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The observation of place cells has suggested that the hippocam-
pus plays a special role in encoding spatial information. However,
place cell responses are modulated by several nonspatial variables
and reported to be rather unstable. Here, we propose a memory
model of the hippocampus that provides an interpretation of place
cells consistent with these observations. We hypothesize that the
hippocampus is a memory device that takes advantage of the cor-
relations between sensory experiences to generate compressed
representations of the episodes that are stored in memory. A
simple neural network model that can efficiently compress in-
formation naturally produces place cells that are similar to those
observed in experiments. It predicts that the activity of these cells
is variable and that the fluctuations of the place fields encode
information about the recent history of sensory experiences. Place
cells may simply be a consequence of a memory compression
process implemented in the hippocampus.

sparse autoencoders | place cells | hippocampus | memory | compression

Several studies show that neurons in the hippocampus en-
code the position of the animal in its environment, and as

a consequence, they have been named “place cells” (e.g., ref. 1).
Here, we propose an interpretation of the observation of place
cells by suggesting that their response properties actually reflect
a process of memory compression in which the hippocampus
plays a fundamental role. The hypothesis that the hippocampus
is involved in memory compression has already been proposed
in several works, including the article by Gluck and Myers (2).
These works mostly focused on how memories are recoded in
order to be stored more efficiently (see also refs. 3–6 and the
discussion below). Here, we show that a simple neural circuit
implementing this memory compression process naturally leads
to the formation of place cells. Hence, our interpretation of place
cells is based on the idea that the hippocampus is essentially a
memory device, and therefore, it contributes to the reconciliation
between two dominant but apparently different points of view:
one involving the hippocampus in spatial cognitive maps and
navigation vs. another one that considers the hippocampus play-
ing a broad role in episodic and declarative memory (e.g., refs.
7 and 8).

The first view is supported by the observation of place cells,
some of which exhibit responses that are easily interpretable
as the cells tend to fire only when the animal is in one par-
ticular location (single-field place cells). However, it is becom-
ing clear that in many brain areas, including the hippocampus
and entorhinal cortex (EC), neural responses are very diverse
(9–12), highly variable in time (13–17), and modulated by mul-
tiple variables (12, 18–20). Place cells might respond at single or
multiple locations, and multiple visitations of the same location
typically elicit different responses. Part of this diversity can be
explained by assuming that each neuron responds nonlinearly to
a different combination of multiple external or internal variables
(mixed selectivity) (e.g., ref. 10). The variability might be due to

the fact that some of these variables are not being monitored
in the experiment and hence, contribute to what appears to be
noise. Some of the components of the variability probably depend
on the variables that are represented at the current time, but
some others might also depend on the recent history; in other
words, they might be affected by the storage of recent memories.

The model of the hippocampus we propose is based on the
idea that it is more efficient to compress memories before they
are stored. Our model not only predicts that place cells should
exhibit history effects but also predicts that their spatial tuning
properties simply reflect an efficient strategy for storing corre-
lated patterns. Much of the theoretical work on the memory
capacity of neural networks is based on the assumption that
the patterns representing memories are random and uncorre-
lated (e.g., refs. 21–25). This assumption is not unreasonable
for long-term storage, despite the fact that most of our sensory
experiences are highly correlated. Indeed, to efficiently store
correlated episodes, it is desirable to preprocess or recode the
new memories and compress them before they are placed in
long-term memory, as already proposed in refs. 2–4, 26, and 27.
Ideally, one would want to extract the uncorrelated (and hence,
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incompressible) components of the new input patterns and store
only those. However, this form of preprocessing and compression
has not been explicitly modeled in previous theoretical studies
of memory capacity, like those discussed in ref. 22, and the
performance improvement has not been estimated.

We hypothesize that this preprocessing is to some extent car-
ried out in the hippocampus. The idea that the hippocampus is
involved in memory storage and could implement some simple
form of autoassociative memory is old, already proposed by
David Marr in the 1970s (26). Autoassociative memories are
naturally implemented by autoencoders whose function is basi-
cally to reconstruct the memory to be recalled. Autoencoders
could be realized by a neural network with only two layers, an
input layer and a reconstruction layer (6). These autoencoders
would be equivalent to one step of the recurrent dynamics of a
Hopfield network (21). However, it was clear from the early days
that an intermediate layer that transforms the representations of
the input can make the autoencoder significantly more efficient.
This is why several mechanisms for recoding the inputs were
proposed already in ref. 26 and then in refs. 2–4, 6, 27, and
28. The original idea behind many of these mechanisms is to
orthogonalize the representations in the intermediate layer in
order to make them more separable and facilitate the storage
and reconstruction of memories. This is an approach that tries
to mitigate the disruptive effects of correlations between sensory
episodes that are similar to each other. However, it is possible
to transform the representations in a way that not only avoids
the problems of correlations but actually takes advantage of the
similarities between memories to store a larger number of them.
One possibility is to compress the information (2–5, 27, 29) as in
a sparse autoencoder (30, 31). This is also a popular approach
in the machine learning community and used not only to solve
memory capacity problems. Indeed, the minimum description
length (MDL) principle is often invoked to construct an efficient
statistical model of the world. The MDL holds that the most
compact (or compressed) description of the data is probably the
best model of the observed data in terms of generalization. A
neural network implementation of this principle also requires
sparse compressed representations (e.g., ref. 32).

We constructed our model of the hippocampus following the
sparse autoencoder approach; we assumed that the hippocampus
is able to take advantage of the correlations between memories
by building sparse compressed representations. We show that a
neural system implementing this compression process is broadly
consistent with the known neuroanatomy of the hippocampus; it
allows efficient storage of a large number of correlated memo-
ries, and importantly, it naturally leads to neural representations
that contain place cells.

Taking inspiration from the simplest classical architecture of
autoencoders, our model consists of a three-layer network. The
first layer represents the sensory inputs, and the feed-forward
synapses that connect it to the second layer are continuously
modified to create a compressed, sparse representation of the
inputs. This layer implements a form of statistical learning, as the
compressed representations are based on the statistics of recent
sensory experiences. A third layer is used to store the memories
(i.e., specific episodes). This architecture and the computational
principles are similar to those proposed in refs. 2–5. We show that
the plasticity of the feed-forward synapses improves the memory
capacity compared with a network of the same architecture but
with fixed, random feed-forward weights.

Furthermore, the model explains quite naturally the emer-
gence of place cells in the second layer and the third layer.
Compressing sensory inputs of an animal in a given environment
automatically leads to the emergence of cells whose activity is
strongly modulated by its position in the environment because
many experiences of the animal depend on its position, and the
latter is thus highly informative about the former. By the same

token, processing sensory inputs correlated with other external
variables would encourage cells to develop receptive fields in the
space of those variables (33) since the computational principle of
compressing inputs for efficient storage is agnostic to the nature
of the variables that induce the correlations.

Such models with ongoing plasticity predict that the neural
representation of a sensory episode will differ depending on the
previous experiences of the animal: that is, it will be history de-
pendent. In particular, synaptic weights are constantly modified
(and correspondingly, the neural tuning properties change) in
order to update the statistical model of the environment and to
store new episodes in memory. The resulting place cell responses
are modulated by any variable that describes relevant aspects of
the sensory experiences. We will show in simulations that even
in the absence of salient events, such as the delivery of a reward,
the place fields constantly fluctuate to reflect the recent changes
in the input statistics, although they remain sufficiently stable to
decode position.

Results
Storing Correlated Patterns Efficiently. Most of the patterns we
store in memory are likely to be highly correlated, as our experi-
ences are often similar to each other. Storing correlated patterns
in artificial neural networks typically requires a synaptic learning
rule that is more complicated than simple Hebbian plasticity to
avoid a bias toward the memory components shared by multiple
memories. Simple extensions, such as the perceptron learning
rule, can deal with many forms of correlations. However, storing
correlated patterns in their original format is rarely the optimal
strategy, and it is possible to greatly increase the memory capacity
by constructing compressed neural representations that explicitly
take into account correlations. This form of preprocessing or
recoding can be illustrated with a simple example in which the
patterns to be memorized are organized in an ultrametric tree
(e.g., ref. 34) (Fig. 1A). To generate these correlated patterns,
one starts from p uncorrelated random patterns (the ancestors
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Descendant 1,1
Descendant k,1

Descendant 1,2

Descendant k,2

(descendant)-(ancestor)ancestor
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...�

C

Fig. 1. Storing efficiently correlated patterns in memory. (A) Schematic of
an ultrametric tree with p ancestors and k descendants per ancestor used
to generate correlated patterns. (B) A possible scheme to take advantage of
the correlations and generate compressed representations that are sparse
and hence, more efficiently storable. (C) Total number Pcorr of correlated
patterns generated from a tree model with parameters p, k, and γ that can
be stored using a simple compression strategy, divided by the number of
patterns Puncorr that could be stored (using approximately the same number
of neurons and synapses) if the patterns were uncorrelated. The plot thus
shows the relative advantage of using a compression strategy compared
with storing incompressible patterns as a function of k and γ.
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at the top of the tree). In these patterns, each neuron is either
active or inactive with equal probability, as in the case of the
Hopfield model (21). One can then generate k descendants for
each ancestor by resampling randomly with a certain probability
1− γ the activation state of each of the neurons in the ancestors.
k is called the branching ratio of the tree. The total number of
descendants is p k , and these are the patterns that we intend
to store in memory. The descendants that come from the same
ancestor are correlated since they are all similar to their ancestor.
This basic scheme for generating correlations between patterns
has been studied to extend the Hopfield model to the case of
correlated attractors (35–37).

In this section, we discuss a simple strategy to efficiently store
these patterns in memory. This strategy is an intuitive way to
recode correlated dense memories into sparse and approximately
uncorrelated representations that contain the same information
as the original memories. Sparseness makes these representa-
tions more suitable for storage in neural networks, as simple
calculations show. In the next section, we will use a more general
approach based on sparse autoencoders to generate the com-
pressed representations.

The simple strategy is to store the ancestors in one network
and the differences between the ancestors and their descendants
in another (Fig. 1B). These differences are approximately un-
correlated, and they can be significantly sparser than the orig-
inal patterns (for γ close to one) (also, ref. 38). Indeed, most
of the neurons have the same activity in the ancestors and in
its descendants, and hence, the difference is zero. In a sparse
representation, only a relatively small fraction f of the neurons
is active. Sparse random patterns contain less information than
dense patterns (the information per neuron scales approximately
as f, which is called the coding level) (e.g., ref. 39). However, the
number of random sparse patterns that can be stored in memory
is a factor 1/f larger than the number of storable dense patterns
(i.e., patterns with f = 1/2) (23–25, 39–42) because of the re-
duced interference between memories. In this scheme, it is pos-
sible to compress the information about the descendants simply
by constructing sparse representations that take into account the
already acquired information about the ancestors. Even though
the amount of information per pattern is smaller for sparser
representations, there is no loss of information because storing
differences between ancestors and descendants requires fewer
bits than storing the full representations of the descendants.

The relative advantage of this scheme as measured by the
improvement factor of the total number of retrievable descen-
dant patterns compared with storing uncorrelated patterns is
estimated in SI Appendix, Memorizing Ultrametric Patterns and
summarized in Fig. 1C. As k increases, more of the patterns to
be stored become correlated, and their overall compressibility
increases. The improvement factor also increases because the
scheme that we discussed can take advantage of the increased
compressibility. From the formula in SI Appendix, Memorizing
Ultrametric Patterns, it is clear that the improvement increases
approximately linearly with k, when γ is fixed close to one. The
improvement also increases as γ tends to one (i.e., when the
descendants become more similar to their common ancestor and
hence, the patterns are more compressible).

Generating Compressed Representations with Sparse Autoencoders.
The scheme we just discussed illustrates a simple strategy for
taking advantage of the correlations between memories. It is
unclear whether this strategy can actually be implemented in
a neural network and whether it can be extended to more
structured real-world memories. We now show that it is possible
to construct a simple network that is able to generate compressed
representations for arbitrary memories. We will first analyze the
memory performance of this network in the case of ultrametric
memories, and then, in the following sections, we will use the
same model in a navigation task.

The network illustrated in Fig. 2A comprises two layers; the
first (input) layer, which could be mapped onto EC, encodes sen-
sory experiences, and the second layer (possibly the dentate gyrus
[DG]) encodes their compressed representations. A third layer
(perhaps cornu ammonis region 3 [CA3]) would store specific
episodes (i.e., individual patterns that represent instantaneous
sensory experiences), but in this first part of the article, we will not
simulate it, as we will focus on the geometrical properties of the
compressed representations. The compressed representations
are not constructed by hand, as in Fig. 1, but by using the strategy
of sparse autoencoders; the first two layers are complemented by
a reconstruction layer, and the synaptic weights are modified to
ensure that the input is faithfully reproduced in the reconstruc-
tion layer. We used an algorithm similar to the one introduced
by Olshausen and Field (30, 31) to reproduce the neural rep-
resentations of the visual cortex (SI Appendix, SI Text). Recent
extensions of this algorithm apply to several important compu-
tational problems (43). The main idea is to modify the synaptic
weights from the input to the second layer to build sparse rep-
resentations of the inputs. The weights are chosen to minimize
the reconstruction error (of the inputs) when one reads out these
second-layer representations. The representations obtained us-
ing this approach are compressed because of the sparseness that
is imposed on them by the algorithm. The reconstruction layer
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Fig. 2. (A) Scheme of the simulated autoencoder. The input layer (300
neurons; mappable to EC) projects to an intermediate layer (DG; 600 neu-
rons). The weights to DG are chosen so that the output light blue neurons
reproduce the input. (B) Geometry of the compressed representations:
correlations between the representations of different descendants of the
same ancestor for the inputs (red), the autoencoder (intermediate layer in
A; black), and a random encoder (blue) as a function of the branching ratio
when the total number of patterns is kept constant (and hence, the number
of ancestors varies). As γ is fixed (γ = 0.6), the correlations of the inputs
and the random encoder are constant (γ2 = 0.36 for the input). For the
autoencoder, they decrease with the compressibility of the environment (i.e.,
when k increases). SI Appendix, Fig. S1A shows the average of the absolute
value of the correlations between all descendants. (C) Memory performance
of the autoencoder compared with a random encoder and a readout of the
input; the number of reconstructed memories is plotted as a function of
the total number of memory patterns (changing the number of ancestors).
For the autoencoder, we show two curves that correspond to different
branching ratios (k = 2, 20) but the same γ = 0.6 (different values of γ

are shown in SI Appendix, Fig. S1B). As the number of ancestors increases,
the quality of reconstruction decreases, and the number of reconstructed
memories reaches a maximum. The autoencoder outperforms the input and
the random encoder and performs better when the memories are more com-
pressible. (D) Memory capacity as a function of the square root of the total
number of synapses for autoencoder, random, and input representations.
The autoencoder outperforms all the other models, even though it requires
four times more synapses than the system that reads out inputs directly.

Benna and Fusi
Place cells may simply be memory cells:
Memory compression leads to spatial tuning and history dependence

PNAS 3 of 12
https://doi.org/10.1073/pnas.2018422118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://doi.org/10.1073/pnas.2018422118


is used only to determine the weights between the input layer
and the layer with the compressed representations. We will show
later that the reconstruction layer is not needed when using other
algorithmic approaches (e.g., refs. 44–46). Imposing sparseness
is only one possible way of compressing information. Here, we
assume that the intermediate layer contains more neurons than
the input layer, and hence, we need to impose sparseness to limit
the amount of information that is represented in the intermediate
layer and encourage compression. An alternative possibility is
to use dense representations with a smaller number of neurons,
as suggested in ref. 2. This strategy leads to different response
properties, and it is probably implemented in other parts of the
brain (e.g., in the thalamus).

We now analyze the geometry of these representations by look-
ing at the correlations between the compressed patterns. Given
the simple ultrametric organization, the geometry of the input
representations is completely characterized by some measure of
the similarity between patterns that correspond to descendants
of the same ancestor and between patterns of descendants of
different ancestors. We will compare these correlations with
those that characterize the compressed representations. We will
also consider the representations obtained in a network in which
the neurons in the second layer are randomly connected to
the input neurons (random encoder) (e.g., refs. 26, 28, and
47–49). In this encoder, there is no learning except for the choice
of the activation threshold, which is tuned to set the desired
coding level. The random weights are chosen when the network
is initialized, and then, they are frozen. Random encoders are
universal encoders as they work for any statistics of the inputs.
Moreover, they work surprisingly well considering that they do
not require any training. For all these reasons, it is interesting
to compare them with the trained sparse autoencoder and assess
whether the plastic synapses confer on the autoencoder a signif-
icant computational advantage.

In Fig. 2B, we plotted the correlations between the descen-
dants of the same ancestor as a function of the branching ratio
when the total number of patterns is kept constant (by varying the
number of ancestors). For the inputs and the random encoder,
they are constant. For the random encoder, we show two curves:
one for the same coding level f = 0.1 as the autoencoder and one
for the coding level that maximizes the memory capacity of the
random encoder (f = 0.5; see below). For the autoencoder, the
correlations decrease with the branching ratio k. This is expected
from the abstract scheme that we described above; as k increases,
the number of ancestors decreases, the number of correlated
inputs increases, and the full set of patterns to be memorized
(the “environment”) becomes more compressible. More memory
resources (i.e., plastic synapses) are devoted to the differences
between descendants and ancestors, which are approximately
uncorrelated. Indeed, the correlations between the difference
patterns are (1− γ)/2, and when the descendants are sufficiently
similar to their ancestor (γ → 1), these correlations are small.

In SI Appendix, Fig. S1A, we show the average correlations
between all patterns as a function of the branching ratio. These
are the correlations that would be measured in an experiment
when all the recorded patterns of activity are considered. We
computed the average of the absolute value of the correlations
because the average of positive and negative correlations could
be close to zero, which might be misinterpreted to mean that
the patterns were not correlated. The input representations are
more correlated than the representations of the autoencoder and
those of the random encoder. As the branching ratio increases,
the representations become more correlated for the inputs and
the random encoder, but this monotonic relationship does not
hold for the trained autoencoder. In fact, for sufficiently large k
(more compressible memories), the autoencoder representations
become more decorrelated. If the autoencoder layer maps to the
DG, this observation would be consistent with the notion that DG

is involved in pattern separation (50–53). Interestingly, the model
would predict that the representations in DG should become
less correlated if the environment is more compressible (see the
Discussion). Note that the random encoder also decorrelates the
representations, as already shown in refs. 26, 28, and 54. How-
ever, the decorrelation does not depend on the compressibility
of the environment but only on the coding level.

We then estimated the memory performance for the autoen-
coder, the random encoder, and for reconstruction directly from
the input representations, without an intermediate layer. We
kept the branching ratio fixed, and we increased the number
of ancestors, so that the total number of memories increases.
We estimated the number of memories that were correctly re-
constructed. A memory was considered reconstructed when the
pattern generated in the reconstruction layer (i.e., the light blue
layer of Fig. 2A) had an overlap of at least 0.9 with the original
memory. A noisy cue was imposed on the input layer to trigger
memory reconstruction. The noise level of the cue was chosen
to be large enough that the average overlap with the original
memory was only 0.8. This noise level and the tight criterion
for reconstruction guarantee that a memory is considered recon-
structed only when the model learned the idiosyncratic features
of each descendant, rather than merely the structure of the proto-
types. Moreover, the network cannot simply replicate the specific
memory cue used to trigger reconstruction because the noisy
input is at a distance from the descendant to be retrieved that
is larger than what is tolerated by the reconstruction criterion.
To evaluate the memory performance without an intermediate
layer, we connected the input layer directly to the reconstruction
layer. This model, which we will call “input” model in what
follows, would essentially correspond to one step of the dynamics
of a Hopfield recurrent neural network (21) or to one of the
autoassociative models proposed in ref. 6. As the total num-
ber of stored memories increases, the number of reconstructed
memories also goes up and reaches a maximum, and then, it
starts to smoothly decrease. This maximum defines the memory
capacity. The autoencoder was trained with sigmoidal activation
functions as described above, but we now use a binarized version
of the compressed representations to make the comparison of the
memory performance with the random encoder and the input as
fair as possible. The memory performance is significantly higher
when binarization is not imposed.

In Fig. 2C, we show the number of reconstructed memories
for the autoencoder, the input, and the random encoder repre-
sentations. The memory performance is significantly larger for
the autoencoder, and it is higher for a larger branching ratio
(k = 20), which corresponds to a more compressible environ-
ment. For each curve, we used the optimal coding level. The
performance of the random encoder is the worst because of the
elevated level of noise (SI Appendix, Fig. S11 demonstrates that
the autoencoder representations are significantly more robust to
noise). In SI Appendix, Fig. S1B, we show the number of recon-
structed memories in the case in which the branching ratio is
always the same but the similarity γ between the descendants and
their ancestors varies. The best performance is achieved for the
autoencoder in the case in which the descendants are most similar
to their ancestor, which is again the case in which memories are
most compressible.

In all these cases, as the number of stored memories in-
creases, the fraction of correctly reconstructed memories de-
creases smoothly, unlike in other models where there is an abrupt
transition [e.g., the Hopfield model (21, 22)]. Interestingly, the
reconstructed patterns are progressively more similar to their
ancestor than to the descendant as the number of memories
increases (SI Appendix, Fig. S2). In the regime studied in Fig. 2C,
the reconstructed pattern is always more similar to the descen-
dant used to generate the noisy input (SI Appendix, Fig. S2A).
However, if one increases the compression ratio by making the
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representations sparser and by decreasing the number of neurons
in the compressed layer, it is possible to observe situations in
which the reconstructed pattern is more similar to the ancestor
(SI Appendix, Fig. S2B).

Another interesting property of the autoencoder is its ability
to learn more rapidly new descendants from a known ancestor
(SI Appendix, Fig. S3), similarly to what has been observed in
models of semantic cognition (55). Although the speed improve-
ment is clear in some situations, the effect is relatively modest
for at least two reasons. 1) The network is designed to store
every single descendant, and the interference with the previ-
ously stored descendants from the same ancestor can slow down
the process. A strategy like the one proposed in ref. 56 could
alleviate the problem. 2) The information about the ancestors
can be extracted rapidly if a sufficient number of descendants is
stored. This rapidity reduces the advantage of already knowing
the ancestor. This phenomenon is related to the one reported
in ref. 57 in linear networks, in which the components with
large input variances are learned faster than those with small
variances. In the case of the ultrametric memories that we used
in our simulations, this implies that the ancestors will be learned
more quickly than the differences between descendants and their
ancestors. Hence, the process of learning the ancestor is relatively
fast, and this limits the advantage of already knowing an ancestor.

Finally, we estimated the memory capacity as a function of
the total number of synapses in the system. We showed that
the memory capacity is significantly better for the autoencoder
than for the systems that read out the inputs directly. However,
the autoencoder requires an intermediate layer and hence, a
larger number of synapses. In Fig. 2D, we computed the mem-
ory capacity, as in Fig. 2C, for networks of different sizes. We
progressively increased the size of the input (N neurons), and
we scaled accordingly the number of neurons in the autoencoder
intermediate layer (2N ). The total number of synapses was then
N 2 in the case in which we directly read out the input and 4N 2

for the autoencoder. In Fig. 2, we show the memory capacity
as a function of the square root of the number of synapses
for the autoencoder, the random, and the input representa-
tions. The coding level was chosen to optimize the capacity in
the case of N = 300. The autoencoder strategy outperforms all
the others, and the improvement increases with the size of the
network. Hence, the autoencoder representations can be legiti-
mately called “compressed representations” because they allow
for the same performance with a smaller number of synapses.

Compressing Sensory Inputs Experienced during Navigation. We
now consider the specific case of navigation. In this case, the

sensory experiences of an animal that visits the same location
multiple times will be different but still correlated (Fig. 3A).
Similarly to the case of ultrametric memory patterns described
in the previous section, it is possible to take advantage of
these correlations to compress the information that is stored
in memory. We hypothesize that the hippocampus is involved in
this process of compression, which leads to sparse, compressed
representations of the sensory experiences of the animal during
exploration. We now present a simple model to illustrate how the
compressed representations can be generated, and then, we show
that using these representations leads to a more efficient storage
of correlated memories. As in the previous section, we construct
the compressed representations using a sparse autoencoder. It is
likely that in a more realistic situation in which the animal has
to perform a task, the representations are not just shaped by the
desire to reconstruct inputs but also affected by other factors.

We assume that the animal is exploring an environment en-
closed by four walls, which has the shape of a square. The animal
can use sensory cues (visual, tactile, olfactory) to determine its
position when it is very close to the walls, and for simplicity, we as-
sume that it explores the environment by walking along a straight
line in a random direction until it reaches another wall. It then
repeats this procedure by picking another direction and walking
again in a straight line. We also hypothesize that the animal
performs a simple form of path integration, and hence, it knows
approximately the distance from the last wall it visited. Finally, we
assume that the animal knows the direction of movement by using
distal and other cues. These assumptions would be compatible
with the observations that head direction is encoded in EC, one
of the major cortical inputs to the hippocampus. Furthermore,
we know that the estimate of position decoded from EC has an
accuracy that decreases with the distance from the last visited wall
(58), indicating that some form of path integration reset happens
when the animal gets close to a wall.

We simulated the simple feed-forward network with three lay-
ers already described in the Introduction (Fig. 3B). In the specific
case of navigation, the first layer (EC) represents the input and
in our simple example, encodes 1) the direction of movement of
the animal (59), 2) the distance from the last wall visited (60),
and 3) the position along the last wall visited (61) (i.e., the initial
position before the animal initiates its excursion to explore the
environment). These variables are mixed nonlinearly through a
random projection to obtain the putative EC representations we
use as inputs to our network (SI Appendix, SI Text and Fig. S5).

The second layer (DG) contains the compressed represen-
tations of the sensory experiences. These representations are
learned as described in the previous section by introducing an
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Fig. 3. (A) Schematic of a rodent exploring an open field arena. Whenever the animal returns to the same location, its sensory inputs will have some
similarity with those experienced during previous visitations of that location. (B) Schematic of the architecture of the network with potential mapping
of the layers onto EC and hippocampus. (C) The memory retrieval capacity (the number of patterns of 7,480 ± 150 stored inputs per session that can be
recalled from noisy cues in the autoassociative network) as a function of the number of training sessions (exposures to the environment). This illustrates the
computational advantage of using even a simple compression algorithm with one layer of learned weights as implemented in our network (black) compared
with a network of the same architecture (and coding levels) but with fixed random feed-forward connections (blue). Note that the memory retrieval capacity
is different from the reconstruction memory capacity studied in Fig. 2, which we also plot for comparison (dotted lines) and which is again larger for the
autoencoder than for the random network.
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artificial reconstruction layer (the light blue layer in Fig. 2A;
not shown in Fig. 3B) and by imposing that its representa-
tions reproduce the inputs. Finally, the third layer (CA3) is an
autoassociative memory system where memories are stored by
modifying recurrent connections. The purpose of this layer in
our simulations is to obtain a reasonable estimate of the memory
capacity beyond simple feed-forward reconstruction.

The recurrent synaptic weights are modified according to a
simple covariance rule, similar to the Hopfield rule (21), to
create stable fixed points corresponding to the patterns of activity
imposed by the inputs from the second layer (also, refs. 4, 6, and
27). For simplicity, we assumed that the number of neurons in
the third layer is equal to the number of neurons in the second
one and that the third layer basically just copies the compressed
sparse representations prepared in the previous layer. This is a
reasonable idealization since CA3 pyramidal cells receive only
a small number of strong synapses from the DG (62). While the
second-layer neurons are continuous valued (and typically exhibit
a bimodal activity distribution in our simulations), we threshold
their activity to obtain binary neural representations suitable for
storage in an autoassociative network with binary neurons.

We simulated an animal exploring an unfamiliar environment
by discretizing time and computing at every time step the inputs
for the current position and direction of motion of the animal
by a random projection of the variables described above (the
representation is constructed by computing the weighted sum of
the inputs, with random weights, and then we pass it through
a nonlinearity). These input patterns, which are higher dimen-
sional than the original inputs, represent the memories that we
intend to store.

We consider a situation in which the animal explores for several
hundred (straight-line) trajectories crossing the environment,
which is similar to the typical situations studied in experiments
on rodent navigation. We compared the performance of the
proposed memory system with the performance of an analogous
network with the same architecture and coding level in which the
input layer is connected to the second layer with fixed random
connections. To quantify this memory performance, we estimated
the number of memories that can be correctly reconstructed,
as in Fig. 2. We also computed the number of patterns that
can be retrieved from the recurrent network (presumably CA3)
with sufficiently high fidelity, namely with a pattern overlap
of at least 0.8, from noisy cues with an initial overlap of at
most 0.7 (with the binary pattern that was stored in the autoas-
sociative network). These memory patterns correspond to the
sensory inputs experienced by the animal during the preceding
exploration of the environment. The results are reported in Fig.
3C, which shows that both the reconstruction and the retrieval
memory performance of the proposed network are substan-
tially better than those of the network with random connec-
tions (SI Appendix, Memory Capacity and Decoding Analyses has
details, and SI Appendix, Fig. S10 shows a summary of the pattern
statistics). The coding level in the random network is kept equal
to the coding level in the autoencoder to make the performance
comparison as fair as possible.

Single-Neuron Properties: The Emergence of Place Cells. Now that
we have established that the compressed neural representations
allow for a better memory performance, it is interesting to in-
spect the neural representations obtained in the second layer
of the network. These are the representations that we expect to
observe in the hippocampus. One common way to represent the
responses of recorded individual neurons is to plot their place
fields. In Fig. 4B, we show the place fields (averaged over training
epochs) of 36 randomly selected cells of the second layer of the
network. Their fields have been measured during the simulated
exploration along trajectories sampled from a distribution illus-
trated in Fig. 4A. We observe a number of cells with localized

A C

B D

BA

Fig. 4. (A) Trajectories of a simulated animal in an open arena (exploration
statistics A) and (B) the spatial tuning profiles emerging from training the
autoencoder network on an artificial sensory input corresponding to these
trajectories for 36 neurons randomly selected from the second (DG-like) layer
of the model. We find a very heterogeneous set of spatial tuning profiles:
some consistent with simple place cells, some exhibiting multiple place fields,
and some that look more like boundary cells. The statistics of this diverse
set of responses appear to be consistent with calcium imaging data from
the dentate (12). (C and D) Same as A and B but for a set of trajectories
with a slightly different exploration bias (exploration statistics B). Half of
the trajectories on both sides have the same statistics and are drawn from
an isotropic distribution of initial positions. The other half of the trajectories
are drawn from different distributions with initial positions biased toward
the lower right corner in A and B and the upper left corner in C and D. As
a result, the two sets of place fields that correspond to exploration statistics
A and B are slightly different.

place fields, which are similar to those of classical place cells.
Interestingly, the responses are highly diverse, which is typically
what is observed in the hippocampus and in particular, in DG (12,
50). The place fields generated by a random encoder are shown
in SI Appendix, Fig. S6; the fields are substantially different and
more noisy than in the case in which the weights are learned.

The Instability of Place Fields Reflects Their History Dependence.
Neurons with spatial tuning properties can be obtained in many
ways, and while the fact that we found cells with spatial tuning
in our model is reassuring, it was not unexpected given that the
inputs contain information about the animal’s position. Less
obvious is the fact that the spatial tuning properties of these
units are consistent with those of place cells exhibiting few
well-localized fields, even though the inputs consist of highly
mixed representations of the spatial variables. If the inputs were
provided by cells which themselves had smoothly localized spatial
tuning profiles, random connectivity in combination with sparsi-
fication of the neural activity would be sufficient to achieve this
(e.g., ref. 63). For highly mixed inputs, obtaining spatial tuning
properties resembling those of place cells requires some learning
of the weights in addition to a penalty enforcing sparse coding.

Another interesting aspect of the cell responses is their depen-
dence on recent experiences. According to our model, the neu-
ral representations are continuously updated during exploration
through ongoing synaptic plasticity. This means that the neural
fields can be rather unstable. We illustrate this in Fig. 4 C and D,
where we show the place fields of the same 36 cells resulting from
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two different exploration statistics of the same environment; in
Fig. 4A, the simulated animal tended to visit the bottom right
corner more often (exploration statistics A), whereas in Fig.
4C, the animal prefers the top left corner (exploration statistics
B). Many of the neural fields are similar in the two cases, but
there are clear differences reflecting the exploration bias. Due
to the ongoing plasticity, these differences remain even after
many training sessions with both types of exploration statistics
(i.e., they do not stem from the initial formation of the place
fields during early exposures to the environment, and in fact,
we excluded these early sessions when computing the place field
maps).

In Fig. 5A, we show the changes in the fields and quantify them
in Fig. 5B. We compute the average normalized overlap between
place fields in a simulation during which the animal experiences
explorations statistics A and B repeatedly in a random order
(while training the autoencoder). The average overlap between
fields estimated in different sessions with the same exploration
statistics is less than 0.7 and even smaller when sessions with
different statistics are considered (comparing A and B sessions).
This indicates that the response properties of individual neurons
are continuously modified and that they reflect the recent ex-
ploration statistics. The relatively small overlap in the case of
the same exploration statistics is partly due to the stochasticity
of the algorithm used to determine the synaptic weights (which
includes sampling a new set of random trajectories for every
session) and partly due to the dependence of the fields on the
exploration statistics of the previous session (see below). Note
that the overlaps of the place fields of different sessions only
decay very slowly as a function of the time interval elapsed
between them. This would not be the case during the initial phase
of rapid learning (not shown) that occurs during the first few
sessions.

Despite the continual modifications of the fields, it is still
possible to decode the position of the simulated animal (Fig. 5C).
We trained a linear regression decoder to predict the x and y
coordinates of the animal from the second-layer representations.

The decoder is trained on the data of one session and tested
on the data of a different session, as in ref. 13. The median
error is plotted as a function of the interval between these two
sessions (expressed in number of sessions). The decoder is more
accurate when the exploration statistics are the same, but it is
still significantly better than chance (dashed lines) if they are not.
Despite the instability of the fields, it is still possible to decode
the animal’s position. This is similar to what has been observed
in ref. 13, although the statistics of the field modifications are
probably different in the experiment (in which some cells respond
with significant spatial tuning only in a subset of sessions) (also,
ref. 64). These differences might be due to the simplicity of our
model, the fact that we are considering a two-dimensional (2D)
arena rather than a one-dimensional (1D) track, and potentially,
the way the activity is recorded in the experiment. However, the
model captures the basic observation that it is possible to decode
position despite the relative instability of the fields.

Note that the between-session variability we are quantifying
here depends on the parameters of the algorithm used to train
the model. In our simulations, the length of an individual training
session with a given exploration statistic determines the level
of stability of the place fields (the learning rate would play a
similar role). Furthermore, in a real experiment, the within-
session fluctuations of the place cell responses may be larger
than the variability due to synaptic plasticity because of noise or
additional variables encoded in the neural activity that we have
not modeled here.

History Effects and the Ability to Decode the Recent Past. The
instability of the fields is compatible with several experimental
observations (e.g., refs. 13 and 15). Here, we propose an inter-
pretation of these fluctuations that can be tested in experiments;
they reflect the recent history of experiences of the animal, and
therefore, any bias in the exploration statistics or any other events
that are represented in the input to the hippocampus should
affect the neuronal responses. This means that by studying the
fluctuations of the neural responses, we should be able to decode
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Fig. 5. (A) Maps of differences of average place fields between A and B sessions in a simulated experiment in which the animal experiences a random
sequence of the two types of sessions with different exploration statistics (as in Fig. 4). (B) Normalized overlap between the place fields of two sessions with
the same (blue) or with different (red) statistics as a function of the time interval between sessions. The overlap is larger in the former case and stays rather
high even for long time intervals between sessions, indicating relative long-term stability despite short-term fluctuations. (C) Median decoding error for
position from simple regression predictors for the x and y coordinates of the animal. Position can be predicted more accurately if the decoder was trained
on the same type of exploration statistics as in the session used for testing, but even for different statistics, this works significantly better than chance level.
The decoding error grows only slowly with the interval between training and test sessions.
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at least some information about the recent history of the animal’s
sensory experiences. This is a prediction that can be tested if
sufficient numbers of neurons are simultaneously recorded for
a long-enough period.

In simulations, it is indeed possible to decode the recent history
by reading out the fluctuations of the firing fields, but taking this
approach literally, one first has to construct place field maps,
which requires knowledge of the position of the animal. Here,
we show that one can also decode some information about the
previous exposure to the environment that the animal experi-
enced directly from the neural activity patterns elicited in the
current session (without requiring additional spatial information,
even though much of it is of course contained in the neural
representations).

We consider a random sequence of biased exploration sessions
like those shown in Fig. 4 A and C. Discriminating A and B is
challenging because the environment and therefore, the sensory
input the animal receives given its position and head direction
are the same in A and B sessions. At the end of each session,
we estimate the place fields of the neurons in the second layer,
and as shown in Figs. 4 B and D and 5A, the resulting fields
depend on the exploration bias. Interestingly, they also depend
on the bias in the previous session; if an A session is preceded
by another A, the fields (evaluated during the latter session)
are different from the case in which A is preceded by B. We
plot these differences between the fields in Fig. 6A. Similarly,
we show the differences in place fields (in a B session) between
the case in which B is preceded by A and the case in which
B is preceded by another B in Fig. 6B. These differences are
relatively small but consistent enough that it is possible to train
a decoder to read them out and report successfully whether the
current session was preceded by A or B. In Fig. 6C, we show
that even without first computing place fields, we can train linear
classifiers to decode not just whether the current session but
also, whether the previous session was of type A or B. While
the performance of these classifiers is far from perfect when
predictions are made based on a single activity vector, they can
achieve very high accuracy when combining the predictions from

many neural representations (corresponding to different time
points) using a majority vote. These simulations illustrate one
possible experiment that can be performed to test some of the
central ideas of our theory.

Sparse Compression Using Local Learning Rules without a Recon-
struction Layer. While it is possible for the brain to implement
an autoencoder and learn its synaptic efficacies using a
biologically plausible approximation to backpropagation, such
an implementation with DG as the hidden layer may be difficult
to reconcile with the known neuroanatomy of the hippocampus.
In this sense, the reconstruction layer of our autoencoder
model (light blue in Fig. 2A) could be considered biologically
implausible. The reconstruction layer is useful to learn the
encoding weights onto DG but no longer required for the
system (in Fig. 3B) to perform its memory function after the
statistics of the environment relevant for compression have
been learned. However, the hippocampus does not actually
need to explicitly reconstruct its inputs to learn compressed
representations, and we can construct an alternative model that
achieves sparse compression without the reconstruction layer
of the autoencoder. In this more biologically plausible model,
the synaptic weight updates follow entirely local (anti-)Hebbian
learning rules, and no backpropagation is required. This model
is based on the similarity matching–inspired network of ref.
65, which contains only an input layer and a compressed
layer that extracts the leading eigenmodes of the input data
and rescales them to put them on an equal footing. This can
be understood as a form of compression related to linear
dimensionality reduction. We modified this network to make
it more similar to the autoencoder used above by introduc-
ing a sigmoidal nonlinearity in the layer learning the com-
pressed representations and adding a sparsity-inducing penalty
(SI Appendix, Input Compression Using Local Learning Rules in a
Network without Reconstruction Layer has details). As in the
autoencoder network, sparse compression in this model creates
place field–like spatial response profiles of the units learning the
compressed representations (SI Appendix, Fig. S8), enhances the
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Fig. 6. (A) Difference maps of average place fields in A sessions between the cases when the previous session was A vs. B (i.e., sequences AA–BA). (B) Similar
difference maps for B sessions (corresponding to sequences AB–BB). Note that these differences are more subtle than those between A and B shown in Fig.
5A. (C) To demonstrate that the fluctuations of the previous two panels are not just noise but reliably capture history-dependent information, we show
that one can decode from the neural (DG) representations of the simulated animal exploring an environment not just the statistics of the current session
(i.e., A vs. B; green) but also, the statistics of the previous session it experienced (purple). We decode using simple maximum margin linear classifiers in
combination with a form of boosting (by combining the predictions made from several neural representations experienced at different points in time) and
report the resulting performance as a function of the number of neural representations (snapshots of the second-layer activity in the current session) used
for decoding. While the performance is only slightly above chance level when decoding from a single snapshot of the neural activity, a linear classifier can
almost perfectly discriminate A and B sessions when combining together the predictions of the trained classifier for many such activity patterns by taking
a simple majority vote of the predicted labels. Crucially, the decoder for the statistics of the previous session only uses activity patterns from the current
session.
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memory retrieval capacity of an autoassociative memory network
storing these representations, and allows us to decode from them
the position and direction of motion of the simulated animal
(SI Appendix, Fig. S9).

The absence of a reconstruction layer whose mismatch error
could be backpropagated necessitates a mechanism to prevent
different units in the compression network from learning redun-
dant representations. This can be achieved with mutual inhibition
between the units carrying the compressed representations (65),
which is mediated in the model by a population of interneurons,
consistent with the neuroanatomy of the DG. In addition to
the Hebbian learning of the feed-forward weights between EC
and DG, the weights between the principal DG units and these
interneurons are also learned. In particular, the weights from the
DG units to the interneurons follow a Hebbian rule, and those
from the interneurons to the DG units follow an anti-Hebbian
rule. This has the important functional consequence of causing
units that tend to be excited at the same time to inhibit each other.

Discussion
Preprocessing or recoding correlated patterns can greatly in-
crease memory capacity. This is an old idea that has been pro-
posed and discussed in multiple works (e.g., refs. 2–5 and 26).
One efficient way of preprocessing memory representations is
to extract the uncorrelated components or more generally, the
components that are truly independent from previously stored
inputs. This preprocessing would enable the memory system to
store only the information that is not already in memory. Any
similarity with previous experiences can be exploited to reduce
the amount of information for each input that actually needs
to be stored (because it is truly novel), which decreases the
amount of synaptic resources required. Following refs. 2–5, we
proposed that the hippocampus plays an important role in this
process of compressing memories, and we presented a simple
neural network model that illustrates the main ideas of memory
compression. We showed that a memory system that incorporates
a sparse autoencoder has a significantly larger memory capac-
ity than one that stores directly unprocessed representations.
Not only is the overall memory capacity larger but also the
memory capacity per synapse, which is a nontrivial result given
that the autoencoder network requires an additional layer of
neurons. The representations constructed by the autoencoder
are sparse and hence, may contain less information than those
of the inputs, which are dense. However, we showed that there
are several regimes in which these sparse representations contain
all the information that is needed to reconstruct the input or to
retrieve a memory. These sparse representations are not only
more efficient for memory storage, but they also allow for fast
storage of new episodes. The process of generating these efficient
representations is of course slower as it has to involve some
statistical learning of the features of the environment. Whether
the full process of compression based on sparse autoencoders
accounts for the ability of humans to learn a new association from
just a small number of arbitrary pairings is something that will be
investigated in the future in significantly more complex tasks.

Random Recoding Schemes. Some of the original recoding
schemes (3, 26, 28) were based on random connections between
the neurons representing the inputs and the neurons encoding
the compressed representation. These schemes lead to better
pattern separation, possibly increasing the memory capacity.
Although the trained autoencoder outperforms these random
encoders (Fig. 2), it is interesting to consider them because they
are universal encoders; they work for any input statistics, and they
do not require any training. In SI Appendix, Fig. S4, we tested a
few random schemes, in particular those proposed in ref. 28,
in which the representations are constructed by projecting the
inputs onto random weights and then suppressing the activation

of all neurons except the k most active (k winner take all).
Although these schemes can perform better than the one we
extensively analyzed in Fig. 2, their memory performance is still
much lower than the one of the sparse autoencoder, indicating
that there is a significant advantage in training the encoder.

Finally, it is important to remember that random projections
lead to place fields that are qualitatively different from those
obtained with a trained autoencoder. While they still exhibit
some residual spatial selectivity, the activity maps are not as
coherent and much less reminiscent of experimentally observed
place fields (SI Appendix, Fig. S6).

Memory Compression and Navigation. Our model provides an in-
terpretation of the observations of experiments on navigation
conducted on rodents. These experiments show that the recorded
neural activity in the hippocampus encodes the position of the
animal, suggesting that the hippocampus plays an important role
in navigation. However, there is an ongoing debate on whether
the hippocampus is actually needed to navigate in familiar en-
vironments (e.g., refs. 66–69). Several studies indicate that the
hippocampus is important primarily in situations of navigation
that require the formation of new memories (70). Similarly to
what has been suggested by several memory researchers (2–5)
but also by investigators who focused on spatial encoding (9, 70),
we propose that the hippocampus is a general memory device
used for compressing correlated inputs into efficiently storable
episodic memories. It is only due to the nature of the navigation
experiments that many investigators were led to put so much
emphasis on the role of the rodent hippocampus in encoding the
position of the animal. Because the sensory experiences during
navigation are highly correlated (for similar locations of the an-
imal), a simple network compressing such inputs can reproduce
the response properties of typical hippocampal neurons.

Mapping the Hippocampus to Our Model. The hippocampus is
highly structured, and while we believe in the general principle
that it implements some form of compression, we are less
clear about the mapping between its different parts and the
layers of our model. Our input layer maps naturally to EC, the
compressed layer could be DG, and the recurrent network for
the episodic memories could be CA3. While this mapping is
broadly compatible with the known hippocampal anatomy, it is
not the only possible one. The reasons why we proposed this
mapping are essentially two; the first one is that the realistic
model of the encoder does not require a reconstruction layer but
only lateral inhibition. This is compatible with the architecture of
DG. Moreover, DG is also known to exhibit sparse activity, which
is another requirement. The second reason is that the recurrent
network that stores episodic memories needs to be downstream
of the encoder and requires recurrent connections that are also
excitatory. This maps nicely to CA3. It is still unclear why we
need CA1 in our model. However, it is important to remember
that we are modeling the hippocampus in isolation, and hence,
CA1 could be important to mediate the interactions with the
cortex and be involved in the process of decoding. Another
possible function of CA1 is to compare CA3 output with self-
organized feed-forward EC input (4). If the comparison shows
a match between CA3 output and EC input, then CA1 inhibits
the medial septal acetylcholine input to push the network into
retrieval mode; if there is a mismatch, acetylcholine levels remain
high, and the network remains in encoding mode. Alternatively,
it is possible that the encoder is actually implemented by CA1,
which also exhibits sparse activity and has direct bidirectional
connections to EC. Area CA3 also projects to CA1 (Schaffer
collaterals), so a memory of an EC pattern retrieved from CA3
can reinstate that pattern in EC. In this scheme, proposed in
ref. 3, DG represents a parallel encoding pathway, which is
based on random connectivity to achieve pattern separation.
Other works proposed that the EC–CA1–EC pathway supports
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statistical learning, while the EC–DG–CA3–CA1 pathway learns
individual episodes (5). Future extensions of our model, which
incorporate the interactions with the cortex, might indicate what
critical experiments should be done to map the components of
the model to the different parts of the hippocampus.

Response Variability and Remapping. In our model, the neural
representations reflect not just current inputs but also recent
memories since the synaptic weights are continuously updated,
which would explain some of the observed high variability of the
neuronal responses (e.g., ref. 15). Moreover, our model is in line
with the elevated sensitivity of the neuronal responses to any
change in the environment [e.g., the delivery of reward (19, 71)
or the manipulation of landmarks (72, 73)]. This phenomenon
is often described as “remapping” (74) and is widely observed.
In ref. 75, the authors suggest that it is important for memory.
According to our interpretation, the hippocampus would encode
any memory, not just those that are related to navigation in
physical space. The presence of an item or the delivery of reward
at a particular location, which often constitute salient episodes,
would certainly alter the neuronal responses, as observed in
experiments (19, 71, 73, 76). We show such a modification of
spatial response profiles explicitly in SI Appendix, Fig. S7, where
we use our model to compress inputs created by nonlinearly
mixing the spatial variables used in Figs. 3 and 4 with an addi-
tional localized input that represents a reward signal. Moreover,
any structured sensory experience involving correlated inputs
parameterized by some external variable would also be reflected
in the hippocampal representations, as in the case of auditory
stimuli (33).

The History Effect and Other Predictions. One of the predictions of
our model is that the neuronal responses should be affected by
the recent history to the point that the fluctuations of the firing
fields should contain decodable information about the recent
exploration statistics. However, history effects are not a unique
feature of our model for at least two reasons. The first one is that
during learning, it is likely that any model would exhibit history
effects. However, if the hippocampus was designed to encode
only the position of the animal, it appears unlikely that in a sta-
tionary environment, the representations would keep changing
substantially after the environment is familiar and the position of
the animal can be decoded from the neural activity. Our model
predicts that even in situations in which position is strongly en-
coded, we should observe continual modifications that reflect the
recent history of sensory experiences. The second reason is that
there are many real-world tasks where it is important to encode
temporal correlations. As soon as these correlations are encoded,
we have a different source of history dependence; if the input
to our model already encodes the recent history, then of course
the activity of the neurons in the compressed representations
will also be history dependent. This dependence is conceptually
different from the one we discussed because ours is due to the
continual update of the compressed representations. One of the
reasons we decided to study only problems with spatial and not
temporal correlations is to highlight the history dependence that
is characteristic of our model: the one due to the ever-changing
synaptic weights of the encoder. This history dependence is
likely to happen on a different timescale, comparable with the
timescale of synaptic modifications (minutes, not seconds). How-
ever, this clearly poses a problem in terms of predictions. If
we observe a clear history effect on multiple timescales, as the
authors of ref. 17, is it due to the explicit encoding of temporal
correlations as in ref. 77 or due to the continual update of the
representations, as we propose? In both cases, the changes in
the response properties of the neurons would not be a random
drift, but they would depend on the specific history of recent
events. If the timescales that are encoded in the input and those
that characterize the learning process are not well separated,

we cannot really discriminate between these two scenarios, and
hence, we cannot consider the history effect a unique signature
of our compression model.

To confirm the role of the hippocampus in memory compres-
sion suggested by the model, we would need additional exper-
iments in which the sensory experiences are structured and for
example, organized as in the ultrametric case. Comparing the
neural representations before and after learning should reveal
whether the changes are compatible with a compression process.
For example, one could look at the geometry of the representa-
tions, as in Fig. 2, and its dependence on the compressibility of the
environment. A possible experiment could be to train a rodent to
run in a virtual 1D environment and control the statistics of the
encountered landmarks to change compressibility. For example,
if one walks on a desert road, the sensory experiences are very
similar to each other, and the environment is highly compressible.
A pedestrian area in a city center would be significantly less
compressible.

Compressing Temporal Sequences. There are other recent theoret-
ical works that emphasize the general role of the hippocampus
in learning and memory (e.g., refs. 78–85) at the expense of the
specific role it plays in navigation. These works mostly focus on
the encoding of temporal sequences with one notable exception
(85); some assume that the hippocampus tries to store only
the information that is relevant for predicting the next state
of the environment, while others postulate that the goal of the
hippocampus is to represent the probability distribution of future
locations (conditioned on the current position of the animal).
These predictions are then used to drive reinforcement learning.
In our case, we considered for simplicity only the compression
of the instantaneous sensory experiences. We focused on the
lower-level questions of how spatially modulated cells may arise
mechanistically and which of their features may be explained
without postulating any higher cognitive goals other than simply
remembering the past. Our model can easily be extended to deal
with simple temporal correlations: for example, by replacing the
input layer with a recurrent network. Even in the case of random
connectivity, the network activity would then contain information
about the temporal sequence of recent sensory experiences (86).
For longer timescales and more complex temporal correlations,
a different mechanism would be required (e.g., refs. 77 and
87), which might also involve synaptic plasticity on multiple
timescales (24, 88). In all these cases, the instantaneous input of
the autoencoder contains information about a recent temporal
sequence. The downstream autoencoder can then be modeled
exactly in the same way as we modeled it here.

How to Get Place Cells with Autoencoders. The place cells of Fig. 4
are obtained under the assumption that the inputs contain im-
plicit information about the position of the animal: the direction
of movement, the distance from the last wall visited, and the
position of the animal when it was at the wall. These are not
the only possible inputs to get place cells. Indeed, the same
model would produce rather realistic place fields for a broad
class of different inputs that contain implicitly the information
about position. The only requirement is that nearby locations
should lead to similar inputs. In other words, there should be
a topology in the environment that is preserved in the input
space. If the environment is 2D, it is not necessary that the
inputs that correspond to all possible locations also lie on a 2D
linear subspace of the input space. In fact, in our case, the inputs
that are fed to the autoencoder come from a relatively low-
dimensional latent space, but they are actually high-dimensional
(we pass the inputs through a nonlinear random projection). All
we require is that the intrinsic dimensionality of the manifold is
2D as the original environment (or three-dimensional if we take
into account heading direction in addition to position). If tem-
poral correlations are considered, as described in the previous

10 of 12 PNAS
https://doi.org/10.1073/pnas.2018422118

Benna and Fusi
Place cells may simply be memory cells:

Memory compression leads to spatial tuning and history dependence

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018422118/-/DCSupplemental
https://doi.org/10.1073/pnas.2018422118


N
EU

RO
SC

IE
N

CE

section, it is likely that one can get place fields even when the
representations of different locations are completely random, as
in refs. 83 and 84.

The Missing Loop with the Cortex. In our work, we focused on the
role of the hippocampus in compressing correlated sensory ex-
periences represented in the input. However, it will be important
in the future to also consider the correlations between sensory
inputs and long-term memory, which probably resides in the
cortex (e.g., refs. 54 and 89). The hippocampus is anatomically
part of a loop that involves the cortex. This loop complicates
the validation of our model because it is difficult to isolate the
components of the input in EC that are present from the very
beginning and those that result from the projections that come
back from the hippocampus. The loop is important for at least
two reasons. The first one is that the hippocampus can con-
tribute to organizing long-term memories stored in the cortex,
and it might be important for the process of abstraction that
underlies the creation of schemas (90). The second one is that
the hippocampus should also take into account the similarities
between the current episode and all the memories already stored
in the cortex. Even more importantly, the hippocampus should
be able to use the abstract information that might be stored in
the long-term memory: for example, the information stored in a
schema (90). We focused only on the learning dynamics of the
hippocampus in the early stages, when there is still no infor-
mation about the new memories in the cortex. A recent model
(84) addressed these issues by introducing a mechanism that
maps specific episodes to low-dimensional structures that were
previously learned and then encoded in the cortex. The model
also assumes that the hippocampus plays an important role in the

formation of these cortical representations. Such a model leads
to the formation of place cells in the hippocampus and grid cells
in EC. Our model focused more on the role of the hippocampus
in episodic memory, and it considers for simplicity only spatial
correlations. In ref. 84, the authors instead assume that the
instantaneous sensory experiences are completely random and
uncorrelated, and the only correlations that are considered are
temporal. Incorporating into our model a loop with the cortex in
a way that is similar to what has been proposed in ref. 84 would
probably lead to even more efficient ways of storing episodic
memories and will be considered in future studies.

Materials and Methods
Methods Summary. The detailed description of the simulations with ultra-
metric patterns is reported in SI Appendix, Memorizing Ultrametric Patterns.
Fig. 2 results are obtained using the simulations described in SI
Appendix, Simulations of the Compression of Ultrametric Patterns. Details
of the simulated mouse that explores an environment are in SI Appen-
dix, Simulations of Input Compression in Navigational Experiments for the
autoencoder model and in SI Appendix, Input Compression Using Local Lear-
ning Rules in a Network without Reconstruction Layer for the biologically
plausible model. SI Appendix, Memory Capacity and Decoding Analyses
describes methods for Figs. 3C and 6C.

Data Availability. There are no data underlying this work.
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