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ABSTRACT OF THE DISSERTATION
Ergodic theory of expanding Thurston maps
by

Zhiqiang Li
Doctor of Philosophy in Mathematics
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Professor Mario Bonk, Chair

Thurston maps are topological generalizations of postcritically-finite rational maps. More
precisely, a Thurston map f: S? — S? is a (non-homeomorphic) branched covering map on
a topological 2-sphere S? whose critical points are all preperiodic. This thesis provides a
comprehensive study of the measure of maximal entropy, as well as a more general class of
invariant measures, called equilibrium states, for expanding Thurston maps. In particular,
given an expanding Thurston map f: S? — S2, we present a large class of equidistribution
results for iterated preimages and (pre)periodic points with respect to the unique measure of
maximal entropy by first establishing a formula for the number of fixed points. The formula
states that f has exactly 14+deg f fixed points, counted with appropriate weights, where deg f
denotes the topological degree of the map f. We then use the thermodynamical formalism to
show that there exists a unique equilibrium state p, for f together with a real-valued Holder
continuous potential ¢. Here the sphere S? is equipped with a natural metric induced
by f, called a visual metric. We also prove that identical equilibrium states correspond
to potentials which are co-homologous upto a constant, and that the measure-preserving
transformation f of the probability space (S?, ug) is exact, and in particular, mixing and
ergodic. Moreover, we establish a version of equidistribution of a random backward orbit
with respect to the equilibrium state. After proving that f is asymptotically h-expansive
if and only if it has no periodic critical points, and that no expanding Thurston map is

h-expansive, we obtain certain large deviation principles for iterated preimages and periodic

i



points under the additional assumption that f has no periodic critical points. This enables
us to obtain general equidistribution results for iterated preimages and periodic points with
respect to the equilibrium states under the same assumption on f. We also get the existence

of equilibrium states for such f and any continuous real-valued potential.
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CHAPTER 1

Introduction

The theory of complex dynamics dates back to the work of G. Keenigs, E. Schroder, and
others in the 19th century. This subject, concentrating on the study of iterated rational
maps on the Riemann sphere, was developed into an active and fascinating area of research,
thanks to the remarkable works of S. Lattes, C. Carathéodory, P. Fatou, G. Julia, P. Koebe,
L. Ahlfors, L. Bers, M. Herman, A. Douady, D. P. Sullivan, J. H. Hubbard, W. P. Thurston,
J.-C. Yoccoz, C. McMullen, J. Milnor, M. Lyubich, M. Shishikura, and many others.

In the early 1980s, D. P. Sullivan introduced a “dictionary”, known as Sullivan’s dic-
tionary nowadays, linking the theory of complex dynamics with another classical area of
conformal dynamical systems, namely, geometric group theory, mainly concerning the study
of Kleinian groups acting on the Riemann sphere. Many dynamical objects in both areas
can be similarly defined and results similarly proven, yet essential and important differences

remain.

One way to generalize the study of rational maps on the Riemann sphere is to look
at (topological) branched covering maps on a general topological 2-sphere. In this context,
W. P. Thurston established a famous characterization theorem for a certain subclass of ratio-
nal maps (see [DH93|), namely, the postcritically-finite rational maps. This class, consisting
of rational maps whose critical points are all preperiodic, play an important role in complex
dynamics. The class of branched covering maps generalizing postcritically-finite rational
maps that W. P. Thurston considered are now known as Thurston maps. More precisely, a
(non-homeomorphic) branched covering map f: S? — S? is a Thurston map if each of its

finitely many critical points is preperiodic.



Inspired by Sullivan’s dictionary and their interests in Cannon’s conjecture in geometric
group theory (see for example, [Bon(6, Section 5 and Section 6]), M. Bonk and D. Meyer
studied a subclass of Thurston maps, for which they established a characterization theorem
of rational maps in their context (see [BM10, Theorem 1.9]) from a different point of view.
They introduced a special class of metrics for their maps, called visual metrics, and their
characterization theorem is based on the properties of such metrics. Some condition of
expansion had to be imposed on the kind of Thurston maps they investigated. P. Haissinsky
and K. Pilgrim introduced such a notion for any finite branched coverings between two
topological spaces that are Hausdorff, locally compact, and locally connected (see [HPQ9,
Section 2.1 and Section 2.2]). M. Bonk and D. Meyer formulated [BM10] an equivalent
definition of expansion in the context of Thurston maps. We call Thurston maps with such
an expansion property expanding Thurston maps. Roughly speaking, we say that a Thurston
map is expanding if for any two points x,y € S?, their preimages under iterations of the
map get closer and closer. See Definition for a precise formulation. We also refer to

[BM10), Proposition 8.2] for a list of equivalent definitions.

M. Bonk and D. Meyer’s philosophy in [BM10] is to use the combinatorial information of
certain Markov partitions of the 2-sphere induced by an expanding Thurston map to study its
properties. There are two main ingredients to this approach: one is the existence of certain
forward invariant Jordan curves on S?, established in [BMI0, Theorem 1.8], that induces
the Markov partitions; and the other is the existence of visual metrics on S?, established in

[BM10, Theorem 1.7], with respect to which the Markov partitions are very regular.

Adopting the philosophy of M. Bonk and D. Meyer, we provide a comprehensive study

of the ergodic theory of expanding Thurston maps in this thesis.

Ergodic theory has been an important tool in the study of dynamical systems. The
investigation of the existence and uniqueness of invariant measures and their properties has
been a central part of ergodic theory. The realization of the connection between the orbit

structure and the existence of a finite invariant measure can be traced back to H. Poincaré.

A dynamical system may possess a large class of invariant measures, some of which may



be more interesting than others. It is therefore crucial to examine the relevant invariant

measures.

Arguably the most important measure for a dynamical system is its measure of maz-
imal entropy. By definition, it is an invariant Borel probability measure that maximizes
the measure-theoretic entropy. Thanks to the pioneering work of R. Bowen, D. Ruelle,
P. Walters, Ya. Sinai, M. Lyubich, R. Mané, and many others, existence and uniqueness
results for the measure of maximal entropy are known for uniformly expansive continuous
dynamical systems, distance expanding continuous dynamical systems, uniformly hyperbolic
smooth dynamical systems, and rational maps on the Riemann sphere. In many cases, the

measure of maximal entropy is also the asymptotic distribution of the period points (see

[Pa64l Si72, BowT75l [Ly83] [FLMS&3, Ruf9, [PU10]).

Even though from the definition, expanding Thurston maps seem to have good expan-
sion properties, they do not fall into any class of the classical dynamical systems mentioned
above. So we have to first investigate the existence and uniqueness of such measures. As
a consequence of their general results in [HP09], P. Haissinsky and K. Pilgrim proved that
for each expanding Thurston map, there exists a measure of maximal entropy and that the
measure of maximal entropy is unique for an expanding Thurston map without periodic
critical points. M. Bonk and D. Meyer then proved the existence and uniqueness of the mea-
sure of maximal entropy for all expanding Thurston maps using an explicit combinatorial
construction [BM10]. Some equidistribution results for periodic critical points and iterated
preimages with respect to the measure of maximal entropy were obtained in [HP(09]. Using
the philosophy of M. Bonk and D. Meyer, we establish in Chapter M stronger equidistribu-
tion results for (pre)periodic points and iterated preimages with respect to the measure of
maximal entropy in our context. In order to do so, we carefully investigate the locations
of fixed points in relation to the Markov partitions. We also establish the following exact
formula for the number of fixed points for an expanding Thurston map, which is analogous

to the corresponding formula for rational maps (see for example, [Mi06, Theorem 12.1]).

Theorem 1.0.1. Every expanding Thurston map f: S* — S? has 1 + deg f fived points,



counted with weight given by the local degree of the map at each fixed point.

Here deg f denotes the topological degree of the map f. The local degree is a natural
weight for points on S? for expanding Thurston maps. P. Haissinsky and K. Pilgrim also
used the same weight in the general context they considered in [HP(09]. For a more detailed

discussion on the local degree, we refer to Chapter 2.1

After all, the measure of maximal entropy is just one important invariant measure. In
order to investigate a larger class of important invariant measures, one needs to apply more

powerful tools to our understanding of the combinatorial information of the maps.

The thermodynamical formalism is one such mechanism to produce invariant measures
with some nice properties under assumptions on the regularity of their Jacobian functions.
More precisely, for a continuous transformation on a compact metric space, we can consider
the topological pressure as a weighted version of the topological entropy, with the weight
induced by a real-valued continuous function, called potential. The Variational Principle
identifies the topological pressure with the supremum of its measure-theoretic counterpart,
the measure-theoretic pressure, over all invariant Borel probability measures [Bow75, (WaT76].
Under additional regularity assumptions on the transformation and the potential, one gets
existence and uniqueness of an invariant Borel probability measure maximizing the measure-
theoretic pressure, called the equilibrium state for the given transformation and the potential.
Often the Jacobian function for the transformation with respect to the equilibrium state is
prescribed by a function induced by the potential. The study of the existence and uniqueness
of the equilibrium states and their various properties such as ergodic properties, equidistri-
bution, fractal dimensions, etc., has been the main motivation for much research in the

area.

This theory, as a successful approach to choosing relevant invariant measures, was inspired
by statistical mechanics, and created by D. Ruelle, Ya. Sinai, and others in the early 1970s
[Dob68| [Si72, Bow75, [Wa82]. Since then, the thermodynamical formalism has been applied in
many classical contexts (see for example, [Bow75, [Ru89l [Pr90} [KH95, [Zi96, MaulU03], BS03),



0103, Yu03), PU10, MayUT0]). However, beyond several classical dynamical systems, even
the existence of equilibrium states is largely unknown, and for those dynamical systems that
do possess equilibrium states, often the uniqueness is unknown or at least requires additional
conditions. The investigation of different dynamical systems from this perspective has been

an active area of current research.

We apply the theory of thermodynamical formalism to study the equilibrium states for
expanding Thurston maps in Chapter B We establish the existence and uniqueness of the
equilibrium state, denoted by g, for a Holder continuous potential ¢: S* — R. Here S? is
equipped with a visual metric. This generalizes the existence and uniqueness of the measure
of maximal entropy of an expanding Thurston map in [HP09] and [BMI10]. We also prove
that the measure-preserving transformation f of the probability space (S?, ug) is exact (see
Definition [5.4.2)), and in particular, mixing and ergodic (Theorem and Corollary £.4.0).
This generalizes the corresponding results in [BM10] and [HP(O9] for the measure of maximal

entropy to our context.
In order to state our results more precisely, we quickly review some key concepts.

For an expanding Thurston map f: S? — S? and a continuous function ¢: S? — R, and

each f-invariant Borel probability measure p on S?, we have an associated quantity,

Pu(f ) = h(f) + / ¥ du,

called the measure-theoretic pressure of f for p and v, where h,(f) is the measure-theoretic
entropy of f for u. The well-known Variational Principle (see for example, [PUIL0, Theo-

rem 3.4.1]) asserts that
P(fvw) :SupPM(fvw)a (101)

where the supremum is taken over all f-invariant Borel probability measures u, and P(f, 1))
is the topological pressure of f with respect to ¥ defined in (8.2.1]). A measure p that attains
the supremum in (LOJ]) is called an equilibrium state for f and .

We assume for now that ¢ is Holder continuous (with respect to a given visual metric

for f on S?). One characterization of the topological pressure in our context is given by the



following formula (Proposition [£.2.16)):

P(f,¢) = lim —log Z deg  (y) exp(Snt(y)), (1.0.2)

n—4+oo N
yef~"(x)

for each x € S?, independent of x, where deg sn(y) is the local degree of f" at y and
S,0(0) = 5 (W),

An important tool that we use to find the equilibrium state and to establish its uniqueness,
is the Ruelle operator L, on the Banach space C'(S?) of real-valued continuous functions on
S?, given by

Z degf u(y) exp(¥(y)),

yeft
for u € C(S?) and z € S2.
The Ruelle operator plays a central role in the thermodynamical formalism, and has been
studied carefully for various dynamical systems (see for example, [Bow 75, [Ru89, [Pr90), [Zi96),
ManU03|, PUL0, MayU10]). Some of the ideas that we apply in Chapter [ for its investigation

are well-known and repeatedly used in the literature, see for example [PU10, [Z196].

A main difficulty of our analysis comes from the lack of uniform expansion property that
arises from the existence of critical points (i.e., branch points of a branched covering map).
As an example, identities of the form ([L0.2) that are usually easy to derive for classical
dynamical systems (see for example, [PUL0, Proposition 4.4.3]) become difficult to verify

directly in our context.

The following statement summarizes the main results that we obtain via the thermody-

namical formalism in Chapter

Theorem 1.0.2. Let f: S? — S? be an expanding Thurston map and d be a visual metric
on S% for f. Let ¢ be a real-valued Holder continuous function on S* with respect to the

metric d.

Then there exists a unique equilibrium state iy for the map f and the potential ¢. If 1) is
another real-valued Holder continuous function on S* with respect to the metric d, then iy =

iy if and only if there exists a constant K € R such that ¢ —1p and K1g= are co-homologous



in the space of real-valued continuous functions on S?, i.e., ¢ —1p — Klgs = uo f —u for

some real-valued continuous function u on S2.

Moreover, iy is a non-atomic f-invariant Borel probability measure on S?* and the measure-
preserving transformation f of the probability space (52, py) is forward quasi-invariant, non-
singular, exact, and in particular, mizing and ergodic.

In addition, the preimages points of f are equidistributed with respect to ji4, i.e., for each

sequence {x, }nen of points in S?, as n — +0oo,

n—1
n( Z deg s (y) exp (Sno(y Z5fz(y S o, (1.0.3)
yEL " (an)
Z deg () exp (Su0(y))0, > pa, (1.0.4)
Zn(¢) iy
where Z, () = > deg . (y) exp( Sa(y)), for each n € N and each ¢ € C(S?).

yEf~™(wn)

Here the symbol w* indicates convergence in the weak” topology, deg.(x) denotes the

n—1 ~
local degree of the map f™ at x, S,¥(y) = > ¥(f(y)), and ¢ is a potential related to ¢
i=0

defined in (5.3.3).

The theorem above combines Theorem [B.3.14] Theorem [(5.4.3] Corollary [5.4.4] Corol-
lary 5.4.6] Theorem 5.5 and Proposition B.6.11

As a quick consequence of the proof of the uniqueness of the equilibrium state, we show
in Proposition that under the assumptions in Theorem [[.0.2], the images of each Borel
probability measure p under iterates of the adjoint of the Ruelle operator Eg converge in the

weak™ topology to the unique equilibrium state 4, i.e.,

(Ej;)n(,u) SEAN [ as n — +00. (1.0.5)

A rational Thurston map is expanding if and only if it has no periodic critical points
(see [BM10, Proposition 19.1]). So when we restrict to rational Thurston maps, we get the

following corollary as an immediate consequence of Theorem [[L0.2] and Remark 2.4.2]



Corollary 1.0.3. Let f be a postcritically-finite rational map on the Riemann sphere C with
no periodic critical points and with degree at least 2. Let ¢ be a real-valued Holder continuous

function on C equipped with the chordal metric.

Then there exists a unique equilibrium state iy for the map f and the potential ¢. If 1 is
another real-valued Holder continuous function on @, then py = py if and only if there exists
a constant K € R such that ¢ — v and K1z are co-homologous in the space of real-valued
continuous functions on (@, i.e., p =Y — Klg = uo f —wu for some real-valued continuous

function u on C.

Moreover, ugs is a non-atomic f-invariant Borel probability measure on S* and the measure-
preserving transformation f of the probability space (S?, uy) is forward quasi-invariant, non-

singular, exact, and in particular, mizing and ergodic.

In addition, both (LO.3) and ({1.0.4) hold as n — +o0.

The expression “postcritically-finite rational map (with degree at least 2)” is another

name for a rational Thurston map, used by many authors in holomorphic dynamics.

The existence and uniqueness of the equilibrium state for a general rational map R on the
Riemann sphere and a real-valued Holder continuous potential ¢ can be established under the
additional assumption that sup{¢(z)|z € J(R)} < P(R,¢)}, where J(R) is the Julia set of
R and P(R, ¢) is the topological pressure of R with respect to ¢ (see [DU91], [Pr90, DPU9E]).
This assumption can sometimes be dropped: one can either restrict to certain subclasses
of rational maps, such as topological Collet-Eckmann maps, see [CRLI1], or hyperbolic
rational maps (more generally, distance-expanding maps), see [PULQ]; or one can impose
other conditions on the function ¢, such as hyperbolicity of ¢, see [[RRL12]. It is easy to

check that a rational expanding Thurston map is topological Collet-Eckmann.

As a consequence of the proof of the uniqueness of the equilibrium states, we also obtain
equidistribution results ([L0.3]) and (L.0.4) for the iterated preimages with respect to the
equilibrium states as stated in Theorem [[.L0.2l However, similar results for periodic points

are inaccessible by the usual techniques from thermodynamical formalism due to technical



difficulties arising from the existence of critical points.

Rather than trying to establish the equidistribution results for periodic points directly,
we derive in Chapter [7 some stronger results using a general framework of Y. Kifer [Ki90].
More precisely, we obtain level-2 large deviation principles for periodic points with respect
to equilibrium states in the context of expanding Thurston maps without periodic critical
points and Holder continuous potentials. We use a variant of Y. Kifer’s result formulated
by H. Comman and J. Rivera-Letelier [CRL11], which is recorded in Theorem [.T.1] for the
convenience of the reader. For related results on large deviation principles in the context
of rational maps on the Riemann sphere under additional assumptions, see [PSh96|, [PSr07,

XF07, [PRLLT, [Com09, [CRLIT].

More precisely, let us denote the space of Borel probability measures on a compact
metric space X equipped with the weak* topology by P(X). A sequence {2, },en of Borel
probability measures on P(X) is said to satisfy a level-2 large deviation principle with rate

function I if for each closed subset § of P(X) and each open subset & of P(X) we have

lim sup 1 log ,(F) < —inf{I(x) |z € §},

n—+oo T

and

1
liminf —log Q,(®) > —inf{I(x) |z € &}.

n—+oo N
We refer the reader to [CRLII, Section 2.5] and the references therein for a more systematic

introduction to the theory of large deviation principles.

In order to apply Theorem [Z.I.1l we just need to verify three conditions:

(1) The existence and uniqueness of the equilibrium state.

(2) Some characterization of the topological pressure (see Proposition [[.2.2 and Proposi-

tion [T.2.1]).

(3) The upper semi-continuity of the measure-theoretic entropy.



The first condition is established by Theorem [[.LO.2l The second condition is weaker than
the equidistribution results, and is within reach. The last condition seems to be difficult to

verify directly.

In order to establish the upper semi-continuity of the measure-theoretic entropy, we need

to take a closer look at the expansion property of expanding Thurston maps.

In the study of discrete-time dynamical systems, various conditions can be imposed upon
the map to simplify the orbit structures, which in turn lead to results about the dynamical
system under consideration. One such well-known condition is expansiveness. Roughly
speaking, a map is expansive if no two distinct orbits stay close forever. Expansiveness plays
an important role in the investigation of hyperbolicity in smooth dynamical systems, and in

complex dynamics in particular (see for example, [Ma87] and [PUIL0]).

In the context of continuous maps on compact metric spaces, there are two weaker no-
tions of expansion, called h-expansiveness and asymptotic h-expansiveness, introduced by
R. Bowen [Bow72] and M. Misiurewicz [Mi73], respectively. Forward-expansiveness implies
h-expansiveness, which in turn implies asymptotic h-expansiveness [Mi76]. Both of these
weak notions of expansion play important roles in the study of smooth dynamical systems
(see [Burgll, DFPV12, DM09, DNO5, LVY13]). Moreover, any smooth map on a compact
Riemannian manifold is asymptotically h-expansive [Buz97]. Recently, N.-P. Chung and
G. Zhang extended these concepts to the context of a continuous action of a countable

discrete sofic group on a compact metric space [CZ15].

M. Misiurewicz showed that asymptotic h-expansiveness guarantees that the measure-

theoretic entropy p +— h,(f) is upper semi-continuous [Mi76].

To be a bit more precisely, we let (X, d) be a compact metric space, and g: X — X a

continuous map on X. Denote, for ¢ > 0 and z € X,
O (x) ={y € X|d(¢9"(x),9"(y)) < e for all n > 0}.

The map ¢ is called forward expansive if there exists € > 0 such that ®.(x) = {z} for all

x € X. By R. Bowen’s definition in [Bow72], the map ¢ is h-expansive if there exists € > 0

10



such that the topological entropy Aop (gl (z)) = Prop(g, Pe(x)) of g restricted to ®(z) is 0
for all x € X. One can also formulate asymptotic h-expansiveness in a similar spirit, see for
example, [Mi70, Section 2]. However, in this paper, we will adopt equivalent formulations

from [Dowl1]. See Section B.4] for details.

Another way to formulate forward expansiveness is via distance expansion. We say that
g: X — X is distance-expanding (with respect to the metric d) if there exist constants A > 1,
n > 0, and n € N such that for all z,y € X with d(z,y) < n, we have d(¢"(x),¢"(y)) >
Ad(x,y). If g is forward expansive, then there exists a metric p on X such that the metrics d
and p induce the same topology on X and g is distance-expanding with respect to p (see for
example, [PUL0, Theorem 4.6.1]). Conversely, if ¢ is distance-expanding, then it is forward
expansive (see for example, [PUIL0, Theorem 4.1.1]). So roughly speaking, if g is forward
expansive, then the distance between two points that are close enough grows exponentially

under forward iterations of g.

Since a Thurston map, by definition, has to be a branched covering map, we can always
find two distinct points that are arbitrarily close to a critical point (thus arbitrarily close
to each other) and that are mapped to the same point. Thus a Thurston map cannot be
forward expansive. The expansion property of expanding Thurston maps may nevertheless
still seem to be quite strong. However, as a part of the following main theorem for Chapter [@],

we will show that no expanding Thurston map is h-expansive.

Theorem 1.0.4. Let f: S? — S? be an expanding Thurston map. Then f is asymptotically

h-expansive if and only if f has no periodic critical points. Moreover, f is not h-expansive.

When R. Bowen introduced h-expansiveness in [Bow72], he mentioned that no diffeo-
morphism of a compact manifold was known to be not h-expansive. M. Misiurewicz then
produced an example of a diffecomorphism that is not asymptotically h-expansive [Mi73].
M. Lyubich showed that each rational map is asymptotically h-expansive [Ly83]. J. Buzzi
established asymptotic h-expansiveness of any C'*°-map on a compact Riemannian manifold

[Buz97]. Examples of C*°-maps that are not h-expansive were given by M. J. Pacifico and
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J. L. Vieitez [PV08]. Our Theorem [[L0.4] implies that no rational expanding Thurston map
(i.e., any postcritically-finite rational map whose Julia set is the whole sphere (see [BMI10,

Proposition 19.1])) is h-expansive.

Expanding Thurston maps may be the first example of a class of a priori non-differentiable
maps that are not h-expansive but may be asymptotically h-expansive depending on the

property of orbits of critical points.

As an immediate consequence of Theorem [LO.4] and the result of J. Buzzi [Buz97] men-

tioned above, we get the following corollary, which partially answers a question of K. Pilgrim

(see Problem 2 in [BMI0), Section 21]).

Corollary 1.0.5. An expanding Thurston map with at least one periodic critical point cannot

be conjugate to a C*-map from the Euclidean 2-sphere to itself.

Returning back to our original motivation from equidistribution results and large devia-

tion principles, we get the following corollary from Theorem [[.0.4]

Corollary 1.0.6. Let f: S? — S? be an expanding Thurston map without periodic critical
points. Then the measure-theoretic entropy h,(f) considered as a function of i on the space
M(S?, f) of f-invariant Borel probability measures is upper semi-continuous. Here M(S?, f)

15 equipped with the weak® topology.

Recall that if X is a metric space, a function h: X — [—00, +00] is upper semi-continuous

if limsup,_,, h(y) < h(z) for all z € X.

Note that Corollary [L.0O.6] implies a partially stronger existence result than the one ob-
tained in Theorem [L.0.2)

Theorem 1.0.7. Let f: S? — S? be an expanding Thurston map without periodic critical
points and v € C(S?) be a real-valued continuous function on S* (equipped with the standard

topology). Then there exists at least one equilibrium state for the map f and the potential ).
See the end of Section for a quick proof.
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Thanks to Corollary [L0O.0), we get the following level-2 large deviation principles by
applying Theorem [Z.T.11

Theorem 1.0.8. Let f: S? — S? be an expanding Thurston map with no periodic critical
points, and d a visual metric on S* for f. Let P(S?) denote the space of Borel probability
measures on S* equipped with the weak* topology. Let ¢ be a real-valued Holder continuous
function on (S?,d), and ug be the unique equilibrium state for the map f and the potential
Q.

For each n € N, let W,,: S* — P(S?) be the continuous function defined by
1 n—1
Wo(z) = n Zéfi(m)’
i=0

n—1

and denote S,é(x) = Y ¢ (f'(z)) for x € S?. Fiz an arbitrary sequence of functions
i=0

{wn: 5% = R}nen satisfying wy(x) € [1,degs ()] for each n € N and each v € S*. We

consider the following sequences of Borel probability measures on P(S?):

Iterated preimages: Given a sequence {x, fnen of points in S?, for each n € N, put

wn(y) exp(Sno(y)) ;
D ecfn(an) Wn(2) exp(S,0(2)) n(y)

Qu(r,) =

yef " (zn)
Periodic points: For each n € N, put

wy () exp(Sno(z))

Q, = OW. (2)-
> ot Wn(y) exp(Spe(y)

z=f"(x)

Then each of the sequences {$2,(7y)}nen and {Q,}nen converges to 0,, in the weak®
topology, and satisfies a large deviation principle with rate function I?: P(S?) — [0, +o0]
given by
P(f,¢) = [edp—hu(f) if p€ M(S f);
+00 if w € P(S%)\ M(S?, f).

Furthermore, for each convexr open subset & of P(S?) containing some invariant measure,

I°(n) = (1.0.6)

we have

1 1
—iréf[¢: lim —log,(z,)(®) = lim —log€,(®) (1.0.7)

n—-+oo N, n—+oo N

and ([I.0.7) remains true with & replaced by its closure &.
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As an immediate consequence, we get the following corollary. See Section [.4] for the

proof.

Corollary 1.0.9. Let f: S* — S? be an expanding Thurston map with no periodic critical
points, and d a visual metric on S* for f. Let ¢ be a real-valued Hélder continuous function
on (S2,d), and py be the unique equilibrium state for the map f and the potential ¢. Given a
sequence {x, bnen of points in S%. Fix an arbitrary sequence of functions {w,: S? — R}en

satisfying wy,(z) € [1,degm ()] for each n € N and each x € 5.

Then for each € M(S?, f), and each convex local basis G, of P(S?) at u, we have

QieGM}

6 e GM}. (1.0.8)

hu(f) + /gb dp :inf{ lim 1 log Z wn(y)€5n¢(y)

n—-+oo N
YEf T (xn), Wn(y)€®

1
:inf{ lim —log Z wy ()5

n—+oo N
z=f"(z), Wp(z)€®

Here W,, and S, ¢ are as defined in Theorem [I.0.8.

As mentioned above, equidistribution results follow from corresponding level-2 large de-

viation principles.

Corollary 1.0.10. Let f: S? — S? be an expanding Thurston map with no periodic critical
points, and d a visual metric on S? for f. Let ¢ be a real-valued Hélder continuous function
on (S?,d), and py be the unique equilibrium state for the map f and the potential ¢. Fix an
arbitrary sequence of functions {wy: S* = R}nen satisfying wy(x) € [1,deg (x)] for each

n € N and each z € S?.
We consider the following sequences of Borel probability measures on S?:

Iterated preimages: Given a sequence {x, fnen of points in S?, for each n € N, put

wn(y) exp(So(y)) 1.,
s f-n(an) Wn(2) exp(Snd(2)) n ; Osit)

Uy, =
yef~™(wn)

Periodic points: For each n € N, put

wy(x) exp (S, o

(@) 1
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Then as n — 400,

w* w*
Up — g and 1Np — [ig.
Here S, is defined as in Theorem [1.0.8.

Remark 1.0.11. Since S,¢(f'(x)) = S,é(x) for i € Nif f*(z) = z, we get

Sun2) o (S, ¢(x))

" mfzn(x) Zy:f"(y) wn(y) exp(Sne(y))

Oz

for n € N. In particular, when w,(-) =1,

exp(Sn¢(z))

T =
w=fn(z) Dy pr(y) XP(5n0(y))

0z

when w, () = deg . (1), since deg s (f*(2)) = dega(z) for i € N if f*(2) = x, we have

degn () exp(S,9(z)) 5
Dy pry) degpa (1) exp(Sno(y))

T =
z=f"(z)

See Section [7.4] for the proof of Corollary [LO.I0l Note that the part of Corollary [LO.TI0I
on iterated preimages generalizes (5.6.5) and (5.6.0) in Proposition [(.6.1] in the context of
expanding Thurston maps without periodic critical points. We also remark that our results
Corollary through Corollary [LOT0 are only known in this context. In particular, the
following questions for expanding Thurston maps f: S? — S? with at least one periodic

critical point are still open.
Question 1. Is the measure-theoretic entropy p — h,(f) upper semi-continuous?

Question 2. Are iterated preimages and periodic points equidistributed with respect to the

unique equilibrium state for a Holder continuous potential?

Note that regarding Question 2, we know that iterated preimages, counted with lo-
cal degree, are equidistributed with respect to the equilibrium state by (5.6.5) in Proposi-
tion 5.6.11 If Question 1 can be answered positively, then the mechanism of Theorem [Z.1.1]
works and we get that the equidistribution of periodic points from the corresponding large

deviation principle. However, for iterated preimages without counting local degree (i.e., when

15



wy(+) # dega(-) in Corollary [LO.I0, and in particular, when wy,(-) = 1), the verification of

Condition (2) mentioned earlier for Theorem [[.T.1lto apply still remains unknown. Compare
(C21) and (C.2.2) in Proposition [.2.1]

We will now give a brief description of the structure and ideas of this thesis.

After fixing some notations in Section [T, we review Thurston maps in Chapter 2l We
first define branched covering maps on S? and Thurston maps in Section 2.1l We then in-
troduce cell decompositions D"(f,C), n € N, of S? induced by a Thurston map f: S? — 52
and a Jordan curve C C S? containing the postcritical points post f in Section We
then define expanding Thurston maps and combinatorially expanding Thurston maps in
Section before proving in Lemma that the union of all iterated preimages of an
arbitrary point p € S? of an expanding Thurston map is dense in S?. Next, we discuss
visual metrics on S? for an expanding Thurston map in Section 2.4l We summarize prop-
erties of visual metrics from [BMI0], especially the relation between visual metrics and the
cell decompositions, in Lemma 241 and the discussion that follows it. We also prove in
Lemma that an expanding Thurston map is Lipschitz with respect to a visual metric.
M. Bonk and D. Meyer proved that for each expanding Thurston map f, there exists an
f"-invariant Jordan curve containing post f for each sufficiently large n € N depending on
f (see Theorem [Z5.T]). We prove in Lemma a slightly stronger version of this result,
which carries additional combinatorial information of the Jordan curve. This lemma will be
used in Chapter @] and Chapter [l Finally, in Lemma 2.5.4] we prove that an expanding
Thurston map locally expands the distance, with respect to a visual metric, between two
points exponentially as long as they belong to one set in some particular partition of S?
induced by a backward iteration of some Jordan curve on S2. This observation, generalizing
a result of M. Bonk and D. Meyer [BM10, Lemma 16.1], enables us to establish the distortion
lemmas (Lemma [5.2.1] and Lemma [5.2.2)) in Section 5.2l which serve as cornerstones for the

mechanism of thermodynamical formalism that is essential in Chapter [l

In Chapter Bl we review some key concepts of ergodic theory. The usual notions of covers

and partitions are introduced in Section B.Il Then in Section B.2] measure-theoretic entropy
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and topological entropy, as well as measure-theoretic pressure and topological pressure are
introduced before measures of maximal entropy and equilibrium states are defined. Next,
we formulate the Ruelle operator £, for an expanding Thurston map and a real-valued
continuous function ¢ on S? in Section B3l We argue that it is well-defined on the space
of real-valued continuous functions on S%. We then discuss some of the properties of the
Ruelle operator. In Section [3.4] we review the notion of topological conditional entropy
h(g|\) of a continuous map g: X — X (on a compact metric space X) given an open cover
A of X, and the notion of topological tail entropy h*(g) of g. The latter was first introduced
by M. Misiurewicz under the name “topological conditional entropy” [Mi73 Mi76]. We
adopt the terminology and formulations by T. Downarowicz in [Dowll]. We then define

h-expansiveness and asymptotic h-expansiveness using these notions.

Chapter Mlis devoted to the study of periodic points and the measure of maximal entropy

for an expanding Thurston map.

In Section [4.1], we study the fixed points, periodic points, and preperiodic points of the
expanding Thurston maps. For the convenience of the reader, we first provide a direct proof
in Proposition . 1.1l using knowledge from complex dynamics, of the fact that a rational
expanding Thurston map R on the Riemann sphere has exactly 1+ deg R fixed points. Then
we set out to generalize this result to the class of expanding Thurston maps, and derive

Theorem [L.O.1l

We first observe that the statement of Theorem [[.0.1] agrees with what can be concluded
from the Lefschetz fixed-point theorem (see for example, [GP10, Chapter 3]) if the map f
is smooth and the graph of f intersects the diagonal of S? x S? transversely at each fixed
point of f. However, an expanding Thurston map may not satisfy either of these conditions.

It is not clear how to give a proof by using the Lefschetz fixed-point theorem.

The proof of Theorem [L.O.1] uses the correspondence between the fixed points of f and
the 1-tiles in some cell decomposition of S? induced by f and its invariant Jordan curve
C C 82, for the special case when f has a special invariant Jordan curve C. In fact, f

may not have such a Jordan curve, but due to the result of [BM10] mentioned above, for
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each n large enough there exists an f"-invariant Jordan curve. We use a slightly stronger
result as formulated in Lemma Then the general case follows from an elementary
number-theoretic argument. One of the advantages of this proof is that we also exhibit
an almost one-to-one correspondence between the fixed points and the 1-tiles in the cell
decomposition of S?, which leads to precise information on the location of each fixed point.
This information is essential later in the proof of the equidistribution of preperiodic and
periodic points of expanding Thurston maps in Section .2l As a corollary of Theorem [[.0.1],
we give a formula in Corollary for the number of preperiodic points when counted

with the corresponding weight.

In Section [£.2] we prove a number of equidistribution results. More precisely, we first
prove in Theorem [£.2.7] the equidistribution of the n-tiles in the tile decompositions discussed
in Section 2.1 with respect to the measure of maximal entropy pf of an expanding Thurston
map f. The proof uses a combinatorial characterization of 1y due to M. Bonk and D. Meyer

[BM10] that we will state explicitly in Theorem

We then formulate the equidistribution of preimages with respect to the measure of
maximal entropy gy in Theorem [[LO.I2] below. Here we denote by d, the Dirac measure

supported on a point z in S2.

Theorem 1.0.12 (Equidistribution of preimages). Let f: S* — S? be an expanding Thurston

map with its measure of mazimal entropy . Fiz p € S?* and define the Borel probability

measures
1 - 1
Vi= Z deg;i(q)dg, v = — Z g5 (1.0.9)
(deg f) — Z; —
q€f~(p) a€f = (p)

for each i € Ny, where Z; = card (f~*(p)). Then
v [f as i — +00, (1.0.10)
Ui S py as i — +00. (1.0.11)

Here degi(z) denotes the local degree of the map [t at a point x € S% In (LOI0),
(COTT), and similar statements below, the convergence of Borel measures is in the weak*

topology, and we use w* to denote it.
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After generalizing Lemma 2.5 which is due to M. Bonk and D. Meyer (see [BM10,
Lemma 20.2]), in Lemma {212, we prove the equidistribution of preperiodic points with
respect to pp. Note that Theorem [[LO.T]is used here.

Theorem 1.0.13 (Equidistribution of preperiodic points). Let f: S — S? be an expanding
Thurston map with its measure of maximal entropy jiy. For each m € Ny and each n € N

with m < n, we define the Borel probability measures

"ofm(x)=f(x) "ofm(a)=f"(2)

where s, S are the normalizing factors defined in (£.1.0) and (£.1.7). If {mn}nen is a

n

f

sequence in Ny such that m, <n for eachn € N, then

g LN ff as n — +0o, (1.0.13)
g 5 [f as m — +00. (1.0.14)

We prove in Corollary that s = (deg f)" + (deg f)™ for m € Ny and n € N with

m <n.

As a special case of Theorem [LO.I3] we obtain the following corollary.

Corollary 1.0.14 (Equidistribution of periodic points). Let f: S* — S? be an expanding

Thurston map with its measure of maximal entropy pup. Then

1 .
1+ (deg f)" dogn ()0 : 1.0.1
1+ (deg f)™ mfzn(x) Cgr (2)6, — fy asmn —» 400 (1.0.15)
1 -
0 5 1.0.16
il €5 = o, T (10.16)
1 o
(deo )7 0p — as n — +00. 1.0.17

z=f"(x)

The equidistribution (LOI0), (LOII), (L0I5), and (ILOI6) are analogs of corresponding

results for rational maps on the Riemann sphere by M. Lyubich [Ly83]. Some ideas from

[Ly83] are used in the proofs of Theorem and Theorem as well. P. Haissinsky
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and K. Pilgrim also proved (LOI0) and (LOJ5H) in their general context [HP09], which

includes expanding Thurston maps.

The equidistribution (COI3]) and (LOI4) are inspired by the recent work of M. Baker
and L. DeMarco [BDI11]. They used some equidistribution result of preperiodic points of

rational maps on the Riemann sphere in the context of arithmetic dynamics.

We show in Corollary that for each expanding Thurston map f, the exponential
growth rate of the cardinality of the set of fixed points of f™ is equal to the topological
entropy hiop(f) of f, which is known to be equal to log(deg f) (see for example, [BMI0)
Corollary 20.8]). This is analogous to the corresponding result for expansive homeomor-

phisms on compact metric spaces with the specification property (see for example, [KH95|

Theorem 18.5.5]).

In Section [£3] we prove in Theorem that for each expanding Thurston map f with
its measure of maximal entropy s, the measure-preserving dynamical system (S?, f, us) is a
factor, in the category of measure-preserving dynamical systems, of the measure-preserving
dynamical system of the left-shift operator on the one-sided infinite sequences of deg f sym-
bols together with its measure of maximal entropy. This generalizes the corresponding result

in [BM10] in the category of topological dynamical systems, reformulated in Theorem 3]

In Chapter B, we investigate the existence, uniqueness, and other properties of equilibrium
states for an expanding Thurston map. The main tool for this chapter is the thermodynam-

ical formalism.

In Section Bl we state the assumptions on some of the objects in the remaining part
of this thesis, which we are going to repeatedly refer to later as the Assumptions. These

assumptions are mainly for notational purpose, and are not restrictive.

In Section 5.2 following the ideas from [PU10] and [Zi96], we use the thermodynamical
formalism to prove the existence of the equilibrium states for expanding Thurston maps
and real-valued Holder continuous potentials. We first establish two distortion lemmas

(Lemma [(.2.Tland Lemma [5.2.2]), which will be used frequently throughout this paper. Next,
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we define Gibbs states and radial Gibbs states. Later in Proposition 5.2.18) we prove that
for an expanding Thurston map the notion of a Gibbs state is equivalent to that of a radial

Gibbs state if and only if the map does not have periodic critical points.

By applying the Schauder-Tikhonov Fixed Point Theorem, we establish in Theorem [5.2.10]
the existence of an eigenmeasure my of the adjoint £ of the Ruelle operator Ly, for a real-
valued Holder continuous potential ¢. We also show in Theorem B.2.10 that the Jacobian

function J for f with respect to my is

J = cexp(—9),

where c is the eigenvalue corresponding to m,, which is proved to be equal to exp(P(f, ¢))
later in Proposition [5.2.T76. We establish in Proposition that m, is a Gibbs state. The
measure mg may not be f-invariant. In Theorem B.2.10] we adjust the potential ¢ to get
a new potential ¢ such that there exists an eigenfunction ug of Lz with eigenvalue 1. The

positive function u, constructed as the uniform limit of the sequence
1 n—1
i J
(15 o]
=0

is shown to be bounded away from 0 and +o00, and Holder continuous with the same exponent

neN

as that of ¢. Then we demonstrate that the measure i, = uymy is an f-invariant Gibbs state.
Finally, by combining Proposition 5.2.6] and Proposition [.2.16], we prove in Corollary (5.2.17]

that pe is an equilibrium state for f and ¢.

In Section .3 we establish the uniqueness of the equilibrium state for an expanding
Thurston map f and a real-valued Holder continuous potential ¢. We use the idea in
[PUL0] to apply the Gateaux differentiability of the topological pressure function and some
techniques from functional analysis. More precisely, a general fact from functional anal-
ysis (recorded in Theorem [B3.1]) states that for an arbitrary convex continuous function
Q:V — R on a separable Banach space V, there exists a unique continuous linear func-
tional L: V' — R tangent to Q at x € V if and only if the function ¢t — Q(z + ty) is

differentiable at 0 for all ¥ in a subset U of V' that is dense in the weak topology on V.
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One then observes that for each continuous map ¢g: X — X on a compact metric space X,
the topological pressure function P(g,-): C(X) — R is continuous and convex (see [PU1L0,
Theorem 3.6.1 and Theorem 3.6.2]), and if p is an equilibrium state for g and ¢ € C'(X),
then the continuous linear functional u — [udpy, for u € C(X), is tangent to P(g,-) at
¥ (see [PUL0, Proposition 3.6.6]). So in order to verify the uniqueness of the equilibrium
state for an expanding Thurston map f and a real-valued Holder continuous potential ¢,
it suffices to prove that the function ¢t — P(f, ¢ + t) is differentiable at 0, for all v in a
suitable subspace of C'(5?). This is established in Theorem

Following the procedures in [PU10] to prove Theorem [5.3.13] we introduce a new poten-
tial 5 induced by ¢, and establish some uniform bounds in Theorem and Lemma [5.3.8]
which are then used to show uniform convergence results in Theorem [£.3.9and Lemma [5.3.111
In some sense, Theorem gives a quantitative form of the fact that Eg is almost peri-
odic (see Corollary £.3.7), and Theorem exhibits a uniform version of the contracting
behavior of Eg on a codimension-1 subspace of C(S?). As a by-product, we demonstrate
in Corollary (5.3.10] that for each expanding Thurston map f and each real-valued Holder
continuous potential ¢, the operator £ has a unique eigenmeasure mg. Moreover, the mea-
sure f4 is the unique eigenmeasure mg of ﬁ;‘; with the corresponding eigenvalue 1. Another

consequence is Proposition [5.3.15 which implies ([.0.5) mentioned earlier.

In Section 5.4l we prove that the measure-preserving transformation f of the probabil-
ity space (52, ) is exact (Theorem [.4.3), where the equilibrium state p, is non-atomic
(Corollary (.4.4)). It follows in particular that the transformation f is mixing and ergodic
(Corollary 5.4.6]). To establish these results, we first show in Proposition (5.4.1] that

+oo +oo
me (U fz(c)> = [ig (U fz(c)> =0
=0 =0
for each Jordan curve C C S? containing the postcritical points of f that satisfies f!(C) C C

for some [ € N. This proposition is also used in the proof of Theorem .51l

Theorem [BE.5.1] the main result of Section B asserts that if ¢ and i are two real-

valued Holder continuous functions with the corresponding equilibrium states p, and iy,
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respectively, then pg = py if and only if there exists a constant K € R such that ¢ — ¢
and K1lg» are co-homologous in the space C(S?) of real-valued continuous functions, i.e.,
¢ —19—Klg = uo f—u for some u € C(S?). For Theorem B.5.1], we first formulate a
form of the closing lemma for expanding Thurston maps (Lemma [5.5.0]). For such maps, we
then include in Lemma [5.5.7 a direct proof of the existence of a point whose forward orbit

is dense in S2. Finally, we give the proof of Theorem [5.5.1] at the end of the section.

In Section [5.6] we first establish in Proposition [5.6.1] versions of equidistribution of preim-
ages with respect to the equilibrium state, using results we obtain in Section 5.3 These re-
sults partially generalize Theorem [LO.12] where we treat the case for the measure of maximal
entropy. At the end of chapter, following the idea of J. Hawkins and M. Taylor [HT03], we
prove in Theorem (.7.1] that the equilibrium state j,, from Theorem is almost surely
the limit of

=
E ; 5qi
as n — +o00 in the weak* topology, where qq is an arbitrary fixed point in S?, and for each
i € Ny, the point g;;; is randomly chosen from the set f~1(¢;) with the probability of each
r € f71(q;) being g;11 conditional on ¢ proportional to the local degree of f at z times
exp (5(:2)) This theorem is an immediate consequence of a theorem of H. Furstenberg and
Y. Kifer in [FK83|] and the fact that the equilibrium state is the unique Borel probability
measure invariant under the adjoint of the Ruelle operator Cg (Corollary (.3.10). A similar
result for certain hyperbolic rational maps on the Riemann sphere and the measures of

maximal entropy was proved by M. Barnsley [Bar8§|. J. Hawkins and M. Taylor generalized

it to any rational map on the Riemann sphere of degree d > 2 [HT03].

Chapter [6] is devoted to the investigation of the weak expansion properties of expanding

Thurston maps and the proof of Theorem [L.0.4l

In Section [6.1] we prove three lemmas that will be used in the proof of the asymptotic
h-expansiveness of expanding Thurston maps without periodic critical points. Lemma [6.1.1]

states that any expanding Thurston map is uniformly locally injective away from the critical
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points, in the sense that if one fixes such a map f and a visual metric d on S? for f, then for
each § > 0 sufficiently small and each z € S?%, the map f is injective on the d-ball centered
at x as long as x is not in a 7(J)-ball of any critical point of f, where 7(§) can be made
arbitrarily small if one sends § to 0. In Lemma we prove a few properties of flowers
in the cell decompositions of S? induced by an expanding Thurston map and some special
f-invariant Jordan curve. Lemma gives a covering lemma to cover sets of the form

N f7H(W;) by (m + n)-flowers, where m € Ny, n € N, and each W; is an m-flower.
i=0

We review some basic concepts from graph theory in Section [6.2] and provide a simple
upper bound of number of leaves of certain trees in Lemma [6.2.1l Note that we will not use

any nontrivial facts from graph theory in this thesis.

Section consists of the proof of Theorem [[L0.4] in the form of three separate the-
orems. Namely, we show in Theorem the asymptotic h-expansiveness of expanding
Thurston maps without periodic critical points. The proof relies on a quantitative upper
bound of the frequency for an orbit under such a map to get close to the set of critical points.
Lemma and terminology from graph theory is used here to make the statements in the
proof precise. We then prove in Theorem and Theorem the lack of asymptotic
h-expansiveness of expanding Thurston maps with periodic critical points and the lack of
h-expansiveness of expanding Thurston maps without periodic critical points, respectively,
by explicit constructions of periodic sequences {v;};en of m-vertices for which one can give

n—1

lower bounds for the numbers of open sets in the open cover \/ f=7 (W™) needed to cover
j=0

the set nﬁl fI(W™(v,—;)), for I,m,n € N sufficiently large. Here W™ (v,_;) denotes the
m—ﬂowerjioof Un—j (see (2.2.2)), and W™ is the set of all m-flowers (see ([2.2.3))). These lower
bounds lead to the conclusion that the topological tail entropy and topological conditional
entropy, respectively, are strictly positive, proving the corresponding theorems (compare
with Definition and Definition B.44)). The periodic sequence {v;}ien of m-vertices in
the proof of Theorem shadows a certain infinite backward pseudo-orbit in such a way
that each period of {v;};en begins with a backward orbit starting at a critical point p which

is a fixed point of f, and approaching p as the index 7 increases, and then ends with a
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constant sequence staying at p. The fact that the constant part of each period of {v;}ien
can be made arbitrarily long is essential here and is not true if f has no periodic critical
points. The periodic sequence {v; };en, of m-vertices in the proof of Theorem shadows
a certain infinite backward pseudo-orbit in such a way that each period of {v;};en, begins
with a backward orbit starting at f(p) and p, and approaching f(p) as the index i increases,
and then ends with f(p). In this case p is a critical point whose image f(p) is a fixed point.
In both constructions, we may need to consider an iterate of f for the existence of p with the
required properties. Combining Theorems[6.3.1], [6.3.2] and 6.3.4] we get Theorem [L0.4l This
chapter ends with a quick proof of Theorem [[.0.7, which asserts the existence of equilibrium
states for expanding Thurston maps without periodic critical points and given continuous

potentials.

Chapter [[is devoted to the study of large deviation principles and equidistribution results
for periodic points and iterated preimages of expanding Thurston maps without periodic
critical points. The idea is to apply a general framework devised by Y. Kifer [Ki90] to obtain

level-2 large deviation principles, and to derive the equidistribution results as consequences.

In Section [T.1, we give a brief review of level-2 large deviation principles in our context.
We record the theorem of Y. Kifer [Ki90], reformulated by H. Comman and J. Rivera-Letelier
[CRL11], on level-2 large deviation principles. This result, stated in Theorem [[.T.T], will be

applied later to our context.

We generalize some characterization of topological pressure in Section in our context.
More precisely, we use equidistribution results for iterated preimages in Proposition [5.6.1] to

show in Proposition [[.2.T] and Proposition [[.2.2] that

P(f,0)= lim = log 3" wny) exp(S.0(s), (1018)

n—-+o0o

where the sum is taken over preimages under f™ in Proposition [[.2.1] and over periodic
points in Proposition [[.2.2] the potential ¢: S? — R is Holder continuous with respect to a
visual metric d, and the weight w,(y) € [1,deg(y)] for n € N and y € S?. We note that
for periodic points, the equation (LLO.I8) is established in Proposition for all expanding
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Thurston maps, but for iterated preimages, we only obtain (LO.I8) for expanding Thurston

maps without periodic critical points in Proposition [.2.1]

In Section [.3] by applying Theorem [Z.T.T] to give a proof of Theorem [[LO.8 we finally
establish level-2 large deviation principles in the context of expanding Thurston maps without

periodic critical points and given Holder continuous potentials.

Section [T.4] consists of the proofs of Corollary [L0O.9] and Corollary [LO.I0. We first obtain
characterizations of the measure-theoretic pressure in terms of the infimum of certain limits
involving periodic points and iterated preimages (Corollary [[L0.9). Such characterizations

are then used in the proof of the equidistribution results (Corollary [LOT0).

1.1 Notation

Let C be the complex plane and C be the Riemann sphere. We use the convention that
N={1,2,3,...} and Ny = {0} UN. As usual, the symbol log denotes the logarithm to the

base e, and log, the logarithm to the base b for b > 0.

The cardinality of a set A is denoted by card A. For x € R, we define |z] as the greatest

integer < x, and [x] the smallest integer > x.

Let g: X — Y be a function between two sets X and Y. We denote the restriction of g
to a subset Z of X by g|z.

Let (X, d) be a metric space. For subsets A, B C X, we set d(A, B) = inf{d(z,y) |z €
A,y € B}, and d(A,z) = d(z, A) = d(A, {x}) for x € X. For each subset Y C X, we denote
the diameter of Y by diamy(Y) = sup{d(x,y) | z,y € Y}, the interior of Y by int Y, and the
characteristic function of Y by 1y, which maps each x € Y to 1 € R. We use the convention
that 1 = 1x when the space X is clear from the context. The identity map idx: X — X
sends each x € X to z itself. For each r > 0, we define NJ(A) to be the open r-neighborhood
{y € X|d(y,A) < r} of A, and N7}(A) the closed r-neighborhood {y € X |d(y, A) < r} of

A. For x € X, we denote the open (resp. closed) ball of radius r centered at x by By(x,r)
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(resp. Ba(z,7)).

We set C(X) (resp. B(X)) to be the space of continuous (resp. bounded Borel) functions
from X to R, by M(X) the set of finite signed Borel measures, and P(X) the set of Borel
probability measures on X. For p € M(X), we use ||u]| to denote the total variation norm

of w, supp p the support of p, and

= ft

for each u € C(S?). If we do not specify otherwise, we equip C(X) with the uniform norm
||| For a point x € X, we define 6, as the Dirac measure supported on {z}. For g € C(X)

we set M(X, g) to be the set of g-invariant Borel probability measures on X.

The space of real-valued Holder continuous functions with an exponent « € (0,1] on a

compact metric space (X, d) is denoted as C%*(X, d). For each ¢ € C%*(X, d),

[9(z) — ¢(y)]
qﬁa:sup{— r,ye X, x#vyp, 1.1.1
° da9)° Y
and the Holder norm is defined as
18]l o = 1914 + 18] - (1.1.2)
For given f: X — X and ¢ € C(X), we define
n—1
Snp(z) = ) ([ (2)) (1.1.3)
§=0
and
1 n—1
Walw) = — > Spiw) (1.1.4)
§=0

for x € X and n € Ny. Note that when n = 0, by definition we always have Sy = 0, and

by convention W, = 0.
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CHAPTER 2

Thurston maps

In this chapter, we quickly go over some key concepts and results on Thurston maps, and
expanding Thurston maps in particular. For a more thorough treatment of the subject, we

refer to [BM10].

2.1 Definition for Thurston maps

Let S? denote an oriented topological 2-sphere. A continuous map f: S? — S? is called a
branched covering map on S? if for each point x € S?, there exists a positive integer d € N,
open neighborhoods U of x and V' of y = f(x), open neighborhoods U" and V' of 0 in @,
and orientation-preserving homeomorphisms ¢: U — U’ and n: V' — V' such that ¢(z) =0,
n(y) = 0, and
(no fop™)(z) =2

for each z € U’. The positive integer d above is called the local degree of f at x and is
denoted by deg;(z). The degree of f is

deg f = Z deg () (2.1.1)

zef~(y)

for y € S? and is independent of y. If f: S? — S? and ¢g: S? — S? are two branched covering

maps on S?, then so is f o g, and
deg ., (v) = deg, () deg;(g(z)), for each x € S?, (2.1.2)

and moreover,

deg(f o g) = (deg f)(deg g). (2.1.3)
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A point x € S? is a critical point of f if deg;(r) > 2. The set of critical points of
f is denoted by crit f. A point y € S? is a postcritical point of f if y = f*(z) for some
x € crit f and n € N. The set of postcritical points of f is denoted by post f. Note that
post f = post f" for all n € N.

Definition 2.1.1 (Thurston maps). A Thurston map is a branched covering map f: S% — S?
on S? with deg f > 2 and card(post f) < +oo.

2.2 Cell decompositions

We now recall the notation for cell decompositions of S?. A cell of dimension n in S2
n € {1,2}, is a subset ¢ C S? that is homeomorphic to the closed unit ball B in R”. We
define the boundary of ¢, denoted by Oc, to be the set of points corresponding to dB"™ under
such a homeomorphism between ¢ and B". The interior of c is defined to be inte(c) = ¢\ Jc.
For each point x € 52, the set {z} is considered a cell of dimension 0 in S?. For a cell ¢ of

dimension 0, we adopt the convention that dc = ) and inte(c) = c.

We record the following three definitions from [BM10)].

Definition 2.2.1 (Cell decompositions). Let D be a collection of cells in S?. We say that

D is a cell decomposition of S? if the following conditions are satisfied:

(i) the union of all cells in D is equal to S?,
(ii) if ¢ € D, then Oc is a union of cells in D,
(iii) for ¢1,cy € D with ¢; # ¢1, we have inte(c;) Ninte(cy) = 0,
(iv) every point in S? has a neighborhood that meets only finitely many cells in D.

Definition 2.2.2 (Refinements). Let D’ and D be two cell decompositions of S%. We say

that D’ is a refinement of D if the following conditions are satisfied:
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(i) every cell ¢ € D is the union of all cells ¢ € D’ with ¢ C c.

(ii) for every cell ¢ € D’ there exits a cell ¢ € D with ¢ C ¢,

Definition 2.2.3 (Cellular maps and cellular Markov partitions). Let D’ and D be two cell
decompositions of S?. We say that a continuous map f: S? — S? is cellular for (D', D) if
for every cell ¢ € D', the restriction f|. of f to ¢ is a homeomorphism of ¢ onto a cell in D.
We say that (D', D) is a cellular Markov partition for f if f is cellular for (D', D) and D’ is

a refinement of D.

Let f: S? — S? be a Thurston map, and C C S? be a Jordan curve containing post f.
Then the pair f and C induces natural cell decompositions D"(f,C) of S?, for n € Ny, in the

following way:

By the Jordan curve theorem, the set S? \ C has two connected components. We call the
closure of one of them the white 0-tile for (f,C), denoted by X°, and the closure of the other
one the black 0-tile for (f,C), denoted by XJ. The set of 0-tiles is X°(f,C) = {X}, X2}
The set of 0-vertices is VO(f,C) = post f. We set Vo(f, C)={{z}|x € Vs C)}. The set
of 0-edges E°(f,C) is the set of the closures of the connected components of C \ post f. Then

we get a cell decomposition
D°(f,€) = X"(f.C) UE’(f,C) UV"(£.C)

of S? consisting of cells of level 0, or 0-cells.

We can recursively define unique cell decompositions D™(f,C), n € N, consisting of n-
cells such that f is cellular for (D"*(f,C),D"(f,C)). We refer to [BM1(, Lemma 5.4] for
more details. We denote by X"(f,C) the set of n-cells of dimension 2, called n-tiles; by
E"(f,C) the set of n-cells of dimension 1, called n-edges; by V' (f,C) the set of n-cells of
dimension 0; and by V"(f,C) the set {z|{z} € V'(f, C)}, called the set of n-vertices. The
k-skeleton, for k € {0,1,2}, of D™(f,C) is the union of all n-cells of dimension k in this cell

decomposition.
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We record Proposition 6.1 of [BM10] here in order to summarize properties of the cell

decompositions D"(f,C) defined above.

Proposition 2.2.4 (M. Bonk & D. Meyer, 2010). Let k,n € Ny, let f: S?* — S? be a

Thurston map, C C S? be a Jordan curve with post f C C, and m = card(post f).
(i) The map f* is cellular for (D"T5(f,C),D"(f,C)). In particular, if c is any (n+k)-cell,
then f*(c) is an n-cell, and f*|. is a homeomorphism of ¢ onto f*(c).
(ii) Let c be ann-cell. Then f=*(c) is equal to the union of all (n+k)-cells ¢ with f*() = c.

(iii) The 1-skeleton of D™(f,C) is equal to f~"(C). The 0-skeleton of D™(f,C) is the set
V" (f,C) = f(post f), and we have V*(f,C) C V" (f,C).

(iv) card(X"(f,C)) = 2(deg f)", card(E™(f,C)) = m(deg f)", and card(V"(f,C)) < m(deg f)".

(v) Then-edges are precisely the closures of the connected components of f~"(C)\ f~"(post f).

The n-tiles are precisely the closures of the connected components of S?\ f~"(C).

(vi) Every n-tile is an m-gon, i.e., the number of n-edges and the number of n-vertices

contained in its boundary are equal to m.

We also note that for each n-edge e € E"(f,C), n € Ny, there exist exactly two n-tiles
X, X" e X"(f,C) such that X N X' =e.

For n € Ny, we define the set of black n-tiles as
Xp(f.0) ={X e X"([.O)| ["(X) = X3},
and the set of white n-tiles as
Xu(f.0) ={X e X*(£.0) [ f"(X) = Xy }.
It follows immediately from Proposition 2.2.4] that
card (X7(f,C)) = card (X3, (f,C)) = (deg f)" (2.2.1)
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for each n € Ny. Moreover, for n € N, we define the set of black n-tiles contained in a white

(n — 1)-tile as

Xi(f,€) ={X € X}(f,0)|3X" € X[ 7}(f.C), X € X'},
the set of black n-tiles contained in a black (n — 1)-tile as

X(f.€) ={X € Xp(£,€)|3X" € X;7'(/,C), X € X},
the set of white n-tiles contained in a black (n — 1)-tile as

Xoup(f:€) ={X e X[[(£.€) | 3X" e Xj7(f,C), X € X'},
and the set of white n-tiles contained in a while (n — 1)-tile as

Xow(f,€) = {X € X[(£,€)|3X" € X[7(/,€), X € X'}

In other words, for example, a black n-tile is an n-tile that is mapped by f™ to the black
O-tile, and a black n-tile contained in a white (n — 1)-tile is an n-tile that is contained in

some white (n — 1)-tile as a set, and is mapped by f™ to the black 0-tile.

If we fix the cell decomposition D™(f,C), n € Ny, we can define for each v € V*(f,C)

the n-flower of v as

W (v) = | J{inte(c)|c € D"(f,C), v € c}. (2.2.2)

Note that flowers are open (in the standard topology on S?). Let W' (v) be the closure of
Wm™(v). We define the set of all n-flowers by

W"(£,C) = {W"() | v e V(£,C)}. (2.2.3)

From now on, if the map f and the Jordan curve C are clear from the context, we will

sometimes omit (f,C) in the notation above.

Remark 2.2.5. For n € Ny and v € V", we have
Wn(’U) :X1UX2U"'UXm,
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where m = 2deg . (v), and X, Xy, ... Xy, are all the n-tiles that contain v as a vertex (see
[BM10), Lemma 7.2]). Moreover, each flower is mapped under f to another flower in such
a way that is similar to the map z — z* on the complex plane. More precisely, for n € N,

and v € V" there exists orientation preserving homeomorphisms ¢: W™ (v) — D and

n: W™(f(v)) — D such that D is the unit disk on C, p(v) =0, n(f(v)) =0, and

(nofop )(z) =2

for all z € D, where k = deg;(v). Let Wn+1(v) = X, UXoU---UX,, and W' (f(v)) =
X{UXiu---UX/,, where Xy, Xs,...X,, are all the (n+ 1)-tiles that contain v as a vertex,
listed counterclockwise, and X7, X5, ... X/, are all the n-tiles that contain f(v) as a vertex,
listed counterclockwise, and f(X1) = Xj. Then m = m'k, and f(X;) = X} ifi = j (mod k),
where k = deg;(v). (See also Case 3 of the proof of Lemma 5.2 in [BM10] for more details.)

We denote, for each x € S2,
U'(x) = U{Y" € X" | there exists X" € X" with z € X", X" NY™" # ()}, (2.2.4)

and for each integer m < —1, set U™(z) = S?. We define the n-partition O,, of S? induced

by (f,C) as
0,, = {inte(X") | X" € X"} U {inte(e") | e" € E"} UV ". (2.2.5)

2.3 Notions of expansion for Thurston maps

We now define two notions of expansion introduced by M. Bonk and D. Meyer [BM10].

It is proved in [BMI10, Corollary 6.4] that for each expanding Thurston map f (see
Definition 2.3.3 below), we have card(post f) > 3.

Definition 2.3.1 (Joining opposite sides). Fix a Thurston map f with card(post f) > 3
and an f-invariant Jordan curve C containing post f. A set K C S? joins opposite sides of
C if K meets two disjoint 0-edges when card(post f) > 4, or K meets all three 0-edges when
card(post f) = 3.
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Definition 2.3.2 (Combinatorial expansion). Let f be a Thurston map. We say that f is
combinatorially expanding if card(post f) > 3, and there exists an f-invariant Jordan curve
C C 5% (ie., f(C) C C) with post f C C, and there exists a number ny € N such that none

of the ngy-tiles in X™°(f,C) joins opposite sides of C.

Definition 2.3.3 (Expansion). A Thurston map f: S — S? is called expanding if there
exist a metric d on S? that induces the standard topology on S? and a Jordan curve C C S?

containing post f such that

lim max{diam,(X)|X € X"(f,C)} = 0.

n—-+4o0o

We call such a Thurston map an expanding Thurston map.

Remarks 2.3.4. It is clear that if f is an expanding Thurston map, so is f™ for each
n € N. We observe that being expanding is a topological property of a Thurston map and
independent of the choice of the metric d that generates the standard topology on S%. By
Lemma 8.1 in [BMI10], it is also independent of the choice of the Jordan curve C containing
post f. More precisely, if f is an expanding Thurston map, then

lim max{diamg(X) }X € X"(f, C~)} =0,

n—-+o0o

for each metric d that generates the standard topology on S? and each Jordan curve C C 2

that contains post f.

P. Haissinsky and K. Pilgrim developed a notion of expansion in a more general context
for finite branched coverings between topological spaces (see [HP09, Section 2.1 and Sec-
tion 2.2]). This applies to Thurston maps and their notion of expansion is equivalent to our
notion defined above in the context of Thurston maps (see [BM10, Proposition 8.2]). Such
concepts of expansion are natural analogs, in the contexts of finite branched coverings and
Thurston maps, to some of the more classical versions, such as expansive homeomorphisms
and forward-expansive continuous maps between compact metric spaces (see for example,

[KH95, Definition 3.2.11]), and distance-expanding maps between compact metric spaces
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(see for example, [PUL0, Chapter 4]). Our notion of expansion is not equivalent to any such
classical notion in the context of Thurston maps. In fact, as mentioned in the introduction,
there are subtle connections between our notion of expansion and some classical notions of
weak expansion. Chapter 6] will be devoted to this topic. See Theorem [[L0.4] for the precise

statement.

Lemma 2.3.5. Let f: S? — S% be an expanding Thurston map. Then for each p € S?, the
+o00

set |J f"(p) is dense in S?, and
n=1

lim card(f"(p)) = +o0. (2.3.1)

n—-+o0o

Proof. Let C C S? be a Jordan curve containing post f. Let d be any metric on S? that

generates the standard topology on S2.

Without loss of generality, we assume that p € X2 where X? € X9 (f,C) is the white
0-tile in the cell decompositions induced by (f,C). The proof for the case when p € X}
where X} € X)(f,C) is the black 0-tile is similar.

By Proposition Z24)ii), for each n € N and each white n-tile X € X" (f,C), there is a

point ¢ € X7 with f™(q) = p. Since f is an expanding Thurston map,

lim max{diam,;(X)|X € X"(f,C)} = 0. (2.3.2)

n—-+00

+oo
Then the density of the set |J f~"(p) follows from the observation that for each n € N, each
n=1

black n-tile X € X}(f,C) intersects nontrivially with some white n-tile X} € X7 (f,C).

By the above observation, the triangular inequality, and the fact that diamg(S?) > 0 and
S? is connected in the standard topology, the equation (23] follows from ([2:3.2)). O

2.4 Visual metric

For an expanding Thurston map f, we can fix a particular metric d on S? called visual
metric for f . For the existence and properties of such metrics, see [BM10, Chapter 8].

For a visual metric d for f, there exists a unique constant A > 1 called the expansion
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factor of d (see [BM10, Chapter 8] for more details). One major advantage of a visual
metric d is that in (52, d) we have good quantitative control over the sizes of the cells in
the cell decompositions discussed above. We summarize several results of this type ([BM10),

Lemma 8.10, Lemma 8.12, Lemma 8.13]) in the lemma below.

Lemma 2.4.1 (M. Bonk & D. Meyer, 2010). Let f: S* — S? be an expanding Thurston
map, and C C S? be a Jordan curve containing post f. Let d be a visual metric on S?* for f
with expansion factor A > 1. Then there exist constants C > 1, C' > 1, K > 1, and ng € Ny

with the following properties:

(i) d(o,7) > C7'A™" whenever o and T are disjoint n-cells for n € Ny.
(i) C7'A™™ < diamy(7) < CA™™ for all n-edges and all n-tiles T for n € Nj.
(iii) Bg(z, K'A™") C U™(x) C By(z, KA™) for x € 5% and n € Ny.
(iv) U0 (x) C By(z,r) C U™ (z) where n = [—logr/logA| for r >0 and z € S.

(v) For every n-tile X" € X"(f,C), n € Ny, there exists a point p € X" such that
By(p,C~'A™") € X™ C Ba(p, CA™").

Conwversely, ng is a metric on S* satisfying conditions (i) and (ii) for some constant

C > 1, then d is a visual metric with expansion factor A > 1.

Recall U™ (x) is defined in (2.2.4]).

In addition, we will need the fact that a visual metric d induces the standard topology
on S? ([BMI0, Proposition 8.9]) and the fact that the metric space (S?,d) is linearly locally
connected ([BM10, Proposition 16.3]). A metric space (X, d) is linearly locally connected if

there exists a constant L > 1 such that the following conditions are satisfied:

1. Forall z€ X, r >0, and z,y € By(z,7) with x # y, there exists a continuum £ C X
with z,y C E and E C By(z,rL).
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2. Forall z € X, r >0, and z,y € X \ By(z,7) with & # y, there exists a continuum
E C X withz,y C Eand F C X \ By(z,7/L).

We call such a constant L > 1 a linear local connectivity constant of d.

Remark 2.4.2. If f: C — C is a rational expanding Thurston map, then a visual metric is
quasisymmetrically equivalent to the chordal metric on the Riemann sphere C (see [BM10,

Corollary 19.4]). Here the chordal metric ¢ on C is given by o(z,w) = 20z v for

VR

2__ for z € C. We also note that a quasisymmetric

aASE

embedding of a bounded connected metric space is Hélder continuous (see [He(O1, Section 11.1

z,w € C, and (00, 2) = 0(2,00) =

and Corollary 11.5]). Accordingly, the classes of Holder continuous functions on C equipped
with the chordal metric and on 2 = C equipped with any visual metric for f are the same

(upto a change of the Holder exponent).

An expanding Thurston map is Lipschitz with respect to a visual metric.

Lemma 2.4.3. Let f: S? — S? be an expanding Thurston map, and d be a visual metric on

S? for f with expansion factor A > 1. Then f is Lipschitz with respect to d.
Proof. Fix a Jordan curve C C S? containing post f. Let x,y € S? and we assume that
0<d(zy) < K'A2 (2.4.1)

where K > 1 is a constant from Lemma 2.4.T] depending only on f, C, and d.

Set m = max {k € Ny |y € U¥(x)}, where U¥(x) is defined in (Z2.4)). By LemmaZZ1|(iii),
the number m is finite. Then y ¢ U™ (x). Thus by Lemma 2Z4.1iii),

1
XA_W_l <d(z,y) < KA ™.

By 2Z1) we get m > 1. Since f(y) € f(U™(z)) € U™ '(f(z)) by Proposition 224, we
get from Lemma ZZ4T[(iii) that

d(f(z), f(y)) < KA
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Therefore,

A (). T ) _ KA
d(z,y) - %A*mfl

and f is Lipschitz with respect to d. O

= K2A\?,

2.5 Invariant curves

A Jordan curve C C S? is f-invariant if f(C) C C. We are interested in f-invariant Jordan
curves that contain post f, since for such a curve C, the partition (D!(f,C),D°(f,C)) is
then a cellular Markov partition for f. According to Example 15.5 in [BMI10], f-invariant
Jordan curves containing post f need not exist. However, M. Bonk and D. Meyer [BM10,
Theorem 1.2] proved that there exists an f™-invariant Jordan curve C containing post f for

each sufficiently large n depending on f.

Theorem 2.5.1 (M. Bonk & D. Meyer, 2010). Let f: S* — S? be an expanding Thurston
map. Then for each n € N sufficiently large, there exists a Jordan curve C C S? containing

post f such that f*(C) CC.

We will need a slightly stronger version in Chapter 4l and Chapter [l Its proof is almost
the same as that of [BM10), Theorem 1.2]. For the convenience of the reader, we include the

proof here.

Lemma 2.5.2. Let f: S?* — S? be an expanding Thurston map, and C C % be a Jordan
curve with post f C C. Then there exists an integer N(f, 5) € N such that for each n >
N(f, g) there exists an f"-invariant Jordan curve C isotopic to C rel. post f such that no

n-tile in D"(f,C) joins opposite sides of C.

Proof. By [BMI0, Lemma 15.9], there exists an integer N(f,C) € N such that for each

n > N(f, 5), there exists a Jordan curve C' C f_”(g) that is isotopic to C rel. post f, and no

n-tile for (f,C) joins opposite sides of C'. Let H: S? x [0, 1] — S? be this isotopy rel. post f.

We set Hy(x) = H(z,t) for x € St € [0,1]. We have Hy = idg> and C' = H,(C) C f~(C).
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If F = f" then post FF = post f and F is also an expanding Thurston map ([BM10,
Lemma 8.4]). Note that F is cellular for (D"(f,C),D°(f,C)). So D'(F,C) = D"(f,C) (see
[BM10), Lemma 5.4]). Thus no 1-cell for (H; o F,C’) joins opposite sides of C’, and thus H;o F
is combinatorially expanding for C’. Note that C’ contains post(H; o F') = post F' = post f.
By Corollary 13.18 in [BMI0], there exists a homeomorphism ¢: S — S? that is isotopic
to the identity rel. post (H; o F') such that ¢(C') = C" and G = ¢ o H; o F' is an expanding
Thurston map. Since ¢o H; is isotopic to the identity on S? rel. post F, the pair F and G are
Thurston equivalent. By Theorem 10.4 in [BMI0], there exists a homeomorphism h: S% — 52
that is isotopic to the identity on S? rel. F~!(post F') with F o h = hoG. Set C = h(C).
Then C is a Jordan curve in S? that is isotopic to C’ rel. F~!(post F') and thus isotopic to C
rel. post F'. Since F(C) = F(h(C")) = h(G(C")) = h(¢p(H1(F(C")))) C h(¢p(C')) = h(C") =C,

we get that C is F-invariant.

Moreover, since no 1-cell for (H,0F,C’) joins opposite sides of C', H1oF(C') C H,(C) = C',
¢: S* — 5% is a homeomorphism isotopic to the identity rel. post(H; o F') with ¢(C") = C’,
G = ¢po HyoF, we can conclude that G(C') C C" and no 1-cell for (G, C’) joins opposite sides
of C'. Since h: S? — S? is a homeomorphism, C = h(C’), and F o h = h o G, we can finally
conclude that no 1-cell for (F,C) joins opposite sides of C. Therefore no n-cell for (f,C) joins

opposite sides of C. O

Compared with [BMI10, Lemma 1.2], the above lemma carries additional combinatorial
information of C, i.e., no n-tile joins opposite sides of C. In fact, we will only need the

following corollary of Lemma 2.5.21 in Chapter 4 and Chapter

Corollary 2.5.3. Let f: S? — 52 be an expanding Thurston map. Then there exists a
constant N(f) > 0 such that for each n > N(f), there exists an f"-invariant Jordan curve

C containing post [ such that no n-tile in D"(f,C) joins opposite sides of C.

Proof. We can choose an arbitrary Jordan curve CCs? containing post f and set N(f) =

N(f,C), and C an f"-invariant Jordan curve containing post f as in Lemma 2.5.2] O
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We now establish a generalization of [BM10, Lemma 16.1]. It is an essential ingredient
for the distortion lemmas (Lemma [5.2.1] and Lemma [(5.2.2)) that we will repeatedly use in
Chapter Bl and Chapter [7l

Lemma 2.5.4. Let f: S? — S? be an expanding Thurston map, and C C S? be a Jordan
curve that satisfies post f C C and f(C) C C for some ne € N. Let d be a visual metric on
S? for f with expansion factor A > 1. Then there exists a constant Cy > 1, depending only

on f, d, C, and n¢, with the following property:

If k,n € Ny, X"tF € X"t*(f,C), and x,y € X"**, then

Proof. In this proof, we set a constant K = 2max{1, [}, where [ is the Lipschitz constant

of f with respect to d. Let N = ne.

By Remark 234 the map f" is an expanding Thurston map. It is easy to see from
Lemma 2.4.1] that the metric d is a visual metric for the expanding Thurston map f~ with
expansion factor AV. So by Lemma 16.1 in [BMI0], there exists a constant D > 1 depending
only on f¥, C, and d such that for each k,l € Ny, each X € X+FN(f C) and each pair of

points z,y € X, we have

L gy < W1 W)

- < Dd(, y). (2.5.2)

Fix m,l € Ny, s,t € {0,1,...,N — 1}, X € X(mN+)+UN+t) (¢ C) and z,y € X.

We prove the second inequality in (2.5.0]) with n = mN +s and k = [N +t by considering

the following cases depending on whether [ =0 or [ > 1.

If [ =0, then by Lemma and the fact that K > [y,

d (f (@), [ () < Kld(w,y) < K*Vd(x, ) AN
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If [ > 1, then by Lemma 2.4.3] (2.5.2), and the fact that K > [y,

d (f" (), [ (y))
=d (fUTONEEEI(fH (), fOONTEE (£ ()
KN (fFON (f (@) SN (0 ()
<ENTDA (1), £149(y) AV
<KN=D (K" (2, y)) AN

SKQNDd(x, y)AlNth.

We consider the first inequality in (Z5.0]) with n = mN + s and k = [N + t now. By
Proposition 2Z.2.4((i), we can choose Y € XM+ +2N(f ) and two points 2’,5' € Y such that
fAN=sHY) = X, fAN=57H(2') = 2, and f2V57Y(y') = y. Note that 2N — s —¢ > 2. Then by
Lemma 2.4.3] (2.5.2), and the fact that K > [y,

A (f (), ()
=d (7 (P EN) ST )
=d (fNE @), ()
>R (f (), fN ()
>K D~ ld(x!,y )NV
>K D KN 0 (g, ) AVH

ZK_2ND_1d(l', y)AlN+t.

Therefore,
1 d(f™N* (@), [N (y))
Eod(x’ y) < AN+t < COd(xa y)a
where Cy = K2V D is a constant depending only on f, d, C, and N = nc. O
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CHAPTER 3

Ergodic theory

In this chapter, we first recall some key concepts from ergodic theory and dynamical systems.
We then define the Ruelle operator for expanding Thurston maps, which is the key tool
and object of investigation in the thermodynamical formalism in Chapter Finally, we
discuss various weak expansion properties in dynamical systems. Such notions will be used

in Chapter [l and Chapter [7l

3.1 Covers and partitions

Let (X, d) be a compact metric space and g: X — X a continuous map.

A cover of X is a collection & = {A;]j € J} of subsets of X with the property that
U¢& = X, where J is an index set. The cover £ is an open cover if A; is an open set for each
j € J. The cover £ is finite if the index set J is a finite set.

A measurable partition £ of X is a cover £ = {A;|j € J} of X consisting of countably
many mutually disjoint Borel sets A;, j € J, where J is a countable index set. For z € X,
we denote by £(z) the unique element of ¢ that contains x.

Let &€ = {A;]j € J} and n = {By |k € K} be two covers of X, where J and K are
the corresponding index sets. We say ¢ is a refinement of n if for each A; € &, there exists

By, € n such that A; C By. The common refinement § V n of £ and 7 defined as
Evn={A;NBy|ljeJ ke K}
is also a cover. Note that if £ and 1 are both open covers (resp., measurable partitions), then

£Vn is also an open cover (resp., a measurable partition). Define g=*(&) = {g7'(4;)|j € J},
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and denote for n € N,

n—1

G=Vg7=¢vg (v vg "I,

J=0

+oo
and let §5° be the smallest o-algebra containing (J &
n=1
We adopt the following definition from [Dowll, Remark 6.1.7].
Definition 3.1.1 (Refining sequences of open covers). A sequence of open covers {& }ien,

of a compact metric space X is a refining sequence of open covers of X if the following

conditions are satisfied

(i) &1 is a refinement of &; for each ¢ € Ny.

(ii) For each open cover n of X, there exists j € N such that & is a refinement of n for

each 7 > 7.

By the Lebesgue Number Lemma ([Mu00, Lemma 27.5]), it is clear that for a compact

metric space, refining sequences of open covers always exist.

3.2 Entropy and pressure

Let (X, d) be a compact metric space and g: X — X a continuous map. For n € N and
r,y € X,

i (x,y) = max {d(¢"(x), ¢"(v)) |k € {0,1,...,n— 1}}
defines a new metric on X. A set F' C X is (n, €)-separated, for some n € N and € > 0, if for

each pair of distinct points z,y € F, we have dj(r,y) > e. For e > 0 and n € N, let F,,(e)

be a maximal (in the sense of inclusion) (n, €)-separated set in X.

For each ¢ € C'(X), the following limits exist and are equal, and we denote the limits by
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P(g,%) (see for example, [PUL0, Theorem 3.3.2]):

P(g,v) —hmhmsup log Z exp(Sp¥(x))

=0 pstoo N

xE€Fn ()
_lg%lggofnlog FZ()eXp Sat(z)), (3.2.1)
xEln(€

where S,¢(z) = Z (g7 (x)) is defined in (LI3). We call P(g,) the topological pressure
of g with respect to the potential 1. The quantity hip(g) = P(g,0) is called the topological
entropy of g. Note that P(g, ) is independent of d as long as the topology on X defined by
d remains the same (see [PULQ, Section 3.2]).

We now review measure-theoretic counterparts of the concepts above.

The information function I maps a measurable partition £ of X to a p-a.e. defined

real-valued function on X in the following way:

I(&)(x) = —log u(&(x)), for x € X. (3.2.2)

Here &(x) denotes the unique element of ¢ that contains x.

Let € be a measurable partition of X. The entropy of ¢ is

== (A log (u(4)),

jeJ
where 0log0 is defined to be 0. One can show (see [Wa82, Chapter 4]) that if H,(£) < +o0,

then the following limit exists:

ha(9,€) = lim LH,(€") € [0, +00).

n—-+4oo N,

The measure-theoretic entropy of g for p is given by
hu(g) = sup{h,(g,€) | is a measurable partition of X with H,(¢§) < +oo}. (3.2.3)

For each ¢ € C(X), the measure-theoretic pressure P,(g,1) of g for the measure p and the
potential v is
&ww:mw+/wm (3.2.4)

44



By the Variational Principle (see for example, [PUL0, Theorem 3.4.1]), we have that for
each ¢ € C(X),
P(g,¢) =sup{P.(g,¥) | n € M(X,g)}. (3.2.5)

In particular, when v is the constant function 0,

heop(9) = sup{h(g) | 11 € M(X, 9)}. (3.2.6)

A measure p that attains the supremum in ([B.2.5) is called an equilibrium state for the
transformation g and the potential ©). A measure p that attains the supremum in (3.2.6) is

called a measure of maximal entropy of g.

3.3 The Ruelle operator for expanding Thurston maps

Let f: S? — S? be an expanding Thurston map and ¢ € C(S?) a continuous function. We
define the Ruelle operator L, on C(S?) as the following

Lyw)(x)= > degp(y)uly) exp(t(y)), (3.3.1)

yef~(z)
for each u € C(S?). To show that L, is well-defined, we need to prove that L, (u)(x) is
continuous in z € S? for each u € C(S?). Indeed, by fixing an arbitrary Jordan curve
C C S? containing post f, we know that for each z in the white 0-tile X2
Lyw)(x) = ulyx)exp(¥(yx)),
Xex),
where yx is the unique point contained in the white 1-tile X with the property that f(yx) = «
(Proposition 2:2.4(1)). If we move  around continuously within X, then yx moves around
continuously within X for each X € X!. Thus L (u)(z) restricted to X? is continuous in x.
Similarly, £, (u)(z) restricted to the black 1-tile X is also continuous in 2. Hence Ly(u)(x)

is continuous in z € S2.

Note that by a similar argument as above, we see that the Ruelle operator £, : C(S?) —
C(S?) has a natural extension to the space of real-valued bounded Borel functions B(S?)

(equipped with the uniform norm) given by (3.3.1)) for each u € B(S?).
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It is clear that £, is a positive, continuous operator on C(S?) (resp. B(S?)) with the

operator norm sup{Ly(1)(z) |z € S?}. Moreover, we note that by induction and (ZI.2) we

have

Z degfn uly) exp(Sth(y)), (33.2)
yef—n
and

Ly(u(vo Z degf o [)(y) exp(ib(y)) = v(x)Ly(u)(z),  (3.3.3)
yeft

for u,v € B(S?), z € S?, and n € N. Recall that the adjoint operator £, : C*(5%) — C*(S?)

of £, acts on the dual space C*(S?) of the Banach space C'(S?). We identify C*(S?) with

the space M (S?) of finite signed Borel measures on S? by the Riesz representation theorem.

From now on, we write (u,u) = [udu whenever v € B(5?) and p € M(S?).

Lemma 3.3.1. Let f: S* — S? be an expanding Thurston map, ¢ € C(S?), and u € C*(S5?).
Then

(1) (L3 (n),u) = (. Ly(u)) for u e B(S?).

(i) For each Borel set A C S? on which f is injective, we have that f(A) is a Borel set,

and

£2,(1)(A) = / (deg () exp()) o (fla)~" dp (3.3.4)

f(4)

Recall that a collection P of subsets of a set 2 is a m-system if it is closed under inter-
section, i.e., if A, B € P then AN B € P. A collection £ of subsets of Q is a A-system if
the following are satisfied: (1) Q € £. (2) If B,C € £ and BC C, then C\ B € £. (3) If
A, € £ neN, with A, C A,,1, then |J A, € £.

neN
Proof. For (i), it suffices to show that for each Borel set A C S,

(L5(1), L) = (i, L), (3.3.5)

Let £ be the collection of Borel sets A C S? for which (333) holds. Denote the collection
of open subsets of S? by &. Then & is a m-system.
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We first observe from ([3.3.0]) that if {u, },en is a non-decreasing sequence of real-valued

functions on S?, then so is {Ly(un) bnen.

By the definition of L}, we have

(L3 (n),u) = (p, Lyp(u)) (3.3.6)

for u € C(S?). Fix an open set U C S?, then there exists a non-decreasing sequence {¢, nen
of real-valued continuous functions on S? supported in U such that g, converges to 1y
pointwise as n — +00. Then {L£,(gn)}nen is also a non-decreasing sequence of continu-

ous functions, whose pointwise limit is £,(1y). By the Lebesgue Monotone Convergence

Theorem and (3.3.0]), we can conclude that (8:35) holds for A = U. Thus & C £.

We now prove that £ is a A-system. Indeed, since (3.3.6) holds for u = lg2, we get
S? € £ Given B,C € £ with B C C, then 1¢ — 1p = 1evg and Ly(1e) — Ly(1p) =
Ly(le — 1) = Ly(Ieyg) by B3J). Thus C'\ B € £. Finally, given 4, € £ n € N,
with A, C A,41, and let A= |J A,. Then {14, }neny and {L4(14, ) }nen are non-decreasing
sequences of real-valued Borelrlfflictions on S? that converge to 14 and L,(14), respectively,

as n — 4o00. Then by the Lebesgue Monotone Convergence Theorem, we get A € £.

Hence £ is a A-system.

Recall that Dynkin’s 7-A theorem (see for example, [Bi95, Theorem 3.2]) states that if
P is a m-system and £ is a A-system that contains B, then the o-algebra o(B) generated by
P is a subset of £. Thus by Dynkin’s 7-A theorem, the Borel o-algebra o(®) is a subset of
£, i.e., equality (8.3.5) holds for each Borel set A C S2.

For (ii), we fix a Borel set A C S? on which f is injective. By (B.3.1]), we get that
Ly(14)(z) # 0if and only if x € f(A). Thus f(A) is Borel. Then (3.3.4) follows immediately
from (i) and (33.0) for u € B(S?). O
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3.4 Weak expansion properties

The topological tail entropy was first introduced by M. Misiurewicz under the name “topo-
logical conditional entropy” [Mi73|,Mi76]. We adopt the terminology in [Dow11] (see [Dow11],
Remark 6.3.18]).

Definition 3.4.1 (Topological conditional entropy and topological tail entropy). Let (X, d)
be a compact metric space and g: X — X a continuous map. The topological conditional

entropy h(g|\) of g given A, for some open cover A, is

l—+oon—4oo N,

n—1
h(g|A) = lim lim eyl (\/ g (&)
=0

\_/ g’ (A)) : (3.4.1)

§=0
where {&}en, is an arbitrary refining sequence of open covers, and for each pair of open

covers & and 7,

H(&ln) = log (max { min {card €4 [ €4 € €. A€ Jea)}) (3.4.2)

is the logarithm of the minimal number of sets from ¢ sufficient to cover any set in 7.

The topological tail entropy h*(g) of g is defined by

n—1
) o ~
R L L (V e

\/ g~ <nm>) , (3.4.3)

J=0

where {& }en, and {1, }men, are two arbitrary refining sequences of open covers, and H is

as defined in (3.42).

Remark 3.4.2. The topological entropy of ¢ (see Section B.3)) is hiop(g) = h(g|{X}), where
{X} is the open cover of X consisting of only one open set X. See for example, [Dowll,
Section 6.1]. Tt is also clear from Defintion B.4.T] that for open covers £ and n of X , we have
h(g|€) < h(g|n) if £ is a refinement of 7.

The limits in (B4T) and (B43) always exist, and both h(g|\) and h*(g) are indepen-
dent of the choices of refining sequences of open covers {& }en, and {n, fmen,, see [Dowl11l,

Section 6.3], especially the comments after [Dow11] Definition 6.3.14].
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The topological tail entropy h* is also well-behaved under iterations, as it satisfies
h*(g") = nh*(g) (3.4.4)

for each n € N and each continuous map ¢g: X — X on a compact metric space X ([Mi76),

Proposition 3.1]).

The concept of h-expansiveness was introduced by R. Bowen in [Bow72]. We adopt the

formulation in [Mi76] (see also [Dowl1]).

Definition 3.4.3 (h-expansiveness). A continuous map g: X — X on a compact metric

space X is called h-ezpansive if there exists a finite open cover A of X such that h(g|\) = 0.

A weaker property was then introduced by M. Misiurewicz in [Mi73] (see also [Mi76l,
Dowl1]).

Definition 3.4.4 (Asymptotic h-expansiveness). We say that a continuous map ¢g: X — X

on a compact metric space X is asymptotically h-expansive if h*(g) = 0.

Recall that a continuous map ¢g: X — X on a compact metric space X is forward

expansive if there exists € > 0 such that for each z € X, we have ®.(z) = {z}. Here
b (r) = {y € X[d(g"(x), g"(y)) < € for all n > 0},

for e > 0 and x € X. M. Misiurewicz showed that if g is expansive then it is h-expansive, and
that if g is and h-expansive then it is asymptotic h-expansive [Mi76]. He also showed that if
g is asymptotic h-expansive, then the measure-theoretic entropy p — h,(g) is upper semi-

continuous as a function on the space M(X,g) of g-invariant Borel probability measures

INIT76).

49



CHAPTER 4

The measure of maximal entropy

4.1 Number and locations of fixed points

The main goal of this section is to prove Theorem [[LO.I} namely, that the number of fixed
points, counted with appropriate weights, of an expanding Thurston map f is exactly 1 +
deg f. In order to prove Theorem [L.O.1], we first establish in LemmalL.T.2land Lemmad.T.3 an
almost one-to-one correspondence between fixed points and 1-tiles in the cell decomposition
D!(f,C) for an expanding Thurston map f with an f-invariant Jordan curve C containing
post f. As a consequence, we establish in Corollary an exact formula for the number
of preperiodic points, counted with appropriate weights. We end this section by establishing
a formula for the exact number of periodic points with period n, n € N, for expanding

Thurston maps without periodic critical points.

Let f be a Thurston map and p € S? a periodic point of f of period n € N, we define the
weight of p (with respect to f) as the local degree deg;.(p) of f™ at p. When f is understood
from the context and p is a fixed point of f, we abbreviate it as the weight of p. We will
prove in this section that each expanding Thurston map f has exactly 1+ deg f fixed points,

counted with weight.

Note the difference between the weight and the multiplicity of a fixed point of a rational
map (see [Mi06, Chapter 12]). In comparison, the multiplicity of a fixed point p € C of a
rational map g¢: C — Cis degg(p), where g(2) = g(2) — z. For every expanding rational
Thurston map R: C — (@, M. Bonk and D. Meyer proved that R has no periodic critical
points (see [BM10, Proposition 19.1]). So the weight of every fixed point of R is 1. We can
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prove that R has exactly 1 + deg R fixed points by using basic facts in complex dynamics,
even though it will follow as a special case of our general result in Theorem [LO.Il For the

relevant definitions and general background of complex dynamics, see [CG93] and [Mi06].

Proposition 4.1.1. Let R: C — C bea expanding rational Thurston map, then R has
exactly 1 + deg R fized points. Moreover, the weight degr(q) of each fized point q of R is
equal to 1.

Proof. Conjugating R by a fractional linear automorphism of the Riemann sphere if neces-

sary, we may assume that the point at infinity is not a fixed point of R.

Since R is expanding, R is not the identity map. By Lemma 12.1 in [Mi06], which is
basically an application of the fundamental theorem of algebra, we can conclude that R
has 1 + deg R fixed points, counted with multiplicity. For rational Thurston maps, being
expanding is equivalent to having no periodic critical points (see [BM10), Proposition 19.1]).
So the weight degp(q) of every fixed point ¢ of R is exactly 1. Thus it suffices now to prove

that each fixed point ¢ of R has multiplicity 1.

Suppose a fixed point p of R has multiplicity m > 1. In the terminology of complex
dynamics, ¢ is then a parabolic fixed point with multiplier 1 and multiplicity m. Then by
Leau-Fatou flower theorem (see for example, [Mi06, Chapter 10] or [Brl0, Theorem 2.12]),
there exists an open set U C S? such that f(U) C U and U # S? (by letting U be one
of the attracting petals, for example). This contradicts the fact that the function R, as an
expanding Thurston map, is eventually onto, i.e., for each nonempty open set V' C S2, there

exists a number m € N such that R™(V) = 52

In order to see that R is eventually onto, let d be a metric on S? and C C S? be a Jordan
curve, as given in Definition [2.3.3l Since V' is open, it contains some open ball in the metric
space (S?,d). Then since R is expanding, by Definition 2.3.3] we can conclude that there
exists a constant m € N, a black m-tile X{" € X}J*(R,C) and a white m-tile X" € X" (R,C)
such that X" U X™ C V. Thus R™(V) 2 R™(X;" U X™) = S?. Therefore, R is eventually

onto. 0
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For general expanding Thurston maps, we need to use the combinatorial information

from [BM10].

Lemma 4.1.2. Let f be an expanding Thurston map with an f-invariant Jordan curve C
containing post f. If X € X! (f,C)UX} (f,C) is a white 1-tile contained in the while 0-tile
X0 or a black 1-tile contained in the black 0-tile X, then X contains at least one fized point
of f. If X € XL, (f,C)UX],(f,C) is a white 1-tile contained in the black 0-tile X} or a
black 1-tile contained in the white 0-tile X°, then inte(X) contains no fized points of f.

Recall that cells in the cell decompositions are by definition closed sets, and the set of

0-tiles X°(f,C) consists of the white 0-tile X2 and the black 0-tile X}.

Proof. 1t X € XL (f,C) UXL(f,C), then X C f(X). By Proposition BZ2Z4(i), f|x is a
homeomorphism from X to f(X), which is one of the two O-tiles. Hence, f(X) is homeo-
morphic to the closed unit disk. So by Brouwer’s fixed point theorem, (f|x)~! has a fixed
point p. Thus p is also a fixed point of f.

If X € XL,(f,C), then inte(X) C inte(X}) and f(X) = X°. Since X2 Ninte(X}) = 0,
the map f has no fixed points in inte(X). The case when X € X} (f,C) is similar. O

Lemma 4.1.3. Let f be an expanding Thurston map with an f-invariant Jordan curve C
containing post f such that no 1-tile in D(f,C) joins opposite sides of C. Then for every
n € N, each n-tile X™ € X"(f,C) contains at most one fized point of f™.

Proof. Fix an arbitrary n € N. We denote F' = f" and consider the cell decompositions
induced by F' and C in this proof. Note that F'is also an expanding Thurston map and there

is no 1-tile in D!(F,C) joining opposite sides of C.
It suffices to prove that each 1-tile X! € X! contains at most one fixed point of F.

Suppose that there are two distinct fixed points p, ¢ of F' in a 1-tile X'. We prove that

there is a contradiction in each of the following cases.

Case 1: at least one of the fixed points, say p, is in inte(X'). Then X' € XL UX}, by
Lemma T2 Since p is contained in the interior of X; N F(X;), we get that X; C F(X;).
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Since F'|y1 is a homeomorphism from X' to F'(X') (see Proposition 2.2.4(i)), we define a
2-tile X? = (F|x1) ' (X') € X'. Then we get that p € inte(X?) and F(X?) = X'. On
the other hand, the point ¢ must be in X? as well for otherwise there exists ¢’ # ¢ such
that ¢ € X? and F(¢') = ¢, thus ¢ and ¢ are two distinct points in X! whose images
under F are ¢, contradicting the fact that F|x: is a homeomorphism from X! to F(X?!) and
X' C F(X?"). Similarly we can inductively construct an (n + 1)-cell X" C X™ such that
F(X") = X", p € inte(X™), and ¢ € X!, for each n € N. This contradicts the fact

that F' is an expanding Thurston map, see Remark 2.3.41

Case 2: there exists a 1-edge e € E! such that p,q € e. Note that e C X!. Then one of
the fixed points p and ¢, say p, must be contained in the interior of e, for otherwise p, q are
distinct 1-vertices that are fixed by F', thus they are both O-vertices, hence X! joins opposite
sides, a contradiction. Since F(e) is a 0-edge by Proposition 2.2.4] and p € F'(e), there exists
a l-edge ¢/ C F(e) with p € €. Thus ¢ intersects with e at the point p, which is an interior
point of e. So € = ¢, and e C F(e). Then by the same argument as when p € inte(X') in

Case 1, we can get a contradiction to the fact that F'is an expanding Thurston map.

Case 3: the points p, ¢ are contained in two distinct 1-edges ej, e; of X!, respectively,
and e; Ney # (). Since F is an expanding Thurston map, we have m = card(post F') > 3 (see
[BM10), Corollary 6.4]). So X! is an m-gon (see Proposition ZZZ4(vi)). Since e; Ney # 0,
we get card(e; Neg) = 1, say e; Ney = {v}. By Case 2, we get that v # p and v # q.
Note that p € F(e1), ¢ € F(es), and F(ey), F(ez) are 0-edges. If at least one of p and ¢ is a
1-vertex, thus a 0-vertex as well, then since Proposition Z2.4](i) implies that F'(e;) # F(ez),
we can conclude that X! touches at least three 0-edges, thus joins opposite sides of C, a

contradiction. Hence p € inte(e;) and g € inte(es). So e; C F(ey), ea C F(es), and
{v}=e1Ney C Fley) N F(eg) = Fle;Ney) = F({v}),

by Proposition 2.2.4)(i). Thus F(v) = v. Then e; contains two distinct fixed points p and v
of F', which is impossible by Case 2.

Case 4: the points p, ¢ are contained in two distinct 1-edges ey, e; of X!, respectively, and
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e1 Neg = (). Thus card(post F') > 4 by Proposition 2.224(vi), and F(e;) and F(ey) are a pair
of disjoint edges of F/(X') by Proposition 222.4(i). But p = F(p) € F(e1), ¢ = F(q) € F(es),

so X! joins opposite sides of C, a contradiction.

Combining all cases above, we can conclude, therefore, that each 1-tile X! € X! contains

at most one fixed point of F'. O

We can immediately get an upper bound of the number of periodic points of an expanding

Thurston map from Lemma [£.1.3]

Corollary 4.1.4. Let f be an expanding Thurston map. Then for each n € N sufficiently
large, the number of fixed points of f™ is < 2(deg f)". In particular, the number of fized
points of f is finite.

Proof. By Corollary 5.3 for each n > N(f), where N(f) € N is a constant as given in
Corollary 2.5.3] there exists an f™-invariant Jordan curve C containing post f such that no
n-tile in D"(f, C) joins opposite sides of C. Let F' = f™. So F'is an expanding Thurston map,
and C is an F-invariant Jordan curve containing post F' such that no 1-tile in D'(F,C) joins
opposite sides of C. By Proposition Z2Z4(iv), the number of 1-tiles in X!(F,C) is exactly
2deg F' = 2(deg f)™. By Lemma T3] we can conclude that there are at most 2(deg f)"
fixed points of F' = f".

Since each fixed point of f is also a fixed point of ", for each n € N, the number of fixed
points of f is finite. O

The following lemma in some sense generalizes Lemma to Jordan curves that are
not necessarily f-invariant, but f"c-invariant for some n. € N. The conclusions of both
lemmas hold when n is sufficiently large, which is a combinatorial condition in Lemma
and a metric condition for the following lemma. The proof of the following lemma is simpler,
but the proof of Lemma is more self-contained. I will not use the following lemma in

this chapter, and but it will be used in Chapter [7l
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Lemma 4.1.5. Let f: S? — 5% be an expanding Thurston map, and C C S? be a Jordan
curve that satisfies post f C C and f"¢(C) C C for some ne € N. Let d be a visual metric on
S? for f with expansion factor A > 1. Then there ewxists Ny € N such that for each n > N,
and each n-tile X™ € X"(f,C), the number of fized points of f" contained in X™ is at most
1.

Proof. By Lemma 2.5.4], for each i € N, each i-tile X* € X*(f,C), and each pair of points

x,y € X', we have

4@ S W) 2 prdie),

where Cy > 1 is a constant depending only on f and d from Lemma 2.5.41
We choose N, € N such that AM > (.

Let n > Ny and X" € X"(f,C). Suppose two distinct points p,q € X satisfy f"(p) =p

and f"(¢) = ¢. Then
L= 4 ), [1(e) o A"
dip.q)  ~ Co

a contradiction. This completes the proof. O

> 1,

Lemma 4.1.6. Let f be an expanding Thurston map with an f-invariant Jordan curve C

containing post f. Then

deg(f|c) = card(XL,,(f,C)) —card(X,,,(f,C)) = card(Xy,(f,C)) — card(XL,(f,C)). (4.1.1)

Here deg(f|c) is the degree of the map f|c: C — C. Roughly speaking, it measures the
total number of times the image of C under f winds around C along the orientation of C.

See for example, [Ha02, Section 2.2] for a precise definition.

Note that the first equality in (£I.1), for example, says that the degree of f restricted
to C is equal to the number of white 1-tiles contained in the white 0-tile minus the number

of black 1-tiles contained in the white 0-tile.

Recall that for each continuous path v: [a,b] — C\ {0} on the Riemann sphere C, with

a,b € Rand a < b, we can define the variation of the arqument along 7, denoted by V' (v), as
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the change of the imaginary part of the logarithm along . Note that V/(+) is invariant under
an orientation-preserving reparametrization of vy and if 5: [a, b] — C reverses the orientation
of v, ie., ¥(t) = y(a+ b —1t), then V(7) = =V (7). We also note that if v is a loop, then
V(v) = 2mInd,(0), where Ind,(0) is the winding number of ~ with respect to 0 [Burc79,
Chapter IV].

Proof. Consider the cell decompositions induced by (f,C). Let X° be the white 0-tile.
We start with proving the first equality in (ZI11).

By the Schoenflies theorem (see, for example, [Mo77, Theorem 10.4]), we can assume
that S? is the Riemann sphere @, and X0 is the unit disk with the center 0 disjoint from
f7HO).

For each 1-edge e € E', we choose a parametrization v : [0, 1] — C\{0} of e with positive
orientation (i.e., with the white 1-tile on the left), and a parametrization v, : [0, 1] — C\ {0}
of e with negative orientation. Then f o~ and f o+, are parametrizations of one of the

0-edges on the unit circle C, with positive orientation and negative orientation, respectively.

We claim that

SN Ve - Y Y Ve = Y Vifor)  (412)

XeXl , eecEl eCoX XeX] ecEleCoX ecEl eCC

where on the right-hand side, 7. = 7/ if e € C N X for some X € X!

ww

and v, = v, if
e CCNX for some X € X}, or equivalently, 7, parametrizes e in such a way that X0 is

bw?

always on the left of e for each e € E! with e C C.

We observe that the left-hand side of (£I1.2]) is the sum of V(f o 4F) over all 1-edges
e in the boundary of a white 1-tile X C X° plus the sum of V(f o4, ) over all 1-edges e
in the boundary of a black 1-tile X € X°. Since each l-edge e with inte(e) C X? is the
intersection of exactly one 1-tile in X! = and one 1-tile in X}, the two terms corresponding
to a l-edge e that is not contained in C cancel each other. Moreover, there is exactly one
term for each 1-edge e C X? that is contained in C, and e that corresponds to such a term

is parametrized in such a way that X? is on the left of e. The claim now follows.
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We then note that by Proposition [2.2.4((i), the left-hand side of (£.1.2) is equal to
Z 27 — Z 21 = 2r (card(X},,,) — card(X,,)) ,
XeXl,, XeXi,

and the right-hand side of (Z.1.2)) is equal to
27 Indfoyc (O) =27 deg(f|c),

where 7 is a parametrization of C with positive orientation. Hence the first equality in

(411 follows.

The second equality in (1) follows by symmetry, in the sense that we could have
exchanged the colors of the 0-tiles and thus exchanged the colors of all tiles. It also follows

from the fact that

card(X?! ) + card(XL,) = deg f = card(X},) + card(X},). O

Let f be an expanding Thurston map with an f-invariant Jordan curve C containing
post f. We orient C in such a way that the white O-tile lies on the left of C. Let p € C be a
fixed point of f. We say that f|c preserves the orientation at p (resp. reverses the orientation
at p) if there exists an open arc [ C C with p € [ such that f maps [ homeomorphically to
f(l) and f|c preserves (resp. reverses) the orientation on [. More concretely, when p is a 1-
vertex, let [1,ls C C be the two distinct 1-edges on C containing p; when p € inte(e) for some
l-edge e C C, let Iy, 13 be the two connected components of e \ {p}. Then f|c preserves the
orientation at p if {1 C f(l;) and Iy C f(l2), and reverses the orientation at p if Iy, C f(l;) and
l1 € f(l3). Note that it may happen that f|c neither preserves nor reverses the orientation
at p, because f|c need not be a local homeomorphism near p, where it may behave like a

“folding map”.

Lemma 4.1.7. Let f be an expanding Thurston map with an f-invariant Jordan curve C
containing post f. Then the number of fized points of f|c where f|c preserves the orienta-

tion minus the number of fixed points of f|c where f|c reverses the orientation is equal to

deg(flc) — 1.
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Proof. Let 1: [0,1] — C be a continuous map such that ¥|eq): (0,1) = C\ {xo} is an
orientation-preserving homeomorphism, and 1(0) = ¥(1) = x for some zy € C that is not
a fixed point of f|c. Note that for each z € C with = # x¢, ¥ ~!(z) is a well-defined number
n (0,1). In particular, ¢»~!(y) is a well-defined number in (0, 1) for each fixed point y of
fle. Define m: R — C by m(xz) = ¢(z — |x]). Then 7 is a covering map. We lift f|c o ¢
to G: [0,1] — R such that 7 o G = f|c o+ and G(0) = ¥~ (f(xg)) € (0,1). So we get the

following commutative diagram:
R
C.
Then G(1) — G(0) € Z and
deg(flc) = G(1) — G(0). (4.1.3)

Observe that y € C is a fixed point of f|c if and only if G(¢ =} (y)) —¥ ' (y) € Z. Indeed, if
y € Cis a fixed point of f|c, then moGow~(y) = fle(y) = y. Thus Goy'(y) —v~'(y) € Z.
Conversely, if Goty=1(y) =1~ (y) € Z, then y # zo since G(¢~(z0)) 1(950) G0)—0 e
(0,1), thus
fle@) = fleov o™ (y) =moGoy™ (y) =m0~ (y) =

For each m € Z, we define the line [,, to be the graph of the function z — x + m from
R to R.

Let y € C be any fixed point of f|c. Since by Corollary A.T.4lfixed points of f are isolated,
there exists a neighborhood (s,t) C (0, 1) such that ¢~!(y) € (s,t) and for each fixed point
z € C\{y} of fle, v™(2) ¢ (s,t). Define k = G(¢"(y)) — ¥ ~(y); then k € Z. Moreover,

z € C is a fixed point of f|¢ if and only if the graph of G intersects with [,, at the point
(v=(2),G (v~(2)) for some m € Z.

Depending on the orientation of f|c at the fixed point y € C, we get one of the following

cases:
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Figure 4.1.1: The lines [, for k € Z and an example of the graph of G.

L. If f|c preserves the orientation at y, then the graph of G|, -1(y) lies strictly between

the lines I, and [, and the graph of G ‘(w—l(y),t) lies strictly between the lines [, and

lpy1-

2. If fl|c reverses the orientation at y, then the graph of G| y-1(y)) lies strictly between
the lines [ and 41, and the graph of G|,-1(y)) lies strictly between the lines [;_;

and .

3. If f|c neither preserves nor reverses the orientation at y, then the graph of G| s )\ fp—1()}

either lies strictly between the lines [,_; and [, or lies strictly between the lines [ and

losr.

Thus the number of fixed points of f|c where f|c preserves the orientation is exactly the
number of intersections between the graph of G and the lines [,, with m € Z, where the
graph of G crosses the lines from below, and the number of fixed points of f|c where f|c
reserves the orientation is exactly the number of intersections between the graph of G and
the lines [,, with m € Z, where the graph of G crosses the lines from above. Therefore the
number of fixed points of f|c where f|¢ preserves the orientation minus the number of fixed

points of f|c where f|¢ reverses the orientation is equal to G(1)—G(0) —1 = deg(fl¢c)—1. O
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For each n € N and each expanding Thurston map f: S? — 5%, we denote by
Poj={x eS| fi(x)=a, ff(2) £ 2,k € {1,2,...,n — 1}} (4.1.4)
the set of periodic points of f with period n, and by

Py = Y degpu(z),  Pny=cardP,; (4.1.5)

J?EPn,f

the numbers of periodic points z of f with period n, counted with and without weight
deg (), respectively, at each z. In particular, P is the set of fixed points of f and
p1f =1+ deg f as we will see in the proof of Theorem [[.0.1] below. More generally, for all

m € Ny and n € N with m < n, we denote by
Sy ={z € 8*| f™(z) = f"(x)} (4.1.6)
the set of preperiodic points of f with parameters m,n and by

st = Z deg (), sit = card S)" (4.1.7)

n pu—
resSm

the numbers of preperiodic points of f with parameters m,n, counted with and without
weight deg ;. (), respectively, at each z. Note that in particular, for each n € N, SO = Py n
is the set of fixed points of f".

Proposition 4.1.8. Let F': S? — S? be an expanding Thurston map with an F-invariant
Jordan curve C containing post F' such that no 1-tile in D'(F,C) joins opposite sides of C.
Then F has 1+ deg F' fized points, counted with weight given by the local degree degp(x) of
the map at each fized point x.

Proof. We consider the cell decompositions induced by (F,C) in this proof. Let w, =
card X}, be the number of white 1-tiles contained in the white O-tile, b, = card X}, be
the number of black 1-tiles contained in the white 0-tile, w, = card X, be the number of
white 1-tiles contained in the black 0-tile, and b, = card X3, be the number of black 1-tiles

contained in the black O-tile. Note that w,, + w, = b, + b, = deg F'.
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By Corollary 1.4l we know that fixed points of F' are isolated.

Note that
Wy, + by = deg F' + deg(Fc), (4.1.8)

which follows from the equation w,, — b, = deg(F'|¢) by Lemma A I1.6] and the equation
by, + by, = deg F.

We define sets
A={X e X! |there exists p € CN X with F(p) = p},

B = {X € X}, | there exists p € CN X with F(p) = p},
and let a = card A, b = card B.

We then claim that
a—b=deg(F|c)—1. (4.1.9)

In order to prove this claim, we will first prove that a — b is equal to the number of fixed
points of F'|c where F'|c preserves the orientation minus the number of fixed points of F|c

where F|¢ reverses the orientation.

So let p € C be a fixed point of F|c.

1. If p is not a critical point of F', then either F'|¢ preserves or reverses the orientation at

p. In this case, the point p is contained in exactly one white 1-tile and one black 1-tile.

(a) If F|c preserves the orientation at p, then p is contained in exactly one white
1-tile that is contained in the white 0-tile, and p is not contained in any black

1-tile that is contained in the while 0-tile.

(b) If F|c reverses the orientation at p, then p is contained in exactly one black 1-tile
that is contained in the white O-tile, and p is not contained in any white 1-tile

that is contained in the while 0-tile.
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€1
Figure 4.1.2: Case (2)(a) where F(e;) 2 e; and F(eg) 2 es.

wWw
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p €2

€1
Figure 4.1.3: Case (2)(b) where F'(e;) 2 es and F'(ey) 2 e;.

bw wWwW

WW bw
p €2

€1
Figure 4.1.4: Case (2)(c) where F(e1) = F(e2) 2 €1

wWwW bw
bw wWwW
p €2

€1
Figure 4.1.5: Case (2)(d) where F(e;) = F(e2) 2 e



2. If p is a critical point of F, then p = F(p) € post f and so there are two distinct
1-edges €1, e C C such that {p} = e; Ney. We refer to Figures 1.2 to L.T.5]

(a) If e C F(e1) and ey C F(ey), then p is contained in exactly k white and k£ — 1
black 1-tiles that are contained in the white 0-tile, for some k € N. Note that in

this case F'|¢ preserves the orientation at p.

(b) If e C F(e1) and e; C F(es), then p is contained in exactly & — 1 white and k
black 1-tiles that are contained in the white 0-tile, for some k € N. Note that in

this case F'|c reverses the orientation at p.

(c) If e1 C F(ey) = F(eq), then p is contained in exactly k& white and k black 1-tiles
that are contained in the white 0-tile, for some k£ € N. Note that in this case F|¢

neither preserves nor reverses the orientation at p.

(d) If e; C F(e1) = F(ez), then p is contained in exactly k& white and k black 1-tiles
that are contained in the white 0-tile, for some k£ € N. Note that in this case F|¢

neither preserves nor reverses the orientation at p.

It follows then that a — b is equal to the number of fixed points of F|c where F|¢ preserves

the orientation minus the number of fixed points of F'|¢c where F'|c reverses the orientation.

Then the claim follows from Lemma [4.T.71

Next, we are going to prove that the number of fixed points of F, counted with weight

given by the local degree, is equal to
Wy + by —a+ b, (4.1.10)
which, by (418 and the claim above, is equal to

deg F' + deg(F|c) — (deg(Fl¢) —1) =1+ deg F.

Indeed, by Lemma T2 and Lemma 1.3 each 1-tile that contributes in (LII0), i.e.,

each 1-tile in X!  UX}, UBU A, contains exactly one fixed point (not counted with weight)
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of F. On the other hand, each fixed point is contained in at least one of the 1-tiles in

X! UX}L UBUA. Let p be a fixed point of F, then one of the following happens:

1. If p ¢ C, then p is not contained in any l-edges e since F'(e¢) C C. So p € inte(X)
for some X € X! UX}, \ (AU B), by Lemma ET.2l So each such p contributes 1 to

ELID).

2. If p € C but p ¢ crit F', then p is not a 1-vertex, so either p is contained in exactly two
1-tiles X € X}

ww

X’ € X1L,. In either case, p contributes 1 to (ZII0).

and X' € X},, or p is contained in exactly two 1-tiles X € X}, and

3. If p€ C and p € crit F, then p is a 0-vertex, so the part that p contributes in (ZI1.10)
counts the number of black 1-tiles that contains p, which is exactly the weight deg(p)

of p.
The proof is now complete. O

We can use some elementary number-theoretic argument to generalize Proposition E.1.§|

to all expanding Thurston maps, thus proving Theorem [0l

Proof of Theorem [I.0 1. We first observe that by Proposition L.I.8] the theorem holds for f
replaced by F' = f" for each n > N(f) where N(f) is a constant as given in Corollary
depending only on f. Indeed, let C be an f"-invariant Jordan curve containing post f such
that no n-tile in D™(f,C) joins opposite sides of C as given in Corollary 2253l So C is an
F-invariant Jordan curve containing post F' such that no 1-tile in D*(F,C) joins opposite
sides of C. Proposition L.1.8 now applies.

Next, choose a prime r > N(f). Note that the set of fixed points of f” can be decomposed
into periodic orbits under f of length r or 1, since r is a prime. Let p be a fixed point of f”.

By using the following formula derived from (2Z1.2),

deg;r(p) = degy(p) deg,(f(p)) deg;(f*(p)) - -~ deg(f"(p)). (4.1.11)

we can conclude that
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(1) if p & crit(f"), or equivalently, deg;(p) = 1, and

(i) if p is in a periodic orbit of length 7, then p, f(p),..., f"1(p) ¢ crit f, or equiva-
lently, the local degrees of f" at these points are all 1;

(ii) if p is in a periodic orbit of length 1, then p ¢ crit f, or equivalently, deg,(p) = 1;

(2) if p € crit(f7), and

(i) if p is in a periodic orbit of length 7, then all p, f(p),..., f"~!(p) are fixed points
of " with the same weight deg.(p) = deg.(f*(p)) for each k € N;

(ii) if p is in a periodic orbit of length 1, then p € crit f and the weight of f" at p is

deg-(p) = (deg(p))"

Note that a fixed point p € S% of f" is a fixed point of f if and only if p is in a periodic orbit
of length 1 under f. So by first summing the weight of the fixed points of f" in the same
periodic orbit then summing over all such orbits and applying Fermat’s Little Theorem, we
can conclude that

pl,fr = Z degfr (l')

:L‘EPLfT

_ Zr+ 1+ Zrdegﬂ(p)%— Z(degf(p))r
) 2)(®)

(M) (D (2)(i)

= 1+ Z deg ;(p)
(1)(i) (2)(i)

=pys (mod r),

where on the second line, the first sum ranges over all periodic orbits in Case (1)(i), the
second sum ranges over all periodic orbits in Case (1)(ii), the third sum ranges over all
periodic orbits of the form {p, f(p),..., " *(p)} in Case (2)(i), the last sum ranges over all
periodic orbits of the form {p} in Case (2)(ii). Thus by ([2.1.3)) and Fermat’s Little Theorem

again, we have

O0=deg(f")+1—piyr=(degf) +1—p1y=1+degf —pi,; (modr). (4.1.12)
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By choosing the prime r larger than |1+ deg f — p1 |, we can conclude that p;f = 1 +
deg f. O

In particular, we have the following corollary in which the weight for all points are trivial.

Corollary 4.1.9. If f is an expanding Thurston map with no critical fized points, then there
are exactly 14+ deg f distinct fixed points of f. Moreover, if f is an expanding Thurston map
with no periodic critical points, then there are exactly 1+ (deg f)™ distinct fized points of f",

for each n € N.

Proof. The first statement follows immediately from Theorem [0l

To prove the second statement, we first recall that if f is an expanding Thurston map,
sois f™ for each n € N. Next we note that for each fixed point p € S? of f*, n € N, we have

deg . (p) = 1. For otherwise, suppose deg.(p) > 1 for some n € N, then

1 < degn(p) = deg,(p) deg;(f(p)) deg;(f*(p)) - - - deg,(f* ' (p)).

Thus at least one of the points p, f(p), f2(p), ..., f" 1(p) is a periodic critical point of f, a

contradiction. The second statement now follows. O

We recall the definition of s in (£1.06]) and (£1.7).

Corollary 4.1.10. Let f be an expanding Thurston map. For each m € Ny and n € N with
m < n, we have

s, = (deg f)" + (deg f)™. (4.1.13)

Proof. For all m € Ny and n € N with m < n, we have

sp=> degp(x)= Y > degpu(x)

eSS y=fr=m(y) z€f~m(y)
= Z deg pn-mn(y) Z deg pm ()
y=f""m(y) zEf~™(y)

= ((deg f)"™™ + 1) (deg f)™.

The last equality follows from (ZI1.T]), (Z13]), and Theorem [LOT] O
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Finally, for expanding Thurston maps with no periodic critical points, we derive a formula

for p, s, n € N, from Theorem [[LO.I] and the Mébius inversion formula (see for example,

[Bak&5, Section 2.4]).

Definition 4.1.11. The Mébius function, p(u), is defined by

(

1 if n =1,

p(n) = (=1)" ifn=mpips...p,, and py,...,p, are distinct primes;

0 otherwise.
\

Corollary 4.1.12. Let f be an expanding Thurston map without any periodic critical points.

Then for each n € N, we have

>2pld)(deg /)" if n > 1
Pnf = Zﬂ(d)pmn/d = dn

din 1+ deg f ifn=1.

Proof. The first equality follows from the Mobius inversion formula and the equation p; g =
> pay, for n € N. The second equality follows from Theorem [LOJ] and the following fact

dln
(see for example, [Bak85l Section 2.4]):

1 ifn=1,

> uld) =

dln 0 ifn>1.

4.2 Equidistribution

In this section, we derive various equidistribution results as stated in Theorem [LO.12], The-
orem [LOI3] and Corollary [LOT4l We prove these results by first establishing a general
statement in Theorem A.2. 7 on the convergence of the distributions of the white n-tiles in the
tile decompositions discussed in Section 211 in the weak™ topology, to the unique measure of

maximal entropy of an expanding Thurston map. More precisely, we show in Theorem [£.2.7]
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that the distributions of the points, each of which is located “near” its corresponding white
n-tile where the correspondence is a bijection, converges in the weak® topology to us as
n — +00. Then Theorem follows from Theorem 2.7 Theorem finally fol-
lows after we prove a technical bound in Lemma generalizing a corresponding lemma
from [BM10]. As a special case, we obtain Corollary [LO.14l Theorem [[L01lis used in several

places in this section.

Let f be an expanding Thurston map. Then

hiop(f) = log(deg ), (4.2.1)

and there exists a unique measure of maximal entropy sy for f (see [BM10, Theorem 20.9]
and [HP09L Section 3.4 and Section 3.5]). Moreover, for each n € N, the unique measure
of maximal entropy gy~ of the expanding Thurston map f" is equal to s (see [BMIO)
Theorem 20.7 and Theorem 20.9]).

We recall that in a compact metric space (X, d), a sequence of finite Borel measures p,
converges in the weak* topology to a finite Borel measure u, or w, AN [, as n — o0 if
and only if lirf Judp, = fudp for each u € C(X).

n——+0o0

We need the following lemmas for weak* convergence.

Lemma 4.2.1. Let X and X be two compact metric spaces and ¢: X — X a continuous

map. Let p and p;, for v € N, be finite Borel measures on X. If
i SN W oas i — +00,
then ¢.(p) and ¢.(1;), i € N, are finite Borel measures on X, and

(1) 5> () as i —» +oo.

Recall for a continuous map ¢: X — X between two metric spaces and a Borel measure
v on X, the push-forward ¢.(v) of v by ¢ is defined to be the unique Borel measure that
satisfies (¢, (v))(B) = v (¢~1(B)) for each Borel set B C X.

68



Proof. By the Riesz representation theorem (see for example, [F099, Chapter 7]), the lemma
follows if we observe that for each h € C ()~( ), we have
[t = [oo)an =5 [woo)du= [ nao.m. O
X X X X
Lemma 4.2.2. Let (X,d) be a compact metric space, and I be a finite set. Suppose that
and (i, fori € I andn € N, are finite Borel measures on X, and w; ,, € [0,+00), fori e I

and n € N such that

1. pin = 11, as n — +oo, for eachi € I,

2. lim Y w;, =7 for somer € R.

n—é+ooi€1

Then > wj nitin v T as n — +oo.
el
Proof. For each v € C'(X) and each n € N,

'/m(Zwi,nm,n) —T/ud,u <> win

el i€l

r — E Wi n

icl

/udum—/udu’—l— /\u\d,u.

Since i, = 11, as n — 400, for each i € I, and lim > w;, =1, we can conclude that
n—-+0o0o iel

the right-hand side of the inequality above tends to 0 as n — +oc. O

We record the following well-known lemma, sometimes known as the Portmanteau The-

orem, and refer the reader to [Bi99, Theorem 2.1] for the proof.

Lemma 4.2.3. Let (X,d) be a compact metric space, and p and u;, for i € N, be Borel

probability measures on X. Then the following are equivalent:

1. uiw—*>ua5i—>—|—oo;

2. limsup u;(F) < p(F) for each closed set F C X;

i——400

3. liminf 14;(G) > u(G) for each open set G C X;

1—+00
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4. lim p;(B) = u(B) for each Borel set B C X with u(0B) = 0.
1

i—+00
Lemma 4.2.4. Let (X,d) be a compact metric space. Suppose that A; C X, fori € N, are

finite subsets of X with maps ¢;: A; — X such that

lim max{d(z, ¢;(z)) |z € A;} = 0.

i——400

Let m;: A; — R, fori € N, be functions that satisfy

sup [|m;||, = sup Z\ml(xﬂ < 4o00.
ieN ieN S

Define for each i € N,

Hi = Z mi(2)0q, i = Z mi(2)0, ()

xEAi CEEAZ'

If

,uiw—>,uasi—>+oo,

for some finite Borel measure p on X, then
~  w* .
i — [ as vt —» +00.
Proof. It suffices to prove that for each continuous function g € C'(X),

/gd,ui—/gdﬁi—>0asi—>+oo.

Indeed, g is uniformly continuous, so for each € > 0, there exists N € N such that for each

n > N and for each x € A,,, we have |g(x) — g(¢n(x))| < e. Thus

o o

The following lemma is a reformulation of Lemma 20.2 in [BM10]. We will later generalize

< Y 9(@) = g(n(@)]| [ma(@)] < esup [jmy|l; U

z€A, neN

it in Lemma [4.2.12
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Lemma 4.2.5 (M. Bonk & D. Meyer, 2010). Let f be an expanding Thurston map, and
C C S? be an fN-invariant Jordan curve containing post f for some N € N. Then there

exists a constant Lo € [1,deg f) with the following property:

For each m € Ny withm =0 (mod N), there ezists a constant Dy > 0 such that for each

k € Ny with k=0 (mod N) and each m-edge e, there exists a collection My of (m + k)-tiles

U X).

with card My < DOLIOg and e C int <
XMy

Let I be an expanding Thurston map with an F-invariant Jordan curve C C S? contain-
ing post F'. As before, we let w,, = card XL  denote the number of white 1-tiles contained
in the white 0-tile, b,, = card X}, the number of black 1-tiles contained in the white 0-tile,

wp = card X!, the number of white 1-tiles contained in the black 0-tile, and b, = card X},

the number of black 1-tiles contained in the black 0-tile. We define

bw Wy
w = , b= )
bw+wb bw+wb

(4.2.2)

Note that (see the discussion in [BM10] proceeding Lemma 20.1 in Chapter 20) b, wy, w,b >
0, w+b=1, and
|wy, — by| < deg F. (4.2.3)

M. Bonk and D. Meyer gave the following characterization of the unique measure of

maximal entropy of F' (see [BM10l Proposition 20.7 and Theorem 20.9]):

Theorem 4.2.6 (M. Bonk & D. Meyer, 2010). Let F' be an expanding Thurston map with an
F-invariant Jordan curve C C S?. Then there is a unique measure of mazximal entropy pup

of F', which is characterized among all Borel probability measures by the following property:

For each n € Ny and each n-tile X™ € X"(F,C),

deg F)™ if X" € X"(F,C
LX) = w(deg )™ if X" € X[(F,C), (420

b(deg F)™™ if X" € X}(F,C).

We now state our first characterization of the measure of maximal entropy py of an

expanding Thurston map f.
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Theorem 4.2.7. Let f be an expanding Thurston map with its measure of mazximal en-
tropy py. Let C C 5% be an f"-invariant Jordan curve containing post f for some n € N.
Fiz a wvisual metric d for f. Consider any sequence of non-negative numbers {c;}ien,
with lefrnoo a; = 0, and any sequence of maps {B;}ien, with B; sending each white i-tile
X' e X! (f,C) to a point 5;(X*) € N3 (X"). Let

1

pi= Y. dgxy, €N
(deg f) X0

Then

uiw—*>uf as i — +00.

Recall that Nj*(X") denotes the open «;-neighborhood of X* in (52, d). This theorem
says that a sequence of probability measures {f; }ien, with p; assigning the same weight to
a point near each white i-tile, converges in the weak* topology to the measure of maximal
entropy. In some sense, it asserts the equidistribution of the white i-tiles with respect to the

measure of maximal entropy.

We first prove a weaker version of the above theorem.

Proposition 4.2.8. Let F' be an expanding Thurston map with its measure of maximal
entropy pp and an F-invariant Jordan curve C C S? containing post F.  Consider any
sequence of maps {B; }ien, with B; sending each white i-tile X € X! (F,C) to a point 3;(X?) €
inte(X?) for each i € Ny. Let
LY e
P = (xiy, L )
12 (deg F)Z L Bi(X*) 0
XteXi (F,C)

Then

i — g as i — 4-00.

Proof. Note that card X! = (deg F')’, so y; is a probability measure for each i € Ny. Thus by
Alaoglu’s theorem, it suffices to prove that for each Borel measure p which is a subsequential

limit of {p; }ien, in the weak* topology, we have p = up.
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Let {in}nen € N be an arbitrary strictly increasing sequence such that
uinw—*>uasn—>+oo,

for some Borel measure u. Clearly p is also a probability measure.

Recall the definitions of w,b € (0,1) and wy,, by, ws, by (see (£2.2)). For each m,i € Ny
with 0 < m < ¢, each white m-tile X' € X7, and each black m-tile X;" € X}, by the

w ?

formulas in Lemma 20.1 in [BMI0], we have

1 4 . 4
(X)) =————card{ X' e X! | X' C X"
X0 = gy CrHX € X0 X1 € X0y

1 ‘ :
=—— (w(deg F')"™™ 4+ b(wy, — by,)'™™), 4.2.5
g By (w008 )" bl — b)) (425)
and similarly,
1 . 4
(X)) = ———== (w(deg F)"™ — b(w,, — by,)"™™) . 4.2.6
XY) = oy (0(AeB F) ™ b = b)) (42.6)

We claim that for each m-tile X™ € X with m € Ny, we have u(0X™) = 0.

To establish the claim, by Proposition 2.2.4(vi), it suffices to prove that p(e) = 0 for
each m-edge e with m € Ny. Applying Lemma [£.2.5] in the case f = F and n = 1, we get
that there exist constants 1 < Ly < deg F' and Dy > 0 such that for each k € Ny, there is a

collection M} of (m + k)-tiles with card M¥ < DyLE such that e is contained in the interior

of the set |J X. So by ([@23), (@23), (@.2.6), and Lemma B2 we get

XeM}
u(e)gu(int( U X)) §limsupum+k+l<int( U X))
XeMp l—+o00 XeMf
. ) w+b
< lim sup Z Pk 1(X) < Z lim sup flpqr1(X) < DOLSW‘
l—+o00 XeME XeMp l—+o00 ( cg )

By letting k — +00, we get p(e) = 0, proving the claim.

Thus by {23), @235), (#2.0), the claim, and Lemma A23 we can conclude that for

each m € Ny, and each white m-tile X' € X7/, each black m-tile X;* € X}, we have that

p(Xy') = lim g, (X.') = w(deg F)™™,

n—-+o0o
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p(XP) = i g, (Xp") = b(deg F) ™.
n—-+00
By Theorem [£.2.6] therefore, the measure p is equal to the unique measure of maximal

entropy pup of F. O

As a consequence of the above proposition, we have

Corollary 4.2.9. Let f be an expanding Thurston map with its measure of mazimal entropy
ps. Let C C S? be an f™-invariant Jordan curve containing post f for some n € N. Fiz an
arbitrary p € inte(X?2) where X? is the white 0-tile for (f,C). Define, for i € N,

1
- : 0,
YT (deg f) 2 0

qef~(p)

Then

I/Z-w—>uf as 1 — +00.

Proof. First observe that since p is contained in the interior of the white 0-tile, each ¢ €
f~™(p) is contained in the interior of one of the white n-tiles, and each white n-tile contains

exactly one ¢ with f"(q) = p. So by Proposition [1.2.8]
Vpi s fgn as i — 00, (4.2.7)
where pip» is the unique measure of maximal entropy of f”, which is equal to p; (see [BM10)

Theorem 20.7 and Theorem 20.9]).

Then note that for £ > 1,

1 1
f*Vk; = m Z 5f(q) = W Z 5q = Vg—1. (428)

a€f~*(p) a€f~F 1 (p)
The second equality above follows from the fact that the number of preimages of each point

in f75*1(p) is exactly deg f.

So by (A.2.7), (4.2.8)), Lemma [£.2.1] and the fact that 4 is invariant under pushforward
of f from Theorem 20.9 in [BMI10], for each k € {0,1,...,n — 1}, we get

Unick = (f2) i — (f*)k,uf = up as i —> +00.
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Therefore

l/iw—*>,ufasi—>—|—oo. U

Proof of Theorem[{.2.7. Fix an arbitrary p € inte(X?) in the interior of the while 0-tile X9

for the cell decomposition induced by (f,C).

As in the proof of Corollary L.2.9] for each i € Ny, there is a bijective correspondence
between points in f~%(p) and the set of white i-tiles, namely, each ¢ € f~*(p) corresponds to
the unique white i-tile, denoted by X,, containing ¢. Then we define functions ¢;: f~*(p) —
5% by setting di(q) = Bi(X,).

Let A > 1 be the expansion factor of our fixed visual metric d. There exists C' > 1 such
that for each n € Ny and each n-tile X" € X", diamy(X") < CA™" (see Lemma [Z4.T]). So

for each ¢ € Ny and each ¢ € f~*(p), we have
d(g, 6i(q)) < d(¢i(q), X,) + diamg(X,) < a; + CA™

Thus z£+moo max{d(z, ¢;(z)) |z € f~(p)} = 0.

For i € Ny, define

- 1
d %
(deg ) q€f~4(p)
Note that for i € Ny,

1 1
e, 2 T (g gy 2 S

XieXi, (f,C) q€f~(p)
Then by Corollary A.2.9]
/’L-w—*>ufasi—>+oo.
Therefore, by Lemma .24 with A; = f~%(p) and m;(z) = @,i € Ny, we can conclude
that
uiw—*>ufasi—>—|—oo. U

Remarks 4.2.10. We can replace “white” by “black”, X!, by X!, and X? by X} in the state-
ments of Theorem L. 2.7 Proposition [£.2.8, and Corollary £2.91 The proofs are essentially

the same.
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We are now ready to prove the equidistribution of preimages of an arbitrary point with

respect to the measure of maximal entropy fiy.

Proof of Theorem[I.0.12. By Theorem 1.2 in [BM10] or Corollary 5.3 we can fix an f"-
invariant Jordan curve C C S? containing post f for some n € N. We consider the cell

decompositions induced by (f,C).

We first prove (LO.I0).

We assume that p is contained in the (closed) white 0-tile. The proof for the case when
p is contained in the black O-tile is exactly the same except that we need to use a version of

Theorem 2.7 for black tiles instead of using Theorem [L.2.7] literally, see Remark L. 210l

Observe that for each i € Ny and each ¢ € f~*(p), the number of white i-tiles that
contains ¢ is exactly degyi(¢). On the other hand, each white i-tile contains exactly one
point ¢ with f*(¢) = p. So we can define 8;: X!, — S? by mapping a white i-tile to the point
q in it that satisfies f*(¢) = p. Define o; = 0. Theorem .27 applies, and thus (LOI0) is
true.

Next, we prove (LOII)). The proof breaks into three cases.

o0

+
Case 1. Assume that p ¢ post f. Then deg;(z) =1 for all x € |J f~"(p). So v; = v; for
1
each ¢ € N. Then (LO.IT) follows from (L.0.10) in this case.

n=

Case 2. Assume that p € post f and p is not periodic. Then there exists N € N such
that f~V(p) Npost f = (. For otherwise, there exists a point 2z € post f which belongs to
f~¢(p) for infinitely many distinct ¢ € N. In particular, there exist two integers a > b > 0
such that z € f~*(p) N f~°(p). Then f*~*(p) = p, a contradiction. So deg,(q) = 1 for

400 .
eachge |J U f*(z). Note that for each x ¢ post f and each i € N, the number of
zef~N(p) i=1
preimages of z under f* is exactly (deg f). Then for each i € N, Z;, y = Zn(deg f)*, and

~ 1 1 1
ez X7 3 (G 2 6)

ZA
N e ) wef~N( gef~i(x)
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For each z € f~V(p), by Case 1,

1
(deg f)

Z 5qw—*>,uf as 1 — +o00.
gef~ (=)

Thus each term in the sequence {7,y }ien 1S a convex combination of the corresponding
terms in sequences of measures, each of which converges to pf in the weak* topology. Hence
by Lemma .22 the sequence {7;1n }ien also converges to uy in the weak® topology in this

case.

Case 3. Assume that p € post f and p is periodic with period k € N. Let [ = card(post f).
We first note that for each m, N € N, the inequality

Zinsn 2 (Zyn = 1)(deg )Y

and equivalently,
Zm 1 l

< +
Zm+N (deg f) m+N
hold, since there are at most [ points in Z,, Npost f. So by Lemma 2.3.5] for each € > 0 and

each N large enough such that 1/(deg )V < €/2 and I/ Z,,. n < €/2, we get Z/ Zmin < €
for each m € N. We fix j € N large enough such that Z,,_;;,/Z,, < € for each m > jk.

Observe that for each m > jk,

~m:Zi > b= m( g+ Y. > 5q)

acf~m(p) gef~—(m=3k) (p) xef=ik(p)\{p} g€ f~(m=7%) (z)
1 1
5 i 4.2.9
== ( 7 Z q) DY (4.2.9)
g€ f~(m=ik) (p) zef=I%(p)\{p}

. 1
card (f*(mﬂ )(96)) (card (79 (2) Z 5q).

qef=(m=1k) (x)
Note that no pomt x € f%(p)\ {p} is periodic. Indeed, if z € f=9%(p)\ {p} were peri-
odic, then z € U fi(p), and so x would have period k as well. Thus z = f/*(z) = p, a

=0
contradiction. Hence by Case 1 and Case 2, for each z € f~7*(p) \ {p},

1 w*
card ([P (7)) Z 0g — iy as m — +00.
qef~(m=k) (x)

7



Let u € P(S?) be an arbitrary subsequential limit of {7, } ey in the weak* topology.

For each strictly increasing sequence {m;};cn in N that satisfies
~ w* .
Vm; — [ as 1 — 400,

we can assume, due to Alaoglu’s Theorem, by choosing a subsequence if necessary, that

Zmi—'k 1 w* .
z '] (Z — E 5q>—>77asz—>+00,

mi M=k e pm(mimik)
gef=tmimI% (p)

for some Borel measure 7 with total variation ||n|| < e. Observe that for each i € N,
1 : L, —i
S ead () =1 - S
™ wef % (p)\{p} "
since p € f77*(p) and card (f~™=3%)(p)) = Z,,_j. By choosing a subsequence of {m;}en

if necessary, we can assume that there exists r € [0, €| such that

lim Zmi—sh =r
i—+00

m;

So by taking the limits of both sides of (£.2.9)) in the weak* topology along the subsequence
{m;}ien, we get from Lemma that p=n+ (1 —r)ps. Thus

e = gl < il 7 [l gl < 2.

Since e is arbitrary, we can conclude that ;o = py. We have proven in this case that each
subsequential limit of {7, }men in the weak* topology is equal to ps. Therefore (LO.IT) is

true in this case. O

In order to prove Theorem [[LO.13] we will need Lemma [£.2.12 which is a generalization
of Lemma [£.2.7]

Lemma 4.2.11. Let f be an expanding Thurston map and d = deg f. Then there exist
constants C > 0 and « € (0, 1] such that for each nonempty finite subset M of S* and each

n € N, we have

1 M\“ M
o Z deg s (z) < C’max{ (Cal;j(i ) : Cal;i } (4.2.10)

xeM
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Note that when card M < d", the right-hand side of (ZZI0) becomes C' (2dM)®,

Proof. Let m = card M. Set
D= H deg ().

x€Ecrit f

In order to establish the lemma, we consider the following three cases.

Case 1: Suppose that f has no periodic critical points. Then since for each € S? and

each n € N,
degn(x) = degy(x) deg(f(x)) - - - deg; (" (x)), (4.2.11)

it is clear that deg;.(r) < D. So
1 m

Thus in this case, C = D and o = 1.

Case 2: Suppose that f has periodic critical points, but all periodic critical points are

fixed points of f.

Let Ty = {x € crit f| f(x) = z} be the set of periodic critical points of f. Then define

recursively for each 7 € N,

i—1
T= @)\ T
§=0

“+o00 — 7
Define Ty = S?\ J T}, and T; = S?\ U T} for each i € Ny. Set ty = cardT,. Since
=0

J=0 J
Ty C post f, we have 1 <ty < +00. Then for each i € N, we have

card T, < d't,.

We note that if deg;(z) = d for some z € Tp, then f~*(z) = {z} for each i € N,
contradicting Lemma So deg;(x) < d — 1 for each x € Ty. Thus for each z € Ty and

each m € N, we have

degpm(z) < (d—1)™
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Moreover, for each 7, m € N with ¢ < m and each z € T;, we get

degpn (v) = deg,(z) deg(f(x)) - - - deg,(f " (x)) degm—i (f'(x)) < D(d - 1)
Similarly, for each i,m € N with ¢« > m and each x € ﬁ, we have

degm(r) < D.

Thus for each n € N,
1 1 <X 1 [« |
LY -3 Y deme < (3 Y by X o)
zeM j=—1zeMNT; j=0 e MNT; ceMAT,
Note that the more points in M lie in 7} with j € [0,n] as small as possible, the larger the

right-hand side of the last inequality is. So the right-hand side of the last inequality is

il
§%< > @mdnﬂxd—nmﬂ+mD>

j=0
ﬂogdf 11

] . mD
gz J mD
7=0 dn

[loggm]+1
_ d—1\" (di) -1 mD
_Dto( - ) e I

d—1\" [ d \>Toer mD
d—1
()™ e

—1

2 d—1\"""%"
< _
—D“d—1<( d ) '%m>

1 d—1 m
_ - d(n—logd m) log, =& _)
2f< T

<F {<m>10gddd1 m}
max — —
Ly dn ) dn )

where Ey = 2DtoddTZ1 is a constant that only depends on f. Thus in this case, C' = Ey and

a = log, 74 € (0,1].

Case 3: Suppose that f has periodic critical points that may not be fixed points of f.
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Set x to be the product of the periods of all periodic critical points of f.

We claim that each periodic critical point of f* is a fixed point of f*. Indeed, if z is a
periodic critical point of f* satisfying f"(x) = z for some p € N, then by (A2ZTII]), there
exists an integer i € {0,1,...,x — 1} such that fi(z) € crit f. Then fi(x) is a periodic
critical point of f, so f*(fi(x)) = f*(z). Thus

fi@) = 7 (@) = () = o= fTR(f ) = () =
The claim now follows.
Note that for each n € N,

1 1
- > degp(z) < L] D degpurn ().

zeM zeM
Hence by applying Case 2 for f*, we get a constant Ey~ that depends only on f, such that
the right-hand side of the above inequality is

log g dgil log . —4%
. m m | _ m st m
SdEfmIﬂ&X{(m) ,m}ﬁdEfamax{(dn> ’d”}'
Thus in this case C'= d"Ey~ and o = logg 79 € (0, 1]. O

Now we formulate a generalization of Lemma [4.2.5]

Lemma 4.2.12. Let f be an expanding Thurston map, and C C S? be an f-invariant
Jordan curve containing post f for some N € N. Then there exists a constant L € [1,deg f)

with the following property:
For eachm € Ny, there exists a constant D > 0 such that for each k € Ny and each m-edge

U X).

e, there exists a collection M of (m + k)-tiles with card M < DLF and e C int <
XeM

Proof. We denote d = deg f, and consider the cell decompositions induced by (f,C) in this
proof.
Step 1: We first assume that for some m € N, there exist constants L € [1,d) and D > 0

such that for each k € Ny and each m-edge e, there exists a collection M of (m+ k)-tiles with
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card M < DL* and e C int ( U X). Then by Proposition 2.2.4](i), for each (m —1)-edge e,
XeM
we can choose an m-edge ¢’ such that f(e’) = e. For each k € Ny, there exists a collection M’

of (m + k)-tiles with card M’ < DLF and ¢’ C int ( U X). We set M to be the collection
XeM’
{f(X)]| X € M'} of (m—1+k)-tiles. Then card M < card M’ < DLF and e C int ( U X).
XeM
Hence, it suffices to prove the lemma for “each m € Ny with m = 0 (mod N)” instead of

“each m € Ny”.

Step 2: We will prove the following statement by induction on &:

For each k € {0,1,..., N — 1}, there exists a constant L, € [1,d) with the following
property:
For each m € Ny with m = 0 (mod N), there exists a constant D, > 0 such that for

each k € Ny with £ = k (mod N) and each m-edge e, there exists a collection M,, k.

of (m + k)-tiles that satisfies card M, 1. < D.L* and e C int < U X).
XEMm,kye

Lemma [A.2.5] gives the case for kK = 0. For the induction step, we assume the above

statement for some k € [0, N — 1].

Let i € Ny and p € S? be an i-vertex. We define the i-flower W(p) as in [BM10] by

Wi(p) = U{inte(c) |ce D', p € ¢},

By definition, the only i-vertex contained in W¥(p) is p, and the interior inte(e) of an i-edge
e is a subset of W'(p) if and only if p € e. Note that the number of i-tiles in W(p) is
2deg;i(p), i-e.,

card{X € X'|p € X} = 2degi(p). (4.2.12)

By [BM10, Lemma 7.11], there exists a constant 3 € N, which depends only on f and C,
such that for each i € N and each i-tile X € X%, X can be covered by a union of at most 3

(1 + 1)-flowers.

Fix an arbitrary m € Ny with m =0 (mod N), and fix an arbitrary m-edge e.
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By the induction hypothesis, there exist constants D, > 0 and L, € [1,d) such that for
each k € Ny with £ = K+ 1 (mod N), there exists a collection M,, ;_1. of (m + k — 1)-
tiles with card M, -1 < D.LF 1! and e C int( U X). Each X € M,, ;1. can

XEMm,k—l,e
be covered by B (m + k)-flowers W™ (p). We can then construct a set ' C V™Hk of

(m + k)-vertices such that

card F < 3D, L™ (4.2.13)
and
U xcJw ). (4.2.14)
XeMm,kfl,e pGF
We define
My e ={X € X" | X N F #£ 0} (4.2.15)
Then e C int < U X), and by (£Z12),
XEMm,k,e
card My e < Y 2deg pmir(p). (4.2.16)
peEF

Since L, € [1,d), there exists K € N, depending only on f, C, m, and &, such that for
each i > K, we have SD,Li~! < d™*,

Thus by (A.213), (A.2.16]), and Lemma [L.2.11] for each k£ > K with k =k +1 (mod N),
there exist constants C' > 0 and « € (0, 1], both of which depend only on f, such that

card M e <2 degpmin(p) < 2090 (8D, LF1)* (4.2.17)

peEF

= 20d™=) goDAL* (dL2)".

Let L,y = d**L%. Since L, € [1,d), we get L1 € [L.,d) C [1,d). Note that L, only
depends on f, C, and k. We define

T = max {2 Z degfm+i (p)

peV

i< K,V CV™ cardV < BDHLﬁl}.

Since 7 is the maximum over a finite set of numbers, 7 < +00. We set

Dyy1 = max{r, 20d™1~®) gD}, (4.2.18)
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Then by (£2.16), (A2.17), and ([A2.18)), we get that for each k € Ny with k = k+1 (mod N),

card My e < Y 2degpmin(p) < Dusi LE . (4.2.19)

peF
We note that 7 only depends on f, C, m, and &, so D, also only depends on f, C, m, and

K.

This completes the induction.

Step 3: Now we define
L =max{L,|xe{0,1,...,N —1}}.
For each fixed m € Ny with m =0 (mod N), we set
D =max{D, |k €{0,1,...,N —1}},

and for each given k € Ny and e € E™, let M = M,, ;.. Then we have card M < DL* and
e Cint ( U X). We note that here L only depends on f and C, and on the other hand, D
only depe);fij\g on f, C, and m. The proof is now complete. O
Remarks 4.2.13. It is also possible to prove the previous lemma by observing that C
equipped with the restriction of a visual metric d for f is a quasicircle (see [BMI10, The-
orem 1.8]), and S? equipped with d is linearly locally connected (see [BMI0, Proposi-
tion 16.3]). A metric space X, that is homeomorphic to the plane and with X linearly
locally connected and X a Jordan curve, has the property that X is porous in X (see
[Wi07, Theorem IV.14]). Then we can mimic the original proof of Lemma 20.2 in [BM10].

We are finally ready to prove the equidistribution of the preperiodic points with respect

to the measure of maximal entropy .

Proof of Theorem[L.0.13 Fix an arbitrary N > N(f) where N(f) is an constant as given in
Corollary 2.5.3 depending only on f. We also fix an f"-invariant Jordan curve C containing
post f such that no N-tile in DY (f,C) joins opposite sides of C as given in Corollary 2.5.3
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In the proof below, we consider the cell decompositions D*(f,C),i € Ny, induced by (f,C),
and denote d = deg f.

Since & and E;y are Borel probability measures for all m € Ny and n € N with m < n,
by Alaoglu’s Theorem, it suffices to prove that in the weak* topology, every convergent

subsequence of {£™},cn and {€7™},,cy converges to 7

Proof of (LOI3):
Let {n;};en be a strictly increasing sequence with

mni

w* .
n;  — M ast—r 400,

for some measure L.

Case 1 for (LOI3)): We assume in this case that there is no constant K € N such that
for all i € N, n; —m,, < K. Then by choosing a subsequence of {n;};cy if necessary, we can

assume that n; — m,, — 400 as i — 4o00.

Here is the idea of the proof in this case. By the spirit of Lemma and Lemma £.1.3]
there is an almost bijective correspondence between the fixed points of f"~"" and the (n —
m,, )-tiles containing such points. The correspondence is particularly nice away from C. Thus
there is almost a bijective correspondence between the preperiodic points in 5] and the
n-tiles containing such points. So if we can control the behavior near C, then Theorem [L.2.7]

applies and we finish the proof in this case. Finally the control we need is provided by

Lemma 4.2.12

Now we start to implement this idea. We fix a 0-edge ¢y C C. Observe that for each
i € N, we can pair a white i-tile X! € X!, and a black i-tile X; € X! whose intersection
X! N X} is an i-edge contained in f~*(eg). There are a total of d' such pairs and each i-tile
is in exactly one such pair. We denote by P; the collection of the unions X! U X} of such
pairs, i.e.,

P, ={X UX/| X, e X\ X} eXi, X NX.Nf (e € EY.

We denote P, = {A € P;|ANC = 0}.
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By Lemma 212 there exists 1 < L < d and C' > 0 such that for each i € N there
exists a collection M of i-tiles with card M < CL? such that C is contained in the interior

of the set |J X. Note that L and C are constants independent of i. Observe that for each
XeM

A € P; that does not contain any ¢-tile in the collection M, we have ANX C 6( U X) for
XeM

each X € M, so ANint ( U X) = (). Since the number of distinct A € P; that contains
XeM
an i-tile in M is bounded above by C'L?, we get

card(P}) > d' — CL". (4.2.20)

Note that for each i € N and each A € P}, either A C X? or A C X} where X? (resp.
X?) is the white (resp. black) O-tile for (f,C). So by Proposition 2:22.4(i) and Brouwer’s
Fixed Point Theorem, there is a map 7: P; — Py ;i from P} to the set of fixed points of f*
such that 7(A) € A. Note if a fixed point = of f* has weight deg:(z) > 1, then z has to be
contained in post f C C. Thus degi(7(A)) = 1 for all A € P;.

If for some A € P}, the point 7(A) were on the boundaries of the two i-tiles whose union
is A, then 7(A) would have to be contained in C since the boundaries are mapped into C
under f%. Thus for each A € P/, the point 7(A) is contained in the interior of one of the two
i-tiles whose union is A. Hence 7 is injective. Moreover,

degir;(w) = 1 for each j € Ny and each z € U f(r(A)). (4.2.21)
AeP!

For each i € N, we choose a map f3,,: X" — S? by letting 3,,(X) be the unique
point in f~""i(7(A)) N B where B € Py, with X C B, if there exists A € Py, _,, ~ with
fmi(X) C A; and by letting 8,,(X) be an arbitrary point in X if there exists no A € P/
with f™i(X) C A.

i—Mn,
3 ng

We fix a visual metric d for f with expansion factor A > 1. Note that A depends only on
f and d. Then diamg(A) < c¢A~" for each i € N, where ¢ > 1 is a constant depending only
on f, d, and C (See Lemma [24.1[(ii)). Define «,, = ¢cA™™ for each n € N. Thus «,, and £,
satisfy the hypothesis in Theorem 2.7l Define p,, as in Theorem L.2.7 Then

fin, 5 piy as i — 400, (4.2.22)
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by Theorem 2.7

mni

We claim that the total variation Hun — & || of pim, — & converges to 0 as i — 4-00.

Assuming the claim, then by (£.2.22]), we can conclude that (LLO.I3]) holds in this case.

To prove the claim, by Corollary L. T.10, we observe that for each i € N,

1 1
[T =Tl DR DR

AEP .. gef i (7(A))

1 1
(aamm) ¥ X 4

AP, a€f T (7(A))

1 1 -

AEP) gef ™" (7(A))

Mn,;
H:uni - éni

(4.2.23)

In the first term on the right-hand side of (£.2.23]), each ¢, in the summations cancels with
the corresponding term in the definition of p,,. So the first term on the right-hand side
of A223) is equal to the difference of the total variations of the two measures, which by
EZ20), is

<1- —
- dni d

In the second term on the right-hand side of (£2:23)), the total number of terms in the

dm*mni _ L"i*m"z‘ dm"z L M —Mn,;
S o)

summations is bounded above by d™. So the second term on the right-hand side of (£.2:23))
is

1 1
dri dni 4 dm
In the third term on the right-hand side of (42.23)), by (L2.21)), degn, (q) = 1 for each

AeP! and each ¢ € f~™i(7(A)). So by (L0.I2) and Corollary L.I.10, each ¢, in the

n;—Mn;

ng

summations cancels with the corresponding ¢, in &, So the third term on the right-hand
side of (4.2.23) is equal to the difference of the total variations of the two measures, which
by ([@.2.20) and Corollary A.I.10, is

O o) it L B el

Since n; —m,,, — +00 as i —> +00, each term on the right-hand side of (£2.23)) converges
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to 0 as i — +00. So

H/‘LTLI - gnznl

as claimed.
Case 2 for (LO.I3): We assume in this case that there is a constant K € N such that for
all i € N, n; —m,, < K. Then by choosing a subsequence of {n;};cy if necessary, we can

assume that there exists some constant [ € [0, K] such that for all i € N, n; —m,,, = . Note

that in this case, m,,, — +00 as i — 4-o00.

Then by Corollary L.T.T0l and Theorem [L.O.]

e 3 degp ()6,

dmi(d +1) “~
TESp, *
T Y (e X dea i),
y i) zef "M (y)

By Theorem [LO.I2 for each y € S2,

1 w* .
T Z deg pmn, (2)0y — iy as i — +00.

zef™""i (y)
So each term in the sequence {&,." }ien is a convex combination of the corresponding terms
in sequences of measures, each of which converges in the weak* topology to piy. Hence by
Lemma B2, {&,." }ien also converges to fy in the weak™ topology. It then follows that
p = pp. Thus (LOI3) follows in this case.

Proof of (LO.I4):

Let {n;};en be a strictly increasing sequence with

mnl

—>,uasz—>+oo

for some measure fi.

Case 1 for (LOI4): We assume in this case that there is no constant K € N such that
for all i € N, n; —m,, < K. Then by choosing a subsequence of {n;};cy if necessary, we can

assume that n; — m,, — 400 as i — 4o00.
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The idea of the proof in this case is similar to that of the proof of Case 1 for (LO.I3).
We use the same notation as in the proof of Case 1 for (L0OI3). Then (L0.I4) follows in
Hon; — &Tl’:nl

converges to 0 as 1 — +00.

As before, we observe that

’ < || Hns — dni—lmni Z dwltni Z 0

AEP) .. g€ ™ (7(A))

NEz=) X ¥

L ACPL o, g€ T (7(A))

Hew X X a-dn

ng —
L ACPL, L, a€f T (1(A))

cMn,

Mn; — Gn;

(4.2.24)

As the first term on the right-hand side of (£.2.23]) discussed before, the first term on the
right-hand side of (£.2.24)) is

dm*mni _ L"i*m"z‘ dm"z L M —Mn,;
( C Jdmes 0(5) |

<1-
> e

In the second term on the right-hand side of (£224), the total number of terms in the
summations is bounded above by d". By ([£220), (£2.21]), and Corollary EET.10, we have

s (dT 1) = s> E > dm card (P, ) 2 d (d T — CLMT)
(4.2.25)

So the second term on the right-hand side of (£.2.24) is

_| L Y PR { 1 CLm ™ }
b= — max .
= dni gztn gJT’an — d”i_mni ’ d”i_mni

In the third term on the right-hand side of (A224)), by [#Z22I)), degn (¢) = 1 for each
AeP ., andeach g€ f7i(r(A)). Soby [LUI2), each d; in the summations cancels

with the corresponding 9, in & So the third term on the right-hand side of @#229) is

equal to the difference of the total variations of the two measures, which by (£.2.25]) and
(4.2.20), for n; — m,, large enough, is
d"l + d™mi — (dM e — C LM ) oIt CLmi=mn

> g;nzn = Jri—mn, — O i mn,
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Since n; —m,, — +00 as i —» 400, each term on the right-hand side of (£.2.24)) converges

to 0 as i — +00. So we can conclude that

|

So it = py. Thus (L.O.I14) follows in this case.

mnl

fn; — — 0 as 1 — +o0.

Case 2 for (LOI4): We assume in this case that there is a constant K € N such that for
all i € N, n; —m,, < K. Then by choosing a subsequence of {n;};cy if necessary, we can
assume that there exists some constant [ € [0, K] such that for all i € N, n; —m,, = [. Note

that in this case, m,,, — +o00 as i — 4o00.

Then for each 7 € N, we have

Mn;,Y

mnl nz y= fl y) Ef_mni (y)

where Z,,, = card (f*m(y)) for each y € S? and each m € Ny. Note that for each i € N, we

have
g;znz - Z Zmnz
y=r(y)
Denote, for each i € N and each y € S?, the Borel probability measure p; , = Zml ; > O
" weTmni(y)

Then by Theorem [1.0.12], we have
iy SEMN fif as t —> +00.

So each term in {gﬁ”’ }ien is a convex combination of the corresponding terms in sequences
of measures, each of which converges in the weak* topology to ps. Hence by Lemma [£.2.2]
{g{:”i}ieN also converges to s in the weak* topology. It then follows that i = py. Thus
(LOI4) follows in this case. H

The proof of Theorem also gives us the following corollary.

Corollary 4.2.14. Let f be an expanding Thurston map. If {my,}nen is a sequence in Ny

such that m, < n for each n € N and hrf n —m, = +00, then
n—-+0oo

sy

lim - =1, (4.2.26)

n——+00 Szn"
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Proof. By the proof of Theorem [[LO.T3], especially (£.2.25]), we get that for each n € N,

e — QL g
<2-<1 4.2.27
dn—mn + 1 — Snmn — ( )

where d = deg f. Then (£2.20) follows from the fact that 1 < L < d and the condition that

lim n—m, = +o0. U
n—-+o0o

By (@21]), Theorem [LOT] and Corollary 214 with m,, = 0 for each n € N, we get the
following corollary, which is an analog of the corresponding result for expansive homeomor-
phisms on compact metric spaces with the specification property (see, for example, [KH95|

Theorem 18.5.5]).

Corollary 4.2.15. Let f be an expanding Thurston map. Then for each constant ¢ € (0, 1),

there exists a constant N € N such that for each n > N,

ceor) = c(deg f)" < card{x € S| f"(x) = x}
1
< _ n - nhtop(f)
< 3 dogule) = (deg f) 1 < el
z=f"(z)
In particular,

. card{z € S*| f*(x) =z} . card{z € S?| f"(z) = z}

e T e hen () e (dog )" =L

Finally, we get the equidistribution of the periodic points with respect to the measure of

maximal entropy j; as an immediate corollary.

Proof of Corollary[1.0.17] We get (LO.I15) and (LO.I6) from Theorem with m,, = 0
for all n € N. Then (L0.I7) follows from ([.0I6) and Corollary 215l O

4.3 Expanding Thurston maps as factors of the left-shift

M. Bonk and D. Meyer [BM10] proved that for an expanding Thurston map f, the topological
dynamical system (S?, f) is a factor of a certain classical topological dynamical system,

namely, the left-shift on the one-sided infinite sequences of deg f symbols. The goal of this
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section is to generalize this result to the category of measure-preserving dynamical systems.
The invariant measure for each measure-preserving dynamical system considered in this

section is going to be the unique measure of maximal entropy of the corresponding system.

Let X and X be topological spaces, and f: X — X and fv: X — X be continuous maps.
We say that the topological dynamical system (X, f) is a factor of the topological dynamical
system ()? , f) if there is a surjective continuous map ¢: X — X such that Yo f: foe. For
measure-preserving dynamical systems (X, g, 1) and ()~( , g, 1) where X and X are measure
spaces, g: X — X and §: X — X measurable maps, and p € M(X,g) and 11 € M()?,ﬁ),
we say that the measure-preserving dynamical system ()? , g, [t) is a factor of the measure-

preserving dynamical system (X, g, ) if there is a measurable map : X — X such that

pog=goywand g, = pu. Thus we get the following commutative diagram:
X-L.x
"
x-1ox
We recall a classical example of symbolic dynamical systems, namely (J}, ), where the

+oo
alphabet J, = {0,1,...,k — 1} for some k € N, the set of infinite words J = [] Jx, and &
i=1

is the left-shift operator with

Z(il,’ig, .. ) - (iz,ig,. . )
for each (i;,1a,...) € JY. We equip Jy with a metric d such that the distance between two
distinct infinite words (i1, iz, ...) and (ji,ja,...) is =, where m = min{n € N|i, # j,}.

Define the set of words of length n as Ji = [\, Ji, for n € N and J) = {0} where 0
is considered as the word of length 0, which is also denoted by (). Denote the set of finite
+o00o
words by J; = |J Ji. Then the left-shift operator X is defined on J; \ J naturally by

n=0

E(il,iz, o 0. ,’Ln) - (7;272'3, PPN ,Zn)
w

It is well-known that the dynamical system (J, %) has a unique measure of maximal

entropy 7y, which is characterized by the property that

Up> (C(j17j27 <. 7]n)) = kina
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for n € N and ji, j2, ..., Jn € Ji, where
C(J1sJ2s -y Jn) = {(i1, 09, ... ) € JE |01 = J1,092 = Joy - oy in = Jn} (4.3.1)
is the cylinder set determined by 7ji, ja, . . ., jn (see for example, [KH95 Section 4.4]).

We will prove that for each expanding Thurston map f with deg f = k and its measure
of maximal entropy i, the measure-preserving dynamical system (S2, f, uf) is a factor of
the system (J¢, %, nx).

We now review a construction from [BM10] for the convenience of the reader.

Let f: S? — S? be an expanding Thurston map, and C C S? a Jordan curve with
post f C C. Consider the cell decompositions induced by the pair (f,C). Let k = deg f.
Fix an arbitrary point p € inte(X?). Let qi,qo,...,q be the distinct points in f~!(p).
For i = 1,2,...,k, we pick a continuous path «;: [0,1] — 5%\ post f with o;(0) = p and
a;(1) = g

We construct v: J; — S? inductively such that ¢(I) € f~"(p), for each n € Ny and

I € J, in the following way:

Define () = p, and ¥ ((7)) = ¢; for each (i) € J.. Suppose that ¢ has been defined for all
I e O J,z, where n € N. Now for each (i1, i, . ..,i,11) € J;, the point ((iy,dg, . .. ,i,)) €
f*"(J;)Ohas already been defined. Since f™(¢((i1, 19, ...,i,))) = pand f*: S*\ f~"(post f) —
S?\post f is a covering map, the path «;,,, has aunique lift &;, ., : [0,1] — S* with &;,,, (0) =

Y((41,42,...,0,)) and f"oqy, ., = ®;,,,. We now define ((i1, 42, ..., %41)) = &,,,(1). Note

that then
fnJrl(qu)((ilviQ’ s 7in+1))) = fnJrl(&inJrl(l)) = f(ainJrl(l)) = f(qin+l) =D
Hence ¥((i1, 2, ... ,ins1)) € f~FV(p). This completes the inductive construction of .

~ +o0
Note that ¢: Jf — S? induces a map ¢: J;i — |J X" by mapping each (i1, ia, ..., i,) €
n=0

Ji' to the unique white n-tile X} € X?' containing zZ((il, Q9. yin)) € f7™(p).
By the proof of Theorem 1.6 in Chapter 9 of [BM10], for each n € N, ¢[n: Ji' — f7"(p)
+o00o

is a bijection. Hence QZ|J}?Z Ji — X7, for n € Ny, and @Z: Ji — |J X are also bijections.
n=0

93



Moreover, by the proof of Theorem 1.6 in [BM10], we have that for each (i,is,...) € J,
{((41,92, - - -, in)) }nen is a Cauchy sequence in (S?,d), for each visual metric d for f. So as

shown in the proof of Theorem 1.6 in [BM10], the map ¢: J¢ — S? defined by

o((i1,19,...)) = lim ¥((i1,d2,...,0,)) (4.3.2)

n—-+o0o

satisfies

1. ¢ is continuous,

2. fop=ypol,
3. ¢: J¥ — S? is surjective.

We now reformulate Theorem 1.6 from [BM10] in the following way.

Theorem 4.3.1 (M. Bonk & D. Meyer 2010). Let f: S? — S? be an expanding Thurston map
with deg f = k. Then (S?, f) is a factor of the topological dynamical system (J,%). More

precisely, the surjective continuous map ¢: Ji — S? defined above satisfies fop =@ o .

We will strengthen Theorem .31 in the following theorem.

Theorem 4.3.2. Let f: S? — S? be an expanding Thurston map with deg f = k. Then
(S%, f,us) is a factor of the measure-preserving dynamical system (J¢, %, ns), where pu; and
ns are the unique measures of mazimal entropy of (S%, f) and (J¥, %), respectively. More

precisely, the surjective continuous map p: J2° — S? defined above satisfies fop = o

and @y, = .

Proof. Let C C S? be a Jordan curve containing post f. Let d be a visual metric on S? for
f with expansion factor A > 1. Note that A depends only on f and d. Consider the cell

decompositions induced by (f,C).

By Theorem F.3.1], it suffices to prove that ¢.ns, = piy.
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For each n € N, we fix a function En: J — J¢ which maps each (i, s,...,4,) € JJ! to

(41,925 -y dnyiny1, ... ) € JY, for some arbitrarily chosen 4,1, %n42,- -+ € Ji depending on
i1,%9,...,1,. In other words, Bn extends a finite word of length n to an arbitrary infinite
word.

Define g, = ¢ o Bn o {ﬁvfl, for each n € N, where @Z is defined earlier in this section.
We claim that the maps f3,: X" — S? with n € N satisfy the hypothesis for 3, in

Theorem 2.7, namely,

max{d(5,(X,,), X)) | X, € X} — 0 as n — +o0.

Indeed, by the construction of ¢, En, 1 and @Z above, we have that [, maps a white n-tile

X7 to the limit of a Cauchy sequence

(W((1, 52 - - Jm)) men

such that ¥((j1, jo,- .., Jn)) € X. Since for each m € N, the points ¥((j1, jo, - - -, Jm)) and
W((j1,J2, - - -, Jm+1)) are joined by a lift of one of the paths aq, ag, ..., a; (defined above) by
f™, by Lemma 8.11 in [BM10], we have that

d(W((J1s Jas - - 5 Jm)), (U1, Jas - -5 Jmrr))) < CAT™,

for all m € N, where C' > 0 is a constant depending only on f, d, and the curves «,
i € {1,2,...,k}, in the construction of 1. In particular, both C' and A are independent of
m and (j1, ja, ... ) € J¢. So d(B,(X2), XI) < CL% for each n € N and each X' € X7, The

above claim follows.

For i € N, define

1
= ki Z 551'(1)'

IeJ}

Observe that for all n € N and m € N with m > n, and each (iy, i, ...,4,) € J}!, we have

’I]m(C(ll, ig, e ,Zn)) = 7’]2(0@1, ig, N ,in)),
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where C/(iy, i, . ..,1,) is defined in (£3.1]). So by the uniform continuity of each continuous

function on J, it is easy to see that

7 LN Ny as & — +00. (4.3.3)

Note that since QZ| gp o Ji = X4, 1s a bijection for each n € No, we have for each ¢ € N,

1 1 1
0t = 15 D Opeii = i D Opeioiixn = 1 D O8x0):

IeJi XieXi XieXi,
Hence, by Theorem 2.7,

O LA ff as i —> 400. (4.3.4)

Therefore, by ({33), [A34), and Lemma A2T], we can conclude that ¢,ns = py. O
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CHAPTER 5

Equilibrium states

5.1 The Assumptions

We state below the hypothesis under which we will develop our theory in most parts of

Chapter [l and Chapter [[l We will repeatedly refer to such assumptions in these chapters.

The Assumptions.

1. f: S% — S5?is an expanding Thurston map.

2. C C S?is a Jordan curve containing post f with the property that there exists ne € N
such that f™¢(C) C C and f™(C) € C for each m € {1,2,...,nc — 1}.

3. d is a visual metric on S? for f with expansion factor A > 1 and a linear local connec-

tivity constant L > 1.

4. ¢ € C"*(5?% d) is a real-valued Holder continuous function with an exponent o € (0, 1].

Observe that by Theorem [Z5.1], for each f in (1), there exists at least one Jordan curve
C that satisfies (2). Since for a fixed f, the number n¢ is uniquely determined by C in (2),
in the remaining part of the paper we will say that a quantity depends on C even if it also

depends on ne.

Recall that the expansion factor A of a visual metric d on S? for f is uniquely determined

by d and f. We will say that a quantity depends on f and d if it depends on A.
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Note that even though the value of L is not uniquely determined by the metric d, in the
remainder of this paper, for each visual metric d on S? for f, we will fix a choice of linear
local connectivity constant L. We will say that a quantity depends on the visual metric d
without mentioning the dependence on L, even though if we had not fixed a choice of L, it

would have depended on L as well.

In the discussion below, depending on the conditions we will need, we will sometimes say
“Let f, C, d, ¢, a satisfy the Assumptions.”, and sometimes say “Let f and d satisfy the

Assumptions.”, etc.

5.2 Existence

By the work of P. Haissinsky and K. Pilgrim [HP09], and M. Bonk and D. Meyer [BM10],

we know that there exists a unique measure of maximal entropy p¢ for f, and that

htop(f) = log(deg f)

In this section, we generalize the existence part of this result to equilibrium states for real-

valued Holder continuous potentials. We prove the uniqueness in the next section.

We first establish the following two distortion lemmas that serve as the cornerstones for

all the analysis in the thermodynamical formalism.

Lemma 5.2.1. Let f,C, d, L, A, ¢, a satisfy the Assumptions. Then there exists a constant
Cy = C1(f,C,d, ¢,a) depending only on f, C, d, ¢, and o such that

1Sn¢(z) = Snd(y)| < Crd(f" (), ["(y))", (5.2.1)
for n,m € Ng with n <m, X™ € X"(f,C), and z,y € X™. Quantitatively, we choose
_ ¢l C§
=12 (5.2.2)

where Cy > 1 is a constant depending only on f, C, and d from Lemma[2.5.7.

Note that due to the convention described in Section 5.1}, we do not say that C; depends

on A or ne.
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Proof. For n = 0, inequality (5.2.1)) trivially follows from the definition of S,,.

By Lemma 254 we have that for each m € Ny, each m-tile X € X" (f,C), each

x,y € X™ and for 0 < j <n <m,
d(f(x), 1 (y)) < CoA~ " d(f"(z), " (y)).

So [o(f7(x)) — o(f1 (W) < 18], CoA*Dd(f(x), f"(y))*. Thus for each n € N with
n < m, we have

n—1

|Sn(x) = Sud (W) <D 6( () = (f ()]

J=0

n—1
<16, Cod(f" (), f(y)* > A=)
7=0

“+00

<[¢l, Cod(f" (@), ()™ Y A

k=0
CCV
<SS (o), )

=Crd(f™(x), ["(y))"- 0

Lemma 5.2.2. Let f, C, d, L, A, ¢, « satisfy the Assumptions. Then there exists Cy =
Co(f,C,d,¢,a) > 1 depending only on f, C, d, ¢, and « such that for each x,y € S?, and

each n € Ny, we have
>, degyn(a) exp(Spo(z'))
a'ef " (x)

>, degp(y) exp(S,9(y'))

y'ef~"(y)

< exp (4C1 Ld(z,y)*) < Cy, (5.2.3)

where C1 is the constant from Lemma 521 Quantitatively, we choose

|9l Co
1—A-1

Cy = exp (4C L (diamy(S?))™) = exp (4 L (diamd(SQ))a> : (5.2.4)

where Cy > 1 is a constant depending only on f, C, and d from Lemma [2.5.7.

Proof. We denote X(z,n) = >  degs(z) exp(S,¢(a')) for z € S? and n € Ny.

a'efm(z)
We start with proving the first inequality in (5.2.3)).
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Let XV be either the black 0-tile X)) or the white 0-tile X in X°(f,C). For n € Ny and
X" e X*(f,C) with f"(X") = X° by Proposition Z2.4(i), f"|x» is a homeomorphism of
X" onto X°. So for z,y € X°, there exist unique points z/,y" € X™ with 2/ € f~"(z) and
y' € f~™(y). Then by Lemma [(.2.7] we have

exp (Sn(z’) — S (y)) < exp (Crd(f™(2'), ["(y)") = exp (Crd(z,y)") .

Thus exp (S,¢(2)) < exp (Crd(z,y)") exp (Sp(y')) -

By summing the last inequality over all pairs of 2/, 9y’ that are contained in the same n-tile
X" with f*(X™) = X°, and noting that each 2’ (resp. ') is contained in exactly deg s (z’)
(resp. deg.(y')) distinct n-tiles X™ with f*(X™) = X°, we can conclude that

<exp (Crd(z,y)*) .

Recall that f, C, d, L, A, ¢, « satisfy the Assumptions. We then consider arbitrary

r € X2 and y € X}. Since the metric space (5?%,d) is linearly locally connected with a

linear local connectivity constant L > 1, there exists a continuum F C S? with z,y € F and
E C By(z, Ld(z,y)). We can then fix a point z € C N E. Thus, we have

<E(x, n) X(z,n)

%y, n) ~E(z,n) Xy, n)

<exp (20 (diamy(F))) < exp (4C1 Ld(z,y)*) .

< exp (Cy (d(z, 2)* +d(z,y)%))

Finally, (5:2.4) follows from (5.2.2)) in Lemma 52711 O

Let f, C, d, L, A, ¢, a satisfy the Assumptions. We now define the Gibbs states with
respect to f, C, and ¢.

Definition 5.2.3. A Borel probability measure u € P(S?) is a Gibbs state with respect to
f, C, and ¢ if there exist constants P, € R and €, > 1 such that for each n € Ny, each n-tile
X" e X"(f,C), and each z € X", we have

1 p(X")
C,~

exp(Spo(z) —nP,) < G- (5.2.5)
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Compare the above definition with the following one, which is used for some classical

dynamical systems.

Definition 5.2.4. A Borel probability measure p € P(S?) is a radial Gibbs state with
respect to f, d, and ¢ if there exist constants ﬁu € R and 5u > 1 such that for each n € Ny,
and each z € S%, we have

N(Bd(xaA_n)) ~

= < o0 (5.90) —nF) <C,. (5.2.6)

C

1
o
One observes that for each Gibbs state p with respect to f, C, and ¢, the constant P, is

unique. Similarly, the constant ﬁu is unique for each radial Gibbs state with respect to f,

d, and ¢.

Example 5.2.5. Let f: S — S? be an expanding Thurston map. There exists a unique
measure of maximal entropy puo of f (see [HP09L Section 3.4 and Section 3.5] and [BMI0),
Theorem 20.9]), which is an equilibrium state for a potential ¢ = 0. We can show that py is

a Gibbs state for f, C, ¢ = 0, whenever C is a Jordan curve on S? containing post f.

Indeed, we know that there exist constants w,b € (0,1) depending only on f such that
for each n € Ny, each white n-tile X, € X7 (f,C), and each black n-tile X]' € X} (f,C),
we have (X)) = w(deg f)™" and po(X}) = b(deg )" ([BMI10, Proposition 20.7 and
Theorem 20.9]). Thus pg is a Gibbs state for f, C, ¢ = 0, with P,, = deg f = hiop(f) (see
[BM10), Corollary 20.8]).

As we see from the example above, Definition [(.2.3] is a more appropriate definition for
expanding Thurston map. Moreover, we will prove in Proposition (.2.18 that the concept
of a Gibbs state and that of a radial Gibbs state coincide if and only if f has no periodic

critical point.

Proposition 5.2.6. Let f, C, ne¢, d, ¢, « satisfy the Assumptions. Then for each f-invariant
Gibbs state € M(S?, f) with respect to f, C, and ¢, we have

Pe<h(f)+ [6du< P(f.0) (5.2.7)
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Proof. Note that the second inequality follows from the Variational Principle (8.2.5]) (see for
example, [PUL0, Theorem 3.4.1] for details).
Let N = ne.

Recall measurable partitions O,,n € N, of S? defined in ([Z2ZH). Since fV(C) C C, it is
clear that O;y is a refinement of O;y for ¢ > j7 > 1. Observe that by Proposition 2.2.4](i)

and induction, we can conclude that for each k£ € N,

OnV [TY(On) V-V [T"N(On) = Opgeriyn- (5.2.8)

kN+m—1 )
So for m, k € N, the measurable partition \/  f77(Oy) is a refinement of O11)n.
=0

By Shannon-McMillan-Breiman Theorem (see for example, [PUIL0, Theorem 2.5.4]),
hu(fa ON) - ffIdl'La where

1

1( \n/O fj(ON)> p-ae. and in L' (),

and the information function [ is defined in (B.2.2)).
Note that for n € N, ¢ € O,,, and X™ € X"(f,C), either cN X" =0 or ¢ C X™.

For n € Ny and z € S?, we denote by X™(x) any one of the n-tiles containing x. Recall

that O, (z) denotes the unique set in the measurable partition O,, that contains x. Note that

On(z) € X™(z). By (5.2.8) and (5.2.5]) we get

[rzan= i [ ( %\ij(@@) (@) di)

- 1
> lim mf/kN n 1I(O(k+1)N)(x) du(x)

k——4o00

1
o _ (k+1)N
> hmmf/kN+ N (—logp (X (z))) du(z)

k—+o00

(k4 YNP, — Sind(x) — log O,
>
—Tﬂg/‘ (k+ )N du(z)
L 1
=F, - 1}12225 m /S(k;—l—l)NQb(x) dp(z)

=m—/w%
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where the last equality comes from (LI3) and the identity [¢ o fdu = [ dp for each ¢ €
C(S?) which is equivalent to the fact that p is f-invariant. Since Oy is a finite measurable

partition, the condition that H,(Ox) < +o0 in (B.2.3)) is fulfilled. By (3.2.3), we get that

hu(f) = hu(f,On) > Py — /¢du.
Therefore, P, < h,(f) + f¢ d. 0

Definition 5.2.7. Let f: 5% — 52 be an expanding Thurston map and u € P(S?) a Borel
probability measure on S?. A Borel function J: S? — [0, +00) is a Jacobian (function) for

f with respect to p if for every Borel A C S? on which f is injective, the following equation

holds:
() = [ 7 (5.2.9)

A
Corollary 5.2.8. Let f: S? — S? be an expanding Thurston map. For each v € C(S?) and
each Borel probability measure u € P(S?), if L (1) = cp for some constant ¢ > 0, then the
Jacobian J for f with respect to p is given by

C

~ deg,(z) exp(¥(x))

Proof. We fix some C, d, L, A that satisfy the Assumptions.

J(x) for x € S2. (5.2.10)

By Lemma 3.3} for every Borel A C S? on which f is injective, we have that f(A) is

Borel, and
CLy(m(A) 1
plA) = = = /f(A)ijo PR (5.2.11)

for the function J given in (5.2.10).

Since f is injective on each 1-tile X' € X!(f,C), and both X' and f(X') are closed
subsets of S? by Proposition 224 in order to verify (5.2.9), it suffices to assume that
A C X for some 1-tile X € X!(f,C). Denote the restriction of y on X by ux, ie., ux
assigns 1(B) to each Borel subset B of X.

Let 2 be a function defined on the set of Borel subsets of X in such a way that u(B) =

wu(f(B)) for each Borel B C X. It is clear that i1 is a Borel measure on X. In this notation,
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we can write (B.2.17]) as
1
px(A) = /—du, (5.2.12)
A

for each Borel A C X.

By (B2.12), we know that px is absolutely continuous with respect to . On the other
hand, since J is positive and uniformly bounded away from 400 on X, we can conclude that
11 is absolutely continuous with respect to puy. Therefore, by the Radon-Nikodym theorem,

for each Borel A C X, we get u(f(A)) = u(A) = [,J|x dux = [,J dp. O

Lemma 5.2.9. Let f: S? — S? be an expanding Thurston map, and C C S? be a Jordan
curve containing post f. Then there exists a constant M € N with the following property:

For each m € N with m > M, each n € Ny, and each n-tile X™ € X"(f,C), there ezist
a white (n +m)-tile X™™ € Xmt™(f C) and a black (n + m)-tile Xt € X} (f,C) such
that X™ ™ U X C inte(X™).

Proof. We fix some d, L, A that satisfy the Assumptions.

By Lemma 2:4.T(v), there exists a constant C' > 1 depending only on f, C, and d such
that for each k € Ny, each k-tile Z* € X*(f,C), there exists a point ¢ € Z* such that

By(q, CT*A™F) C Z% C By(q, CA™").

We set M = [log, (4C?)]+1. We fix an arbitrary n € N and an n-tile X" € X"(f,C). Choose
a point p € X™ with By(p, C™'A™") C X" C By(p,CA™™). Then for each m € N with
m > M, we have 4CA~("*+™) < C~'A=" and we can choose X"*™ Y"t™ ¢ X"+ (f C) in
such a way that X" is the (n+m)-tile containing p and YN X"tm = entm ¢ Ertm(f C)

for each m > M. Thus diamg(X™*™) < 2CA~"F™) diam,(Y"+™) < 2CA~("+™) and
XMy yY™™ C By (p, 4CA*(”+’”)) C By (p,C7'A™") C inte(X™).

Moreover, exactly one of X" ™™ and Y™™ is a white (n+m)-tile and the other one is a black

(n + m)-tile. O
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Theorem 5.2.10. Let f: S? — S? be an expanding Thurston map, and d be a visual metric
on S% for f. Let ¢ € C**(S?% d) be a real-valued Holder continuous function with an exponent

a € (0,1]. Then there exists a Borel probability measure my € P(S?) such that
L5 (mg) = cmy, (5.2.13)

where ¢ = (L} (my), 1). Moreover, any my € P(S?) that satisfies (Z213) for some ¢ > 0

has the following properties:

(i) The Jacobian for f with respect to my is

J(z) = cexp(—¢(z)).

) mo( U 14wt 1)) =0,

(iii) The map f with respect to my is forward quasi-invariant (i.e., for each Borel set
A C S? if my(A) =0, then my(f(A)) =0), and nonsingular (i.e., for each Borel set
A C 8% my(A) =0 if and only if my(f~1(A)) =0).

We will see later in Corollary that my € P(S?) satistying (5.2.13)) is unique. We

will also prove in Corollary 5.4.4] that my is non-atomic.

Proof. We fix a Jordan curve C C S? that satisfies the Assumptions (see Theorem 2.5.1] for
the existence of such C).

Define 7: P(S?) — P(S?) by 7(u)

= Ld’i(u) Then 7 is a continuous transformation on
<£¢(M)7]1)

the nonempty, convex, compact (in the weak* topology, by Alaoglu’s theorem) space P(S?) of

Borel probability measures on S?. By the Schauder-Tikhonov Fixed Point Theorem (see for

example, [PUT0, Theorem 3.1.7]), there exists a measure m, € P(S?) such that 7(my) = my.

Thus £ (mg) = cmg with ¢ = (L3(my), 1).

By Corollary [5.2.8] the formula for the Jacobian for f with respect to m, is
J(x) = c(degy(z) exp(p(x)))™!,  forz e 5% (5.2.14)
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+o0 .
Since |J f7/(post f) is a countable set, the property (ii) follows if we can prove that
=0

400 .
mg({y}) =0 for each y € 'Uo 77 (post f). Since for each z € S,
J:

my({f(z)})

~ deg,(w) exp(e())

it suffices to prove that mg({z}) = 0 for each periodic z € post f.

my({z}), (5.2.15)

Suppose that there exists x € post f such that f'(z) = z for some | € N and my({z}) # 0.

Then by (5.2.15), (2.I1.2), and induction,

Cl

m¢>({x}) = degfz(x) exp (S[¢($))m¢({x})’ (5‘2‘16)

where S;¢ is defined in (LL3). Thus ¢ = degp(x)exp (Sig(x)).

Similarly, for each k& € N and each y € f~*(z), we have

Ck;l

Thus
deg s (y) exp(Sud(y))

k
(degfl (:c)) exp(Sk(x))
Note that for each k € N, we have z € V¥ (f,C). The closure of the (kl)-flower W*(x)

my({y}) = mg({x}). (5.2.18)

of z contains exactly 2 (deg fl(l‘))k distinct (kl)-tiles whose intersection is {x} (see [BM10),
Lemma 7.2(i)]). By Lemma [(5.2.0] there exists m € N that only depends on f, C, and d
such that for each k& € N, each (kl)-tile X*¥ € X*(f,C) contained in Wkl(x), there exists
a ((k + m)l)-tile X*tml e XU+ml(f C) such that X**+™! C inte (X*). So there exists
a unique y € X**™! C inte (X™) such that f*+™!(y) = 2 by Proposition Z24(i), see
Figure 521l For each k € N, we denote by T} the set consisting of one such y from each
(ki)-tile X* C W"(x). Note that

Ty, = 2 (deg ()" . (5.2.19)

+o0 .

Then {T}}ren is a sequence of subsets of |J f~/(post f). Since f is expanding, we can
=0

choose an increasing sequence {k; }sen of integers recursively in such a way that Wi+1(z) N
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Figure 5.2.1: A (kl)-flower Wk\(x), with card(post f) = 3.

< U Tkj> = () for each i € N. Then {7}, };en is a sequence of mutually disjoint sets. Thus
j=1
by Lemma [B.2.1] there exists a constant D that only depends on f, C, d, ¢, and « such that

+o0 ‘ +00
e (U £ o5t )) 2 X 5 mal(o)

=1 yETki

:*f deg v, () exP(S(t, (1)
= r, (deg ()" exp(Sik 1 myd ()

~— exp(Sk, — Spao(x)) exp(—2ml
>my(fe) S S P(Sku@(y) — Skud(z)) exp(=2ml ||¢]|.)

i=1 yeTy, (degfl (x))kﬁm

SR e ep(D = 2mi 6].,)
N ¢({ });yeZTkz (degfz(x))m (degfz(x))ki

me({7})

Combining the above with (5.219), we get

(T e ) Motz (D — mlloll) X,
¢(]L:J0f (p tf)) (degfl@))m ;2 -

This contradicts the fact that m, is a finite Borel measure.
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Next, in order to prove the formula for the Jacobian for f with respect to m, in property
(i), we observe that by Lemma [3.30] and (5.2.14)), for every Borel set A C S? on which f is

injective, we have that f(A) is a Borel set and
mg(f(A)) = mg(f(A) \ post f) = mg(f(A\ (post f U crit f)))

:/ cexp(—¢)dmy :/cexp(—gb) dm.
A\ (post f Ucrit f) A

Finally, we prove the last property. Fix a Borel set A C 5% with my4(A) = 0. For
each 1-tile X! € X!(f,C), the map f is injective both on A N X! and on f~}(A4) N X! by
Proposition 2.2.4(i). So it follows from the formula for the Jacobian that my (f (AN X')) =0
and my (f1(A) N X') = 0. Thus my(f(A)) =0 and ¢(f1(A)) = 0. It is clear now that f

is forward quasi-invariant and nonsingular with respect to m. O

Proposition 5.2.11. Let f, d, ¢, o satisfy the Assumptions. Let my be a Borel probability
measure defined in Theorem [.2.10 with Lj(my) = cmg where ¢ = (Lj(mgy), 1). Then for

every Borel set A C S?, we have

1
deg f

/AJqus < my(f(A)) < /AJdma

where J = cexp(—¢).

Proof. We fix a Jordan curve C C S? that satisfies the Assumptions.
The second inequality follows from Definition 5.2.7 and Theorem [B.2.10.

Let B = f(A)N X2 and C = f(A) Ninte(X}), where X2, X € X°(f,C) are the white
0-tile and the black 0-tile, respectively. Then BNC = () and BUC = f(A). For each white
1-tile X} € XL (f,C) and each black 1-tile X}! € X}(f,C), we have

/ Jdm¢ = m¢(B), / Jdm¢ = m¢(0),
f~YB)NnXx} F~H(C) Ninte(X})

by Definition (.2.7 and Theorem (. 2,10l Then the first inequality follows from the fact that
card (XL (f,C)) = card (X}(f,C)) = deg f (see (ZT)). n
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Proposition 5.2.12. Let f, C, d, ¢, o satisfy the Assumptions. Let mg be a Borel probability
measure defined in Theorem which satisfies Lj(mg) = cmy where ¢ = (L}(my), 1).

Then mg is a Gibbs state with respect to f, C, and ¢, with

1
P, =logc= lim —log L3(1)(y), (5.2.20)

n—+oco N,

for each y € S2.

In particular, since the existence of m, in Theorem is independent of C, this
proposition asserts that my is a Gibbs state with respect to f, C, and ¢, for each C that
satisfies the Assumptions. In general, it is not clear that a Gibbs state with respect to f, Cy,
and ¢ is also a Gibbs state with respect to f, Cs, and ¢, even though the answer is positive

in the case when f has no periodic critical points as shown in Corollary [5.2.19]

Proof. We first need to prove that p = my satisfies (5.2.5).

We observe that

mg(f(B)) = /exp(i log c — S;¢p(x)) dmy(x) (5.2.21)

B

forn € N, i€ {0,1,...,n}, and each Borel set B C S? on which f" is injective. Indeed, by
the formula for the Jacobian in Theorem F.2.10, for a given Borel set A C S? on which f is

injective, we have

[ 9@ dma@) = [(g0 1)) expliome —o(0)) dmo(z)
for each simple function g on S?, thus also for each integrable function g. We establish
(5.2.21) for each n € N and each Borel set B C S? on which f" is injective by induction on
i. For i =0, equation (5.2.21)) holds trivially. Assume that (5.2.21]) is established for some
i €{0,1,...,n— 1}, then since fis injective on f(B), we get

malrB) = [

exp(ilogc — S;¢p(z)) dmy(z) = /exp((i +1)logc — Siy1¢(x)) dmy(x).
f(B)

B

The induction is now complete. In particular, by Proposition 2.2.4](i),

mal(£"(X) = [ exp(nloge ~ S,0(e) dmy(o),
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for n € N and X" € X"(f,C).

Thus by Lemma B.2.7] there exists a constant C' > 1 such that for each n € Ny, each
X" e X"(f,C), and each z € X",

mg(f"(X")) = C™" exp(nlogc — Sad(x))my(X")

and

mg([*(X™)) < Cexp(nlog e — Spg(x))me(X™).

Note that f"(X™) is either the black 0-tile XP € X°(f,C) or the white 0-tile X2 € X°(f,C).
Both X} and X? are of positive mg-measure, for otherwise, suppose that my(X°) = 0 for
some X% € X°(f,C), then by Proposition BZTT], m4(f7(X°)) = 0, for each j € N. Then by
Lemma 529, m4(5%) = 0, a contradiction. Hence (5.2.5) follows, and my is a Gibbs state

with respect to f, C, and ¢, with F,,, = logc.

To finish the proof, we note that by [3.3.2)) and Lemma[5.2.2] for each z,y € S? and each

n € Ny, we have

1 L(1)(x)

— < 2L < (O, 5.2.22

& = i = S
where (5 is a constant depending only on f, C, d, ¢, and « from Lemma Since
(mg, LE(1)) = ((L3)"(my), 1) = (c"mg, 1) = ", by (33.2) and (E.222)), we have that for

each arbitrarily chosen y € S2,

loge = lim ~ log / £2(1)(x) dmy ()

n—+oo N,
o1 n
= nl_l)r_’l_loo " log /£¢(1)(y) dm(z) (5.2.23)
o1 n
= lim —log LE(1)(y). O

Corollary 5.2.13. Let f, d, ¢, a satisfy the Assumptions. Then the limit lim %log L3(1)(x)

n—-+o0o

exists for each x € S? and is independent of x € S2.

We denote the limit as Dy € R.
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Proof. By Theorem [5. 2,101, there exists a measure m, such as the one in Proposition 5.2.12]
The limit then clearly only depends on f, d, ¢, and «, and in particular, does not depend

on C or the choice of my. O

Let f, C, d, ¢, « satisfy the Assumptions. We define the function
¢ =¢— Dy C¥(S%d). (5.2.24)
Then
Ly=e "L, (5.2.25)

If my is a Gibbs state from Theorem [5.2.10, then by Proposition [5.2.12 and Corollary 5.2.13]
we have

Li(mg) =ePomy = eFmomy, (5.2.26)

and

since for each u € C'(S?),
(L5(my), u) = (my, Lg(u)) = e (my, Lo(u)) = e (L3 (my), 1) = (Mg, u).

We summarize in the following lemma the properties of £ that we will need.

Lemma 5.2.14. Let f, C, d, L, A, ¢, a satisfy the Assumptions. Then there exists a
constant C3 = C3(f,C,d, ¢, ) depending only on f, C, d, ¢, and « such that for each

x,y € S? and each n € Ny the following equations are satisfied

ﬁ%(ﬂ) x §
La(i)y) < P UaLdn ) = G (5.2.28)
& < LD <y 5229
£2(1)(z) — L3(1)(y)| < Ca (exp (4C1 Ld(z,y)*) — 1) < Csd(z, y)*, (5.2.30)

where Cy, Cy are constants in Lemma[5.2.1 and Lemma[5.2.2 depending only on f, C, d, ¢,

and o.
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Proof. Inequality (5.2.28)) follows from (5.2.25)), (8.3.2]), and Lemma [5.2.2]
To prove (5:2:29), we choose a Gibbs state m, with respect to f, C, and ¢ from Theo-

rem 5210 Then by (5227) and (5.2.2§), we have

£2(1)(x) < Co(my, L2(1)) = Co{ (£5)"(my), 1) = Ca(my, 1) = Cb.

The first inequality in (5.2.29) can be proved similarly.

Applying (5.228)) and (5:229), we get

L2(1)(z) — L%(1)(y) = w — 1) L%1)(x) < C (6401Ld(x’y)a —1) < Csd(x,y)*
¢ ’ o ) e = = Cudleu)
for some constant C3 depending only on L, Cy, Cy, and diamgy(S?). O

We can now prove the existence of an f-invariant Gibbs state.

Theorem 5.2.15. Let f: S? — S? be an expanding Thurston map and C C S? be a Jordan
curve containing post f with the property that f"¢(C) C C for somene € N and f*(C) € C for
eachi € {1,2,...,nc—1}. Let d be a visual metric on S* for f with expansion factor A > 1.
Let ¢ € C*(S5?%,d) be a real-valued Holder continuous function with an exponent o € (0, 1].
Then the sequence {%jz_(l)ﬁé(ﬂ)}nm converges uniformly to a function u, € C**(S?,d),

which satisfies

and

1
o < wug(x) < Cy, for each x € S?, (5.2.32)
2

where Cy > 1 is a constant from Lemmal5.2.2. Moreover, if we let my be a Gibbs state from

Theorem [5.2.10, then

/U¢ dm¢ = 1, (5233)
and f1y = ugmy s a Gibbs state with respect to f, C, and ¢, with
1
P, =P, =Dy= lim —1 (1 2.34
e mg ) n—1>r—il—1c>o n 0g ‘C¢( )(y)a (5 3 )
for each y € S?%, and
filig) = pg- (5.2.35)
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Proof. In order to prove this theorem, we first establish (5.2.31]), (5.2.32)), and (5.2.33)) for a
n—1 .

subsequential limit of the sequence {% > E%(IL)} , then prove the above sequence has a
j=0 N

ne

unique subsequential limit, and finally justify (5.2.34) and (5.2.35]).

n—1 .
Define, for each n € N, u,, = = >° E%(IL). Then {u, }nen is a uniformly bounded sequence
j=0
of equicontinuous functions on S? by (£.229) and (5.2.30). By the Arzela-Ascoli Theorem,
there exists a continuous function u, € C(S?) and an increasing sequence {n; };ey in N such

that w,, — u, uniformly on S? as i — +oo.

To prove (5.2.31)), we note that by the definition of u,, and (5.2.29), we have that for each

ieN,
1 , 1+ Cy
S L’E’IL—JIH < .

By letting ¢ — 400, we can conclude that ||£5(ug) — ud)Hoo = 0. Thus (231 holds.
By (5:229), we have that Cy' < u,(z) < Cs, for each n € N and each z € S%. Thus

(5232)) follows.
By (5:2.27) and definition of u,, we have [u,dm, = [1dmg = 1 for each n € N. Then

by the Lebesgue Dominated Convergence Theorem, we can conclude that

/ uypdme = lim [ u,, dmy =1,

i——400

proving (£.2.33).

Next, we prove that ug is the unique subsequential limit of the sequence {u,},eny with
respect to the uniform norm. Suppose that v, is another subsequential limit of u,,n € N,

with respect to the uniform norm. Then v, is also a continuous function on S? satisfying

(E23T), (5:232), and (B:2.33) by the argument above. Let
t = sup{s € R|uy(x) — svy(x) > 0 for all z € S*}.

By (5:2.32), t € (0,+00). Then there is a point y € S? such that us(y) — tvy(y) = 0. By
(332) and the equation

ﬁg(u(ﬁ — tv¢) = Uy — t’U¢,
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which comes from (.2Z31]), we get that uy(z) — tvy(z) = 0 for all z € f~1(y). Inductively,
we can conclude that ug(z) — tvy(z) = 0 for all z € |J f~*(y). By Lemma 235 the set

ieN
AL{\I f7"(y) is dense in S?. Hence uy = tv, on S%. Since both ug and vy satisfy (£.2.33)), we
1€
get t = 1. Thus uy = vg. We have proved that w, converges to ug uniformly as n — +o00.

We now prove that us € C%*(S5?,d). Indeed, for each € > 0, there exists n € N such that
|un — ugl|, < €. Then by ([B:2.30), for each z,y € S?, we have

Jug(2) — ug(y)| < IU¢($) — ()| + |un () = un(y)] + [un(y) — us(y)]

<2e+ — LL(1)(y)| < 2¢ + Cad(w, y)*,

=0
where Cj5 is a constant in (5.2.30) from Lemma B.2T4l By letting e — 0, we conclude that
uy € C¥*(S?,d).

Since my is a Gibbs state by Proposition 5.2.12], then by (5.2.32), py = ugm, is also a
Gibbs state with P,, = P,,, = Dy = ngrfoo Llog £7(1)(y) for each y € S?, proving (G.2.34).

Finally we need to prove that ji, is f-invariant. It suffices to prove that (us, gof) = (14, 9)

for each g € C'(S?). Indeed, by (5:2.27), (5.2.31)), and (3.3.3), we get

(g, g o f) = (mg,us(g o f)) = (L3(my), us(g o f))
= (mg, Ly(ug(go [))) = (mg, gLs(ug)) = (mg, gug) = (1ig, g).- O
Remark. By a similar argument to that in the proof of the uniqueness of the subsequential

n—1 .
limit of {% > Eé(ﬂ)} , one can show that wu, is the unique eigenfunction, upto scalar
=0 neN

multiplication, of £3 corresponding to the eigenvalue 1.

We now get the following characterization of the topological pressure P(f, ¢) of an ex-

panding Thurston map f with respect to a Holder continuous potential ¢.

Proposition 5.2.16. Let f, d, ¢, o satisfy the Assumptions. Then for each x € S?, we

have

P(f,¢) = lim —log Z degn (y) exp(Sné(y)) = Dy. (5.2.36)

n—-+4oo M
yef—m(x)

114



Recall that Dy = P, = P, = logc = log [L4(1) dmy, using the notation from Propo-
sition and Theorem [(F.2.10

Proof. We fix a Jordan curve C C S? that satisfies the Assumptions (see Theorem 25.1] for

the existence of such C).

By Corollary 5213 and (8.:3.2), for each 2 € S?, the limit in (5.2.306) always exists and
is equal to Dy, independent of . Moreover, for an f-invariant Gibbs measure p, from

Theorem with P,, = Dy, we get from Proposition that

Now it suffices to prove D, > P(f, ¢).

Note that by Lemma 2.4.1(ii), there is a constant C' > 1 depending only on f, C, and d
such that for each n € Ny and each n-tile X™ € X"(f,C), we have C7'A™" < diamy(X™) <
CA™™.

Fix m € N, let e = CA™™. For each n € Ny, let F,,(m) be a maximal (n, €)-separated
subset of S2.

We claim that if y1,y2 € Fn(m) and yi,yo € X™ for some (m + n)-tile X" in
Xmn(f,C), then y1 = ya.

Indeed, for each integer j € [0,n — 1], we have that
d(f7(y1), 7 (y2)) < diamy(f7(X™ ™)) < CA~mH7=0) < ¢, (5.2.38)

So suppose that y; # ys, then yi, yo would not be (n, €)-separated, a contradiction.

We fix z € inte(X?) and y € inte(X}) where X! and X are the white 0O-tile and
black 0-tile in X°(f,C), respectively. We can now construct an injective map i, : F,(m) —
f70 () U f~mt(y) for each n € N by demanding that z € F,(m) and i,(z) €
fH) (2) U f~m+)(y) be in the same (m + n)-tile. Since for each X™*" € X™+7(f.C),
card (X™ N (f~m ) (z) U M) (y))) = 1, it follows that i, is well-defined (but not nec-
essarily uniquely defined) for each n € N. Thus by Lemma .21 and Lemma [5.2.2] we have
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that for each n € N,

> exp(Sa(2) < Cy > exp(Sa(2))

zEFn(m) Zef*(m“ﬁ") (z)Uf*(’ern) (y)
<Oyl ( > exp(Smnd(2) + Y exp(Sm+ngz5(z)))
zef—(mtn) () ze f=(m+n)(y)

<Cy(1+Co)exp(mlldl) Y exp(Smind(2)),

e f—(m+n) ()
where Cy = exp (C’l ( diamd(Sz))a), and C, Cy are constants from Lemmal[5.2. Jland Lemma [5.2.2
By taking logarithm and next dividing by n on both sides, then taking n — 400 and finally
taking m — 400 to make ¢ — 0, we get from (B.2.1]) that

P(f,¢) = lim liminfllog Z exp(Spo(w))

m——+o00 n—+o0 N
wEFy, (m)

1
< limsup lim inf — log Z exp(Smin®(2))

n—+oco N
m——+0o0 e f—(mtn) (g)

= lim sup lim inf lo
m—)—f—cxI)) n—+oo M + N & _Z

exp(Sm4n¢(2))

1
= lim sup lim inf — log Z exp(Sn¢(2))

m 0o N—Fo0
e MPEEI )
= D¢7
where the last equality follows from Corollary 5.2.13) (3:3.2), and the fact that = ¢ post f. O

The following corollary gives the existence part of Theorem [1.0.2

Corollary 5.2.17. Let f: S? — S? be an expanding Thurston map and d be a visual metric
on S? for f. Let ¢ € C**(S?,d) be a real-valued Holder continuous function with an exponent
a € (0,1). Then there exists an equilibrium state for f and ¢. In fact, any measure i, defined

in Theorem [5.2.14 is an equilibrium state for f and ¢.

Proof. We fix a Jordan curve C C S? that satisfies the Assumptions (see Theorem 2.5.1]

for the existence of such C). Consider an f-invariant Gibbs state p, with respect to f,
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C, and ¢ from Theorem Then by Theorem and Proposition 5.2.16, we have
P,, = Dy = P(f,¢). Then by Proposition 5.2.6, we have P,, = h,, + [¢dus = P(f,¢).

Therefore, f14 is an equilibrium state for f and ¢. O

We end this section by proving in Proposition B.2.18 that the concept of a Gibbs state
and that of a radial Gibbs state coincide if and only if the expanding Thurston map has no
periodic critical point. The proof of the forward implication relies on the existence of Gibbs

states for f, C, and ¢ that satisfy the Assumptions proved in Proposition £.2.12

Proposition 5.2.18. Let f, C, d, ¢, a satisfy the Assumptions. Then a radial Gibbs state u
with respect to f, d, and ¢ must be a Gibbs state with respect to f, C, and ¢, with ISM =P,

Moreover, the following are equivalent:

1. f has no periodic critical point.

2. A Borel probability measure u € P(S?) is a Gibbs state with respect to f, C, and ¢ if

and only if it is a radial Gibbs state with respect to f, d, and ¢.

3. There exists a radial Gibbs state for f, d, and ¢.

The implication from (1) to (2) generalizes Proposition 20.10 in [BMI10], which states
that for an expanding Thurston map f with no periodic critical point and with the measure
of maximal entropy p and a visual metric d, the metric measure space (S?,d, i) is Ahlfors

regular.

Proof. By Lemma [2.4.1v), there exists a constant C' > 1 such that for each n € Ny, and

each n-tile X € X", there exists a point p € X™ with
By(p,C7'A™") € X™ C By(p, CA™™).

Thus there exists m; € N such that for each n € Ny, each X™ € X", there exists p € X"
such that
By (p, A=) € X" C By (p, A7) (5.2.39)
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On the other hand, by Lemma 2. 4AT|(iv), there exists mo € N such that for each x € S? and
each n € Ny, we have

U2 (z) C By(z,A™") C U™ ™ (), (5.2.40)
where the sets U'(z) for | € Ny and x € S? are defined in (Z2Z4).

Note that for each n € Ny and each y € U"(x), by choosing z € Y"NX™ with X™, Y € X"

and x € X" y € Y", and applying Lemma [B.2.7] we get

S0 (2) = Snd(y)] < [Sndp(x) — S (2)] + [Snd(2) — Sndp(y)] < 20 (diamy(S5?))"
where C is a constant from Lemma [5.2.11

If 1 is a radial Gibbs state with constants ﬁu and 5,“ then for each n € Ny and each

n-tile X™ € X", there exists p € X" such that

u(X") < (Ba (p, A7) < Coxp (Suom,6(2) — (0 — m1) P,)

< Cexp (my [|¢]] +maP,) exp (Spd(x) — nP,),

and

HOX) 2 g (B (p. A7) 2 = exp (S 6l) = (n 1) )

w

1 ~
> = — exp (Spo(x) —nP,).
Cpyexp (my 6|, +miB,) ( 2

Thus 4 is a Gibbs state for f, C, and ¢, with P, = ﬁﬂ.

To prove the equivalence, we start with the implication from (1) to (2).

We have already shown above that any radial Gibbs state for f, d, and ¢ must be a Gibbs
state for f, C, and ¢.

If we assume that f has no periodic critical point, then there exists a constant K € N
such that for each z € S% and each n € Ny, the set U"(z) is a union of at most K distinct

n-tiles, i.e.,
card{Y"™ € X" | there exists an n-tile X" € X" with 2 € X" and X" NY" # 0} < K.
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Indeed, if f has no periodic critical point, then there exists a constant N € N such that
degin(z) < N for all z € S? and all n € N ([BMI0, Lemma 17.1]). Since each n-flower
W™ (p) for p € V" is covered by exactly 2deg;.(p) distinct n-tiles ([BM10, Lemma 7.2(i)]),
U™(x) is covered by a bounded number of n-flowers and thus covered by a bounded number,

independent of z € S? and n € Ny, of distinct n-tiles.

If 1 is a Gibbs state with constants P, and C),, then by (6.2.40) and Lemma [(.2.1] for
each n € Ny and each z € S?, we have
p(Ba(x, A7) 2>p (U2 (2)) > Ct exp(Sngm, 6(2) — (0 + ma) P)

1
> exp(S,¢(x) — nP,),
> G exp(ma [l maBy) “PLSnéle) = nh)

and moreover, if n > may, then

p(Balw, A7) <p (U™ (@) < Y p(X)

XeXn—m2
XCU™™2(z)

<KC, exp (2C; (diamg(S?))") exp(Sp—m,é(z) — (n — ma) P,)

<KC, exp (2C; (diamg(S?))" + mo (||¢]|. + Pu)) exp(Sné(z) — nP,),
and if n < my, then

p(Ba(z, A7) < 1 < exp (ma([|9]| + Fu)) exp(Snd(x) — nb,).
Thus p is a radial Gibbs state for f, d, and ¢.

Next, we show that (2) implies (3).

We assume (2) now. Let u = my, where my is from Theorem [5.2T00 Then by Proposi-
tion 5.2.12 i is a Gibbs state for f, C, and ¢. Thus p is also a radial Gibbs state for f, d,
and ¢.

Finally, we prove the implication from (3) to (1) by contradiction.

Assume that f has a periodic critical point x € S? with a period [ € N, and let  be a
radial Gibbs state for f, d, and ¢ with constants ZBH and 6’,, So u is also a Gibbs state for

f, C, and ¢ with constants P, = ﬁu and C),, as shown in the first part of the proof.
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We note that « € post f C V" for each n € Ny. By (2.2.2), (2.2.4), and (5.2.40), for each
n €N,

—nl+mo

W () C gritms (x) C By(x, A_”l).

—nl+mo

Recall that the number of distinct (nl + mg)-tiles contained in W (w) is 2deg pnitmg (7).
Denote these (nl 4 my)-tiles by X"+m2 ¢ Xntmz j ¢ {1,2,.. -, 2deg pnirmy (z)}. Then
by Lemma B2, there exists an (nl 4+ mo + M)-tile Y; € Xntm2+M guch that V; C
inte (XZ."”’”Q). Here M € N is a constant from Lemma We fix z; € Y, for each

i€{1,2,...,2degpmitm; () }. Note that V;NY; =0 for 1 <i < j < 2degmi+m, (). Thus

Cpuexp(Sud(x) — nlP,) > p(Ba(z, A7)

2 degfnl+m2 (z)

2p(WH @)= Y v

i=1

1
>2 deg jui+m, (37)0— XD (Snitma+19(2s) — (0l +my + M)Fy)
n

2 (degfl (:c))n
~Cuexp(M |||, + MP,
2 (degfl(x))n exp(Snitme®(x) — (nl + mo)P,)
~ Cuexp (M| ¢l + MP, + Cy (diamg4(S5?))”)
- (degi(x))" exp(Swe(x) — niP,)
= Crroxd (2 + M) [0l + (2 + M) Py + Gy (damg(SD))’

] exp(Sui+m, @(2i) — (0l +ma)F,)

where the second-to-last inequality follows from Lemmal5.2.Tland the fact that z;, 2z € X sz+m2

forie {1,2,...,2 deg pnitms (z)}, and Cy is a constant from Lemma 521l So
(degi(2))" < CuChexp ((m2 + M)([|6]l, + Pu) + C1 (diamy(5%))")

for each n € N. However, since z is a periodic critical point of f, we have degy(z) > 1, a

contradiction. O

As an immediate consequence, we get that if the expanding Thurston map does not have
periodic critical points, then the property of being a Gibbs state does not depend on the

choice of the Jordan curve C C S? that satisfies the Assumptions.
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Corollary 5.2.19. Let f, d, ¢, a satisfy the Assumptions. We assume that f does not have
periodic critical points. Let C; and Cy be Jordan curves on S? that satisfy the Assumptions
for C, and pu € P(S?) be a Borel probability measure. Then i is a Gibbs state with respect
to f, C1, and ¢ if and only if p is a Gibbs state with respect to f, Cy, and ¢.

Proof. By Proposition B.2.18] since f does not have periodic critical points, f is a Gibbs
state with respect to f, C;, and ¢ if and only if f is a radial Gibbs state with respect to f,
d, and ¢ if and only if f is a Gibbs state with respect to f, Cs, and ¢. O

5.3 Uniqueness

To prove the uniqueness of the equilibrium state of a continuous map g on a compact metric
space X, one of the techniques is to prove the (Gateaux) differentiability of the topological
pressure function P(g,-): C'(X) — R. We summarize the general ideas below, but refer the
reader to [PUIL0, Section 3.6] for a detailed treatment in the case of forward-expansive maps

and distance expanding maps.

For a continuous map ¢g: X — X on a compact metric space X, the topological pressure
function P(g,-) : C(X) — R is Lipschitz continuous ([PUL0, Theorem 3.6.1]) and convex
([PUL0, Theorem 3.6.2]). For an arbitrary convex continuous function @: V' — R on a real
topological vector space V', we call a continuous linear functional L: V' — R tangent to Q)
atx € V if

Q(x) + L(y) < Q(z +y), for each y € V. (5.3.1)

We denote the set of all continuous linear functionals tangent to @ at x € V by V. It is
known (see for example, [PUIL0, Proposition 3.6.6]) that if 4 € M(X,g) is an equilibrium
state for g and ¢ € C'(X), then the continuous linear functional u — [udp for u € C(X)
is tangent to the topological pressure function P(g,-) at ¢. Indeed, let ¢,y € C(X) and
p € M(X, g) be an equilibrium state for g and ¢. Then P(g, ¢+7v) > h,(g9)+ [ ¢+~ dp by the
Variational Principle (3.2H), and P(g, ) = h,(g9) + [¢ du. Tt follows that P(g, ¢) + [vdp <
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P(g,9+ 7).

Thus in order to prove the uniqueness of the equilibrium state for an expanding Thurston
map f: S? — S? and a real-valued Holder continuous potential ¢, it suffices to prove that
card (Vg P(f,-)) = 1. Then we can apply the following fact from functional analysis (see

[PU10, Theorem 3.6.5] for a proof):

Theorem 5.3.1. Let V' be a separable Banach space and QQ: V — R be a convexr continuous

function. Then for each x € V', the following statements are equivalent:
1. card ( x*Q) =1.
2. The function t — Q(x + ty) is differentiable at 0 for eachy € V.

3. There exists a subset U C 'V that is dense in the weak topology on V' such that the
function t — Q(x + ty) is differentiable at O for each y € U.

Now the problem of the uniqueness of equilibrium states transforms to the problem of
(Gateaux) differentiability of the topological pressure function. To investigate the latter, we

need a closer study of the fine properties of the Ruelle operator L.

A function h: [0, +00) — [0,400) is an abstract modulus of continuity if it is continuous
at 0, non-decreasing, and h(0) = 0. Given any metric d on S? that generates the standard
topology, any constant b € [0, +00], and any abstract modulus of continuity h, we define the

subclass C?(S2,d) of C(S?) as
C(S%,d) = {u € C(S*)| ||ull, < band for z,y € S, |u(z) — u(y)| < h(d(z,y))}.

Note that by the Arzela-Ascoli Theorem, each C?(S?,d) is precompact in C(S?) equipped
with the uniform norm. It is easy to see that each C}(S?,d) is actually compact. On the

other hand, for u € C(S?), we can define an abstract modulus of continuity by
h(t) = sup{lu(x) — u(y)|| =,y € §% d(z,y) <t} (5.3.2)
for t € [0, +00), so that u € C}(S?,d), where 8 = |Ju|..

We will need the following lemma in this section.

122



Lemma 5.3.2. Let (X, d) be a metric space. For each pair of constants by, by > 0 and each
pair of abstract moduli of continuity hq, ha, there exists a constant b > 0 and an abstract

modulus of continuity h such that
{wus | uy € O (X, d),us € CP2(X,d)} € Cr(X, d), (5.3.3)
and for each ¢ > 0,
{% ‘u € C’flll(X, d),u(x) > c for each x € X} - C’g:;hl(X, d). (5.3.4)
Proof. For u; € C’Zi (X,d),us € C’f;(X, d), we have ||ujus||,, < b1bo, and for z,y € X,

[ur(z)ug () — ur(y)ua(y)| < ui(@)] [ua(z) — ua(y)| + [uz(y)] ui(z) — ua(y)]
<bihy(d(z,y)) + b2hi(d(z, y)).

For ¢ > 0 and u € C’;’Lll(X, d) with u(z) > ¢ for each x € X, we have H%HOO < 1, and for

T,y € X,

;J)'< 1h(d(x y)). O
Let f, d, ¢, a satisfy the Assumptions. Recall that by (5.2.24]) and Proposition [£.2.16]
=0~ P(f, ).
We define the function

¢ = ¢ — P(f,¢) +logus — log(ug o f), (5.3.5)

where ug4 is the continuous function given by Theorem (215 Then for u € C(S?) and

x € S?, we have

Z deg;(y)u(y) exp(o(y) — P(f, ¢) + logus(y) — logus(f(y)))
yEf (z)

Z degf ug(y) exp(d(y) — P(f,9)) =

y€f

1
Uy (l’) Ea(u"%) (.’L’),
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and thus

n 1 n
E(;(u)(:p) = mﬁg(uu(b)(x), for n € N. (5.3.6)

Recall m, from Theorem [5.2.100 Then we can show that j, = ugm, satisfies
L5(ns) = pig- (5.3.7)
Indeed, by (5.3.6) and (5.227), for u € C(S?),
/u d(ﬁ:;(,u(b)) = /\E(E(u)u(é dm, = /Cg(uu(é) dmy
= /uu¢, d(ﬁ%(m@) = / gy dmy = /u dpig.
By (5:2.31) and (53.6), £5(1) = £¢(u¢) L, ie.,

Z deg ;(y) exp g(y) =1 for x € S2. (5.3.8)

yef~ )
Lemma 5.3.3. Let f, d, ¢, a satisfy the Assumptions. Then the operator norm of Eg 18
given by || L5]| = 1. In addition, L3(1) = 1.

Proof. By (5.3.8), for each x € S? and each u € C(5?), we have

Thus || £5]| < 1. Since L3(1) = 1 by (B.3.8), [|£4]| = 1. O

S dex(utn) ()| < Jull S der(m)exndo) = .

yef~(=) yef~ (=)
Lemma 5.3.4. Let f, d, ¢, a satisfy the Assumptions. Then

¢ € C%(S2,d). (5.3.9)

Proof. We fix a Jordan curve C C S? that satisfies the Assumptions (see Theorem 25.1] for
the existence of such C). By Theorem 5215, u, € C%*(S%,d) and Cy ! < ug(z) < Oy for each
z € S? where Cy > 1 is a constant from Lemma 5.2.21 So logu, € C%*(S?,d). Note that
¢ € C**(S?,d), so by (5.35) it suffices to prove that uy o f € C%*(S? d). But this follows
from the fact that f is Lipschitz with respect to d (Lemma 243) and ug € C**(S?,d). O
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Theorem 5.3.5. Let f, C, d, A, L satisfy the Assumptions. Then for each o € (0, 1], each

b >0, and each 6 > 0, there exist constants b >0 and C > 0 with the following property:

For each abstract modulus of continuity h, there exists an abstract modulus of continuity

h such that for each ¢ € C%*(S2,d) with |¢|, < 0, we have
{L2(u) |u € C}(S% d),n € No} C CL(S*,d), (5.3.10)

{£%u)|u € Ch(S%,d),n € No} C CH(S*,d), (5.3.11)
where ﬁ(t) = a(to‘—l—h(QC’oLt)) is an abstract modulus of continuity, and Cy > 1 is a constant

depending only on f, C, and d from Lemma[2.5].

Proof. Fix arbitrary o € (0,1], b > 0, and # > 0. By Lemma BE2T4 for n € Ny, u €
CP(S%,d), and ¢ € C%*(S? d) with |¢|, < 6, we have

|

where () is the constant defined in (5.2.4)) in Lemma So we can choose b = Csb. Note
that by (5.2.4]) that Cy only depends on f, C, d, 0, and «.

Law)| < u

x| < Callull,

Let X be either the white 0-tile X° € X°(f,C) or the black 0-tile X € X°(f,C). If X™ €
X™(f,C) is an m-tile with f™(X™) = X° for some m € Ny, then by Proposition Z2.4i),
the restriction f™|ym of f™ to X™ is a bijection from X™ to X°. So for each z € XY,
there exists a unique point contained in X™ whose image under f™ is x. We denote this
unique point by x,,(X™). Note that for each z = x,,(X™), the number of distinct m-tiles
X € X™(f,C) that satisfy both f™(X) = X° and z,,(X) = z is exactly degm(z).
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Then for each z,y € X°, we have

= Y (uexp(Sud)) (@a(X™)) — (uexp(Sud)) (ya(X™))
XmeX™(f,C)
fHXM)=X°

D ul@a(X™) (exp(Su(za(X™))) — exp(Sn(yn(X™)))) ‘
XneX™(f,C)
fn(Xn):Xo

> exp(Sad(yn(X™)) (ulza(X") — ulya(X™))) '
xXmneX"(f,C)
fr(Xm)=X

IN

_|_

The second term above is
< CQh(CQA_nd(l', y)) < C2h(00d(xa y))a

due to (2.2:29) and the fact that d(z,(X™), y,(X™)) < CoA™"d(x,y) by Lemma 254 where

the constant Cy comes from.

In order to bound the first term, we define
Ay ={X" e X"(f,0) [ fM(X") = X°, Spd(2a(X™)) 2> S (yn(X™))},

and

A, ={X" e X"(£,0) [ f1(X") = X°, Spd(wn(X7)) < Sud(ya(X"))}-
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Then by ([3.3.2), Lemma (.21l and Lemma [5.2.14] the first term is

< Y ulle (exp(Sad(aa(X™)) = exp(Sud(yn(X™))))

F Y Tl (exp(Sam(X™))) — exp(S,3(ra(X")))
5 ep(Sidm (X))
:”“””<< > exp<sn$<yn<xn>>>_1>

§ S

XneAt XneAn
S exp(S,3(un(X™)
Xnedn Sné(zn(X™))
- - —1
( > oD (Sdl@a(X)) )XZ )
XneA;, "

<2005 (exp(Chd(z,y)*) — 1)

§2b53d(x7 y)a’

for some constant 53 > 0 that only depends on C}, Cy, and diamgy(S?), where C; > 0 is the
constant defined in (.2.2)) in Lemma .21 and Cy > 1 is the constant defined in (5.2.4) in
Lemma Note that the justification of the second inequality above is similar to that
of (5.2.30) in Lemma B.2.T4 We observe that by (0.2.2)) and (5.2.4]), both C; and C5 only
depend on f, C, d, 8, and «, so does 53.

Hence we get
L3(u)(x) = L3(w)(y)| < 26Csd(x,y)" + Coh(Cod(x, ).

Now we consider arbitrary € XY and y € Xp. Since the metric space (S?,d) is linearly
locally connected with a linear local connectivity constant L > 1, there exists a continuum
E C S? with x,y € E and E C By(x, Ld(x,y)). We can then choose z € C N E. Note that
max{d(z, z),d(y, z)} <2Ld(z,y).
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Hence we get

£2(u)() — £3(u)(y)| <

£2(u)(x) — £3(u)(=)] +

L3(u)(z) — Lg(u)(y)
<2bCsd(x, 2)* + Coh(Cod(x, 2)) + 20Csd(z,y)* + Coh(Cod(z, y))
<8bLCsd(z,y)* + 2C5h(2Co Ld(z, y)).

By choosing C = max {8bL53, 202}, which only depends on f, C, d, 8, and o, we complete
the proof of (5.3.10).

We now prove (5.3.17).
We fix an arbitrary ¢ € C%*(S?,d) with |¢|, < 6. Then by (5.2.32) in Theorem [5.2.15]
and (0.24) in Lemma [5.2.2] we have

gl < b1,

where b; = exp (4722 L( diam(5?))”). By Theorem and (5.2.30) in Lemma (.2.174]

1—

for each z,y € S?, we have

[ug(r) —ugp(y)] = | lim % 2_: (L5(1)(x) — L(1)(x)) |
L i
<limsup - Z £(1)(@) — £5(1)(x)|
< Oy (exp (4C Ld(z,y)*) — 1).
So
uy € C)M(S%,d), (5.3.12)

where h; is an abstract modulus of continuity given by

hy(t) = Cy (exp (4C1 Lt*) — 1), for t € [0, +00).

Thus by Lemma[5.3.2] there exist a constant by > 0 and an abstract modulus of continuity

ho such that

{uuy | u € C)(S%,d), ¢ € C¥*(S?,d),|9|, <0} € Cp2(S?,d). (5.3.13)
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Then by (53.6), (£313), (3.10), and Lemma (.32 we get that there exist a constant

bs > 0 and an abstract modulus of continuity I such that
{£5(u) |u € C(S?,d),n € No} € C2(S%, ), (5.3.14)

for each ¢ € C%*(S?,d) with |¢|, < 6.

On the other hand, by Lemma [5.3.3] ’ C%(u) ) < |lull, < b for each u € C}(S?, d), each
n € Ny, and each ¢ € C**(S?,d). Therefore, we have proved (5.3.11)). O

As a consequence, both £ and Eg are almost periodic.

Definition 5.3.6. A bounded linear operator L: B — B on a Banach space B is almost
periodic if for each z € B, the closure of the set {L"(2)|n € Ny} is compact in the norm

topology.

Corollary 5.3.7. Let f, d, ¢, and « satisfy the Assumptions. Let C'(S?) be equipped with
the uniform norm. Then both Lj: C(S?) — C(S?) and L3: C(S*) — C(S?) are almost

periodic.

Proof. Fix a Jordan curve C C S? that satisfies the Assumptions (see Theorem 2.5.1] for the
existence of such C). For each u € C(S?), we have u € C}(52,d) for § = |lul|,, and some
abstract modulus of continuity A defined in (5.3.2)). Then the corollary follows immediately
from Theorem and Arzela-Ascoli theorem. O

Lemma 5.3.8. Let f and d satisfy the Assumptions. Let g be an abstract modulus of
continuity. Then for a € (0,1, K € (0,+00), and §; € (0,400), there exist constants
d € (0,400) and n € N with the following property:

For each u € C;>(S%d), each ¢ € C**(S* d), and each choice of my from Theo-

rem L2108, if ||fllcoe < K, Juugdmg =0, and ||ul| > 61, then

2| < ull = 0.
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Note that at this point, we have not proved yet that m, from Theorem [5.2.101is unique.
We will prove it in Corollary E.3. 100 Recall that wu, is the continuous function defined in
Theorem (B.2.15] that only depends on f and ¢.

Proof. Fix arbitrary constants o € (0,1], K € (0,4+00), and é; € (0,+00). Fix e > 0
small enough such that g(e) < %. Fix a choice of mg, an arbitrary ¢ € C%%(S5?,d), and an
arbitrary u € C’;OO(SQ,d) with ||¢]| 0. < K, [uugdmg =0, and ||Jul| > 6.

We pick a Jordan curve C C S? that satisfies the Assumptions (see Theorem 2.5.1] for the
existence of such C).

By Lemma 2.4T[(iv), there exists n € Z depending only on f, C, d, g, and d; such
that for each z € S?% we have U™(z) C By(z,¢), where U"(z) is defined in ([Z24). Since
Juugydmy = 0, there exist points yi,y2 € S? such that u(y;) < 0 and u(yz) > 0.

We fix a point x € S%. Since f"(U"(y;)) = S?, there exists y € f~"(z) such that
y € U(y1) € By(y1,€). Thus

u(y) < ulw) + 900 < % < full, — 2.
So by Lemma [£.3.3] and (3.3.2)) we have

L3(u)(x) = deg s (y)u(y) exp (Sud)) + > degpu(w)u(w)exp (Sud(w))

wef~m(z)\{y}
(H o ) degn(y)exp (Suo()) + llull, D degpu(w)exp (Suo(w))
we f~m(x)\{y}
- S -

<||ul| Z degfn ) exp (Sn¢(w)) — 51 exp (anﬁ(y))
wefn
01

~lull ~ % exp (S.3(0)).

Similarly, there exists z € f~"(z) such that z € U"(y2) C Ba(y2, €) and

£2u)(x) > —Jull + % exp (S.3(2).

Hence we get

.cg(u)H <l — 5—1nf{eXp (Sud(w)) | w € 52} (5.3.15)
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Now it suffices to bound each term in the definition of ¢ in (5.3.3).

First, by the hypothesis, ||¢|| ., < [[@llco.. < K (see (LI2)).

Next, for each fixed € S?, by Proposition 5.2.16], we have

P(f.¢) = lim ~log > degyn(y) exp(Sno(y))

n—-+oo N
yef"(z)
< lim — n
< lim -~ log Z deg . (y) exp(nK)
yef ()
=K — n
+ nErJIrloo - log Z deg s (y
yef " (z)
= K + log(deg f).

Similarly, P(f,¢) = —K +log(deg f). So |P(f, )| < K + [log(deg f)].

Finally, by Theorem B.2.T5 and (5.2.4)) in Lemma [5.2.2] we have
[ugllo, < C2 < exp (C5),

where
KCy
1—A-1

and Cy > 1 is a constant from Lemma 2.5.4] depending only on f, C, and d.

Therefore, by (£.3.5) and (B.3.15), )

Cs = 4————L (diam,(5?%))",

ﬁg(u)H < ||ull. — &, where

o
0 = 5 exp (—n (2K + [log(deg f)] +2C5))
which only depends on f, d, o, K, 41, g, and n. O

Theorem 5.3.9. Let f: S? — S? be an expanding Thurston map. Let d be a visual metric
on S? for f with expansion factor A > 1. Let b € (0,+00) be a constant and h: [0, +00) —
[0, +00) an abstract modulus of continuity. Let H be a bounded subset of C**(S?,d) for
some a € (0,1]. Then for each u € CP(S? d), each ¢ € H, and each choice of my from

Theorem [5.2.10, we have

lim Hﬁg(u) o, /u dm¢Hoo 0, (5.3.16)

n—-+o00
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If, in addition, [uusdmg =0, then

lim
n—-+4o0o

cg(u)H — 0. (5.3.17)

o0

Moreover, the convergence in both (5.310) and (5.3.17) is uniform inu € C2(S?,d), ¢ € H,

and the choice of my.

The equation (E.3.17) demonstrates the contracting behavior of £ on a codimension-1
subspace of C(S?).

Proof. Let L be a linear local connectivity constant of d. Fix a constant K € (0, 4+00) such

that ||¢]| 0. < K for each ¢ € H.

We fix a Jordan curve C C S? that satisfies the Assumptions (see Theorem Z5.7] for the

existence of such C).

Let My be the set of possible choices of m, from Theorem (.2.10] i.e.,

My = {m € P(5%)| L;(m) = cm for some ¢ € R}. (5.3.18)

We recall that 14 defined in Theorem by 114 = ugymy, depends on the choice of my,.

Define for each n € Ny,

an:sup{’[,” H ’ngHuEC’h(ASY2 d),/udu¢:0,m¢€M¢}.

By Lemma B3.3 |[£5]] = 1, so ’

ﬁ%(u)” is non-increasing in n for fixed ¢ € H and
u € CP(S?,d). Note that a9 < b < +00. Thus {a,}nen, is a non-increasing sequence of

non-negative real numbers.

Suppose now that lim a, = a > 0. By Theorem [5.3.5] there exists an abstract modulus

n—-+00

of continuity ¢ such that
{L%(u)|n €Ny, ¢ € Houe Cy(S%,d)} C Cg(S*,d).

Note that for each ¢ € H, each n € Ny, and each u € C}(5?,d) with [uugsdm, = 0, we have
f[,%( ugdmg = fﬁ w)dpg = 0 by (5.3.7). So by applying Lemma [(.3.8 with ¢, o, K, and
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01 = 2, we find constants ng € N and d, > 0 such that

2
Jez (ezm)] <)
for each n € Ny, each ¢ € H, each mg € My, and each u € C}(5?, d) with [uu,dmg = 0 and

|

Then for each ¢ € H, each my € My, and each u € Cp(S? d) with [udu, = 0 and
ezl

L2w)| = b, (5.3.19)

HOO

Eg(u)H > 5. Since hrf a, = a, we can fix m > 1 large enough such that a,, < a+ 2.
n—-+0oo

> 5, we have

|

On the other hand, since

cgﬁm(u)Hw < Hﬁg(u)H Sy <ap—6<a— % (5.3.20)

[e.9]

C%(u)” is non-increasing in n, we have that for each ¢ € H,

each my € My, and each u € C)(S?,d) with [udu, = 0 and ’

£§(U)H < g, the following

holds:
notm < ||£7 a
’.cd) (u)H < H£¢ (“)Hoo <% (5.3.21)
Thus apy+m < max {a — 5—2 9} < a, contradicting the fact that {a, },en, i a non-increasing

sequence and the assumption that lim a, = a. This proves the uniform convergence in

n—-+o0o
(E317).

Next, we prove the uniform convergence in (5.3.16). By Lemma B2, Lemma G522
Lemma [5.3.3] and (53.6)), for each u € C2(S5?,d), each ¢ € H, and each mg € My, we have

Hﬁg(u) — Uy /u dm(bH (5.3.22)

1
< — L) — [ud
< gl || L300 /u ||
u
— o — —d

u
- N R Ry .
gl ¢(u¢ / - uas)Hoo

By (£:2.32) and (5.2.4]), we have

exp (—Cs) < lugll, < exp(Cs), (5.3.23)
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where

KCy , a
05 = 4m[1 (dlamd(SQ)) s

and Cj is a constant from Lemma 2.5.4] depending only on f, C, and d. Let v = u_qua —
1 fu—t dpg. Then v satisfies

o]l <2 H%Hm < 2bexp (Cy) . (5.3.24)

Due to the first inequality in (5.3.23) and the fact that u, € C%*(5?%,d) by Theorem (.2.15,
we can apply Lemma[5.3.21and conclude that there exists an abstract modulus of continuity g
of u_u¢ such that ¢ is independent of the choices of u € C}(S?,d), ¢ € H, and my € My. Thus
v E 05(52,03), where b = 2bexp(Cs). Note that [vusdmg = [vdus = 0. Finally, we can
apply the uniform convergence in (53.17) with v = v to conclude the uniform convergence

in (5.316) by (5.322) and (5.3.23). O

Theorem [5.3.9/ implies in particular the uniqueness of m, and fi4.

Corollary 5.3.10. Let f, d, ¢, « satisfy the Assumptions. Then the measure my € P(S?)
defined in Theorem [5.2.10 is unique, i.e., my is the unique Borel probability measure on S*
that satisfies £;§(m¢) = cmy for some constant ¢ € R. Moreover, 15 = ugmy is the unique

Borel probability measure on S* that satisfies E’é(u@ = pg. In particular, we have mg = -

Proof. Let mg,my € P(S?) be two measures, both of which arise from Theorem [5.2.10
Recall that for each u € C(S?), there exists some abstract modulus of continuity A such
that u € CJ (S d), where 8 = ||u|| .. Then by (53.16) and (5232), we sce that [udm, =
Judmyg for each u € C(S?). Thus my = M.

By (£3.7), ﬁ;is(“‘f’) = pig. Since ¢ € C**(5?,d) by Lemma B34, we get that uy = mg
and p4 is the only Borel probability measure on S? that satisfies ﬁ;is(“‘f’) = U O

Lemma 5.3.11. Let f and d satisfy the Assumptions. Let b > 0 be a constant and h an

abstract modulus of continuity. Let H be a bounded subset of C%*(S? d) for some o € (0, 1].
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Then for each x € S?, each u € C2(S?,d), and each ¢ € H, we have
L degpa(y) (Swu(y)) exp(Sae(y))

lim 2@ :/ Ay, 3.2
TS deaye(3) ep(5.0(9) i (5:3.25)
yef—"(z)

Moreover, the convergence is uniform in x € S?, u € C?(S?%,d), and ¢ € H.

Proof. We fix a Jordan curve C C S? that satisfies the Assumptions (see Theorem 2.5.1] for
the existence of such C). By [B.3.2) and ZI12), for x € S?, u € C%(S?,d), ¢ € H, and

n e N,

L3 degpa(y) (Snuly)) exp(Sno(y))

yef"(z)
Y. degs(y) exp(S,0(y))

yef"(z)
. Ef;( )degfn(y)u(fj(y))eXp(Sn¢(y))
L3(1)(z)
XX demp (o) demp ()t et
) () e (2)
L3(1) ()
%; > degpi(2)u(2)L(1)(2) exp(Sa—jo(2))

0 zef~(n=3)(z)
L£5(1)(x)

By Theorem {E” )IneNy} C Cb S?% d), for some constant b > 0 and some abstract
modulus of continuity h, which are independent of the choice of ¢ € H. Thus by Lemma[5.3.2]

{uﬁ" )In€No,ueCp(S*d)} C Cb1 (S%,d), (5.3.26)

for some constant b; > 0 and some abstract modulus of continuity h;, which are independent

of the choice of ¢ € H.
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Hence, by Theorem and Corollary 5.3.10, we have
HE%(IL) - u¢H 0, (5.3.27)

and

— 0, (5.3.28)

’E{z <u£%(1l)) g / wli(1) dm, )

as | —» +o00, uniformly in j € No,¢ € H, and u € C?(5?,d).

Fix a constant K € (0,400) such that for each ¢ € H, ||¢[/ 0. < K. By (6:232) and
(5.2.4), we have that for each z € S,

exp(—C5) < ug(z) < exp(Cs), (5.3.29)

where

Cs=4 L (diamy(S?))",

1—A1
and Cy > 1 is a constant from Lemma [2.5.4] depending only on f, C, and d. So by (5.3.26]),
we get that for j € Ny, u € C2(S?,d), and ¢ € H,

Ug /uﬁfb(]l) dm¢" < ugll o Huﬁé(]l)”oo < by exp(Cs). (5.3.30)

By (5:310) in Theorem and (5.3.26), we get some constant by > 0 such that for all
J,1 € Ny, each u € C?(S?,d), and each ¢ € H,

H.cl (wein )H < by, (5.3.31)
Hence we can conclude from (5.3.30), (5.3.31)), and (5.3.28) that
ZE” J (uﬁj ) Zu¢ /uﬁj )dm¢' =0,

uniformly in u € C2(S?,d),¢ € H, and z € S?. Thus by (5.3.27) and (£.329), we have

lim —
n—-+oo N

VR () @ S w [uan,

T oW e =0

lim
n—-+o00
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uniformly in u € C}(S?,d),¢ € H, and x € S%. Combining the above with (5.3.26)), (5.3.27),
(53.29), and the calculation in the beginning part of the proof, we can conclude, therefore,

that the left-hand side of (5.3.25) is equal to

n— n—

1 1
1 ; 1
: _ E J — : _ —
nETOO = /u£¢(l) dmy = ngrfoo - § :/uu¢ dmy = /u dpig,

Jj=0 Jj=0

and the convergence is uniform in u € C?(S?,d) and ¢ € H. O

We record the following well-known fact for the convenience of the reader.

Lemma 5.3.12. For each metric d on S* that generates the standard topology on S* and
each a € (0,1], C%*(S? d) is a dense subset of C(S?) with respect to the uniform norm. In
particular, C%*(S?%,d) is a dense subset of C(S?) in the weak topology.

Proof. The lemma follows from the fact that the set of Lipschitz functions are dense in C/(S?)

with respect to the uniform norm (see for example, [HeOll, Theorem 6.8]). O

Theorem 5.3.13. Let f: S? — S? be an expanding Thurston map, and d be a visual metric
on S? for f. Let ¢,y € C(S? d) be real-valued Holder continuous functions with an
exponent o € (0,1]. Then for each t € R, we have

d
TP o +t7) = /’ydu¢+m- (5.3.32)

Proof. We will use the well-known fact from real analysis that if a sequence {g, }nen of real-

valued differentiable functions defined on a finite interval in R converges pointwise to some

function ¢ and the sequence of the corresponding derivatives {9

& }neN converges uniformly

to some function h, then g is differentiable and i—f =

Fix a point x € 5% and a constant [ € (0,4+00). For n € N and ¢ € R, define

Put)=log 3" degya(y) exp(Su(6 + 1)) (53.33)

yef—"(z)
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Observe that there exists a bounded subset H of C%*(S? d) such that ¢ +ty € H for

each t € (—=[,1). Then by Lemma (.3.11]

% Z degfn (y) (Sn’y(y)) eXp(Sn((b + t7> (y))
dP, (t) _ yef~"(z)

dt Y. degpa(y) exp(Sn(d +17)(y))

yef~m(x)

converges to [y dpgiey as n — +oo, uniformly in ¢ € (=1, 1).

On the other hand, by Proposition (.2.16] for each t € (—[,[), we have

lim P,(t) = P(f,¢+tv).

n—-+o0o

Hence P(f, ¢ + tv) is differentiable with respect to t on (—[,[) and

dP,

d . n
L fotty) = lim —=(t) = /Vdumm'

Since [ € (0,400) is arbitrary, the proof is complete.

(5.3.34)

(5.3.35)

O

Theorem 5.3.14. Let f: S? — S? be an expanding Thurston map and d be a visual metric

on S? for f. Let ¢ € C**(S?,d) be a real-valued Holder continuous function with an exponent

a € (0,1]. Then there exists a unique equilibrium state pg for f and ¢. Moreover, the map f

with respect to pg is forward quasi-invariant (i.e., for each Borel set A C S?, if us(A) =0,

then py(f(A)) = 0), and nonsingular (i.e., for each Borel set A C S?, us(A) = 0 if and only

if 1s(f71(A)) =0).

Proof. The existence is proved in Corollary 5217
We now prove the uniqueness.

Since ¢ € C%*(S2,d), by Theorem the function

t— P(f, 0 +1ty)

is differentiable at 0 for v € C%*(S2, d). Recall that by Lemma [(5.3.12 C%*(S?, d) is dense in

C(S?) in the weak topology. We note that the topological pressure function P(f,-): C(S?) —

R is convex continuous (see for example, [PUL0, Theorem 3.6.1 and Theorem 3.6.2]). Thus
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by Theorem 531 with V' = C(5%), = = ¢, U = C%*(S%,d), and Q = P(f,-), we get
card (V(;"P(fy.)) = 1.

On the other hand, if u is an equilibrium state for f and ¢, then by (3.2.4]) and (B:2.3]),

fMﬁ+/mm:mﬁm

and for each v € C'(S?),

mu»yﬂ¢+wduspu¢+v»

So [vdu < P(f,¢+~) — P(f,¢). Thus by (E31]), the continuous functional vy — [~y dp
on C(S?) is in Vi p(s- Since fig = ugme defined in Theorem is an equilibrium state
for f and ¢, and card (Vg P( f’,)) =1, we get that each equilibrium state u for f and ¢ must
satisfy [vdu = [~ dug for v € C(S?), Le., p = py.

The fact that the map f is forward quasi-invariant and nonsingular with respect to 1,

follows from the corresponding result for my in Theorem [.2.10, Lemma [5.3.4], and the fact
that mg = p, from Corollary 5.3.101 O

Remark. Since the entropy map p —— h,(f) for an expanding Thurston map f is affine
(see for example, [Wa82l Theorem 8.1]), ie., if u,v € M(S? f) and p € [0,1], then

Pppr(i—pyw (f) = phyu(f) + (1 = p)h,(f), so is the pressure map p — P,(f,¢) for f and

a Hoélder continuous potential ¢: S? — R. Thus the uniqueness of the equilibrium state
te and the Variational Principle (B:2.5) imply that p, is an extreme point of the convex
set M(S?, f). Tt follows from the fact (see for example, [PUI0, Theorem 2.2.8]) that the
extreme points of M(S?, f) are exactly the ergodic measures in M(S?, f) that u, is ergodic.

However, we are going to prove a much stronger ergodic property of p, in Section 5.4l
The following proposition is an immediate consequence of Theorem [(£.3.9

Proposition 5.3.15. Let f, d, ¢ satisfy the Assumptions. Let 14 be the unique equilibrium
state for f and ¢. Then for each Borel probability measure p € P(S?), we have

(Ezj)n(u) RN [y as n — +00. (5.3.36)
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Proof. Recall that for each u € C(S?), there exists some abstract modulus of continuity h
such that u € C7(S?,d), where § = |lul|.. By Theorem [£.3.14] and Theorem [E.2.15] we
have i, = ugmy as constructed in Theorem [L.2.T5l Then by Lemma and (5.3.17) in

Theorem £.3.9)

lim <(£§)n(u),u> = lim (<u,£%(u — {pg,u)1)) + <,u,£g((u¢,u)]l)>)

n—+oo n—+o0o
=0+ (1, (po, u) 1) = <:u¢7 u),
for each u € C(S?). Therefore, (5.3.36) holds. O

5.4 Ergodic properties

In this section, we first prove that if f, C, d, and ¢ satisfies the Assumptions, then any edge
in the cell decompositions induced by f and C is a zero set with respect to the measures my
or pe. This result is also important for Theorem [(.5.I1 We then show in Theorem [5.4.3] that
the measure-preserving transformation f of the probability space (S?, uy) is ezact (Defini-
tion[5.4.2), and as an immediate consequence, mixing (Corollary[5.4.6]). Another consequence

of Theorem [5.4.3] is that 1, is non-atomic (Corollary b.4.4)).

Proposition 5.4.1. Let f, C, n¢, d, ¢, a satisfy the Assumptions. Let py be the unique
equilibrium state for f and ¢, and my be as in Corollary[2.3.10. Then

g (U f-i<c>> — 1o (U f"(@) —o. (5.4.1)

Proof. Since ug € M(S?, f) is f-invariant, and C C f~™¢(C) for each i € N, we have
g (f(C)\ C) = 0 for each i € N. Since f is expanding, by Lemmal[5.2.9, there exists m €
N and an (mn¢)-tile X € X" such that X NC = (). Then 0X C f™¢(C)\C. So us(0X) =
0. Since gy = uymey, where u, is bounded away from 0 (see Theorem B.2.T5]), we have
mg(0X) = 0. Note that f"¢|sx is a homeomorphism from 0X to C (see Proposition 2.2.4)).
Thus by the information on the Jacobian for f with respect to m, in Theorem B.2.10, we
get my(C) = 0.
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Now suppose there exist £ € N and a k-edge e € EF such that mg(e) > 0. Then by using

the Jacobian for f with respect to my again, we get my(C) > 0, a contradiction. Hence

+o0 +o00
my (‘Uo fl(C)) = 0. Since g = ugmey, we get [y (‘UO fz(c)> 0. 0

For each Borel measure 1 on a compact metric space (X, d), we denote by @ the completion
of i, i.e., 7i is the unique measure defined on the smallest o-algebra B containing all Borel

sets and all subsets of p-null sets, satisfying u(E) = u(FE) for each Borel set £ C X.

Definition 5.4.2. Let g be a measure-preserving transformation of a probability space
(X, ). Then g is called ezact if for every measurable set F with p(E) > 0 and measurable
images g(E), g>(E), ..., the following holds:

lim p(g"(E)) = 1.

n—-+o0o

Note that in Definition £.4.2] we do not require p to be a Borel measure. In the case
when g is a Thurston map on S? and pu is a Borel measure, the set ¢"(F) is a Borel set
for each n € N and each Borel set £ C S?. Indeed, a Borel set £ C S? can be covered by
n-tiles in the cell decompositions of S? induced by g and any Jordan curve C C S? containing
post g. For each n-tile X € X"(f,C), the restriction ¢"|x of ¢" to X is a homeomorphism
from the closed set X onto ¢™(X) by Proposition 2.2.4l It is then clear that the set ¢"(F) is

also Borel.

We now prove that the measure-preserving transformation f of the probability space
(S% ug) is exact. The argument that we use here is similar to that in the proof of the
exactness of an open, topologically exact, distance-expanding self-map of a compact metric

space equipped with a certain Gibbs state ([PUL0, Theorem 5.2.12]).

Theorem 5.4.3. Let f: S* — S? be an expanding Thurston map and d be a visual metric on
S? for f. Let ¢ € C%%(S?,d) be a real-valued Holder continuous function with an exponent

a € (0,1]. Let uy be the unique equilibrium state for f and ¢, and fig its completion.

Then the measure-preserving transformation f of the probability space (S%, ugy) (resp.

(S%,1g)) is exact.
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Proof. We fix a Jordan curve C C S? that satisfies the Assumptions (see Theorem 2.5.1] for

the existence of such C).

Since puy = uyme, by (B.232), it suffices to prove that

lim_my(5%\ f*(4)) =0

n—-+o00

for each Borel set A C S? with m,(A) > 0.

Let A C S? be an arbitrary Borel subset of S? with mg(A) > 0. Then there exists a
compact set £ C A such that my(£) > 0. Fix an arbitrary e > 0. Since f is expanding,
by Lemma [5.2.0) n-tiles have uniformly small diameters if n is large. This and the outer
regularity of the Borel measures enable us to choose N € N such that for each n > N, the

collection

P"={X" e X"(f,C)| X" NE # 0}

of n-tiles satisfies my ((JP") < my(E) + €. Thus for each n > N, we have m¢,< U X"\
Xnepr
E) <e So Y, mg(X™\ E) < e by Proposition 5.4.11 Hence

Xnepn

>, my(X"\ E)

X"EP" 6
< . (5.4.2)
> Mg (X™) my(E)
XnePn

Thus for each n > N, there exists some n-tile Y € P" such that

my(Y" \ E) €
me¥™) = ma(B)

(5.4.3)

By Proposition 2.2.4](i), the map f" is injective on Y. So by Theorem [£.2.10, Lemma [5.2.7],

(24), and (5.4.3)), we have
me (V") \ () _ me (f*(Y"\ E))
mg (fr(Y™) T me (fr(Y))

exp(—S,¢) dmy N
/yn\E oMe(Y" \ E) - Cle

— <C ~— < )
/ exp(—S,¢) dmy ? me(Y™) mg(E)

where Cy > 1 is the constant defined in (5.24]) that depends only on f, C, d, ¢, and a.

By Lemma (.29, there exists k € N that depends only on f and C such that f¥(X?) =
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fE(XP) = 52, where X and X} are the while O-tile and the black 0-tile, respectively. Since
SM(Y™) is either X2 or X}, by Proposition 5.2.T1] for each n > N,

mg (S2\ fTHE)) < my (f* (F(Y™)\ fH(E)))

C2¢
< exp(—9Skp) dmy < exp(k ||| 2__
/fn(m\fnw) (=50) dm < explk [0.) 2

Since € > 0 was arbitrary, we get

lim my (S*\ f*(E)) = 0. (5.4.4)

n—-+o0o

Thus
lim my (f1(A) > lim_my (f"(E)) = 1.

n—-+o00 n—-+o00

Hence the measure-preserving transformation f of the probability space (S?, ugs) is exact.

Next, we observe that since f is p,-measurable, and is a measure-preserving transfor-
mation of the probability space (52, 114), it is clear that f is also Jig-measurable, and is a

measure-preserving transformation of the probability space (52, 7ig).

To prove that the measure-preserving transformation f of the probability space (S?,7ig)
is exact, we consider a Jiz-measurable set B C S? with Jiz(B) > 0. Since Ji5 is the completion
of the Borel probability measure p4, we can choose Borel sets A and C' such that A C B C
C C S? and 1i5(B) = 1ig(A) = 115(C) = pg(A) = ug(C). For each n € N, we have f"(A) C
fM(B) C f™(C) and both f"(A) and f™(C) are Borel sets (see the discussion following
Definition [5.4.2)). Since f is forward quasi-invariant with respect to p, (see Theorem [(.3.14),
it is clear that ps (f"(A)) = pe (f"(C)). Thus

po (f"(A)) = Tig (f"(A)) = Tig (/" (B)) = 11g (f(C)) = s (f/*(C)) -

Therefore, hT Tg (fM(B)) = lm pus(f"(A)) =1 [
n——+0oo

n—-+00

Let p be a measure on a topological space X. Then p is called non-atomic if p({z}) =0

for each z € X.

The following corollary strengthens Theorem [B.2.10
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Corollary 5.4.4. Let f, d, ¢, o satisfy the Assumptions. Let i, be the unique equilibrium
state for f and ¢, and my be as in Corollary[5.3.10. Then both ps and my as well as their

corresponding completions are non-atomic.

Proof. Since pi5 = uymy, where uy is bounded away from 0 (see Theorem [.2.17), it suffices

to prove that p4 is non-atomic.

Suppose there exists a point x € S? with ps({z}) > 0, then for all y € S?, we have

po({y}) < max{ps({r}), 1 — pe({2})}.

Since the transformation f of (S?, uy) is exact by Theorem [F.43, we get that py({z}) =1
and f(z) = .

We fix a Jordan curve C C S? that satisfies the Assumptions (see Theorem 251 for the
existence of such C). It is clear from Lemma that there exist n € N and an n-tile
X" e X"(f,C) with x ¢ X™. Then pys(X™) = 0, which contradicts with the fact that p is
a Gibbs state for f, C, and ¢ (see Theorem and Definition [5.2.3]).

The fact that the completions are non-atomic now follows immediately. O

Let f, d, ¢, « satisfy the Assumptions. Let pg be the unique equilibrium state for f
and ¢, and iy its completion. Then by Theorem 2.7 in [Ro49], the complete separable
metric space (52, d) equipped the complete non-atomic measure 7ig is a Lebesgue space in
the sense of V. Rokhlin. We omit V. Rokhlin’s definition of a Lebesgue space here and refer
the reader to [Ro49l Section 2], since the only results we will use about Lebesgue spaces are
V. Rokhlin’s definition of exactness of a measure-preserving transformation on a Lebesgue
space and its implication to the mixing properties. More precisely, in [Ro61], V. Rokhlin
gave a definition of exactness for a measure-preserving transformation on a Lebesgue space
equipped with a complete non-atomic measure, and showed [Ro61) Section 2.2] that in such
a context, it is equivalent to our definition of exactness in Definition £.4.2. Moreover, he

proved [Ro61l, Section 2.6] that if a measure-preserving transformation on a Lebesgue space
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equipped with a complete non-atomic measure is exact, then it is mizing (he actually proved

that it is mizing of all degrees, which we will not discuss here).

Let us recall the definition of mixing for a measure-preserving transformation.

Definition 5.4.5. Let g be a measure-preserving transformation of a probability space
(X, p). Then g is called mizing if for all measurable sets A, B C X, the following holds:

lim i (g7"(A) N B) = u(A) - u(B).

n—-+o00

We call g ergodic if for each measurable set £ C X, g~'(F) = E implies either u(E) =0 or

w(E) = 1.

It is well-known and easy to see that if g is mixing, then it is ergodic (see for example,

[Wa82]).

Corollary 5.4.6. Let f, d, ¢, o satisfy the Assumptions. Let i, be the unique equilibrium
state for f and ¢, and fig its completion. Then the measure-preserving transformation f of

the probability space (S?, i) (resp. (S?,7ig)) is mizing and ergodic.

Proof. By the discussion preceding Definition (.4.5] we know that the measure-preserving
transformation f of (S? 7i;) is mixing and thus ergodic. Since any pg4-measurable sets
A,B C S? are also Jig-measurable, the measure-preserving transformation f of (52, p,) is

also mixing and ergodic. O

5.5 Co-homologous potentials

The goal of this section is to prove in Theorem [.5.1] that two equilibrium states are identical
if and only if there exists a constant K € R such that K1g: and the difference of the
corresponding potentials are co-homologous (see Definition [£.5.2)). We use some of the ideas
from [PUIL0] in the process of proving Theorem 551l We establish a form of the closing

lemma for expanding Thurston maps in Lemma [5.5.061
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Theorem 5.5.1. Let f: S? — S% be an expanding Thurston map, and d be a visual metric
on S* for f. Let ¢,9p € C¥¥(S?,d) be real-valued Holder continuous functions with an
ezponent o € (0,1]. Let py (resp. ) be the unique equilibrium state for f and ¢ (resp. ).
Then pg = puy if and only if there exists a constant K € R such that ¢ — 1 and Klg: are

co-homologous in the space C(S?) of real-valued continuous functions.

Definition 5.5.2. Let g: X — X be a continuous map on a metric space (X,d). Let
K C C(X) be a subspace of the space C'(X) of real-valued continuous function on X. Two
functions ¢, € C(X) are said to be co-homologous (in KC) if there exists u € K such that

¢—1Y=uog—u.

Remark 5.5.3. As we will see in the proof of Theorem £.5.1] at the end of this section, if

e = pup then the corresponding u can be chosen from C%(S5%, d).

Lemma 5.5.4. Let f and C satisfy the Assumptions. If f(C) C C, then for m,n € N with
m > n and each m-vertex v™ € V™(f,C) with W' (v™) € W™ "(f*(v™)), there exists

zeW" (v™) such that f*(x) = x.
Here W (v™) denotes the closure of the open set W™ (v™).

Proof. Since v™ € W™="(f"(v™)) and f(C) C C, depending on the location of v™, there are
exactly three cases, namely, (i) v™ = f™(v™); (ii) v™ is contained in the interior of some
(m — n)-edge; (iii) v™ is contained in the interior of some (m — n)-tile. We will find a fixed

point z € W' (v™) of f* in each case.
Case 1. When v™ = f™(v™), we can just set z = v™.

Case 2. When v™ € inte(e™ ") for some (m — n)-edge ™™™ € E™™" with inte(e™ ™) C
Wwm=m (f*(v™)), it is clear that W™ (v™) C X; U X5 when X, Xy € X™™™ form the unique
pair of distinct (m — n)-tiles contained in W™= (f™(v™)) with X; N Xy = €™ ". We can
choose a pair of distinct m-tiles Y7, Y, € X™ with YUY, C W' (v™), (Y1) = X1, f*(Ya) =
Xy, and Y7 NY, = €™ for some m-edge e™ € E™. If either Y| C X; or Yy C X,, say

Y, C X, then since X, is homeomorphic to the closed unit disk in R?, and f" maps Y>
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Jrm)

X1

Figure 5.5.1: An example for Case 2 when Y5 C X5.

homeomorphically onto X, (Proposition 2.2.4](i)), we can conclude by applying Brouwer’s
Fixed Point Theorem on ((f™)]y,)”! that there exists a fixed point x € Y3 of f. (See for
example, Figure (.5.0l) So we can assume without loss of generality that Y7 C X, and
Y C X;. Suppose now that inte(e™) C inte(X;), then Y1 UY, C X, for i € {1,2}. So
e™ C ™ ™. Since f" maps €™ homeomorphically onto €™~ " by Proposition 2.2.4](i), and
€™~ ™ is homeomorphic to the closed unit interval in R, it is clear that there exists a fixed

point x € €™ of f™. (See for example, Figure 5.5.2])

Case 3. When v™ € inte(X™ ") for some (m — n)-tile X" € X™ ™ contained in
W (fr(v™)), it is clear that W™ (v™) € X™ ™. Let X™ € X™ be an m-tile contained in
W™ (v™) such that f(X™) = X™ " Since X™ " is homeomorphic to the closed unit disk in
R? and f" maps X™ homeomorphically onto X™ ™ (Proposition 222.4(i)), we can conclude
by applying Brouwer’s Fixed Point Theorem on ((f™)|xm)~! that there exists a fixed point
xr e X™of fm. O

Lemma 5.5.5. Let f and C satisfy the Assumptions. Then there exists a number Kk € Ny

such that the following statement holds:
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Jrm)

Figure 5.5.2: An example for Case 2 when Y; Q X, Y Q Xs.

For each x € S?, each n € Ny, and each n-tile X" € X"(f,C), if v € X", then there

exists an n-vertex v™ € V"'(f,C) N X™ with
Ut (z) € W(v™). (5.5.1)

Proof. We will first find x € Ny such that the statement above holds when n = 0. We will

then show that the same x works for arbitrary n € Nj.
We fix a visual metric d on S? for f with expansion factor A > 1.

Note that the collection of 0-flowers {W°(v%) [v° € V°} forms a finite open cover of S2.
By the Lebesgue Number Lemma ([Mu00, Lemma 27.5]), there exists a number € > 0 such
that any set of diameter at most € is a subset of W°(v?) for some v € V. Here € depends
only on f, C, and d. Then by Proposition 2.4.[(iii), there exists x € Ny depending only on f,
C, and d such that diamy(U"(x)) < € for z € S?. So for each = € 52, there exists a 0-vertex
v? € VO such that Ur(z) C WO(°). Let X° € X° be a 0-tile with z € X°, then clearly
v e XU

In general, we fix z € S?, n € Ny, and X" € X" with € X". Set A = V"N X". By
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Proposition 224, we have f"(W"(v")) = WO(f"(v")) and f*(OW™(v")) = OW(f™(v")) for
each v" € A. Suppose U"t*(z) € W"(v") for all v" € A. Since x € X" and U""(x) is
connected, we have U™ (z) N OW™(v™) # 0, and thus by Proposition 2.2.4](i)

US(f™(x)) NOWO(f" (")) 2 fH (U™ () N f (W™ (")) # 0,

for each v™ € A. Since f"(A) = V° by Proposition 2.2 it follows that U*(f"(z)) € W°(?)

for all v° € V. contradicting the discussion above for the case when n = 0.

Finally, we note that (5.5.1]) holds or fails independently of the choice of d. Therefore,

the number x depends only on f and C. U

The following result can be considered as a form of the closing lemma for expanding
Thurston maps. It is a key ingredient in the proof of Proposition 5.5.8, which will be used
to prove Theorem [5.5.1l Note that Lemma is more technical and in some sense slightly
stronger than the closing lemma for forward-expansive maps (see [PUIL0, Corollary 4.2.5]).
We need it in this slightly stronger form, since the distortion lemmas (Lemma [(.2.] and
Lemma [5.2.2]) cannot be applied in the proof of Proposition

Lemma 5.5.6 (Closing lemma). Let f, C, d, A satisfy the Assumptions. If f(C) C C, then
there exist M € Ny, &g € (0,1), and 5y > 1 such that the following statement holds:

For each § € (0,8)], if # € S? and | € N satisfy | > M and d(x, f'(z)) < 6, then
there exists y € S? such that f'(y) =y € UN*(x) and d(f'(x), fi(y)) < BodA~"=D) for each
i€{0,1,...,l}, where N = [—logA (50_15)} € Np.

Proof. Define

6o = (2K)TA-(FD, (5.5.2)
By = 4KAT = 2K 5, (5.5.3)
M = [log, (10K?) | + x € Ny, (5.5.4)

where K > 1 and k € Ny are constants depending only on f, C, and d from Lemma 2.4.T]

and Lemma [5.5.5] respectively.
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We fix § € (0, ] and set
B = Bod. (5.5.5)

Note that N = [—logA (551(5H = (—logA %w € Ny by (B.5.5) and (£5.3)). So

2KAN < B <2KA N (5.5.6)

and by (5.5.5) and (5.5.3), we have

6 < (2K)TATWER), (5.5.7)

Recall that by Lemma ZZ1(iii), for z € S? and n € Ny, we have

By(z, K*A™") < U™(2) < By(z, KA™). (5.5.8)

Fix z € S? and [ € N as in the lemma. Let X" € X" be an N-tile containing f'(z). By
Lemma [5.5.5], there exists an N-vertex v € V¥ N X% such that

UM (fH(z) < WY (V). (5.5.9)

There exist XV € XY and v € VN 0 XNH such that 2 € XV fH (XN = XV,
and f' (vN*) = oV, Since I > M and WM (oNF) C UNT(z), we get from (5E7), ((5.8),
and (5.54) that if z € WNT (vV+) | then

A*(N‘i’li) QKAf(NJrn)

< KA~ (Vs
oK 10K2 =

d (fl(x), z) <d (fl(;p),x) +d(z,2) < S+2K A~ N+ <

Thus by (5.5.8) and (B.5.9), we get
TNt N N+tw [l N (, N
W (M) U (f (@) S W (V).

By Lemma [5.5.4] there exists y € W (oN*t!) C UN*(z) such that f!(y) = y.

It suffices now to verify that d (fi(z), fi(y)) < BodA~U for i € {0,1,...,1}. Indeed,
since by Proposition 2.2.4]

{f'(x), f'(y)} € W (fl (’UNH)) C N+ (fl (,UNH))
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for 1 € {0,1,...,1}, we get from (B.5.), (55.0), and (B.5.5) that
d (fi(z), fi(y)) < 2KA" N+ < gA=0=0 — gisA=(=,
]

The next lemma follows from the topological transitivity (see [PUL0L Definition 4.3.1]) of
expanding Thurston maps and Lemma 4.3.4 in [PUI0]. We include a direct proof here for

completeness.

Lemma 5.5.7. Let f: S? — S? be an expanding Thurston map. Then there exists a point

x € S? such that the set {f"(z)|n € N} is dense in S*.

Proof. By Theorem 1.6 in [BMI0], the topological dynamical system (S?, f) is a factor of
the topological dynamical system (J¢,3) of the left-shift 3 on the space J“ of all infinite
sequences in a finite set J of cardinality card J = deg f. More precisely, if we equip J¥ = Jﬁo J
with the product topology, where J = {1,2,... deg f}, and let the left-shift operator er:nlap
(i1,79,...) € J¥ to (ig,13,...), then there exists a surjective continuous map &: J* — 52

such that oYX = fo&.
It suffices now to find y € J* such that the set {¥"(y)|n € N} is dense in J“. Indeed,
+oo
if we let {w;};en be an enumeration of all elements in the set (J J* of all finite sequences in

i=1
J, and set y to be the concatenation of wy, ws, ..., then it is clear that {X"(y)|n € N} is

dense in J¥. O

Following similar argument as in the proof of Proposition 4.4.5 in [PU10], we get the next

proposition. Note that here we do not explicitly use the distortion lemmas (Lemma [5.2.1]

and Lemma [5.2.2)).

Proposition 5.5.8. Let f, C, d, A satisfy the Assumptions. Let ¢, € C%*(S? d) be
real-valued Hélder continuous functions with an exponent o € (0,1]. If f(C) C C, then the

following conditions are equivalent:
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(i) If x € S* satisfies f"(x) = = for some n € N, then S,¢(z) = S, (z).
(ii) There exists a constant C' > 0 such that |S,¢(x) — S,v(x)| < C forz € S* andn € Ny.
(iii) There exists u € C%*(S?,d) such that $ — =wuo f —u.

Proof. The implication from (iii) to (ii) holds since |S,¢(x) — Sy (x)| = |(uo f)(x) —u(z)| <

2 ||u||, for x € S? and n € N.

To prove that (ii) implies (i), we suppose that f"(z) =« and D = S,,¢(x) — Sp(x) #0
for some x € S? and some n € N. Then |S,;¢(z) — Syt (z)| = ¢D > C for i large enough,
contradicting (ii).

We now prove the implication from (i) to (iii).

Let z € S% be a point from Lemma 557 so that the set A = {f(x)|i € N} is dense in
S?%. Set x; = f(x) for i € N. Note that z; # x; for j > ¢ > 0. Denote n = ¢ — ). Then
n € C%(S?% d). We define a function v on A by setting v(z,) = S,n(z). We will prove that

v extends to a Holder continuous function u € C%*(S? d) defined on S? by showing that v

is Holder continuous with an exponent a on A.

Fix some n,m € N with n < m and d(z,,z,) < 30, where §; € (0,1) is a constant
depending only on f, C, and d from Lemma [B.5.6 Set ¢ = d(x,,z,). We can choose
k € N such that d(z,,,zx) < € and k& > m + M, where M € N; is a constant from
Lemma Note that d(z,,zx) < d(zp, Tm) + d(@m, 1) < 26 < &g and k& > n + M.
Thus by applying Lemma with § = 2¢, there exist periodic points p,q € S? such that
() = p, fF(q) = ¢, d(fi(zn), f1(p)) < BodA~* D) for i € {0,1,...,k —n}, and
d(fi(zm), f7(q)) < BodA=F=m=D) for j € {0,1,...,k — m}, where By > 0 is a constant
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depending only on f, C, and d from Lemma Then by (i), we get that

0(xn) = v(@m)| = [Swn () — Smn(x)[leq| Sk—nn(@n)| + |Sk—mn(zm)]

k—n—1 k—m—1

< Z 7 (f'(zn) =0 (f'(p)| + Z 7 (f/(zm)) =0 (7 ()]

J
k—n—1 k—1m—
<Inl, 85" ( 3 aretenm o § A—a(k;—m_z‘)>
1=0 :

§21+a |n|a 6004604 ZA—ai _ Cd(l’n,l'm)a,

i=0
where C' = 2'%(1 — A=*)"1|n|, B¢ is a constant depending only on f, C, d, n, and «.
It immediately follows that v extends continuously to a Holder continuous function u €

C%(S2, d) with an exponent « defined on A = S%. Since u|4 = v and
(vo f)(wi) = v(w:) = v(zin) — v(z:) = Span(e) — Sm(z) = 1(f'(2)) = (@) — (@),
for i € N, we get that (uo f)(y) —u(y) = ¢(y) — ¥ (y) for y € S? by continuity. O
We are now ready to prove Theorem [5.5.11

Proof of Theorem[5.51. We fix a Jordan curve C C S? that satisfies the Assumptions (see
Theorem 2.5.1] for the existence of such C).

We first prove the backward implication. We assume that
d—19—Klg =uof—u (5.5.10)
for some u € C(S?) and K € R. It follows immediately from Proposition that

P(f,0)=P(f,¢) + K. (5.5.11)

By Theorem [5.2.15] Proposition [5.2.16], Corollary 5.2.17] and Theorem [(.3.14], the measure 1
(resp. fiy) is a Gibbs state with respect to f, C, and ¢ (resp. ) with constants P,, = P(f,¢)
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and C,,, (resp. P,, = P(f,¢) and C,,). Then by (.23), (2.5.10), and (E.5.11)), for i € N
and X' € X'(f,C),

no(XY) _ o e(S(x) —iP(f, )
pp(X7) = T exp(Sig(x) — iP(f, ¢))

= €, Gy explu(z) — (uo [)(@)) < Cp, Gy exp(2 Jull,.), (5.5.12)

where z € X*. Let E C S? be a Borel set with uy(F) = 0. Fix an arbitrary number € > 0.
We can find an open set U C 52 such that £ C U and pu,(U) < €. Set

+oo
V:U{inte(X)'Xe Uviro, XmE;é@,XgU}.
=0

00 .
Then E C VUA, where A= |J f7*(C). By Proposition 5.4.1] we have pgs(A) = py(A) =0.
So by (B.5.12), we get B

=0

Ho(E) < ps(V) < Duy(V) < Dpy(U) < De,

where D = C,,,C,,, exp(2[Jul|,). Thus g is absolutely continuous with respect to p,,. Sim-
ilarly g, is absolutely continuous with respect to ps. On the other hand, by Corollary [.4.6,
both g4 and p,, are ergodic measures. So suppose fig 7 [y, then they must be mutually

singular (see for example, [Wa82, Theorem 6.10(iv)]). Hence jiy = py.

We will now prove the forward implication. We assume jiy = fiy.

Denote F' = f", where n = n¢ is a number from the Assumptions with f*(C) = F/(C) C C.

By Remark 2.3.4] the map F' is also an expanding Thurston map.

m—1 — m—1 )
For the rest of the proof, we denote S,,,n = > no fiand S,,n = > no F for n € C(S?)
i=0 i=0
and m € Nj.

Denote ¢, = S, ¢ and v, = S,¢. It follows immediately from Lemma 2Z.4.3 that ¢,,, 1, €
C% (8%, d).

Note that since ji, is an equilibrium state for f and ¢, it follows that p, is also an

equilibrium state for " and ¢,. Indeed, by (3.2.4]) and the fact that h,, (f") = nh,,(f) (see
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for example, [Wa82, Theorem 4.13]), we have

PM¢(Fa¢n) :hu¢(fn)+/Sn¢dlu’¢:nhu¢(f)+n/¢dﬂ¢:np(fa¢) :P(Fagbn)a

where the last equality follows immediately from Proposition [5.2.16l Similarly, the measure

Iy = [y 1s an equilibrium state for F' and 1,.

Thus by Theorem [B.2.15], Proposition (5.2.16, Corollary 5.2.17, and Theorem [£.3.14] the
measure iy = [y is both a Gibbs state with respect to F', C, and ¢,, and with constants
P(F,¢,) and C, as well as a Gibbs state with respect to F, C, and 1,,, and with constants
P(F,4,) and C’, for some C' > 1 and ¢’ > 1. By (621), we have

Cor S P (Sntn(x) = Sptpn(x) — mP(F, ¢,) +mP(F,1b,)) < CC’

for z € $% and m € Ny. S0 |Sno, () — S, (z)| < log(CC) for z € 52 and m € Ny, where
Ou(@) = du(z) — P(F.dy) € CO(S%,d) and ¥, (2) = ¥n(z) — P(F,9) € C*(S%,d). By
Proposition £.5.8, there exists u € C%*(S?, d) such that

(wo f")(z) — u(z) = ¢, (z) — ¥, (2) = Spd(x) — Spt() — (5.5.13)
for z € S2, where § = P(F, ¢,) — P(F,1,,).
Fix an arbitrary point y € S2. By subtracting (5.5.13) with x = y from (E5.13) with
z = f(y), we get
(wo f")(y) = (wo f")(y) + (uo f)ly) —uly) = (do f")(y) — &(y) — (¥ o f")(y) + ¥ (y),

or equivalently,

o(f"(y) = (f"(y) — (wo f)(f"(y) +ulf"(y) = ¢(y) —¥(y) — (wo f)(y) +uly). (5.5.14)

Let z € S? be a point from Lemma [5.5.7 so that the set A = {f"(z) |i € N} is dense in
S2. By replacing y in (5.5.14) with f™(z) for i € Ny and induction, we get that
S (2)) = (f"(2)) = (wo [H(f™(2)) +u(f"(2)) = K
for i € N, where K = ¢(z) — ¢(2) — (uo f)(2) + u(z). Since A is dense in S? we get that
d(x) —P(x) = (uo f)(z) + u(z) = K for x € S? ie., the functions ¢ — ¢ and Klg are
co-homologous in C%*(S?,d). O
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5.6 Equidistribution

In this section, we will discuss equidistribution results for preimages. Let f, d, ¢, a satisfy
the Assumptions and let 4 be the unique equilibrium state for f and ¢ throughout this sec-
tion. We prove in Proposition [5.6.1] three versions of equidistribution of preimages under f™
as n — 400 with respect to p, and my as defined in Corollary [5.3.10, respectively. Propo-
sition B.6.T] partially generalizes Theorem [[LO.12] where we established the equidistribution

of preimages with respect to the measure of maximal entropy.

Proposition 5.6.1. Let f, d, ¢, a satisfy the Assumptions. Let ji4 be the unique equilibrium
state for f and ¢, and my be as in Corollary [5.3.10 and 5 as defined in (2.33). For each

sequence {x, }nen of points in S?, we define the Borel probability measures

( Y degp(y) exp (Su6(y)) by, (5.6.1)
" yefr(an)
1
&n = Z.(9) Z deg 4 (y) exp (S Z5fz v)) (5.6.2)
"N yefr(an)
~ 1 .
&n = Y degga(y) exp (Sa0(y))d,, (5.6.3)
Zn (¢) yef- n(xn)
for each n € No, where Z,(¥) = 3~ degp(y) exp (Sntb(y)), for ¢ € C(S?). Then
yef " (zn)
& D Mg as n — 400, (5.6.4)
&0 5 i asn — +oo, (5.6.5)
&0 55 11y as n —> +o0, (5.6.6)

We note that when ¢ = 0 and x,, = x,41 for each n € N, the versions (5.6.4]) and (5.6.0))
reduce to (LOI0) of Theorem

Proof. We note that (5.6.5]) follows directly from Lemma (5.3.17]

The proof of (5.6.4) is similar to that of Lemma [5.3.T1l For the completeness, we include

it here in detail.
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For each sequence {z, },en of points in S?, and each u € C(S?,d), by (8.3.2) and (5.2.25)

we have

By Theorem [5.3.9]

|

as n — +00. So by (5.2.32),

¢

£x(1) — u¢HOO — 50 and Hﬁﬁ(u) —uy /udm¢"oo 50

£20)(,)
S D)) fuam

Hence, (5.6.4) holds.
Finally, (5.6.6) follows from (5.6.4) and the fact that ¢ € C%*(S52, d) (Lemma [5.34) and
mg = g (Corollary B.3.10). O

5.7 A random iteration algorithm

In this section, we follow the idea of [HT03] to prove that for each p € S? the equilib-
rium state p, for an expanding Thurston map f and a given real-valued Holder continuous

potential (with respect to a visual metric) is almost surely the limit of

as n — +0o in the weak* topology, where gy = p, and ¢; is one of the points z in f~(¢;_1),
chosen with probability deg(r)exp (5@)), for each 7 € N. Here 5 is defined in (5.3.5).
Note that when ¢ = 0, we have that s is the measure of maximal entropy of f and that
6 = —huop(f) = —log(deg f), thus degy () exp (4(x)) = “EL2.

To give a more precise formulation, we will use the language of Markov process from the

probability theory (see, for example, [Dul(] for an introduction).

Let (X,d) be a compact metric space. Equip the space P(X) of Borel probability mea-

sures with the weak* topology. A continuous map X — P(X) assigning to ecach x € X
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a measure , defines a random walk on X. We define the corresponding Markov operator
Q: C(X)— C(X) by
Qola) = [ol) ) (571)
Let @* be the adjoint operator of @, i.e., for each ¢ € C(X) and p € P(X),
Javdo= [oa@ (5.7.2)
Consider a stochastic process (2, F, P), where
+o0
1. Q={(wo,wr,...)|w; € X,i € Ng} = [[ X, equipped with the product topology,
i=0
2. F is the Borel o-algebra on (2,
3. PeP(Q).
This process is a Markov process with transition probabilities { i, }rex if
P{wni1 € Alwo = 20,w1 = 21, ..., Wy = Zn} = s, (A) (5.7.3)

for all n € Ny, Borel subsets A C X, and z2g, 21, ..., 2, € X.
The transition probabilities {p,}.cx are determined by the operator ) and so we can

speak of a Markov process determined by Q).

Let f, d, ¢, a satisfy the Assumptions. Set @ = L. Then for each u € C(S?),

Qu(x) = / uly) dua(y),
where

T Z deg;(z) exp (g(z))@

zef~1(x)

By (5:3.8), we get that p, € P(S?) for each z € S?. We showed that the Ruelle operator in
(33T)) is well-defined, from which it immediately follows that the map x + p, from S? to

P(S?) is continuous with respect to weak* topology on P(S?).

Fix an arbitrary z € S2. Then there exists a unique Markov process (€, F, P,) determined

by @ with
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1. Q= ﬁ: 5?2, equipped with the product topology,
2. F being the Borel o-algebra on (2,
3. P, being a Borel probability measure on ) satisfying
PAwni1 € Alwo = z,w1 = 21, ..., Wy = 2n} = s, (A)
for all n € N, Borel subset A C S?, and 2z, 22, ..., 2, € S%

The existence and uniqueness of P, follows from [Lo77, Theorem 1.4.2]. Since the Markov
process (2, F, P,) is determined by f and ¢ as well, we will also call (€2, F, P,) the Markov

process determined by f and ¢.

Now we can formulate our main theorem for this section.

Theorem 5.7.1. Let f: S* — S? be an expanding Thurston map and d be a visual metric on
S? for f. Let ¢ € C%%(S?,d) be a real-valued Holder continuous function with an exponent
a € (0,1]. Let py be the unique equilibrium state for f and ¢ Let (2, F, P,) be the Markov
process determined by f and ¢. Then for each z € S%, we have that P,-almost surely,

n—1
Z(Swj SCIN [ty as n — +00. (5.7.4)
=0

1

n

In other words, if we fix a point z € S? and set it as the first point in an infinite
sequence, and choose each of the following points randomly according to the Markov process

determined by f and ¢, then P.-almost surely, the probability measure equally distributed

on the first n points in the sequence converges in the weak® topology to py as n — +oo0.

In order to prove Theorem [5.7.1] we need a theorem of H. Furstenberg and Y. Kifer from

[FK83].

Theorem 5.7.2 (H. Furstenberg & Y. Kifer 1983). Let Q@ = {w, € X |n € Ny} be the

Markov process determined by the operator Q. Assume that there exists a unique Borel
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probability measure p that is invariant under the adjoint operator Q* on P(X). Then for

each wy € X, we have that P, -almost surely,

n—1
1 w*
= E Ow; — [ as n — +00. (5.7.5)
n

=0

Theorem (B.7.1] follows immediately from Theorem and the fact that the equilibrium

state g is the unique Borel probability measure on S? that satisfies E;‘;(;%) = f1s (see

Corollary £.3.10).
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CHAPTER 6

Asymptotic h-Expansiveness

In this Chapter, we investigate the weak expansion properties of expanding Thurston maps,
summarized in Theorem [[.0.4. We first prove four lemmas in Section and Section in

preparation for the proof of Theorem [LL0.4, which is given in Section

6.1 Some properties of expanding Thurstons maps

We need the following three lemmas for the proof of the asymptotic h-expansiveness of

expanding Thurston maps with no periodic critical points.

Lemma 6.1.1 (Uniform local injectivity away from the critical points). Let f, d satisfy the
Assumptions. Then there exists a number dy € (0,1] and a function 7: (0,5y] — (0, +00)

with the following properties:

(i) lim () = 0.

6—0

(ii) For each § < &y, the map f restricted to any open ball of radius § centered outside
the T(8)-neighborhood of crit f is injective, i.e., f|p,w.e) is injective for each x € S* \

N;(é) (crit f).

This lemma is straightforward to verify, but for the sake of completeness, we include the

proof here.
Proof. We first define a function r: S?\ crit f — (0, 4+00) in the following way
r(xz) = sup{R > 0] f|B,(z,r) is injective},
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for z € 5%\ crit f. Note that r(x) < d(z,crit f) < +oo for each z € S?\ crit f. We
also observe that the supremum is attained, since otherwise, suppose f(y) = f(z) for some
Y,z € By(x,r(x)), then f is not injective on the ball By(x, Ry) containing y and z with
Ry = (r(z) + max{d(z,y), d(z, z)}) < r(z), a contradiction.

We claim that r is continuous.

Indeed, we observe that for each pair of distinct points x,y € S? we have r(z) >
r(y) —d(z,y). This is true since if r(y) —d(z,y) > 0, then By(z,r(y) —d(x,y)) C Ba(y,r(y)).
Now by symmetry, r(y) > r(z) — d(x,y). So |r(z) — r(y)| < d(z,y), and the claim follows.

Next, we fix a sufficiently small number ¢, > 0 with S?\ N°(crit f) # 0. We define a

function o: (0,%y] — (0, +00) by setting
o(t) = inf{r(z) |z € S*\ Nj(crit f)}

for t € (0,t9]. We observe that o is continuous and non-decreasing. Since r(x) < d(z, crit f)
for each x € S? \ crit f, we can conclude that PHOl o(t) = 0. By the definition of o, we get
%

that f|p, @) 18 injective, for ¢ € (0,ty] and @ € 5%\ Nf(crit f).

Finally, we construct 7: (0, do] — (0, +00), where 6y = min{1, o (ty)} by setting
7(0) = inf{t € (0,t0] | o(t) > d} (6.1.1)

for each & € (0,dp]. We note that (lsim 7(6) = 0.

—0

For 0 € (0,99] and t € (7(0),%], we have o(t) > 0 by (CII) and the fact that o
is non-decreasing. Since ¢ is continuous on (0,ty], we get o(7(d)) > 0. For each = €
S2\ Ng(é)(crit f), we know from the definition of o that f|p, 0(r@)) is injective. Therefore

f|By(z,0) 1s injective. -

Lemma 6.1.2. Let f and C satisfy the Assumptions. Fizm,n € Ng withm <n. If f(C) CC

and no 1-tile in X(f,C) joins opposite sides of C, then the following statements hold:

(i) For each n-vertez v € V*(f,C) and each m-vertex w € V™(f,C), ifv ¢ W' (w), then
W™ (w) N W"(v) = 0.

162



(i)

(iii)

For each n-tile X™ € X"(f,C), there exists an m-vertex v™ € V™ (f,C) such that

XnC W (um),

For each pair of distinct m-vertices p,q € V"(f,C), W”H(p) N W”H(q) = 0.

Recall that W™ is defined in (ZZ2) and W"(p) is the closure of W"(p). Note that a

flower is an open set (see [BM10, Lemma 7.2]) and by definition a tile is a closed set.

Proof. We first observe that in order to prove any of the statements in the lemma, it suffices

to assume n = m + 1. So we will assume, without loss of generality, that n = m + 1.

(i) Since v ¢ W' (w), by (ZZ2) we get that v ¢ ¢ for each m-cell ¢ € D™ with w € c.

Since f(C) = C, for each n-cell ¢ € D™ and each m-cell ¢ € D™, if ¢ Ninte(c’) # (), then

¢ C ¢ (see Lemma 4.3 and the proof of Lemma 4.7 in [BM10]). Thus ¢ N inte(c’) = @ for
ce D™ and ¢ € D" with w € cand v € ¢. So W™ (w) NW"(v) = 0 by [2:2:2).

(ii) Let X™ € X™ be the unique m-tile with X™ C X™. Depending on the location of

X™in X™ it suffices to prove statement (ii) in the following cases:

(1)
(2)

Assume that X™ C inte(X™). Then X™ C W™ (v™) for any v™ € X" N'V™,

Assume that () # X™ N e C inte(e) for some m-edge e € E™ with e C X™. Then since
no 1-tile joins opposite sides of C, by Proposition 2.2.4(i), either X” N 9X™ C inte(e)
or there exists ¢ € E™ such that X™ N 9X™ C inte(e) U inte(e¢’) and ene’ = {v} for
some v € V™. In the former case, choose any v™ € e N V™; and in the latter case, let

v"™ =wv. Then X™ C W™(v™).

Assume X"N'V™ = (). Since no 1-tile joins opposite sides of C, by Proposition Z2.4(i),
there exists some m-vertex v € V" such that X"N'V™ = {v™}. Let e, ¢’ € E™ be the
two m-edges that satisfy eUe’ C X™ and eNe’ = {v™}. Then by Proposition [Z.2.4(i)
and the assumption that no 1-tile joins opposite sides of C, we get that X" N oX™ C
{v"™} Uinte(e) Uinte(e’). Thus X" C W™ (v™).
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(iii) We observe that since no 1-tile in X! joins opposite sides of C and f(C) C C, by

Proposition Z22Z4(1), each (k + 1)-tile X**! contains at most one k-vertex, for k € N,.

Let p,q € V™ be distinct. Then by Remark and the observation above, we know
q ¢ W' (p). So by part (i), we get W"(p) N W™t (q) = (). Since flowers are open sets,
we have W™ (p) N W”+1(q) = (). Tt suffices to prove that Wn+1(29) C W™(p). Indeed this
inclusion is true; for otherwise, there exists an (n + 1)-tile X! C W”+1(p) and a point
x € W' (p) \ W"(p) such that {z,p} C X", By (222) and applying Proposition ZZZ4(i),

we get a contradiction to the assumption that no 1-tile in X! joins opposite sides of C. O

Let f: S? — 52 be an expanding Thurston map, and C C S? a Jordan curve containing
post f such that f(C) C C. We denote, for m € Nyg, n € N, ¢ € S?, and ¢; € V"(f,C) for
ie{0,1,...,n—1},

En(qo,q1, -y Gn-1;9) :{x € f(q) ’ fi(x) € Wm(ql-),z’ €{0,1,...,n— 1}} (6.1.2)
n—1
@0 (770" w) ).
i=0
where W' (¢;) is the closure of the m-flower W™ (¢;) as defined in Section 2.1

Lemma 6.1.3. Let f: S? — S? be an expanding Thurston map, and C C S? a Jordan curve

containing post f such that f(C) CC. Then

n

(W™ (p:) € U W (), (6.1.3)

1=0 T€EEm (po,p1,--Pn—1;Pn)

form € No, n € N, and p; € V"(f,C) fori €{0,1,...,n}. Here E,, is defined in (G.12).

Proof. We prove the lemma by induction on n € N.
For n = 1, we know that for all py, p; € V™(f,C),

W (o) 0T W) S W @) [e € ST ) W)} = W (@)

x€Em (po;p1)

by (6I2) and the fact that W™ (2) "W (po) = 0 if both z € V™ +1(f,C) and = & W' (po)
are satisfied (see Lemma B.T.2(1)).

164



We now assume that the lemma holds for n = [ for some [ € N.

We fix a point p; € V" (f,C) for each ¢ € {0,1,...,1,1+ 1}. Then

I+1 I+1
M)V () = W) 01 £~ (ﬂf - WW(pz»)
=0
By induction hypothesis, the right-hand side of the above equation is a subset of

a0 U )

x€Em (p1,02,--P13P1+1)

= U (W™ (po) N f~H (W™ (2)))

TE€Em (p1,p2,P1iPI+1)

U (U elye £ i@y e m)})

2€EEm (p1,p2;--,D13P1+41)

= U U wr i),

TEEm (p1,02;--,P1;P1+1) YEEm (po;)

where the last two lines is due to (G12) and the fact that W™+ (y) N W™(py) = 0 if both
y € VHEL(F C) and y ¢ W' (po) are satisfied (see Lemma BL2(i)).

N

We claim that
U Eun(po; ©) = En(po, p1, - - P Pis)-
2EEm (P1,02,--,P1iPI+1)

Assuming the claim, we then get
I+1

(Vv m) U W (y).

€ Em (po,p1,---P1;PI+1)

Thus it suffices to prove the claim now. Indeed, by (6.1.2]),

U Em(p03x>

2€EEm (p1,02--P1;P1+1)

={y€f‘1(w) v €W (o). w € [ (pr1) (ﬂf’“ >>)}

yeW"™( ﬂf”l ))}

=FE(po,P1s - -+ D13 Pis1)-

:{y € " (i)

The induction step is now complete. O
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6.2 Concepts from graph theory

We now review the notions of a simple directed graph and of a finite rooted tree that will be
used in the proof of Theorem [6.3.1l Since the only purpose of such notions is to make the
statements and proofs precise, and we will not use any nontrivial facts from graph theory, we
adopt here a simplified approach to define relevant concepts as quickly as possible (compare

[BIGO9)).

A simple directed graph G = (V(G),E(G)) is made up from a set of vertices V(G) and a
set of directed edges
£(G) SV(G) x V(G) \ {(v,v) [v e V(G)}.

A simple directed graph G is finite if card V(G) < +oo. Two wertices v,w € V(G) are
connected by a directed edge (v,w) if (v,w) € £(G). If e = (v,w) € £(G), then we call v
the initial vertexr of e, denoted by i(e), and w the terminal vertex of e, denoted by t(e).
The indegree of a vertex v € V(G) is d”(v) = card{w € V(G)|(w,v) € £(G)}, and the
outdegree of v is d*(v) = card{w € V(G) | (v,w) € £(G)}. A path from a vertex v € V(G) to
a vertex w € V(G) is a finite sequence of vertices v = vy, vy, v, ..., V,_1,V, = w such that
(vi,vi41) € E(G) for each i € {0,1,...,n — 1}. The length of such a path is n. The distance
from v to w is the minimal length of all paths from v to w. By convention, the distance from
v to v is 0, and if there is no path from v to w for v # w, then the distance from v to w is

oo. If the distance of v to w is n € Ny, then we say that w is at a distance n from v.

A finite simple directed graph T is a finite rooted tree if there exists a vertex r € V(T)
such that for each vertex v € V(T ) \ {r} there exists a unique path from r to v. We call
such a simple directed graph a finite rooted tree with root r, and r the root of 7. Note that
a finite rooted tree has a unique root. A vertex v of a finite rooted tree T is called a leaf (of

T)if d*(v) =0. If (v,w) € E(T), then w is said to be a child of v.

Lemma 6.2.1 (A bound for the number of leaves). Let T be a finite rooted tree with root r
whose leaves are all at the same distance from r. Assume that there exist constants ¢,k € N

with the following properties:
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Figure 6.2.1: The function h for a finite rooted tree.

(i) d*(x) < c for each vertex x € V(T),

(i) for each leaf v, the number of vertices w with d*(w) > 2 in the path from r to v is at

most k.

Then number of leaves of T is at most c*.

Proof. Let N € Ny be the distance from r to any leaf of 7. For each n € Ny, we define V),
as the set of vertices of T at distance n from r. It is clear that a vertex v € V(7)) is a leaf

of T if and only if v € Vy.

We can recursively construct a function h: V(7) — £ by setting h(r) = 1, and for each

v € V(T), defining h(v) = d}fr(zulg), where w € V(7)) is the unique vertex with (w,v) € E(T).
See Figure [0.2.1]

By the two properties in the hypothesis, we have h(v) > ¢=* for each leaf v € V(T)

of 7. On the other hand, it is easy to see from induction that > h(w) = 1 for each
wEVn

n € {0,1,...,N}. In particular, we have > h(w) = 1. Thus card Vy < c*. Therefore, the

weEVN
number of leaves of T is at most c*. O

6.3 Proof of Theorem [1.0.4]

We split Theorem [[.0.4] into three parts and prove each one separately here.
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Theorem 6.3.1. An expanding Thurston map f: S* — S? with no periodic critical points

18 asymptotically h-expansive.

Proof. We need to show h*(f) = 0. By ([8.44), it suffices to prove that f is asymptotically
h-expansive for some i € N. Note that by (ZL2), f* has no periodic critical points for each
1 € N if f does not. Thus by Lemma 252 we can assume, without loss of generality, that
there exists a Jordan curve C C S? containing post f such that f(C) C C, and no 1-tile joins
opposite sides of C. We consider the cell decompositions of S? induced by f and C in this

proof.

Recall that W? defined in (Z2.3]) denotes the set of all i-flowers W¥(p), p € V¢, for each
1 € Np.

Since [ is expanding, it is easy to see from Lemma 2.4.1] Proposition 2.2.4] and the

Lebesgue Number Lemma ([Mu00, Lemma 27.5]) that {W'};cy, forms a refining sequence
of open covers of S? (see Definition B.I.T]). Thus it suffices to prove that

n—1
B(f) = lim lim lm LH (\/ £ (W
=0

m——+0o0 [—+oon—+oo N

\_/ f (Wm)> =0. (6.3.1)

=0

See ([3.4.2) for the definition of H.

We now fix arbitrary n,m,l € N that satisty m +n > 1 > m.

The plan for the proof is the following. We will first obtain an upper bound for the
number of (m + n — 1)-flowers needed to cover each element A in the cover n\_/l 7 (Wm)
of 2. By Lemma [G.1.3] it suffices to find an upper bound for card E,,(po, p1, - ] .:,Opn,g; Pn—1)
for po,p1,. .., pn_1 € V™. We identify E,,(po,p1,---,Pn—2;Pn1) With the set of leaves of a
certain rooted tree. By Lemma [6.2.1] we will only need to bound the number of vertices with
more than one child in each path connecting the root with some leave. This can be achieved
after one observes that for an expanding Thurston map with no periodic critical points, the
frequency for an orbit getting near the set of critical points is bounded from above. After
this main step, we will then find an upper bound for the number of (I + n)-tiles needed to
cover A. By observing that each (I 4 n)-tile is a subset of some element in n\_/l [ (Wl), we

j=0
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4 (pnfla O)

Figure 6.3.1: An example of 7 with n =5 and ¢(v, 3) = 4.

n—1 n—1
will finally obtain a suitable upper bound for H ( \V f (WZ) \V [ (Wm)> which leads
i=0 5=0
to (63.1).
n—1
Let Ae \/ f9(W™), say
=0
’ n—1
A=) W™ () (6.3.2)
i=0
where po, p1,...,Pn_1 € V™. By Lemma [6.1.3]
AC U Wl (g), (6.3.3)
z€EEm(po,p1,--Pn—2iPn—1)
where E,, is defined in (6.1.2).
We can construct a rooted tree T from FE,,(po,p1,--.,Pn2;Pn—1) as a simple directed

graph. The set V(T) of vertices of T is

V(T) = U {(fz(x>7n —1- 2) S SQ X I\IO } S Em<p07p17 s 7pn72;pn71)}-
1=0

Two vertices (z,1), (y,7) € V(T) are connected by a directed edge ((z,i), (y,7)) € E(V) if
and only if f(y) = x and j = i + 1. Clearly the simple directed graph 7 constructed this

way is a finite rooted tree with root (p,_1,0) € V(7).
Observe that if a vertex (z,i) € V(T ) is a leaf of T, then z € f~""(p,_;) and i =n — 1.

For each (z,i) € V(T), we write c(z,i) = d*((x,1)), i.e.,

c(x,i) = card{(y,i+ 1) e V(T) | f(y) = x}. (6.3.4)

169



We make the convention that for each x € S? and each i € Z, if (z,i) ¢ V(T), then
c(x,i) = —1. See Figure for an example of 7.

Recall that by (6.1.2),
Em(p()apla cee 7pn72;pnfl) = {y € fﬁnJrl(pnfl) } fl(y) S Wm(pl>72 € {07 17 S 2}}

So if (x,7) € V(T), then c¢(z,i) is at most the number of distinct preimages of z under f
contained in W' (pi41). Thus

0 <e(z,i) <deg f for (z,i) € V(T). (6.3.5)

Fix a visual metric d on S? for f with expansion factor A > 1. The map f is Lipschitz
with respect to d (see Lemma [Z4.3). Then there exists a constant K > 1 depending only
on f and d such that d(f(z), f(y)) < Kd(x,y) for z,y € S?. We may assume that K > 2.

Define
N. = max{min{i € N| f/(z) ¢ crit f if j > i} |2 € crit f}.

The maximum is taken over a finite set of integers since f has no periodic critical points. So
N, € N. Note that by definition, if z € crit f, then fi(x) € post f \ crit f for each i > N..

Denote the shortest distance between a critical point and the set post f \ crit f by
D. =min{d(z,y) | x € post f \ crit f,y € crit f}.
Then D, € (0,400) since both post f \ crit f and crit f are nonempty finite sets.
We now proceed to find an upper bound for
card {i € {0,1,...,n— 1} |c(f'(2),n — 1 —1) > 2}

for each (z,n — 1) € V(T), uniform in (2,n — 1). Recall that z € f~""(p,_1) for each
(z,n—1) € V(T). We fix such a point z.

In order to find an upper bound, we first define, for each i € N sufficiently large,

M, = LlogK (Dgggicj/;) >J _ 9, (6.3.6)
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Figure 6.3.2: *1, %y, %3 € crit f, r = 7(3CA™™), and ¢(f*(2),n — 1 —1) = 2.
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where the function 7 is from Lemma [6.T.0] and C' > 1 is a constant depending only on f, C,
and d from Lemma 241l Note that 7(3CA™") — 0 as i — +oo (Lemma [G.1.1), thus M;

is well-defined for ¢ sufficiently large, and

lim M; = +o0. (6.3.7)

i—+00
We assume that m is sufficiently large such that the following conditions are both satisfied:

(i) m > log, (%),

(ii) M,, > N,

where ¢y € (0, 1] is a constant that depends only on f and d from Lemma Note that
by Lemma [2.4.7], each m-flower is of diameter at most 2CA~™. Thus condition (i) implies
that for each v € V™, each pair of points z,y € W' (v) satisfy d(x,y) < 3CA™™ < .

Fixk € {0,1,...,n—1} with ¢ (f*(z),n — 1 — k) > 2. Then k # 0 and the number of dis-
tinct points in W' (pe—_1) that are mapped to f*(z) under f is at least ¢ (f*(z),n—1-k) >
2. Thus f is not injective on W' (pp_1). See Figure6.3.2 By Lemma 241} diam, (Wm(pk_l)) <
20A~™. Since f571(2) € W (pr_1), the map f is not injective on By (f*1(z),3CA™™).
Then since 3CA™™ < §y, by Lemma [G.1T.1]

d(f*'(2),crit f) <7 (3CA™™).
Choose w € crit f that satisfies d (f*~'(z),w) < 7 (3CA™™). Then for each j € Ny,
d (97 1(z), f/(w)) < K'7 (3CA™) . (6.3.8)

We will show that in the sequence f*(z), f¥*1(2),..., ff*¥m=(2), the number of terms

fE(2), 0 < j < M,,, for which the vertex
(f*(z),n—1—k—j) € V(T)
has at least two children is bounded above by N, i.e.,
card {j € {0,1,..., M} |c(f*7(z),n—1—k—j) > 2} < N.. (6.3.9)
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Note that M, is defined in (6.3.6). Here we use the convention that for each x € S? and
each i € Z, if (z,i) ¢ V(T), then c¢(x,i) = —1.

Indeed, for each j € {N,, N.+1,...,min{M,,,n—1—k}}, we have f/(w) € post f\crit f.
Note that here M, > N, by condition (ii) on m. Thus by (€.3.8) and (6.3.6)),

d (f771(2), erit f) > d (erit f, [ (w)) —d (f(w), f£771(2))
> D.— K'7(3CA™™)
> D, — KMmr(3CA™™)

D, —1(3CA™™) .
> D, — ( “BOA) )T(3CA )

=T7(3CA™™).

Hence by Lemma [G.I1], the restriction of f to By (f*™71(z),3CA™™) is injective. Note that
fEHI7Y(z) € W (pryj-1), and by Lemma AT diamg (W' (pryj-1)) < 2CA™™. So f is

injective on W' (pjy;_1). Thus
c(ffz)n—-1-k—j)=1
for each j € {N,, N.+1,..., min{M,,,n — 1 — k}}. Hence
c(ff(z)n—-1-i—j)e{1,-1}

for each j € {N., N.+1,..., M,,}. Then (£.3.9) holds.

Thus we get that

card {i € {0,1,....,n— 1} |c(f'(2),n—1—14) > 2} <N, [MLJ (6.3.10)

for each (z,n — 1) € V(T).

Hence by (6.3.10), (€.3.5), and Lemma [6.2.1] we can conclude that the number of leaves

of T is at most (deg f )NC(MLmH) , or equivalently,

card Em(p07p17 s 7pn72;pn71) S (deg f)NC(MLerl)' (6311)
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We have obtained an upper bound for the number of (m +n — 1)-flowers needed to cover
A. Next, we will find an upper bound for the number of (m +n — 1)-tiles, and consequently,

an upper bound for the number of (I 4+ n)-tiles, needed to cover A.

Denote the maximum number of i-tiles contained in the closure of any i-flower, over all

1 € Ny, by Wy, ie.,
Wy = sup { card {X* € X*| X' C W’ (v)} | j € No,v € VI}.
Observe that Wy = sup{2deg;:(v)|i € Ng, v € V'}. Since f has no periodic critical points,
it follows from [BM10, Lemma 17.1] that W/ is a finite number that only depends on f.
Thus we can cover A in (6.3.2)) by a collection of (m + n — 1)-tiles of cardinality at most
Wy(deg f)NC(ﬁH).

On the other hand, we claim that each (I +n)-tile X' € X" is a subset of at least one
n—1

element in the open cover \/ f~{(W!) of S2. To prove the claim, we first fix an (I + n)-tile
i=0

Xt e X By Proposition Z2.4((ii) and Lemma G.T2(ii), for each i € {0,1,...,n — 1},

there exists an l-vertex v; € V! such that f* (X"*") C W'(v;). Thus

n—1
xin C ﬂ f—i (Wl(vz)) '
i=0
The proof for the claim is complete.

Note that for each (m +n — 1)-tile X™*"~1 € X"~ the collection
{Xl+n c xXHn | xl+n ¢ Xm-i—n—l}

forms a cover of X"~ and has cardinality at most (2 deg f)!"™*!, which follows immedi-

ately from Proposition 2.2.4]

n—1
Hence, we get that for each element A of \/ f~/(W™), we can find a cover of A con-
j=0

n—1
sisting of elements of \/ f~(W') in such a way that the cardinality of the cover is at most
i=0

(2deg f)=H W (deg f)Ne(wimt1),
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We conclude that

B(f)< lim lim lim ~log ((2degf)l—m“Wf(degf)Nc(ﬁH))

m——+oo [—-+ocon—+oo N

. . 1 n
= o lim ) tm O (M—m * 1) log(deg f)
i Yelog(deg f)
= lim ————==
m——+00 Mm
= 0.
The last equality follows from (6.3.7). Therefore h*(f) = 0. O

Recall that a point x € S? is a periodic point of f: S? — S? with period n if f"(x) =z
and f'(x) # x for each i € {1,2,...,n —1}.

Theorem 6.3.2. An expanding Thurston map f: S? — S? with at least one periodic critical

point is not asymptotically h-expansive.

Proof. We need to show h*(f) > 0. By (B.44), it suffices to prove that f? is not asymptoti-
cally h-expansive for some 7 € N. Note that by [2I1.2), if a point x € S? is a periodic critical
point of f for some i € N, then it is a periodic point of f and there exists j € Ny such that
f7(x) is a periodic critical point of f. Thus each periodic critical point of f7 is a fixed point
of f7if 7 € N is a common multiple of the periods of all the periodic critical points of f.
Hence by Lemma 2.5.2] we can assume, without loss of generality, that there exists a Jordan
curve C C S? containing post f such that f(C) C C, and no 1-tile joins opposite sides of C,

and each periodic critical point of f is a fixed point of f.
Let p be a critical point of f that is fixed by f.

In addition, we can assume, without loss of generality, that f~'(p) \ C # (). Indeed, by
Lemma 2.3.5] there exists j € N such that f=7(p) \ C # 0. We replace f by f7, and observe
that by ([2.I.2)) and the fact that each periodic critical point of f is a fixed point of f, the
set of periodic critical points of f and that of f/ coincide. Note that for the new map and
its invariant curve C, no 1-tile joins opposite sides of C, and each periodic critical point is a

fixed point.
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From now on, we consider the cell decompositions of S? induced by f and C in this proof.

Recall that for i € Ny, we denote by W' as in (Z23)) the set of all i-flowers W(p) where
p € Vi

Since f is expanding, it is easy to see from Lemma 2.4.1] Proposition 2.2.4] and the
Lebesgue Number Lemma ([Mu00, Lemma 27.5]) that {W'};cy, forms a refining sequence
of open covers of S? (see Definition B.I.T]). Thus it suffices to prove that

\_/ f (Wm)> > 0.

J=0

m——+o00 [—w+oon—+oo N

n—1
B(f) = lim lim lm LH (\/ £ (W
=0

See ([3.4.2) for the definition of H.

Our plan is to construct a sequence {v;}eny of m-vertices such that for each n € N,
n—1 n—1

the number of elements in \/ f~* (W') needed to cover B, = () f~/(W™(v,_;)) can be
Y j=0

bounded from below in suchz_zf way that A*(f) > 0 follows immediately. More precisely, we
observe that the more connected components B, has, the harder to cover B,. So we will
choose {v; }ien as a periodic sequence of m-vertices shadowing an infinite backward pseudo-
orbit under iterations of f in such a way that each period of {v;};cny begins with a backward

orbit starting at p and approaching p as the index ¢ increases, and then ends with a constant

sequence staying at p. By a recursive construction, we keep track of each B, by a finite

n—1
subset V,, C B, with the property that card(ANV,) < 1 for each A € \/ [ (Wl) A
i=0
quantitative control of the size of V,, leads to the conclusion that ~A*(f) > 0. The fact that
the constant part of each period of {v;};en can be made arbitrarily long is essential here and

is not true if f has no periodic critical points.

For this we fix m,l € N with [ > m + 100.
Let k = deg(p). Then k > 1.

Define ¢y = p and choose ¢; € f~(p) \ C. Then ¢, is necessarily a 1-vertex, but not a
0-vertex, i.e., ¢, € VI\ VO Since ¢; ¢ C, we have ¢, € W% (p). By (Z2.2), the only 2-vertex
contained in W?2(p) is p. So ¢ € WO(p) \ W?(p). Since f (Wi(p)) = Wi=(p) for each i € N
(see Remark 2.2.7]), we can recursively choose ¢; € V7 for j € {2,3,...,m} such that
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(1) flg) =g,
(ii) ¢ € W/ (p) \ W/ (p).

We define a singleton set Q,, = {¢m}-
We set ¢, = gpn.

Next, we choose recursively, for each j € {m + 1,m + 2,...,1 — 2}, a set Q; with

card Q; = k=™ consisting of distinct points q]i- e Vi ie{l,2,...,k’~™}, such that
() f(Q;) =@,

(i) Q; € Wil (p) \ Witl(p).

Note by Remark 2.2.5] it is clear that these two properties uniquely determines @); from
Qj-1.

Finally, we construct recursively, for j € {l —1,1,1+ 1}, a set Q; with card Q; = k'=>=™
consisting of distinct points ¢} € V7, i€ {1,2,... k"27™} such that

(i) f(d}) =dq,1,
(i) Q; € Wi t(p) \ W7t (p).

We will now construct recursively, for each n = (I + 1)s + r, with s € Ny and r €
{0,1,...,1}, an m-vertex v, € V™ and a set of n-vertices V,, C V" such that the following

properties are satisfied:
(1) V,, € W™(v,) for n € Ny;
(2) f(Vn)=V,_q forneN;
(3) For s € Ny, and

(1> for r = 0, ‘/(14*1)84*1" - Wl(p)a
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(i) for r € {1,2,...,m}, Vig1)ser C WH! (v(l+1)s+r),

(iii) for r € {m + 1,m + 2,...,1 — 2}, there exists, for each i € {1,2,...,k""™}, a
subset ‘/'(Zé+1)5+7' of Vii41)s4» such that

(a) ‘/(§+1)s+r NV

(I41)s+r @ for 1 <i< j < kr—m’

kr—m

(b) ‘!1 ‘/(§+1)s+r = V(l+1)s+r,

(c) V(Zi+1)s+r C W (qp),

(iv) for r € {l — 1,1}, there exists, for each i € {1,2,...,k""2>"™}, a subset Viii1)ssr OF

Vii41)s+r Such that

(a) V(%H)sw %

kl—Q—m

(b> ‘!1 ‘/7(3+1)3+r = ‘/(l—l—l)s—l—ra

(c) Vi

(I+1)s+r cwH! (4));

n—1
(4) forn e Ny, A€ \/ 7/ (W'), and z,y € V,, with x # y, we have {z,y} ¢ A.
i=0

We start our construction by first defining v,, € V™ for each n € N. For s € Ny and
re{0,1,...,m}, set vgi1)s4r = ¢r. Fors € Ngand r € {m+1,m+2,...,1l}, set vgi1)s4r = P

We now define V,, recursively.

Let Vo = {qo}. Clearly V} satisfies properties (1) through (4).

Assume that V}, is defined and satisfies properties (1) through (4) for each n € {0,1,..., (I+

1)s +r}, where s € Ny and r € {0,1,...,l}. We continue our construction in the following

cases depending on r.

Case 1. Assume 1 € {0,1,...,m — 1}. Then vgi1)s4r = ¢ and Vg 1)spri1 = Gria-

Since f (W' (g,41)) = W' (q,) (see Remark 227), and Viip1)s4r € W'(g,) by the in-

duction hypothesis, we can choose, for each € V{;11ys1r, a point 2’ € WL(g,11) such that
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f(2") = z. Then define V(;;1)s1r41 to be the collection of all such chosen 2’ that corresponds

to x € Vig41)s4». Note that

card Vigy1)s4r+1 = card Vigp1ysqr-

All properties required for V{;;1)s4,4+1 in the induction step are trivial to verify. We only

consider the last property here. Indeed, suppose that x,y € V(ji1)s4r41 satisfy that x # y

(I+1)s+r A
and {z,y} C A for some A € S~ (W"). Then by construction f(z), f(y), and f(A)
0

i=

satisfy
(I4+1)s+r—1 )
(a) f(A) C Bforsome Be \/ 7 (W),
i=0

(b) f(2), f(y) € Visyssr, and f(z) # f(y),

(¢) {f(x), f(y)} € f(A) € B.

This contradicts property (4) for V{i41)s4» in the induction hypothesis.

Case 2. Assume r € {m,m + 1,...,1 — 3}. Then V(i41)s4+r+1 = Dy V(it1)s+m = Gm, and
when r # m, we have v(11)s4r = P

1

I+1)s+r — Vi41)s+r- Recall that qt = Gm.

If r = m, we define Vi

Note that for each ¢ € {1,2,...,k""1=™} f (WHz (Qiﬂ)) = W (g}) for some j €
{1,2,...,k"™} (see Remark [Z2.5]), and Vv(l'—l—l)s—l—r
For each j € {1,2,...,k" ™}, each x € ‘/(g—f—l)s—i—r’
F W92 (1)) = WIH 2, we can choose a point f € WIF2 () such that £(«) = =

C W (¢4) by the induction hypothesis.
and each i € {1,2,...,k""™™} with

Then define V& F1)strt1 1O be the collection of all such chosen z’ that corresponds to x €
) k‘.'r+17'm '
Vé+1)5+r_ Set Viip)s4ri1 = ‘!1 ‘/(Zl+1)s+r+1'

Since Q1 C V™ NW™(p), r € {m,m+1,...,1 =3}, 1>m+ 100, and no 1-tile joins

opposite sides of C, we get that

(a) fori,5 € {1,2,...,k"™"™} with i # j, by Lemma BT.2(iii),

W2 (gr0) N W2 (gl) =0,
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Nnv?

(I41)s+r+1 0,

i
and so V(l+1)s+r+1

(b) Viustysr41 € W™ (p).

Thus
card Vg 1)s4r1 = k card Vi 1ysy,

We only need to verify property (4) required for V{;1)s4,41 in the induction step now. In-
deed, suppose that =,y € Vij41)s4r41 With  # y and {z,y} C A for some A € VAl fe (Wh.
Then A C W!(v!) for some v' € V!. By construction, there exist i,j € {1,;,:.0. L krrimmy
such that & € W' (qgi,,) and y € W' (q,;). Note that ¢/, ¢, € V'V, r €
{m,m+1,...,1-3}, and I > m+100. So ¢, ¢/, € VI=2. Since x € W' (v )nW"2 (¢,,),
we get ¢!, € Wl(vl) by Lemma BE.T2(i), and thus ¢! € Wl(qiﬂ). Similarly o' € Wl(qiﬂ).
Since ¢, qﬁH € V=2 and no 1-tile joins opposite sides of C, we get from Lemma B.T.2|(iii)
that ¢/, = ¢, ie, i =j. Thus f(z) # f(y) by construction. But then f(z), f(y), and
f(A) satisfy

(I41)s+r—1

(a) f(A)C Bforsome Be \/ [ (W),

a=0

(b) f(2), f(y) € Visyssr, and f(z) # f(y),

(¢) {f(2), fy)} € f(A) € B.

This contradicts property (4) for V(;;1)s4» in the induction hypothesis.

Case 3. Assume r € {l — 2,1 — 1,1}, then v41)siri1 = V(i41)s4r = D-

Note that for eachi € {1,2,...,k"=27™}, f (W2 (¢!, ,)) = W't (¢!) (see Remark Z2.5)),
and ‘/(§+1)s+r C W' (g}) by the induction hypothesis. For each j € {1,2,...,k727™} and
each z € \/(§+1)8+r, we can choose a point 2/ € W!*?2 (qfnﬂ) such that f(z') = z. Then define

‘/E§+1)S+T+1 to be the collection of all such chosen 2’ that corresponds to x € \/(§+1)8+r. Set
kl—2—-m

Vis)strir = L_Jl V(%+1)s+r+1‘

Since Q.1 C V™I NW"(p), r € {Il —2,1—1,1}, and | > m + 100, we get that
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(a) fori,j € {1,2,...,k'"27™} with i # 7,

f(‘/&Jrl)erTJrl) A f(‘/(Jl-l—l)s-l-r—i—l) = ‘/(ZlJrl)err N ‘/d-l—l)s-l—r = @

(by the induction hypothesis), and so

Vigrysarsr N ‘/({+1)s+r+1 =0,

(b) Vies1ys+re1 € W™ (p),
(c) if r =1, then Vii11)syri1 © WHp).

Thus

card Viiy1)s1rt1 = card Vigy1ysir

We only need to verify the last property required for Vijy1)s4r41 in the induction step

now. Indeed, suppose that =,y € Viji1)sqri1 with @ # y and {z,y} C A for some A €
(I4+1)s+r ]

\V /7" (W'). Then by construction f(z), f(y), and f(A) satisfy

i=0

(I4+1)s+r—1
(a) f(A) C B for some B € \V [ (Wl)’

1=0

(b) f(2), f(y) € Visyssr, and f(z) # f(y),

(¢) {f(x), f(y)} € f(A) € B.

This contradicts property (4) for V{;41)s4. in the induction hypothesis.

The recursive construction and the inductive proof of the properties of the construction

are now complete.

Note that by our construction, we have

card Vij41)s = fU—m=2)s s e N. (6.3.12)
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For each s € N, we consider

(I4+1)s— (l+ )s—
l+1 ﬂ U(l+1 )s— ] \/

Then V(;11)s € Bgy1)s by properties (1) and (2) of the construction. On the other hand, by

(I4+1)s—1 )
property (4),if AC \/ [ (Wl) satisfies
5=0

U.A 2 Basns 2 Vigs:
So card A > card V(i 1)s.

Thus by (B.43), (3.4.2), and (6.3.12),

R*(f)= lim lim lim — (\/f_Z W)

m——+0o0 [—+oon—+oo N

> lim inf lim inf lim inf
m—+00 l—+co s—+00 (l + 1)3

| —

lOg (k(lfm72)s)

— lim inf lim inf ——— Z log k
m——+oo [—+oo [ +1

= logk

> 0.

Therefore, the map f is not asymptotically h-expansive.

\/ f (Wm>>

O

Lemma 6.3.3. Let g: X — X be a continuous map on a compact metric space (X,d). If g

18 h-expansive then so is g" for each n € N.

The converse can also be easily established, i.e., if g" is h-expansive for some n € N, then

so is g. But we will not need it in this paper.

Proof. We first observe from Definition B.I.1] that if {{ }en, is a refining sequence of open

n—1
covers, then so is {£"}en, for each n € N, where £ = \/ g7 (§;). We also note that given

an open cover A of X, we have

Vo=V @) o



n—1
for n,m € N, where A" = \/ g7%(\).
k=0

Assume that g is h-expansive, then h(g|A) = 0 for some finite open cover A of X. Thus

for each n € N,

mn—1
h(glA) = lim lim iH( \V g7 (&)
i=0

l—+o00 m—+o0 MN

n l—+oo m—+o0 M 0
1=

T (\/ (9") " (&)

1
- (g"A"),

where £, \" are defined as above. Note that A" is also a finite open cover of X. Therefore

h(g"|A\") =0, i.e., g™ is h-expansive. O

The proof of the following theorem is similar to that of Theorem [6.3.2] and slightly
simpler. However, due to subtle differences in both notation and constructions, we include

the proof for the convenience of the reader.

Theorem 6.3.4. No expanding Thurston map is h-expansive.

Proof. Let f be an expanding Thurston map.
By Theorem [6.3.2] and the fact that if f is h-expanding then it is asymptotically h-

expansive (see [Mi70, Corollary 2.1]), we can assume that f has no periodic critical points.

Note that by ([ZI2), if a point z € S? is a periodic critical point of f¢ for some i € N,
then there exists j € Ny such that f7(z) is a periodic critical point of f. So f? has no periodic

critical points for ¢ € N.

By Lemmal6.3.3] it suffices to prove that there exists ¢ € N such that f?is not h-expansive.
Thus by Lemma 2.5.2] we can assume, without loss of generality, that there exists a Jordan

curve C C S? containing post f such that f(C) C C and no 1-tile joins opposite sides of C.

In addition, we can assume, without loss of generality, that there exists a critical point

p € crit f\C with f%(p) = f(p) # p. Indeed, we can choose any critical point py € crit f, then
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1?(po) = f“(po) # po for some i € N since f has no periodic critical points. By Lemma [2.3.5]
there exist j € N and p € f~9(py) \ C. We replace f by fU+Y. Note that for this new map
f, we have p € crit f\ C, f2(p) = f(p) # p, f(C) C C and no 1-tile joins opposite sides of C.

Let k = deg;(p). Then k > 1.

From now on, we consider the cell decompositions of S? induced by f and C in this proof.

Recall that W* defined in (Z2.3)) denotes the set of all i-flowers W¥(v), v € V¥, for each
1 € Np.

Since f is expanding, it is easy to see from Lemma 241l Proposition 2.2.4] and the
Lebesgue Number Lemma ([Mu00, Lemma 27.5]) that {W'};cy, forms a refining sequence
of open covers of S? (see Definition B.I.1). Thus by Remark and Definition B.1.1] it

suffices to prove that

l—4+ocon—+oco N

h(f)[W™) = lim lim Ly (n_ (W
0

V f7 (Wm)> >0

for each m € N sufficient large. See (8:4.2) for the definition of H.

Our plan is to construct a sequence {v;}ien, of m-vertices such that for each n € Ny,
the number of elements in n\_/l 7" (W') needed to cover B, = nﬁl S (W™(v,—;)) can be
bounded from below in suchzi; way that h(f|W™) > 0 follows imjnzlgdiately. More precisely,
we observe that the more connected components B,, has, the harder to cover B,,. So we will
choose {v; }ien, as a periodic sequence of m-vertices shadowing an infinite backward pseudo-
orbit under iterations of f in such a way that each period of {v; };en, begins with a backward
orbit starting at f(p) and p, and approaching f(p) as the index i increases, and then ends
with f(p). By a recursive construction, we keep track of each B,, by a finite subset V,, C B,
with the property that card(ANV,,) <1 for each A € n\_/ol fi (Wl) A quantitative control

of the size of V,, leads to the conclusion that h(f|W™) > 0 for each m sufficiently large.

For this we fix m,l € N with [ > 2m + 100 > 200.

Define q; = p. Then ¢ is necessarily a 1-vertex, but not a O-vertex, i.e., ¢ € V!\ VO,

Since ¢ = p ¢ C, we have ¢ € W°(f(p)). By ([ZZ2), the only 2-vertex contained in
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W2(f(p) is f(p). So g € WO(f(p)) \ W2(f(p)). Since f(W'(f(p))) = W (f(p)) for each
i € N (see Remark 2.2.5)), we can recursively choose g; € V7 for each j € {2,3,...,m + 2}

such that
(i) flg) = qj-1,

(it) ¢ € Wi (f(p)) \ W7 (f(p)).

Set go = Gm+2-
Since f(W'(p)) = W '(f(p)) for each i € N, and k = deg;(p) > 1, we can choose
distinct points p; € V™3 4 € {1,2,...,k}, such that

(i) f(pz> = gm+2,
(il) pi € W™2(p) \ W™ (p).

We will now construct recursively, for each n = (m + 2)s + r with s € Ny and r €
{0,1,...,m + 1}, an m-vertex v, € V™ and a set of n-vertices V,, C V" such that for each

n € Ny, the following properties are satisfied:
(1) Vi © W™ (un);

(3) (i) V,, SW™Hr(q,) if n = (m+2)s+r for some s € Ny and some r € {1,2,...,m+
1},

(i) V,, C WmHHm+2(g0) if n = (m + 2)s for some s € Ny;
(4) cardV, = klml,

n—1
(5) for Ae \ f71(W') and z,y € V,, with = # y, we have {z,y} ¢ A.
i=0
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We start our construction by first defining v,, € V™ for each n € Ny. For s € Ny and

re{l,2,...,m}, set Vpmio)s4r = ¢r. For s € Ng and r € {0, m + 1}, set vpnq2)s1r = f(D).
We now define V,, recursively.
Let Vo = {gm+2}. Clearly V; satisfies properties (1) through (5) in the induction step.

Assume that V}, is defined and satisfies properties (1) through (5) for each n € {0,1,..., (m+
2)s+r}, where s € Ngand r € {0,1,...,m+1}, we continue our construction in the following

cases depending on 7.

Case 1. Assume r = 0. Then v 9)s4r = f(p) and V(mi2)siri1 = @1 = P

Note that Vimioyser © W"3(g,) by the induction hypothesis, ¢, = ¢mi2 € W™ (f(p)),
f(pi) = qv, and f (W™ (p,)) = W?mH3(q,) for each i € {1,2,...,k} (see Remark 2.2.7). Fix
an arbitrary i € {1,2,...,k}. We can choose, for each x € V(;p19)5+r, a point 2’ € W2+ (p;)

such that f(2') = x. Then define V! to be the collection of all such chosen 2’ that

(m~+2)s+r+1

corresponds to x € Viyq2)s4r. Set
V(m+2)s+r+1 = U ‘/(Zrn+2)s+r+1'
i=1

Since p; € W™ 2(p) and V! C W2t (p,), we get that V! C W™ (p).

(m+2)s+r+1 (m+2)s+r+1
S0 Vims2)siri1 € W™2(p) C W™(p). Since v(ni2)str+1 = q1 = p, properties (1) and (3) are

verified. Property (2) is clear from the construction.

To establish property (4), it suffices to show that Vm+2)s+r+1 N V(ZHH)SJFTH = () for
1 <i<j <k Indeed, since Vi o\ C© W2 (p;) and Vm+2)5+r+1 C W2+ (p;), it
suffices to prove that Wt (p )ﬂW2m+4( ;) = 0. Suppose that W m+4( )ﬂW2m+4( ;) # 0,

then since no 1-tile joins opposite sides of C, and p;, p; € V™3, we get from Lemma [6.T.2(iii)

that p; = p;, i.e., i = j. But ¢ < j, a contradiction.

We only need to verify property (5) now. Indeed, suppose that distinct points z,y €
(m+2)s+r
Vim+2)s4r+1 satisfy {z,y} C A for some A € \/ f7*(W'). Then A C W'(v!) for some

v € VL. By construction, there exist i,j € {1,2, ..., k} such that x € W?™™(p;) and

y € W2mH(p;). Since | > 2m + 100 and z € W' (v') N W (p,), we get o' € W ()
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by Lemma B.1.2(i). Similarly v' € W2m+4(pj). Then by the argument above, we get that

pi = pj, ie., i =7j. Thus f(z) # f(y) by construction. But then f(x), f(y), and f(A) satisty
(m+2)s+r—1

(a) f(A) C B for some B € \V fa (WZ)’

a=0

(b) f(2), f(y) € Vimsayssr, and f(z) # f(y),

(¢) {f(x), fy)} € f(A) € B.

This contradicts property (5) for V(;,42)s4» in the induction hypothesis.

Case 2. Assume r £ 0, i.e., r € {1,2,...,m+ 1}.

Note that Viyi2)ser € W™ (q,), f(¢r11) = ¢r, and by Remark 220, f (W™ (g,4q)) =
Wt (¢,). We can choose, for each & € Viyy2)54r, & point 2/ € W7+ (g, 1) such that
f(2") = x. Then define Vi, 1 9)s4r11 to be the collection of all such chosen 2’ that corresponds
to © € Vimio)s4r- Properties (2), (3), and (4) are clear from the construction. To establish
property (1) in the case when r € {1,2,...,m—1}, we recall that V(m+2)s+r+1 = Gr41. For the
case when r € {m, m+1}, we note that Vs, 0)s4r11 € W (g4 1) and ¢4 € W (f(p)),

SO

Vims2ysir+1 S W2 (qr1) S W™ (f (D)) = W™ (Vimt2yssr1) -

We only need to verify property (5) now. Indeed, suppose that distinct points z,y €
Vim+2)str+1 satisfy {z,y} C A for some A € (m%)sw fi (Wl) Then by construction
f(x), f(y), and f(A) satisfy =

(m+2)s+r—1
(a) f(A)C Bforsome Be \/ [ (W),

1=0

(b) f(x), f(y) € Vimr2)str, and f(z) # f(y),

(¢) {f(x), f(y)} € f(A) € B.

This contradicts property (5) for Viy,19)s4» in the induction hypothesis.
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The recursive construction and the inductive proof of the properties of the construction

are now complete.

For each s € N, we consider

(m+2)s—1

(m+2)s—1

Bmy2)s = F7 (W™ (vgns2)s—j)) € \/ f7(W™).
j=0 j=0

Then Vinia)s © Bim+2)s by properties (1) and (2) of the construction. On the other hand,

(m+2)s—1

by property (5),if AC \/  f7 (W) satisfies
=0

UA ) B(m+2)s ) ‘/(m-‘,-2)s~

So card A > card Vim49)s = k*, where the equality follows from property (4).

Thus by ([B.4.2),

R(f][W™) = lim lim Ly <n\/ (W

l—+oon—+oco N

o)

i=0 j=
1 log k
> lim inf lim inf ———— log (k) = —2— > (),
I=+oo s—+o0 (m + 2)s m+ 2
Therefore, the map f is not h-expansive. O

Proof of Theorem[I.0.7. By Alaoglu’s theorem, the space M(S?, f) of f-invariant Borel
probability measures equipped with the weak® topology is compact. Since the measure-
theoretic entropy p +— h,(f) is upper semi-continuous by Corollary [L0.6], so is p — P,(f,v)
by B24). Thus p+— P,(f,v) attains its supremum over M (S?, f) at a measure p,,, which
by the Variational Principle (3.2.5) is an equilibrium state for the map f and the potential

. 0
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CHAPTER 7

Large deviation principles

7.1 Level-2 large deviation principles

Let X be a compact metrizable topological space. Recall that P(X) is the set of Borel
probability measures on X. We equip P(X) with the weak* topology. Note this topology
is metrizable (see for example, [Con85, Theorem 5.1]). Let I: P(X) — [0, +0o0] be a lower
semi-continuous function, i.e., I satisfy the condition that liminf, ,, I(y) > I(x) for all
r e P(X).

A sequence {Q,}nen of Borel probability measures on P(X) is said to satisfy a large

deviation principle with rate function I if for each closed subset § of P(X) and each open

subset & of P(X) we have

lim sup 1 log 2,(F) < —inf{I(x) |z € §},

n—+oo T

and

1
liminf —log Q,(8) > —inf{I(x) |z € &}.

n—-+4oo M

We will apply the following theorem due to Y. Kifer [Ki90, Theorem 4.3], reformulated
by H. Comman and J. Rivera-Letelier [CRL11, Theorem CJ.

Theorem 7.1.1 (Y. Kifer, 1990; H. Comman & J. Rivera-Letelier, 2011). Let X be a compact
metrizable topological space, and let g: X — X be a continuous map. Fiz ¢ € C(X), and let

H be a dense vector subspace of C(X) with respect to the uniform norm. Let I?: P(X) —
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[0, +00] be the function defined by

() = P(g,¢) = [odu—hu(g) if p€ M(X,g);
oo if p e PX)\ M(X,g).
We assume the following conditions are satisfied:

(i) The measure-theoretic entropy h,(g) of g, as a function of p defined on M(X,g)

(equipped with the weak® topology), is finite and upper semi-continuous.

(ii) For each ) € H, there exists a unique equilibrium state for the map g and the potential

o+

Then every sequence {2, }nen of Borel probability measures on P(X) such that for each
veH,

lim > log [ exp (n Ik du) 492 () = P(g, 6+ ) — P(g, ). (7.1.1)
P(X)

n—+oo M

satisfies a large deviation principle with rate function I?, and it converges in the weak"
topology to the Dirac measure supported on the unique equilibrium state for the map g and
the potential ¢. Furthermore, for each convex open subset & of P(X) containing some

mvariant measure, we have

lim lloan(Qﬁ) = lim lloan(@) = —iréf[‘z’ = —inf I°.
&

n—+oo N n—-+oo N

Recall that P(g, ¢) is the topological pressure of the map g with respect to the potential

In our context, X = S%, the map g = f where f: S? — S? is an expanding Thurston
map with no periodic critical points. Fix a visual metric d on S? for f. The function ¢ is a
real-valued Holder continuous function with an exponent « € (0,1]. Then H = C%*(S5%,d)
is the space of real-valued Holder continuous functions with the exponent « on (52, d).
Note that C%*(S?,d) is dense in C'(S?) (equipped with the uniform norm) (Lemma 5.3.12).
Condition (i) is satisfied by Corollary [L0.6l Condition (ii) is guaranteed by Theorem [[.0.2]

Thus we just need to verify (ZI]) for the sequences that we will consider in this chapter.
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7.2 Characterizations of the pressure P(f,¢)

Let f, d, ¢, o satisfy the Assumptions. Recall that my is the unique eigenmeasure of L}, i.e.,
the unique Borel probability measure on S? that satisfies L7 (mg) = cmy for some constant

¢ € R (compare Theorem [5.2.10] and Corollary [5.3.10]).

We now prove a slight generalization of Proposition [5.2.10l

Proposition 7.2.1. Let f, d, ¢, « satisfy the Assumptions. Then for each sequence {x,}nen

in S?, we have

P(f,¢) = lim —log Z deg . (y) exp(Snd(y)). (7.2.1)

n—+oo n,
yef " (zn)
If we also assume that f has no periodic critical points, then for an arbitrary sequence of
functions {wy: S* = R}nen satisfying wn(z) € [1,degm ()] for eachn € N and each z € S?,
we have

P(f,6) = lim “log S wa(y)exp(Sud(y)). (7.22)

n—4oo N
yef " (zn)

Proof. We fix a Jordan curve C C S? that satisfies the Assumptions (see Theorem 25.1] for
the existence of such C). By Proposition (216 for each z € S? we have

P(f,6) = lim ~log > deggaly) exp(Sno(y))-

TR e )
Combining this equation with (B.2.3]) in Lemma 522 we get (T2T]).
Assume now that f has no periodic critical points. Then there exists a finite number
M € N that depends only on f such that deg.(z) < M for n € Ny and z € S? [BMI0,
Lemma 17.1]. Thus for each n € N,

>, degg(y) exp(Sn,9(y))

yef"(xn)
LTS n el S

yefin(xn)

Hence ([7.2.2)) follows from ((T.2.1). O

While Proposition [[.2.T]is a statement for iterated preimages, the next proposition is for

periodic points. Recall that P j» = {z € S?| f"(z) = 2} for n € N.
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Proposition 7.2.2. Let f, d, ¢, « satisfy the Assumptions. Fix an arbitrary sequence of
functions {w,: S* = R}nen satisfying wy(x) € [1,degs (x)] for eachn € N and each z € S?.
Then
1
P(f,¢)= lim —log Y  wy(x)exp(S,¢(z)). (7.2.3)

n—-+oo N,
:EEPl,fn

Proof. We fix a Jordan curve C C S? that satisfies the Assumptions (see Theorem 2.5.1] for

the existence of such C).

By Proposition [7.2.1], it suffices to prove that there exist C' > 1 and z € S? such that for

each n € N sufficiently large,

>, wn(x)exp(Sno(x))

1 _ =P <C (7.2.4)
75 e en(Eol) T -
zef~m(2

We fix a 0-edge ey C C and a point z € inte(ep).

By Proposition B.4.1] m4(C) = 0. By the continuity of m,, we can find § > 0 such that

my(N3(C)) < ﬁ. (7.2.5)

Note that deg;.(y) = 1if f"(y) = z forn € N. We define, for each n € Ny, the probability

measure

degpm(z) exp (Snf(@)) . _ 3 exp (Sud(@) &
Yoyern( 408 () exp (Snd(y) * | = D enis P (Sadly))

(7.2.6)

Vp =
zef~"(2)

Let Ny € N be the constant from Lemmal£. 1.5l By (5.6.4]) in Proposition 5.6.1] v, LA o

as n — +o0o. So by Lemma 2.3 we can choose N; > Ny such that for each n € N with
n > Ny, we have
— 1
L(NS(C)) < —.
v ( al )) 10

By Lemma 2.4.7] it is clear that we can choose Ny > N; such that for each n € N with

(7.2.7)

n > Ny, and each n-tile X" € X",

diamg(X") < Ll

o (7.2.8)
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We observe that for each i € N, we can pair a white i-tile X! € X! and a black i-tile
X} € X} whose intersection X! N X} is an i-edge contained in f~*(eg). There are a total of
(deg f) such pairs and each i-tile is in exactly one such pair. We denote by P; the collection

of the unions X U X} of such pairs, i.e.,
P, ={X UX{| X, eX! X eX} X, NX.Nf'e) € E.
We denote P = {4 € P;| A\ N3(C) # 0}.
We now fix an integer n > N,.

Then P forms a cover of $2\ N3(C). For each A € P, by (Z2Z8) we have ANC = 0.
So A C inte XJ or A C inte X, where X2 and X} are the white O-tile and the black 0-
tile in X°, respectively. So by Brouwer’s Fixed Point Theorem (see for example, [Ha02,
Theorem 1.9]) and Lemma 1.5, we can define a function p: P2 — P, f« in such a way that
p(A) is the unique fixed point of f* contained in A. (For example, if A € P? is the union
of a black n-tile X;' and a white n-tile X7} and is a subset of the interior of the black 0-tile,

then there is no fixed point of f™ in X

w?

and by applying Brouwer’s Fixed Point Theorem
to the inverse of f" restricted to X', we get a fixed point x € X} of f", which is the unique
fixed point of f™ in X;* by Lemma EI5) Moreover, for each A € P°, p(A) € int A, so
degsn(p(A)) = 1 = wy(p(A)). In general, by Lemma A.T.5, each A € P,, contains at most 2
fixed points of f".

We also define a function ¢: P,, — f~"(z) in such a way that g(A) is the unique preimage
of z under f" that is contained in A, for each A € P,, (see Proposition 2.2.4]). We note that
it X € X7 and X' € X} are the n-tiles that satisfy X UX) = A € P, and e, = X N X},

then ¢(A) € e,. Thus in particular, deg.(q(A)) =1 for each A € P,,.

Hence by construction, we have

Z oSnd(@) _ Z eSnd(a(4)) 4 Z eSn(a(4)) (7.2.9)

zef~"(z) AeP$ AeP,\P?
and
S O < P e < 3 SW Y e (1)
A€EP), :vePl fm AeP}, AEP,\P$ 2EANP; sn
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The last inequality in (Z2.1I0) is due to the fact that if z € Py y» satisfies deg;. () > 2, then
z € V" with 2 ¢ [JP, and the number of A € P, that contains x is at least deg. () (and
at most 2deg s (1)).

By (B21) in Lemma B.2T], we get
)

1 AP},
A€ePd

and since in addition, card(A N P ) < 2 for A € P,, by Lemma .T.5] we have
YOS e
AEPn\P‘EL iL‘eAﬁPlyfn

Z eSnd(q(A))
AeP,\PY,

< 2Cs, (7.2.12)

where

C3 = exp (Cl (diamd(SQ))a) )

and Cy > 0 is a constant from Lemma [5.2.1l Both C; and C3 depend only on f, C, d, ¢, and

.
By (TZ3), (TZE), and (TZT), we get

T S > T Sl > % S St (7.2.13)

vef™n(z) A€PS, zef—n(2)
Hence, by (.2.10), (Z.2.11)), and (Z.2.13)), we have
> wa()es o) T S0A)
:EEPl,fn - AEP% . 9
Z degfn (l’)65n¢($) - 1?0 Z oSnd(a(A)) = 1003
zef ™) AcP?

On the other hand, by (7.2.9), (7.2.10), (.2.11)), (7.2.12), and (T.213)), we get
3w, (z)eSn @) 3 eSnole) 4 3 T eShdl)

zEPy < A€ePj AEP,\PS 2EANP; jn
z€f~"(z) €L (2)
Z eSnd(p(A)) Z 2 eSnd(@)
AEP;SL AEPn\P‘EL $EAﬂP1’fn 2
SN s 10 ST eswtay < O 0
A€eP$ AeP,\P?,

Thus (7.2.4) holds if we choose C' = 2C5 and n > N,. The proof is now complete. O
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7.3 Proof of large deviation principles

Proof of Theorem[[.0.8. Let ¢ € C**(S?,d) for some a € (0,1].

We apply Theorem T TTlwith X = S? g = f, and H = C%*(52,d). Note that C%*(S5?, d)
is dense in C'(S?) with respect to the uniform norm (Lemma [(5.3.12)). Theorem implies
Condition (ii) in the hypothesis of Theorem [.T.1l Condition (i) follows from Corollary [1.0.6]
(B:2.0), and the fact that hip(f) = log(deg f) [BM10, Corollary 20.8].

It now suffices to verify (ZIT]) for each of the sequences {Q,(x,)}nen and {2, }nen of

Borel probability measures on P(5?).
Fix an arbitrary ¢ € C%*(S5?, d).

By (C2.2) in Proposition [[.2.]

1
ngrfoo - log /79(52 exp (n /w du) dQ, (z,) (1)

1 w,(y) exp(S,9(y)) S w(Fiw)
— 1 —l =0
N LIPS N B ek

1
~ lim 1 Sn(6-+0)(y RGO
Jim (1og > waly)e —log > w
yef~(xn) ZEf™(wn)
Similarly, by (7.2.3]) in Proposition [[.2.2] we get

n—+oo n,

P(f0+ ) = P(f.0) = tim Stog [ exp (n [ du) a0 (1)
P(S2)

The theorem now follows from Theorem [.1.11 O

7.4 Equidistribution revisited

Proof of Corollary[1.0.9. We prove the first equality in (LO8]) now.

Fix € M(S? f) and a convex local basis G, at p. By (L0.6) and the upper semi-
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continuity of h,(f) (Corollary [LO.G), we get
o) — ey ) — 7o
1o = gat, (sw(-1) = jaf ().
Then by (L0.6) and (L0.7),
= PU0)+ [oduct () = ~1%(n) = jnt (~iaf I?)

BEG, &

it { i s Y wn<y>exp<sn¢<y>>},

6eG, | n—=+oon YT~ (), Wi (4) €6 Zn(gb)
where we write Z,(¢) = > w,(2) exp(S,¢(2)). By (22) in Proposition [[.2Z1], we have
zef7"(xn)
P(f,0) = lirf Llog Z,,(¢). Thus the first equality in (LOX) follows.
n—-+0oo

By similar arguments, with (.2Z.I]) in Proposition [7.2.1] replaced by (.2.3]) in Proposi-
tion [7.2.2], we get the second equality in (LO.8). O

n—1
Proof of Corollary[L.I10. Recall that W,(x) = + 3" dfi(y) € P(S?) for 2 € S? and n € N
i=0
as defined in (LI4]). We write
7} (&) = > deg . (y) exp(Sao(y))

yef~"(xn), Wn(y)e®

and

Z, (&) = > deg . (y) exp(Sao(y))
yef " (xn), Wn(y)¢®
for each n € N and each open set & C P(5?).

Let G, be a convex local basis of P(S?) at pi4. Fix an arbitrary convex open set & € G, .

By the uniqueness of the equilibrium state in our context and Corollary [LO.9] we get
that for each u € P(5?)\ {ugs}, there exist numbers a,, < P(f,¢) and N, € N and an open
neighborhood 4, € P(S?) \ {1} containing p such that for each n > N,

ZF(sL,) < exp(na,). (7.4.1)

Since P(S?) is compact in the weak* topology by Alaoglu’s theorem, so is P(S?) \ &. Thus
there exists a finite set {u; |7 € I} C P(S5?%)\ & such that

P(S)\ & C ... (7.4.2)

icl
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Here [ is a finite index set. Let a = max{a,, |i € I}. Note that a < P(f,¢). By Corol-
lary with p = e, we get that

P(f,¢) < lim —logZ+(Q5) (7.4.3)

n—+oo N,

Combining (7.4.3) with (Z.2.1)) in Proposition [[.2.1], we get that the equality holds in (T.4.3)).
So there exist numbers b € (a, P(f,$)) and N > max{N;|i € I'} such that for each n > N,

Z1(®) > exp(nb). (7.4.4)

We claim that every subsequential limit of {1, },en in the weak® topology lies in the
closure & of &. Assuming that the claim holds, then since ® € G, , 1s arbitrary, we get that

any subsequential limit of {1, },en in the weak® topology is pie, i.e., v, SN g aS M — +00.

We now prove the claim. We first observe that for each n € N,

(1) exp(S10(0)
P DR A R A IR

L)
ZH(®)+ Z,(6) "

n n

wy(y)e Sné(y)
Z5(8) + 2,(%)

Wi (y),
yef(@n), Wa(y)£®

where v/, = 3 wn(y);?((g)ndy)) W, (y).
yES T (wn), Wa(y)€® !

Note that since a < b, by (Z42), (T4I), and (TZ4),

o Za(®) S ZEW) | card(D) exp(na)

= 0.
T notoo ZH(B) T notoo ZH(B) T notoo exp(nb)

Zi (®)

So ngrfoo ZH ez (&) — 1, and that the total variation
> wn(y) exp(Spe(y)) [[Wa(y)ll
3 wa(y) exp(Snd(y)) (y)H LYES ) Wa ()8
Z+ 7 n — 7+ 7
i ZHE) 4 2, (0) ()1 7;(®)
-
e

T Z5(8)+ Z,(8)
as n —» 4o00. Thus a measure is a subsequential limit of {v,},en if and only if it is a

subsequential limit of {v/ },en. Note that v/, is a convex combination of measures in &, and
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® is convex, so v, € &, for n € N. Hence each subsequential limit of {v,},en lies in the

closure & of &. The proof of the claim is complete now.

By similar arguments as in the proof of the convergence of {1, },en above, with (T.2:2))
in Proposition [[.2.1] replaced by (Z2.3)) in Proposition [.2.2] we get that n, v, [y as

n — +00. O
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