in the domain.

And as 0 = #∅ there is some s with 0 in the domain. The second conjunct follows by the

transitivity of identity.

We can now move on to the recursion equations in Q. We separate these into the base steps

concerning 0 and the recursive step. For the base steps, because 0 = #∅ the proofs of the

lemmas are relatively straight forward. As such we list them here without proof.

Lemma 1.14 (Q1). �PI ¬♦∃x ∈ N(Sx0).

Lemma 1.15 (Q3). �PI �∀x ∈ N + (x, 0, x).

Lemma 1.16 (Q5). �PI �∀x ∈ N × (x, 0, 0).

What is left now is to show the recursion steps. He we only prove the case for + as one can

use the same stratagy for × and the proof is simple for S.

Lemma 1.17 (Q2). �PI �∀x, y, z ∈ N((Sxz ∧ Syz)→ x = y).

The proof simply follows from the fact that if there is a bijection between two sets X and

Y then there will be a bijection between X ∪ {a} and Y ∪ {b} if a and b aren’t in X or Y

respectively.
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Lemma 1.18 (Q4).

�PI �∀n, x0, x1, y0, y1, z ∈ N(S(x0, x1) ∧ S(y0, y1) ∧+(n, x0, y0) ∧+(n, x1, z)→ y1 = z).

Proof. As illustrated in Figure 1.3b, let s ∈ W and n, x0, x1, y0, y1, z ∈ I(N, s) satisfy the

antecedent. We want to show that y1 = z. By directedness, we know there is a world w

containing all the objects and sets which the antecedent states possibly exist. As y1 succeeds

y0 there is a set Y0 and an object a /∈ Y0 at w such that y1 = #Y0 ∪ {a} and y0 = #Y0.

We know y0 to be the addition of n and x0 so there are disjoint sets N and X0 such that

n = #N , x0 = #X0, and y0 = #N ∪ X0. Further there is a bijection g0 : Y0 → N ∪ X0.

Now let b be an element not in N or X0 (we can always pick w so that such an element

exists). Clearly we can define a bijection o between the singletons of a and b. Now, using g0

and o, define the bijection g : Y0 ∪ {a} → N ∪X0 ∪ {b}, as the union of g0 and o. Now as

x1 is the successor of x0, it follows that x1 = #X0 ∪ {b}. As z is the addition of n and x1

there are disjoint sets N ′ and X1 such that n = #N = #N ′, x1 = #X0 ∪ {b} = #X1 and

z = #N ∪ X1. As such there are bijections f0 : X0 ∪ {b} → X1 and f1 : N → N ′. So, we

can define the bijection f : N ∪X0 ∪ {b} → N ′ ∪X1 as f0 on X0 ∪ {b} and f1 on N . Then

as z = #N ∪X1 the composition f ◦ g is a bijection proving y1 = z.

Lemma 1.19 (Q6). �PI �∀n, x0, x1, y0, y1, z ∈ N(S(x0, x1) ∧ +(n, y0, y1) ∧ ×(n, x0, y0) ∧

×(n, x1, z)→ y1 = z).

This proof is similar to the above except we end up showing that y1 = #
⋃

x∈A0∪{u}{y |

Pxy ∨ (x = u ∧ y ∈ N)} = #
⋃

x∈A1
{y | Txy} = z where A0, A1, and N are of cardinality

x0, x1, and n respectively and P is the relation given by ×(n, x0, y0) and T by ×(n, x1, z).

These results show that we have successfully defined a modalized version of Robinson’s Q in

our system. The next section will recover a modalized induction schema.
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1.4 Proving the Modalized Induction Schema

We have succeeded in giving a weak theory of arithmetic in a potentially infinite setting.

However, we can recover more arithmetic by proving that when restricted to appropriate

formulas a modalized version of the induction schema is true on all PI models. The modalized

induction schema is:

[ϕ(0) ∧�∀x, y ∈ N(ϕ(x) ∧ S(x, y)→ ϕ(y))]→ �∀x ∈ N ϕ(x) (1.7)

Modalized induction does not hold for all formulas in our models, as will be shown in

Lemma 1.22. So, we need to define a subclass of the formulas in the language of potentially

infinite models for which it does hold. These we will call the inductive formulas, and in

Lemma 1.21 it will be proven that induction does hold for inductive formulas.10

Definition 1.9. The inductive terms and formulas are defined recursively as follows:

1. An inductive term is either 0 or a first-order variable.

2. If t0, t1, t2 are inductive terms then t0 = t1, S(t0, t1), +(t0, t1, t2) and ×(t0, t1, t2) are

inductive formulas.

3. Applications of the propositional connectives to inductive formulas are inductive for-

mulas.

4. If ϕ is an inductive formula then �∀x ∈ N ϕ and ♦∃x ∈ N ϕ are inductive formulas.

The inductive terms and formulas are a subset of the terms and formulas respectively. Any

term of the form #X is not an inductive term, and indeed no term or formula with a free

10This terminology is used to distinguish between these formulas and other for which induction does not
hold. Hopefully no confusion will be caused by the distinct uses of the term inductive formulas elsewhere in
the literature.
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second-order variable is inductive. Likewise N0, ∀z(x = z) and ∃y(S0y) are not inductive

formulas, while �∀z ∈ N(x = z) and ♦∃y ∈ N(S0y) are.

A formula ϕ is stable when:

�PI ϕ→ �ϕ. (1.8)

Stability is taken from Linnebo’s (2013, p. 211) work on set theory in a modal setting. It

means once a formula has been made true it stays true. As we saw in Lemma 1.5, S, S+,

S+=, and N are all stable and an example of an unstable formula is ¬N. Fortunately, the

inductive formulas all have the property of being stable, as we will now prove. This will

allow us to prove induction for these formulas.

Lemma 1.20. If ϕ is an inductive formula then �PI ϕ→ �ϕ.

Proof. In what follows we prove by induction on the complexity of the inductive formulas

that both ϕ→ �ϕ and ♦ϕ→ ϕ. The second condition is included to deal with the case of

negation.

Base case: x = y and x = 0: The result follows from the evaluation of #∅ being rigid and

the identity relation being interpreted as the identity from the metalanguage. Note that

for S,+, and × that ♦ψ → ψ follows simply because R is transitive and they start with

a ♦. S(x, y): See Lemma 1.5. +(x, y, z): Assume that M, w � +(a, b, c). It follows that

there exists a world w′ accessible from w and nonintersecting sets A,B ⊆ D(w′) satisfying

+. Let s be a world such that R(w, s). Then by directedness, there is a world s′ such that

R(s, s′) and R(w′, s′), and A,B ⊆ D(s′). So +(a, b, c) holds at s. ×(x, y, z): The reasoning

is essentially the same as that used for +.

Now we proceed to the induction step. We will only show the case of the quantifier as ¬

and ∧ proceed as one would expect. ♦∃x ∈ N ψ: AssumeM, s � ♦♦∃x ∈ N ψ. It follows
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by transitivity thatM, s � ♦∃x ∈ N ψ. Now we show that (♦∃x ∈ N ψ)→ (�♦∃x ∈ N ψ).

First take a world w such that ♦∃x ∈ N ψ holds at w. Then take worlds s, w′ such that

R(w, s), R(w,w′), ∃x ∈ N ψ holds at w′ and we want to show ♦∃x ∈ N ψ holds at s. At

w′ there is an a ∈ D(w′) such that a ∈ I(N, w′) and ψ(a) holds at w′. So, by Lemma 1.5,

Na→ �Na holds at w′ and by the induction hypothesis, ψ(a)→ �ψ(a). Let s′ be such that

R(s, s′) and R(w′, s′), such a world exists by directedness. It follows that Na and ψ(a) hold

at s′ and as s′ is accessible from s we have proven ♦∃x ∈ N ψ holds at s.

We can now prove that the modalized induction schema holds for all inductive formulas. We

do this by showing the more general result that induction holds for all stable formulas.

Lemma 1.21. If ϕ is stable, then

�PI [ϕ(0) ∧�∀x, y ∈ N(ϕ(x) ∧ S(x, y)→ ϕ(y))]→ �∀x ∈ N ϕ(x).

Proof. Let w be a world. Further, we assume the antecedent of the induction schema holds

so let ϕ(0) and �∀x, y ∈ N(ϕ(x) ∧ S(x, y) → ϕ(y)) hold at w. Let s be a world accessible

from w and let a ∈ I(N, s). We will show that ϕ(a) at s. If a = 0 then, as ϕ is stable, we

are done so assume not.

As a ∈ I(N, s), if we prove ∀x, y(ϕ(x)∧Nx∧S(x, y)→ ϕ(y)∧Ny) and ∀x(S(0, x)→ ϕ(x)∧Nx)

hold at s then we have satisfied the antecedent of S+0a and so it follows that ϕ(a) ∧ Na at

s.

At s we have ∀x, y ∈ N(ϕ(x)∧S(x, y)→ ϕ(y)). We also have that if x ∈ I(N, s), and S(x, y)

hold at s then by Lemma 1.2 that y ∈ I(N, s). This proves ∀x, y(ϕ(x) ∧ Nx ∧ S(x, y) →

ϕ(y) ∧ Ny) at s.

From a ∈ I(N, s) it follows that 0 ∈ D(s). Assume x ∈ D(s) and S0x, as 0 ∈ D(s) it follows

by Lemma 1.1 that x ∈ I(N, s). It then follows by the stability of ϕ that ϕ(0) at s. As such
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we have the antecedent of ∀x, y ∈ N(ϕ(x) ∧ S(x, y)→ ϕ(y)) so we get ϕ(x). And from this

it follows that ∀x(S(0, x)→ ϕ(x) ∧ Nx) holds at s.

So we have proven the modalized induction axiom restricted to inductive formulas. But

we cannot prove modalized induction for all formulas in the language of potentially infinite

models, as the following counterexample shows.

Lemma 1.22. If ϕ(x) is ∀z(z = x), then

2PI [ϕ(0) ∧�∀x, y ∈ N(ϕ(x) ∧ S(x, y)→ ϕ(y))]→ �∀x ∈ N ϕ(x).

Proof. It is sufficient to show there is a model and a world in the model where this statement

is false. Take the minimal model from Example 1.1 and world 0, where D(0) = {0}. Clearly

M,0 � ∀z(z = 0). Let w ∈ W be such that R(0, w) and assume that for all x, y ∈ I(N, w),

that ∀z(z = x) and S(x, y) hold at w. As everything in the domain is equal to x it follows

that y = x and so ∀z(z = y) at w. SoM,0 � �∀x, y ∈ N(∀z(z = x)∧S(x, y)→ ∀z(z = y)).

But it does not follow that �∀x ∈ N ∀z(z = x), because 1 ∈ W is a counterexample as

D(1) = {0,1}.

1.5 Proof of Theorem 1.2

We now have almost all the pieces needed to prove Theorem 1.2. However, before we do

that we need to discuss what a translation and interpretation are in our setting because we

are moving between logics.

Intuitively, a translation between two languages starts with instructions on how to rewrite

atomic formulas in one language into the other language. It does not make any changes

to the propositional connectives but can restrict the quantifiers to objects meeting some
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conditions. In the current setting, however, we need a formal definition of what is to count

as a translation when the underlying logics are different. This notion should, at the very least,

capture the Linnebo translation. We offer the following definition as a minimal condition on

any translation, though more will need to be done to ensure a widely applicable definition

of translation and interpretation between logics.

Definition 1.10. Let LA and LB be two logics extending first-order predicate logic, defined

by the languages LA and LB and derivability relations `LA
and `LB

respectively. A gener-

alised translation is given by a recursive map (·)G : LA → LB which preserves free variables

and a domain formula δ(x) ∈ LB, such that the map is compositional on the propositional

connectives and where for all unnested formulas11 ϕ1, . . . , ϕn, ψ containing free variables

x1, . . . , xm one has the following:

ϕ1, . . . , ϕn `LA
ψ ⇒ δ(x1), . . . , δ(xm), ϕG1 , . . . , ϕ

G
n `LB

ψG (1.9)

What we have done so far is an informal translation from the first-order language of arith-

metic into the signature of the potentially infinite models. In Section 1.2 we showed how the

atomic formulas could be translated. Further, the modalized versions of the axioms of PA1

proven in Sections 1.3 and 1.4 are the translations of PA1’s axioms via the translation found

in Section 1.2 and the Linnebo translation for the quantifiers.

While it has been set out in previous sections, for the sake of definiteness we here record

the translation explicitly. We will call this translation (·)F , as it is a Fregean translation.

Three things are worth noting before we lay out the translation. The first is that the domain

formula associated to this interpretation is N from Definition 1.8. The second is that the

11An unnested formula is one where the atomic subformulas of a formula contain at most one constant,
function or relation (Hodges 1993, p. 58). We only give conditions for unnested formulas. So, for example,
Sxy and +(x, y, z) are unnested but S0x and +(0, 0, z) are nested. Every formula is equivalent to an unnested
one (Hodges 1993, p. 59, Cor 2.6.2). As such the translation can be expanded to unnested formulas using
this equivalence.
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range of this translation is the inductive formulas from Definition 1.9. The third is that 1.11-

1.13 are the same definitions given in 1.3, 1.4 and 1.5. We have not changed the definitions

we are working with. Rather, we merely show how these definitions can be used to define

the interpretation function (·)F .

0F ≡#∅, (1.10)

SabF ≡♦∃G∃u[Gu ∧ (b = #G) ∧ (a = #G ∪ {u})], (1.11)

+(a, b, c)F ≡♦∃X, Y (a=#X ∧ b=#Y ∧ c=#X ∪ Y ∧X ∩ Y = ∅), (1.12)

×(a, b, c)F ≡♦∃X,P [#X = b ∧ ∀x ∈ X(#{y | Pxy} = a)∧

∀x, y ∈ X(x 6= y → {z | Pxz} ∩ {z | Pyz} = ∅) ∧#
⋃
x∈X

{y | Pxy} = c],

(1.13)

(ψ ∧ χ)F ≡ψF ∧ χF , (1.14)

(¬ψ)F ≡¬ψF , (1.15)

(∀xψ)F ≡�∀x(N(x)→ ψF), (1.16)

(∀Xnψ)F ≡�∀Xn(∀x1, . . . , xn(Xnx1 . . . xn → N(x1) ∧ · · · ∧ N(xn))→ ψF). (1.17)

To see that this is a generalised translation all that remains to be shown is that deduction

is preserved by our translation. We need this result for both EPI and IPI.12

Lemma 1.23. Let ϕ0, . . . , ϕn, ψ be unnested formulas in the language of PA1 with free vari-

ables v0, . . . , vm, it follows that if ϕ0, . . . , ϕn ` ψ, then N(v0), . . . ,N(vm), ϕF0 , . . . , ϕ
F
n �PI ψ

F .

Further, it is PA1-provable that if ϕ0, . . . , ϕn ` ψ then ACA0 ` “N(v0), . . . ,N(vm), ϕF0 , . . . ,

ϕFn �PI ψ
F ”.

12Recall that we formalised IPI in ACA0, and those interested in the nuts and bolts are directed to
Appendix 1.9.
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The first part of this Lemma is similar to Linnebo (2013, Thm. 5.4.). But he proves a version

of this which does not restrict the quantifiers to a domain. The modification to our case is

simple and so we omit the proof.

On its own a translation is not very interesting. However, a translation is an interpretation

if the translations of the axioms of the interpreted theory can be proven in the interpreting

theory.

Definition 1.11. Let TA and TB be LA and LB theories respectively, where a theory is

a set of sentences not necessarily closed under deduction. A generalised translation (·)G :

LA → LB interprets TA in TB, if for all LA unnested sentences χ:

TA `LA
χ⇒ TB `LB

χG (1.18)

It is a recursive interpretation if the collection of LA and LB formulas are recursive, TA

and TB are also recursive, as is (·)G, and there are recursive maps from proofs to proofs

which witness the truth of equations (1.9) and (1.18). If T extends PA1, then say that the

interpretation is T-verifiable if the recursive functions are provably total in T and if the

universal closures of the arithmetized versions of 1.9 and 1.18 are provable in T.

So, the proofs of Sections 1.3 and 1.4 show our translation is an interpretation of PA1 in EPI.

However, to show it is an interpretation in IPI a certain level of caution is needed because IPI

does not have a background derivability relation. To resolve this, we take ϕ0, . . . , ϕn `LPI
ϕ

to be ACA0 ` “ϕ0, . . . , ϕn �PI ϕ”, where this is as defined in Appendix 1.9. And, of course

IPI is just as defined in (1.2) of section 1.1, namely the set of sentences ϕ such that ACA0 `

“ �PI ϕ”. We then need to show the following:

Lemma 1.24. For all sentences ϕ in the language of PA1, if PA1 ` ϕ then ACA0 ` “ �PI ϕ
F”.

Further, it is PA1-provable that if PA1 ` ϕ then ACA0 ` “ �PI ϕ
F”.
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Proof. By Lemmas 1.8-1.12 and 1.20 and 1.21 we know that if ϕ is an axiom of PA1 then

ACA0 ` “ �PI ϕ
F”. Assume PA1 ` ϕ not an axiom, then there are n axioms of PA1, ϕ0, . . . , ϕn,

such that ϕ0, . . . , ϕn ` ϕ. Then as we can always take the universal closure of axioms and

ϕ is a sentence it follows by Lemma 1.23 that ACA0 ` “ϕF0 , . . . , ϕ
F
n �PI ϕ

F”. Given that the

axioms are PI valid, it follows that ACA0 ` “ �PI ϕ
F”.

This final piece gives us the proof of:

Theorem 1.4 (1.2.ii.). There is a generalised translation from the language of PA1 to the

second-order modal language with octothorpe that interprets PA1 in IPI. Further, this is a

PA1-verifiable generalised interpretation.

To prove the first half of Theorem 1.2 we need to define formulas that pick out the numbers

in PA1 and EPI. In PA1 let τ0(x) ≡ (x = 0) and τn+1(x) ≡ ∃y(τn(y)∧Syx). In EPI let σ0(x) ≡

(x = 0) and σn+1(x) ≡ ♦∃y ∈ N(σn(y) ∧ Syx). Note that (τ0(x))F ≡ (x = 0)F ≡ σ0(x) and

(τn+1(x))F ≡ (∃y(τn(y) ∧ Syx))F ≡ ♦∃y ∈ N((τn(y))F ∧ Syx) ≡ σn+1(x). With this we can

state the following preliminary Lemma; we omit the proof which is long but not illuminating:

Lemma 1.25. For every k ≥ 0 and every unnested formula θ(x1, . . . , xk) in the signature

of PA1 and every k-tuple of natural numbers n1, . . . , nk one has that :

N |= θ(n1, . . . , nk) =⇒ �PI ∀x1, . . . , xk ∈ N(
k∧

i=1

σni
(xi)→ θF(x1, . . . , xk)) (1.19)

In the case of k = 0, this is to say: for every unnested sentence θ in the signature of PA1

one has that

N |= θ =⇒ �PI θ
F (1.20)

Theorem 1.2.i follows from (1.20) of Lemma 1.25. This give us our proof of:
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Theorem 1.5 (1.2.i.). There is a generalised translation from the language of PA1 to the

second-order modal language with octothorpe that interprets TA1 in EPI.

1.6 Proof of Theorem 1.3

It has been shown by Linnebo and Shapiro (2019, §7) that the Linnebo translation cannot

interpret comprehension because modalized comprehension requires the existences of a set

of all possibly existing things. However, this leaves open the question of whether there is

a different translation which can interpret PA2. Here we will demonstrate that there is no

translation from TA2 to EPI nor from PA2 to IPI by proving Theorem 1.3, our second main

theorem. The first part of Theorem 1.3 follows from relatively simple Tarskian considerations:

Theorem 1.6 (1.3.i). There is no generalised translation from the language of PA2 to the

second-order modal language with octothorpe that interprets TA2 in EPI.

Proof. Assume for a contradiction that there is an interpretation (·)G that interprets TA2 in

EPI. Note that as TA2 is complete it follows that this is a faithful interpretation; i.e. if �PI ϕ
G

then N � ϕ. As EPI is Π1
1-definable it follows that there is a predicate P such that for all ϕ in

the second-order modal language with octothorpe we have �PI ϕ if and only if N � P (“ϕ”).

(Here we use quotation marks for Gödel numbering for both the language of PA2 and the

second-order modal language with octothorpe.) But then as generalised translations are

recursive we can represent (·)G in N as g. It follows that P (g(“ψ”)), where ψ is in the

language of PA2, is a truth predicate for TA2. But this contradicts Tarski’s theorem.

The proof of the second part of the theorem is trickier and requires Gödelian considera-

tions. Recall the definition of T-verifiable generalised translation and interpretation from

Definitions 1.10 and 1.11 in Section 1.5. There we proved that we have a PA1-verifiable in-

terpretation of PA1 in IPI by Lemma 1.24. Given that we defined IPI ` ϕ as ACA0 ` “�PI ϕ",
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that is PA1 ` ∀ϕ[“PA1 ` ϕ” → “ACA0 ` “ �PI ϕ
F””]. Here we show that there is no PA2-

verifiable interpretation of PA2 in IPI. We can write this as: there is no generalised translation

(·)G from the language of PA2 to the second-order modal language with octothorpe such that

PA2 ` ∀ϕ[“PA2 ` ϕ”→ “ACA0 ` “ �PI ϕ
G””].

Theorem 1.7 (1.3.ii). There is no generalised translation from the language of PA2 to the

second-order modal language with octothorpe that PA2-verifiably interprets PA2 in IPI.

Proof. The systems Π1
k-CA0 are subsystems of PA2 that have comprehension for Π1

k formulas.

As proofs are finite and so can only use finitely many instances of the comprehension schema

any interpretation which is PA2-verifiable will also be Π1
k-CA0-verifiable for some k ≥ 1. Let

ϕ1, . . . , ϕn be a finite axiomatisation of Π1
k-CA0 for some k ≥ 1 (Simpson 2009, pp. 303, 311–

2). We will show, from the assumption that there is a Π1
k-CA0-verifiable translation (·)G from

the languge of PA2 to the second-order modal language with octothorpe that interprets PA2 in

IPI, that Π1
k-CA0 proves its own consistency. This contradicts Gödel’s second incompleteness

theorem and so shows that no such (·)G can exist.

Note that PA2 ` ϕ1, . . . , ϕn as all Π1
k-CA0 are subsystems of PA2. We are assuming that

(·)G interprets PA2 in IPI, so it follows that ACA0 ` “ �PI ϕ
G
1 , . . . , ϕ

G
n”. Let A be a model of

Π1
k-CA0 for some k. So, we have A � “ �PI ϕ

G
1 , . . . , ϕ

G
n”. If M is the minimal model from

Example 1.1 relative to A then we have then we have A � “M � ϕG1 , . . . , ϕ
G
n”.

Now we show that A � ¬Prvϕ1,...,ϕn(ψ ∧ ¬ψ), that is the consistency of Π1
k-CA0. Assume

for a contradiction that A � ∃πPrfϕ1,...,ϕn(π, ψ ∧ ¬ψ). Then as (·)G is a Π1
k-CA0-verifiable

interpretation it follows A � PrfACA0(πG, “ϕG1 , . . . , ϕ
G
n �PI ψ

G ∧ ¬ψG′′).

Recall that Π1
1-CA0 proves Σ1

1-reflection for ACA0 (cf. Simpson (2009) Theorem VII.6.9.(4)

p. 298 and Theorem VII.7.6.(1) p. 305). As Π1
1-CA0 ⊆ Π1

k-CA0, this means that for any Π1
1

statement ψ we know Π1
k-CA0 proves PrvACA0(ψ) → ψ. For all ψ, we know that “ �PI ψ”

is Π1
1 and similarly for the local derivability relation (see Appendix 1.9). It follows that

54



A � “ϕG1 , . . . , ϕ
G
n �PI ψ

G ∧ ¬ψG” and as A � “M � ϕG1 , . . . , ϕ
G
n”. It follows that A � “M �

ψG ∧ ¬ψG”. And so A � “M |= ψG” and A � “M |= ¬(ψG)”.

We have now shown the two main results set out in the introduction.

1.7 Conclusion

We started with the worry that Hume’s Principle had only infinite models and so any claim

that it was analytic would mean that the claim that there are infinitely many objects is

analytic. This worry has been noted before in the literature on neo-logicism, but little has

been done to address it. Hale and Wright (2001a) state that without this the neo-logicist

project cannot even get off the ground:

To require of an acceptable abstraction that it should not be (even) weakly infla-

tionary [that is require a countable infinity] would stop the neo-Fregean project

dead in its tracks, before it even got moving (as it were). It will be clear that

I think there is no good ground to impose such a requirement, and I shall not

discuss it further. (Hale and Wright 2001a, pp. 417–8)

In this chapter we have explored the potentially infinite as one way to address this worry.

The move to the potentially infinite does not rid us of posited infinities. We still require there

to be an infinity of worlds and an infinity of objects across the worlds. But these infinities

are less metaphysically questionable. So, for example, while Putnam and Hodes objected to

the positing of actual infinities they allowed for possible infinities. And one could always

try to further avoid the commitment by adopting an instrumentalist attitude towards the

metatheory.
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We have shown that the theory of potentially infinite models interprets first-order Peano

arithmetic or first-order true arithmetic, depending on the strength of our meta-language.

But we cannot interpret the equivalent second-order arithmetic theory. The difficulty seems

to be the non-existence of a set of all the numbers across all the worlds. As our models

are supposed to capture the idea of the potential infinite, we do not want the set of all the

numbers across all the worlds to exist. It makes sense that the potential infinite does not

capture the infinite progression of the natural numbers as well as actual infinity and this

might go some way to explaining why we get the weaker first-order theory.

This allows a fuller understanding of the role of the potentially infinite in the foundation of

mathematics. Unlike Hodes, we see that a certain amount of mathematics can be recovered,

though some other story would need to be told about more advanced mathematics. It also

offers evidence that the ontological commitments that come with Hume’s Principle, and

which make some reject the claim that its truth is analytic, cannot be avoided by moving

to the modal setting if one wants full second-order Peano arithmetic. For in weakening our

ontological commitments, we also weakened the mathematical theory which we can recover.

1.8 Formal Theories

Here we will spell out the theories other than EPI and IPI which are used in the proofs above.

Unlike EPI and IPI none of these are modal theories, however, most are second-order theories.

The weakest theory we consider is first-order Robinson’s Q. For a more complete reference

see, for example, Hájek and Pudlák (1998, p. 28).
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Definition 1.12. Q is the usual formalization of Robinson’s arithmetic. It consists of the

universal closure of the following axioms:

s(x) 6= 0; (Q1) s(y) = s(z)→ y = z; (Q2)

x+ 0 = x; (Q3) x+ s(y) = s(x+ y); (Q4)

x× 0 = 0; (Q5) x× s(y) = (x× y) + y. (Q6)

Note that in the body of the text we do not use this formulation but rather one with

relations instead than functions.13 We have offered this formulation for readability. The

relation formulation gives you the obvious translation of the above, plus an additional 6

axioms ensuring that the relations S,+,× are the graphs of functions.

We also consider the extensions of Q to PA1 by the addition of the first-order induction

schema, and PA2 by the addition of the second-order induction axiom and Comprehension

Schema. PA1 is a first-order theory, but PA2 is a second-order theory.

Definition 1.13. PA1 is Q plus the induction schema, where ϕ is a first-order formula:

(ϕ(0) ∧ ∀x(ϕx→ ϕ(s(x))))→ ∀xϕ(x) (Induction Schema (IS))

PA2 is Q plus the induction axiom and Comprehension Schema:

∀P [(P0 ∧ ∀x(Px→ P (s(x))))→ ∀xPx] (Induction Axiom (IS))

∀ȳ, Ȳ ∃X∀x(X(x)↔ ϕ(x, ȳ, Ȳ )) (Comprehension Schema (CS))

In the Comprehension Schema ϕ can be any formula of the language of PA2 in which X does

not occur free.

13We use a capital S for the relational successor and lower case s for the functional.
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Again in the body of the text we use the natural adaptation to the setting of relations rather

than functions. There are also two theories we use that are second-order and between PA2

and PA1 in strength. They both restrict comprehension. So, we first need to define the

formulas we restrict to:

Definition 1.14. (Simpson 2009, I.3.1, p. 6) An Arithmetical formula is a formula in

the language of PA2 which does not contain any set quantifiers, though it may contain free

set variables.

With this we can state ACA0:

Definition 1.15. (Simpson 2009, I.3.2, p. 7) ACA0 is Q plus the Induction Axiom and

Arithmetical Comprehension:

∀ȳ, Ȳ ∃X∀x(X(x)↔ ϕ(x, ȳ, Ȳ )) (Arithmetical Comprehension Schema (ACS))

Where ϕ has to be an arithmetical formula and X may not occur free.

Note that as every formula of PA1 is arithmetical, and ACA0 contains the second-order

induction axiom, every instance of the first-order induction schema is provable in ACA0.

The next theories of arithmetic to be considered here are the Π1
k-CA0 which are used in the

proof of Theorem 1.3. To define this theory, we first need to define Π1
k (and Σ1

k) formulas:

Definition 1.16. (Simpson 2009, I.5.1, p. 16) A Π1
1 formula is a formula in the language

of PA2 of the form ∀X1, . . . , Xnϕ where X1, . . . , Xn are set variables and ϕ is an arithmetical

formula.

A Σ1
1 formula is a formula in the language of PA2 of the form ∃X1, . . . , Xnϕ where X1, . . . , Xn

are set variables and ϕ is an arithmetical formula.

58



A Π1
k formula is a formula in the language of PA2 of the form ∀X1, . . . , Xnϕ where X1, . . . , Xn

are set variables and ϕ is a Σ1
k−1 formula.

A Σ1
k formula is a formula in the language of PA2 of the form ∃X1, . . . , Xnϕ where X1, . . . , Xn

are set variables and ϕ is Π1
k−1 formula.

The definition of Π1
k-CA0 is much like the definition of ACA0, except that the restriction on

the comprehension axiom is broadened to include all Π1
k formulas:

Definition 1.17. (Simpson 2009, I.5.2, p. 17) Π1
k-CA0 is Q plus the Induction Axiom and

Π1
k Comprehension:

∀ȳ, Ȳ ∃X∀x(X(x)↔ ϕ(x, ȳ, Ȳ )) (Π1
k Comprehension Schema (Π1

kCS))

Where ϕ has to be a Π1
k formula and X may not occur free.

We can define the intended model of these theories. Let N1 be {ω, 0, s,+,×} where each

term is interpreted as it is in the metatheory and N2 be N1 with P(ωn) as the domain of the

second-order quantifiers. N1 is the intended model of Q and PA1, while N2 is the intended

model of PA2, ACA0, and Π1
k-CA0 for all k. As is well known, by Gödel’s incompleteness

theorems none of the theories we have seen so far are complete. We can define the complete

theories of these models:

Definition 1.18. Let TA1 be {ϕ | N1 � ϕ} and TA2 be {ϕ | N2 � ϕ}.

For the sake of completeness, we here define Hume’s Principle (HP2). This system is second-

order also and consists of the cardinality principle displayed in Equation HP on page 24, the

full Comprehension Schema, as in PA2, and full comprehension for binary relations:

∀ȳ, Ȳ ∃X∀x, z(X(x, z)↔ ϕ(x, z, ȳ, Ȳ )) (Binary Comprehension Schema (BCS))
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Comprehension for binary relations is required because the definition of HP2 quantifies over

bijections and when spelt out fully this turns out to be the claim that there is a second-order

binary relation which is the graph of a bijection between the two sets.

1.9 Formal definition of IPI

In the introduction we gave IPI as the set {ϕ | ACA0 ` ‘�PI ϕ’}. Here we will layout explicitly

what we mean by defining the arithmetization of �PI in ACA0.

It is importaint to note that the second-order variables in IPI are taken to first-order variables

in ACA0. If all the first-order variables of IPI are of the form xi and all the second-order

variables of IPI are of the form Yj then let all the first-order variables of ACA0 be of the form

xi and Yj, and the second-order variables of ACA0 be of the form Zv. In practice we will not

stick to this strict distinction, but it can always be implemented by renaming the variables.

We do not restrict the domain of the first-order variables of IPI; there is no need to pick out

a subset of the domain of a model of ACA0. However, the second-order variables of IPI need

to be restricted to codes for finite sets of numbers ordered by strict less than. This isn’t

difficult, we can simply borrow the coding found in the proof of incompleteness. A more

complete explication can be found in Simpson (2009, Ch. 2.2). The second-order variables

are required to be to some sequence π(0)n0 + · · · + π(m)nm where π(i) gives the ith prime

and n0 < n1 < · · · < nm. Let Seq(Y ) be the name of the relation that ensures Y has the

above properties. Further, let nSeq(Y ) mean that Y codes n-tuples of numbers. We will use

this to code relations and relational variables. If x is the number of a sequence then let [x]i

be the ith element and ln(x) is the length of x.

We want to code PI models as sets of natural numbers. We know that we can always

combine countably many countably infinite sets (just code n a member of the ith set as
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2i + 3n). As such we will just show how to code W,R,D,#, a as separate sets of natural

numbers. Further, with R,D,#, a we will talk about pairs (x, y), this should be understood

as standing for the code 2x + 3y.

(B.1) Let W be infinite (∀x ∈ W∃y ∈ W (y > x)),14

(B.2) let R be such that

(a) for all (i, j) ∈ R we have that i, j ∈ W ,

(b) ∀x ∈ W R(x, x) (reflexive),

(c) ∀x, y, z ∈ W (R(x, y) ∧R(y, z)→ R(x, z)) (transitive),

(d) ∀x, y ∈ W (R(x, y) ∧R(y, x)→ x = y) (anti-symmetric),

(e) ∀x, y ∈ W ∃z ∈ W (R(x, z) ∧R(y, z)) (directed),

(B.3) let D be such that

(a) D(w, Y ) implies that w ∈ W and Seq(Y ),

(b) ∀w ∈ W∃Y ∈ Seq(D(w, Y ) ∧ ln(Y ) > 0) (every world has at least one element),

(c) D is the graph of a function from W to Seq,

(d) if R(i, j) and i 6= j and D(i,X) and D(j, Y ) then ∃u∀v([X]v 6= [Y ]u) (there is

something in Y not in X) and ∀v < ln(X)∃u([X]v = [Y ]u) (everything in X is in

Y ),

(B.4) let a be such that for each n there is exactly one x such that a(n, x) and if a(n, x) and

a(m,x) then n = m, we then define #(Y, x) as Seq(Y ) ∧ a(ln(Y ), x).

Given a set of numbers M we will write M ∈ PIM to signify the set meets (B.1)–(B.4).

We define sb (subset) as follows Y ∈ sb(X) iff Seq(Y ) ∧ ∀i < ln(Y )∃j([X]j = [Y ]i). In
14Recall that our definition demanded that our set of worlds be countable. We cannot capture this in

ACA0 in the sense that ACA0 has none standard models but we will have that we do not have more worlds
than ACA0 thinks there are natural numbers, which is sufficent for the role this plays in the proofs.
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defining the arithmetisation note that we add free-variables for the model and the world,

we will use WM , RM , DM ,#M , but these can be defined in terms of the model. So, if ϕ

is a formula in the modal second-order language with octothorpe we translate it to some

ψ(w,WM , RM , DM ,#M) in the language of arithmetic. We define the arithmetisation as

follows:

(xi = xj)
∗ ≡xi = xj (1.21)

(xi = #Yj)
∗ ≡#M(Yj, xi) (1.22)

(Yjxi)
∗ ≡∃u(xi = [Yj]u) (1.23)

(∀xϕ)∗ ≡∀x(∃Y ∈ Seq(DM(w, Y ) ∧ ∃u(x = [Y ]u))→ (ϕ)∗) (1.24)

(∀Y ϕ)∗ ≡∀Y ∈ Seq(∃X ∈ Seq(DM(w,X) ∧ Y ∈ sb(X))→ (ϕ)∗) (1.25)

(∀P nϕ)∗ ≡∀P n ∈ nSeq (1.26)

(∃X ∈ Seq(DM(w,X) ∧ ∀(x1, . . . , xn) ∈ P n(
∧

1≤i≤n

∃j[X]j = xi))→ (ϕ)∗)

(�ϕ)∗ ≡∀s ∈ WM(RM(w, s)→ (ϕ)∗[w/s]) (1.27)

where we commute over the logical connectives. This means that every formula arithmetised

is arithmetical as defined in Appendix 1.8. For example, �∀v♦∃Z(v = #Z) becomes

∀s ∈ WM(RM(w, s)→ ∀v(∃Y (DM(s, Y ) ∧ ∃u(v = [Y ]u)→

∃s′ ∈ WM(RM(s, s′) ∧ ∃Z ∈ Seq(∃X(DM(w,X) ∧ Z ∈ sb(X) ∧#M(Z, v))))). (1.28)

Note ‘ �PI ϕ’ means ∀M ∈ PIM∀w ∈ WM(ϕ)∗. It follows that this is then a Π1
1 formula.

Hence, if one were proceeding very formally, we would define IPI as the set of all the ϕ such

that ACA0 ` ∀M ∈ PIM∀w ∈ WM(ϕ)∗.
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1.10 Proofs

First we prove the results discussed in Section 1.2. For the following Lemma, recall Defini-

tion 1.2 where �PI ϕ was defined as ϕ is true in all worlds in all potentially infinite models.

Lemma 1.26. �PI ∃x(x = 0)→ ∀y(S0y → Ny))

Proof. Let w be a world and assume that 0 ∈ D(w). Let b ∈ D(w) be such that S(0, b)

holds at w. Assume X satisfies the antecedent of S+0b at w, it follows by ∀x(S0x → Xx)

that Xb and so N(b) at w.

Lemma 1.27. �PI ∀x, y(Nx ∧ Sxy → Ny)

Proof. Given a world w, let a, b ∈ D(w) be such that N(a) and S(a, b) at w. AssumeX is such

that it satisfies the antecedent of S+0b at w. If a = 0 then the result follows from Lemma 1.1,

so assume not. It follows that Xa as S+=0a at w. But then ∀x, y(Xx∧Sxy → Xy) at w by

assumption, so it follows that Xb and so S+=0b at w. Because N(a) at w, we know ∃x(x = 0)

at w and so N(b) at w.

Lemma 1.28. |=PI Nx→ ∃y y = x

Proof. Let w ∈ W and assume that a is such that N(a) at w. Let X = {x | M, w �

N(x) ∧ ∃y y = x}, we will show that X satisfied the antecedent of S+0x. We want to show

that ∀y(S0y → ∃u(u = y) ∧ Ny). Assume not then ∃y(S0y ∧ (¬∃u(u = y) ∨ ¬Ny)). As

N(a) at w it follows that ∃x x = 0 at w. So, by Lemma 1.1 it follows that ∀y(S0y → Ny).

It therefore follows that ∃y(S0y ∧ ¬∃u(u = y)) This is clearly contradictory. We further

need to show that ∀y, z(Syz ∧ ∃u(y = u) ∧ Ny → ∃v(z = v) ∧ Nz). Again, assume not

then ∃y, z(Syz ∧ ∃u(y = u) ∧ Ny ∧ (¬∃v(z = v) ∨ ¬Nz)). But like before, by Lemma 1.2

∀y, z(Ny∧Syz → Nz). With this we get a contradiction as we have ∃zSyz and ¬∃v v = z. It
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follows that Xa at w and so ∃y y = a at w. This result comes about because our quantifiers

are actualist and everything that satisfies N falls in the range of a quantifier.

Lemma 1.29. Let w be a world and let n be the first number such that an /∈ D(w). Then

if n > 0, it follows that {0, a1, . . . , an−1} = I(N, w), and further, n = 0 iff I(N, w) = ∅.

Proof. We start by showing 0 /∈ D(w) iff I(N, w) = ∅. Note that, by the definition of N,

0 must exist at a world s for Nx at s to be true of any x ∈ D(s). So, if 0 /∈ D(s) then

I(N, s) = ∅. Further, if 0 ∈ D(s) then I(N, s) 6= ∅ as 0 ∈ I(N, s).

Now we show that for all worlds s if a0, . . . , am ∈ D(s) then a0, . . . , am ∈ I(N, s). We

proceed by induction on m. First let a0 ∈ D(s) then 0 exists at s, so by definition of N it

follows that a0 ∈ I(N, s). Now assume the induction hypothesis that if a0, . . . , am ∈ D(s)

then a0, . . . , am ∈ I(N, s). Also assume a0, . . . , am+1 ∈ D(s). Note Samam+1 holds at w as

am = #{a1, . . . , am} and am+1 = #{a1, . . . , am}∪{am+1}. So, by Lemma 1.2 it follows that

am+1 ∈ I(N, w).

The above shows that {0, a1, . . . , an−1} ⊆ I(N, w). To show they are equal we will show that

nothing else is a member of N at w. Let X = {a0, . . . an−1} ⊆ D(w) and an /∈ D(w). We

will show that X satisfies the antecedent of S+=0x and so any y ∈ I(N, w) is also in X.

Every y ∈ D such that S0y holds at w is equal to a1. This is because 0 = #∅ and so

y = #∅∪{u} for some u in a world w′ accessible from w, and #∅∪{u} must be a singleton

so #∅ ∪ {u} = a1. Now as we are in the case where 0 ∈ D(s) we have either a1 ∈ D(s) in

which case Xa1 by assumption or a1 /∈ D(s) and so no x ∈ D(w) satisfies S0x. In either

case it follows that ∀x(S(0, x)→ Xx)).

Assume x, y ∈ D(w), Xx and Sxy at w. As Xx it follows that x = ai for some 0 ≤ i ≤ n−1.

Therefore y = ai+1, but as y ∈ D(w) it follows that i < n − 1 as if i = n − 1 then y = an
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and an /∈ D(w). From this we get that 0 < i+ 1 ≤ n− 1 and so Xy. From which it follows

that (∀x, y(Xx ∧ S(x, y)→ Xy).

Lemma 1.30. �PI S(x, y) → �S(x, y) holds, as does �PI S
+(x, y) → �S+(x, y), �PI

S+=(x, y)→ �S+=(x, y) and �PI Nx→ �Nx.

Proof. For S, let s be a world and assume Sab holds at s. Let w be a world such that

R(s, w). Take a world t accessible from s where A and u, witnessing Sab, exist. That is

a = #A and b = #A∪{u}. By directedness there is a world t′ such that R(t, t′) and R(w, t′).

Because the domains are growing A and u exist at t′. And because # is rigid a = #A and

b = #A ∪ {u} at t′. And so, it follows as R(w, t′) that Sab at w.

Now for S+, take a world s and assume S+ab holds at s. Let w be such that R(s, w). We

will show that S+ab holds at w. We must show that b is a member of all sets at w which are

closed under successors of a. Let X ⊆ D(w) be such a set, that is ∀x, y(Xx ∧ Sxy → Xy)

and ∀x(Sax→ Xx) hold at w. We will show that b ∈ X by showing that b ∈ Y = X ∩D(s).

Note that Y exists at s and is still equal to X ∩D(s) as second-order variables are rigid in

our system. It follows that if we can show ∀x, y(Y x ∧ Sxy → Y y) and ∀x(Sax→ Y x) hold

at s then Y b at s and because second-order variables are rigid Y b at w.

Let us show ∀x, y(Y x ∧ Sxy → Y y) at s. Assume c, d ∈ D(s), c ∈ Y , and Scd at s, then

c, d ∈ D(w) because our domains are growing. It follows by the first paragraph of the proof

that Scd at w. Therefore, as ∀x, y(Xx∧Sxy → Xy) at w and c ∈ X, because c ∈ Y , we get

d ∈ X and so d ∈ X ∩D(s) = Y at w. But as Y is rigid, d ∈ Y at s. From which it follows

that ∀x, y(Y x∧ Sxy → Y y) holds at s. The proof that ∀x(Sax→ Y x) holds at s is similar.

So as S+ab holds at s it follows that b ∈ Y and so b ∈ X. And as X was arbitrary, S+ab

holds at w. The proofs for S+= and N are virtually identical.

Lemma 1.31. For all w ∈ W and X ⊆ D(w), there is a world s such that R(w, s) and

#X ∈ I(N, s).
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Proof. #X is an for some n. So, given Lemma 1.4 Nan at a world when a0, . . . , an exist. As

every cardinality exists at some world or other, and our worlds are directed, such a world

can always be found.

Lemma 1.32. Let ϕ0, . . . , ϕn, ψ be unnested formulas in the language of PA1 with free vari-

ables v0, . . . , vm, it follows that if ϕ0, . . . , ϕn ` ψ, then N(v0), . . . ,N(vm), ϕF0 , . . . , ϕ
F
n �PI ψ

F .

Further, it is PA1-provable that if ϕ0, . . . , ϕn ` ψ then ACA0 ` “N(v0), . . . ,N(vm), ϕF0 , . . . ,

ϕFn �PI ψ
F ”.

Proof. The proof is an induction on the length of proof in a Hilbert-style deductive system

for PA1 and ACA0. That is, we prove by induction on length of proof π1 of ϕ0, . . . , ϕn ` ψ

that there is a proof π2 of N(v0), . . . ,N(vm), ϕF0 , . . . , ϕ
F
n �PI ψ

F in ACA0; and this induction

on length of proofs is evidently PA1-formalizable.

For the base case let the proof be of length 1. Then the conclusion is either a hypothesis (this

case is trivial) or it is a logical axiom. As the translation commutes over the connectives the

only case we have to consider is the logical axioms associated with the quantifiers (Troelstra

and Schwichtenberg 2000, p. 51). Consider the logical axiom ∀xψ(x)→ ψ(t). It follows that

t must be 0 or a variable y (since we are using the relational presentation of PA1 the only

constant in the language is 0 and there are no function symbols). So it is sufficent to show

N(y) �PI (�∀x ∈ Nψ(x)F) → ψ(y)F and �PI (�∀x ∈ Nψ(x)F) → ψ(0)F . The first follows

easily given the elimination of the necessity operator and the universal quantifier and also

that N(y). For the second note that �∀x ∈ Nψ(x)F and ¬ψ(0)F are contradictory as, even

though 0 may not exist in some worlds, ¬ψ(0)F is stable and so were it true it would hold

at all future worlds which cannot be the case.

Next consider the logical axiom ∀x(ψ → χ(x))→ (ψ → ∀yχ(y)) where x does not occur free

in ψ and either y = x or y not free in χ. Let s be an arbitrary world such that �∀x ∈ N(ψF →

χ(x)F) and ψF holds at s. Take a world w accessible from s then ∀x ∈ N(ψF → χ(x)F)
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holds at w and ψF holds at w by the stability of inductive formulas. Let a ∈ I(N, w), then

ψF → χ(a)F at w and so χ(a)F . From this it follows that ∀y ∈ Nχ(y) at w. As w was

arbitrary, �∀y ∈ Nχ(y) at s. From this it follows that �PI �∀x ∈ N(ψF → χ(x)F)→ (ψF →

�∀y ∈ Nχ(y)).

For the inductive step, we only need to consider the rules of modus ponens and universal

instantiation, since we are working in a Hilbert-style deductive system. The modus ponens

case is trivial and so we focus on universal instantiation.

Assume we have ϕ1, . . . , ϕn ` ψ(x) where x does not occur free in ϕi. We must show

N(v0), . . . , N(vm), ϕF0 , . . . , ϕ
F
n �PI �∀x ∈ N ψ(x)F where v0, . . . , vm are all the free variables in

the formulas. By the induction hypothesis we have that N(x),N(v0), . . . , N(vm), ϕF0 , . . . , ϕ
F
n

�PI ψ
F(x). Using conditional and universal introduction we get N(v0), . . . , N(vm), ϕF0 , . . . , ϕ

F
n �PI

∀x ∈ NψF . By the definition of �PI this means that anyM, w such thatM, w � N(v0), . . . ,N(vm),

ϕF0 , . . . , ϕ
F
n also satisfyM, w � ∀x ∈ N ψF .

Let s be such a world, then M, s � N(v0), . . . ,N(vm), ϕF0 , . . . , ϕ
F
n . As ϕF0 , . . . , ϕFn are all

inductive formulas, �PI ϕ
F
i → �ϕFi and, by Lemma 1.5, �PI Nx → �Nx. It follows that

M, s � �N(v0), . . . ,�N(vm), �ϕF0 , . . . ,�ϕ
F
n . So, let s′ be such that R(s, s′). It follows that

M, s′ � N(v0), . . . ,N(vm), ϕF0 , . . . , ϕ
F
n . But for any such world we also have M, s′ � ∀x ∈

N ψF . And as s′ was arbitrary it follows thatM, s � �∀x ∈ N ψF .

Recall we defined σi recursively for all i as σ0(x) ≡ (x = 0) and σn+1(x) ≡ ♦∃y ∈ N(σn(y)∧

Syx).

Lemma 1.33. (i) �PI σn(an), (ii) �PI ♦∃! xσn(x).

Proof. (i) We proceed by induction on n. Clearly �PI a0 = 0. Assume �PI σn(an). We want

to show �PI ♦∃y ∈ N(σn(y) ∧ Syan+1). Let s be a world and let w be accessible from s and

67



have a0, . . . , an ∈ I(N, w). We know that σn(an) holds at w. We also know that Sanan+1

holds at w. It follows that ∃y ∈ N(σn(y) ∧ Syan+1) holds at w.

(ii) It follows from (i) that �PI ♦∃x σn(x). We show �PI σn(x)→ x = an. Clearly this holds

for n = 0. Assume σn(x) at some w for n > 0. It follows that there is a world s accessible

from w where San−1x holds. So there is a world s′ accessible from s, a set X ⊆ D(s′) of

cardinality n− 1 and a u ∈ D(s) not in X such that x = #X ∪ {u} = an.

Lemma 1.34. For every k ≥ 0 and every unnested formula θ(x1, . . . , xk) in the signature

of PA1 and every k-tuple of natural numbers n1, . . . , nk one has that :

N |= θ(n1, . . . , nk) =⇒ �PI ∀x1, . . . , xk ∈ N(
k∧

i=1

σni
(xi)→ θF(x1, . . . , xk)) (1.29)

In the case of k = 0, this is to say: for every unnested sentence θ in the signature of PA1

one has that

N |= θ =⇒ �PI θ
F (1.30)

Proof. The argument for (1.19) is by induction on the quantifier complexity of formula. In

what follows, the argument is given for k > 0, but the argument for k = 0 (namely the case

of (1.20)) is just a special case of this argument where fewer variables need be introduced.

Let N |= θ(n1, . . . , nk), where θ(x1, . . . , xk) is quantifier free. It follows that PA1 ` (
∧k

i=1 τi(xi)→

θ(x1, . . . , xk)) because Q is correct for quantifier-free sentences (Hájek and Pudlák 1998, The-

orem I.1.8 p. 30). And as (·)F interprets PA1 it follows that

N(x1), . . . ,N(xk) �PI

k∧
i=1

σni
(xi)→ θF(x1, . . . , xk)

and so �PI ∀x1, . . . , xk ∈ N(
∧k

i=1 σni
(xi)→ θF(x1, . . . , xk)).
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Now, assume we have the result for θ(x1, . . . , xk, y1, . . . , yl) and we want to show it for

∀y1, . . . , yl θ(x1, . . . , xk, y1, . . . , yl). We know that if N |= θ(n1, . . . , nk,m1, . . . ,ml) then

�PI ∀x1, . . . , xk, y1, . . . , yl ∈ N(
k∧

i=1

σni
(xi) ∧

l∧
j=1

σmj
(yj)→ θF(x1, . . . , xk, y1, . . . , yl)).

Assume for a contradiction that N |= ∀y1, . . . , yl θ(n1, . . . , nk, y1, . . . , yl) but

2PI ∀x1, . . . , xk ∈ N(
k∧

i=1

σni
(xi)→ �∀y1, . . . , yl ∈ N θF(x1, . . . , xk, y1, . . . , yl)).

Then there is a world s containing a1, . . . , ak ∈ I(N, s) where
∧k

i=1 σni
(ai) holds and a world

w accessible from s where there are b1, . . . , bl ∈ I(N, w) such that θF(a1, . . . , ak, b1, . . . , bl) is

not true at w. But as b1, . . . , bl ∈ I(N, w) it follows that each bu = amu by Lemma 1.4.

Then we have that σmu(bu) at w. Further, by reductio hypothesis we have that N |=

θ(n1, . . . , nk,m1, . . . ,ml). From which it follows, by induction hypothesis, that at w we have

that
∧k

i=1 σni
(ai) ∧

∧l
j=1 σmj

(bj)→ θF(a1, . . . , ak, b1, . . . , bl) implies θF(a1, . . . , ak, b1, . . . , bl).

This contradicts our earlier claim.

Finally, assume we have the result for θ(x1, . . . , xk, y1, . . . , yl) and we want to show it

for ∃y1, . . . , yl θ(x1, . . . , xk, y1, . . . , yl). Now, suppose that N |= ∃y1, . . . , yl θ(n1, . . . , nk,

y1, . . . , yl). Choose an l-tuple of natural numbers m1, . . . ,ml such that N |= θ(n1, . . . , nk,

m1, . . . ,ml). The induction hypothesis implies that

�PI ∀x1, . . . , xk, y1, . . . , yl ∈ N(
k∧

i=1

σni
(xi) ∧

l∧
j=1

σmj
(yj)→ θF(x1, . . . , xk, y1, . . . , yl)).

Let s be a world and a1, . . . , ak ∈ I(N, s) be such that
∧k

i=1 σni
(ai). Let w be a world acces-

sible from s such that there are b1, . . . , bl ∈ I(N, w) and
∧l

i=1 σmi
(bi), using again Lemma 1.4

and the definition of the σs. It follows by the induction hypothesis that θF(a1, . . . , ak, b1, . . . , bl)
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at w and so ♦∃y1, . . . , yl ∈ N θF(a1, . . . , ak, y1, . . . , yl) at s. Arrow and universal introduction

will get our result.
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Chapter 2

The Philosophy Behind Proof-Theoretic

Validity

There have been several recent results bringing into focus the super-intuitionistic nature of

most notions of proof-theoretic validity. But there has been very little work evaluating the

consequences of these results. In this chapter, we explore the question of whether these results

undermine the claim that proof-theoretic validity shows us which inferences follow from the

meaning of the connectives when defined by their introduction rules. It is argued that the

super-intuitionistic inferences are valid due to the correspondence between the treatment of

the atomic formulas and more complex formulas.

2.1 Introduction

Proof-theoretic validity was first proposed by Prawitz as an explication of Gentzen’s fa-

mous observation that the elimination rules of intuitionistic logic appear to follow from the

introduction rules.

71



The introductions represent, as it were, the ‘definitions’ of the symbols concerned,

and the eliminations are no more, in the final analysis, than the consequences of

these definitions. This fact may be expressed as follows: In eliminating a symbol,

we may use the formula with whose terminal symbol we are dealing only ‘in the

sense afforded it by the introduction of that symbol’. (Gentzen 1935, p. 80)

Here we see Gentzen state clearly that the introduction rules for logical connectives should

be treated as definitions, while the (intuitionistic) elimination rules should be treated as

consequences of the introduction rules. Consequence here cannot mean logical consequence

in the traditional model-theoretic sense. And Gentzen reiterates what he means in the

second sentence, where he tells us that the elimination rules only allow us to conclude what

the introduction rules demonstrated was a part of the meaning of the connective.

An illustration can help precisify intuitions. The rules for implication introduction and

elimination are listed below:

[A]
...
B

A→ B

A→ B A

B

When we examine the introduction rule for implication, we see that we can introduce an

implication when we have a proof that takes A as an assumption and transforms it into B.

Gentzen’s proposal is that we can think of this as a method for going from a proof of A to

a proof of B. When we turn to the elimination rule we see that it allows us to infer from

A implying B and A holding that B holds. Because of this we can think of the elimination

rule as following from the meaning of implication; ‘A implies B’ encodes a procedure from

A to B and we have A and so via the procedure, it should follow that B.
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We can connect this with the idea of a detour and normalization. A detour in a proof is

when a connective is introduced and then eliminated. For → we can remove a detour as

follows:

[A]
...
B

A→ B

...
A

B

⇒

...
A
...
B

A proof normalises when all detours can be eliminated. We can prove normalisation (that all

proofs normalise) in intuitionistic logic.1 Prawitz took normalisation to capture the intuition

presented by Gentzen that the elimination rules are only extracting information given by the

introduction rules and he used this in developing proof-theoretic validity.

We will present the formal definition of proof-theoretic validity in Section 2.3. For now,

however it is sufficient to take an inference to be proof-theoretically valid if it is one of the

introduction rules for intuitionistic logic or, roughly, if given proofs of any assumptions, it

is unnecessary for proving the conclusion. The second condition means that a proof can be

found without that inference. An inference’s unnecessariness or eliminability is supposed to

demonstrate that it follows from the introduction rules because under the right circumstances

any uses of it can be removed in favour of introduction rules.

It is relatively easy to show that intuitionistic logic is proof-theoretically valid. Prawitz

(1973, p. 246) conjectured that the reverse was also the case; that only intuitionistic logic

was proof-theoretically valid. This conjecture remained open for almost 30 years before

negative results started to appear. Piecha and Schroeder-Heister (2019) show that Prawitz’s

conjecture is false for all the prominent definitions of proof-theoretic validity. Particularly

1This is a central and standard result in proof theory. See Chapter 6 of Troelstra and Schwichtenberg
2000 and Chapter 8 of Negri and von Plato 2008
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central to this result is the intuitionistically invalid Harrop’s rule:

¬A→ (B ∨ C)

(¬A→ B) ∨ (¬A→ C)

which when added to intuitionistic logic results in Kreisel-Putnam logic. It turns out that

this rule is often proof-theoretically valid.2

It is worth highlighting that this result comes as somewhat of a surprise. The truth of

Prawitz’s conjecture has been stated as seeming obvious by Prawitz:

It seems obvious that the elimination rules of Gentzen’s system are the elimi-

nation rules that correspond to his introduction rules. Or, again to put it more

carefully: although there are of course weaker elimination rules and even elimina-

tion rules that are deductively equivalent with the ones formulated by Gentzen,

there are no stronger rules that can be formulated in the language of predicate

logic and are justifiable in terms of the introduction rules.(Prawitz 2014, p. 270)

and exceedingly plausible by Dummett:

It is exceedingly plausible that, on a verificationist meaning-theory, the correct

logic will be intuitionistic; and we have noted that the standard introduction rules

for ‘and’, ‘or’, ‘if’, and the two quantifiers will validate every intuitionistically

valid rule involving these constants, where, by the nature of the case, we need to

appeal only to those introduction rules governing the logical constants involved

in the general formulation of the rule in question. (Dummett 1991b, p. 270)

That Harrop’s rule is proof-theoretically valid is not just unexpected, it threatens to un-

dermine the whole project of proof-theoretic validity. Proof-theoretic validity is supposed
2By ‘often’ here I mean it holds in several prominent presentations of proof-theoretic validity (Piecha,

Campos Sanz, and Schroeder-Heister 2015; Piecha and Schroeder-Heister 2019)
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to return as valid those inference rules that add nothing on top of the introduction rule

but merely follow from them. But Harrop’s rule is a poor candidate for following from the

introduction rules. In the next section, we will show this by demonstrating that Harrop’s

rule is not harmonious under several prominent definitions of harmony. It will do no harm

for now to think of the introduction and elimination rules for a connective being harmonious

if the introduction of the connective followed by its elimination does not allow anything new

to be proven. The outcome that Harrop’s rule is not harmonious arguably suggests that the

proof-theoretically valid inferences are not consequences of the intuitionistic introduction

rules.

I think this is a serious concern for advocates of proof-theoretic validity. But I believe a

defence can be mustered by carefully examining the causes of the non-intuitionistic inferences.

In the later sections of this chapter, I argue that the super-intuitionistic inferences present

in one of the most prominent notions of proof-theoretic validity stem from the treatment of

the atomic formulas and not the treatment of the connectives.3 That the source of these

unwanted inferences is the atomic formulas gives a line of argument in defence of proof-

theoretic validity. After all it is not unsurprising that atomic formulas bring with them

invalid inferences but what proof-theoretic validity is concerned with is the behaviour of the

logical connectives.

The chapter is structured as follows. In the next section I will argue that Harrop’s rule is

not harmonious as an elimination rule for →. This sets up the main complaint the chapter

is directed at answering. With this in place Section 2.3 then sets out the formal definition of

proof-theoretic validity that is relevant for our purposes. In section 2.4, we explore in detail

a surprising complication in the definition of proof-theoretic semantics caused by the atomic

formulas. We discuss there how the inference rules used to define the atomic formulas are

equivalent to disjunction-free formulas. We then take a slight detour in sections 2.5 to look at

3As a note we will uses super-intuitionistic for logics strictly stronger than intuitionsitic logic.
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A B

A ∧B
A ∧B
A

A ∧B
B

A ◦B
A�B

Figure 2.1: The introduction rule for ∧, the two elimination rules for ∧, and a fictional
example of a rule that is both an introduction and an elimination rule.

the initial response to proof-theoretic validity being super-intuitionistic, which was to restrict

questions to the fragment closed under substitution and argue briefly that this tactic was

ill-advised. Then finally in Section 2.6, I outline my argument that the super-intuitionistic

inferences follow from the treatment of the atomic formulas.

2.2 Harrop’s Rule is not Harmonious

In this section, I will argue that Harrop’s Rule does not satisfy two prominent definitions of

harmony. Recall that Harrop’s rule is:

¬A→ (B ∨ C)

(¬A→ B) ∨ (¬A→ C)

If a schematic inference’s conclusion has a main connective then it is an introduction rule

for that connective. If a schematic inference has a main connective in a premise then it

is a elimination rule for that connective. This definition may be broader than is needed

but the intention is to not exclude any examples. By this definition, a rule can be both an

introduction and an elimination rule. See Figure 2.1 for examples.

By the above definitions, Harrop’s Rule is either an introduction rule for ∨ or an elimination

rule for→. However, we will only discuss the case where it is an elimination rule for→. The

reason for this is simple: Harrop’s rule is valid according to proof-theoretic validity which,

given a set of introduction rules, labels as valid those rules that follow from the introduction

rules. As such, the returned rules should be considered as elimination rules.
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The term ‘harmony’ was introduced by Dummett in The Logical Basis of Metaphysics. Har-

mony is a restriction on which proof rules can define a connective and was intended to rule

out phenomena like TONK, an example presented by Prior (1960). The connective ‘TONK’

is a counterexample to the claim that any set of inference rules can define a connective as it

is inconsistent in any system with at least one theorem. TONK has the introduction rules

for ‘or’ and the elimination rules for ‘and’.

A

A TONK B

B

A TONK B

A TONK B

A

A TONK B

B

The contradiction can be proven as follows:

A

A TONK ¬A
¬A

Dummett gives two definitions of harmony. The first defines a connective as harmonious just

in case it is conservative over the base theory, an idea first found in Belnap (1962):

The concept [conservativity] thus adapted offers at least a provisional method

of saying more precisely what we understand by ‘harmony’: namely that there

is harmony between the two aspects of the use of any given expression if the

language as a whole is, in this adapted sense, a conservative extension of what re-

mains of the language when that expression is subtracted from it.(Dummett 1991b, p. 219)

This definition make harmony relative to a logic or theory. The introduction and elimination

rules for a connective are harmonious relative to a system S, on this definition, if there is no

sentence of S not containing the connective defined that is provable with the new connective

but not without it. Clearly, TONK does not satisfy this definition as in our earlier example

¬A was a counterexample to this form of harmony. Following Steinberger (2011), let us call

this total harmony.
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The question of whether total harmony is undermined in Kreisel-Putnam logic comes down

to the question of whether intuitionistic logic with Harrop’s rule is conservative over the

{∨,∧,⊥} fragment of intuitionistic logic. As far as I know this question is open.4 However,

this definition of harmony is not the one that has received the most attention in the literature

and Harrop’s rule can be shown to not be harmonious on two more prominent definitions.

Dummett give a second definition but this time in terms of the removability of immediate

detours (proofs where one introduces then immediately eliminates a connective):

The analogue, within the restricted domain of logic, for an arbitrary logical con-

stant c, is that it should not be possible, by first applying one of the introduction

rules for c, and then immediately drawing a consequence from the conclusion of

that introduction rule by means of an elimination rule of which it is the major

premiss, to derive from the premisses of the introduction rule a consequence that

we could not otherwise have drawn. (Dummett 1991b, pp. 247–8)

An example of such a detour removal was given in the introduction for →. Following Stein-

berger (2011), we will call this intrinsic harmony.

Harrop’s rule is not intrinsically harmonious because we cannot eliminate detours when

Harrop’s rule is treated as an → elimination rule. The following is what a proof that

introduces → then uses Harrop’s rule as → elimination looks like:

[¬A]
...

B ∨ C
¬A→ (B ∨ C)

(¬A→ B) ∨ (¬A→ C)

4A proof-theoretic validity notion can be provided for the super-intuitionistic inquisitive logic which
extends intuitionistic logic with Harrop’s rule and double negation elimination for atomic formulas. In
inquisitive logic, Harrop’s rule is totally harmonious as an introduction rule for ∨ against the background
system of the {→,∧,⊥} fragment of intuitionistic logic. This is shown by Ciardelli and Roelofsen (2011)
who shows that every disjunction-free formula of inquisitive logic is provable in intuitionistic logic.
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It is possible that in the elided part of the above proof between ¬A and B ∨ C we reach

B ∨C via something other than ∨ introduction, in which case it cannot be transformed into

a proof of the conclusion not including the ‘detour’. For a rather trivial example of this take

the following proof of the intuitionistically unprovable D → (B ∨ C),¬A → D ` (¬A →

B) ∨ (¬A→ C).

D → B ∨ C
¬A ¬A→ D

D

B ∨ C
¬A→ (B ∨ C)

(¬A→ B) ∨ (¬A→ C)

There is no way to transform this into a proof which removes the ‘detour’. This is because

any transformation would have to be to a proof in intuitionistic logic (the only other rule is

Harrop’s and it isn’t applicable anywhere else in the proof but the ‘detour’, though proving

this would be an endeavour). And as the conclusion is not provable from the premises in

intuitionistic logic we know no such transformation exists.

What we can do is eliminate ‘double detours’.

[¬A]
...
C

B ∨ C
¬A→ (B ∨ C)

(¬A→ B) ∨ (¬A→ C)

⇒

[¬A]
...
C

¬A→ C

(¬A→ B) ∨ (¬A→ C)

But no one has suggested this as a hallmark of harmonious rules. And as the above example

shows there are proofs where a double detour cannot be constructed.

We will add one more definition of harmony that appears in the literature. This is called

general elimination harmony. Given an introduction rule with premises P1, . . . , Pn and con-

clusion C, the corresponding general elimination rule has n+ 1 premises consisting of C and
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proofs from assumptions P1, . . . , Pn to some formula G and conclusion G (Read 2010).

Introduction:
P1 . . . Pn

C
Elimination:

C

[P1 . . . Pn]
...
G

G

There is an appropriate modification for rules with assumptions. These elimination rules

are modelled after the elimination rules for ‘or’ and ‘exists’. The guiding idea behind this

notion of harmony is that the elimination rules only allow you to derive conclusions that

the premises of the introduction rules already derive. General elimination harmony has the

nice feature of producing an elimination rule for any introduction rule we could give it. And

all the elimination rules for intuitionistic logic are equivalent to those generated by general

elimination harmony.

Now let us consider whether Harrop’s rule is harmonious given general elimination harmony.

For this to be the case it would mean that Harrop’s rule would need to be equivalent to

the general elimination rule for →. That rule is:
A→ B

[
A

B

]
...
C

C

where
[
A

B

]
means you can

use the inference from A to B ‘for free’ in the proof of C. This rule is provably equivalent

to the normal → elimination rule. But it follows from that that as an elimination rule for

→, Harrop’s rule is not general elimination harmonious with the introduction rule. This is

clear because Harrop’s rule is admissible but not derivable in intuitionistic logic but if it was

equivalent to this rule it would be due to the equivalence with the usual elimination rule for

→.5

5What about as an additional introduction rule for ∨? This gives us the general elimination rule:

(¬A→ B) ∨ (¬A→ C)

¬A→ (B ∨ C)
...
D

D

This rule is in fact derivable in intuitionistic logic because it can be proven that ¬A→ (B ∨C) follows from
(¬A→ B) ∨ (¬A→ C).
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To conclude this section, I have argued that Harrop’s rule isn’t harmonious as an elimi-

nation rule for → under two prominent definitions of harmony: namely intrinsic harmony

and general elimination harmony.6 This is relevant because recent results have shown that

Harrop’s rule is proof-theoretically valid under several reasonable constraints. As such it

appears proof-theoretic validity and harmony come apart.

Proof-theoretic validity was supposed to provide us with a method of elucidating Gentzen’s

claim that the elimination rules for intuitionistic logic were consequences of the introduction

rules. The validity of super-intuitionistic rules demonstrates that this goal has not been

achieved. Still, one might wonder if it wasn’t Gentzen who was wrong in thinking that only

the intuitionistic elimination rules followed from the introduction rules. The plausibility

of such a claim is undermined by the failure of the resulting system to be harmonious.

Harmony in its various forms is supposed to show that the elimination rules do not contain

more information than the introduction rules. By failing to be harmonious, it is clear that

Harrop’s rule does not follow from the introduction rules in the sense intended. This raises a

real and pressing concern for those who use or advocate for proof-theoretic validity. How can

the notion be defended as a useful tool in proof-theoretic semantics if it labels as valid some

rules which do not follow from the introduction rules? In fact, the elimination rules appear

to be stronger than the introduction rules. We will try and answer this challenge in the

next section by highlighting how the super-intuitionistic validities follow from the treatment

of atomic formulas. Before that however we will introduce the definition of proof-theoretic

validity.

6Whether it is totally harmonious isn’t yet known.
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2.3 Proof-Theoretic Validity Defined

As we discussed in the introduction, proof-theoretic validity is an attempt to formally ex-

plicate what Gentzen meant when he claimed that the elimination rules are consequences of

the introduction rules. Proof-theoretic validity takes normalisation and the reductions which

remove intuitionistic elimination rules as central. The goal is to give a definition of when a

proof is valid based on it being reducible, in some sense, to the introduction rules.

While proof-theoretic validity is supposed to be a general notion, we will here restrict atten-

tion to the connectives ‘and’, ‘or’, and ‘if. . . then’ with negation treated as A→ ⊥. Notably

missing from this list are the quantifiers ‘all’ and ‘some’. This restriction is made because

proof-theoretic validity is going to be implausible in general if it cannot be made to work

in this specific case. In particular there is no point moving on to look at the complications

brought by quantifiers if the connectives alone cannot be handled. However, we should have

a healthy suspicion towards any results generalising easily to other setting.

To give this definition we will need to introduce the term argument for a potential proof,

which is something that has the correct shape of a proof: it has a single conclusion, and

these follow from premises in a step-by-step way.7 Proof-theoretic validity is then a property

of arguments, and those arguments which satisfy the condition of being proof-theoretically

valid will be called proofs. Prawitz’s definition has four conditions depending on the state of

the argument. The full definition will be provided at the end of this section (Definition 2.1).

To understand the cases, we need to define what it means to say an argument is open or

closed. An argument is closed if every top line of the argument is either an axiom or is an

assumption that has been discharged. Arguments are open if they have an undischarged

assumption.

7Formally an argument is a tree labelled by formulas and a discharge relation.
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The simplest case in which an argument is valid is simply when it consists entirely of in-

troduction rules. The introduction rules are supposed to be the definition of their main

connectives and a proof is supposed to be valid when it follows from the introduction rules.

So, there can be no problems with the use of an introduction rule. When an introduction

rule is used in an argument containing other rules then the application of the introduction

rule will be valid, and the validity of the whole argument will depend on the validity of the

rest of the argument. We can capture this idea in the following condition:

Closed introduction case. If D is a closed argument ending in an introduction rule, then

it is valid iff the arguments for the premises of the introduction rule are valid.

Note that we restrict the condition to closed arguments. This is because it is easier to have

one condition for all open arguments, which we will return to shortly.

With this simple case out of the way we have three remaining situations to deal with. These

are: closed arguments that end in rules other than the introduction rules, arguments that

end in atomic formulas, and arguments that are open. We will first look at the treatment of

closed proofs which do not end in introduction rules.

When a closed argument ends in a rule that isn’t an introduction rule we want it to be

valid when it can be shown to, in some sense, follow from the introduction rules. Prawitz’s

insight was that if a proof only contains intuitionistic introductions or elimination rules then

any closed proof ending in an elimination rule can be transformed via normalisation into a

closed proof which ends in an introduction rule. And in this way, one can slowly remove the

elimination rules. This gives an initial condition for closed non-introduction proofs:

Preliminary closed non-introduction case. If D is a closed argument which does not

end in an introduction rule, then it is valid iff it can be transformed by the reductions used in

the proof of normalisation into a valid argument with the same conclusion which does end

in an introduction rule.
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Prawitz defends this definition by claiming that a proof with a detour and the proof that

results from the elimination of the detour are syntactically distinct but semantically the same

proof (Prawitz 1971, p. 257; Prawitz 1973, p. 234). The thought is that if two arguments are

the same proof and one of them is valid (because of the use of introduction rules) then the

other one must also be valid. He backs up this assertion by appealing to the Curry-Howard

isomorphism and the use of identity between the algorithms on either side of beta-reduction.

This method and justification, however, only work when one is considering proofs in intuition-

istic logic, not arbitrary arguments. And we must consider arbitrary arguments otherwise

we beg the question in favour of intuitionistic logic. To resolve this problem, we need to

generalise the concept of normalisation to arbitrary arguments. Prawitz does this by arguing

that there must be a computable transformation on an argument to a valid argument with

the same conclusion which ends in an introduction rule (Prawitz 1973). Schroeder-Heister

(2006, pp. 552–3) does away with the requirement that the transformation is computable.

However, in both cases, no reason is given to think that the transformed argument is seman-

tically the same argument as the original. This gives us the following condition. It does not

deal with transformations on proofs, but it can be shown that the definition is equivalent

to one that does, given a sufficiently broad understanding of transformations. Not including

reference to transformations is therefore a technical convenience. Thus, what we end up with

is the following condition:

Closed non-introduction case. If D is a closed argument which does not end in an

introduction rule, then it is valid iff there is a valid argument with the same conclusion

which does end in an introduction rule.

With these two conditions on closed proofs in place we can move on to arguments with open

assumptions.
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How arguments with open assumptions are treated demonstrates a key commitment embed-

ded in the idea that a connective can be defined by a proof rule. When a sentence with a

logic connective is asserted it is taken to be a claim that there is a proof of the sentence.

An assumption is then an assertion with the assertoric force cancelled. The reasoning that

follows from an assumption is hypothetical on the statement being asserted. As such the

reasoning that follows is valid if it would be valid were there a valid proof of the assumptions.

It is this fundamental idea that motivates the treatment of open assumptions; to repeat for

an argument with open assumptions to be valid the reasoning has to be valid if we had proofs

of the assumptions. It will not do to check one proof, any closed valid proofs substituted

for assumptions must result in a valid argument. This gives us the following, preliminary,

condition:

Preliminary open case. If D is an open argument of A with open assumptions A0, . . . , An

it is valid iff for all closed valid arguments D0, . . . ,Dn of A0, . . . , An, the following argument

is valid:

D0

A0

. . .

. . .
Dn

An

D
A

However, our treatment of proofs with open assumptions is currently incomplete. The reason

for this is that as it stands, we have not explained how to deal with a proof such as the

following:

Example 2.1.
p→ q p

q

This is because there are no closed valid proofs of the atomic formula p as things have been

set up so far.8 None of the intuitionistic introduction rules ends in an atomic formula and so

no proof of p ends in one of the intuitionistic introduction rules. Note that p as an arbitrary

propositional variable here stands for any atomic sentence. In model-theoretic semantics,
8We will use lowercase letters for atomic formulas and uppercase letters for arbitrary formulas. It is

important in this setting to distinguish the two.

85



arbitrary propositions are dealt with by considering the different meanings they could have,

which are spelt out in terms of truth values. Here we are taking terms to be defined by their

proof rules and so, rather in parallel with model-theoretic semantics, we are going to consider

different assignments of proof rules to the atomic sentences. So, we relativize validity to a set

S of rules for the atomic formulas. This can be understood as something like a theory which

constrains the use and hence interpretation of the propositional letters. Then we require

what is valid to be relativized to a particular meaning for the atomic sentences.

Before we revise our definition for open arguments, we can now give the condition for atomic

formulas:

Atomic case. If D is a closed argument ending in an atomic formula then it is S-valid iff

it contains only rules in S.

So when we have an atomic formula, we can restrict our attention to arguments that do not

contain the logical connectives. This gives us the base case for proofs by induction on the

definition of proof-theoretic validity and we will say a lot more about what counts as an

atomic rule in the next section.

We took this detour initially because we didn’t know what to do when we had an open

assumption of an atomic formula. We see now that we will need to substitute it for a valid

proof of the formula, and we know what such a valid proof looks like by the above condition.

As it is relative to a set of atomic rules, we will need to make all our other conditions relative

to a set of atomic rules by replacing validity with S-validity in the definitions. But for open

assumptions we are going to make one other change.

Imagine we are dealing with Example 2.1 still and are considering S-validity where S is a

set of atomic rules from which p is not provable. In this case our preliminary open case is

trivially satisfied because there are no valid arguments for p. But this isn’t what we want

to happen, our reasoning is hypothetical on there being a proof for p and we can certainly
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imagine ways to prove p.9 To get around this we will consider not just our initial set of

atomic rules S but also any extensions of it. This way there should be at valid arguments

for any atomic formula. This gives us the condition for proofs with open assumptions:

Open case. If D is an open argument of A with open assumptions A0, . . . , An it is S-valid iff

for all S ′ which are acceptable extensions of S and all closed S ′-valid arguments D0, . . . ,Dn

of A0, . . . , An, the following argument is S ′-valid:

D0

A0

. . .

. . .
Dn

An

D
A

We will now bring all the conditions together.

Definition 2.1. (Prawitz 1973, p. 236; Schroeder-Heister 2006, pp. 543–4) An argument

D is an S-valid derivation for a set of rules S describing the behaviour of the atomic formulas

if one of the following conditions holds:

Atomic case If D is a closed argument ending in an atomic formula then it is S-valid iff

it contains only rules in S.

Closed introduction case If D is a closed argument ending in an introduction rule then

it is S-valid iff the arguments for the premises of the introduction rule are S-valid.

Closed non-introductory case If D is a closed argument which does not end in an intro-

duction rule then it is S-valid iff there is a S-valid argument with the same conclusion which

does end in an introduction rule.

Open case If D is an open argument of A with open assumptions A0, . . . , An it is S-valid iff

for all S ′ which are acceptable extensions of S and all closed S ′-valid arguments D0, . . . ,Dn

of A0, . . . , An, the following argument is S ′-valid:
9There is a variant of this notion where things are still relative to a set of atomic rules S but no extensions

are considered. This is now Prawitz’s preferred notion (Prawitz 2014). Both this and the displayed definition
are super-intuitionistic.
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D0

A0

. . .

. . .
Dn

An

D
A

A rule of inference is then proof-theoretically valid if it is valid on all acceptable sets of atomic

rules.

This presentation of the definition of proof-theoretic validity has highlighted the important

role that the treatment of atomic inferences plays in the account. As we have seen, how it

handles inferences between atomics is just as crucial to it as Tarski’s treatment of atomics

is to the traditional model-theoretic account of logical consequence. By contrast, in some

popular discussions of proof-theoretic validity, the project is portrayed as being excessively

focused on analytic inferences:

Similar distortions can be observed in the study of logical constants. Both in proof

theory and in less formal investigations of the epistemology of logic, the focus

has been too much on ‘analytic’ rules of inference, even when those get restricted

to a weak fragment of the logic we actually and successfully use. To achieve

a more faithful understanding of the cognitive aspects of our ordinary practice

of using the logical constants, we need to stop concentrating on ‘analytic’ rules.

(Williamson 2020, p. 120)

To be sure, proof-theoretic validity is aiming at something like a notion of analyticity, insofar

as this gives one a notion of ‘following from’ distinct from the traditional model-theoretic

notion of entailment. However, it is precisely by concentrating on non-analytic inferences

between atomics that we are able to forge this definition. And, as we will see in the next

section, it is the treatment of atomics which leads proof-theoretic validity into the super-

intuitionistic.
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2.4 Atomic Rules and Proof-Theoretic Systems

In the previous section I laid out the definition of proof-theoretic validity (or at least a

variant of it), however, I did not say much about what the set of atomic rules used in the

definition was to be like. The result of a growing body of formal work is that we must pay

careful attention to the role of the atomic formulas in proof-theoretic validity.

To discuss this in detail we need to first discuss what an atomic rule is. The easiest rules to

understand are those that look like axioms. That is atomic rules we can prove in one step.

They can be written down as follows: p. However, we can also have rules which look like

the proof rules for the connectives but containing only atomic rules. The following example

contrasts an atomic rule with ∧ introduction.

Example 2.2.
A B

A ∧B
p q

r

Similarly, but slightly more complicatedly we could have a rule which discharges assumptions

like → introduction or ∨ elimination.

Example 2.3.

a.

[A]
...
B

A→ B

[p]
...
q

r

b.
A ∨B

[A]
...
C

[B]
...
C

C

p

[q]
...
s

[r]
...
s

s

So, we might take the sets of atomic rules that we consider in the definition of proof-theoretic

validity to be any collection of rules of the three types (atomic, premise-to-conclusion, and

with assumptions) we have just discussed.

However, this would give us a logic so strange it may not deserve that name. To see this, we

need to note that there is a relationship between these odd atomic rules and formulas. First
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note we can treat the inference from the premises to the conclusion as an implication→ and

we can simply conjoin the premises. So
p q

r
can be transformed into (p ∧ q) → r. The

following two proofs show that the formula and the rule are interchangeable in proofs. The

parts that correspond to the rule have been highlighted in bold to make the proofs easier to

read.
[p ∧ q]
p

[p ∧ q]
q

r

(p ∧ q)→ r

p q

p ∧ q (p ∧ q)→ r

r

That is the first proof shows that the formula can be proven using the rule and the second

proof shows that the rule can be replaced by the formula in a proof. It can be proven that

any rule from atomic premises to atomic conclusion is equivalent to a formula in just this

way (Piecha, Campos Sanz, and Schroeder-Heister 2015).

And this can also be done when we discharge assumptions. We just need to treat the

proof from the assumption to its premise as an implication also. So, Example 2.3.a is

interchangeable with (p → q) → r and Example 2.3.b is interchangeable with (p ∧ (q →

s) ∧ (r → s))→ s. Using Example 2.3.b, we can prove this interchangeability as follows:10

[p ∧ (q → s) ∧ (r → s)]

p

[q]

[p ∧ (q → s) ∧ (r → s)]

q → s

s

[r]

[p ∧ (q → s) ∧ (r → s)]

r → s

s

s

(p ∧ (q → s) ∧ (r → s))→ s

p

[q]
...
s

q → s

[r]
...
s

r → s

p ∧ (q → s) ∧ (r → s) (p ∧ (q → s) ∧ (r → s))→ s

s

10Note that I am using a slight generalisation of ∧ introduction and elimination. This is only to make
the proofs more perspicuous and is easily removed at no cost.
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So, if we use these three different types of rule, some formulas, but not all formulas, are

interchangeable with rules. Because of this, if we take a system which includes only atomic

rules of these types, an odd thing will happen. We will have an intuitionistically invalid rule

called the generalised Harrop’s rule but only for a limited collection of formulas:

A→ (B ∨ C)

(A→ B) ∨ (A→ C)
(Generalised Harrop)

In particular, we can only substitute disjunction-free formulas for A. And the proof of this

result appeals directly to this interchangeability (see Piecha, Campos Sanz, and Schroeder-

Heister 2015).

Let’s look at why Generalised Harrop’s is valid via an example. We will make use of the

equivalence with formulas. Take

p→ (q ∨ r)
(p→ q) ∨ (p→ r)

It turns out that asking whether this inference is S-valid is the same thing, by the open case

of Definition 2.1, as asking whether for all S ′, extending S, when p → (q ∨ r) is S ′ valid so

is (p → q) ∨ (p → r). And that in turn, via the equivalence between rules and formulas,

can be answered by answering whether, when q ∨ r is S ′ ∪ {p̄}-valid, (p → q) ∨ (p → r) is

S ′-valid. But if q ∨ r is S ′ ∪{p̄}-valid, then by a combination of the closed introduction case

and the closed non-introduction case, there is a S ′ ∪ {p̄}-valid argument for q ∨ r that ends

in ∨-introduction. And so, there is either a S ′ ∪{p̄}-valid argument for q or for r. Assume q

is S ′ ∪ {p̄}-valid then again, by the equivalence between rules and formulas, it follows that

p→ q is S ′-valid, and so by the closed introduction case, so is (p→ q) ∨ (p→ r).
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It is worth noting at this point that this means we are dealing with a peculiar type of logic.

In particular we are dealing with logics that are not closed under uniform substitution. This

means that we need to withhold a common instinct to read sentences with atomic formulas

like (p ∧ q)→ r as really another way of writing (A ∧ B)→ C. When an atomic letter like

p is used, that atomic letter is really all that is meant. When a schematic letter A is used,

the asserted larger expression, e.g. (A∧B)→ C, is intended to hold regardless of what one

substitutes in for A.

Having generalised Harrop’s rule hold for a rather circumscribed and arbitrary collection

of sentences isn’t ideal. However, this issue can be partially resolved by expanding the

equivalence between formulas and rules. We saw that (p → q) → r corresponds to the rule
[p]
q

r
. What then would correspond to a formula such as ((p→ q)→ r)→ s? Schroeder-Heister

(1984) proposed a generalisation of inference rules that allows us to find a corresponding

rule for this formula. But it requires an expansion of what can be discharged. Note that

in the formula corresponding to the discharge of an assumption, we had implication in two

places: the first standing in for the proof from the assumption to the premise and the second

standing for the inference from premise to conclusion. To add an extra implication, we need

to add another of these. We will do this by assuming not an atomic formula but a rule. This

idea may seem strange but there is no technical impediment. The resulting rule is:


...
p

q
...


r
s

where the square brackets represent the discharge of the assumed rule.

Let’s look quickly at how we would use a rule like this in a proof. I will write rules linearly

with the assumption discharged in square brackets and the inference from premises to con-
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clusion represented by /. So, the above rule would be [p/q]r/s. Now consider how we would

prove r with the two rules [p/q]q/r, and /p. To illustrate the discharge of rules it will help

to write each step A,D where A is atomic and D is the set of atomic rules used so far and

not discharged.

Example 2.4.
p, {/p}

q, {/p,p/q}
r, {/p, [p/q]q/r}

This can be generalised even further. We can discharge rules which discharge assumptions

themselves and in doing so get more equivalences between formulas and rules. As a second

example, take the following proof of t with rule [/p, [p/q]q/r]s/t and rule r/s. Note that the

first three lines are identical to the proof above.

Example 2.5.
p, {/p}

q, {/p, p/q}
r, {/p, [p/q]q/r}

s, {/p,[p/q]q/r, r/s}
t, {[/p,[p/q]q/r]s/t, r/s}

If we allow rules that discharge rules of any level of complexity then every disjunction-free

formula is equivalent to a rule (Piecha, Campos Sanz, and Schroeder-Heister 2015). This

means that we have generalised Harrop’s formula holding for all disjunction-free formulas in

the antecedent. It will be shown later in Chapter 3 that the resulting logic is just intuitionistic

logic with the generalised Harrop’s rule restricted to disjunction-free formulas. This logic

is far more uniform than the logic that results when we only consider atomic rules that

do not discharge rules, but this logic is still not closed under uniform substitution as we

cannot substitute a formula with a disjunction for an atomic formula in the valid instance
p→ (q ∨ r)

(p→ q) ∨ (p→ r)
. We will discuss this issue in Section 2.5. One might ask if we cannot just force
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this property, but this is not possible due to every valid proof of a disjunction requiring a

valid proof of one of the disjuncts.

The particular kind of formulas that we cannot generate rules equivalent to have disjunction

in the consequence of an implication. So, for a simple example take p→ (q ∨ r). We might

try initially to make this equivalent to p/q because we can prove p→ (q ∨ r) given this rule:

[p]

q

q ∨ r
p→ (q ∨ r)

But we cannot go in the other direction. It is not possible given p→ (q ∨ r) to replicate the

behaviour of p/q. This should be clear because p → (q ∨ r) will be true when p and r are

true and q is false. Having now seen the impact of different choices of atomic rules we can

be more careful in our presentation of proof-theoretic validity.

As we discussed above, if we allow atomic rules to discharge other rules we end up with

Harrop’s rule being valid, if we do not we end up with Harrop’s rule for only a restricted

collection of formulas. The moral I want to take from this is that we need to add some-

thing to our definition of proof-theoretic validity. Namely, we need to restrict it to an

acceptable collection of sets of atomic formulas. So, one system might be ‘any set of

atomic rules, which may discharge other rules’, and another might be ‘any set of atomic

rules, which do not discharge anything’. We can write these using set theoretic notation

as {S | S is a set of atomic rules} and {S | S is a set of atomic rules without assumptions}.

Let’s call these the complete system and the minimal system and let’s call any set of sets of

atomic rules a proof-theoretic system. We can have more esoteric systems as well, such as,

{S | S is in the complete system and p̄ /∈ S} or even {∅, {p̄}, {q̄}}. Each of these will give

us a different logic or theory which is proof-theoretically valid.
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2.5 Failure of Uniform Substitution

Before moving on to discuss my solution to the worry in section 2.2, I want to pause briefly to

discuss the initial reaction to results showing that proof-theoretic validity notions were super-

intuitionistic. As has been pointed out, most systems of proof-theoretic validity are not closed

under substitution. And most examples of rules and axioms that were proof-theoretically

valid but super-intuitionistic which were found were not closed under substitution. This led

to the initial suggestion that what was at issue was not any problem with the definition

of proof-theoretic validity but rather that one needed to take the substitution closure of

the validities to find the logic of proof-theoretic validity. The substitution closure is gotten

by removing any inferences that aren’t closed under substitution (such as general Harrop’s

rule).11

That a notion of validity is not closed under substitution is, of course, a highly

significant result in itself, but a result which rather demonstrates that such a

notion is not even a candidate for completeness. Therefore, a thorough discussion

of completeness or incompleteness of intuitionistic logic should at least consider

a concept of validity closed under substitution. (Piecha, Campos Sanz, and

Schroeder-Heister 2015, p. 322)

Now as a matter of fact, this restriction will not help in general as even when closed under

substitution prominent notions of proof-theoretic validity will still be super-intuitionistic

(as we will see in Chapter 3). But there is a notion of proof-theoretic validity offered by

Goldfarb (2016) which, while super-intuitionistic, results in intuitionistic logic when closed

under substitution. As such it is worth considering whether failure to be closed under

11The reason rules are removed rather than added to ensure substitution closure is because firstly from a
technically perspective adding rules is more likely to give an inconsistent system and secondly, it is assumed
that a rule not closed under substitution hasn’t been shown to be justified by proof-theoretic validity while
all the rules that are have been.
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substitution really discounts a system as suggested by the above quote and so whether the

restriction to the validities that are closed under substitution is fair.

It is certainly the case that as logics are standardly conceived they are closed under substi-

tution. This is often simply stipulated in the definition of what counts as a logic. But it is

fair to ask what reason one might have for enforcing this requirement. Take the following

quote from Tarski:

Consider any class K of sentences and a sentence X which follows from the

sentences of this class. [. . . ] Moreover, since we are concerned here with the

concept of logical, i.e. formal, consequence, and thus with a relation which is

to be uniquely determined by the form of the sentences between which it folds,

this relation cannot be influenced in any way by empirical knowledge, and in

particular by knowledge of the objects to which the sentence X or the sentences

of the class K refer. The consequence relation cannot be affected by replacing

the designations of the objects referred to in these sentences by the designations

of any other objects. (Tarski 1956, pp. 414–5)

Here we see Tarski presenting what has become the not an uncommon view that the form

of a sentence is what makes something logically valid.12 But the idea that logically valid

inferences are those that are valid in virtue of their form, or without regards to content

is a view embedded in the model-theoretic conception of logical validity. On that picture

logical validity means preserving truth in all models. This is in sharp contrast to what

proof-theoretic validity takes logical validity to be. On this picture, as we have seen, logical

12The view has antecedents in Bolzano’s notion of analyticity. See for instance:

But suppose that there is just a single idea in it which can be arbitrarily varied without
disturbing its truth or falsity, i.e. if all the propositions produced by substituting for this idea
any other idea we pleased are either true altogether or false altogether, presupposing that they
have a denotation. [. . . ] I permit myself, then, to call propositions of this kind, borrowing an
expression from Kant, analytic. (Bolzano 1973, §148 p. 192)
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validity means following from the introduction rules for the logical connectives which act

as definitions. There is no mention of form or disregard of content in this view of logical

validity. And it isn’t clear that the advocate of proof-theoretic validity has any reason to

expect logics to be closed under substitution.

There are other notions of uniform substitution that may be better suited to proof-theoretic

validity. For example, Humberstone offers the following:

[...] closure under uniform substitution of propositional variables (rather than

arbitrary formulas) for propositional variables. (Humberstone 2011, p. 188)

On this picture it is only the non-logical content that needs to be substituted. Let us call this

notion propositional uniform substitution. Most notions of proof-theoretic validity are going

to be closed under propositional uniform substitution. So even if no rules are allowed that

discharge assumptions, it is still the case that every combination of atomic letters as premises

and conclusion are considered in the minimal system and every possible combination of such

rules is an allowed extension. Because of this there will be no difference of behaviour between

atomic formula and we can substitute one atomic letter for another. The same is true on

the complete system and basically every other system that has been seriously considered.

However, it is possible to come up with proof-theoretic systems that lack this property.

I take the following to show that the early attempts to save proof-theoretic validity from

super-intuitionistic validities by restricting to the substitution closed fragment were not just

technically unhelpful but also philosophically ill motivated. From this we would like to

point out that the below suggestion is not equivalent to taking the substitution closure of

proof-theoretic validity.
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2.6 The Role of the Atomic Formulas Explained

In this section I am going to argue that the super-intuitionistic axioms that are valid follow

from the treatment of the atomic formulas not the treatment of the connectives and as such

should not be considered to undermine the argument, partially supported by proof-theoretic

validity, that the intuitionistic elimination rule are privileged.

To start, let’s illustrate how a classical axiom, which is valid on certain proof-theoretic

systems, is not valid on others. We will use the following from an earlier example:

p→ (q ∨ r)
(p→ q) ∨ (p→ r)

as a simple example. We will show that it is not valid on the proof-theoretic system

{∅, {/p, p/q}, {/p, p/r}}. This is in some sense a toy system, but it will do nicely for the

purposes of illustration.

To see that the inference is not ∅-valid on this system it first needs to be shown that:

p

q ∨ r

is ∅-valid. This will follow, by the condition for open cases, if for every extension S of ∅ and

for every proof of p that is S-valid the result of appending the proof of p to p

q ∨ r is S-valid.

Now as it happens in our small system we only have one proof of p.

p

This proof is both {/p, p/q} and {/p, p/r}-valid by the condition for the atomic case. So, it

needs to be shown that
p

q ∨ r
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is both {/p, p/q} and {/p, p/r}-valid. But this follows in the first case because

p

q

q ∨ r

is {/p, p/q}-valid, by the condition for the closed introduction case, and in the second case

because
p

r
q ∨ r

is likewise {/p, p/r}-valid.

It then follows that
[p]

q ∨ r
p→ (q ∨ r)

(p→ q) ∨ (p→ r)

is a counter example to the ∅-validity of the inference. This is because for it to be ∅-valid

there must be, by the condition for the closed non-introduction case, a ∅-valid proof that

ends in the introduction of ∨ and that requires that there is a ∅-valid proof of either p→ q

or p→ r. But neither of these are possible because one of the systems extending ∅ lets you

go from p to q but not to r and vice-versa for the other one.

This example is illustrative of a general factor in the validity of Harrop’s rule. That feature

is that the invalidity of Harrop’s rule is connected to the validity of one step inferences, like
p

q ∨ r in the example.

And similarly, the validity of Harrop’s rule is connected to the invalidity of one step infer-

ences. Let’s keep the example above and see how we can make p

q ∨ r invalid by changing how

we treat the atomic formulas. Let’s take the previous system {∅, {/p, p/q}, {/p, p/r}} and

add {/p} giving the system {∅, {/p}, {/p, p/q}, {/p, p/r}}. To test the ∅-validity of p

q ∨ r in

this system we need to check if every extension of ∅ which has a valid proof of p has a valid
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proof of q ∨ r due to the condition for open arguments. There is only one thing that has

changed from our earlier discussion and that is that p is {/p}-valid. But we cannot give

{/p}-valid proof of q or r by the condition for atomic conclusions. It follows from this that
p

q ∨ r is not ∅-valid on this proof-theoretic system. To see that Harrop’s rule now holds on

this system it is sufficient to note that the inference from p to q ∨ r is only {/p, p/q} and

{/p, p/r}-valid and that on the first of these sets p→ q is valid and on the second p→ r is.

We are not adding additional types of rules in this example. But what happens when we do

is very similar. Without the rules some one step inference from a formula to a disjunction

will be valid, from A to B ∨ C. And, by adding an atomic rule which is equivalent to A,

this one step inferences become invalid. This is because there is now an additional set of

atomic rules which has a valid proof of A (because there is a new rule that is equivalent to

it) but not of either B or C. I take this to show that the validity of generalised Harrop’s

rule follows not from the treatment of the connectives but rather from the correspondence

between atomic rules and formulas and so from the treatment of the atomic formulas. I will

now consider a few objections to this point.

Now one might naturally think that while this may be an explanation of why Harrop’s

rule and its generalisation holds there may be many other super intuitionistic axioms that

hold. However, as we will show later in Chapter 3, the complete system is axiomatized by

intuitionistic logic plus generalised Harrop’s rule.

Now one might think to solve this we should just remove the equivalence between formulas

and rules to get a system in which the treatment of the atomic formulas does not have this

impact. This will not work for two reasons. The first is that even with the simplest of rules

for atomic formulas, the axioms, there is still an equivalence between the axiom /p and the

formula p. And a system with no atomic rules would have no validities.13 The second is

13One could change the treatment of open formulas as well and there are versions of proof-theoretic
validity that behave like this. They have not been more successful in capturing intuitionistic logic however.
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that it isn’t this particular treatment of the atomic formulas that causes the problem but

rather any treatment. It has been shown that for all common notions the resulting logic

will be super-intuitionistic (Piecha and Schroeder-Heister 2019). For example, if we take the

minimal system, that is the one in which no atomic rules can discharge assumptions, it turns

out that ¬¬p→ p is valid.14

At this point the reader might complain that, regardless of how the super-intuitionistic

validities may appear to follow from the atomic rules, if every proof-theoretic system has

its own super-intuitionistic validities then they cannot all be attributed to the treatment

of the atomic formulas. However, in response to this criticism I would like to bring up a

parallel with Tarskian model-theoretic semantics. In Tarskian model-theoretic semantics for

classical logic, the classical validities are those which hold in all models. But there is no one

model in which all and only the classical validities hold. In fact, despite no atomic formula

p or it’s negation ¬p being a classical validity, every classical model proves either p or ¬p

for all atomic p. Does this mean that these super-classical validities do not follow from

the treatment of the atomic formulas? Clearly not, it is to be expected that every model

with have many super-classical validities. I put forward that proof-theoretic semantics can

appeal to a similar point. While every proof-theoretic system has some super-intuitionistic

validities, they are still a result of the treatment of the atomic formulas not the treatment

of the connectives.

2.7 Conclusion

Let’s reiterate the argument of the chapter. Proof-theoretic validity is supposed to be a for-

mal method for finding those inferences that follow from the intuitionistic introduction rules.

It aims to explicate Gentzen’s claim that the intuitionistic elimination rules are consequences
14Remember that these logics are not closed under substitutions so this does not imply that ¬¬A→ A is

valid which would mean the logic was classical.
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of the intuitionistic introduction rules and it was conjectured by Prawitz and Dummett that

no intuitionistically invalid inference were proof-theoretically valid. Instead, it has been

shown that super-intuitionistic inferences are proof-theoretically valid, and these inferences

are not in harmony with the intuitionistic introduction rule or closed under substitution.

This looks like a bad situation for proof-theoretic validity as it seems tenuous to claim that

inharmonious inferences follow from the introduction rules.

However, careful examination of the definition of proof-theoretic validity and the proof of

the super-intuitionistic validities showed the vital role played by the treatment of the atomic

formulas. In particular whether an instance of super-intuitionistic rule was valid or not

depended on whether there was an atomic rule corresponding to the formulas it contained.

On this basis it was argued that it was the treatment of the atomic formulas that was leading

to the super-intuitionistic inferences being valid.
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Chapter 3

The Logic of Proof-Theoretic Validity

Prawitz (1971) conjectured that proof-theoretic validity offers a semantics for intuitionis-

tic logic. This conjecture has recently been proven false by Piecha and Schroeder-Heister

(2019). This article resolves one of the questions left open by this recent result by showing

the extensional alignment of proof-theoretic validity and general inquisitive logic. General

inquisitive logic is a generalisation of inquisitive semantics, a uniform semantics for ques-

tions and assertions. The chapter further defines a notion of quasi-proof-theoretic validity by

restricting proof-theoretic validity to allow double negation elimination for atomic formulas

and proves the extensional alignment of quasi-proof-theoretic validity and inquisitive logic.

3.1 Introduction

Proof-Theoretic Validity was proposed by Prawitz (1971) as an explication of Gentzen’s

famous claim that the introduction rules can be viewed as definitions of the connectives.1

Prawitz’s formal definition of proof-theoretic validity (henceforth PTV) is complex but,

1For the quotation from Gentzen, see the beginning of Section 3.4.2
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roughly, a proof is valid if it stands in the correct relationship to the introduction rules (see

Definition 3.17). Prawitz conjectured in the early 1970s that:

Conjecture 3.1 (Prawitz). PTV aligns extensionally with the validities of intuitionistic

logic.

This conjecture remained open for many years but was recently disproven:

Theorem 3.1 (Piecha and Schroeder-Heister 2019, Corollary 3.9). PTV is a proper super-

set of the validities of intuitionistic logic.

For those still sympathetic to Gentzen and Prawitz, this leaves open the question of what

super-intuitionistic logic defines the same set of validities as PTV, and hence how far from

true Prawitz’s conjecture was.

Let quasi-PTV be PTV with double-negation for atomic formulas. For the formal definition

of PTV see Definition 3.17 and for the formal definition of quasi-PTV see Definition 3.23.

The main result of this chapter is:

Theorem 3.2. PTV aligns extensionally with the validities of general inquisitive logic and

quasi-PTV aligns extensionally with the validities of inquisitive logic.

Inquisitive logic has been studied extensively in recent years, see for example Ciardelli and

Roelofsen (2011), Ciardelli, Groenendijk, and Roelofsen (2018), and Punčochář (2016). It

arises naturally out of an effort to capture the idea that propositions have both informative

and inquisitive content. Inquisitive semantics unifies the picture of propositions as sets of

possible worlds, with the picture of questions as sets of answers. It does this by, roughly,

treating assertions as questions with only one answer.

The main result of this chapter is important because it shows which logic would be justified

by proof-theoretic validity. Further, quasi-PTV is as classical as one can make PTV since

inquisitive logic is the maximal weak intermediate logic with the disjunction property and
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double negation holding for atomic formulas (Ciardelli and Roelofsen 2011, p. 18). So, adding

more instances of double negation elimination will either not change the logic or the resulting

system will be stronger than classical logic.

One, of course, would want to know more about the connection between PTV and inquisitive

logic discovered here, and whether anything in the underlying motivations for these logics

may be responsible for this. There are two things worth mentioning in this connection. First,

one traditional semantics for intuitionistic logic was Kolmogorov’s problem interpretation.

This interpretation takes formulas as stating problems in need of a solution. For example,

Kolmogorov (1932, p. 329) states that a ∨ b means there is a way to “solve at least one of

the problems a and b”. While Kolmogorov had a broad range of problems in mind, including

those that involve constructions, we can identify many problems with the questions they are

supposed to answer. When considered this way we can think of the Kolmogorov interpre-

tation in terms of questions. For example, a ∨ b might be “Can you answer the question b

or a?” This offers a connection between constructive proof and the semantics of questions.

Second, Dummett’s The Logical Basis of Metaphysics is a defence of Prawitz’s idea, and a

key component of Dummett’s philosophy of language was that knowing a sentence’s meaning

involved knowing how to use the sentence (Dummett 1991b, p. 103). In particular, Dummett

thought of this as involving the ability to recognise when a statement has been verified. Per-

haps we can see a verification as an answer to a query about the truth of the statement. This

is not the place to explore these connections, but this should suffice to dissipate the concern

that the extensional alignment of quasi-PTV and inquisitive logic is a mere mathematical

accident.

This chapter is organised as follows. Since neither inquisitive logic nor PTV are closed under

uniform substitution, in Section 3.2 we discuss weak or non-structural logics which are not

necessarily closed under substitution. Inquisitive logic and generalised inquisitive logic are

discussed in more detail in Section 3.3. We define PTV both as Prawitz’s originally did on
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derivations and as a consequence relation and discuss the relationship between the two in

Section 3.4. In Section 3.5 we discuss how to modify PTV by changing how one deals with

atomic formulas. We prove several results about how modified systems relate to PTV and

each other. We define quasi-PTV in Section 3.6. And it is there that our main theorems are

proven and the consequences of these results for PTV are drawn out.

3.2 Logics Without Closure Under Substitution

Before we explore PTV and inquisitive semantics, we need to modify the definition of logics

to include logics which aren’t closed under substitution. Logics which aren’t closed under

substitution are called weak or non-structural (we will use weak). After defining weak logics,

we will focus in on those weak logics which have the disjunction property (Definition 3.3).

The chapter then considers characterisations of weak logics found in Ciardelli and Roelofsen

(2011) and Punčochář (2016). In later sections, this will allow us to show the extensional

identity of quasi-PTV and inquisitive semantics and of PTV and generalised inquisitive

semantics.

3.2.1 Weak Logics

The set of propositional formulas is built from the set of atomic formulas {pi | i ∈ N} ∪ {⊥}

and the recursive application of the connectives ∧,∨,→. Let a logic L be a subset of the

propositional formulas closed under modus ponens and substitution. Note that we take ⊥

to be an atomic proposition. Let a weak logic L be a set of propositional formulas closed

under modus ponens, which need not be closed under substitution.

We define (weak) intermediate logics as follows:

Definition 3.1. A (weak) logic L is a (weak) intermediate logic if IPC ⊂ L ⊂ CPC.
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Here we take IPC to be the deductive closure of the axioms of the intuitionistic predicate

calculus, and similarly, CPC is the deductive closure of the axioms of the classical predicate

calculus. While weak intermediate logics aren’t necessarily closed under substitution, because

they have IPC as a sublogic they contain all substitution instances of IPC.

Definition 3.2. Let L be a (weak) intermediate logic then:

`L ϕ⇔ ϕ ∈ L

Γ `L ϕ⇔ there are ψ1, . . . , ψn ∈ Γ, (ψ1 ∧ · · · ∧ ψn)→ ϕ ∈ L

Notice that we have essentially defined the consequence relation so that the deduction the-

orem holds. We can see that the relation is well behaved in other ways as the following

properties hold:

Lemma 3.1. Let L be a (weak) intermediate logic.

0L ⊥, (Falsum Property)

`L ϕ ∧ ψ ⇐⇒ `L ϕ and `L ψ, (Conjunction Property)

`L ψ → ϕ⇐⇒ψ `L ϕ, (Weak Deduction Theorem)

ϕ `L ϕ, (Reflexivity)

Γ `L ϕ and ϕ `L ψ =⇒Γ `L ψ, (Transitivity)

Γ `L ϕ⇐⇒∃ϕ0, . . . , ϕn ∈ Γ, ϕ0, . . . , ϕn `L ϕ. (Compactness)

Above we have a condition for ⊥, ∧, and → but no condition for ∨. The natural one is the

following:

Definition 3.3. A logic L has the disjunction property if

`L ϕ ∨ ψ ⇐⇒ `L ϕ or `L ψ.
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However, while this property holds in IPC, it does not hold in CPC and there are weak

intermediate logics both with and without it.

3.2.2 Equality Between Weak Logics with the Disjunction Property

From now on we are interested in logics which do have the disjunction property. We will

see that given two weak logics with the disjunction property, if both logics agree that every

formula is equivalent to one which is the disjunction of negated formulas, then they are equal

and similarly if they agree on the disjunction free formulas and every formula is equivalent

to one which is the disjunction of disjunction free formulas. If a formula is a disjunction of

negated formulas (i.e. ¬ϕ1 ∨ · · · ∨ ¬ϕn) then we say it is in disjunctive negation form. If it

is a disjunction of disjunction free formulas (i.e. ϕ1 ∨ · · · ∨ ϕn with ϕi disjunction free for

all i) then we say it is in disjunctive form. We will give a translation into disjunctive and

disjunctive negation form below in Definition 3.4 and 3.5. But first we will generalise results

of Ciardelli and Roelofsen (2011, Theorem 3.2.36) and Punčochář (2016, Theorem 4).

Let DF (L) be all disjunction free formulas of L.

Theorem 3.3. Suppose L1, L2 are weak intermediate logics such that they both have the

disjunction property. Assume that both logics satisfy the same condition, either:

(3.3.1.) for all ϕ there is a ψ in disjunctive negation form such that ψ ≡ ϕ ∈ L1, L2, or

(3.3.2.) for all ϕ there is a ψ in disjunctive form such that ψ ≡ ϕ ∈ L1, L2 and DF (L1) =

DF (L2).

Then L1 = L2.

Proof. We prove the first case first. Without loss of generality assume ϕ ∈ L1. There is

a ψ in disjunctive negation form such that ψ ≡ ϕ ∈ L1, L2 and so ψ ∈ L1. Let ψ be
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¬ϕ1 ∨ · · · ∨ ¬ϕn. As L1 has the disjunction property there is an i ≤ n such that ¬ϕi ∈ L1.

Because L1 is a sublogic of CPC it follows that ¬ϕi is a tautology of classical logic and so by

Glivenko’s theorem ¬¬¬ϕi is a tautology of IPC and so ¬ϕi is a tautology of IPC. It follows

then that ¬ϕ1 ∨ · · · ∨ ¬ϕn is a tautology of IPC by disjunction introduction. And as IPC

is a sublogic of L2 it follows that ¬ϕ1 ∨ · · · ∨ ¬ϕn ∈ L2 and so ϕ ∈ L2 as ψ ≡ ϕ ∈ L2. So

L1 is a sublogic of L2. And as the same reasoning goes through with L1 switched with L2 it

follows that the two logics must be equal.

The proof of the second is very similar. The difference is that one assumes ψ is ϕ1 ∨ · · · ∨ϕn

where ϕi is disjunction free for all i. And rather than going through IPC one uses the

assumption that DF (L1) = DF (L2), to get that there is a ϕi ∈ L2 for some i.

This theorem gives us two ways to characterise weak intermediate logic with the disjunction

property.

We now want to define when a logic is such that every formula is equivalent to one in

disjunctive or disjunctive negation form. It will be helpful to have a particular transformation

of formulas into disjunctive and disjunctive negation form. The following definition of a

disjunctive negation translation, which we call DNT, is a variation on Maksimova (1986)

employed by Ciardelli and Roelofsen (2011). The definition of disjunctive translation is the

obvious modification.
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Definition 3.4. Let the disjunctive translation DT be as follows:

DT (p) =p (3.1)

DT (ϕ ∨ ψ) =DT (ϕ) ∨DT (ψ) (3.2)

DT (ϕ ∧ ψ) =
∨
{ϕi ∧ ψj | 0 < i ≤ n, 0 < j ≤ m} (3.3)

where DT (ϕ) = ϕ1 ∨ · · · ∨ ϕn and DT (ψ) = ψ1 ∨ · · · ∨ ψm

DT (ϕ→ ψ) =
∨
{
∧

0<j≤n

(ϕj → ψij) | (i1, . . . , in) ∈ {1, . . . ,m}n} (3.4)

where DT (ϕ) = ϕ1 ∨ · · · ∨ ϕn and DT (ψ) = ψ1 ∨ · · · ∨ ψm

Definition 3.5. Let the disjunctive negation translation DNT be as follows:

DNT (p) =¬¬p (3.5)

DNT (ϕ ∨ ψ) =DNT (ϕ) ∨DNT (ψ) (3.6)

DNT (ϕ ∧ ψ) =
∨
{¬(ϕi ∨ ψj) | 0 < i ≤ n, 0 < j ≤ m} (3.7)

where DNT (ϕ) = ¬ϕ1 ∨ · · · ∨ ¬ϕn and DNT (ψ) = ¬ψ1 ∨ · · · ∨ ¬ψm

DNT (ϕ→ ψ) =
∨
{¬¬

∧
0<j≤n

(ψij → ϕj) | (i1, . . . , in) ∈ {1, . . . ,m}n} (3.8)

where DNT (ϕ) = ¬ϕ1 ∨ · · · ∨ ¬ϕn and DNT (ψ) = ¬ψ1 ∨ · · · ∨ ¬ψm

The definition of DNT looks confusing, particularly for ∧ and →. Some examples will

hopefully illuminate the translation. The ∧ translation says that there is some ϕi and ψi

such that ¬(ϕi ∨ ψi) is true. So (¬ϕ1 ∨ ¬ϕ2) ∧ (¬ψ1 ∨ ¬ψ2) becomes

¬(ϕ1 ∨ ψ1) ∨ ¬(ϕ1 ∨ ψ2) ∨ ¬(ϕ2 ∨ ψ1) ∨ ¬(ϕ2 ∨ ψ2).

The DNT translation for → is the disjunction of all the ways the ϕi’s could be implied by

some of the ψj’s with a double negation on the front. For example, the DNT translation of
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(¬ϕ1 ∨ ¬ϕ2)→ (¬ψ1 ∨ ¬ψ2) is

¬¬((ψ1 → ϕ1) ∧ (ψ1 → ϕ2)) ∨ ¬¬((ψ1 → ϕ1) ∧ (ψ2 → ϕ2))

∨¬¬((ψ2 → ϕ1) ∧ (ψ1 → ϕ2)) ∨ ¬¬((ψ2 → ϕ1) ∧ (ψ2 → ϕ2))

Now that we have particular translations in mind, we can think about what properties a

logic would have to have to prove ϕ↔ DT (ϕ) or ϕ↔ DNT (ϕ). We are interested in what

properties it would have to have on top of IPC. In both cases, we need → to commute over

∨, for disjunction free antecedents in the case of DT and for negated antecedents in the case

of DNT .

In the case of negated antecedents this condition is the widely studied Kreisel-Putnam ax-

iom2:

Definition 3.6.

(¬ϕ→ ψ ∨ χ)→ [(¬ϕ→ ψ) ∨ (¬ϕ→ χ)] (KP)

For disjunction free antecedents we offer the natural generalisation of the Kreisel-Putnam

axiom:

Definition 3.7. For all disjunction free ϕ,

(ϕ→ ψ ∨ χ)→ [(ϕ→ ψ) ∨ (ϕ→ χ)] (GKP)

Note that, even though we are working with weak logics, we will only be concerned with logics

which contain every substitution instance of the standard or generalised Kreisel-Putnam

axiom. The converse of both the generalised and standard Kreisel-Putnam axiom is provable

2The inference rule that goes from the antecedent to the consequence of the Kreisel-Putnam axiom is
called Harrop’s rule. And it is this name that is often used in work on proof-theoretic validity.
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in IPC, so we can replace the main → with a ↔. If one simply adds the Kreisel-Putnam

axiom to IPC the result is Kreisel-Putnam logic KP . If one adds the generalised Kreisel-

Putnam axiom to intuitionistic logic we will write IPC + GKP .3 Note that in IPC, ¬ϕ

is equivalent to some formula ϕ∗ not containing disjunction (Kleene 1952, Sec. 26-7) so the

generalised Kreisel-Putnam axiom implies the Kreisel-Putnam axiom.

For DNT we also need the equivalence of p and ¬¬p. While IPC ` p → ¬¬p, we also

have IPC 0 ¬¬p → p. So, we are going to need a logic which has ¬¬p → p for all atomic

formulas. In fact, in the presence of double negation elimination for atomic formulas, KP

implies GKP (Punčochář 2016).4

We can show that any logic extending IPC +GKP proves the equivalence of every formula

with itsDT translation and if it also contains double negation elimination for atomic formulas

it proves the equivalence of every formula with its DNT translation.

Lemma 3.2. If L is a weak intermediate logic with the disjunction property and the gener-

alised Kreisel-Putnam axiom then:

(3.2.1.) for all ϕ, we have that `L ϕ↔ DT (ϕ),

(3.2.2.) if `L ¬¬p→ p for all atomic p, then for all ϕ, we have `L ϕ↔ DNT (ϕ).

Hence, by the previous remark about the relation between KP and GKP, one has that (3.2.2.)

holds for any weak intermediate logic with the disjunction property and the Kreisel-Putnam

axiom.

3This logic is equivalent to one where GKP restricts ϕ to the Harrop formulas (roughly formulas where
the right most implication always has a disjunction free formula in the consequent). In this second guise it
has been studied by Punčochář 2016 and Miglioli et al. 1989.

4Note that using DNT it is easy to see (via Lemma 3.2) that every disjunction free formula is equivalent
to one starting with a negation if atomic formulas are.
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Proof. First, we prove the equivalence with DT . The base case is trivial, as is the disjunc-

tion case. The conjunctive case simply uses the distributive properties of conjunction and

disjunction provable in IPC.

For the case of implication, note that ϕ1∨· · ·∨ϕn → ψ is equivalent to (ϕ1 → ψ)∧· · ·∧(ϕn →

ψ) and as ϕi for all i is disjunction free, ϕi → ψ1∨ · · ·∨ψm is equivalent to (ϕi → ψ1)∨ · · ·∨

(ϕi → ψm) by application of GKP. This means that ϕ1∨· · ·∨ϕn → ψ1∨· · ·∨ψm is equivalent

to [(ϕ1 → ψ1)∨· · ·∨(ϕ1 → ψm)]∧· · ·∧[(ϕn → ψ1)∨· · ·∨(ϕn → ψm)]. And by the distributive

properties of IPC this is equivalent to
∨
{
∧

0<j≤n(ϕj → ψij) | (i1, . . . , in) ∈ {1, . . . ,m}n}.

We turn now to the second case. Note that by hypothesis `L ¬¬p → p so DNT (p) ≡L p.

The disjunction case is trivial.

To show the conjunction case in the right to left direction holds in IPC we first assume∨
{¬(ϕi ∨ ψj) | 0 < i ≤ n, 0 < j ≤ m} and then applying ∨ elimination as follows. Note

that ¬(ϕi ∨ ψj) is equivalent in IPC to (¬ϕi ∧ ¬ψj). So, by disjunction introduction on ¬ϕi

and ¬ψj, it follows that ¬ϕ1 ∨ · · · ∨ ¬ϕn and ¬ψ1 ∨ · · · ∨ ¬ψm. From which it follows by the

induction hypothesis that `L ϕ ∧ ψ.

For the other direction we again work in L, using the induction hypothesis and basic facts

about IPC. Assume ϕ∧ψ. By the induction hypothesis (¬ϕ1∨· · ·∨¬ϕn)∧(¬ψ1∨· · ·∨¬ψm).

So, by using the distribution properties in IPC we get
∨
{(¬ϕi∧¬ψj) | 0 < i ≤ n, 0 < j ≤ m}.

But ¬ϕi ∧ ¬ψj is equivalent to ¬(ϕi ∨ ψj) in IPC. So, we get we get
∨
{¬(ϕi ∨ ψj) | 0 < i ≤

n, 0 < j ≤ m}.

This leaves →. This follows from the induction hypothesis and the following derivation in

GKP .

`GKP (¬ϕ1 ∨ · · · ∨ ¬ϕn)→ (¬ψ1 ∨ · · · ∨ ¬ψm)
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Which is equivalent to its DT translation:

`GKP

∨
{
∧

0<j≤n

(¬ϕj → ¬ψij) | (i1, . . . , in) ∈ {1, . . . ,m}n}

(This just says that one of all the possible ways the ¬ϕi’s implies the ¬ψj’s must be true.)

if and only if (because in IPC we have (¬A→ ¬B)↔ (¬¬B → ¬¬A))

`GKP

∨
{
∧

0<j≤n

(¬¬ψij → ¬¬ϕj) | (i1, . . . , in) ∈ {1, . . . ,m}n}

if and only if (because in IPC double negation commutes over implication and conjunction)

`GKP

∨
{¬¬

∧
0<j≤n

(ψij → ϕj) | (i1, . . . , in) ∈ {1, . . . ,m}n}.

This result allows us to generalise Theorem 3.3.

Corollary 3.1. Given two weak intermediate logics L1, L2 such that one of the following

conditions is satisfied by both logics:

(3.1.1.) disjunction property and all formulas equivalent to their DNT translation,

(3.1.2.) disjunction property, the Kreisel-Putnam axiom and ¬¬p→ p,

(3.1.3.) disjunction property, the generalised Kreisel-Putnam axiom and ¬¬p→ p.

It follows that L1 = L2.

Corollary 3.2. Further, given two weak intermediate logics L1, L2 such that one of the

following conditions is satisfied by both logics:

(3.2.1.) disjunction property, DF (L1) = DF (L2), and all formulas equivalent to their DT

translation,
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(3.2.2.) disjunction property, DF (L1) = DF (L2), and the generalised Kreisel-Putnam

axiom.

It follows that L1 = L2.

3.3 Inquisitive Logic

Inquisitive semantics is a formal semantics designed to offer a uniform treatment of assertions

and questions. This is motivated by observations such as the mutual embedding of sentences

and questions. For example:

Xiao asked if Anna is here. (embedded question) (3.9)

Who told you that Anna is here? (embedded assertion) (3.10)

Xiao asked me who told you that Anna is here. (two-level embedding) (3.11)

Further motivations include the use of logical connectives in both questions and assertions,

that answers to questions are interpreted with contextual information given in the question,

and that propositional attitudes can have questions as their objects (Ciardelli, Groenendijk,

and Roelofsen 2018, Ch. 1).

Traditionally assertions have been modelled by sets of possible worlds (Stalnaker 1976) while

questions are treated as the set of possible answers to the question (Karttunen and Peters

1980; Groenendijk and Stokhof 1984). As answers to questions are assertions, this means

that a question is a set of assertions. So, questions can be treated as sets of sets of possible

worlds. These different treatments rule out a uniform treatment of “Is Anna here?" and

“Anna is here." The solution proposed by inquisitive semantics is to treat every assertion

similarly to the traditional treatment of questions.
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In inquisitive semantics, propositions are treated as sets of sets of possible worlds closed

under subsets. We will now set this out more precisely. First, we need a collection of

possible worlds W and using this we can define an information state.

Definition 3.8. An information state s ⊆ W is a set of possible worlds.

Note that in the more traditional setting an information state would be a proposition. In

that setting, you can think of a proposition as having more information the fewer worlds it

contains. This is because you can think of a proposition as containing all the information

the worlds have in common and fewer worlds mean more shared information. It follows that

if a proposition p is a subset of another proposition q, then p has more information. This

justifies calling a set of worlds that is a subset of another an enhancement of it.

Definition 3.9. A state t is an enhancement of s if t ⊆ s.

In the setting of inquisitive logic, a proposition is then defined as a set of information states,

but not any sets only those closed under enhancements.

Definition 3.10. A proposition is a non-empty set P of information states which is closed

downwards under enhancements.

A proposition must be non-empty because containing no information is associated with the

proposition that is always false, which contains one set namely the empty one. Being closed

under enhancements means that an inquisitive proposition is a set which contains every

traditional proposition which implies any other traditional proposition in the set.

A proposition in inquisitive logic is an assertion if its union is a member of it. What this

amounts to is that it can be treated as a set of possible worlds because it has a least

informative set in it. More formally if P is a set of possible worlds, P(P ) = {Q : Q ⊆ P} is

its translation into inquisitive semantics. Propositions that don’t have this property represent
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questions (here they are called inquisitive). They contain at least two distinct maximal sets

of worlds which can be thought of as representing distinct answers to a question. Formally:

Definition 3.11. P is inquisitive iff
⋃
P /∈ P .

The language of propositional logic can be interpreted in this setup.

Definition 3.12. Let V : ATOM → P(W ) be a valuation function on atomic propo-

sitions, then define [ · ]〈W,V 〉 : PROP → P(P(W )) as a function from the language of

propositional logic to sets of information states meeting the following conditions:

[p]〈W,V 〉 ={s | s ⊆ V (p)} (3.12)

[ϕ ∧ ψ]〈W,V 〉 =[ϕ]〈W,V 〉 ∩ [ψ]〈W,V 〉 (3.13)

[ϕ ∨ ψ]〈W,V 〉 =[ϕ]〈W,V 〉 ∪ [ψ]〈W,V 〉 (3.14)

[ϕ→ ψ]〈W,V 〉 ={s | ∀t ⊆ s (t ∈ [ϕ]〈W,V 〉 ⇒ t ∈ [ψ]〈W,V 〉)} (3.15)

Here ⊥ is not true at any world, so that [⊥]〈W,V 〉 = {∅}.5 We can prove by an easy induction

that for all ϕ the set [ϕ]〈W,V 〉 will be a proposition. When W and V are clear from context,

they will be omitted and we will write [ϕ] instead of [ϕ]〈W,V 〉.

A cursory examination will show only formulas containing ∨ are inquisitive. What expla-

nation is there for this identification of disjunctions with questions? Ciardelli, Groenendijk,

and Roelofsen (2018, pp. 73–4) appeal to cross-linguistic evidence that the same ‘words’ are

used for questions and disjunctions. For example, in Japanese the particle ‘ka’ is used at the

end of a sentence to signal a question (‘Anna wa kita-ka’ Did Anna come?) and attached

to each noun to signal a disjunction (‘Anna-ka Xiao-ka’ Anna or Xiao). It has been pro-

posed that inquisitive semantics can account for this data (Szabolesi 2015). Reflection on

the role of disjunction might also suggest a relation to questions. A disjunction involves in

5It is also worth noting that the definition of → is equivalent to the more traditional definition of
sup{[χ]〈W,V 〉 | [χ ∧ ϕ]〈W,V 〉 ⊆ [ψ]〈W,V 〉} from Heyting algebras (Troelstra and Dalen 1988, ch. 13).
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some sense a loss or lack of information–you do not know which of the two disjuncts are

true. Questions similarly involve a lack of information. While this might be thought to be

a pragmatic feature of disjunction, inquisitive semantics accounts for it in the semantics.

With [·]〈W,V 〉 defined we can define inquisitive logic as follows:

Definition 3.13. ϕ ∈ LInq if and only if for all W,V one has [ϕ]〈W,V 〉 = P(W ).

It also turns out that negated formulas are uninquisitive.

Lemma 3.3. Given a W , for all ϕ we have that
⋃

[¬ϕ] ∈ [¬ϕ]. In other words, ¬ϕ is

uninquisitive.

Proof. We will show that
⋃
{s | ∀t ∈ [ϕ] t ∩ s = ∅} ∈ {s | ∀t ∈ [ϕ] t ∩ s = ∅}. Assume

otherwise. Then there would be a t ∈ [ϕ] such that t ∩
⋃
{s | ∀t ∈ [ϕ] t ∩ s = ∅} 6= ∅ but

then there would have to be a s ∈ {s | ∀t ∈ [ϕ] t ∩ s = ∅} such that t ∩ s 6= ∅ but this is a

contradiction.

It follows that inquisitive logic has double negation elimination for atomic formulas.

Lemma 3.4 (Ciardelli and Roelofsen 2011, Rmk 3.8, p. 10). ¬¬p → p holds in inquisitive

logic

Proof. Atomic propositions aren’t inquisitive, and this result holds for all uninquisitive for-

mulas. It follows from the fact that ϕ is not inquisitive then [¬¬ϕ] = [ϕ], which we will now

prove. Note that

[¬¬ϕ] = {s | ∀t[(∀v ∈ [ϕ](t ∩ v = ∅))⇒ t ∩ s = ∅]}. (3.16)

Clearly [ϕ] ⊆ [¬¬ϕ]. To show the other direction we will show that
⋃

[¬¬ϕ] =
⋃

[ϕ]. Assume

for a contradiction that w ∈
⋃

[¬¬ϕ] and assume w /∈
⋃

[ϕ]. It follows that for all v ∈ [ϕ]

we have {w} ∩ v = ∅ but {w} = {w} ∩
⋃

[¬¬ϕ]. From this it follows by equation 3.16
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that
⋃

[¬¬ϕ] /∈ [¬¬ϕ]. But as [¬¬ϕ] isn’t inquisitive by the Lemma above and so contains⋃
[¬¬ϕ] this is a contradiction. As ϕ isn’t inquisitive, it has

⋃
[ϕ] as its maximal element. As

such the maximal elements of both sets are the same and they are both closed downwards,

so they are the same set.

Note that inquisitive logic is a weak logic as ¬¬ϕ→ ϕ does not hold for inquisitive proposi-

tions. For example, [¬¬(ϕ∨ψ)] is the downwards closure of
⋃

[ϕ∨ψ] while [ϕ∨ψ] = [ϕ]∪ [ψ].

Inquisitive logic also satisfies the axioms of IPC (Ciardelli and Roelofsen 2011, Prop 3.19,

p. 14), the disjunction property (Ciardelli and Roelofsen 2011, Prop 3.9, p. 10), and the

Kreisel-Putnam axiom (Ciardelli and Roelofsen 2011, Rmk 3.8, p. 10). As such it is charac-

terised by the second condition of Corollary 3.1.

There is another way of rendering the validities of inquisitive semantics by defining a support

relation between states and formulas. We will here present a generalised version of the

semantics found in Punčochář 2016 where, instead of taking the set of all states, we can

restrict to a subset I ⊆P(P(W )).

Definition 3.14. Given a set of worlds W , a valuation function V , an I ⊆P(P(W )),

and a state s in I, we say s supports ϕ in 〈W, I, V 〉 or s �Inq
〈W,I,V 〉 ϕ as follows:

(3.14.1.) s �Inq
〈W,I,V 〉 p iff s ⊆ V (p),

(3.14.2.) s �Inq
〈W,I,V 〉 ⊥ iff s = ∅,

(3.14.3.) s �Inq
〈W,I,V 〉 ϕ ∧ ψ iff s �Inq

〈W,I,V 〉 ϕ and s �Inq
〈W,I,V 〉 ψ,

(3.14.4.) s �Inq
〈W,I,V 〉 ϕ ∨ ψ iff s �Inq

〈W,I,V 〉 ϕ or s �Inq
〈W,I,V 〉 ψ,

(3.14.5.) s �Inq
〈W,I,V 〉 ϕ→ ψ iff for all t ⊆ s if t ∈ I and t �Inq

〈W,I,V 〉 ϕ then t �Inq
〈W,I,V 〉 ψ.

As pointed out by Punčochář (2016, p. 410), this new definition connects to Definition 3.12

via the following result:
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Proposition 3.1. s �Inq
〈W,P(W ),V 〉 ϕ if and only if whenever s ⊆ W it follows that s ∈

[ϕ]〈W,V 〉. So ϕ ∈ LInq if and only if for all W and V and all states s ⊆P(W ), it holds that

s �Inq
〈W,P(W ),V 〉 ϕ.

We can use this more general framework to get a general inquisitive semantics which does

not have double negation elimination for atomic formulas. From Punčochář (2016, p. 412)

we get the following equivalence with Kripke models:

Lemma 3.5 (Punčochář 2016, p. 412). Given 〈W, I, V 〉, the Kripke semantics 〈I − {∅},⊇

, V ∗〉 where V ∗(p) = {s ∈ I − {∅} | s ⊆ V (p)} defines the same satisfaction relation.

It follows from this that any general inquisitive semantics will satisfy IPC.

We will write L〈W,I,V 〉 for the set of formulas supported by every s ∈ I in 〈W, I, V 〉. From

now on we will look at those cases where I is a topology on W . That is, closed under finite

intersections and arbitrary unions. From this, we can show when a generalised inquisitive

semantics will have the disjunction property. This is a generalization of (Ciardelli and

Roelofsen 2011, Prop 3.9, p. 10).

Lemma 3.6. If I is a topology on W , then L〈W,I,V 〉 has the disjunction property.

Proof. Assume ϕ ∨ ψ ∈ L〈W,I,V 〉. As I is a topology there is t ∈ I that for all s ∈ I, it

follows that s ⊆ t. It follows that t �Inq
〈W,I,V 〉 ϕ or t �Inq

〈W,I,V 〉 χ. As propositions are downwards

closed it follows that for all s ∈ I either s �Inq
〈W,I,V 〉 ϕ or s �Inq

〈W,I,V 〉 ψ. So ϕ ∈ L〈W,I,V 〉 or

ψ ∈ L〈W,I,V 〉.

What is more if I is a topology then 〈W, I, V 〉 satisfy the generalised Kreisel-Putnam axiom:

Lemma 3.7 (Punčochář 2016, p. 420). Every instance of the generalized Kreisel-Putnam

axiom holds in every 〈W, I, V 〉 where I is a topology on W .
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Proof. Note that if ϕ is disjunction free then it is uninquisitive so with a topological I

there is a maximal information state s such that s �Inq
〈W,I,V 〉 ϕ. Let s ∈ I be such that

that s �Inq
〈W,I,V 〉 ϕ → ψ ∨ χ where ϕ is disjunction free. Assume for a contradiction that

s 2Inq
〈W,I,V 〉 (ϕ→ ψ) ∨ (ϕ→ χ). It then follows that there are t, r ∈ I which are subsets of s,

and t supports ϕ and ψ but not χ, and r supports ϕ and χ but not ψ. As I is topological

t ∪ r ∈ I and because ϕ is uninquisitive it follows that t ∪ r supports ϕ. Inspection of

Definition 3.14 shows that if a state supports a proposition then all its substates will to and

so. Hence t ∪ r supports ϕ → ψ ∨ χ and so it either supports ψ or χ. But then so must t

and r which contradicts our assumption.

Let LGInq or general inquisitive logic be every formula which is valid on all 〈W, I, V 〉 when

I is a topology on W . It follows from Corollary 5 of Punčochář 2016 that LGInq the same

logic as IPC + GKP . From this, it follows that the disjunction free fragment of LGInq is

the same as the disjunction free fragment of intuitionistic logic. We will use this result later

along with Corollary 3.2 to show that PTV results in the same logic as general inquisitive

logic.

3.4 Proof-Theoretic Validity

Thus far we have been discussing weak logics and inquisitive logic. We now turn to the

other main topic of this chapter, namely proof-theoretic semantics. While it ostensibly looks

different, our main results again describe the relation between proof-theoretic semantics

and inquisitive logics. We begin in this section by introducing the notion of an atomic

system and a supersystem and by defining two notions of proof-theoretic validity relative to

a supersystem. The first definition is due to Prawitz (1973). The second is due to Piecha,

Campos Sanz, and Schroeder-Heister (2015). We will show that these two definitions aren’t

equivalent (see Lemma 3.14).
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3.4.1 Atomic Systems

To define proof-theoretic validity we first need to define a very general notion of a proof rule

for an atomic formula:

Definition 3.15. (Schroeder-Heister 1984) We define atomic rule formulas and their lev-

els as follows:

(3.15.1.) A level-0 atomic rule is an axiom consisting of a single atomic formula. That is

a rule with no premises or hypotheses. It is written as p̄ or /p,

(3.15.2.) A level-1 atomic rule is a rule which has premises but does not discharge hypothe-

ses. Written p0, . . . , pn/q for an inference from p0, . . . , pn to q,

(3.15.3.) A level-2 atomic rule is a rule which discharge hypotheses. Written

[p00 , . . . , pm0 ]q0, . . . , [p0n , . . . , pmn ]qn/r

for an inference from q0, . . . , qn to r, which for each qi discharges p0i , . . . , pmi
,

(3.15.4.) A level-n atomic rule (for n > 2) is a rule which discharge rules of level-(n− 2).

Written

([R00 , . . . , Rm0 ]q0), . . . , ([R0n , . . . , Rmn ]qn)/r

for a level-n inference from q0, . . . , qn to r, which for each qi discharges rules

R0i , . . . , Rmi
, where the level of each Rj is at most level-(n− 2).

This definition can seem confusing, particularly for rules above 2.

Example 3.1. Consider the following examples:
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level 0: p level 1:
p

q level 2:

[p]
...
q

r

level 3:


...
p

q
...


q

r

Using this we can give an example of a proof using a level-3 rule.

Example 3.2. Consider the system containing the level 3 rule above, written [p/q]q/r, and

p̄. Note that we have written each step ϕ,D where ϕ is atomic and D is the set of atomic

rules used so far and not discharged:

p, {p̄}
q, {p̄,p/q}

r, {p̄, [p/q]q/r}

We define `S as a relation between sets of hypothesis and rules, and atomic propositions

such that p1, . . . , pn, R1, . . . , Rm `S p means there is a proof of p with open hypothesis

p1, . . . , pn containing only the rules in {R1, . . . , Rm} ∪ S. We will write q `S p and q̄ `S p

interchangeably as there is no real effect to swapping axioms and atomic assumptions. Note

the following observation:

Fact 3.1. Rules are only removed when a level 2 or higher rule is applied. It follows that

a sub-proof of a proof with level-2 or higher rules in it may have new assumptions and new

rules. However, a proof with only level 0 and 1 rules does not have sub-proof that use more

rules (though they may have more assumptions).

This means that we can split proofs containing only level-0 or level-1 rules. First we give an

illustrative example, and then we prove the general splitting result.

Example 3.3. For example, given the following proof of p/q `{/s;s/p;q/r} r:

s̄
p

q

r
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We can split the proof into s̄p of `{/s;s/p;q/r} p and
q

r
of /q `{/s;s/p;q/r} r.

Lemma 3.8. If D is a proof in an atomic system S, from distinct rules p/q, R0, . . . , Rn

with conclusion r–that is if D witnesses p/q, R0, . . . , Rn `S r–and all the rules in S and

R0, . . . , Rn are level 0 or 1 rules, then if D contains p/q it follows that there are D1 and D2

witnessing R0, . . . , Rn `S p and q, R0, . . . , Rn `S r, respectively.

Proof. The proof proceeds by induction on the number of instances of p/q in D.

For the base case, assume there are no instances of p/q in D it follows that we are done

simply because the antecedent is not satisfied.

Now let us assume for all i < m that the induction hypothesis holds and that D contains m

instances of p/q. Take any such occurrence and split D into two proofs; as follows:

D1

p

q

D2

r

If D contained m occurrences of p/q then D1 and D2 contain i and j respectively where

m = i+ j+ 1 to account for the application of p/q dividing D1 and D2. There are four cases

we need to deal with depending on whether or not i, j > 0. That is m = 1 and i = j = 0;

i = 0 and j = m− 1; i = m− 1 and j = 0; or both i, j > 0. However, it is easier to consider

the subcases i > 0, j > 0, i = 0, and j = 0 separately. When considering i we show how

to get a proof witnessing R0, . . . , Rn `S p and for j we show how to get a proof witnessing

q, R0, . . . , Rn `S r. Then for the four cases above one simply combines the relevant pieces of

the proof.

First we consider i > 0. We note by Fact 3.1 that D1 does not contain any rules D didn’t.

What is further, because the top of the derivation remains unchanged, no new assumptions

are added. This means it witnesses p/q, R0, . . . , Rn `S p. We then use the induction hypoth-
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esis to get two proofs: D11 witnessing R0, . . . , Rn `S p and D12 witnessing q, R0, . . . , Rn `S p.

The derivation D11 is the first proof we were looking for and we are done with i > 0.

Second we do j > 0. We note by Fact 3.1 that D2 does not contain any rules D didn’t,

however it does have a new assumption q. So D2 witnesses q, p/q, R0, . . . , Rn `S r. So by the

induction hypothesis we can split it into two proofs: D21 witnessing q, R0, . . . , Rn `S p and

D22 witnessing q, R0, . . . , Rn `S r. The derivation D22 is the second proof we were looking

for and we are done with j > 0.

Third assume i = 0 then we still know D1 witnesses p/q, R0, . . . , Rn `S p but we also know

it contains no instances of p/q, so in fact it witnesses R0, . . . , Rn `S p. The derivation D1 is

the third proof we were looking for and we are done with i = 0.

Fourth assume j = 0 then just as before we have D2 witnessing q, p/q, R0, . . . , Rn `S r. But

as D2 contained no instances of p/q it witnesses q, R0, . . . , Rn `S r. The derivation D2 is the

fourth proof we were looking for and we are done with j = 0. And so, we are done.

We will use this result later in Lemma 3.21 to show how provability in supersystems changes.

This result doesn’t hold when there are higher-level rules since discharged rules may be

separated from the rule that discharges them.

Atomic rules can now be used to define atomic systems and supersystems.

Definition 3.16. Let the set of all atomic rules of any level be denoted as S.

(3.16.1.) Call a set of atomic rules S ⊆ S an atomic system.

(3.16.2.) Call a set S ⊆P(S) an atomic supersystem.

We use these supersystems as a base to define an abstract notion of proof-theoretic validity.
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3.4.2 Prawitz’s Definition of Proof-Theoretic Validity

Proof-Theoretic Validity was proposed by Prawitz (1971) as an explication of Gentzen’s

claim that:

The introductions represent, as it were, the ‘definitions’ of the symbols concerned,

and the eliminations are no more, in the final analysis than the consequences of

these definitions. This fact may be expressed as follows: In eliminating a symbol,

we may use the formula with whose terminal symbol we are dealing only ‘in the

sense afforded it by the introduction of that symbol’. (Gentzen 1935, p. 80)

There are well-known problems with taking this explanation literally. As Prawitz points

out the introduction rules are not, in fact, explicit definitions, in the sense of definiendum-

definiens pairs. Because of this Prawitz suggests, instead, that the introduction rules are

used to inductively define a notion of ‘validity’. In doing this, Prawitz is making the notion

of consequence central to his interpretation of Gentzen. So, instead of showing that the

elimination rules follow in some way from the introduction rules, it would instead be shown

that they preserve ‘validity’. In this definition, S is an atomic system and J is a set of trans-

formations on derivations which preserve the conclusion and do not add open assumptions,

though they may delete them.

Definition 3.17. (Prawitz 1973, p. 236; Schroeder-Heister 2006, p. 560; Schroeder-Heister

2018, Suplement 1) A derivation D being an (S,J )-valid derivation for an atomic system S

and set of justifications J is defined inductively as follows:

(3.17.1.) If D is a closed derivation in S then it is (S,J )-valid.

(3.17.2.) If D is a closed derivation ending in an introduction rule then it is (S,J )-valid

if the derivations of the premises of the introduction rule are (S,J )-valid.
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(3.17.3.) If D is a closed derivation which does not end in an introduction rule then it is

(S,J )-valid if it J -reduces to an (S,J )-valid derivation which does end in an

introduction rule.

(3.17.4.) If D is an open derivation of ϕ with open assumptions ϕ0, . . . , ϕn then it is (S,J )-

valid if for all atomic systems S ′ extending S, all justifications J ′ extending J

and all closed (S ′,J ′)-valid derivations D0, . . . ,Dn of ϕ0, . . . , ϕn, the following

derivation is (S ′,J ′)-valid:

D0
ϕ0

. . .

. . .
Dn
ϕn

D
ϕ

Example 3.4. This definition can be illustrated by considering an example. Take the

following proof of p → ¬¬p or p → ((p → ⊥) → ⊥) let S = ∅ and J be the standard

reductions used in the proof of normalisation:

[p] [p→ ⊥]

⊥
(p→ ⊥)→ ⊥

p→ ((p→ ⊥)→ ⊥)

This is a closed proof and it ends on an introduction rule so by condition 3.17.2 this proof

is (S,J )-valid if its immediate sub-proof is:

p [p→ ⊥]

⊥
(p→ ⊥)→ ⊥

This proof is open and so by condition 3.17.4 it is (S,J )-valid if given any closed proof of

p in every extension S ′ and J ′ of S and J the proof generated by replacing the assumption

p with its derivation is (S ′,J ′)-valid. For the purposes of illustration let us consider the

simplest case where we simply extend S with the axiom p̄. By 3.17.1 the proof p̄ is ({p̄},J )-

valid. The new proof ends in an introduction rule and so by 3.17.2 will be ({p̄},J )-valid just

if its immediate sub proof is:
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p̄ p→ ⊥
⊥

This is again an open proof so by condition 3.17.4 we need to consider all expansions of

{p̄} and J . This time there are two obvious expansions of {p̄}. The first by ⊥̄ and the

second by p
⊥ . Let’s use the second. We then get the following proof which we need to check

is ({p̄, p
⊥},J )-valid:

p̄

[p]

⊥
p→ ⊥
⊥

This proof does not end in an introduction rule, so we finally get to use condition 3.17.3.

Careful inspection of the proof will show that we introduced → only to eliminate it directly

afterwards. But we can use one of the reductions from the proof of normalisation to remove

this. This results in the proof:

p̄

⊥

Which is ({p̄, p
⊥},J )-valid by 3.17.1. To make this illustration into a rigorous argument,

one would simply follow this line of reasoning backwards, starting with the small proofs and

building up, and replacing our consideration of the simplest cases by the more general cases.

But like with other inductive definitions, such as that of well-formed formula, sometimes

they are best illustrated by breaking a familiar example down rather than building up from

the base cases.

We can replace Prawitz’s conditions on derivations with a consequence relation. To do this

we need to define a consequence relation directly from derivations. We take this definition

from Schroeder-Heister (2006, p. 561) who is explicating Prawitz’s conjecture (Prawitz 1973,

p. 246).
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Definition 3.18. Let Γ S
S ϕ hold if there is a derivation D of ϕ with open assumptions

in Γ which is (S,JMAX)-valid where JMAX is the maximal set of justifications. Given a

supersystem S let the Prawitz semantics associated with it define the consequence relation

S where Γ S ϕ if and only if for all S ∈ S it follows Γ S
S ϕ.

Here we understand justifications in the sense of Schroeder-Heister (2006, p. 558) where a

justification is any map from proofs to proofs, which preserve conclusions and does not add

assumptions, that can be applied even if the proof is a sub-proof of a larger one. All the

reductions used in normalization are justifications. As Schroeder-Heister points out, this

differs from Prawitz’s who places a constraint of ‘consistency’ on justifications. However,

Schroeder-Heister argues that Prawitz’s constraints were based on worries about normaliza-

tion, not validity, and so they can be removed. We will use Schroeder-Heister’s definition

here.

Lemma 3.9. Given a supersystem S Prawitz’s validity notion from Definition 3.18 satisfies

the following:

`S p⇐⇒S
S p, (Autonomy of Atoms)

S
S ϕ and S

S ψ ⇐⇒S
S ϕ ∧ ψ,

(Conjunction Property)

S
S ϕ or S

S ψ ⇐⇒S
S ϕ ∨ ψ,

(Disjunction Property)

[∀S ′ ⊇ S(S ′ ∈ S and S
S′ ψ ⇒S

S′ ϕ)]⇐⇒S
S ψ → ϕ.

(Weak Monotonicity)

∃finite∆ ⊆ Γ[∀S ′ ⊇ S(S ′ ∈ S and S
S′ ∆⇒S

S′ ϕ)]⇐⇒ Γ S
S ϕ.

(Compact Monotonicity)
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Proof. (Autonomy of Atoms): By definition, if `S p there is a derivation which is S-valid.

Assume there is a closed S-valid derivation D of an atomic proposition p. Now D is either

in S, ends in an introduction rule, or reduces to a proof D′ meeting one of the previous two

conditions. So, we can assume we have a derivation either ending in an introduction rule or

a derivation in S. But it cannot end with an introduction rule as it is a proof of an atomic

formula. This leaves only that it is in S and so S
S p⇔`S p.

The proof of the conjunction and disjunction properties are relatively simple and so we

exclude them here.

(Compact Monotonicity): It needs to be shown that Γ S
S ϕ if and only if ∃finite∆ ⊆

Γ∀S ′ ⊇ S[S
S′ ∆ ⇒S

S′ ϕ]. Assume Γ S
S ϕ then we know that there is some finite subset

∆ = {ψ0, . . . , ψn} and a derivation

ψ0, . . . , ψn

D
ϕ

and given any S ′ extending S and any closed S ′-valid derivations Di

ψi
then the closed proof

D0

ψ0 . . .
Dn

ψn

D
ϕ

is S ′ valid. From which monotonicity clearly follows.

So now assume that there is finite ∆ ⊆ Γ and for every S ′ extending S if there are closed

S ′-valid derivation of ∆ then there is a closed S ′-valid derivation of ϕ. Assume for a contra-

diction that Γ S
S ϕ is false. What follows from this is that there is no derivation in S with

open assumptions in Γ that satisfies Definition 3.17.4. So, for the derivation

∆
ϕ
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Since this does not satisfy Definition 3.17.4, there is a S ′ extending S such that there are

S ′-valid derivations Di of every formula ψi ∈ ∆ but the composition of those derivations

with the original derivation of ϕ:

D0

ψ0 . . .
Dn

ψn

ϕ

is not S ′-valid. But we have all justifications in our system, and we are dealing with closed

proofs we have the justification that simply takes this derivation to any S ′-valid derivation of

ϕ. So, this comes down to the idea that there isn’t a derivation of ϕ in S ′. But by assumption

and the fact that there are S ′-valid derivations of ∆ we know there is a derivation of ϕ.

(Weak Monotonicity): By Compact Monotonicity it is sufficient to show that ψ S
S ϕ if and only if S

S

ψ → ϕ.

Assume ψ S
S ϕ then there is an open S-valid derivation of ψ from premise ϕ. It follows

that by condition 2 of Definition 3.17 the following is an S-valid derivation of ϕ→ ψ:

[ϕ]
D
ψ

ϕ→ ψ

so S
S ψ → ϕ.

Assume S
S ψ → ϕ then D′ is S-valid derivation of ϕ → ψ. As ϕ → ψ is not an atomic

formula it follows that either condition 3 holds of D, in which case there is a D′ of which

condition 2 holds, or condition 2 holds. So, we assume condition 2 holds. Then D′ is of the

form:

[ϕ]
D
ψ

ϕ→ ψ

From this it follows that:
ϕ
D
ψ
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is an S-valid derivation of ψ from ϕ so ψ S
S ϕ.

It can also be shown that any two consequence relations satisfying the conditions in Lemma 3.9

for a Prawitz semantics will be identical.

Lemma 3.10. Given a supersystem S and two binary relations satisfying the conditions of

Lemma 3.9, (S,S) and (S,′S), it follows that S
S = ′SS for all S ∈ S.

Though we do not include the proof here, it is a simple induction on formula complexity.

3.4.3 PCS Semantics

While the above formulation is essentially that found in Prawitz’s work, most of the results

on what is provable in proof-theoretic semantics use a different formulation. We call it PCS

semantics because it appears in Piecha, Campos Sanz, and Schroeder-Heister (2015). It is

PCS semantics that we will use for the rest of the chapter. The two definitions differ only

on the condition for Γ �S
S ϕ. While it appears not to have been addressed in the literature,

we will show that this notion is not equivalent to Prawitz’s. It is hoped that in future work

we will be able to show that the definitions coincide on the relevant supersystems.

Definition 3.19. A pair (S,�S) is a PCS semantics if S is a supersystem (Defini-

tion 3.16), and if for every S in S one has that there is a �S
S which satisfies the following:

`S p⇐⇒�S
S p, (Autonomy of Atoms)

�S
S ϕ and �S

S ψ ⇐⇒�S
S ϕ ∧ ψ, (Conjunction Property)

�S
S ϕ or �S

S ψ ⇐⇒�S
S ϕ ∨ ψ, (Disjunction Property)

[∀S ′ ⊇ S(S ′ ∈ S and �S
S′ ψ ⇒�S

S′ ϕ)]⇐⇒�S
S ψ → ϕ. (Weak Monotonicity)

[∀S ′ ⊇ S(S ′ ∈ S and �S
S′ Γ⇒�S

S′ ϕ)]⇐⇒ Γ �S
S ϕ. (Monotonicity)
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and further �S is defined from �S
S as follows:

Γ �S ϕ⇐⇒ ∀S ∈ S,Γ �S
S ϕ. (3.17)

It turns out that each supersystem has a unique PCS semantics.

Lemma 3.11. Given a supersystem S there is a consequence relation �S such that (S,�S)

is a PCS semantics and given two PCS semantics (S,�S) and (S,�′S) it follows that �S
S =

�′SS for S ∈ S.

We will now show explicitly that all PCS semantics are extensions of minimal logic. For

the axioms of minimal logic, we use a Hilbert system (Troelstra and Schwichtenberg 2000,

p. 51).

Lemma 3.12. Given a PCS semantics (S,�S) we have that the following are satisfied:

(a)ϕ→ (ψ → ϕ), (b)(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(c)ϕ→ ϕ ∨ ψ, (d)ψ → ϕ ∨ ψ;

(e)(ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))

(f)ϕ ∧ ψ → ϕ (g)ϕ ∧ ψ → ψ, (h)ϕ→ (ψ → (ϕ ∧ ψ))

Proof. (a) Let S ∈ S be such that �S
S ϕ then for all S ′ ⊇ S in S such that �S

S′ ψ it follows

because S ′ ⊇ S and Monotonicity that �S
S′ ϕ.

(b) Let S ∈ S be such that �S
S ϕ → (ψ → χ) and let S ′′ ⊇ S ′ ⊇ S be in S and such that

�S
S′ (ϕ→ ψ) and �S

S′′ ϕ. It is sufficient to show that �S
S′′ χ. By monotonicity �S

S′′ ϕ→ (ψ →

χ) and �S
S′′ (ϕ → ψ). But then by the weak deduction theorem and �S

S′′ ϕ it follows that

�S
S′′ (ψ → χ) and �S

S′′ ψ. From which it follows that �S
S′ χ.

(c-d) Follow from Disjunction Property.

133



(e) Let S ∈ S be such that �S
S (ϕ → χ) and let S ′′ ⊇ S ′ ⊇ S be in S and such that

�S
S′ (ψ → χ) and �S

S′′ ϕ∨ψ then by the disjunction property �S
S′′ ϕ or �S

S′′ ψ. By monotonicity

�S
S′ (ϕ → χ) and �S

S′ (ψ → χ). So, whichever case holds by the weak deduction theorem

�S
S′′ χ.

(f-h) Follow from Conjunction Property.

If the supersystem includes ⊥/p for all atomic formulas p then it will satisfy intuitionistic

logic.

Lemma 3.13. If every S ∈ S contains ⊥/p for all atomic formulas p then �S ⊥ → ϕ for

all formulas ϕ.

Proof. Let S ∈ S we will proceed by induction on complexity of formulas. This is trivial

for the atomic case and simple for the case of ∧ and ∨. So, we only show →. We want to

show �S
S ⊥ → (ϕ → χ). Let S ′ ⊇ S be such that �S

S′ ⊥ ∧ ϕ. By the induction hypothesis

�S
S′ ⊥ → χ so �S

S′ χ and we are done.

It can be shown that PCS and Prawitz notion from Section 3.4.2 are distinct because Mono-

tonicity isn’t equivalent to Compact Monotonicity.

Lemma 3.14. Let S = {{p0, . . . , pn} | n ∈ N} ∪ {{q, p0, p1, . . .}} then {p0, p1, . . .} �S q but

{p0, p1, . . .} 1S q.

Proof. Note that {p0, p1, . . .} �S q if for all S ∈ S when �S
S {p0, p1, . . .} then �S

S q. As the

only S such that �S
S {p0, p1, . . .} is {q, p0, p1, . . .} this follows. However, {p0, p1, . . .} S q if

there is a derivation D of q with (finite) open assumptions in {p0, p1, . . .} such that any S

which has a derivation of those open assumptions has a derivation of q. Assume this is so for a

contradiction. Then there is some n such that {p0, . . . , pn} contains all the open assumptions
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in D. But then S = {p0, . . . , pn} has a derivation of p0, . . . , pn and yet it contains (by there

being no rules ending in q) no derivation of q. It follows that {p0, p1, . . .} 1S q.

The cause of this is that while � has the monotonicity condition [∀S ′ ⊇ S(�S
S′ Γ ⇒�S

S′

ϕ)]⇐⇒ Γ �S
S ϕ, for  there is instead compact monotonicity condition ∃finite∆ ⊆ Γ[∀S ′ ⊇

S(�S
S′ ∆ ⇒�S

S′ ϕ)] ⇐⇒ Γ �S
S ϕ. A straightforward result of this proof is that  does not

always satisfy monotonicity as it still holds in the example above that if S
S {p0, p1, . . .},

then S
S q. However, when monotonicity does hold Lemma 3.9 straightforwardly gives us

the following result:

Lemma 3.15. Given a supersystem S for which  is monotone, then for all S ∈ S and ϕ

and Γ we have

Γ S
S ϕ⇔ Γ �S

S ϕ

Proof. By Lemma 3.9 and the assumption of monotonicity we know that it meets the criteria

to be a PCS semantics and then by Lemma 3.11 we know that any two PCS semantics with

the same supersystem are identical.

On the other side of the equation what is lacking is compactness. That is Γ �S
S ϕ ⇔

∃finite∆ ⊆ Γ ∆ �S
S ϕ. It can be shown that whenever the PCS semantics is compact it

agrees with Prawitz’s notion.

Lemma 3.16. Let `L be compact and monotonic then it has compact monotonicity.

Proof. Γ `L ϕ ⇔Compactness ∃finite∆ ⊆ Γ ∆ `L ϕ ⇔Monotonicity ∃finite∆ ⊆ Γ[∀S ′ ⊇ S(S
S′

∆⇒S
S′ ϕ)].

This allows us to show:
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Lemma 3.17. Given a supersystem S for which � is compact, then for all S ∈ S and ϕ

and Γ we have

Γ �S
S ϕ⇔ Γ S

S ϕ

Proof. Given that �S
S is compact it follows that it has compact monotonicity by Lemma 3.16

as well as the first 4 conditions of a PCS semantics. By Lemma 3.9 we know that S
S satisfies

the first 4 conditions of a PCS semantics and compact monotonicity. Then by Lemma 3.10

it follows that they must be identical.

We do not currently know which supersystems are compact or monotone. And so, we

do not know on which supersystems PCS semantics and Prawitz’s validity notion align.

Characterising the set of supersystems which are compact will be the subject of future

work. For our purposes, we continue to work with PCS semantics given the usefulness of

monotonicity. When we move to the weak logics defined by these systems we will have

compactness built-in.

3.5 Results about PCS semantics

3.5.1 Relations between Supersystems

The supersystem which is chosen can have a considerable impact on the logic that results.

We consider SM
∞ = P(S) to be the largest possible supersystem. HereM stands for minimal

as there is no special treatment of ⊥ in this system. The system S∞ = {S ⊆ S | (⊥/p) ∈

S for all atomic p} restricts SM
∞ to ensure that ⊥ behaves as it does in intuitionistic logic.

All other supersystems are defined as subsets of these supersystems. The following result is

worth noting:
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Lemma 3.18. Let ϕ be → free and S′ ⊆ S, then for all S ∈ S′

�S
S ϕ⇔ �S′

S ϕ

Proof. For the atomic case note that: �S
S p ⇔`S p ⇔ �S′

S p. Now for the induction

cases, assume �S
S ϕ ⇔�S′

S ϕ and �S
S ψ ⇔ �S′

S ψ. The ∧ and ∨ follow from the induction

hypothesis.

Corollary 3.3. Let ϕ be → free and S′ ⊆ S, then

�S ϕ⇒ �S′ ϕ

Given a supersystem S and an atomic system K ∈ S, two natural ways to get new super-

systems are as follows:

1. {S ∈ S | S ⊆ K}

This defines an ideal on S. Examples are SM
n and Sn, where these are SM

n = {S ∈

SM
∞ | S ⊆ {R | R is level n}} and Sn = {S ∈ S∞ | S ⊆ {R | R is level n}}. That is

SM
n and S∞ respectively restricted to rules of at most level n.

2. {S ∈ S | K ⊆ S}

This defines a filter on S. An example is S∞ which is {S ∈ SM
∞ | {(⊥/p) | p atomic} ⊆

S}. In other words, S∞ is every S ∈ SM
∞ such that (⊥/p) ∈ S for every atomic p.

A supersystem S′ ⊆ S is closed under supersets from S if whenever S ∈ S′, S ′ ∈ S and

S ⊆ S ′ then S ′ ∈ S′. Filters 2 are closed under supersets from S. If a supersystem is a

subset of another and is closed under supersets from it, then it proves anything the larger

supersystem proves:
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Lemma 3.19. If S′ ⊆ S is closed under supersets from S, then for all S ∈ S′

�S
S ϕ⇔ �S′

S ϕ

Proof. Induction on ϕ. All cases except for→ are covered by the inductive steps in the proof

of Lemma 3.18.

For the induction hypothesis, assume we have for all S ∈ S′ that �S
S ϕ ⇔ �S′

S ϕ and

�S
S ψ ⇔ �S′

S ψ. Assume �S
S′ ϕ → ψ and S ′ ∈ S′, then by the weak monotonicity and

monotonicity of Definition 3.19 it follows that for all S ∈ S extending S ′ if �S
S ϕ then

�S
S ψ. Take S ′′ ∈ S′ extending S ′ such that �S′

S′′ ϕ. Clearly S ′′ ∈ S. Now by the induction

hypothesis �S
S′′ ϕ from which it follows that �S

S′′ ψ and so again by the induction hypothesis

�S′

S′′ ψ.

Assume �S′
S ϕ→ ψ, then for all S ′ ∈ S′ extending S such that �S′

S′ ϕ it follows that �S′

S′ ψ.

Take S ′ ∈ S extending S such that �S
S′ ϕ. As S ′ extends S ∈ S′ it follows by assumption of

closure under supersets that S ′ ∈ S′. Now by the induction hypothesis �S′

S′ ϕ from which it

follows that �S′

S′ ψ and so again by the induction hypothesis �S
S′ ψ.

Lemma 3.20. If S′ ⊆ S is closed under supersets from S, then

�S ϕ⇒ �S′ ϕ

Proof. Assume �S ϕ then for all S ∈ S, �S
S ϕ. As all S ′ ∈ S′ are also in S it follows by

Lemma 3.19 that �S′

S′ ϕ and so �S′ ϕ.

Straight away we get from this that as S∞ is a filter on SM
∞ it follows that �SM

∞
ϕ implies

�S∞ ϕ and so the ‘intuitionistic’ system prove everything the ‘minimal’ one does. The

hypothesis of closure under supersets is crucial for Lemma 3.20. This can be shown by

considering S1 and S∞. Note that S1 ⊆ S∞ but S1 is not closed under supersets in S∞.

138



Every instance of the generalised Kreisel-Putnam axiom is provable in S∞ (see Lemma 3.25)

but we can construct instances of the generalised Kreisel-Putnam axiom not provable in S1,

as we show in the proof below. So, we see that the smaller supersystem S1 does not prove

everything the larger one S∞ does.

Lemma 3.21. For distinct r, p, q not equal to falsum: �S1 ((p→ q)→ r)→ (r ∨ (p ∧ (q →

r))) but 2S1 ((p→ q)→ r)→ r and 2S1 ((p→ q)→ r)→ (p ∧ (q → r)).

Proof. First we show that �S1 ((p → q) → r) → (r ∨ (p ∧ (q → r))). This follows if for

all S ∈ S1 if �S1
S ((p → q) → r) then �S1

S r ∨ (p ∧ (q → r)). Let S ∈ S1 be such that

�S1
S ((p→ q)→ r). Now either `S r or not. If `S1

S r then clearly �S1
S r ∨ (p ∧ (q → r)). So,

assume not. We know that `S1

S∪{p/q} r because �S1

S∪{p/q} p→ q. So as we have at most level 1

rules there must be proofs, by Lemma 3.8, such that `S p and q `S r, so �S1
S r∨(p∧(q → r)).

But 2S1 ((p → q) → r) → r as S = {p̄, q/r} ∪ {⊥/a | a atomic} demonstrates. Note

that �S1
S ((p → q) → r) as assume S ′ extending S proves �S1

S′ p → q then as p̄ ∈ S ′ it

follows that �S1

S′ q and as q/r ∈ S ′ then �S1

S′ r. We need to show that 2S1
S r which is the

case only if `S r. Assume so then there is a derivation ending in r but this can be the

case only by application of q/r. So, we would have a derivation of q but no rule ends in q

and so no such demonstration is available. And 2S1 ((p → q) → r) → (p ∧ (q → r)) as

S = {r̄} ∪ {⊥/a | a atomic} demonstrates.

We can give an even simpler example of how the adding of systems can radically alter what a

supersystem proves. Consider the supersystems {∅}, {{p/q}}, {{p̄}}, {{p̄, p/q}}, {∅, {p/q},

{p̄}, {p̄, p/q}}. Clearly the first four are subsets of the fifth one. And yet no clear relationship

holds between what is true on the subsupersystems and the larger system.
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�{∅} �{{p/q}} �{{p̄}} �{{p̄,p/q}} �{∅,{p/q},{p̄},{p/q,p̄}}

p no no yes yes no

p→ q yes yes no yes no

(p→ q)→ p no no yes yes no

This highlights both an interesting feature of supersystems and why they can be so hard to

work with.

3.5.2 S∞ Satisfies the Kreisel-Putnam axiom

Piecha, Campos Sanz, and Schroeder-Heister (2015) show that for S∞ we can replace any

disjunction-free formula with a rule in S and vice-versa. This will help us to pick out

supersystems which prove sets of formulas. So, we will spell it out in some detail.

Definition 3.20. We define rule-formulas and their associated levels inductively as fol-

lows:

• an atomic formula p is a rule-formula of level 0

• where ϕ1, . . . , ϕn are rule formulas of level i1, . . . , in and p is an atomic formula, then

(ϕ1 ∧ · · · ∧ ϕn)→ p is a rule-formula of level max(i1, . . . , in) + 1.

A formula is disjunction-free if the connective ∨ does not occur in it.

Lemma 3.22. (Piecha, Campos Sanz, and Schroeder-Heister 2015) In IPC, every disjunction-

free formula is equivalent to a conjunction of rule-formulas.

Proof. We must show that for every disjunction free formula ψ there are rule-formulas

ϕ1, . . . , ϕn such that IPC ` ψ ≡ ϕ1 ∧ · · · ∧ ϕn. Base case: Assume p is an atomic formula

then p is a rule-formula and IPC ` p ≡ p. Induction case: Assume IPC ` ϕ ≡ ϕ1∧ · · ·∧ϕn
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and IPC ` ψ ≡ ψ1∧· · ·∧ψm. For the inductive step associated to conjunction, note IPC `

ϕ∧ψ ≡ ϕ1∧· · ·∧ϕn∧ψ1∧· · ·∧ψm. There are no inductive steps associated to disjunction since

we are working under the assumption of disjunction freeness. The only difficult case is the in-

ductive step associated to ϕ→ ψ. We know IPC ` (ϕ→ ψ) ≡ (ϕ1∧· · ·∧ϕn → ψ1∧· · ·∧ψm)

and IPC ` (χ → θ1 ∧ θ2) ≡ ((χ → θ1) ∧ (χ → θ2)). So, it is sufficient to show that each

ϕ1 ∧ · · · ∧ ϕn → ψi is a rule-formula. Note that as ψ1 ∧ · · · ∧ ψm are rule-formulas we know

that either they are atomic formulas or of the form (χ1 ∧ · · · ∧χj)→ q. If the former we are

done so assume ψi = (χ1∧· · ·∧χj)→ q. But as IPC ` (θ1 → (θ2 → θ3)) ≡ (θ1∧θ2 → θ3), it

follows that IPC ` (ϕ1∧· · ·∧ϕn)→ ((χ1∧· · ·∧χj)→ q) ≡ ((ϕ1∧· · ·∧ϕn∧χ1∧· · ·∧χj)→ q)

which is a rule-formula.

In what follows if R is of the form p then R/r is p/r and if R is of the form [R′]q/p with

[R′] possibly empty then R/r is [R′/q]p/r. With this we associate rules with rule formulas

one-to-one as follows:

1. p̄∗ = p

2. (p0, . . . , pn/q)
∗ = p0 ∧ · · · ∧ pn → q

3. IfR0,0, . . . , R0,m0 , . . . , Rn,0, . . . , Rn,mn are associated to ϕ0,0, . . . , ϕ0,m0 , . . . , ϕn,0, . . . , ϕn,nm

then

(([R0,0, . . . , R0,m0 ]q0), . . . , ([Rn,0, . . . , Rn,mn ]qn)/r)∗ = (((ϕ0,0∧ · · ·∧ϕ0,m0)→ q0)∧ · · ·∧

((ϕn,0 ∧ · · · ∧ ϕn,mn)→ qn)→ r)

We associate rule formulas with rules one-to-one as follows:

4. p+ = p̄

5. If ϕ0, . . . , ϕn are associated toR0, . . . , Rn then ((ϕ0∧· · ·∧ϕn)→ r)+ = ((R0, . . . , Rn)/r).

141



It can be checked that ϕ+∗ = ϕ and R∗+ = R. Let S∗ = {R∗ | R ∈ S} and Γ+ = {ϕ+ |

ϕ ∈ Γ}. Given this we have the following result from Piecha, Campos Sanz, and Schroeder-

Heister (2015):

Lemma 3.23 (Piecha, Campos Sanz, and Schroeder-Heister 2015, Lemma 2 (C4)). Let ∆

be a set of disjunction-free formulas.

Γ,∆ �S∞
C ϕ⇔ Γ �S∞

C∪∆+ ϕ and Γ, S∗ �S∞
C ϕ⇔ Γ �S∞

C∪S ϕ

We have been talking about logics with the disjunction property, but it turns out there is a

generalisation of this property, which for PCS semantics implies the Kreisel-Putnam axiom.

Definition 3.21. A consequence relation � has the generalised disjunction property if for

all sets Γ of disjunction free formulas:

Γ � ϕ ∨ ψ ⇔ [Γ � ϕ or Γ � ψ].

We can now show that S∞ satisfies the general disjunction property:

Lemma 3.24. (Piecha and Schroeder-Heister 2019) For all S ∈ S∞, the consequence rela-

tion �S∞
S has the generalised disjunction property.

Proof. Let Γ be disjunction free and Γ �S∞
S ϕ ∨ ψ. By Lemmas 3.12 and 3.13 we know that

�S
S satisfies IPC, so by Lemma 3.22 we can assume that Γ is a set of rule-formulas. It follows

by Equation 3.17 of Definition 3.19 for all S ∈ S∞ that Γ �S∞
S ϕ ∨ ψ. By Lemma 3.23,

�S∞
S∪Γ+ ϕ ∨ ψ. So, by Definition 3.19 disjunction property �S∞

S∪Γ+ ϕ or �S∞
S∪Γ+ ψ. Which again

by Lemma 3.23 gets us Γ �S∞
S ϕ or Γ �S∞

S ψ.

Because for all S ∈ S∞ it follows that S ∪ Γ+ ∈ S∞ it follows that:
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Corollary 3.4. (Piecha and Schroeder-Heister 2019) S∞ has the generalised disjunction

property.

This means that S∞ has the disjunction property (trivially). Piecha and Schroeder-Heister

(2019, Lemma 2.1 p. 4) have shown, any PCS semantics with the generalised disjunction

property satisfies the generalised Kreisel-Putnam axiom.

Lemma 3.25. If a PCS semantics has the generalised disjunction property then it satisfies

the generalised Kreisel-Putnam axiom.

Proof. Let S, S ′ ∈ S and S ⊇ S ′. Let �S
S ϕ → ψ1 ∨ ψ2 such that ϕ is disjunction free. It

follows that ϕ �S
S ψ1 ∨ ψ2 by the weak deduction theorem. By the generalised disjunction

property ϕ �S
S ψi for some i ∈ {1, 2}. So �S

S ϕ → ψi. From which it follows that �S
S (ϕ →

ψ1) ∨ (ϕ → ψ2). Which by monotonicity implies �S
S′ [ϕ → ψ1 ∨ ψ2] → [(ϕ → ψ1) ∨ (ϕ →

ψ2)].

We now have everything we need in place to define quasi-PTV and so it aligns with inquisitive

semantics and show that S∞ aligns with general inquisitive semantics.

3.6 Proof and Consequences of Main Theorem

Our goal is to show the equivalence of the two systems of inquisitive semantics we considered

in Section 3.3 with supersystems of proof-theoretic validity. To do this we need to ensure that

the supersystem meets the conditions set out in Corollary 3.1 and 3.2. We have already seen

that S∞ satisfies the generalised disjunction property and the generalised Kreisel-Putnam

axiom. That means the equivalence of LS∞ to generalised inquisitive logic will follow if S∞’s

disjunction free fragment is the same as intuitionistic logic’s. Further, if we could define a
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filter on S∞ that satisfies double negation elimination for atomic formulas we would show

that the defined system was equivalent to inquisitive logic.

Our first result follows from the following lemma:

Lemma 3.26 (Piecha, Campos Sanz, and Schroeder-Heister 2015, p. 331 Lem. 4). For all

disjunction free ϕ, �S∞ ϕ⇔`IPC ϕ.

Proof. Assume Γ, ϕ are disjunction free and Γ �S∞
S ϕ, it follows that �S∞

S∪Γ+ ϕ. We will show

that �S∞
S ϕ ⇔ S∗ `IPC ϕ. We will not prove the base case: `S p ⇔ S∗ `IPC p. The proof

is an induction of the level of atomic rules which is long but not difficult. The conjunction

case is obvious. The implication case follows via: �S ϕ → ψ ⇔ ϕ �S ψ ⇔�S∪{ϕ+} ψ ⇔

S∗ ∪ {ϕ+∗} `IPC ψ ⇔ S∗ ∪ {ϕ} `IPC ψ ⇔ S∗ `IPC ϕ→ ψ.

From which we get via Corollary 3.2:

Theorem 3.4. LS∞ = LGInq = IPC +GKP .6

What remains is to try and offer a proof-theoretic validity notion for inquisitive logic. It

turns out we have a general mechanism for defining new supersystems which prove sets of

disjunction-free formulas:

Definition 3.22. Given a set of disjunction free formulas ∆ let S∆ = {S ∈ S∞ | ∆+ ⊆

S}

Lemma 3.27. For any set of disjunction free formulas ∆ it follows that S∆ is a filter on

S∞ and �S∆
∆.

Proof. Clearly S∆ is a filter on S∞ so by Lemma 3.20 we have for all S ∈ S∆ that �S∞
S

∆ ⇒�S∆
S ∆. Note that for all S ∈ S∞, ∆ �S∞

S ∆. So, by Lemma 3.23 it follows that

6I would like to thank an anonymous reviewer for pointing me towards Punčochář 2016 and suggesting
this result.
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�S∞
S∪∆+ ∆. Let S ∈ S∆, it follows that S ∈ S∞ and that S = S ∪∆+. So �S∞

S∪∆+ ∆ which

implies �S∆

S∪∆+ ∆ and so �S∆
S ∆. From which it follows that �S∆

∆.

If we consider the set of formulas true on a particular S∆ sometimes this will be the set of

all formulas because ⊥ is among them. Of the consistent sets, many will not be closed under

substitution. Some of these will include formulas which cannot be proven in classical logic,

for example, S{p}. This makes it clear that these systems can be weak logics that are either

intermediate or stronger than classical logic.7

We have now collected all the necessary pieces to define quasi-PTV.

Definition 3.23. Define SQ (Q for Quasi) based on S∞ as follows:

SQ = S{¬¬p→p|p atomic} = {S ∈ S∞ | ([p/⊥]⊥/p) ∈ S for all atomic p} (3.18)

As SQ is a filter on S∞ we can show it satisfies the Kreisel-Putnam axiom as S∞ does. This

is the last piece needed to show that SQ satisfies a condition from Corollary 3.1.

Lemma 3.28. SQ is a filter on S∞ and SQ satisfies both the Kreisel-Putnam axiom and

¬¬p→ p for all atomic p.

Proof. As SQ = S{¬¬p→p|patomic} it follows by Lemma 3.27 that SQ is a filter on S∞ and

�SQ
¬¬p → p for all atomic p. As SQ is a filter on S∞ it follows by Lemma 3.20 that SQ

proves everything S∞ does. By Lemma 3.24 and Lemma 3.25 it follows that S∞ satisfies

the Kreisel-Putnam axiom and so, so does SQ.

This proof shows that SQ defines a logic LSQ
= {ϕ |�SQ

ϕ} which meets the requirements

found in Corollary 3.1. By Lemmas 3.4 and 3.7 we have that LSQ
is the same logic as

inquisitive logic. That is:

7They cannot be classical as they all have the disjunction property which CPL does not.
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Theorem 3.5. LSQ
= LInq

As we are working with weak logics we can ask the question what logic characterises the

fragment closed under substitution. To do this we define a logics schematic fragment.

Definition 3.24. If L is a weak logic, its schematic fragment is:

Schm(L) = {ϕ ∈ L | for all atomics p1, . . . , pn in ϕ and all ϕ1, . . . , ϕn, ϕ[p1/ϕ1, . . . , pn/ϕn] ∈ L}

That is Schm(L) is every formula of L for which substitution is valid. If L is a weak

intermediate logic then Schm(L) is an intermediate logic. It follows from these results that

the schematic fragment of both logics is Medvedev’s logic.

Definition 3.25. Medvedev’s logic of finite problems ML is defined semantically as the

logic of all finite frames of the form (P(X)− {X},⊆).

Ciardelli and Roelofsen (2011) have shown that the schematic fragment of LInq is Medvedev’s

logic of finite problems discussed above, which is not known to be axiomatizable. Punčochář

(2016) has generalised this result. From this it follows that: Schm(LSQ
) = Schm(LS∞) =

ML.

3.7 Conclusion

To summarise: We have seen that inquisitive semantics has the disjunction property, the

generalised Kreisel-Putnam axiom and double negation elimination for atomic formulas,

while general inquisitive semantics has the disjunction property, the generalised Kreisel-

Putnam axiom and shares a disjunction free fragment with IPC. We have generated a system

of PTV, namely quasi-PTV or SQ, which is extensionally equivalent to inquisitive semantics

and have shown that PTV or S∞ is extensionally equivalent to general inquisitive semantics.
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This answers an important question about proof-theoretic validity as presented in the works

of Piecha, de Campos Sanz, and Schroeder-Heister. It also highlights a fascinating con-

nection between inquisitive semantics and proof-theoretic semantics. Despite very different

motivations, this connection suggests that inquisitive semantics can be given a constructive

justification and that proof-theoretic validity might have wider applicability than previously

though.

It remains open what logic is captured by the Sns for n ∈ N. These logics are going to be

fewer well behaviours than the ones considered here because they will have the generalised

Kreisel-Putnam axiom for formulas only below a certain complexity. They may also validate

additional axioms as is seen by S1’s having double negation elimination for atomic formulas

(Piecha 2016).
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