UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Proghammers" Mental Models 0? Their Phogrjuming Tasks:
The Ihteractiom Op Real-World Khowledge Ahd Programming Knovfledge

Permalink

bttgs:géescholarshiQ.orggucéitem433d257k\=/|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 4(0)

Authors

Kahnay, Hank
Elsenatadt, Marc

Publication Date
1982

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/33d2s7kv
https://escholarship.org
http://www.cdlib.org/

PROGRAMMERS' MENTAL MODELS OF THEIR PROGRAMMING TASKS:
THE INTERACTION OF REAL-WORLD KNOWLEDGE AND PROGRAMMING KNOWLEDGE

Hank Kahney & Marc Eisenstadt

The Open University

Milton Keynea, England

INTRODUCTION

This paper describes our ongoing research into the
behaviour of novice programmers. We are interested
in the mental processes which occur when novicea
are confronted with a problem statement, and the
mechanisms by which they understand the problem,
design an algorithm, code it, and (if necessary)
debug it. Our research is a development of earlier
work on problem understanding (Hayes & Simom,
1974), models of programmers' coding processes
(Brooka, 1977), and debugging (Sussman, 1975;
Goldstein, 1975; Laubach & Eisenstadt, 1981).

We investigate students attempting to write
recursive inference programs using a LOGO-like
database-manipulation language called SOLO
(Eisenstadt, 1978; Eisenstadt, Laubach, & Kahnmey,
1981) Students are presented with a prototypical
problem and solution couched in everyday terms in
order to simplify the explanation of recursion:
"Imagine a chain of 'KISSES' relations, e.g. JOHN
KISSES MARY KISSES FRED KISSES JANE, etc. A
procedure called INFECT can propogate FLU all the
way through the chain of KISSES relations, 3o we
end up with JOHN HAS FLU, MARY HAS FLU, etc.” The
example is explained to the students in great
detail, including several pages of text, diagrams,
and a worked-through trace of a sample invocation
of INFECT.

As one might expect, some students "get it' (i.e.
understand this simple form of tail-recursion and
the notion of propogating side-effects through the
data base), and some don't. The difference between
those who 'get it' and those who don't can be
accounted for by differences in (a) the
abstractions they make from their first detailed
example, and (b) the evaluation rules inherent in
the mental models they use to 'run through' trial
solutions.

A SAMPLE PROBLEM AND SOLUTION

We investigated students solving several recursive
inference problems, including ome based om a
real-world example so compelling that we could be
‘certain' the nature of the task was perfectly
understood. Here is a concise summary of the
problem:

Given a database describing objects piled up on one
another as follows:

on on on
SANDWICH >PLATE >NEWSPAPER-----=>BO0K etc

Fig. 1

write a program which simulates the effect of
someone firing a very powerful pistol aimed
downwards at the topmost object (SANDWICH),
yielding the final database shown below:

on on on
SLN?HICH)PL{TE >!EﬁS?QPER-.---->BOGK etc
I

1]
ihu Eho.u ihaa ihas
| i ; |
: : :
1

> BULLETHOLE <{e--m-|

Fig. 2

As it turns out, even our 'crystal clear' example
(fleshed out in considerably more detail) causes
difficulty-- it appears that those students who
‘get it' can cope with either 'crystal clear' or
‘muddy’ recursive inference problems, whereas those
who don't are stuck in either case.

Fig. 3 below shows the solution eventually
produced by subject 38, onme of the subjects who
'got it':

TO SHOOT /X/
1 NOTE /X/ HAS BULLETHOLE
2 CHECK /X/ ON ?
2A If present: SHOOT *; EXIT
2B If absent: EXIT

Fig. 3 S8's solution (the '*' and '7'
are co-referential)

Below is a summary of the protecol of subject S8
during the course of reading and solving this
problem, but before any attempt to write the code
shovn in Pig. 3. Problem statementa are
underlined. The numbers are segments from the
actual protocol. It has been condensed for
axpository purposes in this brief paper, but
captures the highlights of the protocol. A
complete version is described in Kahney (1982).

"On page 80 of Units 3 to 4 we looked at a method

for nnkig; a particular infarence 'keep on
happening' ."

2 Is that called 'iteration'? No,
‘recursion'... I think this is going to
say something about what happens when you
keep on applying = function...through a
database

:lg this option you are asked to imagine a state of
the world in which there are six objects: ...

this hypothetical world is highly structured: the
sandwich is lying in the centre of the plate, which
is aittigg on the newspaper, which is lying on the

book ...

4 ... well you could also get out thinga
like... sort of making inferences about
'if the sandwich is on_the plate which is
on the newapaper [then] the sandwich is
on the newapaper'.

:i database representing this state of affairs
looks like this [Fig. 1). Now imagine someone
standing beside the table with a .357 magnum
pistol.”

143

8 Well, I would expect him to shoot
through all that lot then. I don't know
why he wants to do it though...

58 began with a working kmowladge of recursive
procedurea. At succeseive sentences SB set up
expectations about what would come next and usually
was in the position of predicting the information
contained in the next sentence or two: she was
always just slightly ahead of the game. S8 is
apparently using a 'recursion’ schema to direct her
attention during the reading process to important
aspects of the problem statement. The first line
of the problem statement has clearly triggered off
an sxpectation of recursion |protocol segment 2],
with a concomitant expectation of some 'function'
to be applied 'through a database' [segnent 2].

The database structure [?1;. 1] is consistent with
her sxpectation of a standard transitivity problem
[segment 4], even though this is not the problem to
be posed. Her real-world kmowledge about pistols
and the spatial relationship of the objects in the
problem combines with her expectations about
transitivity problems to yield an expectation about
what the protagonist in the problem statement will
do [segment 8]. This expectation does not mesh
with her kmowledge of human motivations and
intentions [seglent 8].

Figure 4 depicts our representation of S8's
internalized schema for recursion. The details of
the schema are derived from a variety of sources:
transcription tasks, concept rating and sorting
tasks, problem-solving tasks, and verbal protocolas.

RECURSIVE-PROCEDURE

e

GOAL: (PorEvery x In (my applies-to) do
(achieve (my action) x
ACTION: (a side-effsct [DEFAULT (a NOTE)})
APPLIES-TO: (a transitive-chain)
SURFACE-TEMPLATE:
70 (namei =(a name)) (a parameter [default: X})
(my actionm)
CHECK (a node) (a relation) (a wild-card)
IF PRESENT: (a procedure
with name = namel
with parameter = "#");EXIT
IF ABSENT: EXIT
DORE
EVALUATIOR-RULES:
1) (let parameter = the startnode from
(my applies-to))
2) (apply (my action) parameter)
3) (assert “(ACHIEVED ,(my action) ,parameter))
4) (let parametsr = (GetNextNoda))
5) (ForEvery x In (GetRestOfNodes)
(assert “(ACHIEVED ,(my action) ,x))
TRIGGERS: "keep on happening”; re-apply

Figure 4: 38's schema for recursion

Bearing in mind that slot-names are displayed
against the left-hand margin (e.g. GOAL, ACTION,
etc.), and that the function "my”" is a
cross-reference to a slot-filler (e.g. (my
action)) we can paraphrase S8's achema for
recursion as follows:

The GOAL of a recuraive procedure is to perpetrate
a 3ide effect on every element of the data
structure to which it is applied, i.e. =
‘transitive' chain. (Knowledge about such
structures is contained in 58's TRANSITIVE-CHAIN
schema, not depicted here, which indicates that a
collection of nodes standing in a particular
relation to one another is an essential component

144

of recursive processing-- S8 has abstracted this
notion, although KISSES is not a transitive
relation.) The ACTION involved is typically the
application of a NOTE primitive (which performs a
database 'ASSERT'). The SURFACE-TEMPLATE depicts
raw SOLO code, with its own slotes to be filled in
during actual coding. It is based upon an exempla
given in the textbook, and corresponds to rote
learning of 'how to do it', rather than
understanding of 'how it works'. (Subjects like
55, discussed below, have a poorer grasp of
recursion and need only have a mental pointer to a
place in the textbook where they can find a typical
example to copy.)

'How it works' understanding is reflected primaril;
in the GOAL and EVALUATION-RULES slots. The GOAL
slot captures the essence of the 'generator plan’
used in the program-understanding plan-libraries of
Waters (1978) and Laubsch & Eisenstadt (1981). The
EVALUATION-RULES slot depicts S8's technique for
working through a mental model of the succession oi
affects carried out by a body of SOLO code. The
rules are clearly not sufficient to work as a SOLO
interpreter, but rather depict the subject's own
naive strategy for convincing herself that the code
'worka'. The rules behave as follows: (1)
instantiate the parameter, pretending that it's the
first node in the chain (i.e. SANDWICH); (2)
imagine the main action being performed on that
node; (3) make a mental note that the action has
been achieved; (4) see what node ia next in the
database, traversing the crucial 'transitive’
relation; (5) make a mental note that the actionm
is achieved on svery node resachable along the
'transitive’ chain.

Below we present 58's protocol corresponding to the
above svaluation rules, along with the relevant
rule listed in square brackets, e.g. [ER1], [ER2],
stc. These protocol segments wers recorded after
S8 had writtem the program, but before she ranm it.

208 TO SHOOT... X, let's say X ia a
SANDWICH... [ER1]

210 Pirst of all it NOTEs in the
database...X HAS BULLETHOLE [ER2, ER3]

211 It then CHECKs whether X is ON
anything... [ER4]

213 X is ON PLATE so it will do that to
PLATE... So that should keep doing that,
PLATEs on ... something, so on and s0
on... [ERS]

A SECORD SOLUTION

Here is the solution eventually developed by
subject S5, who didn't ‘get it':

T0 SHOOTUP /X/
1 NOTE /X/ HAS BULLETHOLE
2 CHECK /X/ SHOOTS *?
2A If Present: SHOOTUP *; EXIT
2B If Absent: EXIT

Figure S

Below are extracts from S5's protocol. Whereas o
was able to develop the solution 'in her pead ,
S5's solution evolved during code-writing:

46 I'm going to follow that example [=
INFECT].

51 [Reads from INFECT example in SOLO
primer)... NOTE..um, X HAS PLU...
SANDWICH HAS BULLETHOLE....

54 SANDWICH ON PLATE, um....NOTE...um...

63 I've got to get the SHOOT in somewhere
haven't I?

65 CHECK...X SHOOTS SANDWICH. IF
PRESENT....SHOOTUP....

83 Well, I hope it will go all the way
through the sequence and shoot the floor.
The data base is in and I've copied that
program [= INFECT] exactly.

S5 has a recursion schema which differs from that
of S8 in several respects. First, S5's schema does
not have a filled SURFACE-TEMPLATE slot, but rather
(a) a pointer to the place in the SOLO primer where
a typical recursive procedure, i.e. INFECT, is
described, and (b) a method for filling the
SURPACE-TEMPLATE slot by copying the INFECT
program's structure and providing arguments from
the current problem. Second, S5's schema has a
restriction that the relationship between objects
in the database must be ‘'active’ for recursion to
work. That is, from the original INFECT teaching
problem with JOHN KISSES MARY KISSES FRED, S5 had
abstracted the rule that a start-node has to 'do’
something to a succeasor-node before a side-effect
can be perpetrated on the successor-node. (S8, on
the other hand, had abstracted 'transitivity' from
previous study of the INFECT program-- neither
view, of course, is perfectly correct) .

For example, 'ON' is not an 'active' relationship
between the objects (SANDWICH, PLATE, etc.) given
in the problem statement. 'ON' is passive and thus
does not 'support' S5's notion of recursion.
'SHOOTS' is an active relation, and S5 is convinced
that somehow SHOOTS must be brought into the
pattern-matching segment of the program in order to
make the program work at all [segments 63 and 65 of
S5's protocol]- This conviction precludes solution
of the problem, unless careful re-analysis of the
example program leads to reformulation of the rule
about relationships between database objects.

S5 never relinquishes her belief that an active
relationship need exist between the nodes for
recursion to work, and her reformulations of the
program are all guided by this single important but
wrong-headed principle. S5's protocol continues:

156 This one about the BULLETHOLE and
this one with the KISSES are different.

I need to say that the first X, the first
parameter does something actively... to
the second parameter. All I've got is
BULLETHOLE. In the example it's got
KISSES, which is an active thing.

Although S5 made several subsequent attempts to map
the BULLETHOLE problem onto the INFECT framework,
the point of view from which the mapping occurred
never changed and no solution resulted.

CONCLUSION

Because our programming problems use real-world
examples rather than abstract programming tasks,
the subjects' knowledge of programming interacts
with their real-world knowledge during the reading,
coding, and debugging proceases. We have indicated

the way (often imperfect) knowledge of programming
concepts pervades problem solving even in its
earliest stages.

Our subjects develop schemas for recursion which
are more or less 'adequate’ for solving the
problems we devise. This adequacy ranges from that
of subject S5 (who can not solve any of the
recursion problems we have devised) to that of
subject S8 (who can solve many, but not all, of our
recursion problems). When a problem maps onto an
adequate set of schemas in a novice's store of
knowledge, the novice can tackle the tasks of
problem understanding, method finding, coding, and
informal verification in a productive and efficient
manner. When a problem is mapped to an inadequate
set of schemas, the problem statement is often
poorly understood, and becomes embedded in a
program constructed as much from world knowledge as
from the basic elements of the implementation
language.

REFERENCES

Brooks, R. Towards a theory of the cognitive
processes in computer programming. Int.
J. Man-Machine Studies, 9, 1977.

Eisenstadt, M. Artificial intelligence
project. Units 3/4 of Cognitive psychology:
a third level course. Milton Keynes: Open
University Press, 1978.

Eisenstadt, M., Laubsch, J., & Kahney, H.
Creating pleasant programming environments
for cognitive science students. Proceedings
of the Third Annual Cognitive Science Society
Conference, Berkeley, Califormia, 1981.

Goldstein, I.P. Summary of MYCROFT: a system for
understanding simple picture programs.
Artificial Intelligence, 6,, 1975.

Hayes, J.R. & Simon, H.A. Understanding written
problem instructions. In Gregg, L.W. (Ed.),
Knowledge and Cognition. Hillsdale, N.J.:
Lawrence Erlbaum Associates, 1974.

Kahney, H. An in-depth study of the behaviour of
novice programmers. Technical Report No. 82-9,
Human Cognition Research Group, The Open
University, Milton Keynes, England, 1982.

Laubsch, J. & Eisenstadt, M. Domain specific
debugging aids for novice programmers.
Proceedings of the Seventh Intermational
Joint Conference on Artificial Intelligence
(IJCAI-81), Vancouver, B.C. Canada, 1981.

Sussman, G.J. A computer model of skill

acquisition. New York: American Elsevier,1975.

Waters, R.C. A method for analyzing loop programs.
IEEE Transactions on Software Engineering,
SE-5:3, 1979.

145

	cogsci_1982_143-145

