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ASA: Accelerating Sparse Accumulation in Column-wise
SpGEMM
CHAO ZHANG, Lehigh University, USA
MAXIMILIAN BREMER, Lawrence Berkeley National Laboratory, USA
CY CHAN, Lawrence Berkeley National Laboratory, USA
JOHN SHALF, Lawrence Berkeley National Laboratory, USA
XIAOCHEN GUO, Lehigh University, USA

Sparse linear algebra is an important kernel in many different applications. Among various sparse general
matrix-matrix multiplication (SpGEMM) algorithms, Gustavson’s column-wise SpGEMM has good locality
when reading input matrix and can be easily parallelized by distributing the computation of different columns
of an output matrix to different processors. However, the sparse accumulation (SPA) step in column-wise
SpGEMM, which merges partial sums from each of the multiplications by the row indices, is still a performance
bottleneck. The state-of-the-art software implementation uses a hash table for partial sum search in the SPA,
which makes SPA the largest contributor to the execution time of SpGEMM. There are three reasons that
cause the SPA to become the bottleneck: 1) hash probing requires data-dependent branches that are difficult
for a branch predictor to predict correctly; 2) the accumulation of partial sum is dependent on the results of
the hash probing, which makes it difficult to hide the hash probing latency; and 3) hash collision requires
time-consuming linear search and optimizations to reduce these collisions require an accurate estimation of
the number of non-zeros in each column of the output matrix.

This work proposes ASA architecture to accelerate the SPA. ASA overcomes the challenges of SPA by 1)
executing the partial sum search and accumulate with a single instruction through ISA extension to eliminate
data-dependent branches in hash probing, 2) using a dedicated on-chip cache to perform the search and
accumulation in a pipelined fashion, 3) relying on the parallel search capability of a set-associative cache to
reduce search latency, and 4) delaying the merging of overflowed entries. As a result, ASA achieves an average
of 2.25x and 5.05x speedup as compared to the state-of-the-art software implementation of a Markov clustering
application and its SpGEMM kernel respectively. As compared to a state-of-the-art hashing accelerator design,
ASA achieves an average of 1.95x speedup in the SpGEMM kernel.

CCS Concepts: • Computer systems organization→Multicore architectures.

Additional Key Words and Phrases: SpGEMM, Sparse accumulation, Sparse linear algebra, Markov clustering
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1 INTRODUCTION
Graph analytics [8, 15, 17, 34, 49, 51] has emerged as one of the key computational methods to
solve important problems with irregular structures that arise across a variety of scientific and
engineering disciplines, including bioinformatics [6, 20, 33], social networks [5], and physical
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Fig. 1. Execution time breakdown of a High-performance Markov Clustering (HipMCL) [2] application with
a protein bank [26] data input.

systems [3]. The graphs representing these problem spaces are typically large and sparse, which
means that the connections among vertices are a small percentage (i.e., typically less than 1% and
hyper-sparse graphs have fewer connections than the number of vertices) of the total number
of vertex pairs. For example, bioinformatics applications such as metagenome assembly [33] and
protein clustering [28] work with sparse graphs of genetic and protein sequences that have 0.35%
of non-zero connections [56]. General-purpose computer architectures that are optimized for
dense computation and regular data access patterns struggle to attain high levels of computation
throughput for graph analytic applications due to their innate data irregularity, which limits the
capabilities to solve large and important problems in an affordable amount of time. As a result,
there is a dire need to explore hardware acceleration for sparse graph analytic kernels.

To facilitate the optimization of these kernels in a way that can be applied across many domains,
this work targets the GraphBLAS [12] specification, which recasts graph algorithms as sparse linear
algebra operations. By developing optimized designs for these primitives, we can isolate changes
to the GraphBLAS layer and use the accelerated functionality across multiple graph applications.
The sparse general matrix-matrix multiplication (SpGEMM) is one of the most commonly used
GraphBLAS kernels. This work focuses on accelerating SpGEMM and assesses the performance
impact of the proposed design on HipMCL [2], which uses Markov clustering [53] to identify protein
families. The HipMCL algorithm consists of an iterative loop, which updates cluster membership
through an expansion, pruning, and inflation phase. As seen in Figure 1, expansion, which is
represented as the local SpGEMM, is the most computationally expensive component.
The HipMCL library adopts Gustavson’s column-wise SpGEMM [22] implementation (Algo-

rithm 1), which multiplies non-zeros in columns of the second input matrix B with the columns of
the first input matrix A and accumulates all of the partial sums through a sparse accumulation (SPA).
The state-of-the-art software implementation of the column-wise SpGEMM (e.g., GraphBLAS) uses
a hash-based SPA with a symbolic-numeric method. The symbolic phase estimates the number of
non-zeros in each output column and allocates a hash table for each column. In the subsequent
numeric phase, partial sums are calculated by using the row index to look up the hash table to find
the latest partial sums to add to. Before writing back the output column to the memory, all of the
valid entries in the hash table are sorted by their row indices. As shown in Figure 1, the numeric
phase takes the longest latency in the local SpGEMM computation, which is dominated by the
hash-based SPAs. This is because linear probing is used when there are hash collisions that map
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indices to the same key. Processing hash lookups on general-purpose processors also suffer from
hard-to-predict branches.

Prior work has proposed HTA [59] to accelerate common hash operations with ISA extensions.
However, HTA is designed for general hash operations with a large memory footprint, whereas
column-based SpGEMM can use matrix tiling to optimize for locality and to reduce hash table
sizes. Using an HTA-like approach to accelerate the hashing operations in column-based SpGEMM
would be overkill and cannot achieve the optimal efficiency. Moreover, accelerating hash operations
alone cannot address SPA-specific computational challenges. Accelerators have been proposed for
SpGEMM as well, in which hardware merger trees are used to sum up the multiplication results
within a single pass [41, 58, 60]. In the merger design, the radix of the merger tree should be chosen
carefully to balance between latency and area. A small-radix merger has to read the same input
row multiple times when the merging factor exceed the radix, whereas a large-radix merger costs a
large area overhead. For example, a merge tree in Sparch [60] costs more than 55% of the area and
power.
This work proposes ASA, which is an in-core extension to a general-purpose processor for

accelerating sparse accumulations in column-wise SpGEMM that maintains the generality of the
multicore processors and adds minimum area overheads. The key contributions of the proposed
ASA architecture are listed below:

• ASA extends the existing ISA to execute the partial sum search and accumulate with a single
instruction, which improves the core utilization by eliminating hard-to-predict branches.

• ASA adds a small dedicated set-associative on-chip cache with an accumulator to hold partial
sums and compute SPAs, which improves SPA throughput and reduces dynamic energy for
cache lookups.

• ASA replaces hash linear probing with parallel search in the set-associative cache and delays
merging of partial sum entries evicted from cache due to set conflicts.

• ASA provides a simple software interface to allow flexible use of the ASA hardware and easy
integration with other software optimization of merging and sorting.

2 BACKGROUND
This section summarizes SpGEMM variants and existing works for sparse accumulation acceleration.

Sparse Matrix Matrix Multiplication (SpGEMM) is an important kernel in many applications,
such as machine learning [21, 30, 54], numerical analysis [14], graph algorithms [45], etc. The
broad use of the SpGEMM in data-intensive applications leads to many different parallel SpGEMM
implementations.

An inner product implementation computes SpGEMM using a series of dot product operations
between rows of the first matrix (A) and columns of the second matrix (B) for each element of the
result matrix (C):

𝐶 [𝑖, 𝑗 ] =
𝑁−1∑︁
𝑘=0

𝐴 [𝑖,𝑘 ] × 𝐵 [𝑘,𝑗 ],

in which N is the matrix dimension, i and j are the row and column indices. Inner product SpGEMM
has a good locality for matrix C and can be easily parallelized by sending different rows and columns
to different cores without synchronization overhead. However, to select the non-zero elements from
matrices A and B, it requires index matching before multiplication. The sparse storage format of A
and B requires indirect memory accesses to load 𝐵 [𝑘,𝑗 ] for each non-zero 𝐴 [𝑖,𝑘 ] . These dependent
loads have poor spatial locality and are on the critical path of the computation, which can cause
processor stalls and low core utilization even with an ideal tiling optimization [55].
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An outer product implementation [9] multiplies matrix A and B by decomposing the operation
into outer product multiplications of pairs of columns of A and rows of B:

𝐶 =

𝑁−1∑︁
𝑖=0

𝐶𝑖 =

𝑁−1∑︁
𝑖=0

𝐴 [:,𝑖 ] × 𝐵 [𝑖,:],

where 𝐴 [:,𝑖 ] is the i-th column of 𝐴 and 𝐵 [𝑖,:] is the i-th row of B.𝐶𝑖 is the partial matrix of the final
result matrix 𝐶 . The computation is divided into two phases: 1) 𝐴 [:,𝑖 ] × 𝐵 [𝑖,:] multiplication and 2)
partial matrix merging. For the multiplication phase, every non-zero element in 𝐴 [:,𝑖 ] is multiplied
with every non-zero element in 𝐵 [𝑖,:] . Hence, the accesses to both matrix A and matrix B have good
spatial locality and have short reuse distance. However, the partial matrix merging phase requires
high synchronization overhead to merge the partial matrix products that are assigned to different
cores. Other outer-product approaches, such as PB-SpGEMM [19], avoid the synchronization by
streaming the intermediate partial matrices to memory for merging later (expand, sort, compress),
which may generate substantial memory traffic.
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Fig. 2. Compression factor versus MCL iteration for eukarya network graph [2].
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Fig. 3. Execution time versus MCL iteration for eukarya network graph [2]..

In Gustavson’s column-wise SpGEMM [22] algorithm, columns of A are multiplied with the
non-zeros of a column of B and the results are accumulated into a column of C using a sparse
accumulator (SPA) [18].

𝐶 [:, 𝑗 ] =
𝑁−1∑︁
𝑘=0

𝐴 [:,𝑘 ] × 𝐵 [𝑘,𝑗 ]

𝐵 [𝑘,𝑗 ] is a non-zero element in a column of matrix B,𝐴 [:,𝑘 ] is the corresponding columns in matrix A,
𝐶 [:, 𝑗 ] is a output column of matrix C. In column-wise SpGEMM, different columns can be computed
in parallel.
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For SpGEMM, there is no single optimal formulation for all contexts, as the performance depends
on the sparsity of the input matrices as well as the compression factor. Assuming the computation of
𝐶 = 𝐴×𝐵 requires 𝑛𝑓 𝑙𝑜𝑝𝑠 multiply-accumulate operations, and 𝑛𝑛𝑧𝑐 equals the number of non-zeros
in 𝐶 , the compression factor is defined as 𝑛𝑓 𝑙𝑜𝑝𝑠/𝑛𝑛𝑧𝑐 , which corresponds to the average number of
terms that must be summed up to produce a single non-zero entry of 𝐶 . When the compression
factor is low, the outer product formulation outperforms Gustavson’s as the extra memory traffic
incurred by splitting up the multiplication phase and the merging phase is relatively small [19].
But as the compression factor rises, the lower memory traffic of Gustavson’s algorithm leads it to
outperform the outer product based formulation.
Ultimately the SpGEMM implementation preference is application specific. In Figures 2 and 3,

we show the average compression factor of the SpGEMM and wallclock time elapsed per MCL
iteration for HipMCL on the Eukarya network with 32.4M vertices and 360M edges [2]. Comparing
the two figures, 92% of the total execution time is spent in the first five MCL iterations, which
consist of high compression factor SpGEMM multiplications, which favor the use of column-wise
SpGEMM algorithms. Thus to maximize performance gains, this paper focuses on optimizing the
performance of column-wise SpGEMM.
In SpGEMM, the pattern and number of non-zero elements of the output matrix is unknown

before computation. But the memory allocation of the output matrix should be decided ahead of
time. One way is to allocate large enough memory space, which might be inefficient. The other way
is to use a symbolic-numeric method (Algorithm 1) [10, 39] to analyze output computation patterns,
which is time-consuming. Alternatively, recently developed hash-based SpGEMM algorithm uses
symbolic analysis for tiling and uses hash tables within each tile to record and lookup partial
sums. The purpose of symbolic analysis is to precisely control the hash table size to reduce hash
probing overhead. However, the hash operations are still the performance bottleneck due to high
branch mis-prediction rate and poor spatial locality. As shown in the Figure 1, the numeric and
symbolic phases dominate the execution time of the SpGEMM kernel. Therefore, in HipMCL [2]
(High-performance Markov Clustering), more than 50% of the entire application runtime is devoted
to computing SpGEMM hash operations.

Algorithm 1 shows the procedure of a column-wise SpGEMM. The bottleneck of this algorithm
is the sparse accumulation at line 5-7 and 16-20 in Algorithm 1. Recent software implementations
adopt many different data structures to do the accumulation, such as hash tables, vectorized hash
tables, and heaps [2, 37, 44].

3 MOTIVATION AND KEY IDEAS
The proposed design is motivated by the computation challenges of the sparse accumulation in
column-wise SpGEMM. The goal of this work is to overcome these challenges by designing a sparse
accumulation accelerator that can be easily integrated into general-purpose multi-core architecture
with minimum hardware overhead and a simple software interface. This section discusses the three
key ideas of ASA to achieve this goal.

3.1 Extending ISA to Avoid Data-Dependent Branches
As discussed in Section 2, Hash probing is the bottleneck for both symbolic and numeric phases.
One reason is that the core does not know whether the probing will hit, miss, or have a collision.
When multiple keys are hashed to the same cell, this cell has collisions. A hash lookup typically
compares keys that are mapped to the same cell one by one. The implementation of hash probing
requires data-dependent branches, which are difficult to predict. Prior work [59] observed that
mispredicted branches can be the performance bottleneck of many hash-intensive applications. To
avoid these difficult-to-predict branches, this work proposes to extend an ISA with an hardware
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Algorithm 1: Symbolic-Numeric SpGEMM.
1 Procedure Symbolic(A,B):
2 for 𝐵 [𝑘,𝑗 ] in 𝐵 [:, 𝑗 ] do
3 for 𝐴 [𝑖,𝑘 ] in 𝐴 [:,𝑘 ] do
4 𝑣𝑎𝑙𝑢𝑒 = 𝐴 [𝑖,𝑘 ] × 𝐵 [𝑘,𝑗 ]
5 if 𝐶 [𝑖, 𝑗 ] ∉ 𝐶 [:, 𝑗 ] then
6 𝑛𝑛𝑧𝐶𝑜𝑙𝐶+ = 1
7 end
8 end
9 end

10 return nnzColC
11

12 Procedure Numeric(A,B):
13 for 𝐵 [𝑘,𝑗 ] in 𝐵 [:, 𝑗 ] do
14 for 𝐴 [𝑖,𝑘 ] in 𝐴 [:,𝑘 ] do
15 𝑣𝑎𝑙𝑢𝑒 = 𝐴 [𝑖,𝑘 ] × 𝐵 [𝑘,𝑗 ]
16 if 𝐶 [𝑖, 𝑗 ] ∈ 𝐶 [:, 𝑗 ] then
17 𝐶 [𝑖, 𝑗 ] = 𝐶 [𝑖, 𝑗 ] + 𝑣𝑎𝑙𝑢𝑒

18 else
19 insert 𝐶 [𝑖, 𝑗 ] into 𝐶 [:, 𝑗 ]
20 end
21 end
22 end
23 return tupleC
24

25 Procedure ColumnWiseSpGEMM(C,A,B):
26 for 𝐵 [:, 𝑗 ] in matrix B do
27 𝑛𝑛𝑧𝐶𝑜𝑙𝐶 = 𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐 (𝐴, 𝐵)
28 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝐻𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒 (𝑛𝑛𝑧𝐶𝑜𝑙𝐶)
29 𝐻𝑎𝑠ℎ𝑡𝑎𝑏𝑙𝑒 = 𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (𝐴, 𝐵)
30 𝑡𝑢𝑝𝑙𝑒𝐶 = 𝑃𝑎𝑖𝑟𝑆𝑜𝑟𝑡 (𝐻𝑎𝑠ℎ𝑡𝑎𝑏𝑙𝑒.𝑏𝑒𝑔𝑖𝑛(), 𝐻𝑎𝑠ℎ𝑡𝑎𝑏𝑙𝑒.𝑒𝑛𝑑 ())
31 𝐶+ = 𝑡𝑢𝑝𝑙𝑒𝐶

32 end
33 return C

probing and accumulation (HPA) instruction similar as other instruction extensions in [13, 43, 59].
As a result, lines 16-20 in Algorithm 1 can be consolidated into a single instruction, which helps to
reduce the total instruction count, avoid branch misprediction penalty, and improve core utilization.

The collision resolution and overflow handling are performed by hardware and are hidden from
the programmer. A programming interface is included in this design to provide key-value pairs to
the sparse accumulator hardware, which will be discussed in Section 5.

3.2 Dedicated Hardware for Probing and Accumulation
The ASA architecture adds a dedicated hardware cache to store partial sums and an accumulator
per core to directly add the multiplication result to an intermediate partial sum with a matching
key. The size of the cache should be small to allow fast lookup and minimize area overhead. In
the symbolic-numeric method, the symbolic phase first identifies the total number of non-zeros
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in an output column of matrix C to allocate a hash table with an appropriate size. As a result, the
software hash table size varies based on the number of non-zeros in the output column of matrix
We adopted SUMMA [11], which is a distributed SpGEMM implementation, assigns each processor
a submatrix of C and broadcasts input matrices A and B to different processors that can limit the
size of the output matrix sizes. As a result, with a smaller output matrix to compute, the size for
each hash table can be reduced. As shown in Figure 4 (b), more than 90% of the hash tables have
fewer than 512 entries, which means they can fit into a small hardware cache. Instead of storing
the entries into a private L1 cache, this work uses a dedicated on-chip cache with an accumulator
for sparse accumulations (Partial Sum Cache). This design choice of using a cache smaller than
the L1 cache reduces the energy of cache accesses. Having a dedicated cache and an accumulator
also enables high-throughput hardware probing and accumulation via pipelining the cache lookup,
addition, and write back.

Applying tiling algorithm [55] to the input and output matrices can help to fit the intermediate
partial sums, which are stored in the hash table in the software implementation, into the partial
sum cache. A set-associative cache is used to strike a balance between hardware complexity and
set conflict rate. When set conflicts happen, the proposed design evicts a partial sum entry and
handles these overflows later with a relatively small performance overhead. Figure 4 (a) shows the
set conflict rates of different hash table sizes and under different cache configurations. An 8-way,
8KB cache with an 8B block size can accommodate more than 99% of the hash probing without set
conflicts because most of the hash tables are smaller than 512.

3.3 Resolving Collisions in Hardware and Delaying Overflow Merging
A set-associative cache searches all of the tags (i.e., hash keys) in parallel, which is an important rea-
son to anticipate performance improvement when comparing ASA with the software hash probing
that resolves collisions through linear search. The symbolic-numeric method in GraphBLAS [12]
uses the symbolic phase to determine the hash table size to minimize collisions. It is helpful to
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allocate the hash table with an appropriate size for each output column, which saves space when
the column is sparse and reduces collisions when the column is dense. The hardware cache has a
fixed size and associativity. It is not necessary to use the symbolic phase to estimate the hash table
size but it is helpful to apply a tiling algorithm. A fallback mechanism is essential to handle cache
overflows due to set conflicts.

In the ASA architecture, a FIFO queue data structure is allocated through malloc function before
the sparse accumulation. Evicted entries from the partial sum cache are inserted into the FIFO
queue by using a hardware address generator to issue store requests. Using dedicated hardware
to handle cache overflows avoids stalling the processor. After a partial sum entry is evicted from
the cache, it will not be searched for the rest of the sparse accumulation. There could be multiple
intermediate partial sums in the FIFO queue that have the key, which means they need to be added
together to produce the final partial sums. An architecture register is added to keep track of the size
of the FIFO queue. At the end of the sparse accumulation, the head and tail pointers of the FIFO
queue are read by software and these overflowed entries are merged. By taking the merging of
overflowed entries off the critical path of sparse accumulation, it is also to use the partial sum cache
for one column while merging overflowed entries for another column. The detailed explanation of
the overflow handling with FIFO queue is in Section 4.2.

3.4 Minimizing both software and hardware overhead
Multiple SpGEMM accelerators have been proposed recently [23, 38, 40, 58, 60], which can be
used to execute limited applications. Serving multiple types of computational kernels in a single
accelerator is challenging because different kernels prefer different system tradeoffs. An SpGEMM
accelerators usually have a similar size of a CPU core. For example, SpArch [60] uses more than
55% of the area and power for building a merge tree to accumulate partial sums. To make the design
cost-effective in terms of both performance and area, ASA can provide a competitive speedup with
a lightweight software interface and negligible hardware area (less than 0.1% of the core area).

4 ASA ARCHITECTURE
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The proposed ASA architecture augments each core with an accumulation waiting buffer to store
the multiplication results and its corresponding hash key, a floating-point adder, a small hardware
cache to each core to store partial sums, and an address generator for both overflow handling and
hardware gathering (Figure 5). The address generator has two architectural registers visible to
the software: a tail pointer register recording the current tail position of the associated partial
sum FIFO queue in memory, and a tail boundary register recording the boundary address of the
allocated space.

4.1 Hardware Probing and Accumulation
A hardware probing and accumulation (HPA) instruction is similar to a store instruction, which
has three source operands, which are the hash key for indexing cache sets, row index for tag
comparison, and the multiplication result of a pair of non-zeros as the value. Similar to a store
instruction an HPA instruction is issued from the load-store queue (LSQ) when the instruction is at
the head of the reorder buffer and both operands are available. The hash key and the multiplication
result of an issued HPA instruction will be stored in an accumulation waiting buffer to be added to
a matching partial sum ( 1 in Figure 5). The key is used to lookup the partial sum cache by first
using the key to index to the corresponding cache set and then comparing the row index 𝑖 with the
stored tags. As shown in Figure 6, if the reference hits in the cache, the value of the matching entry
is read and added with the multiplication result. If the reference misses in the cache, a new entry is
allocated and the multiplication result is directly stored in the cache. If miss in the cache but the
corresponding cache set is full, a cache overflow happens. An entry needs to be selected according
to a replacement policy and evicted from the cache. A good choice of the replacement policy will
help to prevent premature evictions. This work uses a least recently used (LRU) replacement policy.

Each HPA instruction takes three cycles to complete after being issued from the LSQ. One cycle
for cache lookup, one cycle for accumulation, and another cycle for writing back to cache. In
order to improve the throughput, a three-stage pipeline is implemented such that when one HPA
instruction is computing accumulation, the following HPA issued back-to-back can lookup the
cache. It is possible that the back-to-back HPAs have matching keys, hence the hash key also needs
to compare with the keys of the previous outstanding HPAs. If the back-to-back HPAs have the
same key, the previous accumulation result is forwarded to the input of the accumulator.

Fig. 6. Hardware probing and accumulation with overflow handling.
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4.2 Overflow Handling
A contiguous memory address space is pre-allocated to store both the overflowed key-value pairs
of the partial sum entries evicted from the partial sum cache during the hardware probing and
accumulation phase ( 1 in Figure 5) as well as the writeback partial sum entries during the hardware
gathering phase ( 2 in Figure 5). The memory space pre-allocation is done in software in a FIFO
queue data structure. During phase 1 and 2 , the FIFO requires only insertion operations. An
address generator is added to ASA to calculate the virtual addresses for these insertions to the FIFO
queue, which is equipped with a tail pointer register storing the position of the next insertion and a
tail boundary register storing the boundary address of the pre-allocated memory space. The virtual
address range is sent to ASA when the memory space for the FIFO queue is pre-allocated. The tail
pointer register is initialized to the start position (i.e., head pointer) of the pre-allocated FIFO queue.
Each eviction of the key-value pair will use the tail pointer value to calculate the addresses for the
key and the value (Figure 6). ASA generates normal store instructions to write these entries into
the FIFO queue through the memory hierarchy, which is the same as other store instructions from
the load store queue. An evicted partial sum entry due to cache overflow can have a repeating key
with another evicted entry or the same key as a writeback entry. In order to prevent stalling, the
hardware overflow handling does not merge these entries with repeating keys at the eviction time.
After each insertion to the FIFO queue, the tail pointer will increment and compare with the value
of the tail boundary register. If the tail pointer equals to or exceeds the boundary address, the FIFO
queue is full and an interrupt is triggered to allocate more space. After memory allocation, both
the tail pointer and the tail boundary registers are reset accordingly for the newly allocated space.

4.3 Sorting and Merging
Elements in the output column need to be sorted. As shown in Figure 7, all valid entries in the partial
sum cache are firstly added to the FIFO queue, which waits for a subsequent sorting operation.
Implementing sorting logic in the hardware can be expensive, whereas the execution time of sorting
non-zeros of the output column in software is relatively low for SpGEMM as compared to other
operations [44]. Hence, this design keeps sorting in software. After the gathering phase 2 , all
key-value pairs are written into FIFO queue in memory. A pair sort is used to sort all key-value
pairs by its keys, which is the same as the original software implementation. The pair sort needs
the start and end position of the unsorted FIFO queue. In phase 3 , the software reads the tail
pointer register value before and after the hardware gathering. The sorted tupleC can be directly
added to the output matrix C if there are no overflows during the column computation (phase 4 ).
If there are overflowed key-value pairs, additional merge operations can be performed to add the
overflowed entries to the sorted array. In this case, entries with the same key would be merged
first. After that, all key-value pairs would be sorted to the output tupleC, which takes additional
O(N) of time complexity on top of the original software sorting with O(NlgN).
Overflow requires additional instructions, which can offset the benefits of using the proposed

partial sum cache. The amount of the overflows can be well controlled if appropriate tiling algorithm
is applied to the column-wise SpGEMM. This means breaking down the denser columns of the
input matrix B into multiple smaller sub-columns.

4.4 Context Switch
Modern processors usually adopt Lazy FP State Save/Restore, which defers the save and restore of
certain CPU context states on the task switch. Similarly, the content in the partial sum cache is part
of the state that will be saved and restored lazily when the hardware resources are not required in
a new context.
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Fig. 7. Sort and merge flowchart.

5 PROGRAMMING INTERFACE

Table 1. ASA programming interfaces.

Names Explanation
Allocate space for the partial sum tuples and

ASA.malloc(size) initialize ASA internal registers accordingly
Insert a pair of key and value into partial

ASA.insert(key,i,value) sum cache, accumulate if hit in the cache
Write all valid entries from partial sum

ASA.gather() cache into reserved address space
ASA.tail() Return the tail pointer of the partial sum tuples
ASA.overflow() Return whether there is any overflow

Invalidate all entries in the partial sum cache
ASA.clear() and clear the internal registers

The proposed design includes a simple programming interface to use ASA. Table 1 lists im-
portant procedure calls. Algorithm 2 shows an example implementation of SpGEMM using ASA.
Compressed data format (e.g., DCSC [9]) is typically used for both the input and output matrices
to reduce memory footprint by avoiding storing zeros. During the computation of each output
column, the partial sums can be calculated in an order different from the index order. Hence, a
series of key-value pairs are stored in a FIFO queue data structure (tupleC in Algorithm 2), where
the key is the row index and the value is the partial sum. This FIFO queue is used when storing the
intermediate partial sums as well as the final sorted non-zeros of an output column. The size of the
memory allocation (line 2 in Algorithm 2) should be equal to or greater than the capacity of the
partial sum cache. If more cache overflows are anticipated, a larger size can be pre-allocated. This
parameter can be optimized for different matrices and partitions.

As discussed in Section 3, the symbolic phase can be removed when using ASA. In the numeric
phase, the proposed design uses the FPU in the core for multiplication of 𝐴 [𝑖,𝑘 ] and 𝐵 [𝑘,𝑗 ] . We dis-
cussed the design choice of not offloading the multiplication and hash key calculation in Section 7.2.
Line 16-20 in Algorithm 1 now can be replaced with a simpler 𝐴𝑆𝐴.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑘𝑒𝑦, 𝑖, 𝑣𝑎𝑙𝑢𝑒) function at
line 7 in Algorithm 2. The key is the hash value calculated by applying the hash function to the
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Algorithm 2: An Example SpGEMM using ASA.
1 Procedure Numeric(A,B):
2 tupleC = ASA.malloc(size);
3 for 𝐵 [𝑘,𝑗 ] in 𝐵 [:, 𝑗 ] do
4 for 𝐴 [𝑖,𝑘 ] in 𝐴 [:,𝑘 ] do
5 𝑣𝑎𝑙𝑢𝑒 = 𝐴 [𝑖,𝑘 ] × 𝐵 [𝑘,𝑗 ] ;
6 key = hash(i);
7 ASA.insert(key,i,value);
8 end
9 end

10 return tupleC
11

12 Procedure ColumnWiseSpGEMM(C,A,B):
13 for 𝐵 [:, 𝑗 ] in matrix B do
14 𝑡𝑢𝑝𝑙𝑒𝐶 = 𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (𝐴, 𝐵);
15 sortStart = ASA.tail();
16 ASA.gather();
17 PairSort(sortStart, ASA.tail());
18 if ASA.overflow() then
19 AdditionalMerge(tupleC);
20 end
21 𝐶+ = 𝑡𝑢𝑝𝑙𝑒𝐶;
22 tupleC.free();
23 ASA.clear();
24 end
25 return C

original row index i for 𝐴 [𝑖,𝑘 ] , which achieves better load balancing among cache sets than row
indices does when used to index the hardware cache. 𝐴𝑆𝐴.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑘𝑒𝑦, 𝑖, 𝑣𝑎𝑙𝑢𝑒) will insert a pair of
key and value to the partial sum cache (dedicated for sparse accumulation). If the key hits in the
cache, it reads the current partial sum 𝐶 [𝑖, 𝑗 ] , adds 𝑣𝑎𝑙𝑢𝑒 with 𝐶 [𝑖, 𝑗 ] , and stores the new partial sum
back to the cache. The cache lookup, addition, and write back are perceived as an atomic operation.
If the key misses in the cache, it inserts a new entry into the cache. Cache overflow is handled
by hardware, which will be discussed in detail in Section 4.2. The evicted entries will be stored in
the pre-allocated tupleC. Regardless of partial sum cache hit, miss, or overflow, the ASA unit will
handle it by hardware without data-dependent branches, which is one of the key advantages as
compared to the original software implementation.

After the numeric phase, ASA.gather() (line 16) writes all of the valid entries into tupleC following
evicted partial sums if there are cache overflows during the numeric phase. The tail pointer position
is recorded before calling ASA.gather() to allow a pair sort function call to perform in-place sorting
on non-repeating keys (line 17). If there are overflows for this column computation, additional
software merges to tupleC will be used to merge overflowed key-value pairs to the sorted key-value
pairs in tupleC (line 18-20) with O(N) time complexity, where N is the total number of the overflows.
After this additional merging, the size of tupleC might be reduced and can be added to matrix C in
the compressed storage format. Finally, the allocated space for tupleC is released and 𝐴𝑆𝐴.𝑐𝑙𝑒𝑎𝑟 ()
(line 23) is invoked to clear the partial sum cache and ASA internal registers.
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Fig. 8. HipMCL Performance comparisons for baseline software implementation, HTA, and ASA with and
without tiling algorithm.

6 EXPERIMENTAL SETUP
To evaluate the proposed ASA architecture, this work modifies ZSim[42], which is a PIN-based [32],
execution-driven, and cycle-accurate simulator, to model the proposed architecture and compare
the performance with a baseline multi-core architecture and the HTA architecture. Cache sizes
and latency of the baseline architecture are modeled based on Intel i7-6700 [24], which are listed
in Table 2. The main memory timing parameters are based on the Micron MT40A2G4 [35] DDR4-
2400-CL17 datasheet. This work uses CACTI 7.0 [4] to model the partial sum cache and estimate its
area, latency, and power. Area overhead of other components is estimated based on logic synthesis
using the FreePDK45nm [48] standard cell library, and is scaled to 14 nm. Accessing partial sum
cache costs 0.004nJ per read and 0.012nJ per write of dynamic energy. The latency fits into one
processor cycle at 2.6 GHz. McPAT [27] is used to estimate the energy consumption of other
on-chip components. In the ASA architecture, each of the cores is augmented with an ASA unit for
SPA acceleration, which includes an accumulation waiting buffer, a floating-point adder, a partial
sum cache, and an address generator. To have a fair comparison with the baseline and the HTA,
we increase the L1 cache size of the baseline and the HTA by the size of the partial sum cache.
As a result, all three evaluated architectures have the same total on-chip cache capacity. For CPI
breakdown analysis, ZSim does not execute wrong-path execution but recovers frommispredictions
in a fixed 17 cycles and cancels in-flight data misses. [42]

Table 2. Baseline configuration for simulation.

8 cores, 2.6 GHz, 4-wide OoO, 256-entry ROB
Processors 64-entry LSQ
Partial Sum Cache private, 8KB, 8-way, LRU, delay = 1 cycle

private, 32KB, 8-way, 8-entry MSHR
L1-Ds/Is delay = 4 cycles

private, 256KB, 8-way, 16-entry MSHR
L2s delay = 12 cycles

shared, 8 MB, 16-way, 128-entry MSHR
LLC delay = 38 cycles
Memory
Controller FCFS, Open page, read and write queue size = 64

Main
Memory

4GB, 2400 Mhz, 1 channel, 1 rank, 16 banks
tCL = tRCD = tRP = 17 cycles

13



ACM TACO, Vol. X, No. Y, 2021 Zhang, et al.

Table 3. Datasets (compressed into CSC format).

Number Names #Vertices #Edges Sizes
1 RMAT [7] 6.72M 104M 840MB
2 pb [26] 36.4K 4.3M 55MB
3 soc-epinions [26] 75.8K 500K 11MB
4 hepth [26] 27.7K 350K 5.7MB
5 virus [2] 0.2M 4.5M 90MB
6 subgraph4 [2] 13.6M 41.3M 550MB
7 subgraph5 [2] 4.1M 10.3M 140MB
8 eukarya [2] 12.5M 56.2M 560MB
9 archaea [2] 0.7M 3.2M 47MB

This work evaluates a SpGEMM implementation from a highly optimized GraphBLAS [12]
library, which powers HipMCL [2, 44]. The datasets of the SpGEMM are listed in Table 3, which
covers representative inputs with different characteristics (i.e., size, sparsity). As HipMCL runs the
SpGEMM kernel iteratively, we mark the first five iterations as the ROI (region of interests) to save
simulation time. Given the fact that the first few iterations take most of the MCL runtime (Figure 3),
the sampled iterations are critical and representative of the entire application. The typical input
graphs for HipMCL is too large (20 GB to 10 TB) to use on a simulator, and requires partitioning
to run on real machines. This work focuses on accelerating the local SpGEMM, which makes it
sufficient to use sub-matrices. Table 3 lists all of the graphs used in the evaluation. Subgraph4,
subgraph5, eukarya, virus, and archaea datasets are subsampled by CombBLAS [10] matrix partition
library from the original data set. The sampling algorithm randomizes the vertex labels before
extraction of the sub-matrices. Besides sub-matrices, we also tested a synthetic graph (RMAT),
a protein bank data (pb), a social network (soc-epinions), and a physical citation network graph
(hepth). 1 For denser column computation, we break it down to multiple sub-columns as a simple
tiling algorithm to reduce the number of partial sum cache overflows. HipMCL requires a larger
memory footprint than the input size. For example, it uses more than 12GB of memory for a 500MB
input (subgraph4 in the evaluation). When the ASA is used for larger inputs, tiling algorithms are
expected to be applied to reduce memory usage, which will also reduce the overflows.

7 EVALUATION RESULTS
This section presents the evaluation results of the proposed ASA architecture on performance
and energy. A roofline model analysis is performed to demonstrate the computation bottlenecks.
Moreover, sensitivity studies are conducted on the partial sum cache configurations and alternative
design choices on offloading computation to the hardware accelerator.

7.1 Performance
The performance benefit of the proposed ASA design comes from three aspects: 1) it avoids branch
mis-prediction penalty in the baseline hash-based SpGEMM, 2) it reduces the total number of the
instructions by consolidating hash probing, collision handling, and accumulation operations into a
single instruction and removing symbolic phase, and 3) it provides a higher throughput for sparse
accumulation by using a dedicated cache and accumulator.
Speedup. On average, ASA achieves a 2.25x speedup as compared to the baseline hash-based

SpGEMM, which is 67% more than what HTA can achieve (Figure 8). As compared to HTA,

1Note that HipMCL computes matrix multiplication with input matrix 𝐵 = 𝐴𝑇
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which accelerates only hash operations, ASA uses a dedicated partial sum cache and a dedicated
accumulator to provide higher throughput for sparse accumulation. HTA relies on a software
rollback for collision and overflow handling. Overflows in the HTA table will trigger a software
fallback path for an update, whereas ASA uses the address generator to write the overflowed entries
to a pre-allocated memory space and merge overflowed partial sums in the end. HTA evicts a
randomly chosen key-value pair to the next level to make space for a new one, which may cause
premature eviction when hash probing has locality. ASA uses a LRU replacement policy to exploit
locality in SpGEMM computation and minimize premature eviction of partial sums. HTA was
designed for hash-intensive applications, especially those that have large hash tables, where poor
locality causes cache thrashing and long memory stalls. In SpGEMM, the input matrices can be
partitioned into tiles to allow non-zeros in a sub-column to fit into on-chip caches, the sparse
accumulation throughput is a greater concern than cache thrashing. In fact, applying tiling does
not help to improve performance for the baseline nor the HTA for the evaluated application and
inputs. This is because the non-zeros in each output column can already fit in a L1 cache. Tiling
does not provide more locality benefit for the baseline and HTA, but rather adds overheads due to
increased number of branches and more irregular memory accesses in the tiled input matrix A.
Tiling helps to improve performance for ASA by reducing cache overflows in the small partial

sum cache. In general, input graphs that observe a large reduction on cache overflows (e.g., pb,
subgraph4, subgraph5, eukarya, and archaea according to Figure 11) have performance benefit
from tiling.
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Fig. 9. Average execution time break down for SpGEMM kernel across all inputs.
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Fig. 10. Average execution time break down for HipMCL application across all inputs.

Speedup breakdown. To understand how well the proposed ASA helps with improving hash
probing throughput and how much overhead comes from the cache overflows, we break down
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the SpGEMM kernel timing in Figure 9. On average, the proposed ASA can achieve a 4.55x of
performance speedup for the SpGEMM kernel. The symbolic phase takes 14.5% of the execution time
for the baseline, which can be eliminated from ASA-enabled SpGEMM. The sparse accumulation
(hash-based numeric phase) takes 76% of the baseline runtime, which can be reduced by 6.33x.
The performance overhead of the ASA is when there are overflows and costs conditional merging
for all of the overflowed entries. In the baseline SpGEMM, sorting and merging takes 8.7% of the
total execution time, whereas in ASA, sorting and merging now takes 9.5% relative to the baseline
execution time. As a result, the conditional merging only costs 0.8% of the total performance
overhead because the selected partial sum cache allows most of the hash probing to be overflow-
free. Applying tiling can further reduce the number of overflows and hence reduce the sorting and
merging latency to 8.45% of total execution time. This is because sorting multiple small chunks
takes less time than sorting all chunks together.
We further break down HipMCL workload, the localspgemm in Figure 10 refers to the total

execution time of the SpGEMM kernel. The overall performance of the MCL algorithm can be
improved by 2.25x because of the speedup from the SpGEMM kernel.

7.2 Offload Hash and Multiplication
The proposed ASA architecture does not offload hash key calculation and multiplication to hard-
ware for a cost-effective design. Adding more hardware resources for hash key calculation and
multiplication (line 5-6 in Algorithm 2) can further achieve an average of 15.8% and a 5.3% of
additional speedup for the SpGEMM kernel and the HipMCL application respectively.
There are three reasons to keep hash key computation and multiplication in software: 1) the

programmer can have the flexibility to explore different hash functions, which may result in
different optimal choices for different problem domains. The choice of the hash function will
influence the load balancing among different cache sets, which can result in different number
of cache overflows due to set conflicts. The evaluated design uses a prime number modulo hash
function. 2) Multiplications of the non-zero elements can be vectorized using an existing vector
engine inside the core to achieve higher throughput such as the Intel AVX-512. The evaluated design
of ASA uses the existing floating-point unit (FPU) to reduce area overhead. And 3) offloading hash
function and multiplication to dedicated hardware logic only achieves an incremental improvement
according the simulation results of the selected inputs.

7.3 Overflow Rate
Instead of precisely split tiles based on the number of nonzeros, we use a simple tiling algorithm
that breaks dense output columns into multiple sub-columns. During the actual computation, if a
column of C will cause overflow, the column is broken up into several chunks. The chunks span
uniform parts of A, e.g. if A has 2 million rows and we’d like to break the column into 2 chunks,
the first chunk will contain entries [0,1e6) and the second chunk [1e6,2e6). We assume that the
distribution of the non-zeros is not particularly skewed towards either chunk. The SpGEMM then
proceeds to fully compute one chunk at a time. As shown in Figure 11, the overflow rate can be
significantly reduced by applying a simple tiling algorithm.

7.4 Partial Sum Cache Configurations
The size and associativity of the partial sum cache can influence the set conflict rate as shown in
Figure 4. We found that the performance is more sensitive to the cache capacity than associativity
(Figure 12). In our design, the partial sum cache is implemented as a fine-grained cache with a
block size equal to the word size of a partial sum (i.e., 8B). The ASA can achieve a good speedup
with a 4KB cache, which can save up to 512 key-value pairs. The tiling algorithm selects the size of
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Fig. 11. Overflow rate for ASA with and without tiling.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

4K
BA

1

4K
BA

2

4K
BA

8

4K
BF

ul
ly

8K
BA

1

8K
BA

2

8K
BA

8

8K
BF

ul
ly

16
KB

A1

16
KB

A2

16
KB

A8

16
KB

Fu
lly

Sp
ee

du
p

Partial sum cache configuration

Fig. 12. Performance with different partial sum cache configurations. (The L1 cache size is kept as 32KB)

the sub-matrices to fit the number of non-zeros into the cache. The smaller the cache, the faster
the cache lookup and the lower the lookup energy. However, if the cache is too small, the input
sub-matrices of A would have fewer rows and hence increase the amount of irregular accesses
due to the DCSC storage format used in HipMCL. Ideally, the partial sum cache should be large
enough to allow the input data broadcasting to saturate the system memory bandwidth, yet small
enough to allow fast cache lookup to match with the demand sparse accumulation throughput.
This optimal design point of cache size depends on the sparsity and merging factor of the matrices.
Luckily, for the evaluated graphs, the selected 8KB cache is within this optimal range.

7.5 Roofline Modeling
Sparse accumulation is the bottleneck of the baseline system that prevents it from achieving a
higher throughput. A roofline model for HipMCL application with different inputs is shown in
Figure 13, which includes bandwidth ceilings of different levels of the memory hierarchy and
a computation ceiling. The original HipMCL implementation does not fully utilize the memory
bandwidth nor the processing throughput. This is because the sparse accumulation is bounded by
the data-dependent branches. The proposed ASA eliminates those hard-to-predict branches and
improves sparse accumulate throughput using dedicated partial sum caches. The performance is
improved by more than 2x. As a result, for all of the inputs, their positions on the roofline graph

2The FLOP calculation does not include the accumulations done by ASA.
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are shifted toward the upper left. After using ASA, all of the inputs are closer to the rooflines. Most
inputs are bounded by the memory and last level cache throughput.

7.6 Instruction Reduction
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Fig. 14. Normalized instruction count after adopting ASA.

The proposed ASA reduces the total number of instructions by 1) packing complicated hash
probing and collision handling into a single instruction, and 2) removing the symbolic execution
as the implementation does not require allocating the hash table from software anymore. On
average, the HipMCL algorithm running on ASA architecture observes a 54.4% dynamic instruction
reduction as compared to the baseline (Figure 14). Although additional instructions are expected
when there are cache overflows, the frequency of overflows remains low for all evaluated inputs.
As a result, it does not contribute a large portion to the total instruction count.

7.7 On-chip Energy
HTA reduces the energy consumption and achieves a better performance as compared to the
baseline. The proposed ASA architecture reduces more energy as compared to HTA, shown in
Figure 15. There are three reasons for this further energy reduction. (1) The reduced instruction
counts contribute to a reduction in energy associated with instruction fetching and decoding. (2)
hardware hash probings in ASA use a smaller partial sum cache, which has a lower access energy
than the access energy of a L1 cache. And (3) the reduced execution time in ASA reduces energy

18



ASA: Accelerating Sparse Accumulation in Column-wise SpGEMM ACM TACO, Vol. X, No. Y, 2021

0.0
0.2
0.4
0.6
0.8
1.0

RM
AT

he
pt

h pb

so
c-

ep
in

io
ns

vi
ru

s

su
bg

ra
ph

4

su
bg

ra
ph

5

eu
ka

ry
a

ar
ch

ae
a

GE
O

M
EA

NNo
rm

al
ize

d 
En

er
gy

Core L1 L2 LLC Mem ASA

Fig. 15. Energy consumption normalized to the baseline. (Left bar: Baseline, mid bar: HTA, right bar: ASA)

associated with leakage power. As a result, the ASA reduces the total on-chip energy by 57.1% as
compared to the baseline, which is a nearly 20% more reduction than HTA does.

7.8 Execution time breakdown
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Fig. 16. Average normalized execution time breakdown.

To quantify the performance bottleneck, a execution time breakdown is shown in Figure 16,
which followed the CPI stack methodology [16]. Each bar represent the average stalling time across
cores and memory hierarchy.

ASA can reduce the stalling by branch mispredictions more than HTA does. This is because ASA
can handle collision and data-dependent accumulation automatically by hardware. Moreover, ASA
offloads the sparse accumulation to the partial sum cache. Execution time on L1 and LLC cache is
also significantly reduced as compared to baseline.

7.9 Area overhead
The area overhead of the ASA architecture consists of four major components: 1) the partial
sum caches, 2) the additional FP adders, 3) the accumulation waiting buffers, and 4) the address
generators. The total area overhead is 0.014𝑚𝑚2 at 14nm, which occupies 0.013% of an 8-core
processor die (100.708𝑚𝑚2).

8 RELATEDWORK
To the best of our knowledge, ASA is the first tailored accelerator design for sparse accumulation
in column-wise SpGEMM. In this section, we discuss the pros and cons of related works that target
SpGEMM.
Hardware-accelerated index matching. SMASH [25] proposed a novel software encoding

based on a hierarchical bitmap and used a bitmap management unit per core for highly efficient

19



ACM TACO, Vol. X, No. Y, 2021 Zhang, et al.

indexing of sparse matrices for the inner-product method. It does not fundamentally reduce the
dependent loads as each multiplication is always followed by an index matching of two elements.
Moreover, the hierarchical bitmaps occupy a larger memory footprint as compared to the CSR [31]
format. The method requires converting the data format from CSR to the hierarchy of bitmaps as a
pre-processing step, which adds a 4-30% of the end-to-end execution with different inputs.
Hardware-accelerated scatter updates. PHI [36] added compute logic at each cache level

to buffer and coalesce these commutative updates throughout the hierarchy. As a result, it ex-
ploits temporal locality with low cost of synchronizations. In column-based SpGEMM, especially
SUMMA [11] , the input matrices are partitioned and broadcast to different cores, so that most of
the scatter updates will hit in the cache with minimal synchronizations with other cores. In our
works, ASA has the following differences that makes it a better fit for column-based SpGEMM.
1) ASA extends the ISA for reducing branch-misprediction cost while PHI did not improves the
branch predictions. 2) ASA supports hardware hash-based SpGEMM, which can effectively reduce
the footprint of the scatter updates, while PHI focused on scatter updates to larger memory space.
And 3) ASA leverages the partial sum cache with a higher throughput as compared to L1 cache to
improve the speed of the sparse accumulations.
Hardware-accelerated hash lookup. HTA [59] proposed to extend the ISA for hash-specific

operations, including hash lookup, insertion, and deletion, which helps to reduce the hard-to-predict
branches and improves the core utilization. As compared to HTA, the proposed ASA can accelerate
sparse accumulation in addition to hash operation. ASA handles hash collisions and cache overflows
by hardware. Instead of leveraging existing caches to store hash table entries as HTA does, ASA
adds dedicated on-chip storage as partial sum cache to provide higher throughput. With the same
total on-chip cache capacity (data cache + partial sum cache), ASA outperforms HTA by more than
62.2% for a Markov clustering application with a SpGEMM kernel. SPX64 [46] proposed to add an
on-chip scratchpad for accelerating hash lookups in redo logging for the transactional memory.
However, it does not resolve data-dependent branches.

Processing-in-memory. PIM [29, 47, 61] exploits high internal bandwidth in/near memory. In
3D-stacked memory technology, cores on the logic layer can access the memory layer much faster
than cores on the processors die do, which is helpful for memory-intensive applications. LiM [61]
added CAM-based SpGEMM cores at the logic layer for fast lookup in sparse accumulation. As
compared to the ASA design, LiM requires more hardware modifications and advanced technology.

SpGEMM accelerators. Software/hardware co-designs [23, 38, 40, 58, 60] of the outer-product
based SpGEMM have shown significant improvements over the implementations on the traditional
architectures. The OuterSPACE [38] architecture uses reconfigurable coalescing caches to separately
optimize the multiplication and merging phases [38]. This is improved upon by SpArch [60], which
proposed a dedicated merger and uses a Huffman tree scheduler to merge together partial sums
in a way that reduces memory traffic. Gamma [58] leverages Gustavson’s algorithm to accelerate
SpGEMM, which manages data through fiber cache explicitly and improves the row traversal
schedule to improve the data reuse. The proposed ASA architecture is an in-core extension to
accelerate SpGEMM with good performance (5× speedup), which maintains the generality of
multicore processors and requires a small area overhead (0.1%). Dedicated SpGEMM accelerators
can achieve more than 20× speedup at a cost of more than 200× area overhead as compared to
ASA.

Heap-based sparse accumulation [1, 10]. Instead of a hash table, some SpGEMM implemen-
tations use priority queues (heap) that are indexed by row indices for sparse accumulation. The
advantage of using a heap-based accumulator is it does not require a sort and merge operation
because the entries in the heap are sorted already. However, heap-based SpGEMM can be expensive
because it requires logarithmic time to extract elements from the heap. As a result, heap-based
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SpGEMM is more suitable for SpGEMMs with a low compression factor. In CombBLAS [10], a
hybrid method is used to dynamically select whether to use a heap- or hash-based approach based
on the symbolic phase analysis result. However, hash probing is still the bottleneck in CombBLAS
when the applications have a high compression ratio.

Branch predication. Predicated execution [52] removes conditional branches from the instruc-
tion stream by conditionally execute instructions based on the results of the boolean conditions,
which can effectively reduce the branch misprediction penalty. However, predication increases the
number of executed instructions and energy consumption. The ASA design replaces the software
hash lookups by the hardware cache lookups. As a result, there is no branch in sparse accumulations.
Moreover, ASA reduces the total number of instructions by packing complicated hash probing and
collision handling into a single instruction, which can further improve performance and reduce
energy.

Indirect memory prefetching. Indirect memory prefetching [50, 57] can hide front-end stalling
time by prefetching dependent data ahead of the time. In this work, the columns of the output
matrix is tilled to fit into the partial sum cache. Hence, prefetching does not help in the sparse
accumulation phase. Input columns of matrix A that are indexed by column values in matrix B can
potentially benefit from indirect memory prefetching, which is complementary to ASA.

9 CONCLUSION
This work proposes ASA, an in-core extension for accelerating sparse accumulations in column-base
SpGEMM. By using a single instruction to compute sparse accumulation for each multiplication
result of a pair of non-zeros, ASA can reduce the total number of dynamic instructions, execution
time, and energy. ASA adds a small dedicated on-chip set-associative cache with an accumulator
to compute hash probing and accumulate to achieve a high throughput. Linear hash probing is
replaced by parallel tag search in the set-associative cache. And cache overflows are stored to a
pre-allocated data structure in memory to avoid stalling by allowing delayed merging of partial
sums. The proposed ASA architecture has a simple programming interface that allows further
software optimizations. As compared to the baseline as well as a state-of-the-art hashing accelerator
design, ASA achieves better performance and energy efficiency with the same total on-chip cache
capacity.
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