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ABSTACT OF THE DISSERTATION 

 

Investigating the Relationship Between Perceptual Learning and  

Statistical Learning in Human Vision 

 

by 

 

Carolyn Ann Bufford Funk 

Doctor of Philosophy in Psychology 
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Professor Philip Kellman, Chair 

 

Perceptual learning (PL) and statistical learning (SL) both seek to explain how humans learn 

through experience. However, research lacks clear, consistent definitions, causing collective 

confusion about the relationship between SL and PL: some researchers view SL and PL as 

distinct learning processes, while others view them as part of a unified learning process. We 

describe two distinct learning concepts that cohere with most work: PL is improving perception 

and, in a psychophysical sense, improving sensitivity. SL is recording co-occurrences in 

memory, and perhaps, in a psychophysical sense, changing criterion or bias. These concepts 

allowed us to test the relationship between PL and SL. We developed a novel psychophysical 

assessment to measure incidental PL in a well-known visual SL paradigm of shape pairs 

presented simultaneously. Experiments 1 and 3 used the paradigm’s SL familiarization and SL 

familiarity test, then our PL assessment. We also tested incidental SL in PL: Experiment 2 used 
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PL training on stimuli from the SL paradigm, then a brief SL familiarity test for an incidental 

pair, then the assessment. Experiments 1 and 3 showed familiarity, but Experiment 2 showed no 

evidence of familiarity in the SL test. Experiments 1 and 3 showed PL effects: transfer in 

increased accuracy and sensitivity and decreased false alarming relative to baseline, evidence of 

incidental PL in an SL paradigm. Reducing SL by reducing familiarization session length caused 

weaker PL, observed only for the longest exposure duration. Experiment 2 showed stronger PL 

effects on the assessment, but no SL. We discuss several ways SL and PL could be related and 

compare each possibility to our results. Several of our results are consistent with SL and PL 

being part of a unified learning process, or at least occurring under overlapping conditions, but 

the relationship may be more nuanced and asymmetric: PL may occur more under conditions 

designed for SL, but SL may be less likely to occur during focused PL tasks. These results help 

clarify and unite rich but separate literatures on perceptual and statistical learning.  



iv 

 

The dissertation of Carolyn Ann Bufford Funk is approved. 

Gregory A Bryant 

Hongjing Lu 

Ladan Shams 

Philip Kellman, Committee Chair 

 

 

 

University of California, Los Angeles 

2019 

  



v 

 

TABLE OF CONTENTS 

ABSTACT OF THE DISSERTATION .......................................................................................... ii 

TABLE OF CONTENTS ................................................................................................................ v 

ACKNOWLEDGEMENTS ......................................................................................................... xix 

BIOGRAPHICAL SKETCH ........................................................................................................ xx 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

Investigating the relationship between perceptual learning and statistical learning in human 

vision ........................................................................................................................................... 1 

Connection to Signal Detection Theory. ............................................................................. 2 

Possible Relationships Between SL and PL ........................................................................... 3 

Structure of the Introduction ................................................................................................... 3 

Perceptual Learning ................................................................................................................ 4 

Statistical Learning ................................................................................................................. 6 

Early Usage of Statistical Learning. ................................................................................... 6 

Statistical Learning in Human Perception and Learning. ................................................... 7 

Founding Modern SL (in Human Vision). .......................................................................... 9 

Modern Visual SL: Changing Methods, and Broadening Definitions. ............................. 10 

SL As Any Reliable Statistic. ........................................................................................... 14 

Comparing PL and SL .......................................................................................................... 14 

The Problem of Different Methodologies. ........................................................................ 15 

Researchers’ Conflicting Ideas in the Literature. ............................................................. 16 



vi 

 

Dissertation Problem and Approach ..................................................................................... 18 

Dissertation Problem. ........................................................................................................ 18 

Dissertation Approach. ..................................................................................................... 19 

CHAPTER 2: EXPERIMENT 1 INTRODUCTION AND METHODS ...................................... 21 

Experiment 1: Does PL accompany visual SL? ........................................................................ 21 

Psychophysically Testing for PL .......................................................................................... 22 

Hypotheses ............................................................................................................................ 23 

Method ...................................................................................................................................... 23 

Participants ............................................................................................................................ 23 

Materials & Procedure .......................................................................................................... 24 

Statistical Learning Paradigm. .......................................................................................... 24 

Figure 1. ...................................................................................................................... 25 

Psychophysical Detection Task. ....................................................................................... 25 

Figure 2. ...................................................................................................................... 27 

Survey. .............................................................................................................................. 28 

Dependent Measures ............................................................................................................. 28 

Familiarity Test. ................................................................................................................ 28 

Psychophysical Assessment. ............................................................................................. 28 

Additional Predictors ............................................................................................................ 29 

Survey. .............................................................................................................................. 29 



vii 

 

Other Factors ..................................................................................................................... 30 

CHAPTER 3: EXPERIMENT 1 RESULTS AND DISCUSSION .............................................. 31 

Results ....................................................................................................................................... 31 

Recognition ........................................................................................................................... 31 

Figure 3. ...................................................................................................................... 31 

Psychophysical Assessment: Main Analyses........................................................................ 32 

Accuracy. .......................................................................................................................... 32 

Figure 4. ...................................................................................................................... 33 

Figure 5. ...................................................................................................................... 35 

Hit Rate. ............................................................................................................................ 35 

Figure 6. ...................................................................................................................... 37 

False Alarm Rate............................................................................................................... 37 

Figure 7. ...................................................................................................................... 38 

Sensitivity. ........................................................................................................................ 38 

Figure 8. ...................................................................................................................... 39 

Bias. .................................................................................................................................. 39 

Psychophysical Assessment: Additional Analyses ............................................................... 40 

Recognition Accuracy and Assessment Accuracy. ........................................................... 40 

Comparison to Baseline. ................................................................................................... 41 

Accuracy. .......................................................................................................................... 41 

Figure 9. ...................................................................................................................... 42 



viii 

 

False Alarm Rate............................................................................................................... 43 

Figure 10. .................................................................................................................... 44 

Figure 11. .................................................................................................................... 45 

Sensitivity. ........................................................................................................................ 45 

Survey Data ........................................................................................................................... 46 

Noticing the Pairs. ............................................................................................................. 46 

Strategy. ............................................................................................................................ 47 

Alertness and Sleep. .......................................................................................................... 47 

Other Factors ......................................................................................................................... 47 

Discussion ................................................................................................................................. 47 

Comparing our Data to the Hypotheses ................................................................................ 48 

Assessment Performance. ................................................................................................. 48 

Recognition Test. .............................................................................................................. 49 

Familiar and Shuffled Performance above Baseline. ........................................................ 49 

Exploratory Analyses ............................................................................................................ 50 

Summary ............................................................................................................................... 50 

Next Steps ............................................................................................................................. 51 

CHAPTER 4: EXPERIMENT 2 INTRODUCTION AND METHODS ...................................... 52 

Experiment 2: How does a PL intervention compare to SL? .................................................... 52 

Method ...................................................................................................................................... 53 



ix 

 

Participants ............................................................................................................................ 53 

Materials & Procedure .......................................................................................................... 54 

PL Training. ...................................................................................................................... 54 

Figure 12 ..................................................................................................................... 55 

One-Trial Familiarity Test. ............................................................................................... 56 

Survey ............................................................................................................................... 57 

Dependent Measures ............................................................................................................. 57 

PL Training. ...................................................................................................................... 57 

One-Trial Familiarity Test. ............................................................................................... 57 

Psychophysical Assessment. ............................................................................................. 57 

Additional Predictors ............................................................................................................ 57 

Survey. .............................................................................................................................. 57 

Other Factors ..................................................................................................................... 58 

CHAPTER 5: EXPERIMENT 2 RESULTS & DISCUSSION .................................................... 59 

Results ....................................................................................................................................... 59 

Perceptual Learning Condition ............................................................................................. 59 

Effects of SL Pair Percentage. .......................................................................................... 59 

One-Trial Familiarity Test .................................................................................................... 60 

Figure 13. .................................................................................................................... 60 

PL Training and Psychophysical Assessment Accuracy. ................................................. 61 



x 

 

PL Training and Familiarity.............................................................................................. 61 

Psychophysical Assessment: Main Analyses........................................................................ 61 

Accuracy. .......................................................................................................................... 61 

Figure 14. .................................................................................................................... 62 

Hit Rate. ............................................................................................................................ 63 

Figure 15. .................................................................................................................... 64 

Figure 16. .................................................................................................................... 65 

False Alarm Rate............................................................................................................... 65 

Figure 17. .................................................................................................................... 66 

Sensitivity. ........................................................................................................................ 66 

Bias. .................................................................................................................................. 67 

Figure 18. .................................................................................................................... 68 

Effects of Training & Survey Variables ............................................................................... 68 

Training. ............................................................................................................................ 68 

Survey Data: Noticing the Pairs. ....................................................................................... 68 

Survey Data: Strategy. ...................................................................................................... 69 

Survey Data: Alertness and Sleep. .................................................................................... 69 

Psychophysical Assessment: Effects of Number of Trials and Noticing the Pairs ............... 69 

Accuracy. .......................................................................................................................... 69 

Figure 19. .................................................................................................................... 70 

Figure 20. .................................................................................................................... 71 



xi 

 

False Alarm Rate............................................................................................................... 71 

Figure 21. .................................................................................................................... 72 

Sensitivity. ........................................................................................................................ 72 

Discussion ................................................................................................................................. 73 

Comparing our Data to the Hypotheses ................................................................................ 73 

Comparing Experiment 1 and Experiment 2 Stimuli ............................................................ 74 

No Learning of SL Pair ......................................................................................................... 75 

Number of PL Trials and Noticing the Pairs ........................................................................ 76 

What was Learned?. .......................................................................................................... 77 

Summary ............................................................................................................................... 77 

Next Steps ............................................................................................................................. 78 

CHAPTER 6: EXPERIMENT 3 INTRODUCTION AND METHODS ...................................... 79 

Experiment 3: How does session length impact learning? ....................................................... 79 

Method ...................................................................................................................................... 80 

Participants ............................................................................................................................ 80 

Materials & Procedure .......................................................................................................... 81 

CHAPTER 7: EXPERIMENT 3 RESULTS AND DISCUSSION .............................................. 82 

Results ....................................................................................................................................... 82 

Recognition ........................................................................................................................... 82 

Figure 22. .................................................................................................................... 82 



xii 

 

Figure 23. .................................................................................................................... 83 

Condition and Session Length. ......................................................................................... 83 

Table 1. ....................................................................................................................... 84 

Session Length and Recognition Group. .......................................................................... 84 

Correlating Recognition and Assessment Accuracy. ........................................................ 85 

Psychophysical Assessment .................................................................................................. 85 

Accuracy. .......................................................................................................................... 85 

Figure 24. .................................................................................................................... 87 

Hit Rate. ............................................................................................................................ 90 

Figure 25. .................................................................................................................... 91 

False Alarm Rate............................................................................................................... 91 

Figure 26. .................................................................................................................... 92 

Sensitivity. ........................................................................................................................ 92 

Figure 27. .................................................................................................................... 93 

Bias. .................................................................................................................................. 95 

Figure 28. .................................................................................................................... 96 

Survey Data ........................................................................................................................... 96 

Noticing the Pairs. ............................................................................................................. 96 

Strategy. ............................................................................................................................ 97 

Alertness and Sleep. .......................................................................................................... 97 

Psychophysical Assessment: Effects of Noticing, Recognition, and Linguistic Coding ...... 98 



xiii 

 

Figure 29. .................................................................................................................... 98 

Accuracy. .......................................................................................................................... 98 

False Alarm Rate............................................................................................................. 101 

Figure 30. .................................................................................................................. 102 

Figure 31. .................................................................................................................. 103 

Sensitivity. ...................................................................................................................... 103 

Discussion ............................................................................................................................... 106 

Comparing my Data to the Hypotheses .............................................................................. 106 

Session Length .................................................................................................................... 107 

Recognition. .................................................................................................................... 107 

Psychophysical Assessment. ........................................................................................... 108 

Correlations. .................................................................................................................... 109 

Recognition, Noticing, and Linguistic Coding ................................................................... 109 

Summary ............................................................................................................................. 109 

Next Steps ........................................................................................................................... 110 

CHAPTER 8: MULTI-EXPERIMENT ANALYSES ................................................................ 111 

Comparing Across Experiments on the Psychophysical Assessment .................................... 111 

How does Exp. 1 compare to Baseline?.............................................................................. 111 

How does Exp. 3 at 21 minutes compare to Exp. 1? .......................................................... 111 

Recognition Accuracy. .................................................................................................... 112 



xiv 

 

Figure 32. .................................................................................................................. 112 

Psychophysical Assessment Accuracy. .......................................................................... 112 

False Alarm Rate............................................................................................................. 116 

Figure 33. .................................................................................................................. 117 

Sensitivity. ...................................................................................................................... 118 

Figure 34. .................................................................................................................. 119 

How does Exp. 3 at 7 minutes compare to Baseline? ......................................................... 119 

Accuracy ......................................................................................................................... 119 

Figure 35. .................................................................................................................. 120 

Figure 36. .................................................................................................................. 122 

False Alarm Rate............................................................................................................. 122 

Figure 37. .................................................................................................................. 123 

Sensitivity. ...................................................................................................................... 123 

How does Exp. 3 at 35 minutes compare to Exp. 2? .......................................................... 125 

Figure 38. .................................................................................................................. 125 

Accuracy. ........................................................................................................................ 125 

False Alarms ................................................................................................................... 127 

Rate. ................................................................................................................................ 127 

Figure 39. .................................................................................................................. 128 

Figure 40. .................................................................................................................. 129 

Sensitivity. ...................................................................................................................... 129 



xv 

 

How does learning time relate to performance across experiments? .................................. 130 

How do all of the experiments compare to each other and Baseline? ................................ 131 

Accuracy. ........................................................................................................................ 131 

Figure 41. .................................................................................................................. 132 

False Alarm Rate............................................................................................................. 136 

Figure 42. .................................................................................................................. 137 

Figure 43. .................................................................................................................. 138 

Sensitivity. ...................................................................................................................... 138 

How do all of the experiments compare on survey measures? ........................................... 142 

Correlations ..................................................................................................................... 142 

Accuracy. ........................................................................................................................ 142 

Figure 44. .................................................................................................................. 144 

Figure 45. .................................................................................................................. 145 

False Alarm Rate............................................................................................................. 146 

Sensitivity. ...................................................................................................................... 146 

Figure 46. .................................................................................................................. 147 

Discussion ............................................................................................................................... 150 

Successful Direct Replication of Experiment 1 .................................................................. 150 

Effects of Short and Long Session Lengths ........................................................................ 151 

Weaker PL with a Shorter Session Length. .................................................................... 151 

Increasing Session Length is Different than PL Training. .............................................. 151 



xvi 

 

Comparing across Experiments .......................................................................................... 152 

Summary ............................................................................................................................. 152 

CHAPTER 9: GENERAL DISCUSSION .................................................................................. 154 

Experiments and Findings................................................................................................... 155 

Experiment 1. .................................................................................................................. 155 

Experiment 2: Targets and Psychophysical Analyses. ................................................... 156 

Experiment 3. .................................................................................................................. 157 

Multi-Experiment Analyses. ........................................................................................... 158 

Experiment 2: SL and One-Trial Recognition. ............................................................... 159 

What the Relationship Between SL and PL Could Be ....................................................... 160 

But Wasn’t it All SL (Except Exp. 2)? And Other Objections and Alternative Explanations

............................................................................................................................................. 163 

SL, PL, and Bayesian Decision Making ............................................................................. 166 

What was Learned: Shapes, Pairs, or Both? ....................................................................... 166 

Explaining Findings in the SL Literature............................................................................ 167 

Explicit and/or Implicit. .................................................................................................. 168 

Global SL Might Be Different Than PL. ........................................................................ 170 

Limitations and Future Directions ...................................................................................... 170 

Psychophysical Assessment. ........................................................................................... 170 

SL Pair in Experiment 2. ................................................................................................. 170 



xvii 

 

Other. .............................................................................................................................. 171 

Conclusion and Broader Impacts ........................................................................................ 172 

Appendix A: Survey Questions .................................................................................................. 174 

Appendix B: Experiment 2 Results (Including Those with 75% SL Pair Trials) ....................... 175 

Results ..................................................................................................................................... 175 

Perceptual Learning Condition ........................................................................................... 175 

PL Familiarity Test ............................................................................................................. 175 

Figure 47. .................................................................................................................. 176 

PL Training and Familiarity............................................................................................ 177 

Psychophysical Assessment: Main Analyses...................................................................... 178 

Figure 48. .................................................................................................................. 178 

Accuracy. ........................................................................................................................ 178 

False Alarm Rate............................................................................................................. 180 

Figure 49. .................................................................................................................. 181 

Sensitivity. ...................................................................................................................... 181 

Figure 50. .................................................................................................................. 182 

Appendix C: Experiment 3 Results (Excluding Late Participants) ............................................ 184 

Results ..................................................................................................................................... 184 

Recognition ......................................................................................................................... 184 

Figure 51. .................................................................................................................. 184 

Figure 52. .................................................................................................................. 185 



xviii 

 

Table 2. ..................................................................................................................... 186 

Psychophysical Assessment: Main Analyses...................................................................... 187 

Accuracy. ........................................................................................................................ 187 

Figure 53. .................................................................................................................. 188 

Figure 54. .................................................................................................................. 192 

False Alarm Rate............................................................................................................. 192 

Sensitivity. ...................................................................................................................... 194 

Figure 55. .................................................................................................................. 195 

References ................................................................................................................................... 199 

 

  



xix 

 

ACKNOWLEDGEMENTS 

I would like to acknowledge my co-authors, Drs. Everett Mettler and Phil Kellman. Dr. Kellman 

was the PI, overseeing the project, and particularly contributing to the design of Experiment 1, 

particularly the psychophysical assessment, the design of Experiment 2, and interpretation of 

findings. Dr. Mettler also helped design the psychophysical assessment, wrote the initial version 

of the program for Experiment 1, advised on revisions to the code for presenting stimuli, and 

managed the code for accessing the data. I have acknowledged the contributions of co-authors 

throughout this dissertation by using “we” for sections to which my co-authors substantially 

contributed (as described above), and “I” only for sections that are primarily my own individual 

work. A more condensed version of this dissertation is in preparation for publication: 

 

Bufford Funk, C. A., Mettler, E., & Kellman, P. J. (in preparation). Investigating the relationship 

between perceptual learning and statistical learning in human vision. 

 

I would also like to acknowledge Dr. Hongjing Lu for helpful discussion of the psychophysical 

assessment (specifically recommending not showing gridlines). Thanks also to members of the 

UCLA Human Perception Lab for help and support, and to family and friends for their support. 

  



xx 

 

BIOGRAPHICAL SKETCH 

Education 

2014-2017 C.Phil. in Psychology, University of California, Los Angeles 

2012-2014 M.A. in Psychology, University of California, Los Angeles 

2008-2012 B.S. in Cognitive Science with a Specialization in Computing, with College 

Honors, magna cum laude, University of California, Los Angeles 

Publications 

Chiang, J.N., Rosenberg, M. H., Bufford, C.A., Stephens, D., Lysy, A., & Monti, M.M. 

(2018). The language of music: Common neural codes for structured sequences in music 

and natural language. Brain and Language, 185, 30-37. 

 

Bufford, C.A., Thai, K.P., Ho, J., Xiong, C., Hinges, C.A., & Kellman, P.J. (2016). 

Perceptual learning of abstract musical patterns: Recognizing composer style. In T. 

Zanto, T. Fujioka, P. Janata, J. Johnson, J. Berger, J. Slater, & C. Chafe (Eds.), 

Proceedings of the 14
th

 Annual Conference of the International Conference for Music 

Perception and Cognition (pp. 8-12). 

 

Bufford, C.A., Mettler, E., Geller, E.H., & Kellman, P.J. (2014). The psychophysics of 

algebra expertise: Mathematics perceptual learning interventions produce durable 

encoding changes. In P. Bellow, M. Guarini, M. McShane, & B. Scassellati (Eds.), 

Proceedings of the 36
th

 Annual Conference of the Cognitive Science Society (pp. 272-

277). Austin, TX: Cognitive Science Society. 

   

Bufford, C.A., Mettler, E., & Kellman, P.J. (in prep). Perceptual learning in mathematics 

produces durable changes in perception. 

 

Presentations 

Kellman, P.J., Bufford, C.A., & Mettler, E. (2018). The psychophysics of algebra: 

Mathematics perceptual learning interventions produce measurable and lasting changes 

in the perceptual encoding of mathematical objects. Oral presentation made by first 

author at the meeting of the Vision Sciences Society, St. Pete Beach, Florida. 

 



xxi 

 

Kellman, P.J., Bufford, C.A., & Mettler, E. (2017).The psychophysics of algebra: 

Mathematics perceptual learning interventions produce measurable and lasting changes 

in the perceptual encoding of mathematical objects. Oral presentation by first author at 

the meeting of the Psychonomic Society, Vancouver, British Columbia, Canada. 

 

Bufford, C.A., Thai, K.P., Ho, J., Xiong, C., Hinges, C.A., & Kellman, P.J. (2016). 

Perceptual learning of abstract musical patterns: Recognizing composer style. Poster 

presented at the meeting of the International Conference for Music Perception and 

Cognition, San Francisco, CA. 

 

Bufford, C. A. & Kellman, P.J. (2015). Learning in mathematics produces durable 

encoding improvements. Poster presented at the meeting of the Cognitive Science 

Society, Pasadena, California. 

 

Bufford, C.A. & Kellman, P.J. (2015). Mathematics perceptual learning causes lasting 

encoding gains. Poster presented at the meeting of the Association of Psychological 

Science, New York, New York. 

 

Bufford, C.A., Mettler, E., Geller, E.H., & Kellman, P.J. (2014). The psychophysics of 

algebra expertise: Mathematics perceptual learning interventions produce durable 

encoding changes. Oral presentation at the meeting of the Cognitive Science Society, 

Quebec City, Quebec, Canada. 

 

Bufford, C.A., Mettler, E., Geller, E.H., & Kellman, P.J. (2014). Capturing mathematics 

perceptual learning through psychophysics. Poster presented at the meeting of the 

Association of Psychological Science, San Francisco, California. 

 

Teaching Experience and Professional Service  

2014-2019 Teaching Assistant/Associate/Fellow, UCLA Psychology Department 

2015-2019 Volunteer, Psychology Undergraduate Research Conference 

2017-2018 UCLA Alumni Mentoring Program Mentor 

2016-2018 Judge, California State Science Fair; Los Angeles County Science Fair (2017) 

2012-2015 Psychology in Action blogger and symposium committee member



1 

 

CHAPTER 1: INTRODUCTION 

Investigating the relationship between perceptual learning and statistical learning in 

human vision 

Humans learn about the world through experience. This is possible because the world is 

not chaotic and entirely random, but instead has regularities which we use to guide behavior. 

There are at least two general kinds of regularities that have special importance. One involves the 

statistical structure in objects, arrangements, and events. Another is the recurring importance of 

features and relations that determine important classifications and which may be useful to come 

to fluently encode and discriminate. Both the registration of regularities, statistical learning (SL), 

and the improved sensitivity of perceptual encoding, perceptual learning (PL), can allow us to 

perform better on tasks over time. Understanding how do these learning processes relate would 

inform how best to structure learning. 

SL and PL differ in how we use regularities in the world. SL researchers often assume a 

memory mechanism through which familiar patterns are recognized (e.g. Fiser, 2009). PL is 

about improving pickup of task-relevant patterns, category boundaries, etc. and/or suppression of 

irrelevant information (e.g. Kellman, 2002; Kellman & Garrigan, 2009), so it is about perception 

and transfer to new stimuli (e.g. Bufford, Thai, Ho, Xiong, Hines, & Kellman, 2016; Goldstone, 

1998). 

Definitions PL posits improved information pickup as the mechanism for learning 

through experience: Eleanor Gibson pioneered modern PL, and she defined perceptual learning 

as changes in the encoding of information due to experience or practice (Gibson, 1953; Gibson, 

1969; Gibson & Gibson, 1955; these papers combined have been cited over 6,000 times, 

according to Google Scholar). Under this definition, expertise is a change in sensitivity through 
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perceptual information pickup attuned to patterns and structures imperceptible or not attended to 

by novices. Active training with feedback is known to accelerate the pace of PL relative to 

unstructured or less-structured learning without consistent feedback (e.g. Gibson, 1947; Kellman, 

Massey, & Son, 2010), though feedback is not required (e.g. Gibson & Gibson, 1955). 

In contrast, Saffran and colleagues (1996), whose SL paper is the best-known (cited 

almost 5000 times, according to Google Scholar), never defined statistical learning or cited prior 

psychology or computer science research on SL, but implied
1
 the following definition of SL: the 

automatic and implicit learning and recall of statistical relationships in stimuli, especially 

between neighboring items. Under this definition, the encoding of information does not change 

as expertise increases, only the ability to track and expect statistically reliable sequences and/or 

co-occurrences – the bias. Thus, SL theorizes a memory mechanism for learning through 

experience. Because SL is automatic, no training is expected or needed, but more exposure to 

patterns might make memory traces stronger. 

Connection to Signal Detection Theory. We can relate these two concepts of learning to 

the fundamental goal of signal detection theory (SDT).  SDT analyses separate sensitivity in the 

acquisition or use of information presented from criterion or bias, which relates to response 

tendencies, apart from the signal presented at a given moment, that reflect stimulus probabilities, 

incentives, etc. (Wickens, 2002). The distinction we are proposing between SL and PL maps 

onto this framework directly. Perceptual learning is an improvement in the sensitivity to signal; it 

would be apparent in many tasks as a change in an SDT measure of sensitivity such as 

d’.  Statistical learning - registering the statistics of features or co-occurrences in displays over 

                                                 

 

1
 The fact that this seminal paper did not include a definition of SL likely has contributed to 

confusion around the term. 
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some amount of experience with them - would provide useful knowledge about the world. In an 

SDT framework, it could allow more accurate guessing in the absence of a signal. Variables such 

as statistical information about signal probability are known in SDT experiments to affect 

criterion or bias, which refers to the overall probability of use of the response options. 

Possible Relationships Between SL and PL 

But what is the relationship between SL and PL? SL and PL might be distinct learning 

processes with distinct mechanisms, contributing separately to learning regularities: SL to 

familiarity and PL to improved information pickup. The distinct ways in which PL and SL can 

be defined (as they have here) suggest this might be the case. But perhaps phenomena of 

perceptual learning and statistical learning are actually effects of a single unified learning 

mechanism for learning many kinds of regularities through experience, in which conditions 

leading to familiarity also produce changes in perceptual encoding. Recognizing which of two 

patterns has been encountered before (statistical learning) is a different outcome from becoming 

faster or more selective in encoding stimuli, but perhaps in human cognition, these processes go 

together. It is also possible that SL is a subtype of PL or a step in the process of PL – tracking 

which elements go together might be one of the ways of identifying regularities to then 

selectively pick up, which would be a more nuanced relationship. My dissertation explores these 

possible relationships empirically. 

Structure of the Introduction 

I will use the above definitions throughout my dissertation, as our guide to investigating 

the relationship between SL and PL because they are consistent with the most influential 

research and allow clear distinctions to be made between SL and PL. However, in this 

introduction, I will explore historical and recent research explicitly using the terms “statistical 
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learning” and/or “perceptual learning” in ways consistent and inconsistent with our definitions. 

In so doing, I will trace changes in usage of these terms over time to help contextualize the 

current understandings of SL and PL in the literature, compare SL and PL in the context of the 

literature, and illustrate the current collective confusion about the relationship between SL and 

PL that this dissertation addresses empirically. Finally, I will introduce the empiric approach I 

have taken to addressing the question about the relationship between SL and PL in this 

dissertation.  

Perceptual Learning  

Eleanor Gibson pioneered the modern view of perceptual learning
2
. She defined 

perceptual learning as the process of changing the pickup of information from the world because 

of experience or practice (Gibson, 1953; Gibson, 1969; Gibson & Gibson, 1955). In perceptual 

learning, it is not the case that the learner memorizes mappings of stimulus to response or 

memorizes relationships between unchanged perceptual units; instead, previously ignored or 

imperceptible patterns become perceptible and the way the world is perceived changes – the 

basic encoding of stimuli is psychophysically optimized (e.g. Bufford, Geller, Mettler, & 

Kellman, 2014; Leek & Watson, 1988; Notman, Sowden, & Özgen, 2005).  

Encoding changes may take the form of chunking, the process of forming chunks – 

diagnostic combinations of components that are treated as a single unit in memory (e.g. Chase & 

Simon, 1973; Goldstone, 1998; Goldstone, 2000) – which then enable perception of complex 

patterns and structures, which distinguish classes of stimuli. By improving information encoding 

by chunking or other processes (e.g. Epstein, 1967) to more closely match the environment 

                                                 

 

2
 The term “perceptual learning” was in use before the 1950s, but it did not mean the same thing.  
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(Gibson & Gibson, 1955), the learner becomes more attuned to the relevant patterns and 

structure in encountered stimuli. These changes to perception can be characterized as discovery 

and fluency effects: discovery effects include selecting relevant information or seeing new 

relationships and suppressing irrelevant information, and fluency effects include faster encoding 

and reduced cognitive load (Kellman, 2002; Kellman & Garrigan, 2009). Typical PL studies 

follow a pretest-posttest design with a learning phase in which participants actively attempt to 

classify stimuli and receive feedback, and studies often employ one or more control groups. 

Eleanor Gibson and her contemporaries studied expertise with real-world stimuli such as 

aircraft (Gibson, 1947), morse code (Keller, 1943), and chick-sexing images (Biederman & 

Shiffrar, 1987) and artificial stimuli such as squiggles (Gibson & Gibson, 1955). In the spirit of 

this foundational work, some recent research has focused on real-world stimuli (e.g. radiological 

images: Kellman, 2013; Kok, de Bruin, Robben, & van Merriënboer, 2013; butterflies: Mettler & 

Kellman, 2015) and even extended PL to symbolic stimuli (e.g. Chinese characters: Thai, 

Mettler, & Kellman, 2011; mathematics: Bufford et al., 2014; Cheng, 2014; Ottmar, Landy, 

Weitnauer, & Goldstone, 2015). Such research has shown how technology can be used to 

facilitate PL in real-world and symbolic domains (e.g. Mettler & Kellman, 2015) and even 

provided direct evidence of encoding changes in symbolic domains (Bufford et al., 2014; Thai et 

al., 2011). With real-world and symbolic stimuli, participants show improved encoding of 

stimuli, a hallmark of PL. 

In contrast to research in real-world and symbolic domains, most PL research in the last 

two decades has focused on tasks with simple, often artificial stimuli (audition: learning exact 

pitch duration, e.g. Karmarkar & Buonomano, 2003; phoneme discriminations, e.g. Bradlow, 

Pisoni, Akahane-Yamada, & Tohkura, 1997; Norris, McQueen, & Cutler, 2003; multimodal: 
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temporal discrimination, e.g. Bratzke, Seifried, & Ulrich, 2012; Nagarajan, Blake, Wright, Byl, 

& Merzenich, 1996; length perception, e.g. Wagman, Carello, Schmidt, & Turvey, 2009; rhythm 

perception: Bakarat, Seitz, & Shams, 2015; vision: Vernier acuity, the alignment of line pairs, 

e.g. Westheimer & McKee, 1978, as cited in Kellman & Garrigan, 2009; orientated visual 

gratings, e.g. Song, Peng, Lu, Liu, & Li, 2007). Participants in these tasks have shown orders of 

magnitude improvements (e.g. Ahissar & Hochstein, 1993).   

The motivation for studying basic sensory discriminations in much contemporary work 

has been the idea that PL may be based on sensory plasticity (change in receptive fields) in early 

cortical analyzers (e.g., Fahle & Poggio, 2002). However, subsequent work has shown that 

perceptual learning in both basic sensory and more complex domains is unlikely to depend on 

receptive field change (at least in vision), and is better accounted for by concepts of discovery 

and selection (weighting) of which analyzers provide the most useful information for a task 

(Petrov, Dosher & Lu, 2005; Garrigan & Kellman, 2008; for a review, see Kellman & Garrigan, 

2009). 

Statistical Learning 

 Early Usage of Statistical Learning. As with perceptual learning, the phrase statistical 

learning has been used to mean several different things. In the worlds of academic statistics and 

education research, it describes the learning of the school subject of statistics (e.g. Belshaw, 

1951; Lajoie, 1997; Watson, 1997). The earliest known (according to Google Scholar) use of the 

term belongs to this group, in a lament over the state of statistical learning in the U.S. in the year 

before the 1880 census (Walker, 1879). This meaning of statistical learning is pertinent only to 

my having learned statistics and conducted statistical analyses in this dissertation, but not 

otherwise. 
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 In psychology, the earliest appearance of the term statistical learning was in reference to 

Estes’ Statistical Learning Theory (Estes, 1950). Estes’ theory was part of the behaviorist 

movement of mapping stimuli to responses (S-R learning), in that he proposed a computational 

theory relating the probability of a stimulus to the way in which a response was learned, relating 

to target frequency matching. Estes’ theory was a popular subject of research (e.g. Estes, 1962; 

Estes & Straughan, 1954; Suppes & Atkinson, 1960) until the early 1970s, when it was found to 

be “in error in so many respects” (Reber & Millward, 1971) that it fell out of favor with the 

research community. 

 The term statistical learning has been used in computer science and related fields from as 

early as 1988 (e.g Jannarone, Yu, & Takefuji, 1988). In this field, statistical learning describes a 

method by which artificial learning systems that exploit any and all reliable statistics in their 

input to improve output over time or training. Pednault (1997) defined a Statistical Learning 

Theory for this field, in which the computer learns the correct model of several competing initial 

models through the input data. Models under this theory and other artificial statistical learning 

processes are more computationally sophisticated than Estes’ theory, but share the same spirit of 

mapping input to output (or stimulus to response). 

 Statistical Learning in Human Perception and Learning. The computer science idea 

of statistical learning – tracking reliable statistics in data to optimize responding – influenced the 

modern perception psychology view of statistical learning – tracking reliable statistics to guide 

behavior. In their seminal paper on auditory statistical learning (SL) in infants, Saffran and 

colleagues (1996) never stated a definition of SL but implied the following definition of SL: 

Statistical learning (SL) is the automatic process of tracking in memory the statistical 

relationships between stimuli. The encoding of information is unchanged, but as one gains more 
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experience with stimuli, statistically reliable relationships between basic elements are recorded in 

memory and exploited to process stimuli more efficiently. In studies, a single group of learners 

are typically passively familiarized with stimuli, then tested in a 2AFC recognition test. For 

example, in an auditory sequence liuke that sed by Saffran et al. (1996), the syllable “bim” might 

immediately follow “ji” 100% of the time. The transition probabilities (TPs) from one syllable to 

another are controlled and compared in analyses, often setting TPs at 100% within sequences, 

and at chance for transitions across sequences, e.g. 25% “ji” then “ku”.  

 Much of the modern work in SL has followed this paradigm of sequential stimuli. In 

vision, real-world stimuli have seldom been studied (exceptions: e.g. Brady & Oliva, 2008, and 

Emberson & Rubinstein, 2016, who manipulated the order of category photographs) because 

controlling the statistical relationships in real-world scenes or videos would be extremely 

difficult. Instead, visual SL training typically consists of passive viewing of shapes, often 

sequences of tens or hundreds of repetitions of a small vocabulary. In such visual SL studies, 

statistical features are typically brief two- or three-shape subsequences, e.g. triangle-square-

circle and diamond-heart-spade, repeatedly embedded in the full training sequence. The 

transition probabilities or TPs (see Saffran et al., 1996)
3
 from one shape to another are controlled 

and compared in analyses, often setting TPs at 100% within sequences, e.g. triangle then square, 

and at chance for transitions across sequences, e.g. 25% circle then diamond. 

Participants then complete a 2-alternative forced-choice posttest: participants are asked to 

choose which of two shape sequences is more familiar, the embedded subsequence or the same-

length foil sequence that either bridged subsequences, e.g. heart-spade-triangle or never 

                                                 

 

3
 Formula for transition probability: 𝑌|𝑋 =  

𝑓𝑟𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑋𝑌

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑋
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appeared, e.g. square-triangle-diamond. Learners show evidence of learning predictive 

relationships in familiarization stimuli (auditory: e.g. Creel, Newport, & Aslin, 2004; Endress, 

Nespor, & Mehler, 2009; Pelucchi, Hay, & Saffran, 2009; multimodal: e.g. Barakat, Seitz, & 

Shams, 2015; Conway & Christiansen, 2006, 2009; Robinson & Sloutsky, 2007; Seitz, Kim, van 

Wassenhove, & Shams, 2007; visual: e.g.Turk-Browne, Jungé, & Scholl, 2005; Saffran et al., 

1996), almost always without having been told such statistical relationships exist. The fact that 

participants choose subsequences from the exposure more frequently than chance in these 2AFC 

familiarity tests is taken as evidence of statistical learning. 

Founding Modern SL (in Human Vision). Modern research in SL in adult vision traces 

back to two papers published in 2001 (Fiser & Aslin, 2001; Hunt & Aslin, 2001). Instead of S-R 

relationships, this SL literature is (according to our definition) about stimulus-stimulus 

relationships. Fiser and Aslin (2001) used spatial arrangements instead of temporal 

arrangements: pairs of shapes were presented simultaneously and always co-occurred. Pairs were 

arranged in grids with three pairs per grid, on each passive familiarization trial. Participants 

showed SL by identifying familiar pairs over foil pairs more frequently than predicted by chance. 

This design followed our definition of SL, and is much better known that the other paper. 

The other paper investigated statistical learning of light sequences (Hunt & Aslin, 2001). 

This study followed the ideas of sequential statistical learning studies, but departed from them 

and from our definition of SL in several important ways. Instead of using passive familiarization, 

this study required a motor response from participants on each trial. Participants clicked on 

lighted buttons, which were lit in specific sequences to form visual “words”. Instead of testing 

familiarity, the authors measured reaction time (RT) to touch the buttons and tracked RT change 

across learning, which is not a test of memory, the essence of SL, under our definition. Instead of 
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learning in a single, brief session, participants learned for an hour per day for eight days. Across 

three experiments, the authors found that participants showed both general speed up on the task 

but also particularly speeded responses for predictable lights (later parts of each “word”). 

Analyses of individual performances showed that some participants learned both the statistics for 

three-part “words” as intended in addition to the statistics of pairs in those words, while others 

learned just pairs and not complete triples (“words”). This paper, though less frequently cited 

than the others from the same year, is especially important because it foreshadowed the 

broadening of visual SL that has occurred in recent years. 

Modern Visual SL: Changing Methods, and Broadening Definitions. Adding to the 

confusion, much of the most recent work in SL has moved away from conforming to prior 

methods (typically brief passive familiarization followed by a 2AFC familiarity test) 

and  findings, and from the prior conception - and thus, our definition - of SL. Researchers have 

tested the automaticity of SL and its unconsciousness and have even moved away from SL as 

item correlations. They have shown the insufficiency of such definitions to fully explain SL-

related phenomena. In so doing, recent research contributed to collective confusion about SL and 

its relationship to PL. 

For example, Turk-Browne et al. (2005) built upon the typical sequential presentation 

methodology to investigate the role of automaticity in statistical learning in a series of 

experiments. They assigned half of their shape vocabulary to the color red and half to green, and 

defined subsequences within each color individually, e.g. triangle-square-circle in red and 

diamond-heart-spade in green, to create two experimental sequences. Then they presented the 

two sequences pseudorandomly interleaved and gave participants a cover task in one color only. 
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Participants completed 2AFC familiarity judgments for each color’s subsequences and foils 

separately, with all test shapes presented in black. 

Participants demonstrated typical familiarity for sequences in the attended color, but no 

familiarity – no learning – in the unattended color. Because this was a novel finding, the authors 

conducted several follow-up experiments to determine if any reasonable modification of their 

experiment design would show learning in the unattended color. They increased the training, 

restored training colors in the test, reversed the test colors, and even replaced the familiarity test 

with a serial reaction-time test, which is an implicit behavioral measure of learning. The authors 

concluded that statistical learning did not occur automatically in that it did not occur without 

attention: selective attention gated what statistical information was available for learning – only 

the information in the attended color.  Within the attended color, participants learned 

subsequences despite being engaged in a subsequence-irrelevant cover task. So only within 

attended stimuli, the regularities of the subsequences were automatically learned. Thus, the 

authors found using both familiarity tests and reaction time in a rapid serial visual presentation 

(RSVP) task that statistical information cannot be learned when it is ignored or task-irrelevant, 

so SL is only automatic to for stimuli that are not ignored. This is an important deviation from 

the definition of SL as being completely automatic without caveats. 

Other researchers have explored other assumptions of early (and our) definitions of SL, 

such as the degree to which SL is implicit. Some have concluded that SL is implicit (e.g. Kim, 

Seitz, Feenstra, & Shams, 2009), while others have concluded that SL is at least partially explicit 

for at least some participants (Bertels, Franco, & Destrebecqz, 2012).  Researchers have also 

examined the extent to which the learning in SL paradigms is purely driven by the statistics of 
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the stimuli, through examining the effects of perceptual grouping on SL and applying 

computational models to SL experiment data. 

Researchers have studied connectedness (Baker, Olson, & Behrmann, 2004), similarity 

(Glicksohn & Cohen, 2011), and common fate (Fiser, Scholl, & Aslin, 2007) in SL paradigms. In 

all of these studies, the Gestalt grouping influenced what was learnable: When the connected 

shape was task-relevant to the target shape, it was learned (Baker et al., 2004).  Embedded shape 

pairs in the same color were learned when other non-colored or cross-colored embedded pairs 

were not (Glicksohn & Cohen, 2011). The speed at which two shapes moved toward and two 

different shapes moved away from an occluder (in a stream-bounce illusion paradigm) 

influenced which shapes participants paired together – participants saw streaming at slower 

speeds and bouncing at faster speeds. Under our definition of SL, only the statistics of the stimuli 

should influence learning, and all statistics should be learned, but research on grouping effects 

indicates that this is not the case. 

Computational modeling studies of visual SL can compare models based on transition 

probabilities (a unit of analysis in SL - see footnote # 3) to other kinds of models, such as 

chunking models. This comparison can illuminate whether or not human data fits the SL 

definition of recording correlations between elements in memory without changing perception 

(i.e. transition probability-based models), or if, instead, perception is changed (the definition of 

PL) to pick up correlated elements as a single unit (i.e. chunking models).  

Computational modelling studies of SL also challenge our definition of SL. In a 

sequential shape design with infants (Slone & Johnson, 2018), transition probability models were 

found to fit the data less well than a chunking model. Computational models have also been fit to 

adult data with simultaneous shape arrays. Fiser and Aslin (2001) followed up on their adult 
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study of arrays of paired shapes in grids by investigating larger units: shape triples, quads, and 

sextuples. They used the same shapes as in their original study, and similar (but larger) grids. 

Participants learned the larger units, but not embedded pairs within the units (Fiser & Aslin, 

2005), contrary to the idea from our definition of learning all statistically reliable relationships. 

This result was replicated by Lu and Lee (2013). When computationally modelling data from 

their studies of larger arrangements of shapes, Orban and colleagues found that transition 

probability models fit the data less well than chunking models (Orbán, Fiser, Aslin, & Lengyel, 

2008). These findings contradict the assumptions of our definition SL, but suggest that SL might 

be related to PL because chunking is part of PL. 

SL assumes that learning should be tied to the learned stimuli in their exact learned 

relationship (spatial or temporal), but research on transfer with SL also hints that SL may not be 

independent of PL. Turk-Browne and Scholl (2009) trained participants on spatial arrays and 

found transfer to sequentially presented stimuli. They also found the opposite – transfer from 

sequential stimuli to spatial arrays of stimuli. They even found transfer from sequential stimuli 

triplets to backwards-ordered sequential triplets. Similarly, Otsuka, Nishiyama, Nakahar, and 

Kawaguchi (2013) found some transfer to reversed triplets, as well as transfer from line drawings 

to words (category names of the objects in the drawings). If temporal and spatial arrangements 

can transfer to each other, temporal order can be reversed, and learning can transfer from visual 

stimuli to semantic versions of those stimuli (which are visually very different), then another 

assumption of our definition of SL does not hold. 

Finally, Bakarat and colleagues (2013) used a reaction-time measure to compare learning 

on first and second items of sequentially presented shape pairs. They found faster reaction times 

for the second item of each pair. Improved reaction time could be due to quickly retrieving the 
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second item from memory (SL) or improved pickup of information (PL). The fact that the second 

items showed higher sensitivity than the first items suggests PL occurred in this SL paradigm. 

SL As Any Reliable Statistic. Perhaps in response to the assumptions of early 

definitions (including mine) of SL not capturing all SL-related phenomena, modern definitions 

of SL have been broadened to showing learning in any way of any reliable statistic, including 

global statistics.  For example, Jones and Kaschak (2012) made a location in their visual search 

task more likely to be the correct location, and found learning of a statistical bias for that location 

in more initial saccades to that location. Cosman and Vecera (2014) also found that participants 

learned a bias in their attentional capture design. Participants showed a bias in reaction time of 

faster responding to valid cues in the color in which targets appeared more often in training, and 

slower responding to invalid cues. These studies manipulated and found learning of a global 

statistic as opposed to manipulating relationships between individual stimuli. As such, this is a 

departure from our definition of SL, and may or may not be the same phenomenon.  

 Bays, Turk-Browne, and Seitz (2016) found evidence of two separate learning processes 

for environmental statistics. Participants showed improvements in accuracy on particular stimuli 

in their detection task and improvements in reaction time on other stimuli in an RSVP task. The 

dissociation of the tasks and learning effects seen is further evidence that there may be multiple 

visual SL processes, including learning of element relationships and global statistics. 

Comparing PL and SL 

Both perceptual learning and statistical learning intend to explain how we learn from 

regularities in the world, yet SL and PL differ in how they theorize that we use these regularities, 

proposing different mechanisms for learning through experience: SL (as defined in this 

dissertation) proposes a memory mechanism, whereas PL has a perceptual mechanism. 
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Recent research has challenged the assumptions of our definition of SL and broadened 

the definition of SL in the literature to any reliable statistic (e.g. Cosman & Vecera, 2014). 

Computational modeling (e.g. Orbán et al., 2008) and transfer (e.g. Otsuka et al., 2013) findings 

suggest that PL and SL may be closely related, for learning of statistical relationships between 

items, because transfer is a hallmark of PL and because chunking is one of many possible 

encoding changes due to PL. However, it is essential to maintain distinct definitions and 

concepts of SL and PL to be able to investigate the relationship between them, so I will continue 

with our definitions (as stated above).  

The Problem of Different Methodologies. SL and PL tend to be studied in different 

ways. PL research tends to involve active training over a longer period of time and test for 

improvements on a task and often include control group(s), whereas SL research tends to have a 

very brief passive learning phase and a single familiarity test with a single group
4
.  Both the 

differences in paradigms and the differences make direct comparison of SL and PL studies 

difficult at best. 

Additionally, PL and SL have been studied with different stimuli. PL studies have more 

often employed real-world stimuli than SL studies. SL is almost exclusively studied with 

artificial stimuli in vision. SL researchers favor artificial stimuli because researchers easily can 

control and manipulate statistical features of such stimuli. PL researchers interested in real-world 

expertise are less concerned with computing statistical probabilities between stimuli and parts of 

stimuli than with improving performance on real-world tasks. Different methodologies do not 

                                                 

 

4
 There is, however, evidence of “fast learning” in PL in which large learning gains are 

demonstrated in a single session (e.g. Ahissar & Hochstein, 1993; Hawkey, Amitay, & Moore, 

2004). SL has also been studied over a relatively long time scale (e.g. Hunt & Aslin, 2001). 
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necessarily imply different learning processes, but they may contribute to the variety of opinions 

as to SL and PL in the literature. 

Different methodologies are also due, in part, to different research goals. SL researchers, 

understandably, want to learn how stimuli statistics influence learning, generally in language 

learning and other higher cognitive processes. PL researchers are interested in a broader array of 

questions around improving expertise and learning in many different domains, and in 

understanding neural mechanisms underlying PL. The abundance of research into mechanisms of 

PL using simple, often artificial stimuli has advanced the neuroscience of visual perceptual 

learning, but its very productivity has become a problem because it has given at least some 

researchers outside the field of PL (e.g. Fiser, 2009) the impression that PL is not also involved 

in higher cognitive processes (which, by their nature, involve more complex real-world and/or 

symbolic stimuli). 

Researchers’ Conflicting Ideas in the Literature. Amongst researchers, there is 

collective confusion about the relationship of SL and PL. Many will write about one or the other, 

and just include a token citation or two from the other literature. Because of limited cross-talk, 

researchers have many conflicting understandings of SL and PL and their relationship. 

Hypothesis of different kinds of learning Some consider SL and PL to be distinct kinds of 

learning. For example, Fiser and colleagues claim that SL “refers to a particular type of implicit 

learning … fundamentally different from traditional perceptual learning” (Fiser, Berkes, Orbán, 

& Lengyel, 2010). In his review, Fiser (2009) asserts that the goal of statistical learning is to 

capture “useful aspects of the low-level sensory input for further processing”. He further asserts 

that “sensory input … is fairly clear but ambiguous” because “[i]t can support far too many 

possible combinations of elements that all could be potentially relevant higher order features”. 
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Fiser expresses a common misunderstanding of perception as only providing basic elements that 

higher cognition must associate into meaningful relationships, instead of perception being about 

picking up meaningful structure in the world at all levels of visual and task complexity. 

Hypothesis of a unified learning process Others, perhaps the majority, consider SL and 

PL to be part of a unified learning process. For example, Bao (2015) describes three categories of 

PL, unsupervised, supervised, and reinforcement learning, and describes SL as unsupervised PL. 

Conway and colleagues (2007) assert that “VSL may be more closely related to perceptual 

processing – specifically, perceptual learning – than to associative learning phenomena”. In a 

review of SL, Frost and colleagues (2015) state that SL studies “suggest that there are 

independent modality constraints in learning distributional information, pointing to modality 

specificity, and further to stimulus specificity akin to perceptual learning”.  

Researchers also demonstrate this view when they use the terms SL and PL 

interchangeably, characterizing other researchers’ work using different terminology than the 

original authors, typically SL as PL. For example, Series and Seitz (2013) refer to work with the 

term “statistical learning” in the title as both PL and SL: “Turke-Browne and Scholl (2009) 

provide evidence for transfer of perceptual learning across space and time, suggesting that 

statistical learning leads to flexible representations”.  Similarly, Toro and colleagues (2005) refer 

to a different paper with the phrase “statistical learning” in the title as being PL: “a recent study 

on visual perceptual learning by Baker, Olson, and Behrmann (2004) suggests that the extraction 

of statistical correlations among elements of separate objects can be prevented when attention is 

not directed to both objects”. 

Other researchers consider SL and PL distinct but related learning processes. This is a 

variation on the hypothesis of a unified learning process, in which the relationship is weaker. 
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Researchers have approached studying SL and PL together with this assumption of different but 

related processes. If one could attempt to “isolate the effect of perceptual learning on statistical 

learning” (Glicksohn & Cohen, 2011), then PL and SL must be distinct but related learning 

processes. This weaker view may be correct in that learning a global bias would not be 

considered PL, but it does not seem to follow from most of the recent SL work on element 

relationships. Given that SL research is best modeled in chunks and not in element-preserving 

transition probabilities and the transfer of SL, the hypothesis of a unified learning process is 

more likely to be correct than the hypothesis of different kinds of learning
5
.  

Dissertation Problem and Approach 

Dissertation Problem. Researchers differ in their ideas about SL and PL and the 

relationship of SL and PL, causing collective confusion. Important differences in experimental 

paradigms contribute to this confusion because existing SL and PL studies cannot be directly 

compared. SL and PL researchers support competing hypotheses of distinct learning processes 

and of a unified learning process, but both cannot be correct. Thus, the nature of the relationship 

is between SL and PL in human vision is not clear. 

To date, no one has investigated the relationship of PL and SL in the same experiment. 

Thus, it is unknown whether these conceptually distinct proposed processes are in fact different 

learning processes in humans or are actually a single learning mechanism. If statistical learning 

and perceptual learning are different kinds of learning, then conditions that lead to familiarity 

may have no effect on encoding (and vice versa). If, instead, there is only one general learning 

mechanism here, not two, or if these two tend to co-occur, then whenever one finds familiarity 

                                                 

 

5
 This is likely for our definition of SL, but the learning of global statistics may be unrelated to 

PL. This question is outside of our scope. 
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improvements (SL), these may be accompanied by detectable improvements in encoding (PL). 

New research is needed to address these possibilities, researchers’ confusion, and clarify the 

relationship of SL and PL. My dissertation addressed this theoretical gap.  

Dissertation Approach. This dissertation addressed the confusion in the literature of the 

relationship of statistical learning and perceptual learning in humans. We investigated the 

relationship in a series of experiments using visual stimuli, in which SL and PL paradigms and 

effects could be directly compared. 

One way to compare SL and PL is to use a paradigm known to engender statistical 

learning and then added a test to see if perceptual learning (encoding improvements) has also 

occurred (Experiments 1 and 3). I directly tested for perceptual learning via encoding changes in 

a statistical learning paradigm: I developed and used a novel psychophysical task following a 

replication of a statistical learning paradigm to assess the presence of encoding changes, which 

are not theorized to exist in statistical learning. For example, such encoding changes would be 

improved discrimination of whether two stimuli are the same or different or improved visual 

search. If improvements were found via the psychophysical task, I would then conduct additional 

signal detection analyses to assess whether improvements on psychophysical tasks were in 

sensitivity – additional evidence for PL, or bias – evidence for SL instead. Prior research 

(Bufford et al., 2014; Thai et al., 2011) has demonstrated that encoding changes due to PL in 

vision can be directly measured. 

A complementary approach to testing for PL effects following SL training is to test for 

SL effects following PL training (Experiment 2). Relationships between stimuli in PL paradigms 

are typically not manipulated the way that statistics are controlled in SL studies, so to make this a 

viable approach, I developed a PL training based on an SL paradigm. This also allowed me to 
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use the same psychophysical task following training as in Experiment 1, which enabled cross-

experiment analyses.  
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CHAPTER 2: EXPERIMENT 1 INTRODUCTION AND METHODS 

Experiment 1: Does PL accompany visual SL?  

The goal of Experiment 1 is to address the relationship of SL and PL by testing for PL 

effects caused by an SL paradigm. Specifically, we psychophysically tested for encoding 

changes caused by a well-known visual statistical learning paradigm of visual arrays (Fiser & 

Aslin, 2001, Experiment 1). The hypothesis of different kinds of learning (that PL and SL are 

different learning processes) would predict only SL effects on the psychophysical assessment. In 

contrast, the hypothesis of a single learning process would predict PL effects following an SL 

familiarization. 

We chose to study visual arrays as opposed to visual sequences because the former are 

more ecologically valid visual stimuli: humans constantly process scenes, and less frequently 

process sequences of objects without motion. Experiments directly measuring encoding changes 

before and after PL-based interventions in complex visual domains such as Chinese characters 

(Thai et al., 2011) and algebraic equations (Bufford et al., 2014) have shown that psychophysical 

tasks such as visual search and same/different tasks can capture encoding changes due to PL. 

Other researchers have documented psychophysical differences in performance between novices 

and experts because of experts’ PL (e.g. Cheng, 2014; Chase & Simon, 1973). Thus, it is likely 

that a psychophysical approach would capture any encoding changes following SL. 

Fiser and Aslin (2001) overall followed the typical scheme of passive familiarization 

followed by a familiarity test, but not the typical stimuli arrangement of sequentially presented 

simple shapes with statistically manipulated transitions between shapes. Instead, the authors 

created 12 new shapes, which were randomized into 6 pairs for each participant individually. 

Each participant’s 6 pairs consisted of two vertical pairs, two horizontal pairs, and two diagonal 
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pairs (one diagonal in each direction). These pairs were assembled into all possible 3 by 3 grids 

consisting of one vertical pair, one horizontal pair, and one diagonal pair, for a total of 144 grids. 

Shapes always appeared in their pairs (100% spatial probability of second shape, given first, and 

vice versa). Participants passively viewed each of their 144 unique grids in a 7 minute period. In 

the following familiarity test, participants identified their pairs as more familiar than foil pairs at 

above-chance levels. Thus participants demonstrated spatial statistical learning.   

Psychophysically Testing for PL  

With its arrays of shapes, this paradigm was well-suited to the psychophysical task of 

target detection. The arrays functioned as scenes to learn, and pairs could be used as targets 

following the arrays, to probe for participants’ perceptions of the pair objects in the scenes. For 

this reason, we created a novel psychophysical detection task to assess PL effects following the 

familiarization.  

Performance on shape pairs in the familiarization might have been influenced by learning 

the shape pairings, perhaps including their exact arrangement, or learning the types of spatial 

arrangements in which shapes could appear, or both. SL would predict learning of shape pairings 

and perhaps pair orientations. PL would predict some improvement in encoding: this could 

consist of selective pickup of pairs or improved discrimination of components (shapes), shown in 

selective encoding or more rapid detection in short exposures. 

However, PL and SL are theoretically distinct and make distinct predictions of what 

would be learned in Fiser and Aslin’s paradigm (2001). SL is learning of correlations between 

studied items, so it would predict no transfer of learning to new conditions except, perhaps, a 

bias to expect to continue seeing what was learned. In our psychophysical task, we would see 

this bias in an elevated false alarm rate for one of the comparison conditions that uses 
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familiarized pairs as targets for target-absent trials. In contrast, PL is improvements in encoding 

– which could be unitization (chunking) of correlated items, learning of pairs’ possible spatial 

arrangements and/or learning how to segment grids into pairs – causing improved sensitivity in a 

psychophysical sense. 

To distinguish between PL and SL in the experiment, our assessment had three 

conditions: Familiar, which used the pairs from familiarization, and two comparison conditions. 

The Shuffled condition used the same shapes as in the familiarization but shuffled into new 

pairings, to test for near transfer, and for bias to expect what was seen previously. The third 

condition, New Shapes, utilized a new set of 12 never-before-seen shapes that we created 

arranged in pairs like the other conditions. New Shapes primarily served as a control, because 

only learning of how to segment arrays into pairs could transfer to this condition. 

Hypotheses 

Results would support SL as a separate learning mechanism from PL if participants 

showed learning on familiarized stimuli (Familiar) but little or none on other stimuli, and showed 

a psychophysical bias for familiarized stimuli with partial information  (elevated false alarm rate 

in Shuffled). In contrast, results would indicate the presence of PL following an SL paradigm if 

participants showed transfer to new, closely related stimuli (Shuffled) and possibly to new, 

distantly related stimuli (New Shapes), and if participants increased their pychophysical 

sensitivity (in any or all conditions, but especially Familiar).  

Method 

Participants  

90 (67 female, 23 male) undergraduates in psychology and linguistics courses at the 

University of California, Los Angeles were recruited through the Psychology Department subject 
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pool. Participants had normal or corrected-to-normal vision and were compensated with partial 

course credit. 

Materials & Procedure 

Statistical Learning Paradigm. Experiment 1 replicated Fiser and Aslin (2001)’s 

paradigm: We re-created the shapes and their pairings and arrangements for the 144 grids 

presented in 7 minutes in the familiarization, viewed passively. We built the recognition task, 

with one trial per target (as the number of trials was not specified in the original study). We also 

replicated the creation of a unique shape set – randomization of shapes to pairs for each 

individual participant.  

We did make two changes: In our version, the 2IFC familiarity test did not include grid 

lines. The familiarity test had one trial per target, in random order (Fiser & Aslin, 2001 did not 

specify their number of familiarity test trials). We tripled the familiarization from one block of 7 

minutes with the 144 grids to three to 21 minutes, in three 7 minute blocks each with all 144 

grids in a different random order, with breaks between. Piloting had showed that increasing 

familiarization increased recognition test performance – increased learning – to make the 

learning more detectable. 

After participants completed the familiarization and the recognition test, then they 

participated in our psychophysical assessment
6
. We developed a novel psychophysical detection 

task to assess perceptual learning in this SL paradigm. In the detection task, participants were 

                                                 

 

6
 Given that SL occurs quickly, in as little as 7 minutes, we decided against a pretest-posttest 

design. We did not want participants to learn pairs before the familiarization, and we kept the 

assessment short (about 10 minutes) to minimize learning during the assessment. 
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tested on their ability to determine whether a target pair was present or absent in a previously 

presented grid. Finally, participants completed a brief survey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic of psychophysical assessment for a target-present trial (left) and a target 

absent trial (right). 

 

Psychophysical Detection Task.  Each of 80 psychophysical test trials (4 grid Exposure 

Durations x 2 Target Presence levels (Present, Absent) x 10 trials per exposure duration-presence 

combination) consisted of a grid, a blank screen (500ms), and the target (3000ms). Exposure 

duration for grid presentation followed the method of constant stimuli, using the Exposure 
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Durations 400ms, 700ms, 1000ms, and 1300ms. Piloting indicated that these exposure durations 

covered a range in which performance showed neither floor nor ceiling effects. 

Grids consisted of two differently-oriented pairs of shapes (e.g. one vertical and one 

diagonal pair), arranged so that the pairs were adjacent in the 3x3 grid, and gridlines were not 

shown. Targets were also shown without gridlines, centered in the screen. On half of the trials, 

target shape pairs were present. We ensured that participants could not achieve high accuracy by 

simply looking at a single target shape: on target-absent trials, targets shared exactly one shape 

with the shape pairs in the grid. Thus, participants had to identify whether the target pair as a 

whole was present in the grid. They pressed ‘z’ for present and ‘/’ for absent. 

Participants were assigned to one of three versions of the assessment: Familiar (n = 29), 

Shuffled (n = 32), or New Shapes (n = 29). In the Familiar condition, grids contained pairs 

presented in familiarization. Targets were either one of the pairs in the grid (target-present trials), 

or a pair that shared exactly one shape with the grid but belonged to a Shuffled shape set (target-

absent trials). 

In the Shuffled condition, shapes were randomized to a new shape set of 6 pairs with the 

following constraints: 1) Shapes could not be paired with the same shape; 2) Shapes could not be 

in the same position (e.g. the left side of a horizontal pair); 3) The shapes from any two original 

pairs must be divided into at least three new pairs, so that every possible grid could have a target 

pair that shared exactly one shape with the grid. Targets for target-absent trials were not from the 

new shape set, but all 6 pairs from the (participant’s individualized) shape set from 

familiarization. By using familiarization pairs for target-absent trials, we tested for a bias due to 

SL: a bias to expect to continue seeing pairs from familiarization. This bias could have 
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manifested as simply choosing targets that had been seen in familiarization without reference to 

the grid for the trial
7
. 

 

 

 

Figure 2. Schematic of relationships between arrays and targets within and across conditions in 

the psychophysical assessment. For target-present trials, the target pair appeared in the array. For 

target-absent trials, one of the two shapes in the target pair appeared in the array, but the pair 

belonged to a different condition – Familiar arrays with Shuffled targets; Shuffled arrays with 

Familiar targets.  

                                                 

 

7
 Note that this is one way bias could be detected in this study. Another was the false alarming to 

displays containing only component of a familiarized pair in the Familiar condition. 

New Shapes 

Familiar Shuffled New Shapes 

Present Present Present Absent Absent Absent 
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In the New Shape trials, twelve new shapes we created were arranged into pairs for grids 

and target pairs after the fashion of Fiser and Aslin (2001)’s grids. The shapes in the 

familiarization shape set were replaced with new shapes, and randomization for the Shuffled 

condition was applied, to create a new shape set of 6 pairs to serve as targets for target-absent 

trials. Thus, the New Shape condition had 6 target pairs, and 6 target-absent pairs that overlapped 

with the shapes in grids by exactly one shape, as in the other conditions. 

Survey.  After the psychophysical task, participants completed a brief survey using 

Google Forms. The first three items were mandatory: 1. Participants entered their name (to allow 

their survey to be matched to their behavioral data). 2. Participants reported their hours of sleep 

the previous night on a 5-point Likert-type scale as “less than 7”, 7, 8, 9, or “10 or more”. 3. 

Participants reported how alert they felt from 1 (“not alert at all”) to 5 (“extremely alert”). These 

items were followed by several optional open-ended questions (see Appendix A): “What did you 

notice during the experiment?”; “Did you have any strategies? If you had any strategies, please 

describe them.”; and “Did you notice any patterns? If you noticed patterns, please describe 

them.” When participants completed the survey, they were released.  

Dependent Measures 

Familiarity Test. We collected accuracy on each trial, and averaged accuracy across 

trials, for a single value for each participant. Analyses were conducted on the aggregated data. 

Psychophysical Assessment. On each trial, we collected accuracy. The raw trial-by-trial 

values were averaged for trials with the same Exposure Duration with the same level of Target 

Presence (Present, Absent). Main analyses were conducted on the aggregated accuracies. I also 

calculated average accuracy on the assessment to use as the dependent measure for exploratory 

analyses with survey data and other factors. 
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 Additionally, I calculated raw hit and false alarm rates for each participant from the 

aggregated data. Then I calculated corrected hit and false alarm rates using the log-linear 

correction of adding .5 to each cell and dividing by n + 1 (Hautus, 1995; Knoke & Burke, 1980), 

then calculated sensitivity (d’) and bias (criterion
8
) for each participant. Analyses were 

conducted on (raw) hit rate, (raw) false alarm rate, d’, and criterion. A positive value for criterion 

meant that participants tended to respond that the target was present more often; a negative value 

meant that participants responded absent more frequently. 

Additional Predictors 

Survey. I recoded the endpoints of the sleep measure from descriptions into numbers, 

e.g. from “less than 7” to 6, to allow for quantitative analyses. 

I was interested in whether any particular strategy was associated with better 

performance, so I read participant responses to the strategy question. I found that more than half 

of participants (n = 49) gave a response that indicated naming of the shapes (e.g. “i [sic] tried 

associating each shape with a word or thing that reminded me of the shape”). Each participant 

was coded dichotomously as either employing the linguistic strategy or not (n = 30).  

I was also interested in whether explicit knowledge of the pair structure might have 

influenced performance. In their open-ended responses as to what they noticed and to other 

optional questions, some participants (n = 24) directly mentioned the pair structure or described a 

pair, e.g. “the star object always comes [with] a triangle shape object”. These participants were 

coded as 1 for Noticing. Others did not explicitly report noticing the pairs, but they reported 

noticing that certain shapes could only appear in certain locations in the arrays, or that shapes 

                                                 

 

8
I used this formula for criterion: criterion = .5*(z(H)+z(FA)).  
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appeared with other shapes or near certain other shapes. These properties were consequences of 

the pair structure because shapes were paired and certain shapes could not appear in certain 

locations. For example, the lower shape in a vertical pair could not appear in the top row. This 

group of participants (n = 11) may have noticed the pairs as well. These participants were coded 

as 0.5 for Noticing. The remaining participants did not report anything related to the pair 

structure (n = 53) and were coded as 0 for Noticing, or did not report anything about what they 

noticed at all (n = 2, excluded from analyses of noticing).  

Other Factors  I also noted a few other variables from the experiment log. I categorized 

the time of day at which the experiment started: morning (before 11am, n = 42), midday (at or 

after 11am but before 2pm, n = 36), or later (n = 12). I coded dichotomously whether the 

experiment occurred on a weekday (n = 76) or on a weekend (n = 14). I also recorded 

participants’ gender to confirm that there were no differences in performance by gender. 
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CHAPTER 3: EXPERIMENT 1 RESULTS AND DISCUSSION 

Results 

Recognition 

 

 

Figure 3. Recognition Accuracy (bar graph, left) and frequency histogram (right). The left panel 

shows recognition accuracy for all participants. The error bar indicates the standard error of the 

mean. The right panel is a histogram of accuracies on the recognition test, showing the high 

variability in accuracy. 

 

Figure 3 shows average recognition performance (left panel) and the distribution of 

recognition accuracy (right panel). Recognition appears to be above chance, but highly variable 

across participants. Statistical analyses showed  that participants demonstrated accuracy 

significantly greater  than chance (M = 0.65, SE = 0.02) on recognition of pairs in familiarization 

in the recognition test, t(89) = 6.46, p < .001, Cohen’s d = 0.68. Inspecting the distribution of 

accuracy for participants (in Figure 3, right panel) suggested that there might have been two 
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populations of participants – those that successfully passed the recognition test and those that did 

not. To test this hypothesis of two populations, participants were divided into two groups by their 

accuracy on recognition: “Recognizers” (n = 50) scored above 50% and “Nonrecognizers” (n = 

40) scored at or below 50%. An independent-samples t-test of recognition group on recognition 

accuracy revealed that Recognizers (M = 0.82, SE = 0.02) had significantly higher accuracy than 

Nonrecognizers (M = 0.44, SE = 0.01) and this was an extremely large effect, t(88) = 16.147, p < 

.001
9
, Cohen’s d = 3.48. 

An ANOVA of Condition on recognition accuracy showed that conditions did not differ 

in recognition (p = .75). Participants in all conditions recognized pairs seen in familiarization 

equally well. This was unsurprising because all participants received the same recognition test 

(relative to their familiarization shape set), but it indicated that there were not significant 

differences across participants in different conditions by chance. 

Psychophysical Assessment: Main Analyses 

Accuracy. Figure 4 shows participants’ accuracy for each assessment condition at each 

search array Exposure Duration for both target-present and target-absent trials, and it appears to 

show a main effect of Condition such that participants performed better in the Familiar and 

Shuffled conditions than in New Shapes. A three-way ANOVA of Condition (Familiar, Shuffled, 

New Shapes) by Exposure Duration (400ms, 700ms, 1000ms, 1300ms) by Target Presence 

(Present, Absent) on accuracy tested the observed pattern of results and revealed a large main 

                                                 

 

9
 For planned comparisons – tests involving both hypothesis-relevant independent variables 

(Condition, ExperimentVersion) and hypothesis-relevant dependent variables (recognition 

accuracy; psychophysical assessment accuracy, false alarm rate, and sensitivity) – the standard 

uncorrected alpha level of .05 was used throughout this dissertation, and also for other ANOVAs 

and ANCOVAs. For all other tests, the alpha level of .001 was used (corrected alpha level, 

approximated to three decimal places). 
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effect of Condition, F(2,87) = 6.70, p = .002, partial-eta-squared = 0.13, a marginal main effect 

of Exposure Duration F(3,261) = 2.44, p = .07, partial-eta-squared = 0.02, an interaction effect 

of Exposure Duration and Target Presence, F(3,261) = 7.87, p < .001, partial-eta-squared = 

0.08, and a three-way interaction, F(6,261) = 2.37, p = .03, partial-eta-squared = 0.05. No other 

effects were significant (all p’s > .49).  

 

 

Figure 4. Condition by Exposure Duration by Target Presence on accuracy. Error bars indicate 

standard error of the mean. 

 

To investigate the marginal main effect of Exposure Duration, I conducted custom 

hypothesis tests in ANOVA using SPSS. I first compared 1000ms (M = 0.75, SE = 0.01) and 

1300ms (M = 0.75, SE = 0.02) exposure durations, which did not significantly differ in accuracy 

(p = .93). Then I compared 400ms (M = 0.72, SE = 0.01) to the average of the 1000ms and 

1300ms exposure durations and found that 400ms had marginally lower accuracy, F(1,87) = 7.76 

p = .007, partial-eta-squared = 0.08. No other comparisons were significant (all p’s > .23). 

Because the shortest exposure duration had marginally lower accuracy than the longest two, and 
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Exposure Durations increased numerically in accuracy, accuracy increased monotonically across 

Exposure Durations. Thus, the results of the assessment are interpretable. 

To investigate the main effect of Condition via custom hypothesis tests, I first compared 

the Familiar (M = 0.75, SE = 0.02) condition to the Shuffled (M = 0.78, SE = 0.02) condition 

which were not significantly different (p = .27). Then I compared the combination of the 

Familiar and Shuffled conditions to the New Shapes (M = 0.68, SE = 0.02) condition, which 

revealed that the Familiar and Shuffled conditions were significantly more accurate than the New 

Shapes condition and that this was a large effect, F(1,87) = 11.94, p = .001, partial-eta-squared 

= 0.12. Participants were more accurate in the conditions with shapes they saw during 

familiarization, and learning transferred from Familiar to Shuffled. 

To follow up on the significant three-way interaction of Condition, Exposure Duration, 

and Target Presence, I divided the data by exposure duration to test each simple two-way 

interaction of Condition and Target Presence using custom hypothesis tests in ANOVA. For 

400ms, 700ms, and 1000ms, Condition and Target Presence did not interact (all p’s >.13). For 

1300ms, Condition and Target Presence interacted, F(2,87) = 3.76, p = .03, partial-eta-squared 

= 0.08, so I broke the data by Target Presence to investigate the simple simple effect of 

Condition at 1300ms to follow up on the simple interaction. These custom hypothesis tests at 

1300ms revealed a simple simple effect of Condition for Absent, F(2,87) = 3.676, p = .03, 

partial-eta-squared = 0.08. For when the target was Absent at 1300ms, I compared the Familiar 

(M = 0.79, SE = 0.04) and Shuffled (M = 0.76, SE = 0.04) conditions and found that they were 

not different from each other (p = .55), but when I compared them in combination to the New 

Shapes (M = 0.63, SE = 0.04) condition, I found that Familiar and Shuffled were significantly 

more accurate than New Shapes, F(1,87) = 11.17, p = .001, partial-eta-squared = 0.11. There 
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was no simple simple effect of Condition when the target was Present (p = .29). The three-way 

interaction of Condition and Exposure Duration and Target Presence was driven by the 

Condition effect at 1300ms for Absent. 

I examined the two-way interaction of Exposure Duration and Target Presence using 

custom hypothesis tests, breaking on Exposure Duration. For 400ms, accuracy was marginally 

higher when the target was Absent (M = 0.76, SE = 0.02) than when it was Present (M = 0.67, SE 

= 0.02), F(1,87) = 8.54, p  = .004, partial-eta-squared = 0.09. Accuracy did not differ on 

TargetPresence for the other exposure durations (all p’s > .10), so the interaction of Exposure 

Duration and Target Presence was driven by higher accuracy for Absent than Present at 400ms. 

 

 

Figure 5.  Condition by Exposure Duration on hit rate. Error bars indicate standard error of the 

mean. 

Hit Rate.  Figure 5 showed effects of Condition and Exposure Duration on hit rate, and 

appeared to show higher hit rates for Familiar and Shuffled across exposure durations, especially 
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Condition by Exposure Duration on hit rate, which showed that there was a significant effect of 

Exposure Duration, F(3, 261) = 9.70, p < .001, partial-eta-squared = 0.10, an interaction of 

Condition and Exposure Duration, F(6, 261) = 2.19, p = .04, partial-eta-squared = 0.05, and a 

marginal main effect of Condition, F(2,87) = 3.04, p = .05, partial-eta-squared = 0.07.  

Using custom hypothesis tests in ANOVA, I followed up on significant effects. For the 

main effect of Condition, I conducted all pairwise comparisons. There were no significant 

differences (all p’s > .01). 

For the interaction of Condition and Exposure Duration, I examined the simple effect of 

Condition at each search grid exposure duration. There was a significant simple effect of 

Condition at 400ms, F(2,87) = 7.05, p = .001, partial-eta-squared = 0.14. At 400ms, I compared 

Familiar (M = 0.69, SE = 0.03) and Shuffled (M = 0.75, SE = 0.03), which did not differ (p = 

.22), but when I next compared them together to New Shapes (M = 0.58, SE = 0.03), Familiar 

and Shuffled in combination they showed significantly more hits than New Shapes, F(1,87) = 

12.32, p = .001, partial-eta-squared = 0.12. There were no simple effects of Condition for the 

other exposure durations (all p’s > .18), so the interaction of Condition and Exposure Duration 

was driven by the simple Condition effect of transfer from Familiar to Shuffled at 400ms. 

I also examined the main effect of Exposure Duration on hit rate via custom hypothesis 

tests. When compared, I found 1300ms (M = 0.77, SE = 0.02) and 1000ms (M = 0.76, SE = 0.02) 

did not differ (p = .54). I then compared 400ms (M = 0.67, SE = 0.02) to 1000ms and 1300ms 

together, and found that 400ms had a lower hit rate than the combination of 1000ms and 1300ms, 

F(1,87) = 31.67, p < .001, partial-eta-squared = 0.27. I found that the combination of 1000ms 

and 1300ms did not differ in hit rate from 700ms (p = .046) when I tested this comparison. I also 

found that 400ms and 700ms (M = 0.73, SE = 0.02) did not differ (p = .02). 
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Figure 6.  Condition by Exposure Duration on false alarm rate. Error bars indicate standard error 

of the mean. 

 

False Alarm Rate. Figure 6 showed the effects of Condition and Exposure Duration on 

false alarm rate, and it appeared that New Shapes had the highest false alarm rate across 

exposure durations. An ANOVA of Condition by Exposure Duration on false alarm rates 

confirmed this pattern, by revealing a main effect of Condition, F(2,87) = 4.17, p = .02, partial-

eta-squared = 0.09 and no other effects (all p’s > .38). Using custom hypothesis tests, I 

compared Familiar (M = 0.24, SE = 0.03) to Shuffled (M = 0.22, SE = 0.03) and found that they 

did not differ in false alarm rate (p = .68), but when I compared their average to New Shapes (M 

= 0.33, SE = 0.03), I found that Familiar and Shuffled combined had significantly lower false 

alarm rates than New Shapes, F(1,87) = 8.09, p = .006, partial-eta-squared = 0.09. Learning in 

terms of decreased false alarming transferred from Familiar to Shuffled. 
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Figure 7.   Condition by Exposure Duration on sensitivity. Error bars indicate standard error of 

the mean. 

  

Sensitivity. Figure 7 showed the effects of Condition and Exposure Duration on 

sensitivity. There appeared to be a strong main effect of higher sensitivity for Familiar and 

Shuffled than for New Shapes. To statistically test this pattern of results, I conducted an 

ANOVA of Condition by Exposure Duration on sensitivity, which revealed a main effect of 

Condition, F(2,87) = 6.39, p = .003, partial-eta-squared = 0.13, and a marginal main effect of 

Exposure Duration, F(3,261) = 2.50, p = .06, partial-eta-squared = 0.03, but no interaction (p = 

.79). I used custom hypothesis tests in ANOVA to follow up on the main effect of Condition. I 

first compared Familiar (M = 1.39, SE = 0.12) and Shuffled (M = 1.56, SE = 0.11) and found that 

they did not differ (p = .29). When I next compared Familiar and Shuffled combined to New 

Shapes (M = 0.98, SE = 0.12), I found that sensitivity was significantly higher for the 

combination of Familiar and Shuffled than for New Shapes, F(1,87) = 11.45, p = .001, partial-
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eta-squared = 0.12. Learning transferred from Familiar to Shuffled. I investigated the significant 

main effect of Exposure Duration via custom hypothesis tests of all pairwise comparisons. These 

revealed no differences (all p’s > .01). 

 

 

Figure 8. Condition by Exposure Duration on criterion. Error bars indicate standard error of the 

mean. 

 

Bias. Figure 8 showed the effects of Condition and Exposure Duration on bias as 

measured by criterion. In the psychophysical assessment, bias was a response tendency to say 

absent or present. Criterion measured this tendency in terms of the distance in standard 

deviations from the unbiased criterion (equal numbers of present and absent responses), with 

negative criterion indicating more absent responses. Looking at Figure 8, it appeared that 

participants’ criterion varied with Exposure Duration. A two-way mixed ANOVA of Condition 

and Exposure Duration on criterion confirmed the apparent pattern by revealing a main effect of 
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Exposure Duration, F(3,261) = 5.95, p = .001, partial-eta-squared = 0.06, and an interaction, 

F(6,261) = 2.40, p = .03, partial-eta-squared = 0.05, and no main effect of Condition (p > .66).   

To investigate the interaction, I conducted custom hypothesis tests of the simple effect of 

Condition at each Exposure Duration. No simple effect of Condition was found for 400ms (p = 

.69), 700ms (p = .94), or 1000ms (p = .24). For 1300ms, there was a marginal simple effect of 

Condition, F(2,87) = 3.08, p = .05, partial-eta-squared = 0.07. At 1300ms, I compared 

conducted all pairwise comparisons using custom hypothesis tests, and found that Familiar (M = 

-0.08, SE = 0.07) showed significantly more bias to say absent than New Shapes (M = 0.16, SE = 

0.07), F(1,87) = 6.06, p = .02, partial-eta-squared = 0.07. Shuffled (M = 0.07, SE = 0.07) at 

1300ms did not differ in bias from Familiar (p = .13) or New Shapes (p = .33). The interaction of 

Condition and Exposure Duration was driven by the transfer of learning from Familiar to 

Shuffled at 1300ms. 

Custom hypothesis tests in ANOVA were conducted to follow up on the main effect of 

Exposure Duration. I first compared 700ms (M = -0.01, SE = 0.04) and 1000ms (M = 0.01, SE = 

0.04) and found that they did not differ in criterion (p = .15). Then I compared the middle 

exposure durations combined to 1300ms (M = 0.05, SE = 0.04) and found that the longest three 

exposure durations did not differ (p = .18). Finally, I compared 400ms (M = -0.12, SE = 0.04) to 

the other exposure durations combined, and found that 400ms showed significantly more bias to 

respond absent than the longer exposure durations combined, F(1,87) = 14.34, p < .001, partial-

eta-squared = 0.14. 

Psychophysical Assessment: Additional Analyses 

Recognition Accuracy and Assessment Accuracy. A Pearson correlation was used to 

investigate the relationship of recognition accuracy and average accuracy on the psychophysical 
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assessment. Assessment accuracy across conditions and recognition accuracy were not correlated 

r(89) = 0.11, p = .31. When data were divided by participants’ assessment condition, there was 

no correlation between assessment accuracy and recognition accuracy for Familiar, r(28) = .18, p 

= .36; or Shuffled, r(31) = .04, p = .81; or New Shapes, r(28) = .22, p = .26. 

Comparison to Baseline. 49 additional participants (41female, 8 male) participated in 

just the psychophysical detection assessment (no familiarization or familiarity test) to establish 

baseline performance on the task. 18 were in the Familiar condition, 16 were in the Shuffled 

condition, and 17 were in the New Shapes condition. I re-ran the above ANOVA analyses 

including this sample, with Experiment Version (Baseline, Experiment 1) as a between-subjects 

factor, for the hypotheses-relevant dependent variables (accuracy, false alarm rate, and 

sensitivity).  

Accuracy..  Figure 9 showed effects of Experiment Version, Condition, and Exposure 

Duration on accuracy for Experiment 1 and Baseline. Performance appeared to be higher for 

Experiment 1 for Familiar and Shuffled than for Baseline. An ANOVA of Experiment Version 

by Condition by Exposure Duration by Target Presence on accuracy confirmed this apparent 

pattern, and revealed a significant main effect of Experiment Version, such that accuracy was 

significantly higher for Experiment 1 (M = 0.74, SE = 0.01) than for the Baseline sample (M = 

0.70, SE = 0.02), F(1,133) = 4.60, p = .03, partial-eta-squared  = 0.03. Participants demonstrated 

learning in terms of higher accuracy in the full experiment relative to those participants who only 

completed the assessment. The ANOVA also revealed a trending interaction of Experiment 

Version and Condition, F(2,133) = 2.67, p = .07, partial-eta-squared = 0.04, a significant main 

effect of Exposure Duration, F(3,399) = 6.10, p <.001, partial-eta-squared = 0.04, and an 
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interaction of Exposure Duration and Target Presence, F(3,399) = 8.19, p <.001, partial-eta-

squared = 0.06. No other effects were significant (all p’s > .12). 

 

 

Figure 9. Experiment Version by Condition by Exposure Duration on accuracy (collapsed across 

Target Presence). Error bars indicate standard error of the mean. 

 

To understand the above significant effects, I conducted custom hypothesis tests. For the 

trending interaction of Experiment Version and Condition, I looked at the simple effect of 

Experiment Version on accuracy for each condition. For Familiar, participants were marginally 

more accurate in Experiment 1 (M = 0.75, SE = 0.02) than Baseline assessment performance (M 

= 0.69, SE = 0.03), F(1,133) = 3.28, p = .07, partial-eta-squared = .02. For Shuffled, participants 

were also more accurate in Experiment 1 (M = 0.78, SE = 0.02) than at Baseline (M = 0.70, SE = 

0.03), F(1,133) = 6.23, p = .01, partial-eta-squared = .05. Accuracy for New Shapes in 

Experiment 1 did not differ from Baseline (p = .55). The marginal interaction of Experiment 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

400 700 1000 1300

A
cc

u
ra

cy
 

Exposure Duration (ms) 

Baseline 

400 700 1000 1300

Exposure Duration (ms) 

Experiment 1 

Familiar Shuffled New Shapes

Condition 



43 

 

Version and Condition was driven by learning in the Familiar and Shuffled conditions relative to 

Baseline and no learning relative to Baseline for New Shapes. 

To test the interaction of Exposure Duration and Target Presence, I looked at the simple 

effect of Target Presence at each exposure duration individually. At 1300ms, Present (M = 0.77, 

SE =0.02) was significantly more accurate than Absent (M = 0.70, SD = 0.02), F(1,133) = 11.15, 

p = .001, partial-eta-squared = .08. No differences were found at 400ms, 700ms, or 1000ms (p’s 

> .07). The interaction of Exposure Duration and Target Presence was driven by the simple 

effect of Target Presence at 1300ms. 

Following up on the main effect of Exposure Duration, I first compared 1000ms (M = 

0.73, SE = 0.01) and 1300ms (M = 0.74, SE = 0.01), which did not differ in accuracy (p = .51). 

Then I compared 400ms (M = 0.69, SE = 0.01) to the combined longer exposure durations and 

found that 400ms had significantly lower accuracy than the combined longest exposure 

durations, F(1,133) = 20.74, p < .001, partial-eta-squared = 0.14. Then I compared the two 

highest exposure durations to 700ms (M = 0.71, SE = 0.01), and found no difference in accuracy 

(p = .08). Comparing the shortest exposure durations revealed no differences (p = .06). 

False Alarm Rate. Figure 10 shows the difference in false alarm rates between 

Experiment 1 and Baseline by Condition and Exposure Duration. It appeared that participants in 

Experiment 1 showed a lower false alarm rate in Familiar and Shuffled than at Baseline, but did 

not differ for New Shapes. I tested these apparent effects in an ANOVA of Experiment Version 

by Condition by Exposure Duration on false alarm rate, which revealed a significant main effect 

of Experiment Version, such that Experiment 1 (M = 0.26, SE = 0.02) had a significantly lower 

false alarm rate than Baseline (M = 0.33, SE = 0.02), F(1,133) = 5.63, p = .02, partial-eta-

squared = 0.04. It also revealed a marginal main effect of Condition, F(2,133) = 2.75, p = .06, 
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partial-eta-squared = 0.04, and no other effects (all p’s >.11), so there was no interaction of 

Experiment Version and Condition. 

 

 

Figure 10. Experiment Version by Condition by Exposure Duration on false alarm rate. Error 

bars indicate standard error of the mean. 

 

I used custom hypothesis tests in ANOVA to investigate the main effect of Condition. 

When I compared Familiar (M = 0.27, SE = 0.02) and Shuffled (M = 0.27, SE = 0.02), I found 

that they did not differ in false alarm rate (p = .95). When I combined them and compared them 

to New Shapes (M = 0.34, SE = 0.02), Familiar and Shuffled demonstrated significantly lower 

false alarm rates than New Shapes, F(1,133) = 5.50, p = .02, partial-eta-squared = 0.04. 

Learning in terms of reduced false alarming transferred from Familiar to Shuffled. 
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Figure 11. Experiment Version by Condition by Exposure Duration on sensitivity. Error bars 

indicate standard error of the mean. 

 

Sensitivity. Figure 11 shows sensitivity by Experiment Version and Condition and 

Exposure Duration. Sensitivity in Experiment 1 for Familiar and Shuffled appeared to be higher 

than sensitivity at Baseline, and an ANOVA analysis of Experiment Version by Condition by 

Exposure Duration on d’ confirmed this: it revealed a main effect of Experiment Version, such 

that participants demonstrated significantly higher sensitivity in Experiment 1 (M = 1.31, SE = 

0.07) than at Baseline (M = 1.06, SE = 0.09), F(1,133) = 8.16, p = 0.03, partial-eta-squared = 

0.04. It also revealed a main effect of Exposure Duration F(3,399) = 5.67, p = .001, partial-eta-

squared = 0.04, and a marginal interaction between Experiment Version and Condition, F(2,133) 

= 2.96, p = .06, partial-eta-squared = 0.04. No other effects were significant (all p’s > .14). 

For the marginal interaction of Experiment Version and Condition, I tested the simple 

effect of ExperimentVersion for each condition. For Familiar, there was a marginal simple effect 
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of Experiment Version, such that Experiment 1 (M = 1.39, SE = 0.12) was marginally more 

sensitive than Baseline (M = 1.03, SE = 0.16), F(1,133) = 3.39, p = .07, partial-eta-squared = 

0.03. Similarly, there was a significant simple effect of Experiment Version for Shuffled: 

participants in the Experiment 1 (M = 1.56, SE = 0.12) were more sensitive than those in the 

Baseline group (M = 1.04, SE = 0.16), F(1,133) = 7.26, p = .008, partial-eta-squared = .05. In 

contrast, there was no simple effect for New Shapes (p = .54). The marginal interaction of 

Experiment Version and Condition was driven by Experiment 1 showing learning relative to 

baseline in both Familiar and Shuffled. 

To investigate the interaction and the main effect of Exposure Duration, I conducted 

custom hypothesis tests in ANOVA. I first compared the shorter two exposure durations, 400ms 

(M = 1.03, SE = 0.07) and 700ms (M = 1.04, SE = 0.07), and found that they did not differ in 

sensitivity (p = .12). The longer exposure durations, 1000ms (M = 1.25, SE = 0.07) and 1300ms 

(M = 1.31, SE = 0.08), also did not differ in sensitivity (p = .54). However, participants showed 

significantly greater sensitivity on the long exposure durations combined than on the short 

exposure durations combined, F(1,133) = 12.59, p = .001, partial-eta-squared = 0.09. 

Survey Data 

Noticing the Pairs. Noticing the pair structure could have improved participants’ 

performance, if noticing them helped them parse the grids. If, however, explicit noticing 

interfered with automatic, implicit noting, then noticing the pairs could have worsened 

participants’ performance. In fact, a Pearson correlations showed no relationship between 

noticing and recognition accuracy (p = .52) or noticing and psychophysical assessment accuracy 

(p = .04). 
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Strategy.. Even though Linguistic Coding was the most popular strategy (see Dependent 

Measures) and it could have made encoding the grids more efficient, Linguistic Coding did not 

impact performance on either the recognition (p = .81) or the assessment (p = .42). 

Alertness and Sleep. Participants reported a medium level of alertness (M = 3.03, SE = 

0.09). Alertness did not correlate with recognition (p = .87) or assessment (p = .18) accuracy. 

The modal response for hours slept the prior night was “less than 7” (n = 50). Given the lack of 

variability, it was not surprising that no correlation of sleep and recognition accuracy (p = .90) or 

sleep and psychophysical assessment accuracy (p = .50) accuracy was found. 

Other Factors 

We confirmed via independent-samples t-tests that gender had no effect on recognition 

performance (p = .71) and no effect on average accuracy in the assessment (p = .88). There was 

also no effect of whether the experiment was administered on a weekday or weekend on either 

recognition accuracy (p = .87) or assessment accuracy (p = .35). One-way ANOVAs of time of 

day on recognition accuracy (p = .58) and assessment accuracy (p = .27) also showed no effects. 

Discussion 

Experiment 1 was designed to examine the relation between perceptual learning (PL) and 

statistical learning (SL) in a well-known SL paradigm (Fiser & Aslin, 2001). We successfully 

replicated the method and finding of the paradigm (Fiser & Aslin, 2001), and we developed a 

novel psychophysical detection task to follow it. We found a decreased – not increased – false 

alarm rate in the Familiar and Shuffled conditions, transfer from Familiar to Shuffled, and 

improved sensitivity in both Familiar and Shuffled. 
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Comparing our Data to the Hypotheses  

On our task, the hypothesis that SL and PL are different kinds of learning predicted SL 

patterns of results following an SL familiarization. These SL patterns of results would be 

showing familiarity on the recognition test, and possibly also an elevated false alarm rate with 

the same shapes randomized into new pairs (Shuffled condition). In contrast, the hypothesis that 

SL and PL are a single, integrated learning process predicted a high correlation of recognition 

and assessment accuracy, transfer to Shuffled from Familiar, and increased sensitivity.. 

Assessment Performance.  Participants showed higher accuracy, higher hit rates, higher 

sensitivity, and lower false alarm rates for the Familiar and Shuffled conditions than for shapes 

introduced in the assessment (New Shapes condition). Participants were able to transfer their 

learning of the familiarization pairs to the Shuffled condition. Participants showed this learning 

across all exposure durations, but especially in the lower exposure durations and on target-absent 

trials, where there was more room for improvement. Participants showed similar higher levels of 

performance on Familiar and Shuffled trials relative to New Shapes trials for target-present and 

target-absent trials, except at the longest array on-screen exposure duration (1300ms), when the 

Condition effect was only observed for target-absent trials. Participants improved most in hit rate 

at the lower exposure durations, but showed improvement in false alarm rate across all exposure 

durations. With longer exposure durations, participants showed higher sensitivity (d’). 

It was a bit surprising that performance on Familiar was not better than performance on 

Shuffled, because PL predicts the most learning on what was trained. Perhaps target-absent trials 

were more difficult than target-present trials. If so, this may have explained why performance 

was not different on Shuffled and Familiar trials. The six familiarization pairs were used as 

targets in the Shuffled condition for target-absent trials. All participants learned the pairs in 
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familiarization, so those in the Shuffled condition may have more easily identified these pairs as 

absent than those in the Familiar condition ruled out unfamiliar targets on their target-absent 

trials and thus successfully completed the harder trials at a higher rate. It is also possible that 

participants improved their encoding of shapes but not pairs via familiarization, and so showed 

similar improvements in encoding in both Familiar and Shuffled. This experiment cannot 

distinguish these hypotheses of what was learned. 

Recognition Test. Almost half of participants (40 of 90) scored at or below chance on 

the traditional test of statistical learning, the recognition test. However, there were no differences 

between those who passed the recognition test and those who did not in assessment performance: 

PL effects were found for all participants. Additionally, recognition accuracy did not correlate 

with assessment accuracy. This suggests that more-explicit recognition tests might not capture 

learning as well as implicit tasks, such as our psychophysical assessment. If PL and SL always 

co-occurred, then we would have seen a correlation. The fact that we did not find a correlation 

but that we did observe PL effects following a SL paradigm suggests that the relationship 

between SL and PL might be nuanced. 

Familiar and Shuffled Performance above Baseline. Analyses of the full experiment 

strongly suggested learning and PL in particular, but we could not rule a difference in difficulty 

of the different shapes or decreased performance on New Shapes on that basis alone. To confirm 

that our effects were increased learning, we compared participants’ performance on the 

assessment to Baseline group performance – performance of a separate sample of participants 

who only completed the assessment without any familiarization. These analyses revealed that: 1. 

Baseline performance did not differ across conditions, 2. New Shapes performance following 

familiarization was not different from Baseline and 3. Familiar and Shuffled following 
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familiarization had significantly higher performance than Baseline. Participants showed learning 

on the conditions with shapes and/or pairs in the familiarization but no learning on the novel 

shapes and their pairings. We ruled out the alternative explanations of difficulty differences for 

the shapes and of decreased New Shapes performance, and confirmed our interpretation of the 

results: because participants were more sensitive to the shapes and/or pairs following 

familiarization, they were better able to encode the arrays and complete the psychophysical 

assessment in the Familiar and Shuffled conditions than in the New Shapes condition. 

Performance on the New Shapes condition was no different than Baseline because participants’ 

encoding of learned shapes and/or pairs did not benefit them on unfamiliar shapes. 

Exploratory Analyses 

 I conducted several exploratory analyses, to investigate possible roles of other factors, 

including strategies and knowledge of the pair structure. The most commonly reported strategy 

was giving names or descriptions to the shapes, but using the strategy was not associated with a 

change in performance on either the recognition test or the psychophysical assessment. Because 

the shape pairs were what participants were to learn, explicitly noticing them or noticing an 

effect of them on the arrangement of shapes might be expected to cause higher performance, but 

noticing was not significantly correlated with accuracy in either the recognition test or in the 

psychophysical assessment.  

Summary 

In sum, we found direct psychophysical evidence for PL in encoding changes due to an 

SL familiarization paradigm. Our findings were more consistent with the hypothesis of a unified 

learning process than with the hypothesis of distinct kinds of learning. However, our findings 

were not entirely consistent with either hypothesis, and suggested that the relationship between 
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SL and PL may be more nuanced. Because of the confusion in the literature and lack of prior 

research directly addressing the relationship between SL and PL, this is a novel and important 

finding.  

Next Steps 

It is important to replicate and expand on Experiment 1 because of its theoretical 

importance and novel finding, and to better understand the scope of effects observed in this 

experiment. It would be interesting to learn under what conditions PL effects in an SL paradigm 

might strengthen, weaken or do not hold. We tripled the familiarization used in the original paper 

(Fiser & Aslin, 2001), so it is possible that weaker effects might be found with less 

familiarization, and, perhaps, stronger effects with more familiarization. Given that unitization is 

part of PL and that recording reliable statistical relationships between base elements (SL) could 

support unitization, it is possible that when learning is weak or incomplete, we might find SL 

effects instead of PL effects, weaker PL effects, or a mix of both. 

We might expect stronger PL effects, which might allow us more insight as to whether 

shapes or shape pairs were learned, under several different circumstances. One would be longer 

familiarization, as previously mentioned. We would also expect stronger PL effects following a 

PL-based intervention, which would provide converging evidence about the relationship between 

SL and PL.  
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CHAPTER 4: EXPERIMENT 2 INTRODUCTION AND METHODS 

Experiment 2: How does a PL intervention compare to SL? 

Experiment 2 expanded on Experiment 1 in several ways. We investigated potentially 

strengthening effects found in Experiment 1 by creating a PL intervention using the pairs in the 

Fiser and Aslin (2001) paradigm, and then administering our psychophysical assessment. 

Additionally, we investigated whether PL and SL might co-occur in a PL paradigm by including 

a non-target (SL) pair constructed like targets in the training. 

In Experiment 1, we found evidence of perceptual learning (PL) following a statistical 

learning (SL) paradigm. Following a passive familiarization, participants demonstrated transfer 

to the Shuffled condition and the increase in sensitivity in both the Familiar and Shuffled 

conditions, relative to participants who did not have the familiarization and relative to the New 

Shapes condition. Transfer and increased sensitivity are not consistent with SL (or the hypothesis 

of different kinds of learning), but are signatures of PL.  

Because this was a novel finding addressing an important gap in the human learning 

literatures, we investigated the conditions under which the effect may strengthen or weaken. One 

possible way to strengthen the effect would be to give participants PL training instead of just 

passive familiarization, as in typical SL paradigms including Experiment 1. Experiment 2 was 

designed to test whether PL training would yield quantitatively larger but not qualitatively 

different effects, to seek further evidence that SL and PL are, in fact, a unified learning process.  

PL in the real world does not require PL training. However, PL-based interventions can 

speed the process of PL. To this end, we designed and built a PL intervention to train participants 

on shape pairs in the familiarization. Our PL training consisted of a visual search task with 

feedback: participants were shown a target shape pair, then searched for it in a search array, and 
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then received feedback. In contrast to a passive SL familiarization of fixed length, our PL 

intervention required participants to interact with domain structure and receive feedback on each 

learning trial, until objective mastery criteria were reached. Due to the active nature and mastery 

criteria of the PL condition, we might find quantitatively larger effects following the PL training 

than following SL familiarization. However, we would expect the PL training to produce 

qualitatively the same pattern of results as found with familiarization - PL effects. If we find 

what we expect, then this would constitute converging evidence towards clarifying the 

relationship of SL and PL. 

Method 

Participants  

70
10

 participants
11

 (54 female, 16 male) undergraduates in psychology and linguistics 

courses at the University of California, Los Angeles were recruited through the Psychology 

Department subject pool. Participants had normal or corrected-to-normal vision and were 

compensated with partial course credit. Eighteen participants were excluded due to programming 

errors: 10 with missing or incomplete data, and 8 because their percentage of SL pair trials was 

increased
12

. 

                                                 

 

10
 Power analyses in GPower 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007) based on pilot data 

indicated that a sample size of 20-25 per between-subjects condition would be sufficient. 

 
11

 Data from 11 of these participants, all in the Familiar condition, were collected later to balance 

the conditions. They were needed because the 7 participants that were excluded due to a program 

bug that crashed the assessment were all in the Familiar condition. 
 
12

 This may have increased the difficulty of the training, as seen in more trials and time required 

to complete training (see below, and Appendix B). Analyses including these 8 gave the same 

overall pattern of results. 
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Materials & Procedure 

Experiment 2 employed the same assessment as Experiment 1, with the same associated 

dependent measures.  I replaced the familiarization and familiarity test in Experiment1 with a 

perceptual learning (PL) condition and a new familiarity test for the PL condition. I also made a 

small change to the survey. 

PL Training. In the PL condition, participants searched for target pairs in search grids. 

Each participant had a shape set of generated for them as in Experiment 1, and the pairs in their 

shape set each became a target to learn. We used target detection because tasks involving 

recurrent search for particular stimuli typically lead to PL effects of faster and more accurate 

extraction of these stimuli (e.g., Schneider & Shiffrin, 1977; Karni & Sagi, 1993). Each 

participant had a shape set of generated for them as in Experiment 1, and the pairs in their shape 

set each became a target to learn. On each trial, participants fixated, then saw a target pair for 1s, 

saw a search grid generated for that trial, indicated by key press whether the target was present 

(‘z’) or absent (‘/’) in the grid, received accuracy feedback (correct/incorrect), and finally 

advanced
13

  to the next trial. Targets were present on half of the trials. 

                                                 

 

13
 32 of 70 participants advanced from one trial to the next by clicking the mouse; 38, by 

pressing the spacebar. Participants who clicked did not differ from those who used the spacebar 

in number of trials (p = .99). Click advancement did, however, require marginally more time (M 

= 26.02 minutes, SE = 0.64) than spacebar advancement (M = 23.49, SE = 0.48), t(68) = 2.20, p 

= .002. Advancement method did not influence the psychophysical assessment accuracy (p = 

.31) or familiarity accuracy (p = .16). 
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Figure 12 Schematic of a PL training trial showing the pair to learn, the pause, and the search 

grid. 

 

Search grids consisted of six shapes from Fiser and Aslin (2001)’s shapes (see Figure 

12). Half of grids contained a target pair. Non-target shapes were not arranged in target pairs 

because prior research (Schneider & Shiffrin, 1997) indicated that targets were only learnable 

when distinct from the distractor set. No shape could appear more than twice in a grid. Only one 

shape from a trial’s target pair could appear in a target-absent search grid. On a target-present 

trial, one shape in the target pair could appear (once) in the distractors in the search grid. Half of 

target-present trials and half of target-absent trials contained a statistical learning pair. The SL 

1000ms 

2500ms, 1800ms, 1100ms, or 400ms 
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pair consisted of two shapes selected from two different targets, and randomly assigned to either 

a horizontal or vertical orientation. Randomly selected shapes (not in pairs) filled in search grids 

so that each grid consisted of six shapes. Target pairs and the SL pair could not appear 

accidentally, only when specified for the trial. 

 Unlike in familiarization which lasted for a fixed session length, the PL condition ended 

when participants reached objective mastery criteria. Participants needed to answer 8 of the last 

10 trials of each target correct, for each of four different search grid durations per target. 

Accuracy counts were reset for each target for each search grid duration. Search grid durations 

were 3000ms, 2100ms, 1200ms, and 300ms. Reaching the accuracy criterion for a given target 

(one of the 6) and a given search grid duration (one of the 4) was considered a level of mastery. 

Every 45 trials, participants were given a brief break and saw their current mastery level. To 

make training as brief as possible, each target was removed from training once the final (4
th

) 

mastery level for that target was achieved. When participants reached mastery level 24
14

 (6 

targets x 4 search grid durations = 24), they saw the break and mastery level feedback screen for 

a final time, and then a completion screen. Then they continued to the one-trial familiarity test.  

(Participants who had not reached mastery after 40 minutes would also have seen the completion 

screen, and advanced to the familiarity test, but all participants reached mastery.) 

One-Trial Familiarity Test. The familiarity test for the PL condition was the same as 

the familiarity test in Experiment 1, except in the following ways: there was only a single trial, 

and the target was the SL pair from the PL training. 

                                                 

 

14
Mastery level was, on average, 24.11 levels (SE = 0.13), and 60 of 70 participants or 86% of 

participants completed exactly 24 mastery levels. A coding error caused 10 participants to have 

more or fewer mastery levels. 
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Survey Because the most common response to the sleep hours question on the survey 

was “7 or less” hours, we changed the response options to separate out different amounts of sleep 

that fell into “7 or less” in Experiment 1. In Experiment 2 the sleep hour question response 

options were “0 (no sleep)”, “1-3”, “4”, “5”, “6”, “7”, “8”, “9”, and “10 or more”. 

Dependent Measures 

PL Training. We collected trial-by-trial accuracy and reaction time (RT). These were 

primarily used for the purpose of structuring training. We also used this data to calculate the 

mean difference in accuracy for trials with and without the SL pair, and the mean difference in 

RT (correct trials only) for trials with and without the SL pair. We also collected the total 

number of PL trials per participant and the total length of PL training time. 

One-Trial Familiarity Test. We collected accuracy, and responses were coded as either 

correct (1) or incorrect (0). 

Psychophysical Assessment. (See Experiment 1 Method, in Chapter 2.) 

Additional Predictors 

Survey. I recoded the endpoints of the sleep measure from descriptions into numbers, 

e.g. from “1-3” to 3, to allow for quantitative analyses. I also examined alertness in Experiment 

2. I was (again) interested in whether any particular strategy was associated with better 

performance, so we read participant responses to the strategy question, looking for linguistic 

strategy responses. Each participant was coded dichotomously as either employing the linguistic 

strategy (n = 39) or not (n = 31).  

Finally, I also investigated noticing of the pairs in Experiment 2. Participants were much 

more likely to notice the pairs in Experiment 2 than Experiment 1, given that each pair was 

presented multiple times in isolation as the target of PL training trials. 44 participants reported 
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noticing the pairs. One participant likely noticed the pairs. Twenty participants’ responses did 

not indicate that they noticed the pairs or any consequences of the pair structure. (Five 

participants declined to respond to the noticing question, and were excluded from noticing 

analyses.) 

Other Factors  Because the other factors examined in Experiment 1 did not influence 

performance on either familiarity or the psychophysical assessment, we did not look at them in 

Experiment 2. 
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CHAPTER 5: EXPERIMENT 2 RESULTS & DISCUSSION 

Results 

Perceptual Learning Condition 

 Participants needed 24.65 minutes (SE = 0.42) on average to complete an average of 

227.03 trials (SE = 2.84).They showed high accuracy (M = 0.92, SE = 0.01) on training trials, 

and responded in an average of 889.18ms (SE = 22.45) on trials answered correctly. Training 

time and number of trials were positively correlated such that as participants required more 

training trials, they also required more training time, r(70) = .50, p < .001. Mean difference in 

accuracy for trials with and without the SL pair was 0.00 (SE = 0.00). Mean difference in 

reaction time for (correct) trials with and without the SL pair was 7.89 seconds (SE = 10.73). 

Effects of SL Pair Percentage. Eight participants (excluded from these Results, except 

for here) had a higher percentage of SL trials (75% for 7 and 64% for 1) than the other 

participants. Independent-samples t-tests showed that the 8 participants with a higher percentage 

of SL pair trials did not differ from the other participants in recognition accuracy (p = .28), 

average assessment accuracy (p = .23), time to complete training (p = .79), accuracy on training 

trials (p = .65), response time on trials answered correctly (p = .48), mean difference in accuracy 

for trials with and without the SL pair (p = .48), or mean difference in reaction time for correct 

trials with and without the SL pair (p = .43). However, these 8 participants (M = 413.25, SE = 

22.70) required significantly more trials to complete assessments than those with 50% SL pair 

trials (M = 227.03, SE = 2.84), t(76) = 8.14, p < .001. 
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One-Trial Familiarity Test 

Participants’ accuracy did not differ from chance (M = 0.45, SE = 0.06) on recognition of 

the statistical learning pair in the familiarity test (p=.40, see Figure 13). 38 (of 69)
15

 or 55% of 

participants did not indicate that the statistical learning pair seemed more familiar to them than 

the foil pair in the single 2AFC trial. 

 

     

Figure 13. Average accuracy on the one-trial recognition test (left) and histogram of accuracy 

(right). Error bar (left) shows standard error of the mean. 

 

An ANOVA of Condition on recognition accuracy showed that conditions did not differ 

in recognition (p = .82). Participants in all condition recognized the statistical learning pair 

equally poorly. This is unsurprising because all participants received the same recognition test 

                                                 

 

15
 One participant experienced an error and did not complete the recognition trial. 
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(relative to their familiarization shape set). It indicated that there were not significant differences 

across participants in different conditions by chance, an important manipulation check. 

PL Training and Psychophysical Assessment Accuracy.  However, participants who 

did recognize the SL pair might have performed differently from those who did not on the 

assessment. Perhaps those who recognized the SL pair learned targets less well from looking at 

distractors, or, conversely, perhaps they noticed the SL pair and were able to eliminate it more 

quickly from their searches and more efficiently find targets than other participants. To 

investigate this possibility, I conducted a Pearson correlation of average psychophysical 

assessment accuracy and familiarity test accuracy. I found no significant correlation of 

familiarity and assessment accuracy (p = .69)
16

. 

 PL Training and Familiarity. I conducted analyses to investigate whether the PL 

training influenced performance on the familiarity test. Familiarity test accuracy did not correlate 

with the number of PL training trials completed (p = .15). PL training time did not correlate with 

familiarity test accuracy (p = .37). 

Psychophysical Assessment: Main Analyses 

Accuracy. Figure 14 shows the effects of Condition, Exposure Duration, and Target 

Presence on accuracy. It appeared that Familiar showed the highest accuracy across exposure 

durations and across Target Presence. Shuffled appeared to have numerically higher accuracy 

than New Shapes in all but one case. An ANOVA of Condition by Exposure Duration by Target 

Presence on accuracy tested these apparent patterns and revealed a main effect of Condition, F(1, 

                                                 

 

16
 When I broke the data on Condition, I found no correlation of familiarity and assessment 

accuracy for Familiar, r(23) = .46, p = .16; Shuffled, r(22) = .35, p = .10; but there was a 

significant negative correlation for New Shapes, r(21) = -.54, p = .01, such that choosing the 

SL pair predicted lower assessment accuracy. 
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67) = 16.46, p < .001, partial-eta-squared = 0.33, a main effect of Exposure Duration, F(3, 201) 

= 5.41, p = .001, partial-eta-squared = 0.08, and no other effects (all p’s > .24). 

 

  

Figure 14. Condition by Exposure Duration by Target Presence on accuracy. Error bars indicate 

standard error of the mean. 

 

Custom hypothesis tests were used to investigate the significant effects. These tests for 

Condition revealed that the Familiar condition (n = 24
17

, M = 0.88, SE = 0.02) was significantly 

more accurate than Shuffled (n = 23, M = 0.78, SE = 0.02), F(1,67) = 13.13, p = .001, partial-

eta-squared = 0.16. Similarly, Familiar was significantly more accurate than New Shapes (n = 

23, M = 0.72, SE = 0.02), F(1,67) = 31.95, p < .001, partial-eta-squared = 0.32. Shuffled was 

                                                 

 

17
 The 13 original and 11 added participants did not differ on average recognition accuracy (p = 

.24), assessment accuracy (p = .41), number of training trials (p = .53) or training time (p = .65). 
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also more accurate than New Shapes, F(1,67) = 4.03, p = .05, partial-eta-squared = 0.06. 

Learning was strongest in the trained condition, but did transfer to Shuffled as well. 

 For Exposure Duration, I first compared 1000ms (M = 0.81, SE = 0.02) and 1300ms (M = 

0.81, SE = 0.02) and found no difference in accuracy (p = .56). Then I compared 400ms (M = 

0.76, SE = 0.02) to 700ms (M = 0.79, SE = 0.02) and found that did not differ (p = .10). Then I 

compared the shorter exposure durations to the longer exposure durations and found that 400ma 

and 700ms combined were significantly less accurate than 1000ms and 1300ms combined, 

F(1,67) = 16.20, p < .001, partial-eta-squared = 0.20. As in Experiment 1, the shorter exposure 

durations showed less accuracy than the longer ones, so the results are (again), interpretable. 

Hit Rate. Figure 15 showed the effects of Condition and Exposure Duration on hit rate. It 

appeared that Familiar had the highest hit rate across exposure durations, followed by Shuffled. 

To test these apparent effects, I conducted an ANOVA of Condition by Exposure Duration. This 

analysis revealed a main effect of Condition F(1,67) = 16.94, p < .001, partial-eta-squared = 

0.34, and a main effect of Exposure Duration F(3,201) = 4.12, p = .007, partial-eta-squared = 

0.06, and no interaction (p = .13).  

Custom hypothesis tests were used for all pairwise comparisons between Conditions. 

Familiar (M = 0.90, SE = 0.02) condition showed a significantly higher hit rate than Shuffled (M 

= 0.76, SE = 0.03), F(1,67) = 14.94, p < .001, partial-eta-squared = 0.18. Familiar also had 

significantly more hits than New Shapes (M = 0.70, SE = 0.03), F(1,67) = 32.34, p < .001, 

partial-eta-squared = 0.33. Shuffled had a marginally higher hit rate than New Shapes, F(1,67) = 

3.25, p = .08, partial-eta-squared = 0.08. Learning was strongest in the trained condition, but did 

transfer to Shuffled as well. 
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Figure 15. Condition by Exposure Duration on hit rate. Error bars indicate standard error of the 

mean. 

 

 I conducted custom hypothesis tests to investigate the main effect of Exposure Duration. I 

first compared the shorter exposure durations and found that 400ms (M = 0.76, SE = 0.02) and 

700ms (M = 0.77, SE = 0.02), did not differ in hit rate (p = .56). Similarly, when I compared 

1000ms (M = 0.81, SE = 0.02) and 1300ms (M = 0.81, SE = 0.02), I found that they also did not 

differ in hit rate (p = .99). Finally, I compared the short exposure durations to the long exposure 

durations and found that the longer exposure durations combined had significantly higher hit 

rates than the shorter exposure durations combined, F(1,67) = 11.77, p = .001, partial-eta-

squared = 0.15. 
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Figure 16. Condition by Exposure Duration on false alarm rate. Error bars indicate standard error 

of the mean. 

 

False Alarm Rate. Figure 16 showed effects of Condition and Exposure Duration on 

false alarm rate. It appeared that false alarm rate was neatly stair-stepped across exposure 

durations, with Familiar showing the lowest rates, then Shuffled, and New Shapes showing the 

highest. An ANOVA of Condition by Exposure Duration on false alarm rate tested these 

apparent effects and revealed a main effect of Condition, F(2,67) = 4.98, p = .01, partial-eta-

squared = 0.13, and a main effect of Exposure Duration, F(3,201) = 2.78, p = .04, partial-eta-

squared = 0.04, and no interaction (p = .78).  

I followed up on the main effect of Condition with custom hypothesis tests in ANOVA of 

all pairwise comparisons. I found that Familiar (M = 0.13, SE = 0.03) had a significantly lower 

false alarm rate than New Shapes (M = 0.27, SE = 0.03), F(1,67) = 9.84, p = .003, partial-eta-
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squared = 0.13. Shuffled (M = 0.21, SE = 0.03) had a marginally higher false alarm rate than 

Familiar, F(1,67) = 3.39, p = .07, partial-eta-squared = 0.05. Shuffled did not differ from New 

Shapes (p = .20). The lowest false alarm rate was in the trained condition. 

 For the marginal effect of Exposure Duration, I conducted custom hypothesis tests of 

pairwise comparisons. These analyses revealed that 400ms (M = 0.24, SE = 0.02) had a 

marginally higher false alarm rate than 1000ms (M = 0.18, SE = 0.02), F(1,67) = 8.51, p = .005, 

partial-eta-squared = 0.11. No other comparisons were significant (all p’s > .03). 

 

 

Figure 17. Condition by Exposure Duration on sensitivity. Error bars indicate standard error of 

the mean. 

 

Sensitivity. Figure 17 showed effects of Condition and Exposure duration on sensitivity. 

Familiar appeared to have the highest sensitivity across exposure durations, and Shuffled 

appeared to show higher sensitivity than New Shapes at three of four exposure durations. An 
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ANOVA of Condition by Exposure Duration on sensitivity tested these patterns of results. I 

found a main effect of Condition F(2,67) = 16.40, p < .001, partial-eta-squared = 0.33, and a 

main effect of Exposure Duration F(3,201) = 6.32, p < .001, partial-eta-squared = 0.09, and no 

interaction (p = .15). 

I followed up on significant effects via custom hypothesis tests in ANOVA. For the main 

effect of Condition, I conducted all pairwise comparisons. I found that Familiar (M = 2.33, SE = 

0.14) had significantly higher sensitivity than Shuffled (M = 1.57, SE = 0.14), F(1,67) = 14.20, p 

< .001, partial-eta-squared = 0.18. Familiar also had significantly higher sensitivity than New 

Shapes (M = 1.20, SE = 0.14), F(1,67) = 31.41, p < .001, partial-eta-squared = 0.32. Shuffled 

showed marginally higher sensitivity than New Shapes, F(1,67) = 3.30, p = .07, partial-eta-

squared = 0.05. Learning was strongest in the trained condition, but did transfer to Shuffled as 

well. 

I conducted all pairwise comparisons using custom hypothesis tests in ANOVA to follow 

up on the main effect of Exposure Duration. 400ms (M = 1.47, SE = 0.10) was less sensitive than 

1000ms (M =1.86, SE = 0.10), F(1,67) = 21.08, p < .001, partial-eta-squared = 0.24. 400ms was 

also less sensitive than 1300ms (M =1.79, SE = 0.10), F(1,67) = 16.65, p < .001, partial-eta-

squared = 0.20. No other comparisons were significant (all p’s > .05). 

Bias. Figure 18 showed the effects of Condition and Exposure Duration on bias (the 

tendency to respond present or absent more often regardless of stimulation) as measured by 

criterion. It appeared that participants showed a more positive criterion for Familiar across 

exposure durations. To test this apparent effect, I conducted an ANOVA of Condition by 

Exposure Duration on criterion (see Figure 18), and found no significant effects (all p’s > .23). 
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Figure 18. Condition by Exposure Duration on criterion. Error bars indicate standard error of the 

mean. 

 

Effects of Training & Survey Variables 

Training. As my first step in exploring if PL training time or number of trials influenced 

psychophysical assessment performance, I conducted Pearson’s correlations. PL training time 

did not correlate with assessment accuracy (p = .11). The number of PL trials completed 

negatively correlated with assessment accuracy, r(69) = -.53, p < .001. Participants who 

completed more trials were generally less accurate. 

Survey Data: Noticing the Pairs. A Pearson correlation of noticing with one-trial 

recognition accuracy showed no relationship (p = .97). Noticing did marginally correlate with 

assessment accuracy, r(64) = .32, p = .009. Noticing was associated with higher accuracy. I also 

tested the relationship between noticing and number of PL trials, because number of PL trials 
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also negatively correlated with assessment accuracy. Noticing and number of PL trials had a 

negative but non-significant relationship, r(64) = -.29, p = .02. 

Survey Data: Strategy. Even though linguistic coding was the most popular strategy 

(see Dependent Measures) and it could have made encoding the pairs and search grids more 

efficient, linguistic coding did not impact performance on either the recognition (p = .48) or the 

assessment (p = .56). 

Survey Data: Alertness and Sleep. Participants reported a medium level of alertness (M 

= 3.27, SE = 0.09). Alertness did not correlate with recognition (p = .41) or assessment (p = .72) 

accuracy. The average number of hours slept was 6.46 (SE = 0.17). No correlation of sleep and 

recognition accuracy (p = .29) or sleep and psychophysical assessment accuracy (p = .03) 

accuracy was found. 

Psychophysical Assessment: Effects of Number of Trials and Noticing the Pairs 

Accuracy. I followed up on the significant correlations of Noticing the pairs and 

assessment accuracy and Number of PL training trials and accuracy with ANCOVA analyses, 

statistically controlling for these effects. Figure 19 showed the effects of Condition, Exposure 

Duration, and Target Presence on accuracy, covarying out the effects of Noticing and Number of 

PL trials. Marginal means were estimated at means of the covariates: Noticing (M = 0.69), 

Number of Trials (M = 227.88). In Figure 19, it appeared that Familiar showed higher accuracy 

than the other conditions across exposure durations, and especially for Present. I tested this 

pattern of results by conducting an ANCOVA of Condition by Exposure Duration by Target 

Presence on accuracy, covarying out the Number of PL trials completed and the effect of 

Noticing the pairs. There was a main effect of Condition, F(2,60) = 9.19, p < .001, partial-eta-

squared = 0.24; a significant effect of the covariate of Number of trials, F(1,60) = 10.15, p = 
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.002, partial-eta-squared = 0.15; a marginal effect of the covariate of Noticing the pairs, F(1,60) 

= 2.82, p = .099, partial-eta-squared = 0.05; and an interaction of Number of trials and 

TargetPresence, F(1,60) = 12.00, p = .001, partial-eta-squared = 0.17. No other effects were 

significant (all p’s > .10). 

   

 

Figure 19. Condition by Exposure Duration by Target Presence on accuracy, covarying out the 

effect of Number of trials and Noticing the pairs. Bar heights indicate adjusted marginal means 

and error bars indicate standard error of the mean. 

 

I followed up my significant main effect of Condition with custom hypothesis tests in 

ANCOVA on the adjusted marginal means. I first compared Shuffled (M = 0.78, SE = 0.02) and 

New Shapes (M = 0.74, SE = 0.02) and found that they did not differ in accuracy (p = .17). Then 

I compared Familiar (M = 0.86, SE = 0.02) to the other conditions, and found that Familiar 
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showed significantly higher accuracy than the other two conditions combined, F(1,60) = 16.96, p 

< .001, partial-eta-squared = 0.22. 

 

 

Figure 20. Condition by Exposure Duration on false alarm rate, covarying out the effect of 

Number of trials and Noticing. Bar heights indicate adjusted marginal means and error bars 

indicate standard error of the mean. 

 

 False Alarm Rate. Given that Number of PL training trials and Noticing the pairs 

covaried with accuracy, I followed up with ANCOVA analyses involving the other hypothesis-

relevant dependent variables, false alarm rate and sensitivity. Figure 20 showed the effects of 

Condition, and Exposure Duration on false alarm rate, covarying out Number of PL trials and 

Noticing. Familiar appeared to have the lowest false alarm rate across exposure durations. I used 

an ANCOVA to analyze the effects of Condition and Exposure Duration on false alarm rate, 

covarying out the effect of Number of trials and the effect of Noticing, to test this apparent 
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effect. There were only effects of the covariate of Number of trials, F(1,60) = 8.48, p = .005, 

partial-eta-squared = 0.12; and the covariate of Noticing the pairs, F(1,60) = 11.76, p = .001, 

partial-eta-squared = 0.16; and no other effects (all p’s > .26). 

 

 

Figure 21. Condition by Exposure Duration on sensitivity (d’), covarying out the effect of 

Number of trials and Noticing. Bar heights indicate adjusted marginal means and error bars 

indicate standard error of the mean. 

 

 Sensitivity. Figure 21 showed the effects of Condition and Exposure Duration on 

sensitivity, statistically controlling for the effect of the Number of PL trials and the effect of 

Noticing the pair structure. Familiar showed the highest sensitivity across exposure durations, 

and Shuffled showed higher sensitivity than New Shapes at three of four exposure durations. To 

test these apparent effects, I conducted an ANCOVA to analyze the effect of Condition and 

Exposure Duration on sensitivity (d’), covarying out the effect of the Number of PL trials and the 
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effect of Noticing the pairs. There was a significant main effect of Condition, F(2,60) = 9.28, p < 

.001, partial-eta-squared = 0.24; a significant effect of the covariate Number of trials, F(1,60) = 

14.50, p = .004, partial-eta-squared = 0.13; a marginal effect of the covariate Noticing the pairs, 

F(1,60) = 4.93, p = .09, partial-eta-squared = 0.05; and no other effects (all p’s > .22). 

I followed up my significant main effect of Condition with custom hypothesis tests in 

ANCOVA on the adjusted marginal means. I first compared Shuffled (M = 1.60, SE = 0.14) and 

New Shapes (M = 1.34, SE = 0.14) and found that they did not differ in sensitivity (p = .21). 

Then I compared Familiar (M = 2.20, SE = 0.14) to the Shuffled and New Shapes together, and 

found that Familiar showed significantly higher sensitivity than the other conditions combined, 

F(1,60) = 17.47, p < .001, partial-eta-squared = 0.23. 

Discussion 

Experiment 2 sought converging evidence for the hypothesis that perceptual learning 

(PL) and statistical learning (SL) are part of a unified learning process. We developed a PL 

training that we based on Fiser and Aslin (2001)’s SL paradigm used in Experiment 1 and on 

Schneider and Shiffrin (1977)’s paradigm, and tested for similar effects as in Experiment 1 via 

our novel psychophysical assessment. If SL and PL are parts of a unified learning process, then 

conditions leading to SL and conditions leading to PL should both yield PL effects: transfer and 

improved sensitivity. Our data demonstrate PL effects, and similar effects as those observed in 

Experiment 1. 

Comparing our Data to the Hypotheses 

 The hypothesis of two kinds of learning would predict very different patterns of results 

for Experiments 1 and 2, because this hypothesis predicts SL effects of familiarity and, possibly, 

bias following an SL paradigm (Experiment 1) and PL effects of transfer and improved 
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sensitivity following a PL paradigm (Experiment 2). In contrast, the hypothesis of a single, 

unified learning process predicts similar patterns of results for Experiments 1 and 2 – 

specifically  a correlation between recognition and assessment accuracy and PL effects – from 

SL and PL paradigms. Notably, both hypotheses predict PL effects following a PL paradigm, but 

only differ as to their predictions for SL paradigms, and differ as to whether familiarity and 

assessment accuracy should be correlated. As expected by both hypotheses, we successfully 

induced PL in Experiment 2, as seen in improved sensitivity and transfer of learning. The largest 

effects in Experiment 2 were seen in the trained condition, Familiar. Familiar had significantly 

higher accuracy, hit rates, and sensitivity, and lower false alarm rates, than the other conditions. 

We also observed transfer of learning from Familiar to Shuffled: performance was lower than 

Familiar but higher than New Shapes for accuracy, hit rate, and sensitivity. 

  Qualitatively comparing the pattern of results observed in Experiments 1 and 2 on the 

same psychophysical assessment could give evidence as to whether results following the SL 

familiarization in Experiment 1 were due to PL, which was explicitly trained in Experiment 2. 

Because both Experiment 1 and 2 showed improved sensitivity and transfer of learning, the 

Experiment 2 data qualitatively show the same hallmarks of PL observed in Experiment 1, 

consistent with the hypothesis of a unified learning process but inconsistent with the hypothesis 

of two kinds of learning. However, there were no reliable overall correlations between the SL 

tests of familiarity and assessment accuracy for either experiment. Experiment 2 offers 

converging evidence that the relationship between SL and PL is nuanced. 

Comparing Experiment 1 and Experiment 2 Stimuli 

Experiment 1 and Experiment 2, by their different designs, gave participants different 

amounts of exposure to pairs to be learned, in similar amounts of training time (21 minutes and 
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24.65 minutes, respectively). Experiment 1 passively exposed participants to 432 grids (144 

unique grids x 3 blocks of all unique grids) consisting of 3 pairs per grid, so participants were 

exposed to each pair an average of 216 times (432 grids x 3 pairs per grid ÷ 6 pairs). Participants 

in Experiment 2 saw an average of 227.03 trials, each with one target pair and one search grid 

(containing the target pair on half of trials). Targets were seen, on average, 56.76 times (227.03 

trials ÷ 6 pairs * 1.5 exposures per trial), or 26% as often as in Experiment 1. The SL pair in 

Experiment 2 was seen 113.51 times on average (227.03 trials x .5 exposures per trial), or 53% 

as often as in Experiment 1. SL predicts better learning of relationships with more exposure to 

them, but PL predicts that learning depends more on the quality of training than on the number of 

exposures. Experiments 1 and 2 yielded similar patterns of results - more similar than predicted 

by the hypothesis of different kinds of learning - with many fewer exposures but more structured 

training in Experiment 2 than Experiment 1. 

No Learning of SL Pair 

Participants overall showed no learning on the one-trial recognition test of the statistical 

learning pair. The SL pair did not influence either accuracy or reaction time in training. 

Participants (with 50% of trials with the SL pair) also showed no evidence of learning of the SL 

pair in PL training – no higher accuracy or faster reaction times for trials with the SL pair.  

However, analyses comparing participants with the intended SL pair percentage to those 

with a higher percentage suggests an influence of the SL pair on learning: participants who had 

the SL pair on a higher percentage of trials needed more trials to complete learning, but not more 

time. The SL pair may have increased the difficulty of learning as indicated by increasing the 

number of trials required to complete training. More trials were required for participants who 

responded incorrectly more often because of the nature of training to mastery criteria. The SL 
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pair may have increased difficulty, but it seems also to have facilitated quicker responding 

because participants with a higher percentage of SL trials did not take longer to complete 

learning. Accuracy and response time in training did not differ across SL percentage, but the 

small sample of participants with a high SL percentage and the near-ceiling accuracy in training 

for all participants may explain why no differences were found. 

Given that statistical learning is about tracking correlations, SL would predict learning of 

the SL pair. SL would also predict that this would be a larger effect than learning of targets 

because the SL pair appeared twice as frequently as each target. Lack of learning of non-attended 

parts of grids is more consistent with perceptual learning because learning to suppress irrelevant 

information is a PL discovery effect (Kellman, 2002; Kellman & Garrigan, 2009). This 

explanation is also consistent with the psychophysical assessment results. 

The familiarity result in Experiment 2 differed from Experiment1, in which participants 

showed significant recognition on their recognition of the 6 pairs in their familiarization. These 

recognition tests differed not only in results, but also in the number of trials and trial content. 

Experiment 1 tested the 6 pairs to which participants were exposed in familiarization, whereas 

Experiment 2 tested the SL pair that appeared twice as often as target pairs to be learned but only 

appeared in search grids as part of the set of distractors. Another possible explanation for the 

different findings is the different number of exposures to tested pairs (216 on average in 

Experiment 1 v. 113.51 on average in Experiment 2), but this would not explain the 

psychophysical data. 

Number of PL Trials and Noticing the Pairs 

Number of PL training trials correlated with assessment accuracy, and Noticing the pairs 

correlated with assessment accuracy. Both were significant covariates in ANCOVA analyses 
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statistically controlling for the effects of Number of trials and of Noticing. These analyses 

showed that Familiar had the highest accuracy and most sensitivity, relative to the other 

conditions (Shuffled, New Shapes), which did not differ. Conditions did not differ in false alarm 

rate with the effects of Number of training trials and of Noticing controlled. When Number of 

training trials and Noticing the pairs were included in the statistical model, transfer from 

Familiar to Shuffled was no longer observed, but participants still showed improved sensitivity, 

so our interpretation of our results holds. 

What was Learned?. The fact that Noticing positively correlated with assessment 

accuracy and was a significant covariate in ANCOVA analyses demonstrates that participants 

with explicit knowledge of the pair structure showed more learning, and awareness of the pairs 

helped explain variation in learning for assessment performance. The pairs themselves (or in one 

case, a consequence of the pair structure) were explicit for these participants. This suggests that 

these participants learned the pairs - not just the shapes - and that this learning helped explain the 

PL effects demonstrated in the assessment. 

Summary 

 In sum, we found PL effects following PL training. The pattern of results was similar to 

the pattern of results found in Experiment 1, with the exception of stronger effects in the trained 

condition, and much more similar than predicted by the hypothesis of different kinds of learning. 

Participants showed transfer of learning from Familiar to Shuffled in accuracy, hit rate, and 

sensitivity. Noticing the pair structure improved assessment accuracy, suggesting that 

participants learned pairs, as did completing the PL training in fewer trials. When Noticing and 

Number of PL trials were statistically controlled for in ANCOVAs, participants still showed 

improved sensitivity, evidence of PL. But as in Experiment 1, SL familiarity did not correlate 
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with assessment accuracy. Because we found evidence of PL and similar effects to Experiment 1, 

Experiment 2 constitutes converging evidence that the relationship between SL and PL is 

nuanced.  

Next Steps 

 Experiments 1 and 2 have similar results, but it would also be beneficial to quantitatively 

compare their results (see Ch. 8 for multi-experiment analyses). It is possible that by increasing 

the length of the familiarization session (Experiment 3), an SL familiarization might yield 

psychophysical assessment results more similar to the results of Experiment 2 – show a 

particular benefit for learned (Familiar) pairs, as seen after PL training. It is also possible that by 

decreasing the familiarization session length (Experiment 3), that effects might weaken or the 

data might no longer show PL effects.   
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CHAPTER 6: EXPERIMENT 3 INTRODUCTION AND METHODS 

Experiment 3: How does session length impact learning? 

Experiments 1 and 2 gave evidence that the relationship between and perceptual learning 

(PL) and statistical learning is nuanced, so in Experiment 3 I replicated Experiment 1 and 

extended it to study under what conditions the PL effects following an SL familiarization hold. 

Specifically, I examined the time course of learning by varying the familiarization session length 

across participants. I predicted stronger learning with more familiarization and weaker learning, 

or possibly SL effects, or a mix of SL and PL effects with reduced familiarization. 

In Experiment 1, we found evidence of PL effects following an SL familiarization: 

participants increased sensitivity for the shapes in the relationships they learned (Familiar) and 

transfer in accuracy, false alarm rate, and sensitivity for arrays that contained the same shapes in 

new relationships (Shuffled), and decreased their relative to Baseline performance. In 

Experiment 2, by employing a PL intervention, we found similar effects of transfer and increased 

sensitivity. In Experiment 3 I aimed to gain a better understanding of the scope of these effects 

by exploring conditions in which the effects might strengthen, weaken, or even not hold. By 

doing so, I sought a deeper understanding of these novel findings. 

 Experiment 3 directly replicated Experiment 1 and expanded on Experiment 1’s findings 

by investigating the effects of varying amounts of learning by varying the familiarization session 

length. In Experiment 3, I systematically varied the amount of familiarization, using a shorter 

session length, the same session length as in Experiment 1 (the replication), and a longer session 

length. I expected greater amounts of familiarization to increase the strength of the effects – 

especially increased sensitivity, and possibly more transfer – so as to be more similar to the 

strength of effects observed following PL training in Experiment 2. For smaller amounts of 
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familiarization, I expected weaker PL effects, or possibly, qualitatively different effects. With 

minimal or incomplete learning, perhaps I would find SL effects instead of PL effects or a mix of 

both SL and PL effects, if finding correlations between items is a step in the process of 

unitization. Such SL effects could possibly be increased false alarming in Shuffled, and little or 

no change in sensitivity and little or no transfer of learning. 

Method 

Participants  

205
18,19

 (121 female, 81 male) undergraduates in psychology and linguistics courses at 

the University of California, Los Angeles were recruited through the Psychology Department 

subject pool. There were 23 participants in Familiar with the 7-minute session length; 23, with 

21 minutes; and 23, with 35 minutes. For Shuffled, there were 24 participants with 7 minutes; 22, 

with 21 minutes; and 23, with 35 minutes. For New Shapes, 22 had 7 minutes; 23 had 21 

minutes; and 22 had 25 minutes. 

                                                 

 

18
 Power analyses in GPower 3.1 (Faul et al., 2007) based on pilot data indicated that a sample 

size of 20-25 per between-subjects condition would be sufficient. 

 
19

 12 participants were added (from the same source) after the other participants were run to 

balance the conditions. The 11 original and 12 added participants in who had a session length of 

21 minutes and the New Shapes version of the psychophysical assessment did not differ on 

average recognition accuracy (p = .49), but they did differ in average assessment accuracy – the 

later participants (n = 12, M = 0.77, SE = 0.11) were more accurate than the earlier participants 

(n = 11, M = 0.68, SE = 0.09), t(21) = 2.08, p = .05. Bootstrapping population distributions of the 

means of the original and added groups (using 10,000 repetitions of the average assessment 

accuracies and the same sample sizes, i.e. 11 for original) and calculating 99% confidence 

intervals in R suggested that the original [0.67, 0.71] and late[0.75, 0.79] participants were from 

different populations. Results excluding the later participants (see Appendix D) showed 

generally the same pattern of results as including them. Because adding the later participants 

balanced sample sizes across conditions and boosted sample size to the level recommended by 

power analyses without generally changing the pattern of results, analyses include these 

participants unless otherwise specified. 
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Participants had normal or corrected-to-normal vision and were compensated with partial 

course credit. Eleven participants were excluded because they had completed the incorrect 

version of the psychophysical assessment due to experimenter error. Three participants were 

excluded due to loss of data: a bug caused the assessment to crash for one participant, and no 

data were collected for two because the study was cut short by a fire drill. 

Materials & Procedure 

 Experiment 3 directly replicated Experiment 1
20

 and extended it to different amounts of 

familiarization. The method was identical to Experiment 1, with the following exceptions: 1) I 

added familiarization Session Length as a between-subjects variable. The 21-minute level was 

identical to Experiment 1. Other levels included 7 minutes, the length of familiarization used in 

the original study (Fiser & Aslin, 2001) which was 14 minutes shorter than the session length in 

Experiment 1; and 35 minutes, a session length 14 minutes longer than the session length used in 

Experiment 1. 2) The slightly modified survey from Experiment 2 was used for Experiment 3. 3) 

I again omitted the additional factors examined in Experiment 1.  

                                                 

 

20
 A programming error removed the gridlines in the familiarization for the third and later blocks 

of familiarization (impacted third block in 21 minute session length and third through fifth 

blocks in the 35 minute session length). 
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CHAPTER 7: EXPERIMENT 3 RESULTS AND DISCUSSION 

Results 

Recognition 

 

Figure 22. Session Length on recognition accuracy.  Error bars indicate standard error of the 

mean. 

 

Figure 22 showed that participants demonstrated accuracy significantly higher than 

chance (M = 0.64, SE = 0.02) on recognition of pairs in familiarization across session lengths in 

the recognition test, t(202) = 8.78, p < .001, Cohen’s d = 2.77. As apparent in the distribution of 

accuracy for participants (in Figure 23), many participants did not pass the recognition test, but 

more passed with longer session lengths. Participants were divided into two groups by their 

accuracy on recognition: “Recognizers” (n = 125) scored above 50% and “Nonrecognizers” (n = 

80) scored at or below 50%. An independent-samples t-test of recognition group on recognition 

accuracy revealed that Recognizers (M = 0.79, SE = 0.01) had significantly higher accuracy than 

Nonrecognizers (M = 0.40, SE = 0.01), t(203) = 21.20, p < .001, Cohen’s d = 1.48. 
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Figure 23. Frequency histograms of recognition accuracy by Session Length: 7 minutes (left 

panel), 21 minutes (center panel), and 35 minutes (right panel). 

 

Condition and Session Length. Figure 22 showed effects of Session Length on 

recognition accuracy. It appeared that recognition was higher for the longer two session lengths, 

and that recognition was similar for 21 minutes and 35 minutes. I tested this apparent effect via 

an ANOVA of Condition and Length on recognition accuracy, which showed no main effect of 

Condition (p = .98), no interaction of Condition and Session Length (p = .59), and a main effect 

of Session Length, F(2,196) = 5.78, p = .004, partial-eta-squared = 0.05. 

I used custom hypothesis tests in ANOVA to investigate the main effect of Session 

Length. I first compared 21 minutes (M = 0.68, SE = 0.03) and 35 minutes (M = 0.68, SE = 0.03) 

and found that they did not differ (p = .94). Then I compared the longer session lengths 

combined to 7 minutes (M = 0.57, SE = 0.03) of familiarization. I found that participants were 

significantly less accurate on the recognition test with the 7-minute session length than when 

they had more familiarization, F(1,196) = 11.15, p = .001, partial-eta-squared = 0.05. This was 

0

2

4

6

8

10

12

14

16

18

20

0
.0

0

0
.1

7

0
.3

3

0
.5

0

0
.6

7

0
.8

3

1
.0

0

C
o
u

n
t 

Recognition Accuracy 

7 Minutes 

0
2
4
6
8

10
12
14
16
18
20

0
.0

0

0
.1

7

0
.3

3

0
.5

0

0
.6

7

0
.8

3

1
.0

0

C
o
u

n
t 

Recognition Accuracy 

21 Minutes 

0
2
4
6
8

10
12
14
16
18
20

0
.0

0

0
.1

7

0
.3

3

0
.5

0

0
.6

7

0
.8

3

1
.0

0

C
o
u

n
t 

Recognition Accuracy 

35 Minutes 



84 

 

consistent with piloting (and why 21 minutes of familiarization was used for Experiment 

1).  However, participants with the 7-minute session length still showed higher recognition than 

chance, t(68) = 2.44, p = .02, Cohen’s d = 0.29. Decreasing the session length decreased 

recognition. 

Participants in all three versions of the psychophysical assessment pairs performed 

equally well. This was unsurprising because all participants received the same recognition test 

(relative to their familiarization shape set), but it indicated that there were not significant 

differences across participants in different assessment versions by chance. It was also important 

that Session Length did not interact with (assessment) Condition for recognition. 

 

Table 1.  

Session Length and Recognition Group on actual and expected counts.  

 Nonrecognizers  Recognizers   

Session Length Actual Expected  Actual Expected  Total 

7 Minutes 37 (26.9)  32 (42.1)  69 

21 Minutes 22 (26.5)  46 (41.5)  68 

35 Minutes 21 (26.5)  47 (41.5)  68 

Total 80   125   205 

 

Session Length and Recognition Group.  I investigated the relationship of Session 

Length and Recognition Group using a chi-squared test. There was a significant association 

between Session Length and Recognition Group, χ
2
(2) = 9.35, p = .009. Looking at Table 1, it 

appeared that the association of Session Length and Recognition Group was due to a higher 



85 

 

percentage of participants in the 7 minutes group failing the recognition test than in the other 

session lengths.  

Correlating Recognition and Assessment Accuracy. A Pearson correlation was used to 

investigate the relationship of recognition accuracy and average accuracy on the psychophysical 

assessment. Assessment accuracy and recognition accuracy were positively correlated: higher 

recognition accuracy predicted higher assessment accuracy, r(204) = 0.26, p < .001. ANCOVA 

analyses were used to follow up on this significant correlation (see Psychophysical Assessment: 

Effects of Noticing, Recognition, and Linguistic Coding, on page 99). 

To further investigate the correlation between recognition accuracy and assessment 

accuracy, I split the data on both Condition and Session Length to test the correlation for each 

condition and session length combination. For Familiar, there was a significant positive 

correlation of recognition accuracy and assessment accuracy for a 21-minute session length, such 

that after 21 minutes, participants with higher recognition also showed higher assessment 

accuracy, r(22) = .62, p = .002. For Familiar, there was no correlation for 7 minutes, r(22) = -.20, 

p = .36; or 35 minutes, r(22) = .16, p = .47. For Shuffled, there was a significant positive 

correlation for 7 minutes of familiarization, such that participants with high recognition after 7 

minutes of familiarization also showed higher assessment accuracy, r(23) = .53, p = .008. There 

was no correlation for Shuffled at 21 minutes, r(21) = .13, p = .55; or 35 minutes, r(22) = .22, p 

= .31. There was no correlation for New Shapes at 7 minutes, r(21) = .06, p = .79; or 21 minutes, 

r(22) = .31, p = .15; or 35 minutes, r(21) = .32, p = .16. 

Psychophysical Assessment 

Accuracy. Figure 24 showed the effects of Condition, Session Length, and Exposure 

Duration on accuracy. For 7 minutes of familiarization, learning appeared to be most distinct at 
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the longest exposure duration. For 21 minutes, Familiar had the highest accuracy across exposure 

durations, but for 35 minutes, Shuffled showed the highest accuracy across exposure durations. 

To test these apparent effects, I conducted a four-way mixed ANOVA of Condition by Session 

Length by Exposure Duration by Target Presence on accuracy. I found significant main effects 

of Condition, F(2,196) = 3.29, p = .04, partial-eta-squared = 0.03, and Exposure Duration, 

F(3,588) = 3.05, p = .03, partial-eta-squared = 0.02.  There was also a significant main effect of 

Target Presence, such that participants were more accurate when the target was Absent (M = 

0.78, SE = 0.01) than when the target was Present (M = 0.72, SE = 0.01), F(1,196) = 14.66, p < 

.001, partial-eta-squared = 0.07. I also found three significant interactions: Condition marginally 

interacted with Exposure Duration F(6,588) = 1.94, p = .07, partial-eta-squared = 0.02; the 

effect of Condition depended upon the combined effects of Session Length and Exposure 

Duration, F(12,588) = 1.83, p = .04, partial-eta-squared = 0.04; and Exposure Duration 

interacted with Target Presence, F(3,579) = 5.18, p = .002, partial-eta-squared = 0.03. All other 

effects were non-significant (all p’s > .12). 

 Custom hypothesis tests in ANOVA were used to investigate the main effects. For the 

main effect of Condition, I first compared Familiar (M = 0.76, SE = 0.01) and Shuffled (M = 

0.76, SE = 0.01), and found that they did not differ in accuracy (p = .50). Then I compared New 

Shapes (M = 0.72, SE = 0.01)  to Familiar and Shuffled combined, and found that New Shapes 

showed significantly lower accuracy than Familiar and Shuffled, F(1,196) = 6.11, p = .01, 

partial-eta-squared = 0.03. The learning transferred from Familiar to Shuffled. 

For the main effect of Exposure Duration, I first compared 400ms (M = 0.74, SE = 0.01) 

and 700ms (M = 0.74, SE = 0.01), and found that the shorter exposure durations did not show 

different accuracy (p = .52). Similarly, I next compared the longer exposure durations, 1000ms 
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(M = 0.76, SE = 0.01) and 1300ms (M = 0.76, SE = 0.01), and found that they did not differ in 

accuracy (p = .70). Finally, I compared 400ms and 700ms to 1000ms and 1300ms, and found 

that the shorter exposure durations combined showed marginally lower accuracy than the longer 

exposure durations combined, F(1,196) = 8.96, p = .003, partial-eta-squared = 0.04. 

 

  

 

Figure 24. Condition by Session Length by Exposure Duration on accuracy (collapsed across 

Target Presence). Error bars indicate standard error of the mean. 

 

 Custom hypothesis tests were also used to examine the interaction of Condition and 

Exposure Duration, by testing the simple effect of Condition at each exposure duration. At 

700ms, there was a significant simple effect of Condition, F(2,196) = 3.64, p = .03, partial-eta-

squared = 0.04. I compared Familiar (M = 0.76, SE = 0.02) and Shuffled (M = 0.76, SE = 0.02) 

and found that they did not differ at 700ms (p = .81). Then I compared Familiar and Shuffled 
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together to New Shapes (M = 0.71, SE = 0.02), and found that Familiar and Shuffled showed 

higher accuracy than New Shapes at 700ms, F(1,196) = 7.22, p = .008, partial-eta-squared = 

0.04. There was also a simple effect of Condition at 1300ms, F(1,196)  = 6.03, p = .003, partial-

eta-squared = 0.06. Again, I first compared Familiar (M = 0.77, SE = 0.02) and Shuffled (M = 

0.80, SE = 0.02) and found that they did not differ in accuracy at 1300ms (p = .27). When I 

compared New Shapes (M = 0.71, SE = 0.02) to Familiar and Shuffled combined, New Shapes 

showed lower accuracy than the combination, F(1,196) = 10.83, p = .001, partial-eta-squared = 

0.05. There was no simple effect of Condition at 400ms (p = .30) or 1000ms (p = .82). The 

interaction of Condition and Exposure Duration was driven by the simple Condition effect at 

700ms and 1300ms. 

In looking at Figure 24, it appeared that the three-way interaction of Condition, Session 

Length, and Exposure Duration was due to Familiar showing the highest sensitivity for 21 

minutes and Shuffled showing the highest sensitivity for 35 minutes, and to learning for the 7-

minute exposure duration being apparent only for the longest exposure duration. To test the 

interaction, I broke the data on Exposure Duration and tested simple interactions for Condition 

and Session Length at each exposure duration. There was no simple interaction of Condition and 

Session Length at 400ms (p = .86), 700ms (p = .35), or 1300ms (p = .19). However, there was a 

marginal interaction of Condition and Session Length at 1000ms, F(4,196) = 2.16, p = .08, 

partial-eta-squared = 0.04. I used custom hypothesis tests to investigate the marginal interaction 

at 1000ms by evaluating simple simple effects of Condition for each session length. There was 

no simple simple effect of Condition for 7 minutes (p = .91) or 21 minutes (p = .15) of 

familiarization at 1000ms. However, there was a marginal simple simple effect of Condition for 

35 minutes of familiarization and 1000ms, F(2,196) = 2.54, p = .08, partial-eta-squared = 0.03. I 
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followed up by testing all pairwise comparisons. Familiar (M = 0.70, SE = 0.03) was less 

accurate than Shuffled (M = 0.80, SE = 0.03), F(1,196) = 5.07, p = .03, partial-eta-squared = 

0.03. New Shapes (M = 0.75, SE = 0.03) did not differ in accuracy from Familiar (p = .30) or 

Shuffled (p = .24). 

I also directly tested the apparent “flip” from Familiar having the numerically highest 

accuracy across exposure durations for 21 minutes to Shuffled having the numerically highest 

accuracy across exposure durations for 35 minutes by examining the interaction of Condition and 

Session Length in an ANOVA of Condition by Session Length (21, 35) by Exposure Duration by 

Target Presence on accuracy. There was no reliable interaction of Condition and Session Length 

across exposure durations and levels of Target Presence (p = .15). 

I also directly tested the apparent effect of the learning for the 7-minute session length 

being restricted to the longest exposure duration. I tested the simple interaction of Condition and 

Exposure Duration for 7 minutes of familiarization
21

. For 7 minutes of Familiarization, there was 

a simple interaction of Condition and Exposure Duration on accuracy, F(6,198) = 2.94, p = .009, 

partial-eta-squared = 0.08. I followed up with custom hypothesis tests in ANOVA of simple 

simple effects of Condition at each exposure duration, and followed up significant simple simple 

effects with further custom hypothesis tests. There was a significant simple simple effect of 

Condition at 1300ms, F(2,66) = 5.59, p = .006, partial-eta-squared = 0.14. I compared Familiar 

(M = 0.79, SE = 0.03) and Shuffled (M = 0.79, SE = 0.03), and found that they did not differ in 

accuracy (p = .91). Then I compared Familiar and Shuffled together to New Shapes (M = 0.66, 

SE = 0.03), and found that the combination showed higher accuracy than New Shapes, F(1,66) = 

                                                 

 

21
 There was no simple interaction of Condition and Exposure Duration at 21minutes (p = .22) or 

35 minutes (p = .20). 
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11.15, p = .001, partial-eta-squared = 0.15. There was not simple simple effect for 400ms, 

700ms, or 1000ms (all p’s > .23). The three-way interaction was driven most clearly by the 

differences at 1000ms - the change from Familiar having the best performance for 21 minutes to 

Shuffled having the best at 35 minutes (and no learning at 7 minutes) - and by the learning only 

at 1300ms for 7 minutes. 

Custom hypothesis tests were also used to investigate the interaction of Exposure 

Duration and Target Presence, by testing the simple effect of Target Presence at each exposure 

duration. There was a significant simple effect of Target Presence at 400ms, such that 

participants were more accurate on trials when the target was Absent (M = 0.78, SE = 0.01) than 

when the target was Present (M = 0.69, SE = 0.01), F(1,196) = 23.37, p < .001, partial-eta-

squared = 0.11. At 700ms, participants were also more accurate for Absent (M = 0.77, SE = 

0.01) than Present (M = 0.71, SE = 0.01), F(1,196) = 11.05, p = .001, partial-eta-squared = 0.05. 

1000ms showed the same pattern of (marginally) higher accuracy for Absent (M = 0.78, SE = 

0.01) than Present (M = 0.73, SE = 0.01), F(1,196) = 7.13, p = .007, partial-eta-squared = 0.04. 

In contrast, there was no simple effect of Target Presence for 1300ms (p = .29). The interaction 

of Exposure Duration and Target Presence was driven by the simple effects of Target Presence 

for the three shorter exposure durations. 

Hit Rate. Figure 25 showed effects of Condition, Session Length, and Exposure Duration 

on hit rate. There appeared to be no strong effects. I tested the (lack of a clear) pattern of results 

with an ANOVA of Condition by Session Length by Exposure Duration on hit rate, which 

revealed only a significant main effect of Exposure Duration, F(3,588) = 7.33, p < .001, partial-

eta-squared = 0.04. No other effects were significant (all p’s > .17). 
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Figure 25. Condition by Session Length by Exposure Duration on hit rate. Error bars indicate 

standard error of the mean. 

 

I used custom hypothesis to examine the main effect. I first compared 400ms (M = 0.69, 

SE = 0.01) and 700ms (M = 0.71, SE = 0.01) and found that they did not have different hit rates 

(p = .13). Next, I compared 1000ms (M = 0.73, SE = 0.01) and 1300ms (M = 0.75, SE = 0.01) 

and again found that they did not differ (p = .18). However, when I compared 400ms and 700ms 

to 1000ms and 1300ms, I found that the short exposure durations showed a significantly lower 

hit rate than the long exposure durations, F(1,196) = 17.41, p < .001, partial-eta-squared = 0.08. 

False Alarm Rate. Figure 26 showed the effects of Condition, Session Length, and 

Exposure Duration on false alarm rates. Familiar and Shuffled appeared to generally have lower 

false alarm rates than New Shapes, but not for all exposure durations or all session lengths. To 

test the apparent effects, I conducted an ANOVA of Condition, Session Length, and Exposure 
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Duration on false alarm rate. This analysis revealed a main effect of Condition, F(2,196) = 5.54, 

p = .005, partial-eta-squared = 0.05, and no other effects (all p’s  > .20). 

 

 

Figure 26. Condition by Session Length by Exposure Duration on false alarm rate. Error bars 

indicate standard error of the mean. 

 

For the main effect of Condition, I followed up with custom hypothesis tests in ANOVA 

of all pairwise comparisons. Familiar (M = 0.22, SE = 0.02) showed marginally fewer false 

alarms than New Shapes (M = 0.27, SE = 0.02), F(1,196) = 3.82, p = .05 partial-eta-squared = 

0.02. Similarly, Shuffled (M = 0.18, SE = 0.02) had fewer false alarms than New Shapes, 

F(1,196) = 10.98, p = .001, partial-eta-squared = 0.05. Familiar and Shuffled did not differ (p = 

.17). Learning in terms of reduced false alarm rates transferred from Familiar to Shuffled. 

Sensitivity.  Figure 27 showed the effects of Condition, Session Length, and Exposure 

Duration on sensitivity (d’). It appeared that Familiar and Shuffled tended to have higher 
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sensitivity than New Shapes, but this appeared to depend on both Session Length and Exposure 

Duration. To test these apparent effects, I conducted an ANOVA of Condition by Session Length 

by Exposure Duration on sensitivity, which demonstrated a significant main effect of Condition 

F(2,196) = 4.05, p = .02, partial-eta-squared = 0.04. It also showed a main effect of Exposure 

Duration F(3,588) = 3.90, p = .009, partial-eta-squared = 0.02, and an interaction of Condition, 

Session Length, and Exposure Duration, F(12,588) = 1.82, p = .04, partial-eta-squared = 0.04. 

No other effects were found (all p’s > .13). 

 

 

Figure 27. Condition by Session Length by Exposure Duration on sensitivity. Error bars indicate 

standard error of the mean. 

 

In looking at Figure 27, it appeared that the three-way interaction of Condition, Session 

Length, and Exposure Duration was due to Familiar showing the highest sensitivity for 21 
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minutes and Shuffled showing the highest sensitivity for 35 minutes, and to learning for the 7-

minute exposure duration being apparent only for the longest exposure duration. To test the 

interaction, I broke the data on Exposure Duration and tested simple interactions for Condition 

and Session Length at each exposure duration. For 400ms, 700ms, and 1300ms there were no 

simple interactions (all p’s > .44). However, at 1000ms there was a significant simple interaction 

of Condition and Session Length, F(4,196) = 2.90, p = .02, partial-eta-squared = 0.06. Custom 

hypothesis tests in ANOVA were used to test simple simple effects of Condition at each Session 

Length at 1000ms, and to follow up on any significant simple simple effects with pairwise tests 

of conditions. There was no simple simple effect of Condition at the 7-minute session length and 

at the 1000ms exposure duration (p = .86). At 21 minutes and 1000ms, there was a marginal 

simple simple effect of Condition, F(2,196) = 2.72, p = .07, partial-eta-squared = 0.03. Familiar 

(M = 1.91, SE = 0.19) was more sensitive than Shuffled (M = 1.32, SE = 0.19), F(1,196) = 4.67, 

p = .03, partial-eta-squared = 0.02. Familiar was also marginally more sensitive than New 

Shapes (M = 1.42, SE = 0.19), F(1,196) = 3.35, p = .07, partial-eta-squared = 0.02. Shuffled and 

New Shapes did not differ (p = .73). At 35 minutes and 1000ms, there was a significant simple 

simple effect of Condition, F(2,196) = 3.43, p = .03, partial-eta-squared = 0.03. Familiar (M = 

1.10, SE = 0.19) was significantly less sensitive than Shuffled (M = 1.79, SE = 0.19), F(1,196) = 

6.65, p = .01, partial-eta-squared = 0.03. Shuffled was also marginally more sensitive than New 

Shapes (M = 1.34, SE = 0.19), F(1,196) = 2.79, p = .096, partial-eta-squared = 0.01. Familiar 

and New Shapes did not differ (p = .38). 

I also directly tested the apparent “flip” from Familiar showing the numerically highest 

performance across exposure durations for 21 minutes to Shuffled showing the numerically 

highest performance across exposure durations for 35 minutes by examining the interaction of 
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Condition and Session Length in an ANOVA of Condition by Session Length (21, 35) by 

Exposure Duration on sensitivity. There was no reliable interaction of Condition and Session 

Length across exposure duration (p = .23). 

I also directly tested the apparent effect of the learning for the 7-minute session length 

being restricted to the longest exposure duration. I tested the simple interaction of Condition and 

Exposure Duration for 7 minutes of familiarization
22

. For 7 minutes of Familiarization, there was 

a simple interaction of Condition and Exposure Duration on sensitivity, F(6,198) = 2.44, p = .03, 

partial-eta-squared = 0.07. At 1300ms there was a simple simple effect of Condition, F(2,66) = 

4.34, p = .02, partial-eta-squared = 0.12. I followed this up with additional custom hypothesis 

tests: I compared Familiar (M = 1.66, SE = 0.19) to Shuffled (M = 1.68, SE = 0.19)  and found 

that they did not differ in sensitivity at 1300ms and 7 minutes (p = .95). Then I compared 

Familiar and Shuffled New Shapes (M = 0.95, SE = 0.20) and found that Familiar and Shuffled 

had significantly higher sensitivity than New Shapes at 7 minutes and 1300ms, F(1,66) = 8.67, p 

= .004, partial-eta-squared = 0.12. For 7 minutes of familiarization, there was no simple simple 

effect of Condition for 400ms (p = .20), 700ms (p = .21), or for 1000ms (p = .82). The three-way 

interaction was driven most clearly by the differences at 1000ms - the change from Familiar 

having the best performance for 21 minutes to Shuffled having the best at 35 minutes (and no 

learning at 7 minutes) - and by the learning only at 1300ms for 7 minutes. 

Bias. Figure 28 showed effects of Condition, Session Length, and Exposure Duration on 

bias (the tendency to respond present or absent), as measured by criterion. Criterion appeared to 

differ by Condition and Exposure Duration. To test these apparent effects, I conducted an 

                                                 

 

22
 There was no simple interaction of Condition and Exposure Duration at 21minutes (p = .13) or 

35 minutes (p = .31). 
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ANOVA of Condition by Session Length by Exposure Duration on criterion, and found only a 

main effect of Exposure Duration F(3,588) = 4.71, p = .003, partial-eta-squared = 0.02. No 

other effects were significant (all p’s > .11). 

Custom hypothesis tests of all pairwise comparisons demonstrated that 400ms (M = -

0.15, SE = 0.03) showed more bias to respond absent than 1300ms (M = -0.04, SE = 0.03), 

F(1,196) = 12.20, p = .001, partial-eta-squared = 0.06. No other pairwise comparisons were 

significant (all p’s > .01). 

 

 

Figure 28. Condition by Session Length by Exposure Duration on criterion. Error bars indicate 

standard error of the mean.   

Survey Data 
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correlated with recognition accuracy, such that participants who reported Noticing the pairs were 

more accurate, r(190) = .34, p < .001. Noticing the pairs was also positively correlated with 

assessment accuracy, again with Noticing being associated with higher accuracy, r(190) = .28, p 

< .001.  

An ANCOVA of Condition by Session Length on recognition accuracy, covarying out 

Noticing, was used to follow up on the correlation of recognition accuracy and Noticing. This 

analysis demonstrated a significant effect of the covariate, F(1,181) = 19.52, p < .001, partial-

eta-squared = 0.10; and a main effect of Session Length, F(2,181) = 3.88, p = .02, partial-eta-

squared = 0.04. No other effects were significant (all p’s > .59). I used custom hypothesis tests in 

ANCOVA on the adjusted marginal means
23

 to investigate the main effect of Session Length. I 

first compared 21 minutes (M = 0.67, SE = 0.03) and 35 minutes (M = 0.68, SE = 0.03) and 

found that they did not differ (p = .69). Then I combined the long session lengths and compared 

them to 7 minutes (M = 0.58, SE = 0.03) and found that 21 minutes and 35 minutes together 

showed marginally higher recognition than 7 minutes, F(1,181) = 7.63, p = .006, partial-eta-

squared = 0.04. Reducing the session length reduced recognition. 

Strategy. Seventy-nine participants used the Linguistic Coding strategy and 126 did not. 

Independent-samples t-tests showed no advantage of Linguistic Coding for recognition accuracy 

(p = 38). However, participants who used the strategy (M = 0.78, SE = 0.01) were more accurate 

than those who did not (M = 0.73, SE = 0.01), t(203) = 3.34, p = .001, Cohen’s d = 0.23. 

Alertness and Sleep. Mean alertness was 3.03 (SE = 0.06). Alertness did not correlate 

with recognition accuracy (p = .08) or with assessment accuracy (p = .14). Mean number of 

                                                 

 

23
 Adjusted marginal means were calculated at the average of Noticing, M = .32 
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hours slept the prior evening was 6.31 hours (SE = 0.11). Sleep did not correlate with recognition 

accuracy (p = .75), or with assessment accuracy (p = .66). 

Psychophysical Assessment: Effects of Noticing, Recognition, and Linguistic Coding 

 

   

Figure 29. Condition by Session Length by Exposure Duration on accuracy (collapsed across 

Target Presence). Bar heights indicate adjusted marginal means and error bars indicate standard 

error of the mean.  

 

Accuracy. Figure 29 shows the effects of Condition, Session Length, and Exposure 

Duration on accuracy, statistically controlling for the effects of Noticing, Recognition, and 

Linguistic Coding. It appears that Familiar showed the highest accuracy across exposure 

durations for 21 minutes, Shuffled showed the highest accuracy across exposure durations for 35 

minutes, and that learning only occurred for the longest exposure duration for 7 minutes. To test 

these apparent effects, I conducted an ANCOVA of Condition by Session Length by Exposure 
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Duration by Target Presence on accuracy, covarying out Recognition performance, Noticing the 

pairs, and use of the Linguistic Coding strategy. There was a main effect of Target Presence, 

such that Present (M = 0.73, SE = 0.01) was less accurate than Absent (M = 0.78, SE = 0.01), 

F(1,179) = 4.88, p = .03, partial-eta-squared = 0.03. There were also significant effects of all 

three covariates: Noticing, F(1,179) = 4.37, p = .04, partial-eta-squared = 0.02; Recognition, 

F(1,179) = 9.71, p = .002, partial-eta-squared = 0.05; and Linguistic Coding, F(1,179) = 5.46, p 

= .02, partial-eta-squared = 0.03. There were interactions of Exposure Duration and Noticing, 

F(3,537) = 3.09, p = .03, partial-eta-squared = 0.02; Condition and Session Length and 

Exposure Duration, F(12,537) = 1.96, p = .03, partial-eta-squared = 0.04; and Exposure 

Duration and Target Presence, F(3,537) = 2.14, p = .095, partial-eta-squared = 0.01. 

 In looking at Figure 29, it appeared that the three-way interaction of Condition, Session 

Length, and Exposure Duration was due to Familiar showing the highest sensitivity for 21 

minutes and Shuffled showing the highest sensitivity for 35 minutes, and to learning for the 7-

minute exposure duration being apparent only for the longest exposure duration. To test the 

interaction, I broke the data on Exposure Duration and tested simple interactions for Condition 

and Session Length at each exposure duration. For significant simple interactions, I followed up 

with custom hypothesis tests in ANCOVA of simple simple effects of Condition, and additional 

custom tests for significant simple simple effects. There was a marginal simple interaction of 

Condition and Session Length for 1300ms, F(4,179) = 2.26, p = .07, partial-eta-squared = 0.05. 

There was a significant simple simple effect of Condition at 1300ms and 7 minutes, F(1,179) = 

5.57, p = .005, partial-eta-squared = 0.06. I compared Familiar (M = 0.82, SE = 0.03) and 

Shuffled (M = 0.78, SE = 0.03) and found that they did not differ in accuracy (p = .61), but when 

I compared them together to New Shapes (M = 0.69, SE = 0.03), I found that Familiar and 
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Shuffled were more accurate than New Shapes, F(1,179) = 10.45, p = .001, partial-eta-squared 

= 0.06. No other simple simple effects of Condition were significant (all p’s > .15). No other 

simple interactions of Condition and Session Length were significant (all p’s > .10). 

I also directly tested the apparent “flip” from Familiar showing the numerically highest 

performance across exposure durations for 21 minutes to Shuffled showing the numerically 

highest performance across exposure durations for 35 minutes by examining the interaction of 

Condition and Session Length in an ANOVA of Condition by Session Length (21, 35) by 

Exposure Duration on sensitivity. There was no reliable interaction of Condition and Session 

Length across exposure duration (p = .15). 

I also directly tested the apparent effect of the learning for the 7-minute session length 

being restricted to the longest exposure duration. I tested the simple interaction of Condition and 

Exposure Duration for 7 minutes of familiarization
24

. For 7 minutes of Familiarization, there was 

a simple interaction of Condition and Exposure Duration in accuracy, F(6,174) = 2.97, p = .009, 

partial-eta-squared = 0.09. I followed up with custom hypothesis tests of simple simple effects 

of Condition, and additional tests for significant simple simple effects. There was a significant 

simple simple effect of Condition at 1300ms, F(2,58) = 5.07, p = .009, partial-eta-squared = 

0.15. I compared Familiar (M = 0.82, SE = 0.03) and Shuffled (M = 0.76, SE = 0.03), and they 

did not differ (p = .47). Then I compared Familiar and Shuffled together to New Shapes (M = 

0.69, SE = 0.03), F (1,58) = 3.52, p = .003, partial-eta-squared = 0.14. There were no other 

simple simple effects of Condition (all p’s > .28). The three-way interaction was driven most 

                                                 

 

24
 There was no simple interaction of Condition and Exposure Duration at 35 minutes (p = .56). 

There was a marginal simple interaction of Condition and Exposure Duration at 21minutes (p = 

.09), but there was no reliable simple simple effect of Condition at any exposure duration (all p’s 

> .10). 
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clearly by the differences at 1000ms - the change from Familiar having the best performance for 

21 minutes to Shuffled having the best at 35 minutes (and no learning at 7 minutes) - and by the 

learning only at 1300ms for 7 minutes. 

For the interaction of Exposure Duration and Target Presence, custom hypothesis tests in 

ANCOVA were used to test simple effects of Target Presence at each exposure duration. There 

was a marginal simple effect of Target Presence for 400ms such that participants were less 

accurate when the target was Present (M = 0.70, SE = 0.01) than when it was Absent (M = 0.78, 

SE = 0.01), F(1,179) = 8.16, p = .005, partial-eta-squared = 0.04. No other simple effects were 

significant (all p’s > .03). The simple effect of Target Presence at 400ms drove the interaction of 

Exposure Duration and Target Presence. 

False Alarm Rate. Figure 30 showed effects of Condition, Session Length, and 

Exposure Duration on false alarm rate. Familiar and Shuffled appeared to have lower false alarm 

rates across exposure durations and session lengths, but this pattern did not appear to hold for all 

exposure durations for 35 minutes. To test these apparent effects, I conducted an ANCOVA of 

Condition by Session Length by Exposure Duration on false alarm rate, covarying out 

Recognition performance and Noticing of the pairs and use of the Linguistic Coding strategy, 

which revealed a marginal main effect of Condition, F(1,179) = 3.04, p = .05, partial-eta-

squared = 0.03. It also revealed significant effects of two covariates: Noticing, F(1,179) = 4.10, 

p = .04, partial-eta-squared = 0.02; and Linguistic Coding, F(1,179) = 4.49, p = .04, partial-eta-

squared = 0.02. There was no main effect of Session Length (p = .67), and no other effects were 

significant (all p’s > .20). 
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Figure 30. Condition by Session Length by Exposure Duration on false alarm rate. Bar heights 

indicate adjusted marginal means and error bars indicate standard error of the mean.  

 

Custom hypothesis tests in ANCOVA on the adjusted marginal means of all pairwise 

comparisons were used to investigate the main effect of Condition. Shuffled (M = 0.19, SE = 

0.02) showed fewer false alarms than New Shapes, F(1,179) = 6.05, p = .02, partial-eta-squared 

= 0.03. Familiar (M = 0.22, SE = 0.02) did not differ from Shuffled (p = .27) or New Shapes (p = 

.16). Learning, in terms of decreased false alarming, was cleared for Shuffled, a transfer 

condition. 
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Figure 31. Condition by Session Length by Exposure Duration on sensitivity. Bar heights 

indicate adjusted marginal means and error bars indicate standard error of the mean.  

 

Sensitivity. Figure 31 showed effects of Condition, Session Length, and Exposure 

Duration on sensitivity, statistically controlling for Recognition, Noticing, and Linguistic 

Coding. It appears that for 7 minutes, learning was only demonstrated for the longest exposure 

duration. For 21 minutes, Familiar had the highest sensitivity across exposure durations, but for 

35 minutes, Shuffled had the highest sensitivity across exposure durations. To test these apparent 

effects, I conducted an ANCOVA of Condition by Session Length by Exposure Duration on 

sensitivity, covarying out Recognition performance and Noticing the pairs and use of the 

Linguistic Coding strategy, which showed significant effects of all the covariates: Recognition, 

F(1,179) = 11.58, p = .001, partial-eta-squared = 0.06; Noticing, F(1,179) = 5.25, p = .02, 

partial-eta-squared = 0.03; and Linguistic Coding, F(1,179) = 5.45, p = .02, partial-eta-squared 
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= 0.03. There were interactions of Condition and Session Length and Exposure Duration, 

F(12,537) = 1.99, p = .02, partial-eta-squared = 0.04, and Exposure Duration with Noticing, 

F(3,537) = 3.84, p = .01, partial-eta-squared = 0.02. There was no main effect of Condition (p = 

.10) or of Session Length (p = .73), and no other effects were significant (all p’s > .29). 

In looking at Figure 31, it appeared that the three-way interaction of Condition, Session 

Length, and Exposure Duration was due to Familiar showing the highest sensitivity for 21 

minutes and Shuffled showing the highest sensitivity for 35 minutes, and to learning for the 7-

minute exposure duration being apparent only for the longest exposure duration. To test the 

interaction, I broke the data on Exposure Duration and tested simple interactions for Condition 

and Session Length at each exposure duration. Significant simple interactions were followed up 

with custom hypothesis tests in ANCOVA on the adjusted marginal means of simple simple 

effects of Condition for each session length. For 1000ms, there was a simple interaction of 

Condition and Session Length, F(1,179) = 2.64, p = .035, partial-eta-squared = 0.06. There was 

a simple simple effect of Condition at 1000ms and 35 minutes, F(2,179) = 3.12, p = .05, partial-

eta-squared = 0.03. I tested all pairwise comparisons of conditions at 1000ms and 35 minutes. 

Familiar (M = 1.15, SE = 0.19) and showed lower sensitivity than Shuffled (M = 1.80, SE = 

0.19), F(1,179) = 5.71, p = .02, partial-eta-squared = 0.03. New Shapes (M = 1.29, SE = 0.18) 

also showed lower sensitivity than Shuffled, F(1,179) = 3.43, p = .07, partial-eta-squared = 

0.02. Familiar and New Shapes did not differ in sensitivity for 1000ms and 35 minutes (p = .62). 

No other simple simple effects of Condition were significant at 1000ms minutes (all p’s > .10). 

There were no simple interactions of Condition and Session Length for 400ms, 700ms, or 

1300ms (all p’s > .18). 
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I also directly tested the apparent “flip” from Familiar showing the numerically highest 

performance across exposure durations for 21 minutes to Shuffled showing the numerically 

highest performance across exposure durations for 35 minutes by examining the interaction of 

Condition and Session Length in an ANOVA of Condition by Session Length (21, 35) by 

Exposure Duration on sensitivity. There was no reliable interaction of Condition and Session 

Length across exposure duration (p = .23). 

I also directly tested the apparent effect of the learning for the 7-minute session length 

being restricted to the longest exposure duration. I tested the simple interaction of Condition and 

Exposure Duration for 7 minutes of familiarization
25

. For 7 minutes of Familiarization, there was 

a simple interaction of Condition and Exposure Duration on sensitivity, F(6,174) = 2.56, p = .02, 

partial-eta-squared = 0.08. I followed up with custom hypothesis tests of simple simple effects 

of Condition, and followed up significant simple simple effects with additional custom 

hypothesis tests. There was a significant simple simple effect of Condition at 1300ms, F(2,58) = 

3.92, p = .03, partial-eta-squared = 0.12. I compared Familiar (M = 1.86, SE = 0.18) and 

Shuffled (M = 1.63, SE = 0.18), and found no difference (p = .41). Then I compared the average 

of Familiar and Shuffled to New Shapes (M = 1.11, SE = 0.19), and found that Familiar and 

Shuffled showed a higher level of sensitivity than New Shapes, F(1,58) = 7.09, p = .01, partial-

eta-squared = 0.11. No other simple simple effects of Condition were reliable (all p’s > .19). The 

three-way interaction was driven most clearly by the differences at 1000ms - the change from 

                                                 

 

25
 There was no simple interaction of Condition and Exposure Duration at 35 minutes (p = .44). 

There was a marginal simple interaction of Condition and Exposure Duration at 21minutes, 

F(6,177) = 2.78, p = .04, partial-eta-squared = 0.07, but there were no reliable simple simple 

effects of Condition at 21 minutes (all p’s > .12). 
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Familiar having the best performance for 21 minutes to Shuffled having the best at 35 minutes 

(and no learning at 7 minutes) - and by the learning only at 1300ms for 7 minutes. 

Discussion 

 Experiment 3 was designed to directly replicate and build on Experiment 1: 1) to 

replicate the finding that the familiarization in a well-known statistical learning (SL) paradigm 

(Fiser & Aslin, 2001) caused perceptual learning (PL) and 2) to expand it to shorter and longer 

familiarization session lengths. I replicated the significant SL found by the authors of the 

paradigm (Fiser & Aslin, 2001) as we did in Experiment 1, and critically, I replicated 

Experiment 1’s findings of PL effects: transfer and improved sensitivity. 

Comparing my Data to the Hypotheses 

The Experiment 3 data do not support the hypothesis of separate kinds of learning, but 

also do not wholly align with the predictions of the hypothesis of a unified learning process. The 

hypothesis of separate kinds of learning predicts recognition, no differences in sensitivity across 

conditions, no transfer, and, possibly, an increased false alarm rate for Shuffled. The hypothesis 

of a unified learning process predicts a correlation between recognition accuracy and assessment 

accuracy, especially for conditions that show learning, and PL effects - improved sensitivity and 

transfer. 

I replicated our Experiment 1 assessment and recognition results: I again found hallmarks 

of PL – transfer of learning and improved psychophysical sensitivity. Participants showed high 

accuracy and sensitivity for both Familiar and Shuffled conditions across session lengths and 

exposure durations even though in the Shuffled condition the shapes were shuffled from the 

(Familiar) pairings seen in the familiarization into new pairings in the search grids. Accuracy and 

sensitivity for these conditions were significantly higher than for New Shapes. Similarly, 
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participants had low false alarm rates for Familiar and Shuffled and significantly higher false 

alarm rates for New Shapes across session lengths and exposure durations, replicating the pattern 

of assessment results in Experiment 1 of PL effects following an SL paradigm 

But I also found an overall correlation of recognition and assessment accuracy, unlike in 

Experiment 1. Perhaps the higher power due to higher total sample size in Experiment 2 explains 

this difference, because Experiment 1 also had a positive correlation, but it was non-significant. 

Or perhaps there was some difference by chance between the samples of participants (both from 

the same population) that caused the different results. Either way, the differing correlation results 

between Experiments 1 and 3, in addition to the observed PL effects, give additional evidence 

that the relationship between SL and PL may be complex.  

Session Length  

Recognition. I predicted that recognition accuracy would increase with a longer session 

length and decrease with a shorter session length. I found a main effect of Session Length for 

recognition accuracy, such that accuracy was lower for the 7 minute session length than the 21 

and 35 minute session lengths, which did not differ from each other. The fact that 7 minutes 

showed significantly lower recognition than the other session lengths matched my prediction, as 

well as Experiment 1 piloting results
26

. I did not expect that increasing the session length would 

not increase recognition accuracy. Perhaps a session length of at least 21 minutes represents 

some kind of ceiling for passive learning, at least without overlearning or longer spacing 

between familiarization blocks. 

                                                 

 

26
 Because our piloting results for 7 minutes of familiarization showed recognition near chance, 

we increased our session length to 21 minutes for Experiment 1 to have more SL and therefore a 

stronger test of whether SL and PL are a single learning process or separate processes. 
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The chi-square analysis revealed that longer session lengths improved recognition 

accuracy primarily by increasing the proportion of participants who passed the recognition test 

(answered more than 50% of the recognition trials correctly). With a 7 minute session length, 

more than half of participants failed the recognition test. But with a longer session length, more 

than two-thirds of participants passed the recognition test. 

Psychophysical Assessment. There were no main effects of Session Length for any 

assessment analyses. Main effects of Condition for accuracy, false alarm rate, and sensitivity 

held across session lengths and exposure durations, so PL effects were observed for all session 

lengths. It was possible that reducing the session length could have qualitatively changed the 

kinds of effects seen from PL effects to possible SL effects or a mix of SL and PL effects, but 

reducing the session length did not change the pattern of results: in the three-way interactions of 

Condition, Session Length, and Exposure Duration, at the 7-minute session length learning was 

only observed at the longest exposure duration. Participants needed a longer exposure to 

assessment arrays to demonstrate their learning, but they did show qualitatively the same 

condition effect observed with the other session lengths (including Experiment 1). This is 

evidence of weaker but qualitatively similar learning. This was true in the original ANOVA 

analyses and in the ANCOVA analyses, which statistically controlled for the effects of 

Recognition accuracy (as well as Noticing the pairs and use of the Linguistic Coding strategy). 

Session Length significantly interacted with Condition and Exposure Duration for 

accuracy and sensitivity. In addition to observed learning being restricted to the longest exposure 

duration for 7 minutes of familiarization (as discussed above) at 1000ms, for 21 minutes Familiar 

showed the highest performance, but for 35 minutes the transfer condition Shuffled did the best. 
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Shuffled having higher sensitivity than Familiar is not what either PL or SL would predict, but it 

is evidence of transfer, a PL effect. 

Correlations. There was a significant correlations of recognition (SL) and assessment 

accuracy (PL) overall, and there were two significant correlations when the data were divided by 

session length and condition. One was for Shuffled at a 7-minute session length and the other 

was for Familiar at a 21-minute session length. These appear to be related to the results of the 

assessment three-way interaction: the former correlation was related to learning for 7 minutes for 

the longest exposure duration, and the latter was related to Familiar showing the highest 

performance for 21 minutes. The correlations suggest that these PL effects were related to SL. 

Recognition, Noticing, and Linguistic Coding 

 Several measures correlated with psychophysical assessment accuracy in Experiment 3: 

Recognition test accuracy, Noticing of the pairs, and use of the Linguistic Coding strategy. 

Higher Recognition predicted higher assessment accuracy, as did Noticing the pairs, and using 

the Linguistic Coding strategy. In ANCOVA analyses of psychophysical assessment data using 

these measures as covariates, there was only a main effect of Condition for false alarms. 

Condition was only involved in three-way interactions with Session Length and Exposure 

Duration for accuracy and sensitivity, not also in main effects, unlike in the main assessment 

analyses. Otherwise, the patterns of ANCOVA results were similar to the ANOVA results, 

showing transfer and improved sensitivity, evidence of PL. 

Summary 

In sum, I replicated and extended the findings of Experiment 1. I replicated the finding of 

PL effects following a SL paradigm: I found transfer of learning from Familiar to Shuffled in 

both psychophysical assessment accuracy and sensitivity, and improved sensitivity (relative to 
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New Shapes), in both the main analyses and in the ANCOVA analyses. I showed that increasing 

session length beyond 21 minutes did not impact performance in recognition or on the 

psychophysical assessment. Reducing the session length did not change the overall pattern of 

assessment results. However, reducing the session length reduced the proportion of participants 

who passed the recognition test, and reduced the exposure durations in the assessment at which 

Condition effects were observed to only the longest – 1300ms. The Learning was present, but 

weaker with a shorter session length. Unlike in Experiment 1, recognition (SL) and assessment 

accuracy (PL) significantly correlated, and this seemed to be related to assessment three-way 

interaction results. Together, all the results again give evidence that the relationship between SL 

and PL may be nuanced. 

Next Steps 

I qualitatively replicated the findings of Experiment 1, but it would be helpful to verify 

that the pattern holds quantitatively as well, specifically at 21 minutes, the replicated session 

length. I weakened learning and reduced performance by shortening the session length, so it 

would be helpful to compare performance at the session length of 7 minutes to Baseline 

performance to see if the weak learning was above Baseline. I did not successfully increase 

performance by increasing session length, but comparing results of the longest session length to 

results of Experiment 2, the PL training experiment, could further illuminate if performance with 

a long session length approximates results following PL training. It would also be interesting to 

quantitatively compare performance across experiments and Baseline.  
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CHAPTER 8: MULTI-EXPERIMENT ANALYSES 

Comparing Across Experiments on the Psychophysical Assessment 

In addition to analyses for each experiment individually, I also analyzed the experiments 

together and against baseline psychophysical assessment performance. I used the same 

assessment for all three experiments as well as for the Baseline sample, so assessment 

performance could be compared and analyzed together. By doing so, I was able to statistically 

explore additional questions about my data that could only be answered by comparing across 

experiments, and to the baseline group. Additionally, Experiments 1 and 3 both used the same 

recognition test, so they could be compared on recognition as well.  

How does Exp. 1 compare to Baseline? 

Experiment 1 replicated a well-known visual statistical learning (SL) paradigm (Fiser & 

Aslin, 2001), and added a psychophysical assessment to test for perceptual learning (PL) effects 

following the SL familiarization. Having found improved accuracy, decreased false alarming, 

and increased sensitivity in the Familiar condition as well as in the near-transfer Shuffled 

condition, it was important to compare these findings to a baseline group that only participated in 

the assessment. The comparison of Experiment 1 assessment results to the baseline group can be 

found in Chapter 3, on page 40. 

How does Exp. 3 at 21 minutes compare to Exp. 1? 

Experiment 3 directly replicated Experiment 1 and extended it by varying the length of 

the familiarization. Thus, it was important to compare the results of the replicated 21 minute 

session length in Experiment 3 to the results of Experiment 1, on both recognition and the 

psychophysical assessment. 
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Recognition Accuracy. An independent-samples t-test comparing Experiment 1 to 

Experiment 3 at the 21 minutes session length revealed no difference in recognition accuracy (p 

= .45).  

 

 

Figure 32. Experiment Version by Condition by Exposure Duration on accuracy (collapsed 

across Target Presence). Error bars indicate standard error of the mean.  

 

Psychophysical Assessment Accuracy. Figure 32 showed the effects of Experiment 

Version, Condition, and Exposure Duration on accuracy. It appeared that results were similar 

across experiments, except that Shuffled tended to have higher accuracy in Experiment 1 and 

Familiar tended to have higher accuracy in Experiment 3 at 21 minutes. To test these apparent 

effects, I conducted an ANOVA of Experiment Version by Condition by Exposure Duration by 

Target Presence on accuracy. This analysis revealed two marginal interactions involving 

Experiment Version: a marginal interaction of Experiment Version with Condition and Target 

Presence, F(2,152) = 2.43, p = .092, partial-eta-squared = 0.03; and a marginal interaction of 
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Experiment Version with Exposure Duration and Target Presence, F(3,456) = 2.54, p = .06, 

partial-eta-squared = 0.02. There was no main effect of Experiment Version (p = .18) or 

interaction of Experiment Version and Condition (p = .24). There was a main effect of 

Condition, F(2,152) = 5.56, p = .005, partial-eta-squared = 0.07 and a main effect of Exposure 

Duration, F(3,456) = 4.04, p = .03, partial-eta-squared = 0.03. There were three additional 

interactions: a marginal interaction of Condition by Exposure Duration by Target Presence, 

F(6,456) = 1.83, p = .09, partial-eta-squared = 0.02; an interaction of Condition by Target 

Presence, F(2,152) = 3.31, p = .04, partial-eta-squared = 0.04; and an interaction of Exposure 

Duration by Target Presence, F(3,456) = 6.02, p < .001, partial-eta-squared = 0.04. No other 

effects were significant (all p’s > .16). 

 For the marginal interaction of Experiment Version with Condition and Target Presence, 

the data were split on Target Presence and then simple interactions of Experiment Version and 

Condition were tested. For significant simple interactions, simple simple effects of Experiment 

for each condition were tested via custom hypothesis tests in ANOVA. There was no simple 

interaction of Experiment Version and Condition for Absent (p = .96). For Present, there was a 

significant simple interaction of Experiment Version and Condition, F(2,152) = 3.82, p = .02, 

partial-eta-squared = 0.05. There was a significant simple simple effect of Experiment Version 

for Shuffled, such that Experiment 1 (M = 0.78, SE = 0.03) showed higher accuracy than 

Experiment 3 (M = 0.69, SE = 0.03), F(1,152) = 4.30, p = .04, partial-eta-squared = 0.03. There 

was no simple simple effect of Condition for Familiar (p = .28) or New Shapes (p = .14). The 

marginal three-way interaction of Experiment Version, Condition, and Target Presence was 

driven by higher accuracy in Experiment 1 than Experiment 3 for Shuffled when the target was 

Present, but otherwise the experiments did not differ. 
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 For the marginal interaction of Experiment Version with Exposure Duration and Target 

Presence, I divided the data on Target Presence to test simple interactions for Experiment 

Version and Exposure Duration, but found no reliable simple interactions (both p’s > .27). Then I 

divided the data on Exposure Duration to examine simple interactions of Experiment Version 

and Target Presence. For 1000ms, there was a marginal simple interaction of Experiment 

Version and Target Presence, F(1,151) = 3.80, p = .05, partial-eta-squared = 0.03. Custom 

hypothesis tests in ANOVA of simple simple effects of Experiment Version at 1000ms revealed 

a marginal simple simple effect of Experiment Version when the target was Absent, such that 

participants in Experiment 1 (M = 0.74, SE = 0.02) showed lower accuracy than those in 

Experiment 3 (M = 0.80, SE = 0.03), F(1,152) = 3.78, p = .05, partial-eta-squared = 0.02. There 

was no simple simple effect when the target was Present at 1000ms (p = .48). There were no 

simple interactions of Experiment Version and Target Presence for 400ms (p = .50), 700ms (p = 

.26), or 1300ms (p = .31). The marginal three-way interaction of Experiment Version, Exposure 

Duration, and Target Presence was driven by lower accuracy in Experiment 1 than Experiment 3 

when the target was Absent at the 1000ms exposure duration, but otherwise the experiments did 

not differ. 

Custom hypothesis tests in ANOVA were used to investigate the main effects. For 

Condition, I compared Familiar (M = 0.77, SE = 0.02) and Shuffled (M = 0.77, SE = 0.02), which 

did not differ in accuracy (p = .91), but when I compared them to New Shapes (M = 0.71, SE = 

0.02), Familiar and Shuffled combined showed higher accuracy than New Shapes, F(1,152) = 

11.11, p = .001, partial-eta-squared = 0.07. Learning transferred from Familiar to Shuffled in 

both experiments. 
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For Exposure Duration, I compared 400ms (M = 0.73, SE = 0.01) and 700ms (M = 0.75, 

SE = 0.01), which did not differ in accuracy (p = .10). Then I compared 1000ms (M = 0.76, SE = 

0.01) and 1300ms (M = 0.76, SE = 0.01), which also did not differ (p = .77). Then I compared 

1000ms and 1300ms to 400ms and 700ms, and found that the longer exposure durations together 

showed marginally higher accuracy than the shorter exposure durations combined, F(1,152) = 

8.35, p = .004, partial-eta-squared = 0.05. 

 For the marginal interaction of Condition with Exposure Duration and Target Presence, 

the data were split on Target Presence to investigate simple interactions of Condition and 

Exposure Duration. There was a simple interaction of Condition and Exposure Duration when 

the target was Present, F(6,456) = 2.42, p = .03, partial-eta-squared = 0.03. I followed up this 

simple interaction with a custom hypothesis tests of simple simple effects of Condition at each 

exposure duration, but found no reliable simple simple effects (all p’s > .13). Then I tested 

simple simple effects of Exposure Duration at each condition. There was a simple simple effect 

of Exposure Duration for New Shapes, F(3,150) = 9.68, p < .001, partial-eta-squared = 0.16. For 

Present and New Shapes, 1000ms (M = 0.76, SE = 0.03) and 1300ms (M = 0.78, SE = 0.03) did 

not differ in accuracy (p = .39). 400ms (M = 0.65, SE = 0.03) showed lower accuracy than the 

two longest exposure durations combined, F(1,50) = 26.09, p < .001, partial-eta-squared = 0.34. 

700ms (M = 0.70, SE = 0.03) showed marginally lower accuracy than the longest exposure 

durations, F(1,50) = 8.83, p = .005, partial-eta-squared = 0.15. 400ms and 700ms did not differ 

(p = .08). There were no simple simple effects of Exposure Duration for Familiar (p = .14) or 

Shuffled (p = .03). There was no simple interaction for Absent (p = .73). 

 Custom hypothesis tests (in the original ANOVA) were used to examine the interaction 

of Condition and Target Presence via tests of simple effects of Condition at each level of Target 
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Presence, and significant simple effects were followed up with additional custom hypothesis 

tests. There was a simple effect of Condition when the target was Absent, F(2,152) = 8.16, p < 

.001, partial-eta-squared = 0.10. For Absent, I compared Familiar (M = 0.79, SE = 0.02) and 

Shuffled (M = 0.80, SE = 0.02), which did not differ (p = .57). Then I compared them to New 

Shapes (M = 0.69, SE = 0.02), and found that Familiar and Shuffled together they showed higher 

accuracy than New Shapes, F(1,152) = 15.96, p < .001, partial-eta-squared = 0.10. There was no 

simple effect of Condition when the target was Present (p = .50). The interaction of Condition 

and Target Presence was driven by the Condition effect for Absent (and there was no effect for 

Present). 

 For the interaction of Exposure Duration and Target Presence, the data were split on 

Target Presence to examine simple effects of Exposure Duration. There was a simple effect of 

Exposure Duration when the target was Present, F(3,456) = 9.86, p < .001, partial-eta-squared = 

0.06. I conducted all pairwise comparisons to follow up on the significant simple effect. 400ms 

(M = 0.69, SE = 0.02) was less accurate than 1000ms (M = 0.75, SE = 0.02), F(1,152) = 14.02, p 

< .001, partial-eta-squared = 0.08. 400ms was also less accurate than 1300ms (M = 0.77, SE = 

0.02), F(1,152) = 26.42, p < .001, partial-eta-squared = 0.15. 700ms (M = 0.73, SE = 0.0s) was 

marginally less accurate than 1300ms, F(1,152) = 7.53, p = .007, partial-eta-squared = 0.05. No 

other pairwise comparisons for Present were significant (all p’s > .01). There was no simple 

effect of Exposure Duration for Absent (p = .73). The interaction of Exposure Duration and 

Target Presence was driven by lower accuracy for shorter than longer exposure durations when 

the target was Present and no effect of Exposure Duration when the target was Absent. 

False Alarm Rate. Figure 33 showed the effects of Experiment Version, Condition, and 

Exposure Duration on false alarm rate. It appeared that effects were similar across experiments, 
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but perhaps stronger in Experiment 3. To test the apparent effects, I conducted an ANOVA of 

Experiment Version by Condition by Exposure Duration on false alarm rate, which revealed a 

main effect of Condition, F(2,152) = 8.16, p < .001, partial-eta-squared = 0.10, and a marginal 

main effect of Experiment Version, such that participants in Experiment 1 (M = 0.26, SE = 0.02) 

false alarmed more than participants in Experiment 3 (M = 0.22, SE = 0.02), F(1,152) = 2.80, p = 

.097, partial-eta-squared =0.02. There was no interaction of Experiment Version and Condition 

(p = .96), and no other effects (all p’s > .31). I used custom hypothesis tests in ANOVA for 

Condition. I first compared Familiar (M = 0.21, SE = 0.02) and Shuffled (M = 0.20, SE = 0.02), 

which did not differ in false alarm rate (p = .57). Then I compared them to New Shapes (M = 

0.31, SE = 0.02), and found that Familiar and Shuffled showed significantly fewer false alarms 

than New Shapes, F(1,152) = 15.96, p < .001, partial-eta-squared = 0.10. The learning 

transferred from Familiar to Shuffled across both experiments.  

 

 

Figure 33. Experiment Version by Condition by Exposure Duration on false alarms. Error bars 

indicate standard error of the mean.  
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Sensitivity. Figure 34 showed effects of Experiment Version, Condition, and Exposure 

Duration on sensitivity (d’). It appeared that effects were overall similar across experiments, 

except that sensitivity was highest for Shuffled in Experiment 1 but was highest for Familiar in 

Experiment 3 at 21 minutes. To test these apparent effects, I conducted an ANOVA of 

Experiment Version by Condition by Exposure Duration on sensitivity, which revealed a main 

effect of Condition, F(2,151) = 5.88, p = .003, partial-eta-squared = 0.07, and a main effect of 

Exposure Duration, F(3,456) = 4.32, p = .004, partial-eta-squared = 0.03. There was no main 

effect of Experiment Version (p = .11) or interaction of Experiment Version and Condition (p = 

.31), so the apparent effect of different conditions showing higher accuracy in each experiment 

was not supported. No other effects were significant (all p’s > .27). 

 Custom hypothesis tests in ANOVA were used to investigate the main effects. For 

Condition, I compared Familiar (M = 1.55, SE = 0.10) and Shuffled (M = 1.53, SE = 0.10), which 

did not show different sensitivity (p = .89). When I compared them to New Shapes (M = 1.12, SE 

= 0.10), Familiar and Shuffled showed higher sensitivity than New Shapes, F(1,152) = 11.75, p = 

.001, partial-eta-squared = 0.07. The learning transferred from Familiar to Shuffled across both 

experiments. 

For Exposure Duration, I conducted all pairwise comparisons. 400ms (M = 1.27, SE = 

0.07) showed less sensitivity than 1300ms (M = 1.49, SE = 0.08), F(1,152) = 11.19, p = .001, 

partial-eta-squared = 0.07. 400ms showed marginally less sensitivity than 1000ms (M = 1.46, 

SE = 0.07), F(1,152) = 8.76, p = .004, partial-eta-squared = 0.06. No other pairwise 

comparisons were significant (all p’s > .07). 
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Figure 34. Experiment Version by Condition by Exposure Duration on sensitivity. Error bars 

indicate standard error of the mean. 
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.03, partial-eta-squared = 0.04. It also revealed a main effect of Exposure Duration, F(3, 336) = 

4.05, p = .008, partial-eta-squared = 0.04 and three interactions: Experiment Version and Target 

Presence, F(1,112) = 5.20, p = .03, partial-eta-squared = 0.04; Condition and Exposure 

Duration, F(6,336) = 3.43, p = .003, partial-eta-squared = 0.06; and Exposure Duration and 

Target Presence, F(3,336) = 5.17, p = .002, partial-eta-squared = 0.04. No other effects were 

significant (all p’s > .12). 

 

  

Figure 35. Experiment Version by Condition by Exposure Duration on accuracy (collapsed 

across Target Presence). Error bars indicate standard error of the mean.  
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the shorter exposure durations to the longer ones, 400ms and 700ms showed significantly lower 

accuracy than 1000ms and 13000ms, F(1,112) = 11.40, p = .001, partial-eta-squared = 0.09. 

 For the interaction of Experiment Version with Target Presence and the interaction of 

Condition with Exposure Duration, custom hypothesis tests in ANOVA were used to explore 

these effects. For Experiment Version and Target Presence, simple effects of Experiment 

Version were examined. There was a significant simple effect of Experiment Version when the 

target was Absent, such that participants were more accurate in Experiment 3 after only a 7 

minute session length (M = 0.77, SE = 0.02) than at Baseline (M = 0.68, SE = 0.02), F(1,112) = 

10.72, p = .001, partial-eta-squared = 0.09. There was no simple effect of Experiment Version 

for Present (p = .91). The interaction of Experiment Version and Target Presence was driven by 

higher Experiment 3 at 7 minutes showing higher accuracy than Baseline only for target-absent 

trials. 

For Condition with Exposure Duration, simple effects of Condition for each exposure 

duration were tested. There was a simple effect of Condition at 1300ms, F(2,112) = 4.83, p = 

.01, partial-eta-squared = 0.08. At 1300ms, I compared Familiar (M = 0.77, SE = 0.02) and 

Shuffled (M = 0.76, SE = 0.02), which did not differ in accuracy (p = .82), but when I compared 

them to New Shapes (M = 0.68, SE = 0.02), Familiar and Shuffled together showed higher 

accuracy than New Shapes, F(1,112) = 9.62, p = .002, partial-eta-squared = 0.08. There was no 

simple effect of Condition for 400ms (p = .29), 700ms (p = .64), or 1000ms (p = .83). Learning 

was observed only at the longest exposure duration. 

For the interaction of Exposure Duration and Target Presence, the data were split on 

Target Presence and simple effects of Exposure Duration were evaluated. There was a simple 

effect of Exposure Duration for Present, F(3,336) = 9.20, p < .001, partial-eta-squared = 0.08. I 
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followed up with all pairwise comparisons. 400ms (M = 0.67, SE = 0.02) showed lower accuracy 

than 1300ms (M = 0.76, SE = 0.02), F(1,112) = 23.92, p < .001, partial-eta-squared = 0.18. 

700ms (M = 0.70, SE = 0.02) also showed lower accuracy than 1300, F(1,112) = 11.70, p = .001, 

partial-eta-squared = 0.10. 400ms showed marginally lower accuracy than 1000ms (M = 0.73, 

SE = 0.02), F(1,112) = 10.35, p = .002, partial-eta-squared = 0.09. No other pairwise 

comparisons of exposure durations for Present were significant (all p’s > .06). There was no 

simple effect of Exposure Duration for Absent (p = .59). The interaction of Exposure Duration 

and Target Presence was driven by lower accuracy for shorter exposure durations and higher 

accuracy for longer exposure durations only when the target was Present. 

  

 

Figure 36. Experiment Version by Condition by Exposure Duration on false alarm rate. Error 

bars indicate standard error of the mean.  
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false alarm rates across conditions and exposure durations compared to Baseline, but especially 

for Familiar and Shuffled at 700ms and 1300ms. To test these apparent effects, I conducted an 

ANOVA of Experiment Version and Condition and Exposure Duration on false alarm rate, 

which showed only a main effect of Experiment Version, such that Experiment 3 at 7 minutes of 

familiarization (M = 0.24, SE = 0.02) showed a lower false alarm rate than Baseline (M = 0.33, 

SE = 0.03), F(1,112) = 10.72, p = .001, partial-eta-squared = 0.09. No other effects were 

significant (all p’s > .15), so the apparent three-way interaction of Experiment Version, 

Condition, and Exposure Duration was not significant. 

 

  

Figure 37. Experiment Version by Condition by Exposure Duration on sensitivity. Error bars 

indicate standard error of the mean. 
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700ms and both Familiar and Shuffled at 1300ms. To test these apparent effects, I conducted an 

ANOVA of Experiment Version with Condition and Exposure Duration on sensitivity. There 

was a main effect of Experiment Version, such that Experiment 3 with a 7 minute session length 

(M = 1.33, SE = 0.07) showed higher sensitivity than Baseline (M = 1.06, SE = 0.09), F(1,112) = 

6.21, p = .01, partial-eta-squared = 0.05. There was also a main effect of Exposure Duration, 

F(3,336) = 4.22, p = .006, partial-eta-squared = 0.04, and an interaction of Condition and 

Exposure Duration, F(6,336) = 3.04, p  = .007, partial-eta-squared = 0.05. No other effects were 

significant (all p’s > .24), so the apparent three-way interaction of Experiment Version, 

Condition, and Exposure Duration was not supported by the data. 

The main effect of Exposure Duration was studied via custom hypothesis tests in 

ANOVA. I compared 400ms (M = 1.08, SE = 0.06) and 700ms (M = 1.11, SE = 0.07), which did 

not differ in sensitivity (p = .74). Similarly, I compared 1000ms (M = 1.26, SE = 0.08) and 

1300ms (M = 1.32, SE = 0.08), which also did not differ in sensitivity (p = .50). When I 

compared the shorter exposure durations to the longer exposure durations, 400ms and 700ms 

showed less sensitivity than 1000ms and 1300ms, F(1,112) = 11.74, p = .001, partial-eta-

squared = 0.10. 

Custom hypothesis tests in ANOVA were used to investigate the interaction of Condition 

and Exposure Duration. I tested simple effects of Condition, and followed up significant simple 

effects with additional tests. There was a simple effect of Condition at 1300ms, F(1,112) = 4.14, 

p = .02, partial-eta-squared = 0.07. I compared Familiar (M = 1.51, SE = 0.14) and Shuffled (M 

= 1.45, SE = 0.14), which did not differ in sensitivity (p = .80). When I compared Familiar and 

Shuffled to New Shapes (M = 0.99, SE = 0.14), Familia and Shuffled showed higher sensitivity 

than New Shapes, F(1,112) = 8.22, p = .005, partial-eta-squared = 0.07. There was no simple 
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effect of Condition for 400ms (p = .27), 700ms (p = .68), or 1000ms (p = .75). The pattern of 

Conditions only held for the longest exposure duration. 

How does Exp. 3 at 35 minutes compare to Exp. 2? 

Experiment 3 replicated Experiment 1 and extended it by varying the length of the 

familiarization. Extending the familiarization to 35 minutes could have made results of this 

condition in Experiment 3 more similar to Experiment 2 results, so this was tested. 

 

 

 

Figure 38. Experiment Version by Condition by Exposure Duration on accuracy (collapsed 

across Target Presence). Error bars indicate standard error of the mean.  

 

Accuracy. Figure 38 showed effects of Experiment Version, Condition, and Exposure 

Duration on accuracy. It appeared that Experiment 2 showed higher accuracy across durations 

and across conditions, but especially for the Familiar condition. To test these apparent effects, I 

conducted an ANOVA of Experiment Version by Condition by Exposure Duration by Target 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

400 700 1000 1300

A
cc

u
ra

cy
 

Exposure Duration (ms) 

Experiment 2 

400 700 1000 1300

Exposure Duration (ms) 

Experiment 3 at 35 minutes 

Familiar Shuffled New Shapes
Condition 



126 

 

Presence on accuracy. There was a main effect of Experiment Version, such that Experiment 2 

(M = 0.79, SE = 0.01) showed higher accuracy than  Experiment 3 at 35 minutes (M = 0.75, SE = 

0.01), F(1,132) = 5.47, p = .02, partial-eta-squared = 0.04. There was also a main effect of 

Target Presence, such that participants were less accurate when the target was Present (M = 0.75, 

SE = 0.01) than when it was Absent (M = 0.79, SE = 0.01), F(1,132) = 6.50, p = .01, partial-eta-

squared = 0.05. There were also main effects of Condition, F(2,132) = 7.45, p = .001, partial-

eta-squared = 0.10, and Exposure Duration, F(3,396) = 5.13, p = .002, partial-eta-squared = 

0.04. There were two interactions: Experiment Version by Condition, F(2,132) = 9.93, p < .001, 

partial-eta-squared = 0.13, and Experiment Version by Target Presence, F(2,132) = 4.14, p = 

.04, partial-eta-squared = 0.03. No other effects were significant (all p’s > .13). 

 Custom hypothesis tests in ANOVA were used to investigate significant effects. For 

Condition, I first compared Familiar (M = 0.81, SE = 0.02) and Shuffled (M = 0.78, SE = 0.02), 

which did not differ (p = .27). Then I compared Familiar and Shuffled combined to New Shapes 

(M = 0.72, SE = 0.02), and found that the combined conditions showed higher accuracy than 

New Shapes, F(1,132) = 13.63, p < .001, partial-eta-squared = 0.09. Learning transferred from 

Familiar to Shuffled. 

For Exposure Duration, I conducted all pairwise comparisons, and found that 400ms (M 

= 0.75, SE = 0.01) was less accurate than 1000ms (M = 0.78, SE = 0.01), F(1,132) = 12.14, p = 

.001, partial-eta-squared = 0.08. 400ms was also less accurate than 1300ms (M = 0.79, SE = 

0.01), F(1,132) = 15.66, p < .001, partial-eta-squared = 0.11. No other pairwise comparisons 

were significant (all p’s > .05). 

 For the interaction of Experiment Version and Condition, simple effects of Experiment 

Version were examined at each condition via custom hypothesis tests in ANOVA. For Familiar, 
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there was a simple effect of Experiment Version, such that Experiment 2 (M = 0.88, SE = 0.02) 

showed higher accuracy than Experiment 3 at 35 minutes (M = 0.73, SE = 0.02), F(1,132) = 

25.23, p < .001, partial-eta-squared = 0.16. There was no simple effect of Experiment Version 

for Shuffled (p = .69) or New Shapes (p = .61). The interaction of Condition and Experiment 

Version was driven by simple effect of Experiment Version for Familiar. 

 For the interaction of Experiment Version and Target Presence, simple effects of 

Experiment version were examined at each level of Target Presence using custom hypothesis 

tests in ANOVA. There was a significant simple effect of Experiment Version for Present, such 

that Experiment 2 (M = 0.79, SE = 0.02) showed higher accuracy than Experiment 3 at 35 

minutes (M = 0.71, SE = 0.02), F(1,132) = 9.91, p = .002, partial-eta-squared = 0.07. There was 

no simple effect for Absent (p = .13). The interaction of Experiment Version and Target 

Presence was driven by the simple effect of Experiment Version for Present. 

False Alarms Rate. Figure 39 showed effects of Experiment Version, Condition, and 

Exposure Duration on false alarm rate. It appeared that overall false alarm rates were similar 

(though perhaps lower in Experiment 2), but Familiar had the lowest false alarm rate in 

Experiment 2 whereas Shuffled had the lowest false alarm rate in Experiment 3 at 35 minutes. 

To test these apparent effects, I conducted an ANOVA of Experiment Version by Condition by 

Exposure Duration on false alarm rate. There was a main effect of Condition, F(2,132) = 3.34, p 

= .04, partial-eta-squared = 0.05, and an interaction of Experiment Version with Condition, 

F(2,132) = 4.13, p = .02, partial-eta-squared = 0.06. No other effects were significant (all p’s > 

.19). 

 Custom hypothesis tests in ANOVA were used to evaluate significant effects. For the 

main effect of Condition, I compared Familiar (M = 0.18, SE = 0.02) and Shuffled (M = 0.19, SE 
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= 0.02), which did not differ in false alarm rate (p = .91). When I compared Familiar and 

Shuffled together to New Shapes (M = 0.25, SE = 0.02), I found that Familiar and Shuffled 

showed a lower false alarm rate than New Shapes, F(1,132) = 6.667, p = .01, partial-eta-squared 

= 0.05. Learning transferred from Familiar to Shuffled in terms of decreased false alarming. 

 

  

Figure 39. Experiment Version by Condition by Exposure Duration on false alarm rate. Error 

bars indicate standard error of the mean.  
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Figure 40. Experiment Version by Condition by Exposure Duration on sensitivity. Error bars 

indicate standard error of the mean.  
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1.62, SE = 0.10), which did not differ in sensitivity (p = .16). Then I compared Familiar and 

Shuffled combined to New Shapes (M = 1.24, SE = 0.10), and found that Familiar and Shuffled 

combined showed higher sensitivity than New Shapes, F(1,132) = 15.10, p < .001, partial-eta-

squared = 0.10. Learning, as measured by increased sensitivity, transferred from Familiar to 

Shuffled. 

For Exposure Duration, I compared 1000ms (M = 1.63, SE = 0.07) and 1300ms (M = 

1.64, SE = 0.07), which did not differ in sensitivity (p = .91). When I compared 1000ms and 

1300ms together to 400ms (M = 1.38, SE = 0.07), I found that the longer durations showed 

higher sensitivity than 400ms, F(1,132) = 24.17, p < .001, partial-eta-squared = 0.16. 700ms (M 

= 1.59, SE = 0.08) did not differ in sensitivity from 400ms (p = .02) or from the longer exposure 

durations combined (p = .21). 

 For the interaction of Experiment Version and Condition, simple effects of Experiment 

Version for each condition were tested. There was a simple effect of Experiment Version for 

Familiar, such that Experiment 2 (M = 2.33, SE = 0.14) showed higher sensitivity than 

Experiment 3 with a 35 minute session length (M = 1.29, SE = 0.14), F(1,132) = 27.92, p < .001, 

partial-eta-squared = 0.18. There was no simple effect of Experiment Version for Shuffled (p = 

.67) or New Shapes (p = .73). The interaction of Experiment Version and Condition was driven 

by the simple effect of Experiment Version for Familiar. 

How does learning time relate to performance across experiments? 

In Experiment 3, participants with a longer session length performed better in recognition 

accuracy. There was no main effect of Session Length for psychophysical assessment accuracy, 

but Session Length was involved in significant interactions. In Experiment 2, PL training time 

did not correlate with assessment performance. It would be interesting to investigate if amount of 
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learning time (session length for Experiments 1 and 3, PL training time for Experiment 2) 

mattered across all three experiments. A Pearson correlation revealed no association between 

learning time and psychophysical assessment accuracy across experiments (p = .54). 

How do all of the experiments compare to each other and Baseline? 

Experiment 2 employed a PL intervention based on the chosen SL paradigm used in 

Experiments 1 and 3. The PL intervention caused strong PL effects. These were similar to the 

effects observed in Experiments 1 and 3, but stronger for Familiar than Shuffled, unlike 

Experiments 1 and 3. To test the degree to which transfer occurred in Experiment 2 and to 

compare transfer across all of the experiments against each other and Baseline, I analyzed 

Experiments 1, 2, and 3 (collapsed across Session Length) together with Baseline. 

Accuracy. Figure 41 showed effects of Experiment Version, Condition, and Exposure 

Duration on accuracy, statistically controlling for Recognition, Noticing, and Linguistic Coding, 

and it appeared that Baseline had the lowest accuracy across exposure durations and Experiment 

2 had the highest, particularly for Familiar. Shuffled appeared to have the highest accuracy for 

Experiments 1 and 3. To test these apparent effects, I conducted an ANOVA of Experiment 

Version by Condition by Exposure Duration by Target Presence on accuracy, which revealed 

main effects of Experiment Version, F(3,402) = 8.13, p < .001, partial-eta-squared = 0.06; 

Condition, F(2,402) = 10.38, p < .001, partial-eta-squared = 0.06; and Exposure Duration, 

F(3,1206) = 13.06, p < .001, partial-eta-squared = 0.03. It also revealed interaction effects of 

Experiment Version and Condition, F(6,402) = 3.98, p = .001, partial-eta-squared = 0.06; 

Experiment Version and Target Presence, F(3,402) = 3.57, p = .02, partial-eta-squared = 0.03; 

Condition and Exposure Duration, F(6,1206) = 2.37, p = .03, partial-eta-squared = 0.01; and 
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Exposure Duration and Target Presence, F(3,1206) = 11.00, p < .001, partial-eta-squared = 0.03. 

No other effects were significant (all p’s > .26). 

 

    

Figure 41. Experiment Version by Condition by Exposure Duration on accuracy (collapsed 

across Target Presence). Error bars indicate standard error of the mean.  

 

 The main effects were evaluated via custom hypothesis tests in ANOVA. For the main 

effect of Experiment Version, I first compared Experiment 1 (M = 0.74, SE = 0.01) and 

Experiment 3 (M = 0.75, SE = 0.01), which did not differ (p = .30). Then I compared 

Experiments 1 and 3 to Baseline (M = 0.70, SE = 0.02), and found that Experiments 1 and 3 

together showed higher accuracy than Baseline, F(1,402) = 7.56, p = .006, partial-eta-squared = 

0.02. Then I compared Experiments 1 and 3 to Experiment 2 (M = 0.79, SE = 0.01), and found 

that Experiments 1 and 3 showed lower accuracy than Experiment 2, F(1,402) = 11.44, p = .001, 

partial-eta-squared = 0.03. I also compared Experiment 2 to Baseline, and found that 
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Experiment 2 also had higher accuracy than Baseline, F(1,402) = 22.96, p < .001, partial-eta-

squared = 0.06. All experiments showed learning relative to Baseline and experiment 2 showed 

the most learning. 

For Condition, I compared Familiar (M = 0.77, SE = 0.01) and Shuffled (M = 0.76, SE = 

0.01), which did not differ in accuracy (p = .34). Then I compared Familiar and Shuffled to New 

Shapes (M = 0.71, SE = 0.01), and found that Familiar and Shuffled were more accurate than 

New Shapes, F(1,402) = 19.87, p < .001, partial-eta-squared = 0.05. For Exposure Duration, I 

conducted all pairwise comparisons. 400ms (M = 0.72, SE = 0.01) was less accurate than 1000ms 

(M = 0.76, SE = 0.01), F(1,402) = 29.19, p < .001, partial-eta-squared = 0.07. 400ms was also 

less accurate than 1300ms (M = 0.76, SE = 0.01), F(1,402) = 34.74, p < .001, partial-eta-squared 

= 0.08. 700ms (M = 0.74, SE = 0.01) was marginally less accurate than 1300ms, F(1,402) = 7.51 

p = .006, partial-eta-squared = 0.02. No other comparisons were significant (all p’s > .01). 

Custom hypothesis tests in ANOVA of simple effects of Experiment Version were used 

for the interaction of Experiment Version and Condition. For Familiar, there was a simple effect 

of Experiment Version, F(3,402) = 12.71, p < .001, partial-eta-squared = 0.09. I first compared 

Experiment 1 (M = 0.75, SE = 0.02) and Experiment 3 (M = 0.76, SE = 0.01), which did not 

differ in accuracy (p = .70). Then I compared Experiments 1 and 3 to Baseline. Combined, 

Experiments 1 and 3 showed higher accuracy than Baseline (M = 0.69, SE = 0.03), F(1,402) = 

4.64, p = .03, partial-eta-squared = 0.01. Then I compared Experiment 2 (M = 0.88, SE = 0.02) 

to Experiments 1 and 3, and found that Experiment 2 showed higher accuracy than Experiments 

1 and 3, F(1,402) = 27.67, p < .001, partial-eta-squared = 0.06. Finally, I compared Experiment 

2 to Baseline and showed that Experiment 2 also had higher accuracy than Baseline, F(1,402) = 

31.45, p < .001, partial-eta-squared = 0.07. There was also a marginal simple effect of 
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Experiment Version for Shuffled, F(3,402) = 2.36, p = .067 partial-eta-squared = 0.02. Again, I 

first compared Experiment 1 (M = 0.78, SE = 0.03) and Experiment 3 (M = 0.77, SE = 0.01), 

which did not differ in accuracy (p = .75). Then I compared Experiments 1 and 3 to Experiment 

2 (M = 0.78, SE = 0.02), which did not differ in accuracy (p = .92). Finally, I compared all three 

experiments to Baseline (M = 0.70, SE = 0.03), and found that all three Experiments (1, 2, and 3) 

combined showed higher accuracy than Baseline, F(1,402) = 7.03, p = .008, partial-eta-squared 

= 0.02. There was no simple effect of Experiment Version for New Shapes (p = .38). The 

interaction of Experiment Version and Condition was driven by the simple effect of Experiment 

Version for Familiar - Experiment 2 showing higher accuracy than Experiments 1 and 3 which 

had higher accuracy than Baseline - and the simple effect of Experiment Version for Shuffled - 

all experiments not differing in accuracy, but together having higher accuracy than Baseline. 

 For Experiment Version and Target Presence, custom hypothesis tests in ANOVA of 

simple effects of Experiment Version for each level of target present were examined, and 

significant simple effects were followed up with all pairwise comparisons. There was a simple 

effect of Experiment Version when the target was Present, F(3,402) = 3.74, p = .01, partial-eta-

squared = 0.03. Experiment 2 (M = 0.79, SE = 0.02) showed higher accuracy than Experiment 1 

(M = 0.73, SE = 0.02), F(1,402) = 5.46, p = .02, partial-eta-squared = 0.01. Experiment 2 also 

showed higher accuracy than Experiment 3 (M = 0.72, SE = 0.01), F(1,402) = 10.20, p = .002, 

partial-eta-squared = 0.03. Experiment 2 also showed higher accuracy than Baseline (M = 0.72, 

SE = 0.02), F(1,402) = 6.77, p = .01, partial-eta-squared = 0.02. No other pairwise comparisons 

were significant for Present (all p’s > .52). There was also a simple effect of Experiment Version 

for Absent, F(3,402) = 8.18, p < .001, partial-eta-squared = 0.06. Experiment 1 (M = 0.74, SE = 

0.02) showed lower accuracy than Experiment 3 (M = 0.78, SE = 0.01), F(1,402) = 4.23, p = .04, 
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partial-eta-squared = 0.01. Experiment 1 also showed lower accuracy than Experiment 2 (M = 

0.80, SE = 0.02), F(1,402) = 5.92, p = .02, partial-eta-squared = 0.02. Experiment 1 showed 

higher accuracy than Baseline (M = 0.72, SE = 0.02), F(1,402) = 5.67, p = .02, partial-eta-

squared = 0.01.Experiment 2 showed higher accuracy than Baseline (M = 0.68, SE = 0.02), 

F(1,402) = 18.95, p < .001, partial-eta-squared = 0.05. Experiment 3 also showed higher 

accuracy than Baseline, F(1,402) = 18.45, p < .001, partial-eta-squared = 0.04. Experiment 2 

and Experiment 3 did not differ in accuracy for Absent, (p = .36). The interaction of Experiment 

Version and Target Presence was driven by different patterns of accuracies for Present and 

Absent. 

 For the interaction of Condition and Exposure Duration, custom hypothesis tests in 

ANOVA were used to test simple effects of Condition. There was a simple effect of Condition 

for 400ms, F(2,402) = 8.14, p < .001, partial-eta-squared = 0.04. I compared Familiar (M = 

0.74, SE = 0.01) and Shuffled (M = 0.74, SE = 0.01), which did not differ in accuracy (p = .84). 

Then I compared Familiar and Shuffled combined to New Shapes (M = 0.68, SE = 0.01), and 

found that the combined conditions were more accurate than New Shapes, F(1,402) = 16.25, p < 

.001, partial-eta-squared = 0.04. There was also a simple effect of Condition for 700ms, 

F(2,402) = 4.82, p = .009, partial-eta-squared = 0.02. Similarly, I compared Familiar (M = 0.76, 

SE = 0.01) and Shuffled (M = 0.75, SE = 0.01), which did not differ in accuracy (p = .90). When 

I compared Familiar and Shuffled combined to New Shapes (M = 0.70, SE = 0.01), I found that 

the combination was more accurate than New Shapes, F(1,402) = 9.62, p = .002, partial-eta-

squared = 0.02. Again, there was a simple effect of Condition for 1300ms, F(2,402) = 12.65, p < 

.001, partial-eta-squared = 0.06. I compared Familiar (M = 0.80, SE = 0.01) and Shuffled (M = 

0.78, SE = 0.01), which again did not differ in accuracy (p = .45). When I compared Familiar and 
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Shuffled combined to New Shapes (M = 0.70, SE = 0.01), I found that the combined conditions 

were more accurate than New Shapes, F(1,402) = 24.73, p < .001, partial-eta-squared = 0.06. 

Finally, there was a simple effect of Condition at 1000ms too, F(2,402) = 3.91, p = .02, partial-

eta-squared = 0.02. However, in contrast to the other simple effects, at 1000ms I compared 

Shuffled (M = 0.75, SE = 0.01) and New Shapes (M = 0.73, SE = 0.01), which did not differ in 

accuracy (p = .39). When I compared Shuffled and New Shapes to Familiar (M = 0.79, SE = 

0.01), I found that Familiar was more accurate than Shuffled and New Shapes combined, 

F(1,402) = 7.07, p = .008, partial-eta-squared = 0.02. The interaction of Condition and Exposure 

Duration was driven by the different patterns of accuracy by condition for 1000ms than for the 

other exposure durations. 

 The interaction of Exposure Duration and Target Presence was explored via custom 

hypothesis tests in ANOVA. There was a marginal simple effect of Target Presence at 400ms, 

such that participants were more accurate when the target was Absent (M = 0.74, SE = 0.01) than 

when the target was Present (M = 0.69, SE = 0.01), F(1,402) = 9.67, p = .002, partial-eta-

squared = 0.02. There were no other simple effects of Target Presence (all p’s >.01). The 

interaction of Exposure Duration and Target Presence was driven by the marginal simple effect 

of Target Presence at 400ms. 

False Alarm Rate. Figure 42 showed effects of Experiment Version, Condition, and 

Exposure Duration on false alarm rate. Baseline appeared to have the highest false alarm rate 

across conditions and exposure durations, and Experiment 2 the lowest, especially for Familiar. 

Shuffled appeared to have the lowest false alarm rate across exposure durations for Experiments 

1 and 3. To test these apparent effects, I conducted an ANOVA of Experiment Version by 

Condition by Exposure Duration on false alarm rate revealed main effects of Experiment 
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Version, F(3,402) = 8.18, p < .001, partial-eta-squared = 0.06; and Condition, F(2,402) = 8.93, 

p < .001, partial-eta-squared = 0.04. No other effects were significant (all p’s > .18). Custom 

hypothesis tests were used to follow up on the significant effects. 

 

 

Figure 42. Experiment Version by Condition by Exposure Duration on accuracy (collapsed 

across Target Presence). Error bars indicate standard error of the mean. 

 

All pairwise comparisons were made to investigate Experiment Version. Baseline (M = 

0.33, SE = 0.02) had a higher false alarm rate than Experiment 1 (M = 0.26, SE = 0.02), F(1,402) 

= 5.67, p = .02, partial-eta-squared = 0.01. Baseline also had a higher false alarm rate than 

Experiment 2 (M = 0.20, SE = 0.02), F(1,402) = 18.95, p < .001, partial-eta-squared = 0.05. 

Experiment 3 (M = 0.22, SE = 0.01) also had a lower false alarm rate than Baseline, F(1,402) = 

18.45, p < .001, partial-eta-squared = 0.04. Experiment 1 had more false alarms than 

Experiment 2, F(1,402) = 5.92, p = .02, partial-eta-squared = 0.02. Experiment 1 also had more 

false alarms than Experiment 3, F(1,402) = 4.23, p = .04, partial-eta-squared = 0.01. 
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Experiments 2 and 3 did not differ in false alarms (p = .36). All three experiments decreased 

their false alarm rates relative to Baseline. 

 For Condition, Familiar (M = 0.22, SE = 0.02) and Shuffled (M = 0.24, SE = 0.01) did not 

differ in false alarm rate (p = .53). New Shapes (M = 0.30, SE = 0.01) had more false alarms than 

the other two conditions combined, F(1,402) = 17.48, p < .001, partial-eta-squared = 0.04. 

There was transfer from Familiar to Shuffled across experiments. 

 

 

Figure 43. Experiment Version by Condition by Exposure Duration on sensitivity. Error bars 

indicate standard error of the mean. 

 

Sensitivity. Figure 43 showed effects of Experiment Version, Condition, and Exposure 

Duration on sensitivity. It appeared that Experiment 2 had the highest sensitivity across exposure 
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Experiment Version by Condition by Exposure Duration on sensitivity, which revealed main 

effects of Experiment Version, F(3,402) = 9.72, p < .001, partial-eta-squared = 0.07; Condition, 

F(2,402) = 11.38, p < .001, partial-eta-squared = 0.05; and Exposure Duration, F(3,1206) = 

13.38, p < .001, partial-eta-squared = 0.03. It also revealed interaction effects of Experiment 

Version with Condition, F(6,402) = 4.64, p < .001, partial-eta-squared = 0.07; and Condition 

with Exposure Duration, F(6,1206) = 2.43, p = .02, partial-eta-squared = 0.01. No other effects 

were significant (all p’s > .69). 

Custom hypothesis tests in ANOVA were used to follow up on main effects. For 

Experiment Version, I first compared Experiment 1 (M = 1.31, SE = 0.07) and Experiment 3 (M 

= 1.41, SE = 0.05), which did not differ in sensitivity (p = .23). Then I compared Baseline (M = 

1.06, SE = 0.10) to Experiments 1 and 3, and found that Baseline showed lower sensitivity than 

Experiments 1 and 3, F(1,402) = 8.50, p = .004, partial-eta-squared = 0.02. I compared  

Experiment 2 (M = 1.70, SE = 0.08) to Experiments 1 and 3, and found that Experiment 2 

showed higher sensitivity than Experiments 1 and 3, F(1,402) = 14.46, p < .001, partial-eta-

squared = 0.04. I also compared Experiment 2 to Baseline, and found that Experiment 2 also 

showed higher sensitivity than Baseline, F(1,402) = 27.10, p < .001, partial-eta-squared = 0.06. 

All experiments showed learning relative to Baseline, but Experiment 2 showed more learning 

than the other two experiments.  

For Condition, I first compared Familiar (M = 1.55, SE = 0.07) and Shuffled (M = 1.43, 

SE = 0.07), which did not differ in sensitivity (p = .19). Then I compared Familiar and Shuffled 

together to New Shapes (M = 1.13, SE = 0.07), and found that together they showed higher 

sensitivity than New Shapes, F(1,402) = 21.07, p < .001, partial-eta-squared = 0.05. There was 

improved sensitivity and transfer of learning from Familiar to Shuffled across experiments. 
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For Exposure Duration, I first compared 1000ms (M = 1.45, SE = 0.05) and 1300ms (M = 

1.48, SE = 0.05), which did not differ in sensitivity (p = .63). Then I compared 400ms (M = 1.21, 

SE = 0.04) to 1000ms and 1300ms, and found that 400ms showed less sensitivity than the longer 

exposure durations combined, F(1,402) = 45.63, p < .001, partial-eta-squared = 0.10. Then I 

compared 700ms (M = 1.33, SE = 0.05) to 1000ms and 1300ms, and found that 700ms showed 

marginally lower sensitivity than the longer exposure durations combined, F(1,402) = 9.12, p = 

.003, partial-eta-squared = 0.02. I also compared 400ms and 700ms, which did not differ (p = 

.01). 

 For the interaction of Experiment Version and Condition, custom hypothesis tests were 

used to investigate simple effects of Experiment Version for each condition, and additional 

custom hypothesis tests were used for significant simple effects. There was a significant simple 

effect of Experiment Version for Familiar, F(3,402) = 15.27, p < .001, partial-eta-squared = 

0.10. I compared Experiment 1 (M = 1.39, SE = 0.12) and Experiment 3 (M = 1.46, SE = 0.08), 

which did not differ in sensitivity (p = .60). Then I compared Experiments 1 and 3 together to 

Baseline (M = 1.03, SE = 0.17), and found that together they showed higher sensitivity than 

Baseline, F(1,402) = 4.78, p = .03, partial-eta-squared = 0.01. I compared Experiment 2 (M = 

2.33, SE = 0.14) to the other two experiments and found that Experiment 2 showed higher 

sensitivity than Experiments 1 and 3, F(1,402) = 34.36, p < .001, partial-eta-squared = 0.08. I 

also compared Experiment 2 to Baseline and found that Experiment 2 also showed higher 

sensitivity than Baseline, F(1,402) = 36.81, p < .001, partial-eta-squared = 0.08. There was also 

a simple effect of Experiment Version for Shuffled, F(3,402) = 2.77, p = .04, partial-eta-squared 

= 0.02. I first compared Experiment 1 (M = 1.56, SE = 0.12) and Experiment 3 (M = 1.54, SE = 

0.08), which did not differ in sensitivity (p = .90). Next, I compared Experiment 2 (M = 1.57, SE 
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= 0.14) to the other two experiments, and found that Experiment 2 did not differ from 

Experiments 1 and 3 in sensitivity (p = .90). Finally, I compared Baseline (M = 1.04, SE = 0.17) 

to all three experiments combined, and found that Baseline showed lower sensitivity than 

Experiments 1, 2, and 3 combined, F(1,402) = 8.25, p = .004, partial-eta-squared = 0.02. There 

was no simple effect for New Shapes (p = .40). The interaction of Experiment Version and 

Condition was driven by learning in improved sensitivity in all experiments for Familiar and 

Shuffled relative to Baseline, and the significantly higher sensitivity for Experiment 2 for 

Familiar (but not Shuffled). 

 For the interaction of Condition and Exposure Duration, custom hypothesis tests 

examined simple effects of Condition for each exposure duration, and additional custom tests 

were used to follow up significant simple effects. For 400ms, there was a simple effect of 

Condition, F(2,402) = 8.24, p < .001, partial-eta-squared = 0.04. I compared Familiar (M = 1.36, 

SE = 0.08) and Shuffled (M = 1.31, SE = 0.07), which did not differ in sensitivity (p = .59). Then 

I compared Familiar and Shuffled together to New Shapes (M = 0.97, SE = 0.07), and found 

that  together they showed higher sensitivity than New Shapes, F(1,402) = 16.20, p < .001, 

partial-eta-squared = 0.04. For 700ms, there was also a simple effect of Condition, F(2,402) = 

5.34, p = .005, partial-eta-squared = 0.03. Similarly, I first compared Familiar (M = 1.47, SE = 

0.08) and Shuffled (M = 1.42, SE = 0.08), which did not differ in sensitivity (p = .70), and then 

compared Familiar and shuffled together to New Shapes (M = 1.11, SE = 0.08), and found that 

together they showed higher sensitivity than New Shapes, F(1,402) = 10.53, p = .001, partial-

eta-squared = 0.03. For 1300ms, there was also simple effect of Condition, F(2,402) = 13.21, p < 

.001, partial-eta-squared = 0.06. Again, I compared Familiar (M = 1.71, SE = 0.09) and Shuffled 

(M = 1.60, SE = 0.09), which did not differ in sensitivity (p = .36). When I compared Familiar 
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and Shuffled together to New Shapes (M = 1.12, SE = 0.09), I found that together they showed 

higher sensitivity than New Shapes, F(1,402) = 25.61, p < .001, partial-eta-squared = 0.06. For 

1000ms, there was another simple effect of Condition, F(2,402) = 5.03, p = .007, partial-eta-

squared = 0.02. In contrast to the other simple effects, I compared Shuffled (M = 1.40, SE = 

0.08) and New Shapes (M = 1.30, SE = 0.08), which did not differ in sensitivity (p = .43). Then I 

compared Shuffled and New Shapes together to Familiar (M = 1.67, SE = 0.09), and found that 

together they showed lower sensitivity than Familiar, F(1,402) = 9.42, p = .002, partial-eta-

squared = 0.02. The interaction of Condition and Exposure Duration was driven by the different 

pattern of results for 1000ms compared to the other exposure durations: 1000ms did not show 

transfer to Shuffled on sensitivity, but the other exposure durations did. 

How do all of the experiments compare on survey measures? 

Experiments 1, 2, and 3 used the same survey (with the exception of adjustment to the 

sleep scale) as well as the same psychophysical assessment. Given that noticing the pairs was 

associated with improved performance in Experiments 2 and 3, and that the linguistic coding 

strategy was associated with higher assessment accuracy in Experiment 3, I examined the 

relationships of these measures across experiments. 

Correlations Noticing the pairs correlated with increased accuracy across experiments, 

r(343) = 0.31, p < .001, as did use of the linguistic coding strategy, r(353) = 0.19, p < .001. I 

followed up on these correlations with ANCOVA analyses of assessment data. 

Accuracy. Figure 44 showed effects of Experiment Version, Condition, and Exposure 

Duration on accuracy. It appeared that Experiment 2 had higher accuracy for Familiar than the 

other experiments, but otherwise performance across experiments was similar with higher 

accuracy in Shuffled than New Shapes. To test these apparent effects, I conducted an ANCOVA 
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of Experiment Version by Condition by Exposure Duration by Target Presence on accuracy, 

covarying out Noticing and Linguistic Coding. This revealed a main effect of Condition, 

F(2,324) = 15.07, p < .001, partial-eta-squared = 0.09, and a marginal main effect of Exposure 

Duration, F(3,972) = 2.59, p = .05, partial-eta-squared = 0.01. There were several interactions: 

Experiment Version and Condition, F(4,324) = 5.26, p < .001, partial-eta-squared = 0.06; 

Condition and Exposure Duration, F(6,972) = 2.11, p = .05, partial-eta-squared = 0.01; 

Exposure Duration and Target Presence, F(3,972) = 3.57, p = .01, partial-eta-squared = 0.01; a 

marginal interaction of Experiment Version and Target Presence, F(2,324) = 2.50, p = .08, 

partial-eta-squared = 0.02; Target Presence and Noticing, F(1,324) = 4.82, p = .03, partial-eta-

squared = 0.02; and a marginal interaction of Exposure Duration and Noticing, F(1,972) = 2.59, 

p = .05, partial-eta-squared = 0.01. There were also significant effects of both covariates: 

Noticing, F(1,324) = 18.60, p < .001, partial-eta-squared = 0.05; and  

Linguistic Coding, F(1,324) = 7.17, p = .008, partial-eta-squared = 0.02. No other effects were 

significant (all p’s > .10). 

Custom hypothesis tests in ANCOVA on adjusted marginal means
27

 were used to explore 

significant effects. For the main effect of Condition, I compared Familiar (M = 0.79, SE = 0.01) 

and Shuffled (M = 0.77, SE = 0.01), which showed similar accuracy (p = .18). Then I compared 

Familiar and Shuffled together to New Shapes (M = 0.71, SE = 0.01), and found that Familiar 

and Shuffled showed higher accuracy than New Shapes, F(1,330) = 28.16, p < .001, partial-eta-

squared = 0.08. Learning transferred from Familiar to Shuffled. 

                                                 

 

27
 Marginal means were calculated at the mean of each covariate: Recognition M = 0.64, 

Noticing M = 0.32, Linguistic Coding M = 0.40. 
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For Exposure Duration, I compared 1000ms (M = 0.77, SE = 0.01) and 1300ms (M = 

0.77, SE = 0.01), which did not differ (p = .45). Then I compared the longest exposure durations 

to 400ms (M = 0.74, SE = 0.01), and found that 1000ms and 1300ms together showed marginally 

higher accuracy than 400ms, F(1,324) = 9.53, p = .002, partial-eta-squared = 0.03. No other 

comparisons were significant (all p’s > .04). 

 

 

Figure 44. Experiment Version by Condition by Exposure Duration on accuracy (collapsed 

across Target Presence), statistically controlling for Recognition, Noticing, and Linguistic 

Coding. Bar heights are adjusted marginal means and error bars indicate standard error of the 

mean. 
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0.01), which did not differ (p = .41). Then I compared the SL familiarization experiments to 

Experiment 2 (M = 0.86, SE = 0.02), and found that Experiments 1 and 3 together showed higher 

accuracy than Experiment 2, F(1,324) = 16.83, p < .001, partial-eta-squared = 0.05. There were 

no other simple effects of Experiment Version (all p’s > .10). The interaction of Experiment 

Version and Condition was driven by Experiment 2 having higher accuracy than the other 

experiments for Familiar. 

Custom hypothesis tests in ANCOVA were also used for the interaction of Experiment 

Version and Target Presence, but revealed no simple effects of Experiment Version (all p’s > 

.15) or simple effects of Target Presence (all p’s > .15). 

 

 

Figure 45. Experiment Version by Condition by Exposure Duration on false alarm rate, 

statistically controlling for Recognition, Noticing, and Linguistic Coding. Bar heights are 

adjusted marginal means and error bars indicate standard error of the mean. 
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False Alarm Rate. Figure 45 showed effects of Experiment Version, Condition, and 

Exposure Duration on false alarm rate, when statistically controlling for Noticing and Linguistic 

Coding. It appeared that false alarm rates were lower for Familiar and Shuffled than New Shapes 

across experiments, and lowest for Familiar in Experiment 2, but lowest for Shuffled in 

Experiments 1 and 3. To test these apparent effects, I conducted an ANCOVA of Condition by 

Exposure Duration on false alarm rate, covarying out Noticing and Linguistic Coding. There was 

a main effect of Condition, F(2,324) = 7.91, p < .001, partial-eta-squared = 0.05. There were 

also effects of the covariates Noticing, F(1,324) = 21.49, p < .001, partial-eta-squared = 0.06, 

and Linguistic Coding, F(1,324) = 5.04, p = .03, partial-eta-squared = 0.02, and a marginal 

interaction of Exposure Duration and Noticing, F (1,972) = 2.52, p = .06, partial-eta-squared = 

0.01. No other effects were significant (all p’s > .18). 

Custom hypothesis tests in ANCOVA were used to investigate the main effect of 

Condition. I compared Familiar (M = 0.20, SE = 0.02) and Shuffled (M = 0.21, SE = 0.02), which 

did not differ in false alarm rate (p = .69). Then I compared Familiar and Shuffled together to 

New Shapes (M = 0.28, SE = 0.02), and found that together they showed a lower false alarm rate 

than New Shapes, F(1,324) = 15.62, p < .001, partial-eta-squared = 0.05. Across experiments, 

learning transferred from Familiar to Shuffled as measured by decreased false alarm rates. 

Sensitivity. Figure 46 showed effects of Experiment Version, Condition, and Exposure 

Duration on sensitivity, when effects of Noticing and Linguistic Coding were statistically 

controlled. It appeared that Experiment 2 had higher accuracy in Familiar than other conditions 

and than other experiments. It also appeared that Familiar and Shuffled showed higher sensitivity 

than New Shapes across experiments and exposure durations. To test the apparent effects, I 

conducted an ANCOVA of Condition by Exposure Duration on sensitivity, covarying out 
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Noticing and Linguistic Coding. There was a main effect of Condition, F(2,324) = 16.44, p  < 

.001, partial-eta-squared = 0.09, and a main effect of Exposure Duration, F(3,972) = 3.08, p = 

.03, partial-eta-squared = 0.01. Both covariates had significant effects: Noticing, F(1,324) = 

21.36, p < .001, partial-eta-squared = 0.06; and Linguistic Coding, F(1,324) = 6.45, p = .01, 

partial-eta-squared = 0.02. There was a significant interaction of Experiment Version and 

Condition, F(1,324) = 5.82, p < .001, partial-eta-squared = 0.07; a marginal interaction of 

Condition and Exposure Duration, F(6,972) = 1.90, p = .08, partial-eta-squared = 0.01; and a 

significant interaction of Exposure Duration and Noticing, F(3,972) = 3.09, p = .03, partial-eta-

squared = 0.01. No other effects were significant (all p’s > .19). 

 

 

Figure 46. Experiment Version by Condition by Exposure Duration on sensitivity, statistically 

controlling for Recognition, Noticing, and Linguistic Coding. Bar heights are adjusted marginal 

means and error bars indicate standard error of the mean. 
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Custom hypothesis tests in ANCOVA were used to explore the main effects. For 

Condition, I conducted all pairwise comparisons. Familiar (M = 1.70, SE = 0.07) was marginally 

more sensitive than Shuffled (M = 1.54, SE = 0.07), F(1,324) = 2.75, p = .01, partial-eta-squared 

= 0.01. Familiar was significantly more sensitive than New Shapes (M = 1.16, SE = 0.07), 

F(1,324) = 31.38, p < .001, partial-eta-squared = 0.09. Shuffled significantly more sensitive 

than New Shapes, F(1,324) =  15.32, p < .001, partial-eta-squared = 0.05. The highest 

sensitivity was seen in Familiar, but learning also transferred to Shuffled. 

For Exposure Duration, I compared 1000ms (M = 1.55, SE = 0.05) and 1300ms (M = 

1.55, SE = 0.05), which did not differ (p = .54). I compared the longest durations combined to 

400ms (M = 1.33, SE = 0.05), and found that together 1000ms and 1300ms were marginally 

more sensitive than 400ms, F(1,324) = 9.68, p = .002, partial-eta-squared = 0.03. No other 

comparisons were significant (all p’s > .03). 

Custom hypothesis tests were used for the interaction of Experiment Version and 

Condition. I tested simple effects of Experiment Version for each condition, and followed up 

significant simple effects with additional tests. There was a simple effect of Experiment Version 

for Familiar, F(2,324) = 10.42, p < .001, partial-eta-squared = 0.06.  I first compared 

Experiment 1 (M = 1.39, SE = 0.13) and Experiment 3 (M = 1.52, SE = 0.08), which did not 

differ in sensitivity (p = .38). Then I compared Experiments 1 and 3 combined to Experiment 2 

(M = 2.18, SE = 0.14), and found that Experiments 1 and 3 together had lower sensitivity than 

Experiment 2, F(1,324) = 20.83, p < .001, partial-eta-squared = 0.06. There were no other 

simple effects of Experiment Version (all p’s > .12). The interaction of Experiment Version and 

Condition was driven by the higher sensitivity for Familiar in Experiment 2. 
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Custom hypothesis tests in ANCOVA were also used for the interaction of Condition and 

Exposure Duration. I tested for simple effects of Condition at each exposure duration, and for 

significant simple effects, I followed up with additional tests. For 400ms, there was a simple 

effect of Condition, F(2,324) = 13.56, p < .001, partial-eta-squared = 0.08. I compared Familiar 

(M = 1.54, SE = 0.08) and Shuffled (M = 1.44, SE = 0.08), which did not differ in sensitivity (p = 

.36), but when I tested them together against New Shapes (M = 1.00, SE = 0.08), I found that 

Familiar and Shuffled were more sensitive than New Shapes , F(1,324) = 26.16, p < .001, 

partial-eta-squared = 0.07. For 700ms, there was a similar simple effect of Condition, F(2,324) 

= 10.68, p < .001, partial-eta-squared = 0.06. I compared Familiar (M = 1.66, SE = 0.09) and 

Shuffled (M = 1.51, SE = 0.09), which did not differ in sensitivity (p = .23), but when I tested 

them together against New Shapes (M = 1.10, SE = 0.09), Familiar and Shuffled together were 

more sensitive than New Shapes , F(1,324) = 19.79, p < .001, partial-eta-squared = 0.06. Again, 

there was a similar simple effect of Condition for 1300ms, F(2,324) = 14.35, p < .001, partial-

eta-squared = 0.08. I again compared Familiar (M = 1.80, SE = 0.09) and Shuffled (M = 1.69, SE 

= 0.09), which did not differ in sensitivity (p = .78), but when I tested them together against New 

Shapes (M = 1.16, SE = 0.09), I found that together Familiar and Shuffled were more sensitive 

than New Shapes, F(1,324) = 27.80, p < .001, partial-eta-squared = 0.08. In contrast, there was a 

different marginal simple effect of Condition at 1000ms, F(2,324) = 5.42, p = .005, partial-eta-

squared = 0.03. I conducted all pairwise comparisons. Familiar (M = 1.78, SE = 0.09) showed 

higher sensitivity than Shuffled (M = 1.51, SE = 0.09), F(1,324) = 4.66, p = .03, partial-eta-

squared = 0.01. Familiar also showed higher sensitivity than New Shapes (M = 1.37, SE = 0.09), 

F(1,324) = 10.39, p = .001, partial-eta-squared = 0.03. Shuffled and New Shapes did not differ 
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(p = .29). The interaction of Condition and Exposure Duration was driven by the different simple 

effect at 1000ms: there was no transfer to Shuffled, unlike the other exposure durations. 

Discussion 

 All of the experiments and the Baseline group participated in the same psychophysical 

assessment, so it was possible to quantitatively compare learning across Experiments 1, 2, and 3. 

These analyses explored questions about the relationships between findings across experiments, 

such as the relationship of the data of the direct replication session length of 21 minutes in 

Experiment 3 to the data of Experiment 1, or the relationships of all experiments to each other 

and to baseline performance. By statistically testing such questions, we gained answers that 

quantified such relationships and gave additional insights into the relationship of statistical 

learning (SL) and perceptual learning (PL). 

Successful Direct Replication of Experiment 1 

 Experiment 3 at the 21-minute session length successfully replicated Experiment 1. 

Familiar and Shuffled showed higher accuracy and sensitivity and lower false alarm rates than 

New Shapes across both experiments. There was only a main effect of Experiment Version for 

false alarm rate such that Experiment 1 had more false alarms than Experiment 3, likely due to 

the higher accuracy for Absent trials in Experiment 3. For accuracy, Experiment 3 was also 

higher than Experiment 1 for Shuffled when the target was Present. These small differences 

could have been due to either sampling variability, or to the absence of gridlines for the third 

block of familiarization in Experiment 3, or both. There was no effect of Experiment Version for 

sensitivity, an analysis in which any difference in response biases were removed. The main 

pattern of results held across experiments. Experiment 3 at the 21-minute session length 

successfully replicated Experiment 1 in accuracy, false alarm rates, and sensitivity. 
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Effects of Short and Long Session Lengths 

Weaker PL with a Shorter Session Length. PL effects were observed across session 

lengths in Experiment 3. Analyzing the 7-minute session length together with baseline 

performance demonstrated that PL effects for 7 minutes were quantitatively stronger than 

baseline performance. This was seen in main effects of Experiment Version such that 

experimental participants showed higher accuracy and sensitivity and low false alarm rates than 

Baseline group participants. Because overall performance in Experiment 3 was better than at 

Baseline, we quantitatively demonstrated learning with a short session length. 

There were no main effects of Condition like those in Experiment 1 or across session 

lengths in Experiment 3. However, Condition and Exposure Duration interacted for accuracy and 

sensitivity: the pattern of results of transfer from Familiar to Shuffled (but not New Shapes) was 

only observed in the longest exposure duration for the 7-minute session length. Because only at 

1300ms did we observe the same pattern of results as with other session lengths, learning with 

the 7-minute session length was weaker but qualitatively similar to other session lengths.  

Increasing Session Length is Different than PL Training. Experiment 2 showed 

superior performance to Experiment 3 with a 35-minute session length. Experiment 2 had higher 

accuracy and sensitivity across conditions than Experiment 3. However, Experiment 2 was only 

more accurate, more sensitive, and less likely to false alarm for the Familiar condition. 

Experiments 2 and 3 (at the longest session length) did not differ for Shuffled and New Shapes. 

It appears that a statistical learning familiarization is sufficient to cause high performance in 

rejecting learned shape pairs (in Shuffled), but SL familiarization is not sufficient to cause high 

performance on identifying learned pairs present in the search grid (Familiar). 
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Comparing across Experiments 

 All experiments showed transfer from Familiar to Shuffled, improved sensitivity, and 

decreased false alarming relative to baseline performance, so all showed PL effects. Experiment 

2 showed higher accuracy and higher sensitivity than Experiments 1 and 3 (across session 

lengths), and than Baseline performance. Experiments 1 and 3 did not differ from each other but 

together showed higher accuracy and sensitivity than Baseline. Experiment 2 only showed better 

performance than the other experiments in the learned condition (Familiar), so it appears that PL 

training primarily improves performance on trained stimuli. Performance did not differ across 

experiments for Shuffled though combined the experiments showed better performance than 

Baseline. No learning was seen in any experiments for New Shapes. 

 Noticing the pairs and use of the linguistic coding strategy were correlated with 

psychophysical assessment accuracy across experiments. Noticing the pairs and use of the 

linguistic coding strategy each predicted higher accuracy. ANCOVA analyses statistically 

controlling for these effects revealed the same patterns of results as seen in the main multi-

experiment analyses: when noticing and linguistic coding were controlled for, participants still 

showed transfer from Familiar to Shuffled but not New Shapes in increased accuracy and 

sensitivity and decreased false alarming, and Experiment 2 still showed higher accuracy and 

sensitivity than the other experiments for Familiar. 

Summary 

In sum, most data support the hypothesis of co-occurrence of SL and PL, or a unified 

learning process. Analyses confirmed that Experiment 3 successfully replicated Experiment 1, 

both at the replicated session length and across session lengths. Analyses also indicated superior 

performance following perceptual learning (PL) training in Experiment 2, and that this advantage 
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was limited to the Familiar condition, and these effects held when noticing the pairs and 

linguistic coding were factored out.Time spent on learning mattered less than the quality of 

learning.  The lack of an SL effect as tested in Exp. 2, as well as the specificity of learning 

shown in the Familiar relative to Shuffled conditions, detracts somewhat from the hypothesis of 

a unified learning process. Possible interpretations of the totality of the results are considered in 

Chapter 9.  
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CHAPTER 9: GENERAL DISCUSSION 

Perceptual learning (PL) and statistical learning (SL) are conceptually distinct. PL is 

about perceptual pickup of patterns and structure in current stimulation, so it predicts 

improvement in sensitivity and transfer. SL is about tracking co-occurrences of items in the 

world. In encounters with new stimulation, SL might predict that those precise elements in their 

precise relationship will continue appearing, so SL appears as familiarity, and might possibly 

appear as false alarming to elements in their relationships even when they do not actually appear 

as predicted. The relationship between SL and PL in humans is unknown. It is possible that they 

are distinct kinds of learning (hypothesis of different kinds of learning), or that they are part of a 

single, unified learning process (hypothesis of a unified learning process), or that the relationship 

might be more complex.  

If SL and PL are different learning processes, then paradigms inducing SL might show no 

evidence of PL, and vice versa. If PL and SL are a unified learning process, then exposure to 

stimuli with statistically reliable relationships would cause PL effects. If the relationship is more 

complex, it could, perhaps, be asymmetric. Many of our findings support the hypothesis of a 

unified learning process – that PL and SL are, in fact, a unified learning process in humans. All 

three experiments showed significant transfer of learning from familiarized (or trained, in 

Experiment 2) pairs (Familiar) to new pairs made of the same shapes but in new relationships 

(Shuffled), improved sensitivity, and reduced false alarm rates relative to Baseline group 

performance, even though two of them (Experiments 1 and 3) were SL paradigms and only 

Experiment 2 was a PL paradigm. However, assessment performance was only best in Familiar 

for Experiment 2. Also, familiarity (SL) did not show strong or uniform correlations with 

assessment accuracy across experiments, so it appears that the relationship between SL and PL is 
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complex. We will further discuss the relationship of SL and PL by reviewing the findings of the 

experiments, discussing the match between our data and several different possible relationships 

of SL and PL, dealing with objections to our interpretation, comparing our findings to Bayesian 

theories, discussing what participants learned, connecting our interpretation to the SL literature, 

and finishing with limitations, future directions, and conclusions. 

Experiments and Findings 

Statistical learning and perceptual learning have been studied in different paradigms 

using different methodologies, so our approach was to start with replicating a well-known SL 

paradigm and test afterward for PL effects (Experiments 1 and 3). Separately, we used a 

paradigm expected to yield PL effects with the same stimuli, and followed this manipulation by 

the same posttest PL assessment as in the other experiments (Experiment 2). We did so by 

designing a psychophysical assessment of learning that could discriminate between SL and PL, 

by testing for transfer (a PL effect) and improved sensitivity (also a PL effect), and secondarily 

by probing for bias (a possible SL effect). The hypothesis of two kinds of learning predicted 

different patterns of results from the SL familiarization and from the PL training; in contrast, the 

hypothesis of a unified learning process predicted similar results across all experiments. 

Experiment 1. The goals of Experiment 1 were to replicate Fiser and Aslin (2001)’s SL 

paradigm and to develop an assessment of learning that would discriminate between PL effects 

and possible SL effects. We were successful in both replicating the paradigm and in developing 

the assessment. Participants showed familiarity for learned pairs, learning of the shapes in the 

spatial pairings seen during familiarization (Familiar), and even transfer of learning to new pairs 

made of the same shapes shuffled into new relationships (Shuffled). Performance on the Familiar 

and Shuffled conditions did not differ for accuracy, sensitivity, or false alarm rate, but was 
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significantly better (more accurate, more sensitive, less likely to false alarm) than when new 

shapes were paired in the same way (New Shapes) on all of these dependent measures. 

 Different performance for Familiar and Shuffled than New Shapes could have indicated 

that the New Shapes were harder, causing decreased performance. I ruled out this explanation by 

comparing participants’ performance to performance of other participants on the assessment 

without familiarization (Baseline group). This analysis demonstrated that performance in the 

New Shapes condition did not differ from Baseline, but that Familiar and Shuffled showed 

significantly better performance. Given the novelty and importance of the findings and 

conclusions of Experiment 1 – of PL effects following an SL paradigm – it was important to 

directly replicate the experiment (Experiment 3) and to seek converging evidence for the 

conclusions (Experiment 2). 

Experiment 2: Targets and Psychophysical Analyses. In Experiment 2, we sought 

converging evidence for the hypothesis of SL and PL occurring together (the hypothesis of a 

unified learning process) by designing a PL training paradigm based on much prior research PL 

research (including Schneider & Shiffrin, 1977) using the stimuli from Experiment 1 (Fiser & 

Aslin, 2001). We trained participants to search for shape pairs shown in advance of presentations 

of arrays: the target pair was presented, followed by a search grid containing the target (when 

present) and additional shapes for a total of six shapes per grid, followed by feedback. We used 

this paradigm because tasks involving recurrent search for particular stimuli typically leads to PL 

effects of faster and more accurate extraction of these stimuli (e.g., Schneider & Shiffrin, 1977; 

Karni & Sagi, 1993).   Participants’ accuracy for each of their six shape pairs was tracked, and as 

their accuracy reached a threshold for a given search grid on-screen duration, the search grid 

duration was reduced, until participants reached mastery criteria for all six pairs.  
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After training, participants completed the same psychophysical assessment used in 

Experiment 1. Following PL training in Experiment 2, participants’ psychophysical data showed 

PL effects of improved sensitivity for extracting information from briefly presented grids, 

particularly in extracting Familiar pairs, but also showing some transfer to Shuffled. Importantly, 

this overall pattern of results was qualitatively similar to the pattern observed following SL in 

Experiment 1, and much more similar than the hypothesis of different kinds of learning would 

predict. 

Experiment 3. Experiment 3 directly replicated and expanded on Experiment 1 by 

exploring whether increasing and decreasing the familiarization session length could strengthen 

or weaken the observed effects. I used three session lengths: 7 minutes, as in the original study 

(Fiser & Aslin, 2001); 21 minutes, replicating the familiarization session length used in 

Experiment 1; and 35 minutes. Participants showed higher recognition for the 21 and 35 minutes 

session lengths (which did not differ) than for 7 minutes, though they showed higher recognition 

than chance across session lengths and at all session lengths. 

 Across session lengths, I replicated the pattern of results of Experiment 1: transfer from 

Familiar to shuffled and improved sensitivity on the psychophysical assessment. There were no 

main effects of Session Length for the assessment. However, Session Length was involved in 

interactions because learning was weaker, though qualitatively similar, for the 7 minute session 

length than the other session lengths. Increasing the session length did not increase SL as 

measured by recognition accuracy or increase performance on the assessment, but decreasing 

session length did decrease both recognition accuracy and assessment performance. Covarying 

out the effects of recognition, noticing the pair, and use of the linguistic coding strategy 
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weakened the observed effects, but there was still transfer to Shuffled and improved sensitivity, 

so the results still supported the hypothesis of a unified learning process. 

Multi-Experiment Analyses. Quantitatively comparing across experiments confirmed 

the qualitative similarity of results across experiments. Experiment 2 showed higher accuracy 

and sensitivity and fewer false alarms than the other experiments only for the Familiar condition. 

Experiments 1, 2, and 3 (across session lengths) showed equally strong transfer for Shuffled 

condition, with and without controlling for noticing the pairs and for use of the linguistic coding 

strategy. The experiments showed significantly better performance than the Baseline group for 

Familiar and Shuffled, but not for New Shapes. Comparing Experiment 1 and Experiment 3 at 

the 21-minute session length showed that the direct replication was successful. Learning for the 

shortest 7-minute session length in Experiment 3 was weaker than for longer session lengths, but 

it was still above Baseline, particularly for the longest exposure duration. Extending the session 

length to 35 minutes in Experiment 3 did not increase performance for Familiar to a level similar 

to that seen in Experiment 2, though performance for Shuffled and New Shapes did not differ for 

Experiments 2 and 3.  

The method of learning (active training versus passive familiarization) appeared to matter 

more than just the time spent learning, as there was no correlation of time spent learning and 

assessment accuracy across experiments. Increasing session length from 7 minutes to 21 

improved recognition and assessment performance in Experiment 3, but increasing again to 35 

minutes did not yield any additional gains. In contrast, Participants in Experiment 2 who needed 

fewer learning trials (and thus, somewhat less time) were performed better on the assessment 

than those who needed more PL learning trials, so learning was inversely related to the amount 

of time spent on learning. 
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Experiment 2 participants spent an average of 24.65 minutes (SE = 0.42) on their 

learning. Participants in Experiments 1 and 3 showed less accuracy and sensitivity and more 

false alarms than participants in Experiment 2. All participants in Experiment 1 and participants 

in Experiment 3 in the 21- and 35-minute session lengths spent a similar or longer amount of 

time learning than the Experiment 2 average. Active learning (PL training) in Experiment 2 

appeared to be more effective than passive familiarization in Experiments 1 and 3. 

Experiment 2: SL and One-Trial Recognition. Experiment 2 investigated the 

relationship of PL and SL in a second way (the first being through the psychophysical 

assessment, as discussed above). In Experiment 2, on half of the PL training trials, two of the 

non-target search grid shapes composed a consistent pair, the SL pair. Participants did not 

recognize the SL pair above chance – they did not show learning of the SL pair – even though 

they saw the SL pair more frequently than the target pairs (including when the target pairs were 

shown before the search grids). Participants in Experiment 2 on average saw this pair 113.52 

times, which was more times than participants in Experiment 3 with the 7-minute session length 

saw each pair on average (in half of the 144 grids, or 72 times), so it was not the case that they 

did not have enough exposures (on average) to learn the SL pair. 

Merely having a statistically reliable relationship in the stimuli was not sufficient to cause 

learning that could be measured on the recognition test. Participants with more trials with the SL 

pair did require more trials, but not more time to complete training. It is possible that such 

participants experienced response time facilitation from the presence of the SL pair. This would 

perhaps count as a global SL effect, but not as SL as defined in this dissertation. Experiment 2 

participants showed strong learning of all the trained pairs, and participants in Experiments 1 and 

3 and in prior research (e.g. Fiser & Aslin, 2001) have shown learning of statistically reliable but 
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untrained
28

 shape pairs, so the fact that participants showed no learning via recognition of the SL 

pair does not support the hypothesis of two kinds of learning. 

What the Relationship Between SL and PL Could Be 

To better understand our data and how they relate to the hypotheses of different kinds of 

learning and of a unified learning process, we have identified five possible relationships between 

SL and PL. We have structured each possibility by first introducing the hypothesis, then what 

pattern of data would support that possibility, then discussed how our data fit with that 

possibility. We have identified the results that most clearly could indicate whether or not our data 

support each possibility: the correlation between recognition accuracy (SL) and psychophysical 

assessment accuracy (PL), how increasing or decreasing SL via the experimental design 

(Experiment 3) impacts the psychophysical assessment performance (PL), and how increasing 

PL via the experimental design (Experiment 2) impacts recognition performance (SL). 

First, the hypothesis of different kinds of learning does not inherently imply that there 

need be any relationship between SL and PL, in terms of conditions of occurrence. If there were 

no relationship, then recognition accuracy and assessment accuracy would likely have been 

uncorrelated. Increasing or decreasing SL through the experiment design would have had no 

impact on PL (and there would be no PL), and increasing PL through the design would not have 

influence SL (and there would be no SL). Our data did show correlations and evidence of both 

SL and PL in Experiments 1 and 3. Only the data of Experiment 2 were consistent with this 

possibility, so our data across experiments did not support this possibility specifically, or the 

hypothesis of different kinds of learning generally. 

                                                 

 

28
 Pairs were untrained in that no task other than to “pay attention” was given. 
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Second, the strongest interpretation of the hypothesis of a unified learning process would 

be that SL and PL are the exact same learning process. Under this possibility, recognition 

accuracy and assessment accuracy would have been perfectly positively correlated. Increasing or 

decreasing SL would have always increased or decreased PL, and increasing PL would have 

increased SL. We did not find a correlation in every experiment, and increasing PL in 

Experiment 2 did not increase SL, though decreasing SL did decrease PL in Experiment 3. Our 

data fit this possibility better than the first, but the data also did not support the strongest 

interpretation of the hypothesis of a unified learning process. 

A third possibility, related to the second (though perhaps less plausible) is that SL and PL 

could be related in that they are negatively correlated. This could either be an unusual version of 

the hypothesis of a unified learning process, or a special case of the hypothesis of different kinds 

of learning that recognizes that different learning processes could overlap in conditions that 

facilitate them. Recognition accuracy and assessment accuracy would have been negatively 

correlated. Increasing or decreasing SL would have decreased or increased PL. Increasing PL 

would have decreased SL. The correlations we did find were positive and results of Experiment 3 

contradict that changing SL should change PL in the opposite direction. However, the results of 

Experiment 2 were consistent with the idea that increasing PL would decrease SL. Overall, our 

results did not support this possibility either. 

The fourth possibility we considered was whether SL and PL might be weakly related. 

This could be a weaker version of the hypothesis of a unified learning process, or this could be a 

version of the hypothesis of different kinds of learning that recognizes that different learning 

processes could overlap in conditions that facilitate them. Under this possibility, recognition 

accuracy and assessment accuracy would weakly correlate or sometimes correlate and sometimes 
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not. Increasing or decreasing SL might or might not influence PL, and increasing PL might or 

might not influence SL. Given the weakness of relationship and ambiguity of the pattern of 

results of this possibility, more potential results would have fit with it. That we found a 

correlation in some experiments but not all fits with this possibility. However, our data do show 

clear, strong, and reliable relationships between SL and PL - when one is changed, it influences 

the other. This was the best fit so far for our data, but still did not fully explain our results across 

experiments. 

Finally, we considered whether the relationship between SL and PL might be more 

complex, in which SL and PL do not influence each other symmetrically. Specifically, we 

considered whether SL and PL might be a unified learning process, but one in which PL is 

stronger than or even dominant over SL. Or, whether SL and PL might be different learning 

processes of different strengths that overlap in their facilitating conditions. Under this final 

possibility, SL and PL would likely have been correlated in conditions that favor SL, but not 

conditions favoring PL. When SL was increased or decreased, PL would have increased or 

decreased, but increasing PL would have decreased or even have prevented SL. Across all three 

experiments, our data were consistent with this possibility: in Experiments 1 and 2 we found no 

correlation between recognition accuracy and assessment accuracy, but we did find a correlation 

in Experiment 3. When we decreased SL in Experiment 3, PL was also decreased
29

. When we 

increased PL in Experiment 2, we found no evidence of SL. Our data are consistent with this 

final possibility: the Fiser and Aslin (2001) visual SL paradigm lead to both SL and PL, but PL 

training with the stimuli did not induce SL. There is a clear asymmetry in this visual task. 

                                                 

 

29
 (We were unsuccessful in our attempt to increase SL in Experiment 3, so we were not able to 

tell if increasing SL increased PL, but similar levels of SL produced similar levels of PL.) 
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The fact that we found PL following SL but not the reverse suggests that while PL and 

SL might be a unified learning process in humans, the relationship between SL and PL is more 

nuanced than previously understood, or that even we would have predicted. It is possible that PL 

is a stronger or even more dominant learning process because it is more general than SL. SL 

operates on the statistically reliable relationships between elements, but PL operates on any 

pattern or structure that can distinguish different categories or identify new instances of the same 

category. Additionally, suppressing irrelevant information is a PL effect, so the SL pair in 

Experiment 2 might have been suppressed, which would explain why we did not show learning 

of it. Future research should further address the apparent nuance of the relationship between SL 

and PL, in other visual paradigms and in other modalities. 

But Wasn’t it All SL (Except Exp. 2)? And Other Objections and Alternative Explanations 

Some readers might object to our definition of SL and/or to our interpretation of the 

psychophysical assessment as capturing PL because it captured encoding changes. To those who 

object to our definition: this systematic empirical investigation of the relationship between SL 

and PL was only possible because we clearly distinguished possible (and plausible, given the 

literature) concepts SL and PL. If I had defined SL in such a way as to include encoding changes, 

transfer, and/or influences on perception, SL and PL would no longer be distinguishable and 

empirical comparison would be impossible. Registration of statistical co-occurrences and 

improvements in the pickup of information are two conceptually separate ideas (and both are 

valuable in human learning), so it makes sense to inquire about their relationship. The variability 

in the literature of applications of the label “statistical learning” does not detract from this basic 

question. If preferred, one could refer to registration of statistical regularities as Process A and 
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improvements in information encoding as Process B, to avoid entanglement with the 

inconsistencies in the use of these terms in other work.  

Still, the potential objection that the assessment showed SL deserves more in-depth 

discussion. Remember that the psychophysical assessment required participants to identify 

whether whole pairs had been present or absent in the previously presented array. One could 

hypothesize a memory-based mechanism that would allow for high performance on this task in 

both the Familiar and Shuffled conditions: participants saw the array and decided whether or not 

its contents were familiar to them, then saw the target pair and made the same decision. If their 

decisions matched (Familiar: if the array seemed familiar and the target was familiar, then this 

was a match; Shuffled: if the array was unfamiliar and the target was unfamiliar, then this was 

also a match), they responded that the target was present, and if their decisions did not match, 

then they responded absent. 

This is a familiarity-based explanation for improved encoding: participants in SL 

paradigms (Experiments 1 and 3) in the Familiar and Shuffled conditions showed higher 

accuracy and sensitivity and a lower false alarm rate than the Baseline group across exposure 

durations (except only with the longest exposure duration following a 7 minute session length in 

Experiment 3). Participants showed better ability to detect the stimulus - better use of the signal - 

after recording co-occurrences in memory than the ability shown by the Baseline group that had 

no learning. Encoding changes should not occur under my definition of SL but only under PL, 

but perhaps the reader has adopted a broader definition. 

Regardless, if this hypothesis explained our data, then recognition accuracy should have 

strongly and positively correlated with psychophysical assessment performance, but such 

correlations were weak (Experiment 3) if even present (no correlation in Experiment 1). 
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Additionally, this hypothesis might expect better performance in Familiar than Shuffled because 

Familiar trials had more familiar pairings, but this was not the case in Experiment 3 for the 35 

minute session length - Shuffled was numerically best across exposure durations and showed 

significantly higher accuracy and sensitivity than the other conditions at 1000ms. Also, all 

displays in the New Shapes condition fit the description of unfamiliar for both the target arrays 

and the probe pair. If this strategy were heavily used by participants in our psychophysical task, 

then one might have expected the bias of responding “match” to dominate the novel shape 

results. Bias, as evaluated using SDT methods, tended to be negative for all conditions (“absent” 

responses predominated), and it was generally negative for New Shapes for all familiarization 

time conditions in Exp. 3. Likewise, if an explanation of feeling of familiarity were guiding our 

results, false alarms for the New Shapes should have far exceeded false alarms in the other two 

conditions, which did not occur; notably such an effect might have been expected to be strongest 

for the 35 min condition in Exp. 3, which shows no hint of such an effect.) For definitional and 

data-based reasons, we reject this alternative interpretation of our data. 

Another possible objection to our interpretation of our data is that performance in the 

Shuffled condition did not constitute transfer because the targets on target-absent trials were 

familiar. I acknowledge the justice of this objection. However, the learning phase in all three 

experiments did not require an explicit judgement of ruling out anything, so even if the reader 

disagrees that there was transfer to new stimuli arrangements, he or she must agree that there 

was at least transfer to new tasks in the psychophysical assessment - and not only in the Shuffled 

condition. Transfer to new tasks is another argument against SL (under my definition) and for 

PL. Objecting to transfer does not negate the improvement in sensitivity, which is more 

definitive evidence for PL following SL familiarization. 
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SL, PL, and Bayesian Decision Making 

In signal detection terms, PL is improvement in sensitivity, and we hypothesized that SL 

might be a change in bias. Researchers from Helmholtz (1864) through today’s Bayesian vision 

scientists believe that one’s past influences what one sees today, and these are priors in the 

Bayesian thinking. Optimal decision making uses both priors and the current signal. We 

hypothesized that the SL familiarization might cause learning of new priors which would have 

been expressed as a bias for patterns seen before in the psychophysical assessment, via false 

alarming to familiarized pairs that appeared as targets on target-absent trials in Shuffled. Instead 

of an increased false alarm rate in Shuffled, we found decreased false alarming in both Familiar 

and Shuffled relative to New Shapes and relative to the Baseline group. Participants did not show 

illusory recognition in false alarming based on their prior experience; instead, their learning 

showed as improved encoding. This is a clear advance, in that SL did not impede encoding of the 

signal, but instead participants showed improved use of the signal (PL) following exposure to co-

occurrences of shapes. 

What was Learned: Shapes, Pairs, or Both? 

 Statistical learning predicted learning of the shapes and their co-occurrence relationships. 

Perceptual learning predicted learning of reliable structure: shapes and/or pairs. Learning pairs 

would have been most efficient for encoding arrays and responding to target pairs in the 

psychophysical assessment, but quickly encoding shapes would have been sufficient because 

there were separate sets of targets for target-present trials and target-absent trials, and different 

shapes were paired in each set. Survey results suggest that at least some participants learned 

shapes and some learned pairs, and some learned both. Participants who reported naming the 

shapes - a linguistic coding strategy - showed higher assessment accuracy across experiments 
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than those who did not report using this strategy. Naming may have allowed participants to more 

quickly encode and/or better learn the shapes. Participants who reported noticing the pairs or 

some consequence of noticing the pairs also showed higher assessment accuracy across 

experiments than those who did not report noticing anything about the pair structure. Because 

both learning process could explain learning of shapes and learning of pairs, noticing the pairs 

and use of the linguistic coding can speak to what individual participants learned, but not what 

process by which they learned. 

Explaining Findings in the SL Literature 

The human vision research community disagrees about the relationship between SL and 

PL, with some believing that SL and PL are separate learning processes and others while others 

believe SL and PL are a unified learning process. Part of the confusion and disagreement may 

stem from the way that recent research has challenged assumptions of SL. If the relationship 

between SL and PL is complex and PL occurs incidentally with SL as indicated by our data, then 

the possibility of PL having also occurred in other researchers’ SL experiments would help 

explain recent research demonstrating that SL assumptions under my definition (and other 

definitions like mine) do not hold.  

For example, PL is known to be task-dependent in that perception is optimized for the 

task, and such changes are characterized by discovery and fluency effects. PL discovery effects 

include the suppression of irrelevant information (Kellman, 2002; Kellman & Garrigan, 2009). 

This explains why Turk-Browne and colleagues (2005) found no learning of stimuli in the 

unattended color: the unattended color was not task-relevant. 

The influence of Gestalt grouping principles in SL can be explained by the hypothesis of 

one kind of learning. Several Gestalt principles, including connectedness (Baker, Olson, & 
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Behrmann, 2004), similarity (Glicksohn & Cohen, 2011), and common fate (Fiser, Scholl, & 

Aslin, 2007), have been shown to influence what can be learned in SL paradigms. SL assumes 

that only the statistics of elements drive learning. In contrast, PL assumes that the learning is 

perceptual, so any kind of perceptual information could be involved in learning. 

Concluding that the hypothesis of a unified learning process is correct also explains SL 

chunking research. Chunking has been observed behaviorally in SL studies with stimuli similar 

to those used in this dissertation (e.g. Fiser & Aslin, 2005; Lu & Lee, 2013). Chunking models 

have also been found to fit SL paradigm data better than transition probability (TP) models (e.g. 

Orbán et al., 2008; Slone & Johnson, 2018). In chunking of stimuli, relationships between 

elements within a chunk are ignored because the elements are treated as a single unit. At least 

some effects of chunking comprise PL, in that speed of perceptual encoding can be dramatically 

improved (e.g., Goldstone, 2000; Kellman & Garrigan, 2008). 

The hypothesis of a unified learning process also accounts for transfer. In this 

dissertation, participants in an SL paradigm (Fiser & Aslin, 2001) transferred learning from 

learned pairs (Familiar) to the same elements shuffled into new pairs (Shuffled). In prior research 

(e.g. Otsuka et al., 2013; Turk-Browne & Scholl, 2009), participants have shown transfer from 

forward sequences of elements to backwards and vice versa and from sequences to 

simultaneously presented elements and vice versa, as well as transfer from line drawings to 

words. Transfer is a hallmark of PL.   

Explicit and/or Implicit. Finally, the hypothesis of a unified learning process addresses 

findings that SL can be explicit as well as implicit. Recent research has investigated the 

assumption that SL is implicit. Kim and colleagues (2009) compared a matching test to a 

reaction time behavioral measure and concluded that SL is implicit because the behavioral 
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measure better captured learning. Bertels and colleagues (2012) concluded that SL is at least 

partially explicit for at least some participants by carefully analyzing a completion task and 

confidence rating in combination with a response time-based behavioral task. No strong claim 

has been made that PL is always implicit or explicit. At least some PL clearly occurs without 

conscious awareness (Mettler & Kellman, 2006; Watanabe, Nañez, & Sasaki, 2001), and it is 

commonplace for those with PL expertise to be unable to describe exactly what information they 

are using (Gibson, 1969; Kellman & Garrgan, 2008). Models of basic visual PL that emphasize 

selective reweighting of analyzers in early visual cortex surely involve processes that occur 

outside of awareness (Petrov, Dosher & Lu, 2005). On the other hand, some PL, especially in 

relatively simple stimulus situations, may be explicit in that observers can report the information 

that facilitates categorization or determines some classification. 

In this dissertation, many participants directly reported noticing the pair structure, and 

many also reported on consequences of the pair structure. These participants’ knowledge of the 

pairs was (at least partially) explicit. In Experiment 3 which used an SL paradigm (Fiser & Aslin, 

2001), noticing the pairs correlated with higher recognition accuracy and with higher assessment 

accuracy. Noticing was also positively correlated with assessment accuracy across experiments. 

Explicit knowledge was associated with higher performance on both the recognition test (testing 

for SL), and the psychophysical assessment test (testing primarily for PL) on which participants 

demonstrated PL.  

Both sets of authors (Bertels et al., 2012; Kim et al., 2009) agree that recognition tests are 

ambiguous as to whether they capture implicit or explicit data, and that other kinds of 

assessments could more clearly capture explicit (e.g. matching test, completion test, confidence 

ratings) or implicit (i.e. various behavioral tasks) aspects of SL. In this dissertation, the 
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behavioral psychophysical assessment captured learning more frequently and with more nuance 

than the recognition test. The survey also captured aspects of learning missed by the recognition 

test, so future research should favor behavioral and survey measures over recognition to capture 

more complete and richer data – both implicit and explicit. 

Global SL Might Be Different Than PL. In prior research, SL has been observed as 

response time facilitation, when SL in the context of the study was learning of a global statistic 

(e.g. Cosman & Vecera, 2014). Defining SL as any learnable statistic, including global statistics, 

broadens the definition of SL from being primarily about element correlations, and broadens it 

beyond this dissertation’s definition of SL. The SL pair in Experiment 2 of the dissertation did 

not show learning on the recognition test – the typical test of SL. 

Limitations and Future Directions 

Psychophysical Assessment. The psychophysical assessment was designed to 

discriminate SL and PL through testing for PL effects, particularly transfer and improved 

sensitivity. Participants’ performance in the Shuffled condition across dependent measures has 

been interpreted as transfer. However, success in the Shuffled assessment required not only 

correctly identifying shuffled pairs that were present in the grid on all target-present trials, but 

also rejecting familiar pairs (which were always absent) on all target-absent trials, so learning 

of  familiar pairs could also have explained performance on Shuffled (as explained in more detail 

above). Future research could test for transfer following SL familiarization in ways that do not 

confound transfer to another task with possible transfer to other stimuli or with performance on 

learned stimuli. 

SL Pair in Experiment 2. There are several possible explanations for the difference 

between Experiment 2 findings of no learning of the SL pair and the findings of Experiments 1 
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and 3 and prior research (e.g. Fiser & Aslin, 2001; Kim et al., 2009) of learning of statistically 

reliable relationships. One possible explanation is that attention to the target pairs blocked 

learning of the SL pair. This explanation derives from the hypothesis of a unified learning 

process: because the targets were the focus of attention and learning (and the SL pair was not), 

task-relevant stimuli only were learned. 

Another possible explanation is that experimental design and analyses did not allow for 

detecting learning that might have been present: response time facilitation. Because we did not 

intend to compare participants on percentage of SL trials completed and only had relevant data 

because of a programming error, the high-percentage group was underpowered. Additionally, 

accuracy on PL learning trials was at ceiling, so this could also have prevented differences from 

being measured. Future researchers could manipulate the percentage at which global statistics 

occur to gain clarity on whether response time facilitation due to global SL can be measured in 

our or another experimental design. 

Another limitation is that we focused on SL (as we and prior research have defined) as 

recording co-occurences of elements. We did not address global SL because it was not part of SL 

as we defined it, so our data cannot speak to whether or not global SL is part of a unified 

learning process with SL (under our definition) and PL. Future research should address how 

learning of a global statistic relates to SL and to PL, especially in the context of the hypothesis of 

a unified learning process.  

Other. We studied the relationship of visual SL and PL in a particular visual SL 

paradigm testing for transfer in a particular way with university undergraduates, so it would be 

useful to replicate our findings with other tests, paradigms, populations, and modalities. Recent 

SL research have shown chunking (e.g. Orbán et al., 2008) and transfer (e.g. Turk-Browne & 
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Scholl, 2009) in visual SL, so these paradigms could be adapted to investigate SL and PL 

together by testing chunks and transfer psychophysically. SL and PL have both been studied with 

children and infants as well as adults, and children’s memories (relevant to SL) work differently 

before they can speak, so it would be interesting to see if SL and PL are a unified learning 

process for very young learners as well. Because PL is known to depend on task (and thus 

depends on modality) whereas SL is assumed to be modality-independent and both have been 

studied in various modalities as well as in multi-modal studies, it would be informative to 

investigate whether SL and PL are a unified learning process in other modalities as well as cross-

modally. 

Finally, we found evidence that PL and SL are a unified learning process in (adult) 

human vision, in such as way that SL causes PL but not the reverse. As mentioned previously, 

future research should further address this nuance. Additionally, other authors have suggested 

that SL might be related to implicit learning (e.g. Perruchet & Pacton, 2006) and associative 

learning (Fiser, 2009), and that implicit learning and associative learning might be linked to PL 

(e.g. implicit: Fahle & Poggio, 2002; Jiang & chun, 2001; Reber, 1967; associative: Hall, 1991; 

Law & Gold, 2009; McLaren & Mackintosh, 2000). It would be useful for future researchers to 

also empirically study the interrelationships (or lack thereof) of all of these kinds of learning, and 

perhaps others, to better understand which learning processes are unified with or distinct from 

SL and PL, and to what extent. 

Conclusion and Broader Impacts 

Statistical learning and perceptual learning both seek to explain learning from experience, 

and how regularities in the world allow humans to do so. Across three experiments, participants 

showed transfer and improved sensitivity, hallmarks of PL. Experiments 1 and 3 showed 
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familiarity, but Experiment 2 showed no SL. Familiarity correlated with psychophysical 

performance in Experiment 3 but not Experiment 1. So, several results are consistent with SL 

and PL being part of a unified learning process, or at least occurring under overlapping 

conditions, but there may be an asymmetry: PL may occur more under conditions designed for 

SL, but SL may be less likely to occur during focused PL tasks. This hypothesis of a complex, 

asymmetric relationship can explain recent findings in visual SL and help unify two largely 

distinct literatures and research communities. This will allow researchers and those interested in 

structuring learning for themselves or others to better understand both SL and PL, and to glean 

insights from both literatures, including that 1) active (PL) training produces stronger learning in 

a similar amount of time as passive learning, 2) learning is flexible, so that our perception can 

improve for any and all regularities in domains as diverse as music, aviation, mathematics, 

baking, and medicine, and 3) learning is for transfer, to prepare to successfully encounter both 

new instances of learned categories and instances of new, related categories in the same or 

similar domains.  
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Appendix A: Survey Questions 

 “What did you notice during the experiment?” 

“Did you have any strategies? If you had any strategies, please describe them.” 

“Did you notice any patterns? If you noticed patterns, please describe them.” 

“Was anything unclear or confusing? If anything was unclear or confusing, please describe it.” 

“Do you have any other feedback about the experiment? If you do, please write it here.” 
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Appendix B: Experiment 2 Results (Including Those with 75% SL Pair Trials) 

Results 

Perceptual Learning Condition 

 Participants needed 24.69 minutes (SE = 0.38) on average to complete an average of 

246.13 trials (SE = 7.26)
30

. Mastery level was, on average, 24.05 levels (SE = 0.12). Training 

time and number of trials were marginally positively correlated, r(77) = .21, p = .06. 40 

participants advanced from one trial to the next by clicking the mouse; 38 by pressing the 

spacebar. Participants who clicked had more trials (M = 264.30, SE = 13.26) than those who used 

the spacebar (M = 227.00, SE = 20.53), t(76) = 2.67, p = .009. Click advancement also required 

more time (M = 25.82 minutes, SE = 3.35) than spacebar advancement (M = 23.49, SE = 2.99), 

t(76) = 3.23, p = .002. 

PL Familiarity Test 

Participants’ accuracy did not differ from chance (M = 0.43, SE = 0.06) on recognition of 

the statistical learning pair (see Figure 47) in the familiarity test, t(76) = -1.23, p=.21. 44 (of 77) 

participants did not indicate that the statistical learning pair seemed more familiar to them than 

the foil pair in the single 2AFC trial. 

 

                                                 

 

30
 Independent-samples t-tests showed that the 8 participants with a higher percentage of SL pair 

trials did not differ from the other participants in recognition accuracy (p = .28), average 

assessment accuracy (p = .23), or time to complete training (p = .79). However, these 8 

participants (M = 413.25, SE = 22.70) required significantly more trials to complete assessments 

than those with 50% SL pair trials (M = 227.03, SE = 2.84), t(76) = 8.14, p < .001. 
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Figure 47. Average accuracy on the one-trail recognition test (left) and histogram of accuracy 

(right). Average recognition did not differ from chance (.5). Error bar (left) shows standard error 

of the mean. 

 

An ANOVA of Condition on recognition accuracy showed that conditions did not differ 

in recognition (p = .47). Participants in all conditions recognized the statistical learning pair 

equally poorly. This is unsurprising because all participants received the same recognition test 

(relative to their familiarization shape set), but it does indicate that there were not significant 

differences across participants in different conditions by chance. 

However, participants who did recognize the statistical learning pair might have 

performed differently from those who did not on the assessment. Perhaps those who recognized 

the SL pair learned targets less well from looking at distractors, or, conversely, perhaps they 

noticed the SL pair and were able to eliminate it more quickly from their searches and more 

efficiently find targets than other participants. To investigate this possibility, I conducted a 

Pearson’s correlation of average psychophysical assessment accuracy and familiarity test 
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accuracy. I found no significant correlation of familiarity and assessment accuracy, r(76) = 0.06, 

p = .58.  

An ANOVA of Condition on recognition accuracy showed that conditions did not differ 

in recognition (p = .47). Participants in all condition recognized the statistical learning pair 

equally poorly. This is unsurprising because all participants received the same recognition test 

(relative to their familiarization shape set), but it does indicate that there were not significant 

differences across participants in different conditions by chance. 

However, participants who did recognize the statistical learning pair might have 

performed differently from those who did not on the assessment. Perhaps those who recognized 

the SL pair learned targets less well from looking at distractors, or, conversely, perhaps they 

noticed the SL pair and were able to eliminate it more quickly from their searches and more 

efficiently find targets than other participants. To investigate this possibility, I conducted a 

Pearson’s correlation of average psychophysical assessment accuracy and familiarity test 

accuracy. I found no significant correlation of familiarity and assessment accuracy, r(76) = 0.06, 

p = .58. 

PL Training and Familiarity. I conducted analyses to investigate whether the PL 

training influenced performance on the familiarity test. Familiarity test accuracy did not correlate 

with the number of PL training trials completed, r(76) = -0.22, p = .06. Participants that 

completed more trials did worse on the familiarity test. PL training time did not correlate with 

familiarity test accuracy (p = .23). Those who advanced from one trial to the next by clicking the 

mouse (n=39, M = 0.33, SE = 0.08) were marginally less accurate than those that advanced via 

pressing the spacebar (n=38, M = 0.53, SE = 0.08) on familiarity, t(75) = -1.72, p = .09. 
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Psychophysical Assessment: Main Analyses 

 

 

Figure 48. Condition by Exposure Duration by Target Presence on accuracy. Error bars indicate 

standard error of the mean. 

 

Accuracy. Figure 48 showed the effects of Condition, Exposure Duration, and Target 

Presence on accuracy. It appeared that Familiar showed the highest accuracy across exposure 

durations and levels of Target Presence, and that Shuffled showed the next highest accuracy, also 

across exposure durations and levels of Target Presence. To test the apparent effects, I conducted 

an ANOVA of Condition by Exposure Duration by Target Presence on accuracy, which revealed 

a main effect of Condition, F(2, 75) = 18.92, p < .001, partial-eta-squared = 0.33, a main effect 

of Exposure Duration, F(3, 225) = 7.15, p < .001, partial-eta-squared = 0.09, a marginal 

interaction of Exposure Duration and TargetPresence, F(3,225) = 2.21, p = .09, partial-eta-

squared = 0.03, and no other effects (all p’s > .28). 
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Custom hypothesis tests were used to investigate the significant main effects. For 

Condition, I conducted all pairwise comparisons. The Familiar condition (n = 25
31

, M = 0.88, SE 

= 0.02) was significantly more accurate than the Shuffled condition (n = 26, M = 0.77, SE = 

0.02), F(1,75) = 16.09, p < .001, partial-eta-squared = 0.18. Similarly, Familiar was 

significantly more accurate than New Shapes (n = 27, M = 0.72, SE = 0.02), F(1,75) = 36.75, p < 

.001, partial-eta-squared = 0.33. Shuffled was significantly more accurate than New Shapes, 

F(1,75) = 4.14, p = .05, partial-eta-squared = 0.05. Familiar showed the highest accuracy, but 

learning also transferred to Shuffled. 

 For Exposure Duration, I compared 1000ms (M = 0.81, SE = 0.01) and 1300ms (M = 

0.81, SE = 0.01), which did not differ (p = .70). I compared 400ms (M = 0.76, SE = 0.01) to the 

longer exposure durations, and 400ms was significantly less accurate than 1000ms and 1300ms 

combined, F(1,75) = 26.95, p < .001, partial-eta-squared = 0.26. I compared 700ms (M = 0.78, 

SE = 0.02) to 1000ms and 1300ms, and 700ms was marginally less significant than the longest 

exposure durations combined, F(1,75) = 4.71, p = .03, partial-eta-squared = 0.06. I compared 

the short exposure durations, and 400ms did not differ from 700ms (p = .07), F(1,75) = 3.32, p = 

.07, partial-eta-squared = 0.04. 

 For the interaction of Exposure Duration and TargetPresence, I broke the data on 

TargetPresence and tested the simple effect of Exposure Duration for each level of 

TargetPresence, and followed up significant simple effects with additional tests. When the target 

was Present, there was a significant simple effect of Exposure Duration, F(2,75) = 17.18, p < 

.001, partial-eta-squared = 0.31. I compared 400ms (M = 0.75, SE = 0.02) to 700ms (M = 0.76, 

                                                 

 

31
 The 14 original and 11 added participants did not differ on average recognition accuracy (p = 

.18), assessment accuracy (p = .39), number of training trials (p = .95) or training time (p = .59). 
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SE = 0.02), which did not differ (p = .69). Similarly, I compared 1000ms (M = 0.81, SE = 0.02) 

to 1300ms (M = 0.82, SE = 0.02), which also did not differ (p = .44). However, when I compared 

the short exposure durations to the long exposure durations, 400ms and 700ms were significantly 

less accurate than 1000ms and 1300ms, F(1,75) = 18.92, p < .001, partial-eta-squared = 0.20. 

For Absent, there was also a significant simple effect of Condition, F(2,75) = 6.02, p = .004, 

partial-eta-squared = 0.14. I compared 400ms (M = 0.77, SE = 0.02) to 1300ms (M = 0.80, SE = 

0.02), which did not differ (p = .12). Then I compared 700ms (M = 0.81, SE = 0.02) to 1000ms 

(M = 0.82, SE = 0.02), which did not differ (p = .59). However, when I compared the shortest 

and longest exposure durations to the middle ones, 400ms and 1300ms was marginally less 

accurate than 700ms and 1000ms, F(1,75) = 5.32, p = .02, partial-eta-squared = 0.07. The 

interaction of Exposure Duration and Target Absence was driven by different simple effects of 

Exposure Duration for Absent than Present. 

False Alarm Rate. Figure 49 showed effects of Condition and Exposure Duration on 

false alarm rate. It appeared that Familiar had the lowest false alarm rate across exposure 

durations, and that Shuffled had a lower false alarm rate than New Shapes. To test these apparent 

effects, I conducted an ANOVA of Condition by Exposure Duration on false alarm rate, which 

revealed a main effect of Condition, F(2,75) = 6.02, p = .004, partial-eta-squared = 0.14, and a 

marginal main effect of Exposure Duration, F(3,225) = 2.61, p = .05, partial-eta-squared = 0.03, 

and no interaction (p = .93). 

Custom hypothesis tests in ANOVA of all pairwise comparisons following up on the 

main effect of Condition revealed that Familiar (M = 0.13, SE = 0.03) had a significantly lower 

false alarm rate than New Shapes (M = 0.27, SE = 0.03), F(1,75) = 12.00, p = .001, partial-eta-

squared = 0.14. Shuffled (M = 0.21, SE = 0.03) had a marginally higher false alarm rate than 
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Familiar, F(1,75) = 3.78, p = .06, partial-eta-squared = 0.05. Shuffled did not differ from New 

Shapes (p = .13). Learning was only demonstrated for Familiar. 

 

 

Figure 49. Effects of Condition and Exposure Duration on false alarm rate. Error bars indicate 

standard error of the mean. 

 

 For the marginal effect of Exposure Duration, custom hypothesis tests of pairwise 

comparisons revealed that 400ms (M = 0.24, SE = 0.02) had a marginally higher false alarm rate 

than 1000ms (M = 0.18, SE = 0.02), F(1,75) = 7.72, p = .007, partial-eta-squared = 0.09. No 

other comparisons were significant (all p’s > .03). 

Sensitivity. Figure 50 showed effects of Condition and Exposure Duration on sensitivity. 

It appeared that Familiar was most sensitive across exposure durations, and Shuffled was more 

sensitive than New Shapes. To test these apparent effects, I conducted an ANOVA of Condition 

by Duration on sensitivity (d’). This revealed a main effect of Condition F(2,75) = 19.10, p < 
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.001, partial-eta-squared = 0.34, and a main effect of Exposure Duration F(3,225) = 7.76, p < 

.001, partial-eta-squared = 0.09, and no interaction (p = .26). 

  

 

Figure 50. Effects of Condition and Exposure Duration on sensitivity. Error bars indicate 

standard error of the mean. 

 

I followed up on significant effects via custom hypothesis tests in ANOVA. For the main 

effect of Condition, I conducted all pairwise comparisons. I found that Familiar (M = 2.32, SE = 

0.13) had significantly higher sensitivity than Shuffled (M = 1.54, SE = 0.13), F(1,75) = 36.72, p 

< .001, partial-eta-squared = 0.19. Familiar also had significantly higher sensitivity than New 

Shapes (M = 1.20, SE = 0.13), F(1,75) = 36.72, p < .001, partial-eta-squared = 0.33. Shuffled 

showed marginally higher sensitivity than New Shapes, F(1,75) = 3.54, p = .06, partial-eta-

squared = 0.05. Learning was strongest in the trained condition, but did transfer to Shuffled as 

well. 
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 I conducted all pairwise comparisons using custom hypothesis tests in ANOVA to follow 

up on the main effect of Exposure Duration. 400ms (M = 1.45, SE = 0.09) was less sensitive than 

1000ms (M =1.85, SE = 0.09), F(1,75) = 25.78, p < .001, partial-eta-squared = 0.26. 400ms was 

also less sensitive than 1300ms (M =1.80, SE = 0.10), F(1,75) = 18.18, p < .001, partial-eta-

squared = 0.20. No other comparisons were significant (all p’s > .03). 
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Appendix C: Experiment 3 Results (Excluding Late Participants) 

Results 

Recognition 

 

 

Figure 51. Experiment 3 Recognition accuracy by Session Length against chance. Error bars 

indicate standard error of the mean. 

Figure 51 shows that participants demonstrated accuracy significantly higher than chance 

(M = 0.64, SE = 0.02) on recognition of pairs in familiarization in the recognition test, t(192) = 

8.38, p < .001, Cohen’s d = 2.76. As apparent in the distribution of accuracy for participants (in 

Figure 52), many participants did not pass the recognition test. Participants were divided into two 

groups by their accuracy on recognition: “Recognizers” (n = 116) scored above 50% and 

“Nonrecognizers” (n = 77) scored at or below 50%. An independent-samples t-test of recognition 

group on recognition accuracy revealed that Recognizers (M = 0.79, SE = 0.01) had significantly 

higher accuracy than Nonrecognizers (M = 0.40, SE = 0.02), t(191) = 20.40, p < .001, Cohen’s d 

= 1.47. 
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Figure 52. Experiment 3 frequency histograms of recognition accuracy by Session Length: 7 

minutes (left panel), 21 minutes (center panel), and 35minutes (right panel). Error bars indicate 

standard error of the mean. 

 

An ANOVA of Condition and Session Length on recognition accuracy showed no main 

effect of Condition (p = .85), no interaction of Condition and Session Length (p = .49), and a 

main effect of Session Length, F(2,184) = 4.91, p = .008, partial-eta-squared = 0.05. Custom 

hypothesis tests in ANOVA revealed that 21 minutes (M = 0.67, SE = 0.03) and 35 minutes (M = 

0.68, SE = 0.03) did not differ (p = .71). However, participants were significantly less accurate 

on the recognition test with 7 minutes (M = 0.57, SE = 0.03) of familiarization than when they 

had a longer session length, F(1,184) = 9.39, p = .003, partial-eta-squared = 0.05. This is 

consistent with piloting (and why 21 minutes of familiarization was used for Experiment 1). 

However, participants with the 7-minute session length still showed higher recognition than 
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chance, t(68) = 2.44, p = .02, Cohen’s d = 0.29. Decreasing the session length decreased 

recognition. 

Participants in all three versions of the psychophysical assessment pairs seen in 

familiarization equally well. This is unsurprising because all participants received the same 

recognition test (relative to their familiarization shape set), but it does indicate that there were 

not significant differences across participants in different assessment versions by chance. It was 

also important that Session Length did not interact with (assessment) Condition for recognition. 

 

Table 2.  

Session Length and Recognition Group on actual and expected counts.  

 Nonrecognizers  Recognizers   

Session Length Actual Expected  Actual Expected  Total 

7 Minutes 37 (27.5)  32 (41.5)  69 

21 Minutes 19 (22.5)  37 (33.7)  56 

35 Minutes 21 (27.1)  47 (40.9)  68 

Total 77   116   193 

 

I investigated the relationship of Session Length and Recognition Group using a chi-

squared test. There was a significant association between Session Length and Recognition 

Group, χ
2
(2) = 8.59, p = .01. Looking at Table 2, it appears that the association of Session 

Length and Recognition Group was due to a higher percentage of participants in the 7 minutes 

group failing the recognition test than in the other session lengths.  

 



187 

 

Psychophysical Assessment: Main Analyses 

Accuracy. Figure 53 showed effects of Condition, Session Length, and Exposure 

Duration on accuracy. It appeared that for 7 minutes there was only learning at the longest 

exposure duration, and that for 21 minutes Familiar had the highest accuracy across exposure 

durations but this “flipped” to Shuffled having the highest accuracy across exposure durations 

for 35 minutes. To test the apparent effects, I conducted a four-way mixed ANOVA of Condition 

by Session Length by Exposure Duration by Target Presence on accuracy. I found significant 

main effects of Condition, F(2,184) = 4.90, p = .008, partial-eta-squared = 0.05, and Exposure 

Duration, F(3,552) = 3.14, p = .03, partial-eta-squared = 0.02.  There was also a significant 

main effect of Target Presence, such that participants were more accurate when the target was 

Absent (M = 0.78, SE = 0.01) than when the target was Present (M = 0.71, SE = 0.01), F(1,184) 

= 18.18, p < .001, partial-eta-squared = 0.09. I also found three significant interactions: 

Condition interacted marginally with Exposure Duration F(6,552) = 2.01, p = .06, partial-eta-

squared = 0.02; the effect of Condition marginally depended upon the combined effects of 

Session Length and Exposure Duration, F(12,552) = 1.60, p = .09, partial-eta-squared = 0.03; 

and Exposure Duration interacted with Target Presence, F(3,552) = 5.72, p = .001, partial-eta-

squared = 0.03. All other effects were non-significant (all p’s > .12). 

 Custom hypothesis tests in ANOVA were used to investigate the main effects. For the 

main effect of Condition, I compared Familiar (M = 0.76, SE = 0.01) and Shuffled (M = 0.77, SE 

= 0.01), which did not differ in accuracy (p = .50). I compared New Shapes (M = 0.71, SE = 

0.02) to Familiar and Shuffled, and found that New Shapes showed significantly lower accuracy 

than Familiar and Shuffled combined, F(1,184) = 9.34, p = .003, partial-eta-squared = 0.05. The 

learning transferred from Familiar to Shuffled. 
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For the main effect of Exposure Duration, I compared the shorter exposure durations and 

found that 400ms (M = 0.73, SE = 0.01) and 700ms (M = 0.74, SE = 0.01) did not show different 

accuracy (p = .53). Similarly, I compared the longer exposure durations, and found that 1000ms 

(M = 0.76, SE = 0.01) and 1300ms (M = 0.76, SE = 0.01), did not differ in accuracy (p = .97). I 

compared 400ms and 700ms to 1000ms and 1300ms, and found that the shorter exposure 

durations combined showed marginally lower accuracy than the longer exposure durations 

combined, F(1,184) = 8.47, p = .002, partial-eta-squared = 0.05. 

 

 

Figure 53. Condition by Session Length by Exposure Duration on accuracy (collapsed across 

Target Presence). Bar heights indicate adjusted marginal means and error bars indicate standard 

error of the mean. 

 

 Custom hypothesis tests were also used to examine the interaction of Condition and 

Exposure Duration, by testing the simple effect of Condition at each Exposure Duration, and 
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there was a marginal simple effect of Condition, F(2,184) = 2.41, p = .09, partial-eta-squared = 

0.03. I compared Familiar (M = 0.74, SE = 0.02) and Shuffled (M = 0.75, SE = 0.02), which did 

not differ in accuracy (p = .44). When I compared Familiar and Shuffled to New Shapes  (M = 

0.70, SE = 0.02), I found that together they were more accurate than New Shapes, F(1,184) = 

4.22, p = .04, partial-eta-squared = 0.02. At 700ms, there was a significant simple effect of 

Condition, F(2,184) = 5.20 p = .006, partial-eta-squared = 0.05. Again, I compared Familiar (M 

= 0.76, SE = 0.02) and Shuffled (M = 0.76, SE = 0.02), which did not differ (p = .81). I compared 

Familiar and Shuffled to New Shapes (M = 0.69, SE = 0.02), Familiar and Shuffled showed 

higher accuracy than New Shapes, F(1,184) = 10.33, p = .002, partial-eta-squared = 0.05. There 

was also a simple effect of Condition at 1300ms, F(1,184) = 7.45, p = .001, partial-eta-squared 

= 0.08. I compared Familiar (M = 0.77, SE = 0.02) and Shuffled (M = 0.80, SE = 0.02), which 

did not differ in accuracy (p = .27). I compared Familiar and Shuffled to New Shapes (M = 0.70, 

SE = 0.02), and found that together they showed higher accuracy than New Shapes, F(1,184) = 

13.66, p < .001, partial-eta-squared = 0.07. There was no simple effect of Condition at 1000ms 

(p = .68). The interaction of Condition and Exposure Duration was driven by the three significant 

simple effects of Condition (at 400ms, 700ms, and 1300ms). 

In looking at Figure 52, it appeared that the three-way interaction of Condition, Session 

Length, and Exposure Duration was due to Familiar showing the highest sensitivity for 21 

minutes and Shuffled showing the highest sensitivity for 35 minutes, and to learning for the 7-

minute exposure duration being apparent only for the longest exposure duration. To test the 

interaction, I broke the data on Exposure Duration and tested simple interactions for Condition 

and Session Length at each exposure duration. There was no simple interaction of Condition and 

Session Length at 400ms (p = .52), 700ms (p = .12), or 1300ms (p = .34). However, there was a 
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marginal interaction of Condition and Session Length at 1000ms, F(4,184) = 2.27, p = .08, 

partial-eta-squared = 0.05. I used custom hypothesis tests to investigate the marginal interaction 

at 1000ms by evaluating simple simple effects of Condition for each session length at 1000ms 

via custom hypothesis tests in ANOVA and followed up on significant simple simple effects 

with additional tests. There was no simple simple effect of Condition for 7 minutes (p = .91) or 

21 minutes (p = .15). However, there was a marginal simple simple effect of Condition for 35 

minutes of familiarization, F(2,184) = 2.55, p = .08, partial-eta-squared = 0.03. I followed this 

up with all pairwise comparisons. Familiar (M = 0.70, SE = 0.03) was less accurate than Shuffled 

(M = 0.80, SE = 0.03), F(1,184) = 5.08, p = .03, partial-eta-squared = 0.03. New Shapes (M = 

0.75, SE = 0.03) did not differ in accuracy from Familiar (p = .30) or Shuffled (p = .24).  

I also directly tested the apparent “flip” from Familiar having the numerically highest 

accuracy across exposure durations for 21 minutes to Shuffled having the numerically highest 

accuracy across exposure durations for 35 minutes by examining the interaction of Condition and 

Session Length in an ANOVA of Condition by Session Length (21, 35) by Exposure Duration by 

Target Presence on accuracy. There was a marginal interaction of Condition and Session Length 

across exposure durations and levels of Target Presence, F(2,118) = 2.75, p = .07, partial-eta-

squared = 0.05. There was a simple effect of Condition at 21 minutes, F(2,118) = 3.34, p = .04, 

partial-eta-squared = 0.05, and I followed up with all pairwise comparisons. Familiar (M = 0.79, 

SE = 0.02) was more accurate than New Shapes (M = 0.68, SE = 0.03), F(1,118) = 6.68, p = .01, 

partial-eta-squared = 0.05. Shuffled (M = 0.76, SE = 0.02) was marginally more accurate than 

New Shapes, F(1,118) = 3.09, p = .08, partial-eta-squared = 0.03. Familiar and Shuffled did not 

differ (p = .32). There was no reliable simple effect of Condition at 35 minutes (p = .16). 
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I also directly tested the apparent effect of the learning for the 7-minute session length 

being restricted to the longest exposure duration. I tested the simple interaction of Condition and 

Exposure Duration for 7 minutes of familiarization
32

. For 7 minutes of Familiarization, there was 

a simple interaction of Condition and Exposure Duration on accuracy, F(6,198) = 2.94, p = .009, 

partial-eta-squared = 0.08. I followed up with custom hypothesis tests in ANOVA of simple 

simple effects of Condition at each exposure duration, and followed up significant simple simple 

effects with further custom hypothesis tests. There was a significant simple simple effect of 

Condition at 1300ms, F(2,66) = 5.59, p = .006, partial-eta-squared = 0.14. I compared Familiar 

(M = 0.79, SE = 0.03) and Shuffled (M = 0.79, SE = 0.03), and found that they did not differ in 

accuracy (p = .91). Then I compared Familiar and Shuffled together to New Shapes (M = 0.66, 

SE = 0.03), and found that the combination showed higher accuracy than New Shapes, F(1,66) = 

11.15, p = .001, partial-eta-squared = 0.15. There was not simple simple effect for 400ms, 

700ms, or 1000ms (all p’s > .23). The three-way interaction was driven by the highest 

performance for Shuffled at 35 minutes and 1000ms, by the transfer from Familiar to Shuffled at 

21 minutes, and by the learning only at 1300ms for 7 minutes. 

Custom hypothesis tests were also used to investigate the interaction of Exposure 

Duration and Target Presence, by testing the simple effect of Target Presence at each exposure 

duration. There was a significant simple effect of Target Presence at 400ms, such that 

participants were more accurate on trials when the target was Absent (M = 0.78, SE = 0.01) than 

when the target was Present (M = 0.68, SE = 0.01), F(1,184) = 24.04, p < .001, partial-eta-

                                                 

 

32
 There was no simple interaction of Condition and Exposure Duration at 21minutes (p = .22) or 

35 minutes (p = .20). 
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squared = 0.12. At 700ms, participants were also more accurate for Absent (M = 0.77, SE = 

0.01) than Present (M = 0.70, SE = 0.02), F(1,184) = 13.65, p < .001, partial-eta-squared = 0.07. 

1000ms showed the same pattern of higher accuracy for Absent (M = 0.79, SE = 0.01) than 

Present (M = 0.72, SE = 0.02), F(1,184) = 13.89, p < .001, partial-eta-squared = 0.07. In 

contrast, there was no simple effect of Target Presence for 1300ms (p = .33). The interaction of 

Exposure Duration and Target Presence was driven by the three significant simple effects. 

 

 

Figure 54. Effects of Condition, Session Length, and Exposure Duration on false alarm rate. Bar 

heights indicate adjusted marginal means and error bars indicate standard error of the mean. 

   

False Alarm Rate. Figure 54 showed effects of Condition, Session Length, and 

Exposure Duration on false alarm rate. It appeared that Familiar and Shuffled had lower false 

alarm rates across session lengths and exposure durations, except that Familiar was about the 

same as New Shapes at 35 minutes. I tested the apparent effects in an ANOVA of Condition by 

Session Length by Exposure Duration on false alarm rate, which showed a main effect of 
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Condition, F(2,184) = 5.06, p = .007, partial-eta-squared = 0.05; an interaction of Session 

Length and Exposure Duration, F(6,552) = 2.18, p = .04, partial-eta-squared = 0.02; a marginal 

interaction of Condition and Exposure Duration, F(6,552) = 1.89, p = .08, partial-eta-squared = 

0.02; and no other effects (all p’s  > .32). 

For the main effect of Condition, I followed up with custom hypothesis tests of all 

pairwise comparisons in ANOVA. Shuffled (M = 0.18, SE = 0.02) had fewer false alarms than 

New Shapes (M = 0.27, SE = 0.02), F(1,184) = 10.12, p = .002, partial-eta-squared = 0.05. 

Similarly, Familiar (M = 0.22, SE = 0.02) had marginally fewer false alarms than New Shapes, 

F(1,184) = 3.61, p = .06, partial-eta-squared = 0.02. Familiar did not differ from Shuffled (p = 

.16). Learning in terms of reduced false alarming transferred from Familiar to Shuffled. 

For the interaction of Condition and Exposure Duration, I conducted custom hypothesis 

tests of simple effects of Condition for each exposure duration, and followed up with additional 

tests for significant simple effects. There was no simple effect of Condition for 400ms (p = .12) 

or 1000ms (p = .49). For 700ms, there was a simple effect of Condition, F(2,184) = 4.86, p = 

.009, partial-eta-squared  = 0.05. I compared Familiar (M = 0.22, SE = .02) and Shuffled (M = 

0.19, SE = 0.02), which did not differ in accuracy (p = .44). I compared Familiar and Shuffled to 

New Shapes (M = 0.29, SE = 0.03), and found that together they showed a lower false alarm rate 

than New Shapes , F(1,184) = 9.11, p = .003, partial-eta-squared = 0.05. Similarly, there was a 

significant simple effect of Condition for 1300ms, F(2,184) = 7.06, p = .001, partial-eta-squared 

= 0.07. I conducted all pairwise comparisons. Shuffled (M = 0.17, SE = 0.02) showed a lower 

false alarm rate than New Shapes (M = 0.31, SE = 0.03), F(1,184) = 14.13, p < .001, partial-eta-

squared = 0.07. Familiar (M = 0.23, SE = 0.03) also showed a lower false alarm rate than New 

Shapes at 1300ms, F(1,184) = 4.67, p = .03, partial-eta-squared = 0.03. Familiar showed a 
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marginally higher false alarm rate than Shuffled, F(1,184)  = 3.05, p = .08, partial-eta-squared = 

0.02. The interaction of Condition and Exposure Duration was driven by the different simple 

effects of Condition at 700ms and 1300ms. 

For the interaction of Session Length and Exposure Duration, I tested for simple effects 

of Session Length at each exposure duration, but there were no reliable effects (all p’s > .20). 

Then I tested for simple effects of Exposure Duration at each session length by splitting the data 

on session length. At 21 minutes, there was a significant simple effect of Exposure Duration, 

F(3,159) = 2.84, p = .04, partial-eta-squared = 0.05. 400ms (M = 0.24, SE = 0.03) and 1300ms 

(M = 0.25, SE = 0.03) did not differ in false alarm rate (p = .93). Combined, the shortest and 

longest exposure durations and 700ms (M = 0.22, SE = 0.03) did not differ (p = .27). 1000ms (M 

= 0.18, SE = 0.02) showed a marginally lower false alarm rate than the other three exposure 

durations combined, F(1,53) = 9.14, p = .004, partial-eta-squared = 0.15. There was no simple 

effect of Exposure Duration for 7 minutes (p = .11) or 35 minutes (p = .27) of familiarization. 

Sensitivity. Figure 55 showed effects of Condition, Session Length, and Exposure 

Duration on sensitivity. It appeared that Familiar showed the most sensitivity for 21 minutes 

across exposure durations, Shuffled showed the most for 35 minutes across exposure durations, 

and for 7 minutes, there was only learning at the longest exposure duration. To test these 

apparent effects, I conducted an ANOVA of Condition by Session Length by Exposure Duration 

on sensitivity, which demonstrated a significant main effect of Condition F(2,184) = 5.99, p = 

.003, partial-eta-squared = 0.06. It also showed a main effect of Exposure Duration F(3,552) = 

3.53, p = .02, partial-eta-squared = 0.02, and a marginal interaction of Condition, Session 

Length, and Exposure Duration, F(12,552) = 1.62, p = .08, partial-eta-squared = 0.03. No other 

effects were found (all p’s > .10). 
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Figure 55. Effects of Condition, Session Length, and Exposure Duration on accuracy. Bar 

heights indicate adjusted marginal means and error bars indicate standard error of the mean. 

 

I conducted custom hypothesis tests to investigate the main effects. For 

Condition,  compared Familiar (M = 1.46 SE = 0.08) and Shuffled (M = 1.54, SE = 0.08), which 

did not differ on sensitivity (p = .48). I compared Familiar and Shuffled to New Shapes (M = 

1.22, SE = 0.10), and found that Familiar and Shuffled showed higher sensitivity than New 

Shapes, F(1,184) = 11.49, p = .001, partial-eta-squared = 0.06. The learning transferred from 

Familiar to Shuffled. 

For Exposure Duration, the shorter exposure durations, 400ms (M = 1.28, SE = 0.06) and 

700ms (M = 1.33, SE = 0.06), did not differ in sensitivity (p = .45). Similarly, 1000ms (M = 1.43, 

SE = 0.07) and 1300ms (M = 1.46, SE = 0.07) did not differ in sensitivity (p = .61). However, the 

shorter exposure durations showed significantly lower sensitivity than the longer exposure 

durations (1000ms, 1300ms) combined, F(1,184) = 10.61, p = .001, partial-eta-squared = 0.06. 
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In looking at Figure 54, it appeared that the three-way interaction of Condition, Session 

Length, and Exposure Duration was due to Familiar showing the highest sensitivity for 21 

minutes and Shuffled showing the highest sensitivity for 35 minutes, and to learning for the 7-

minute exposure duration being apparent only for the longest exposure duration. To test the 

interaction, I broke the data on Exposure Duration and tested simple interactions for Condition 

and Session Length at each exposure duration. There was no simple interaction of Condition and 

Session Length at 400ms (p = .36), 700ms (p = .21), or 1300ms (p = .56). However, there was an 

interaction of Condition and Session Length at 1000ms, F(4,184) = 3.08, p = .01, partial-eta-

squared = 0.06. I used custom hypothesis tests to investigate the marginal interaction at 1000ms 

by evaluating simple simple effects of Condition for each session length at 1000ms via custom 

hypothesis tests in ANOVA and followed up on significant simple simple effects with additional 

tests. There was no simple simple effect of Condition for 7 minutes (p = .86). There was a simple 

simple effect of Condition for 21 minutes, F(2,184) = 3.17, p = .04, partial-eta-squared = 0.03. I 

followed up with all pairwise comparisons. Familiar (M = 1.91, SE = 0.19) showed significantly 

higher sensitivity than Shuffled (M = 1.32, SE = 0.19), F(1,184) = 4.75, p = .03, partial-eta-

squared = 0.03. Familiar was also more accurate sensitive than New Shapes (M = 1.24, SE = 

0.27), F(1,184) = 4.10, p = .04, partial-eta-squared = 0.02. Shuffled and New Shapes did not 

differ (p = .80). There was a simple simple effect of Condition for 35 minutes of familiarization, 

F(2,184) = 3.49, p = .03, partial-eta-squared = 0.03. I followed this up with all pairwise 

comparisons. Familiar (M = 1.10, SE = 0.19) was less accurate than Shuffled (M = 1.79, SE = 

0.19), F(1,184) = 6.77, p = .01, partial-eta-squared = 0.04. New Shapes (M = 1.34, SE = 0.19) 

was marginally less sensitive than Shuffled, F(1,184) = 2.84, p = .09, partial-eta-squared = 0.02. 

New Shapes did not differ in accuracy from Familiar (p = .38). 



197 

 

I also directly tested the apparent “flip” from Familiar having the numerically highest 

accuracy across exposure durations for 21 minutes to Shuffled having the numerically highest 

accuracy across exposure durations for 35 minutes by examining the interaction of Condition and 

Session Length in an ANOVA of Condition by Session Length (21, 35) by Exposure Duration by 

Target Presence on accuracy. There was a marginal interaction of Condition and Session Length 

across exposure durations and levels of Target Presence, F(2,118) = 2.86, p = .06, partial-eta-

squared = 0.05. There was a simple effect of Condition at 21 minutes, F(2,118) = 3.97, p = .02, 

partial-eta-squared = 0.06, and I followed up with all pairwise comparisons. Familiar (M = 1.71, 

SE = 0.14) was more accurate than New Shapes (M = 0.97, SE = 0.20), F(1,118) = 7.92, p = 

.006, partial-eta-squared = 0.06. Shuffled (M = 1.50, SE = 0.14) was more accurate than New 

Shapes, F(1,118) = 3.97, p = .05, partial-eta-squared = 0.03. Familiar and Shuffled did not differ 

(p = .32). There was no reliable simple effect of Condition at 35 minutes (p = .13). 

I also directly tested the apparent effect of the learning for the 7-minute session length 

being restricted to the longest exposure duration. I tested the simple interaction of Condition and 

Exposure Duration for 7 minutes of familiarization
33

. For 7 minutes of Familiarization, there was 

a simple interaction of Condition and Exposure Duration on sensitivity, F(6,198) = 2.44, p = .03, 

partial-eta-squared = 0.07. Participants’ sensitivity for 7 minutes of familiarization at 1300ms 

showed a simple simple effect of Condition, F(2,66) = 4.34, p = .02, partial-eta-squared = 0.12. 

I compared Familiar (M = 1.66, SE = 0.19) to Shuffled (M = 1.68, SE = 0.19), which did not 

differ (p = .95). Then I compared Familiar and Shuffled to New Shapes (M = 0.95, SE = 0.20), 

and found that Familiar and Shuffled had significantly higher sensitivity than New Shapes, 

                                                 

 

33
 There was no simple interaction of Condition and Exposure Duration at 21minutes (p = .15) or 

35 minutes (p = .31). 
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F(1,66) = 8.67, p = .004, partial-eta-squared = 0.12. For 7 minutes of familiarization, there was 

no simple simple effect of Condition for 400ms (p = .20), 700ms (p = .21), or for 1000ms (p = 

.82). The three-way interaction was driven by the “flip” at 1000ms from Familiar having the 

highest performance for 21 minutes to Shuffled having the highest at 35 minutes (and no 

differences at 1300ms), by the transfer from Familiar to Shuffled at 21 minutes, and by the 

learning only at 1300ms for 7 minutes. 
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