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Large-scale Cognitive GWAS Meta-Analysis Reveals Tissue-
Specific Neural Expression and Potential Nootropic Drug Targets

A full list of authors and affiliations appears at the end of the article.

Summary

Here, we present a large (N=107,207) genome-wide association study (GWAS) of general 

cognitive ability (g), further enhanced by combining results with a large-scale GWAS of 

educational attainment. We identified 70 independent genomic loci associated with GCA. Results 

showed significant enrichment for genes causing Mendelian disorders with an intellectual 

disability phenotype. Competitive pathway analysis implicated the biological processes of 

neurogenesis and synaptic regulation, as well as the gene targets of two pharmacologic agents: 

cinnarizine, a T-type calcium channel blocker; and LY97241, a potassium channel inhibitor. 

Transcriptome-wide and epigenome-wide analysis revealed that the implicated loci were enriched 

for genes expressed across all brain regions (most strongly in the cerebellum); enrichment was 

exclusive to genes expressed in neurons, but not oligodendrocytes or astrocytes. Finally, we report 

genetic correlations between cognitive ability and disparate phenotypes including psychiatric 

disorders, several autoimmune disorders, longevity, and maternal age at first birth.
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Introduction

Genome-wide association studies (GWAS) have been highly successful at uncovering 

hundreds of genetic loci associated with heritable quantitative traits such as height (Wood et 

al., 2014) and weight/body mass index (Locke et al., 2015). However, identifying genetic 

loci underlying cognitive ability has been much more challenging, despite heritability of 0.5 

or greater, as determined by both classical twin studies (Deary et al., 2009) and molecular 

genetic studies (Davies et al., 2011a). In part, the difficulty with cognitive GWAS may be 

caused by the relative heterogeneity in the measurement of the cognitive phenotype. 

Traditionally, general cognitive ability (g) has been defined as a latent trait underlying 

shared variance across multiple subdomains of cognitive performance, psychometrically 

obtained as the first principal component of several distinct neuropsychological test scores 

(Johnson et al., 2008). Using this approach, several cognitive GWAS with fewer than 20,000 

subjects yielded no genome-wide significant (GWS) effects (Benyamin et al., 2013; Davies 

et al., 2011b; Lencz et al., 2014), while a few GWS loci were identified in larger GWAS of 

35,298 (Trampush et al., 2017) and 53,949 (Davies et al., 2015) subjects, respectively. By 

contrast, two independent GWAS of height with sample sizes of approximately 30,000 

subjects each yielded 20–30 GWS hits (Gudbjartsson et al., 2008; Weedon et al., 2008); 

allelic effect sizes were ~2–5 times larger than the largest obtained in cognitive GWAS 

(Trampush et al., 2015).

Very recently, a cognitive GWAS (Sniekers et al., 2017) was able to leverage a very brief 

measure of fluid intelligence, highly correlated with psychometrically defined g, obtained in 

Lam et al. Page 2

Cell Rep. Author manuscript; available in PMC 2018 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



over 50,000 subjects. In combination with several traditional cognitive GWAS cohorts, total 

sample size was 78,308. This sample size permitted discovery of 18 independent GWS 

allelic loci, as well as numerous additional loci from gene-based analysis. This report was 

critical in demonstrating that signal could be enhanced by combining data from cohorts with 

brief measures of intelligence with data from more traditional cognitive GWAS.

A further approach to enhancing power in cognitive GWAS has focused on educational 

attainment as a proxy phenotype (Rietveld et al., 2014). It is acknowledged that this 

phenotype is ‘noisy’, as it is influenced by non-cognitive genetic (Belsky et al., 2016) (e.g., 

personality) and environmental (Johnson et al., 2010) (e.g., socio-economic) factors; 

consequently, observed allelic effect sizes have been even smaller than those obtained for 

GWAS of g (Rietveld et al., 2013). However, by utilizing a single-item measure (years of 

education completed), obtained incidentally in large studies of other phenotypes, this 

approach has allowed investigators to obtain extremely large sample sizes. A recent study of 

educational attainment in nearly 300,000 individuals identified 74 independent GWS loci 

(Okbay et al., 2016). Moreover, a new technique called multi-trait analysis of GWAS 

(MTAG) (Turley et al., 2017) has been developed which permits integration of GWAS data 

across related traits, accounting for the possibility of overlapping samples across studies, and 

requiring only summary statistics. The developers of MTAG demonstrated its accuracy and 

utility in a study of traits (depression, neuroticism, and subjective well-being) that 

demonstrate genetic correlations in the range of ~.70–.75; importantly, the genetic 

correlation between cognitive performance and educational attainment has been consistently 

reported to be in the same range (Davies et al. 2015, 2016; Okbay et al. 2016; Trampush et 

al. 2017; Sniekers et al. 2017). MTAG is able to quantify the degree of “boost” to the signal 

of a single-trait GWAS, providing an estimate of observed sample size, and providing 

summary statistics (allelic weights) that can then be utilized in all downstream annotation 

pipelines available for GWAS output.

In the present study, we first utilized GWAS meta-analysis to combine our prior COGENT 

consortium GWAS (Trampush et al., 2017) of psychometrically defined g with the recently 

reported GWAS (Sniekers et al., 2017) relying primarily on the brief measure, resulting in a 

combined cohort of N=107,207 non-overlapping samples measured for cognitive 

performance. Next, we utilized MTAG to combine these results with the large-scale GWAS 

of educational attainment, resulting in further enhanced power. At each step, we performed 

both allelic and gene-based tests. We then performed downstream analyses on the resulting 

MTAG summary statistics, including: 1) competitive gene set analyses to identify key 

biological processes and potential drug targets implicated; 2) stratified linkage 

disequilibrium score regression (LDSC) to identify differential cell type expression; 3) 

transcriptome-wide association study (TWAS) methods, to identify specific effects of altered 

gene expression in the brain on cognition; and 4) LDSC to identify genetic correlations with 

other anthropometric and biomedical phenotypes.
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Results

Meta-Analysis: Cognitive Performance GWAS

Meta-analysis of all non-overlapping cohorts from the two GWAS of cognitive performance 

(total N = 107,207) identified 28 independent genomic loci reaching genome-wide 

significance (GWS, P<5E-08), using default clumping parameters from the Functional 

Mapping and Annotation (FUMA) pipeline (Watanabe et al., 2017) pipeline (Figure 1a); this 

represents a 55.6% increase in loci compared to the previous GWAS (Sniekers et al., 2017) 

of cognitive performance. Two of these loci each contained two uncorrelated variants with 

independent effects, resulting in 30 independent lead SNPs. Evidence for spurious inflation 

of statistical tests was quite limited for a large study of a highly polygenic trait (λ=1.23; 

λ1000=1.001; LD score intercept=1.03; see also PP plot in Supplementary Figure 1), and 

overall SNP heritability was .168. Of the 28 GWS loci, 12 were not previously reported as 

GWS in published studies of cognitive or educational phenotypes (Supplementary Table 1). 

The majority of the 5,610 markers reaching a nominal significance threshold were intronic 

SNPs followed by those in the intergenic regions (Supplementary Table 2). As shown in 

Supplementary Table 3, several of the GWS loci overlap with loci related to schizophrenia, 

bipolar disorder, and other neuropsychiatric phenotypes, as well as obesity/body mass index 

and other traits.

The significant loci harbored 88 known protein coding genes (Supplementary Table 4), 

about half of which were in three large regions (Supplementary Figure 2), including two 

well-characterized regions: the distal 16p11.2 region, in which deletions have been 

associated with schizophrenia and other neuropsychiatric phenotypes (Guha et al., 2013), 

and the 17q21 region, in which inversions have been associated with neuropsychiatric 

disorders (Cooper et al., 2011). Using MAGMA (Multi-marker Analysis of GenoMic 

Annotation; de Leeuw et al., 2015) gene-based tests, 73 genes were genome-wide significant 

(Supplementary Table 5), of which 39 were overlapping with the 88 genes noted above, 

resulting in a total of 122 candidate genes with statistical evidence of association to 

cognitive performance.

MTAG: Combining Cognitive Performance and Educational Attainment GWAS

MTAG analysis combining the cognitive performance results obtained above with the large 

educational attainment GWAS previously reported (Okbay et al., 2016), resulted in a 75% 

enrichment of statistical power, effectively boosting the original sample size of N = 107,207 

to a GWAS equivalent of N = 187,812. Default clumping procedures revealed that 70 

independent genomic loci reached genome-wide significance, with 82 independent SNPs 

(Figure 1b). Similar to the GWAS results above, the PP plot (Supplementary Figure 3) 

demonstrated polygenicity without evidence for artifactual inflation of statistical tests 

(λ=1.28; λ1000=1.001; LD score intercept=0.91), and overall SNP heritability was 0.336. Of 

the 70 GWS loci, 34 were not previously reported as GWS in published studies of cognitive 

or educational phenotypes (Figure 2; Supplementary Table 1). All but two of the 30 loci 

identified in the meta-analysis remained genome-wide significant in the MTAG results; even 

these two loci showed the same direction of allelic effects between cognitive meta-analytic 

GWAS and the educational GWAS. The majority of the 13,549 SNPs reaching a nominal 
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significance threshold in the MTAG analysis were intergenic or intronic (Supplementary 

Table 2; Supplementary Figure 4). GWAS catalog annotations are listed in Supplementary 

Table 3. Within the GWS loci, 265 protein coding genes were identified (Supplementary 

Table 4). Additionally, 256 genes were significant in MAGMA gene-based tests 

(Supplementary Table 6); of these, 85 genes were non-overlapping with the 265 genes 

within SNP GWS loci, resulting in a total of 350 genes receiving GWS support from the 

MTAG results.

As a formal validation that the MTAG methodology successfully predicts phenotype 

variance for cognitive performance, MTAG was re-analyzed, excluding the COGENT 

cohorts (i.e., the IQ GWAS of Sniekers et al. 2017 was combined with the educational 

GWAS of Okbay et al.2016). The ASPIS and GCAP datasets were held out as target cohorts 

used for calculation of polygenic risk score modelling for “g”. Despite the relatively small 

size of these hold-out cohorts, results show strongly significant polygenic prediction of “g” 

using MTAG-derived allele weights (Figure 3a and 3c), accounting for more than 4% of the 

variance in the GCAP cohort. For both cohorts, polygenic prediction began to drop at PT 

thresholds above 0.05, suggesting that there may be some degree of saturation of signal 

beyond the nominal 0.05 significance level at these sample sizes. Additional comparisons 

were made with IQ-only predictions (weights derived from Sniekers et al. 2017) and 

education-only predictions (weights derived from Okbay et al. 2016) for the same hold-out 

cohorts (Figure 3b and 3d), and we found that the MTAG-derived weights showed a 3.5-

times and 3-times improvement in R2 variance explained in the ASPIS cohort, for IQ and 

Education respectively. For the GCAP cohort, there was a 5.1-times to 96-times 

improvement in R2 variance relative to IQ or education alone.

Overlap with Intellectual Disability Genes

We compared the list of 350 genes emerging from MTAG with a list of 621 genes known to 

cause autosomal dominant or autosomal recessive Mendelian disorders featuring intellectual 

disability (Harripaul et al., 2017; Vissers et al., 2016). As shown in Table 1, a total of 23 

genes identified by MTAG appeared on this list, representing a 2-fold enrichment over 

chance (hypergeometric probability p=0.001). Examining autosomal dominant and recessive 

Mendelian genes demonstrated a somewhat stronger enrichment for autosomal dominant 

genes (p=.0017) than autosomal recessive genes (p=.054).

Tissue Expression Enrichment and Competitive Pathway Analysis

Downstream MAGMA expression profiles and competitive pathway analysis were 

conducted as part of the FUMA pipeline. MAGMA tissue expression profile analysis 

revealed that genes emerging from the MTAG analysis were significantly enriched for 

expression in nearly all central nervous system tissues (except for substantia nigra and spinal 

cord), and that this enrichment was exclusive to neural tissues (Figure 4a). Notably, the 

strongest enrichment was observed for genes expressed in the cerebellum, followed by 

cortex, and slightly weaker (but still strongly significant) enrichment in subcortical and 

limbic structures. Competitive pathway analysis (based on gene ontology categories) for 

GWS MAGMA genes identified by MTAG revealed significant enrichment of neuronal and 

synaptic cellular components, as well as the biological processes of neurogenesis and 
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regulation of synapse organization (Table 2, upper panel). Because three MTAG loci (at 

chromosome 3q21.31, 16p11.2, and 17q21.31) were unusually large, each containing 15 or 

more genes which may have disproportionately impacted enrichment results, we re-ran the 

above tissue expression and pathway analyses excluding these three regions. Results were 

substantively unchanged; all of the same neural tissues remained significantly enriched, in 

the same order of significance as shown in Figure 4a, and all of the same pathways remained 

significant (Bonferroni-corrected p<.05) as shown in Table 2, except for the cellular 

compartment “dendrite” (Bonferroni-corrected p=.089).

Competitive pathway analysis for drug pathways (Gaspar and Breen, 2017) revealed that the 

gene targets of two drugs were significantly enriched in the MTAG results (Table 2, lower 

panel): Cinnarizine, a T-type calcium channel blocker and LY97241, a potassium channel 

inhibitor. L-type calcium channel blockers and anti-inflammatories also showed suggestive 

evidence of enrichment. In a related analysis of drug classes, significant enrichment was 

observed for voltage-gated calcium channel subunits (p=9.28E-06, Bonferroni-corrected 

P=5.38E-04).

Stratified LD score regression (Finucane et al., 2017) also demonstrated an enrichment of 

cell type expression for neuronal tissues only. Notably, genes found in the neuronal 

expression list of Cahoy (Cahoy et al., 2008) were significantly enriched (p=.0129; 

Bonferroni-corrected p=.0386), whereas negative results were obtained for genes expressed 

in oligodendrocytes (p=.4997) and astrocytes (p=.9057). Additionally, using Roadmap 

annotations, epigenetic enrichment was strongest in fetal brain tissue DNase sites and 

H3K4me1 primed enhancers; followed by adult cortical H3K27ac active enhancer sites (see 

Supplementary Table 7 for further details). No enrichment was observed for any non-

neuronal tissue. Again, results were not substantively changed when the three large loci were 

removed from these analyses.

Gene Expression Analyses

In order to derive specific biological insights from the broad association loci implicated by 

MTAG, we performed a series of analysis designed to identify individual gene expression 

changes associated with cognition. First, we performed transcriptome wide analysis 

(TWAS), using MetaXcan (Barbeira et al., 2016), on MTAG SNP results in order to identify 

transcripts for which up-regulation or down-regulation in specific neural compartments was 

associated with cognition. [Note that TWAS follows a similar logic to imputation, in that an 

external reference (in this case, publicly available GTEx eQTL data for 10 brain regions) is 

utilized to link SNP-based summary statistics to tissue-based expression levels]. As shown 

in Figure 4b (and detailed in Supplementary Table 8), most of the significant TWAS results 

are expressed across all neural tissues, involving genes such as AMIGO3, RNF123, and 

RBM6. Moreover, no individual tissue compartment was much more strongly enriched for 

associations compared to the others. However, a few strong transcriptomic associations were 

specific to individual brain regions. For example, the strongest result in hippocampus was 

with DAG1; TWAS demonstrated that greater expression of this gene in hippocampus was 

associated with higher cognitive scores. However, this gene was not expressed in other 

neural tissue types in the GTEx database. Similarly, lower levels of ACTR1A were 
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significantly associated with better cognition, but this transcript was observed only in frontal 

cortex.

Second, we applied a Bayesian fine-mapping approach (CAVIAR-BF, Chen et al. 2015) to 

identify putative causal SNPs within each associated locus, as defined in Supplementary 

Table 9. CAVIAR-BF revealed that there was strong evidence (BF = 3.71e+2) for at least 1 

causal SNP within each of the 70 independent MTAG loci. There is also evidence that there 

is at least 2 causal SNPs in 65 of the loci (BF = 3e+6) and at least 3 causal SNPs in 47 of the 

loci (BF = 2.86e+6). In the extended region analysis, there was evidence for at least 1 causal 

SNP (BF = 3.45e+2) and 2 causal SNPs (BF = 2.89e+6) for 70 and 63 loci respectively. 

Model search revealed that there were 386 putative causal SNPs within the 70 independent 

loci (Supplementary Table 10). Lookups of these SNPs in two brain eQTL databases 

(BrainEAC (Ramasamy et al., 2014) and CommonMind(Hauberg et al., 2017)) revealed 

several additional SNP-eQTL relationships that can explain variance in the cognitive 

phenotype (Supplementary Tables 11 and 12); the most notable eQTL effect was observed 

for rs3809912 on chromosome 18. This SNP, which was GWS in the MTAG results 

(p=7.06E-09), was a strong eQTL for CEP192 (p = 5.1e-38, FDR < 0.01). This eQTL was 

confirmed in the CommonMind database (FDR<.01), which demonstrated that expression of 

44 independent transcripts in frontal cortex were significantly associated with MTAG SNPs 

at the FDR<.01 level. Combining annotation information from the Mendelian gene analysis, 

MetaXcan TWAS, Braineac and CommonMind databases, we found supporting functional 

evidence for 112 of the 350 candidate genes nominated by MTAG (Supplementary Table 

13). The remaining 238 genes without functional support had statistical evidence for 

association to cognition, but are considered to be ‘candidate genes’ requiring further 

functional or experimental support.

Genetic Correlations with Other Phenotypes

LD-score regression was carried out across 89 traits in 15 broad phenotypic categories in 

LD-hub (Zheng et al., 2017): 1) aging, 2) anthropometric, 3) autoimmune, 4) brain volume, 

5) cardiometabolic, 6) education, 7) glycemic, 8) lipids, 9) lung function, 10) neurological, 

11) personality, 12) psychiatric, 13) reproductive behavior, 14) sleep, and 15) smoking 

behavior (Figure 5; Supplementary Table 14). We performed LD-score regression separately 

for the results of our initial meta-analysis and for the MTAG results. For comparison, we 

also present LD-score regression results for the educational attainment GWAS of Okbay et 

al. (2016); it should be noted that only 14 phenotypes were examined for genetic correlation 

in that publication.

Cognition appeared to be strongly associated at the genetic level with aging, education, 

personality, neuropsychiatric disorders, reproductive behavior, and smoking behavior. Strong 

association with parental age at death was observed for both the GWAS meta-analysis and 

MTAG results. Meanwhile, moderate associations with anthropometric traits were observed, 

although associations with brain volumes were surprisingly modest, except for total 

intracranial volume (rg for MTAG results = 0.31, p=7.37E-19). While many of these 

correlations have been described previously (Hagenaars et al., 2016; Okbay et al., 2016; 

Sniekers et al., 2017; Trampush et al., 2017), two results observed in the present study were 
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not reported in those prior publications. First, we report a strong positive genetic correlation 

between cognitive performance and maternal age at first birth (rg for MTAG results = 0.63, 

p=2.36E-163) and inverse correlation with parental number of children ever born (rg for 

MTAG results = −0.22; p=6.91E-13). It is possible that these effects are mediated by years 

of higher education, insofar as correlations were even stronger with educational attainment 

(rg for parental age at first birth=0.72, p=2.24E-244; rg for number of children= −0.26, 

p=3.34E-18). As with any other regression relationship, a role for unmeasured mediators, 

such as propensity for delayed gratification, cannot be ruled out. Second, we observed 

modest, yet nominally significant, inverse correlations between cognition and autoimmune 

diseases such as eczema and Crohn’s disease, attaining Bonferroni significance for 

rheumatoid arthritis (rg for MTAG results = −0.2086; p=1.60E-08); there was also a 

Bonferroni-significant positive genetic correlation with celiac disease (rg for MTAG results 

= 0.1922; p=0.0001). While results of cross-trait analyses were largely consistent using 

either the GWAS results, the MTAG results, or the previously-published educational 

attainment datasets, there were notable divergences in correlations with psychiatric 

phenotypes, especially schizophrenia and bipolar disorder.

Discussion

Uncovering the molecular genetic basis of individual differences in cognitive performance 

can have a significant impact on our understanding of neuropsychiatric disorders, which are 

both phenotypically (Burdick et al., 2011; Ferreri et al., 2011; Keefe and Harvey, 2012; 

Snyder, 2013) and genetically (Lencz et al., 2014; Smeland et al., 2017; Stergiakouli et al., 

2017) correlated with cognition, as well as numerous non-psychiatric health-relevant 

phenotypes (Hagenaars et al., 2016) which also demonstrate significant genetic correlations 

with cognitive function. Here, we have presented the largest GWAS of cognition to date, 

with 107,207 individuals phenotypically characterized for performance on standardized tests 

measuring general cognitive ability. Results were further enhanced by utilizing a relatively 

new approach to allow meta-analysis with a large-scale GWAS of educational attainment, 

which is highly (though not perfectly) correlated with cognitive ability at the genetic level. 

With this approach, we were able to identify 70 genomic loci significantly associated with 

cognition, implicating 350 candidate genes underlying cognitive ability. In total, we found 

that common SNPs were able to account for roughly half of the overall heritablility of the 

phenotype as determined by prior family studies (Plomin and Deary, 2015).

Downstream analysis confirmed an important role for neurodevelopmental processes in 

cognitive ability, consistent with implications from the education GWAS (Okbay et al., 

2016). Significant genes were more strongly enriched for expression in fetal brain tissue 

than adult tissue; results were also enriched for genes implicated in early 

neurodevelopmental disorders; and neurogenesis was the most strongly enriched GO 

biological process. At the same time, it is important to emphasize that adult neural tissues 

were also strongly represented in the results, and multiple synaptic components were 

significant in the pathway analysis. In this context, it is noteworthy that many cellular 

processes necessary for early neurodevelopment are also involved in adult synaptic 

plasticity. This duality is represented by several significant genes emerging from our 

analysis: CELSR3 encodes an atypical cadherin plasma membrane protein involved in long-
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range axon guidance in neurodevelopment through planar cell polarity signaling (Chai et al., 

2015), but is also necessary for adult formation of hippocampal glutamatergic synapses 

(Thakar et al., 2017). Similarly SEMA3F is a negative regulator of dendritic spine 

development in adult hippocampus (Tran et al., 2009), but embryonically serves as an 

endogenous chemorepellent, guiding septohippocampal fibers away from non-limbic regions 

of developing cortex (Pascual et al., 2005).

While synaptic mechanisms were strongly implicated by our results, it is noteworthy that 

there was no statistical evidence for enrichment of genes expressed in oligodendrocytes or 

astrocytes. While developmental disorders primarily affecting oligodendrocytes, such as 

metachromatic leukodystrophy, are marked by cognitive impairment (Faust et al. 2010), it is 

possible that individual variation in cognitive ability within the normal range is less directly 

under genetic control via white matter mechanisms. By contrast, strong evidence was 

provided for the involvement of genes expressed in the cerebellum. Converging evidence 

from functional imaging studies, lesion studies, structural connectivity, and evolutionary 

considerations strongly implicate a role for cerebellum in higher cognitive functions 

(Buckner, 2013), possibly through the mechanism of prediction and error-based learning 

(Sokolov et al. 2017).

By utilizing TWAS methodology, we were able to isolate expression effects of specific genes 

within some of our broad GWAS loci. For example, ACTR1A, which lies near the GWAS 

peak at chromosome 10q24, encodes a microtubular dynactin protein involved in retrograde 

axon transport (Moughamian et al., 2013); other genes at this locus were not significant in 

the TWAS analysis (although a role in cognition cannot be ruled out, given the limited 

sample size in the reference brain expression datasets in GTEx). However, most of the genes 

implicated by TWAS were clustered in a few “hot” genomic loci, which may represent 

topologically associated domains (TADs) under the control of a shared 3-dimensional 

chromatin structure (Gonzalez-Sandoval and Gasser, 2016). Whether effects on cognition 

are driven by all differentially expressed genes within such loci, or if specific effects can be 

disentangled through experimental means, remains to be determined.

The overlap of 23 genes from our results with known genes for Mendelian disorders 

characterized by intellectual disability has several implications. First, this statistically 

significant enrichment provides partial validation of our MTAG results. Second, genes with 

known mutations of large effect, when combined with our data demonstrating SNPs with 

smaller regulatory effects on the same phenotype (cognition), can be considered an “allelic 

series” (Plenge et al., 2013) – a natural set of experiments powerfully demonstrating 

directional information (in the form of a dose-response curve) regarding gene function. Such 

information can be leveraged for the identification of novel drug targets. Third, converging 

evidence across the Mendelian and GWAS lists can aid interpretation of specific pathways 

and molecular processes that are necessary to normal neuronal function, and vice versa. For 

example, two genes on both the Mendelian and GWAS lists (GMPPB and LARGE) are 

associated with dystroglycanopathies with mental retardation. This information provides 

context for the observation that DAG1, which encodes dystroglycan 1, is the strongest 

TWAS result in the hippocampus. DAG1 is necessary for GABAergic signaling in 

hippocampal interneurons (Früh et al., 2016), While dystroglycanopathies are most 
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prominently characterized by muscular dystrophy and retinal abnormalities, it is possible 

that all of these genes play a role in hippocampal synapse formation that is relevant to 

normal cognitive ability.

As noted above, one of the most important aims of GWAS studies is the identification of 

novel drug targets, and it has been suggested that targets with supporting GWAS evidence 

may be twice as successful in clinical development compared to those without such evidence 

(Nelson et al. 2015). Our drug set enrichment analysis pointed to several potential nootropic 

mechanisms. Most notably, the strongest signal was for cinnarizine, a T-type calcium 

channel inhibitor typically prescribed for seasickness. In the present study, we discovered an 

association of cognition to CACNA1I, which encodes one component of the voltage-

dependent T-Type Cav3.3 channel, and has been previously associated with schizophrenia 

(PGC2-SCZ, 2014). While cinnarizine has strong antihistamine activity and may be 

inappropriate for general cognitive enhancement, a novel agent targeting Cav3.3 has shown 

nootropic activity in preclinical models (Moriguchi et al., 2012). In addition to gene set 

results suggesting a potential role for calcium and potassium channel regulation, single-gene 

results also point towards a potential role for the metabotropic glutamate receptor encoded 

by GRM3. This gene is also implicated in schizophrenia (PGC-SCZ, 2014), and drugs 

targeting GRM3 have been suggested as a potential treatment (Lencz & Malhotra, 2015) 

however, a large-scale trial of one such agent was unsuccessful in treating psychotic 

symptoms (Downing et al. 2014). Based on the present results, future studies may seek to 

examine a role for such compounds in cognitive remediation. It is also noteworthy that the 

present study identified genome-wide significant evidence implicating three 

phosphodiesterase genes: PDE1C, PDE2A, and PDE4D. In particular, there is growing 

interest in PDE2A inhibitors as potential agents for cognitive enhancement (Trabanco et al. 

2016), and evidence suggests that these agents may enhance synaptic plasticity via 

presynaptic modulation of cAMP hydrolysis (Fernández-Fernández et al. 2015). PDE4D 

inhibition is also under investigatation as a potential therapy for neurodegenerative disease 

(Ricciarelli et al. 2017).

It is important to emphasize that uncovering genetic variation underlying general cognitive 

ability in the healthy population does not have deterministic implications. As has been 

previously explicated in similar studies (e.g., Trampush et al. 2015), effect sizes for each 

allele are extremely small (R2<0.1% for even the strongest effects), and the combined effects 

genome-wide predict only a small proportion of the total variance in hold-out samples 

(Figure 3). Thus, results of the present study do not hold the potential for individual 

prediction or classification. Nevertheless, the results may still have substantial impact on our 

understanding of molecular mechanisms underlying cognitive ability.

Experimental Procedures

Subject Details

The cohorts included in the current study were described in detail in two prior reports on 

cognitive performance (Sniekers et al., 2017; Trampush et al., 2017) and one prior report on 

educational attainment (Okbay et al., 2016). Sample sizes for these three studies were 

N=78,308, N=35,298, and N = 328,917, respectively. For the present study, two cohorts 

Lam et al. Page 10

Cell Rep. Author manuscript; available in PMC 2018 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reported in Trampush et al., 2017 were excluded, so that cohorts included will be 

independent from those reported in Sniekers et al., 2017: i) Minnesota Center for Twin and 

Family Research (MCTFR) and ii) Lothian Birth Cohort 1936 Study. As a result, sample 

sizes decreased from the originally reported N = 35,298 to N = 28,899. All phenotypes 

included were as reported originally in the respective publications. All subjects provided 

written, informed consent to procedures that were approved by local review boards for the 

institutions at which each cohort was collected. Further details are available in the 

supplementary materials to those three publications.

GWAS Quality Control

Markers reported in the prior COGENT study (Trampush et al., 2017) were updated to build 

37 coordinates, but were originally imputed against the HRC reference panel (McCarthy et 

al., 2016) via the Sanger imputation server. To ensure that markers, allele frequencies, and 

alleles were aligned to the 1000 genomes phase 3 reference panel (The 1000 Genomes 

Project Consortium, 2015), the COGENT summary statistics (Trampush et al., 2017) were 

checked using the EasyQC pipeline (Winkler et al., 2014) which allows summary statistics 

to be aligned and checked against a reference panel of choice. We used the default 1000 

genomes phase 3 reference panel (The 1000 Genomes Project Consortium, 2015), provided 

along with the EasyQC package. Markers were inspected for allele frequency outliers, 

presence of duplicated markers, and allele mismatches with the 1000 genomes reference 

panel. Quality control filters for INFO < .6 and N < 10000 were additionally implemented. 

After EasyQC quality control, 8,040,131 SNPs were available for analysis. Only 87 SNPs 

were excluded due to allele mismatches, 13,276 SNPs were excluded due to allele frequency 

mismatches from the 1000 genomes phase 3 reference panel, 283,163 were found to be 

duplicates and excluded, 104 SNPs were found on the HRC reference panel, but not on the 

1000 genomes phase 3 reference panel, and 2,723,493 SNPs had sample sizes less 10000 

individuals. None of the SNPs failed the INFO < .6 cutoff. The same set of SNPs was 

utilized for subsequent reduced sample meta-analysis without the overlapping LBC1936 and 

MCTFR cohorts in Trampush et al., 2017. As the other prior studies of cognitive 

performance (Sniekers et al., 2017) and education (Okbay et al., 2016) were imputed to the 

1000 genomes phase 3 reference panel, summary statistics were used as provided (URL: 

https://ctg.cncr.nl/software/summary_statistics; https://www.thessgac.org/data).

GWAS Meta-Analysis

Fixed-effect meta-analysis was conducted between Sniekers et al., 2017 and independent 

cohorts reported in Trampush et al., 2017 using the METAL package (Willer et al., 2010). To 

ensure that results of the meta-analysis were contributed by both studies, markers present 

only in Sniekers et al., 2017 or Trampush et al., 2017 but not in both were excluded for 

further analysis. The number of available markers after QC filtering was 7,357,080. Because 

the GWAS of Sniekers et al. (2017) utilized the sample-size weighted method to perform 

meta-analysis across its own cohorts, and did not report variance terms, our meta-analysis 

was conducted using the sample-size weighted method.
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Multi-Trait Analysis for GWAS (MTAG)

To further enrich genetic signals, we employed a newly developed methodology that 

integrates LD-score regression and meta-analysis techniques across related traits: MTAG 

(Turley et al., 2017). MTAG (v0.9.0) was applied to the METAL results described 

immediately above, combined with summary statistics from the recent, large-scale education 

GWAS (Okbay et al., 2016). MTAG analysis allows the boosting of genetic signals across 

related traits, and has been found to be effective in resolving unknown sample overlaps, 

generating trait-specific effect estimates weighted by bivariate genetic correlation. The 

MTAG QC pipeline aligned all alleles across both sets of summary statistics, and ensured 

that SNPs were present across all datasets. SNPs that were not present in either dataset were 

removed. The final SNP count for MTAG was 7,333,576. The MTAG methodology proceeds 

by i) estimating the variance-covariance matrix of the GWAS estimation error, by using a 

series of LD score regressions, of which, under the known properties of LD score regression 

captures relevant sources of estimation error, incorporating population stratification, 

unknown sample overlap and cryptic relatedness ii) estimating the variance-covariance of 

SNP effects using the maximum likelihood procedure reported in (Turley et al., 2017) and 

iii) computes the MTAG estimator for each SNP and each trait. Summary statistics 

consisting of SNP, CHR, BP, per SNP sample size, BETA and SE for each trait were entered 

to the MTAG python command line. The resulting effect estimates and p-values are 

interpreted in the same as single-trait GWAS, which allows standard downstream follow-up 

analysis on the summary statistics. The python code for MTAG is available at https://

github.com/omeed-maghzian/mtag.

Functional Mapping and Annotation for GWAS

GWAS summary statistics from the METAL meta-analysis and MTAG analysis were 

separately entered into the Functional Mapping and Annotation (FUMA) pipeline (Watanabe 

et al., 2017). The FUMA pipeline enables fast prioritization of genomic variants and genes, 

and permits interactive visualization of genomic results with respect to state-of-art 

bioinformatics resources. Manhattan and QQ plots are produced, and MAGMA gene-based 

analysis is performed, accounting for gene size and LD structure32. FUMA was also utilized 

to perform competitive gene-set analyses for GO cell compartment and biological process 

categories using the Molecular Signature Database (MsigDB 5.2). A separate competitive 

gene-set analysis was also conducted for the drug-based pathways previously described by 

Gaspar & Breen (2017). The pipeline also generates aggregated statistics for independent 

loci, lead SNPs, tagged genes, and supplementary plots – including SNP and locus 

annotations. Default clumping parameters are GWAS p-value < 5E-08; r2 threshold to define 

LD structure of independent SNPs > 0.1; maximum P-value cutoff < 0.05; population for 

clumping = EUR; minor allele frequency filter > 0.01; maximum distance between LD 

blocks to merge into a single locus: 250kb. Follow-up queries were then made for 

independent loci of the cognitive performance meta-analysis as well as the MTAG results 

and compared against summary statistics for the prior cognitive and education GWAS. For 

purposes of comparison, loci in which the lead SNPs were within 500kb of each other were 

considered overlapping.
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We compared the list of genes resulting from the MTAG analysis (including all genes within 

GWS SNP loci, as well as GWS genes identified with MAGMA) with a list of 621 genes 

known to cause autosomal dominant or autosomal recessive Mendelian disorders featuring 

intellectual disability; this list is primarily derived from a recent comprehensive review 

(Vissers et al., 2016), supplemented by a subsequent large-scale study of consanguineous 

multiplex families (Harripaul et al., 2017). A total of 193 autosomal dominant genes were 

identified, and a total of 413 autosomal recessive genes were identified. Fifteen genes were 

annotated as causing both autosomal dominant and autosomal recessive disorders with 

intellectual disability. Statistical significance was determined by probabilities derived 

according to the hypergeometric distribution. For this purpose, the total pool of autosomal 

genes was set to 19,011 (per Gencode).

Polygenic Risk Prediction for Independent Datasets

To validate that the genetic architecture elucidated via the MTAG methodology, we 

attempted to predict the phenotypic variance of general cognitive function in two of the 

independent COGENT cohorts (ASPIS and GCAP). MTAG analysis was conducted as 

above, but removing the COGENT cohorts. Polygenic score prediction across multiple 

thresholds of PT was conducted using PRSice (Euesden et al., 2015). To compare the 

effectiveness of MTAG, we also conducted polygenic risk prediction using IQ only and 

Education only summary statistics. Finally, R2 across SNP thresholds are compared to 

obtain the degree of improvement in terms of the ratio of MTAG PRS R2 values versus those 

of IQ or Education PRS R2.

Stratified LD regression: Cell type Expression and Epigenomics

Functional characterization of GWAS summary statistics was carried out via stratified LD 

regression to investigate if heritability of cognitive performance is enriched in specific tissue 

or cell types. Summary statistics were first subjected to baseline partitioned heritability and 

thereafter passed through a cell type-specific functional characterization pipeline (Finucane 

et al., 2017). Cell type characterization includes the DEPICT tissue expression database, 

GTEX tissue expression, IMMGEN immune cell types, CAHOY brain level cell types, and 

the ROADMAP cell epigenomic marks.

Transcriptome Wide Analysis and Brain Expression lookups

Transcriptome wide analysis was carried out via MetaXcan (Barbeira et al., 2016), which 

allows for GTEx brain expression data to be integrated with GWAS summary statistics. 

MetaXcan computes downstream phenotypic associations of genetic regulation of molecular 

traits, using elastic, adjustment for model uncertainty and colocalization of of GWAS and 

eQTL signals (Barbeira et al., 2016). GTEx Version 6, brain tissue expression profiles/

sample sizes include the Anterior Cingulate Cortex (N=72); Caudate – Basal Ganglia 

(N=100); Cerebellar Hemisphere (N=89); Cerebellum (N=103); Cortex (N=96); Frontal 

Cortex (N=92); Hippocampus (N=81); Hypothalamus (N=81); Nucleus Accumbens (N=93); 

and Putamen (N=82).
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Bayesian Fine-mapping Analysis and functional annotations

To identify potential causal variants in each of the independent loci, CAVIAR-BF is 

implemented to a region +/− 50KB of a lead SNP identified in the MTAG analysis. We 

followed similar procedures setting prior effect distribution σa to 0.1 in the model, which 

was recommended for GWAS studies (Chen et al., 2015; https://bitbucket.org/Wenan/

caviarbf). The prior probability of being causal for each SNP is set to 1/m, where m is the 

number of SNPs. Bayes factor was calculated for three model sets for independent loci, 

which modelled for 1,2, and up to 3 causal SNPs within each independent regions. After 

which a model search algorithm searches and identifies the putative causal SNPs. These 

SNPs were then annotated using the Ensembl Variant Effect Predictor (McLaren et al., 

2016). The analysis was repeated for extended regions taking into account the length of the 

independent loci identified by earlier FUMA procedures modelling for either 1 or 2 causal 

SNPs. SNPs identified by the two stage CAVIARBF analysis were then examined for 

potential gene expression in the BrainEAC (Ramasamy et al., 2014) and CommonMind 

(Hauberg et al., 2017) databases. BrainEAC top SNP lookups were for the following tissue 

expression: aveALL: All area combined; CRBL: cerebellum; FCTX: frontal cortex; HIPP: 

Hippocampus; MEDU: medulla; OCTX: occipital cortex; PUTM: putamen; SNIG: 

substantia nigra; TCTX: temporal cortex; THAL: thalamus; and WHMT: white matter 

across N=134 individuals. Finally, the prefrontal cortex lookup was included as part of the 

CommonMind consortium brain expression profile in n=467 genetically-inferred Caucasian 

samples.

Linkage Disequilibrium Score Regression

LD score regression allows genetic correlations to be computed across traits (Bulik-Sullivan 

et al., 2015a, 2015b), which allows further insights to be drawn from understanding the 

degree to which genetic architecture are shared across traits. To further examine potential 

traits that overlap with the cognitive architecture from the cognition meta-analysis results 

and MTAG results, LD score regression was conducted via the LD-hub pipeline, a 

centralized trait database (Zheng et al. 2017). LD-score regression was carried out across 89 

traits in 15 broad phenotypic categories: 1) aging, 2) anthropometric, 3) autoimmune, 4) 

brain volume, 5) cardiometabolic, 6) education, 7) glycemic, 8) lipids, 9) lung function, 10) 

neurological, 11) personality, 12) psychiatric, 13) reproductive behavior, 14) sleep, and 15) 

smoking behavior. Very recent reported GWAS summary statistics for attention deficit 

hyperactivity disorder (ADHD, Demontis et al., 2017) and intracranial volume (ICV, Adams 

et al., 2016) were included as additional phenotypes. For comparison, we also present LD-

score regression results for the educational attainment GWAS of Okbay et al. (2016); it 

should be noted that only 14 phenotypes were examined for genetic correlation in that 

publication. It should be noted that the MHC region was redacted from all datasets prior to 

LD score regression analysis, as per standard protocol at LD-Hub.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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genotyping through the CARe Study was provided by NHLBI Contract N01-HC-65226. Support for the 
Cardiovascular Health Study Whole Genome Study was provided by NHLBI grant HL087652. Additional support 
for infrastructure was provided by HL105756 and additional genotyping among the African-American cohort was 
supported in part by HL085251, DNA handling and genotyping at Cedars-Sinai Medical Center was supported in 
part by National Center for Research Resources grant UL1RR033176, now at the National Center for Advancing 
Translational Technologies CTSI grant UL1TR000124; in addition to the National Institute of Diabetes and 
Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research 
Center.

Multi-Site Collaborative Study for Genotype-Phenotype Associations in Alzheimer’s Disease: The genotypic and 
associated phenotypic data used in the study were provided by the GlaxoSmithKline, R&D Limited. Details on data 
acquisition have been published previously in: Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, Hosford D, 
Barnes MR, Briley JD, Borrie M, Coletta N, Delisle R, Dhalla D, Ehm MG, Feldman HH, Fornazzari L, Gauthier S, 
Goodgame N, Guzman D, Hammond S, Hollingworth P, Hsiung GY, Johnson J, Kelly DD, Keren R, Kertesz A, 
King KS, Lovestone S, Loy-English I, Matthews PM, Owen MJ, Plumpton M, Pryse-Phillips W, Prinjha RK, 
Richardson JC, Saunders A, Slater AJ, St George-Hyslop PH, Stinnett SW, Swartz JE, Taylor RL, Wherrett J, 
Williams J, Yarnall DP, Gibson RA, Irizarry MC, Middleton LT, Roses AD. Candidate single-nucleotide 
polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol., Jan;65(1):45–53, 2008 
(PMID: 17998437). Filippini N, Rao A, Wetten S, Gibson RA, Borrie M, Guzman D, Kertesz A, Loy-English I, 
Williams J, Nichols T, Whitcher B, Matthews PM. Anatomically-distinct genetic associations of APOE epsilon4 
allele load with regional cortical atrophy in Alzheimer’s disease. Neuroimage, Feb 1;44(3):724-8, 2009. (PMID: 
19013250).

Genetics of Late Onset Alzheimer’s Disease Study: Funding support for the “Genetic Consortium for Late Onset 
Alzheimer’s Disease” was provided through the Division of Neuroscience, NIA. The Genetic Consortium for Late 
Onset Alzheimer’s Disease includes a genome-wide association study funded as part of the Division of 
Neuroscience, NIA. Assistance with phenotype harmonization and genotype cleaning, as well as with general study 
coordination, was provided by Genetic Consortium for Late Onset Alzheimer’s Disease. A list of contributing 
investigators is available at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000168.v1.p1 
Long Life Family Study: Funding support for the Long Life Family Study was provided by the Division of 
Geriatrics and Clinical Gerontology, National Institute on Aging. The Long Life Family Study includes GWAS 
analyses for factors that contribute to long and healthy life. Assistance with phenotype harmonization and genotype 
cleaning as well as with general study coordination, was provided by the Division of Geriatrics and Clinical 
Gerontology, National Institute on Aging. Support for the collection of datasets and samples were provided by 
Multicenter Cooperative Agreement support by the Division of Geriatrics and Clinical Gerontology, National 
Institute on Aging (UO1AG023746; UO1023755; UO1023749; UO1023744; UO1023712). Funding support for the 
genotyping which was performed at the Johns Hopkins University Center for Inherited Disease Research was 
provided by the National Institute on Aging, National Institutes of Health.

Minnesota Center for Twin and Family Research: This project was led by William G. Iacono, PhD. And Matthew 
K. McGue, PhD (Co-Principal Investigators) at the University of Minnesota, Minneapolis, MN, USA. Co-
investigators from the same institution included: Irene J. Elkins, Margaret A. Keyes, Lisa N. Legrand, Stephen M. 
Malone, William S. Oetting, Michael B. Miller, and Saonli Basu. Funding support for this project was provided 
through NIDA (U01 DA 024417). Other support for sample ascertainment and data collection came from several 
grants: R37 DA 05147, R01 AA 09367, R01 AA 11886, R01 DA 13240, R01 MH 66140.

Philadelphia Neurodevelopmental Cohort: Support for the collection of the data sets was provided by grant 
RC2MH089983 awarded to Raquel Gur, MD, and RC2MH089924 awarded to Hakon Hakonarson, MD, PhD. All 
subjects were recruited through the Center for Applied Genomics at The Children’s Hospital in Philadelphia.
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Figure 1. 
a) Manhattan plot depicting results of GWAS meta-analysis of cognitive performance. 

Dotted red line indicates threshold for genome-wide significance (P<5E-08). b) Manhattan 

plot depicting results of MTAG of cognitive performance with educational attainment. 

Dotted red line indicates threshold for genome-wide significance (P<5E-08).
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Figure 2. 
Venn diagram depicting overlap and independence of genome-wide significant SNP loci 

observed in three studies: the MTAG analysis of the present report; the cognitive 

performance GWAS reported by Sniekers et al. (2017); and the educational attainment 

GWAS of Okbay et al. (2016).
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Figure 3. 
a) Polygenic risk score prediction for MTAG results against held-out ASPIS cohort. b) 

Comparison of MTAG, cognitive (IQ) GWAS (Sniekers et al. 2017), and educational 

attainment (EDU) GWAS (Okbay et al. 2016) as source of weights for polygenic risk score 

prediction against held-out ASPIS cohort. c) Polygenic risk score prediction for MTAG 

results against held-out GCAP cohort. d) Comparison of MTAG, cognitive (IQ) GWAS 

(Sniekers et al. 2017), and educational attainment (EDU) GWAS (Okbay et al. 2016) as 

source of weights for polygenic risk score prediction against held-out GCAP cohort.
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Figure 4. 
a) Tissue expression profile analysis for genome-wide significant genes (as defined by 

MAGMA) emerging from the MTAG analysis. Gene results were significantly enriched for 

expression in nearly all central nervous system tissues (except for substantia nigra and spinal 

cord), but no tissues outside the CNS. b) Circular Manhattan Plot for MetaXcan results 

based on MTAG of cognitive performance with educational attainment. From inner circle 

out, GTEX tissue order is as follows: ACC: Anterior Cingulate Cortex; CDBG: Caudate – 

Basal Ganglia; CRBHM: Cerebellar Hemisphere; CRBLM: Cerebellum; CRTX: Cortex; 
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FCTX: Frontal Cortex; HIPP: Hippocampus; HYPO: Hypothalamus; NACMB: Nucleus 

Accumbens; PUTM: Putamen. GWAS threshold is set at Bonferroni-corrected P < 0.05.
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Figure 5. 
Genetic correlations (rg) between cognitive phenotypes and other publicly available GWAS 

results, based on LD score regression. The first and second columns (labelled METAL and 

MTAG, respectively) refer to results of the cognitive meta-analyses in the present report. The 

third column displays correlations for the educational attainment GWAS of Okbay et al. 

(2016).
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