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Abstract of the Dissertation

Ergodic theory of expanding Thurston maps

by

Zhiqiang Li

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Mario Bonk, Chair

Thurston maps are topological generalizations of postcritically-finite rational maps. More

precisely, a Thurston map f : S2 → S2 is a (non-homeomorphic) branched covering map on

a topological 2-sphere S2 whose critical points are all preperiodic. This thesis provides a

comprehensive study of the measure of maximal entropy, as well as a more general class of

invariant measures, called equilibrium states, for expanding Thurston maps. In particular,

given an expanding Thurston map f : S2 → S2, we present a large class of equidistribution

results for iterated preimages and (pre)periodic points with respect to the unique measure of

maximal entropy by first establishing a formula for the number of fixed points. The formula

states that f has exactly 1+deg f fixed points, counted with appropriate weights, where deg f

denotes the topological degree of the map f . We then use the thermodynamical formalism to

show that there exists a unique equilibrium state µφ for f together with a real-valued Hölder

continuous potential φ. Here the sphere S2 is equipped with a natural metric induced

by f , called a visual metric. We also prove that identical equilibrium states correspond

to potentials which are co-homologous upto a constant, and that the measure-preserving

transformation f of the probability space (S2, µφ) is exact, and in particular, mixing and

ergodic. Moreover, we establish a version of equidistribution of a random backward orbit

with respect to the equilibrium state. After proving that f is asymptotically h-expansive

if and only if it has no periodic critical points, and that no expanding Thurston map is

h-expansive, we obtain certain large deviation principles for iterated preimages and periodic

ii



points under the additional assumption that f has no periodic critical points. This enables

us to obtain general equidistribution results for iterated preimages and periodic points with

respect to the equilibrium states under the same assumption on f . We also get the existence

of equilibrium states for such f and any continuous real-valued potential.
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CHAPTER 1

Introduction

The theory of complex dynamics dates back to the work of G. Kœnigs, E. Schröder, and

others in the 19th century. This subject, concentrating on the study of iterated rational

maps on the Riemann sphere, was developed into an active and fascinating area of research,

thanks to the remarkable works of S. Lattès, C. Carathéodory, P. Fatou, G. Julia, P. Koebe,

L. Ahlfors, L. Bers, M. Herman, A. Douady, D. P. Sullivan, J. H. Hubbard, W. P. Thurston,

J.-C. Yoccoz, C. McMullen, J. Milnor, M. Lyubich, M. Shishikura, and many others.

In the early 1980s, D. P. Sullivan introduced a “dictionary”, known as Sullivan’s dic-

tionary nowadays, linking the theory of complex dynamics with another classical area of

conformal dynamical systems, namely, geometric group theory, mainly concerning the study

of Kleinian groups acting on the Riemann sphere. Many dynamical objects in both areas

can be similarly defined and results similarly proven, yet essential and important differences

remain.

One way to generalize the study of rational maps on the Riemann sphere is to look

at (topological) branched covering maps on a general topological 2-sphere. In this context,

W. P. Thurston established a famous characterization theorem for a certain subclass of ratio-

nal maps (see [DH93]), namely, the postcritically-finite rational maps. This class, consisting

of rational maps whose critical points are all preperiodic, play an important role in complex

dynamics. The class of branched covering maps generalizing postcritically-finite rational

maps that W. P. Thurston considered are now known as Thurston maps. More precisely, a

(non-homeomorphic) branched covering map f : S2 → S2 is a Thurston map if each of its

finitely many critical points is preperiodic.
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Inspired by Sullivan’s dictionary and their interests in Cannon’s conjecture in geometric

group theory (see for example, [Bon06, Section 5 and Section 6]), M. Bonk and D. Meyer

studied a subclass of Thurston maps, for which they established a characterization theorem

of rational maps in their context (see [BM10, Theorem 1.9]) from a different point of view.

They introduced a special class of metrics for their maps, called visual metrics, and their

characterization theorem is based on the properties of such metrics. Some condition of

expansion had to be imposed on the kind of Thurston maps they investigated. P. Häıssinsky

and K. Pilgrim introduced such a notion for any finite branched coverings between two

topological spaces that are Hausdorff, locally compact, and locally connected (see [HP09,

Section 2.1 and Section 2.2]). M. Bonk and D. Meyer formulated [BM10] an equivalent

definition of expansion in the context of Thurston maps. We call Thurston maps with such

an expansion property expanding Thurston maps. Roughly speaking, we say that a Thurston

map is expanding if for any two points x, y ∈ S2, their preimages under iterations of the

map get closer and closer. See Definition 2.3.3 for a precise formulation. We also refer to

[BM10, Proposition 8.2] for a list of equivalent definitions.

M. Bonk and D. Meyer’s philosophy in [BM10] is to use the combinatorial information of

certain Markov partitions of the 2-sphere induced by an expanding Thurston map to study its

properties. There are two main ingredients to this approach: one is the existence of certain

forward invariant Jordan curves on S2, established in [BM10, Theorem 1.8], that induces

the Markov partitions; and the other is the existence of visual metrics on S2, established in

[BM10, Theorem 1.7], with respect to which the Markov partitions are very regular.

Adopting the philosophy of M. Bonk and D. Meyer, we provide a comprehensive study

of the ergodic theory of expanding Thurston maps in this thesis.

Ergodic theory has been an important tool in the study of dynamical systems. The

investigation of the existence and uniqueness of invariant measures and their properties has

been a central part of ergodic theory. The realization of the connection between the orbit

structure and the existence of a finite invariant measure can be traced back to H. Poincaré.

A dynamical system may possess a large class of invariant measures, some of which may
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be more interesting than others. It is therefore crucial to examine the relevant invariant

measures.

Arguably the most important measure for a dynamical system is its measure of max-

imal entropy. By definition, it is an invariant Borel probability measure that maximizes

the measure-theoretic entropy. Thanks to the pioneering work of R. Bowen, D. Ruelle,

P. Walters, Ya. Sinai, M. Lyubich, R. Mañé, and many others, existence and uniqueness

results for the measure of maximal entropy are known for uniformly expansive continuous

dynamical systems, distance expanding continuous dynamical systems, uniformly hyperbolic

smooth dynamical systems, and rational maps on the Riemann sphere. In many cases, the

measure of maximal entropy is also the asymptotic distribution of the period points (see

[Pa64, Si72, Bow75, Ly83, FLM83, Ru89, PU10]).

Even though from the definition, expanding Thurston maps seem to have good expan-

sion properties, they do not fall into any class of the classical dynamical systems mentioned

above. So we have to first investigate the existence and uniqueness of such measures. As

a consequence of their general results in [HP09], P. Häıssinsky and K. Pilgrim proved that

for each expanding Thurston map, there exists a measure of maximal entropy and that the

measure of maximal entropy is unique for an expanding Thurston map without periodic

critical points. M. Bonk and D. Meyer then proved the existence and uniqueness of the mea-

sure of maximal entropy for all expanding Thurston maps using an explicit combinatorial

construction [BM10]. Some equidistribution results for periodic critical points and iterated

preimages with respect to the measure of maximal entropy were obtained in [HP09]. Using

the philosophy of M. Bonk and D. Meyer, we establish in Chapter 4 stronger equidistribu-

tion results for (pre)periodic points and iterated preimages with respect to the measure of

maximal entropy in our context. In order to do so, we carefully investigate the locations

of fixed points in relation to the Markov partitions. We also establish the following exact

formula for the number of fixed points for an expanding Thurston map, which is analogous

to the corresponding formula for rational maps (see for example, [Mi06, Theorem 12.1]).

Theorem 1.0.1. Every expanding Thurston map f : S2 → S2 has 1 + deg f fixed points,
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counted with weight given by the local degree of the map at each fixed point.

Here deg f denotes the topological degree of the map f . The local degree is a natural

weight for points on S2 for expanding Thurston maps. P. Häıssinsky and K. Pilgrim also

used the same weight in the general context they considered in [HP09]. For a more detailed

discussion on the local degree, we refer to Chapter 2.1.

After all, the measure of maximal entropy is just one important invariant measure. In

order to investigate a larger class of important invariant measures, one needs to apply more

powerful tools to our understanding of the combinatorial information of the maps.

The thermodynamical formalism is one such mechanism to produce invariant measures

with some nice properties under assumptions on the regularity of their Jacobian functions.

More precisely, for a continuous transformation on a compact metric space, we can consider

the topological pressure as a weighted version of the topological entropy, with the weight

induced by a real-valued continuous function, called potential. The Variational Principle

identifies the topological pressure with the supremum of its measure-theoretic counterpart,

the measure-theoretic pressure, over all invariant Borel probability measures [Bow75, Wa76].

Under additional regularity assumptions on the transformation and the potential, one gets

existence and uniqueness of an invariant Borel probability measure maximizing the measure-

theoretic pressure, called the equilibrium state for the given transformation and the potential.

Often the Jacobian function for the transformation with respect to the equilibrium state is

prescribed by a function induced by the potential. The study of the existence and uniqueness

of the equilibrium states and their various properties such as ergodic properties, equidistri-

bution, fractal dimensions, etc., has been the main motivation for much research in the

area.

This theory, as a successful approach to choosing relevant invariant measures, was inspired

by statistical mechanics, and created by D. Ruelle, Ya. Sinai, and others in the early 1970s

[Dob68, Si72, Bow75, Wa82]. Since then, the thermodynamical formalism has been applied in

many classical contexts (see for example, [Bow75, Ru89, Pr90, KH95, Zi96, MauU03, BS03,
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Ol03, Yu03, PU10, MayU10]). However, beyond several classical dynamical systems, even

the existence of equilibrium states is largely unknown, and for those dynamical systems that

do possess equilibrium states, often the uniqueness is unknown or at least requires additional

conditions. The investigation of different dynamical systems from this perspective has been

an active area of current research.

We apply the theory of thermodynamical formalism to study the equilibrium states for

expanding Thurston maps in Chapter 5. We establish the existence and uniqueness of the

equilibrium state, denoted by µφ, for a Hölder continuous potential φ : S2 → R. Here S2 is

equipped with a visual metric. This generalizes the existence and uniqueness of the measure

of maximal entropy of an expanding Thurston map in [HP09] and [BM10]. We also prove

that the measure-preserving transformation f of the probability space (S2, µφ) is exact (see

Definition 5.4.2), and in particular, mixing and ergodic (Theorem 5.4.3 and Corollary 5.4.6).

This generalizes the corresponding results in [BM10] and [HP09] for the measure of maximal

entropy to our context.

In order to state our results more precisely, we quickly review some key concepts.

For an expanding Thurston map f : S2 → S2 and a continuous function ψ : S2 → R, and

each f -invariant Borel probability measure µ on S2, we have an associated quantity,

Pµ(f, ψ) = hµ(f) +

∫
ψ dµ,

called the measure-theoretic pressure of f for µ and ψ, where hµ(f) is the measure-theoretic

entropy of f for µ. The well-known Variational Principle (see for example, [PU10, Theo-

rem 3.4.1]) asserts that

P (f, ψ) = supPµ(f, ψ), (1.0.1)

where the supremum is taken over all f -invariant Borel probability measures µ, and P (f, ψ)

is the topological pressure of f with respect to ψ defined in (3.2.1). A measure µ that attains

the supremum in (1.0.1) is called an equilibrium state for f and ψ.

We assume for now that ψ is Hölder continuous (with respect to a given visual metric

for f on S2). One characterization of the topological pressure in our context is given by the
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following formula (Proposition 5.2.16):

P (f, ψ) = lim
n→+∞

1

n
log

∑

y∈f−n(x)

degfn(y) exp(Snψ(y)), (1.0.2)

for each x ∈ S2, independent of x, where degfn(y) is the local degree of fn at y and

Snψ(y) =
n−1∑
i=0

ψ(f i(y)).

An important tool that we use to find the equilibrium state and to establish its uniqueness,

is the Ruelle operator Lψ on the Banach space C(S2) of real-valued continuous functions on

S2, given by

Lψ(u)(x) =
∑

y∈f−1(x)

degf (y)u(y) exp(ψ(y)),

for u ∈ C(S2) and x ∈ S2.

The Ruelle operator plays a central role in the thermodynamical formalism, and has been

studied carefully for various dynamical systems (see for example, [Bow75, Ru89, Pr90, Zi96,

MauU03, PU10, MayU10]). Some of the ideas that we apply in Chapter 5 for its investigation

are well-known and repeatedly used in the literature, see for example [PU10, Zi96].

A main difficulty of our analysis comes from the lack of uniform expansion property that

arises from the existence of critical points (i.e., branch points of a branched covering map).

As an example, identities of the form (1.0.2) that are usually easy to derive for classical

dynamical systems (see for example, [PU10, Proposition 4.4.3]) become difficult to verify

directly in our context.

The following statement summarizes the main results that we obtain via the thermody-

namical formalism in Chapter 5.

Theorem 1.0.2. Let f : S2 → S2 be an expanding Thurston map and d be a visual metric

on S2 for f . Let φ be a real-valued Hölder continuous function on S2 with respect to the

metric d.

Then there exists a unique equilibrium state µφ for the map f and the potential φ. If ψ is

another real-valued Hölder continuous function on S2 with respect to the metric d, then µφ =

µψ if and only if there exists a constant K ∈ R such that φ−ψ and K1S2 are co-homologous
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in the space of real-valued continuous functions on S2, i.e., φ − ψ −K1S2 = u ◦ f − u for

some real-valued continuous function u on S2.

Moreover, µφ is a non-atomic f -invariant Borel probability measure on S2 and the measure-

preserving transformation f of the probability space (S2, µφ) is forward quasi-invariant, non-

singular, exact, and in particular, mixing and ergodic.

In addition, the preimages points of f are equidistributed with respect to µφ, i.e., for each

sequence {xn}n∈N of points in S2, as n −→ +∞,

1

Zn(φ)

∑

y∈f−n(xn)

degfn(y) exp (Snφ(y))
1

n

n−1∑

i=0

δf i(y)
w∗

−→ µφ, (1.0.3)

1

Zn
(
φ̃
)

∑

y∈f−n(xn)

degfn(y) exp
(
Snφ̃(y)

)
δy

w∗

−→ µφ, (1.0.4)

where Zn(ψ) =
∑

y∈f−n(xn)

degfn(y) exp (Snψ(y)), for each n ∈ N and each ψ ∈ C(S2).

Here the symbol w∗ indicates convergence in the weak∗ topology, degfn(x) denotes the

local degree of the map fn at x, Snψ(y) =
n−1∑
i=0

ψ(f i(y)), and φ̃ is a potential related to φ

defined in (5.3.5).

The theorem above combines Theorem 5.3.14, Theorem 5.4.3, Corollary 5.4.4, Corol-

lary 5.4.6, Theorem 5.5.1, and Proposition 5.6.1.

As a quick consequence of the proof of the uniqueness of the equilibrium state, we show

in Proposition 5.3.15 that under the assumptions in Theorem 1.0.2, the images of each Borel

probability measure µ under iterates of the adjoint of the Ruelle operator Lφ̃ converge in the

weak∗ topology to the unique equilibrium state µφ, i.e.,

(
L∗
φ̃

)n
(µ)

w∗

−→ µφ as n −→ +∞. (1.0.5)

A rational Thurston map is expanding if and only if it has no periodic critical points

(see [BM10, Proposition 19.1]). So when we restrict to rational Thurston maps, we get the

following corollary as an immediate consequence of Theorem 1.0.2 and Remark 2.4.2.
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Corollary 1.0.3. Let f be a postcritically-finite rational map on the Riemann sphere Ĉ with

no periodic critical points and with degree at least 2. Let φ be a real-valued Hölder continuous

function on Ĉ equipped with the chordal metric.

Then there exists a unique equilibrium state µφ for the map f and the potential φ. If ψ is

another real-valued Hölder continuous function on Ĉ, then µφ = µψ if and only if there exists

a constant K ∈ R such that φ − ψ and K1Ĉ are co-homologous in the space of real-valued

continuous functions on Ĉ, i.e., φ − ψ −K1Ĉ = u ◦ f − u for some real-valued continuous

function u on Ĉ.

Moreover, µφ is a non-atomic f -invariant Borel probability measure on S2 and the measure-

preserving transformation f of the probability space (S2, µφ) is forward quasi-invariant, non-

singular, exact, and in particular, mixing and ergodic.

In addition, both (1.0.3) and (1.0.4) hold as n −→ +∞.

The expression “postcritically-finite rational map (with degree at least 2)” is another

name for a rational Thurston map, used by many authors in holomorphic dynamics.

The existence and uniqueness of the equilibrium state for a general rational map R on the

Riemann sphere and a real-valued Hölder continuous potential φ can be established under the

additional assumption that sup{φ(z) | z ∈ J(R)} < P (R, φ)}, where J(R) is the Julia set of

R and P (R, φ) is the topological pressure of R with respect to φ (see [DU91, Pr90, DPU96]).

This assumption can sometimes be dropped: one can either restrict to certain subclasses

of rational maps, such as topological Collet-Eckmann maps, see [CRL11], or hyperbolic

rational maps (more generally, distance-expanding maps), see [PU10]; or one can impose

other conditions on the function φ, such as hyperbolicity of φ, see [IRRL12]. It is easy to

check that a rational expanding Thurston map is topological Collet-Eckmann.

As a consequence of the proof of the uniqueness of the equilibrium states, we also obtain

equidistribution results (1.0.3) and (1.0.4) for the iterated preimages with respect to the

equilibrium states as stated in Theorem 1.0.2. However, similar results for periodic points

are inaccessible by the usual techniques from thermodynamical formalism due to technical
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difficulties arising from the existence of critical points.

Rather than trying to establish the equidistribution results for periodic points directly,

we derive in Chapter 7 some stronger results using a general framework of Y. Kifer [Ki90].

More precisely, we obtain level-2 large deviation principles for periodic points with respect

to equilibrium states in the context of expanding Thurston maps without periodic critical

points and Hölder continuous potentials. We use a variant of Y. Kifer’s result formulated

by H. Comman and J. Rivera-Letelier [CRL11], which is recorded in Theorem 7.1.1 for the

convenience of the reader. For related results on large deviation principles in the context

of rational maps on the Riemann sphere under additional assumptions, see [PSh96, PSr07,

XF07, PRL11, Com09, CRL11].

More precisely, let us denote the space of Borel probability measures on a compact

metric space X equipped with the weak∗ topology by P(X). A sequence {Ωn}n∈N of Borel

probability measures on P(X) is said to satisfy a level-2 large deviation principle with rate

function I if for each closed subset F of P(X) and each open subset G of P(X) we have

lim sup
n→+∞

1

n
log Ωn(F) ≤ − inf{I(x) | x ∈ F},

and

lim inf
n→+∞

1

n
log Ωn(G) ≥ − inf{I(x) | x ∈ G}.

We refer the reader to [CRL11, Section 2.5] and the references therein for a more systematic

introduction to the theory of large deviation principles.

In order to apply Theorem 7.1.1, we just need to verify three conditions:

(1) The existence and uniqueness of the equilibrium state.

(2) Some characterization of the topological pressure (see Proposition 7.2.2 and Proposi-

tion 7.2.1).

(3) The upper semi-continuity of the measure-theoretic entropy.
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The first condition is established by Theorem 1.0.2. The second condition is weaker than

the equidistribution results, and is within reach. The last condition seems to be difficult to

verify directly.

In order to establish the upper semi-continuity of the measure-theoretic entropy, we need

to take a closer look at the expansion property of expanding Thurston maps.

In the study of discrete-time dynamical systems, various conditions can be imposed upon

the map to simplify the orbit structures, which in turn lead to results about the dynamical

system under consideration. One such well-known condition is expansiveness. Roughly

speaking, a map is expansive if no two distinct orbits stay close forever. Expansiveness plays

an important role in the investigation of hyperbolicity in smooth dynamical systems, and in

complex dynamics in particular (see for example, [Ma87] and [PU10]).

In the context of continuous maps on compact metric spaces, there are two weaker no-

tions of expansion, called h-expansiveness and asymptotic h-expansiveness, introduced by

R. Bowen [Bow72] and M. Misiurewicz [Mi73], respectively. Forward-expansiveness implies

h-expansiveness, which in turn implies asymptotic h-expansiveness [Mi76]. Both of these

weak notions of expansion play important roles in the study of smooth dynamical systems

(see [Burg11, DFPV12, DM09, DN05, LVY13]). Moreover, any smooth map on a compact

Riemannian manifold is asymptotically h-expansive [Buz97]. Recently, N.-P. Chung and

G. Zhang extended these concepts to the context of a continuous action of a countable

discrete sofic group on a compact metric space [CZ15].

M. Misiurewicz showed that asymptotic h-expansiveness guarantees that the measure-

theoretic entropy µ 7→ hµ(f) is upper semi-continuous [Mi76].

To be a bit more precisely, we let (X, d) be a compact metric space, and g : X → X a

continuous map on X . Denote, for ǫ > 0 and x ∈ X ,

Φǫ(x) = {y ∈ X | d(gn(x), gn(y)) ≤ ǫ for all n ≥ 0}.

The map g is called forward expansive if there exists ǫ > 0 such that Φǫ(x) = {x} for all

x ∈ X . By R. Bowen’s definition in [Bow72], the map g is h-expansive if there exists ǫ > 0
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such that the topological entropy htop(g|Φǫ(x)) = htop(g,Φǫ(x)) of g restricted to Φǫ(x) is 0

for all x ∈ X . One can also formulate asymptotic h-expansiveness in a similar spirit, see for

example, [Mi76, Section 2]. However, in this paper, we will adopt equivalent formulations

from [Dow11]. See Section 3.4 for details.

Another way to formulate forward expansiveness is via distance expansion. We say that

g : X → X is distance-expanding (with respect to the metric d) if there exist constants λ > 1,

η > 0, and n ∈ N such that for all x, y ∈ X with d(x, y) ≤ η, we have d(gn(x), gn(y)) ≥
λd(x, y). If g is forward expansive, then there exists a metric ρ on X such that the metrics d

and ρ induce the same topology on X and g is distance-expanding with respect to ρ (see for

example, [PU10, Theorem 4.6.1]). Conversely, if g is distance-expanding, then it is forward

expansive (see for example, [PU10, Theorem 4.1.1]). So roughly speaking, if g is forward

expansive, then the distance between two points that are close enough grows exponentially

under forward iterations of g.

Since a Thurston map, by definition, has to be a branched covering map, we can always

find two distinct points that are arbitrarily close to a critical point (thus arbitrarily close

to each other) and that are mapped to the same point. Thus a Thurston map cannot be

forward expansive. The expansion property of expanding Thurston maps may nevertheless

still seem to be quite strong. However, as a part of the following main theorem for Chapter 6,

we will show that no expanding Thurston map is h-expansive.

Theorem 1.0.4. Let f : S2 → S2 be an expanding Thurston map. Then f is asymptotically

h-expansive if and only if f has no periodic critical points. Moreover, f is not h-expansive.

When R. Bowen introduced h-expansiveness in [Bow72], he mentioned that no diffeo-

morphism of a compact manifold was known to be not h-expansive. M. Misiurewicz then

produced an example of a diffeomorphism that is not asymptotically h-expansive [Mi73].

M. Lyubich showed that each rational map is asymptotically h-expansive [Ly83]. J. Buzzi

established asymptotic h-expansiveness of any C∞-map on a compact Riemannian manifold

[Buz97]. Examples of C∞-maps that are not h-expansive were given by M. J. Pacifico and
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J. L. Vieitez [PV08]. Our Theorem 1.0.4 implies that no rational expanding Thurston map

(i.e., any postcritically-finite rational map whose Julia set is the whole sphere (see [BM10,

Proposition 19.1])) is h-expansive.

Expanding Thurston maps may be the first example of a class of a priori non-differentiable

maps that are not h-expansive but may be asymptotically h-expansive depending on the

property of orbits of critical points.

As an immediate consequence of Theorem 1.0.4 and the result of J. Buzzi [Buz97] men-

tioned above, we get the following corollary, which partially answers a question of K. Pilgrim

(see Problem 2 in [BM10, Section 21]).

Corollary 1.0.5. An expanding Thurston map with at least one periodic critical point cannot

be conjugate to a C∞-map from the Euclidean 2-sphere to itself.

Returning back to our original motivation from equidistribution results and large devia-

tion principles, we get the following corollary from Theorem 1.0.4.

Corollary 1.0.6. Let f : S2 → S2 be an expanding Thurston map without periodic critical

points. Then the measure-theoretic entropy hµ(f) considered as a function of µ on the space

M(S2, f) of f -invariant Borel probability measures is upper semi-continuous. Here M(S2, f)

is equipped with the weak∗ topology.

Recall that ifX is a metric space, a function h : X → [−∞,+∞] is upper semi-continuous

if lim supy→x h(y) ≤ h(x) for all x ∈ X.

Note that Corollary 1.0.6 implies a partially stronger existence result than the one ob-

tained in Theorem 1.0.2.

Theorem 1.0.7. Let f : S2 → S2 be an expanding Thurston map without periodic critical

points and ψ ∈ C(S2) be a real-valued continuous function on S2 (equipped with the standard

topology). Then there exists at least one equilibrium state for the map f and the potential ψ.

See the end of Section 6.3 for a quick proof.
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Thanks to Corollary 1.0.6, we get the following level-2 large deviation principles by

applying Theorem 7.1.1.

Theorem 1.0.8. Let f : S2 → S2 be an expanding Thurston map with no periodic critical

points, and d a visual metric on S2 for f . Let P(S2) denote the space of Borel probability

measures on S2 equipped with the weak∗ topology. Let φ be a real-valued Hölder continuous

function on (S2, d), and µφ be the unique equilibrium state for the map f and the potential

φ.

For each n ∈ N, let Wn : S
2 → P(S2) be the continuous function defined by

Wn(x) =
1

n

n−1∑

i=0

δf i(x),

and denote Snφ(x) =
n−1∑
i=0

φ (f i(x)) for x ∈ S2. Fix an arbitrary sequence of functions

{wn : S2 → R}n∈N satisfying wn(x) ∈ [1, degfn(x)] for each n ∈ N and each x ∈ S2. We

consider the following sequences of Borel probability measures on P(S2):

Iterated preimages: Given a sequence {xn}n∈N of points in S2, for each n ∈ N, put

Ωn(xn) =
∑

y∈f−n(xn)

wn(y) exp(Snφ(y))∑
z∈f−n(xn)

wn(z) exp(Snφ(z))
δWn(y).

Periodic points: For each n ∈ N, put

Ωn =
∑

x=fn(x)

wn(x) exp(Snφ(x))∑
y=fn(y) wn(y) exp(Snφ(y))

δWn(x).

Then each of the sequences {Ωn(xn)}n∈N and {Ωn}n∈N converges to δµφ in the weak∗

topology, and satisfies a large deviation principle with rate function Iφ : P(S2) → [0,+∞]

given by

Iφ(µ) =





P (f, φ)−
∫
φ dµ− hµ(f) if µ ∈ M(S2, f);

+∞ if µ ∈ P(S2) \M(S2, f).
(1.0.6)

Furthermore, for each convex open subset G of P(S2) containing some invariant measure,

we have

− inf
G
Iφ = lim

n→+∞

1

n
log Ωn(xn)(G) = lim

n→+∞

1

n
log Ωn(G) (1.0.7)

and (1.0.7) remains true with G replaced by its closure G.
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As an immediate consequence, we get the following corollary. See Section 7.4 for the

proof.

Corollary 1.0.9. Let f : S2 → S2 be an expanding Thurston map with no periodic critical

points, and d a visual metric on S2 for f . Let φ be a real-valued Hölder continuous function

on (S2, d), and µφ be the unique equilibrium state for the map f and the potential φ. Given a

sequence {xn}n∈N of points in S2. Fix an arbitrary sequence of functions {wn : S2 → R}n∈N
satisfying wn(x) ∈ [1, degfn(x)] for each n ∈ N and each x ∈ S2.

Then for each µ ∈ M(S2, f), and each convex local basis Gµ of P(S2) at µ, we have

hµ(f) +

∫
φ dµ = inf

{
lim

n→+∞

1

n
log

∑

y∈f−n(xn),Wn(y)∈G

wn(y)e
Snφ(y)

∣∣∣∣∣G ∈ Gµ

}

= inf

{
lim

n→+∞

1

n
log

∑

x=fn(x),Wn(x)∈G

wn(x)e
Snφ(x)

∣∣∣∣∣G ∈ Gµ

}
. (1.0.8)

Here Wn and Snφ are as defined in Theorem 1.0.8.

As mentioned above, equidistribution results follow from corresponding level-2 large de-

viation principles.

Corollary 1.0.10. Let f : S2 → S2 be an expanding Thurston map with no periodic critical

points, and d a visual metric on S2 for f . Let φ be a real-valued Hölder continuous function

on (S2, d), and µφ be the unique equilibrium state for the map f and the potential φ. Fix an

arbitrary sequence of functions {wn : S2 → R}n∈N satisfying wn(x) ∈ [1, degfn(x)] for each

n ∈ N and each x ∈ S2.

We consider the following sequences of Borel probability measures on S2:

Iterated preimages: Given a sequence {xn}n∈N of points in S2, for each n ∈ N, put

νn =
∑

y∈f−n(xn)

wn(y) exp(Snφ(y))∑
z∈f−n(xn)

wn(z) exp(Snφ(z))

1

n

n−1∑

i=0

δf i(y),

Periodic points: For each n ∈ N, put

ηn =
∑

x=fn(x)

wn(x) exp(Snφ(x))∑
y=fn(y)wn(y) exp(Snφ(y))

1

n

n−1∑

i=0

δf i(x).

14



Then as n −→ +∞,

νn
w∗

−→ µφ and ηn
w∗

−→ µφ.

Here Sn is defined as in Theorem 1.0.8.

Remark 1.0.11. Since Snφ(f
i(x)) = Snφ(x) for i ∈ N if fn(x) = x, we get

ηn =
∑

x=fn(x)

Snwn(x)
n

exp(Snφ(x))∑
y=fn(y) wn(y) exp(Snφ(y))

δx,

for n ∈ N. In particular, when wn(·) ≡ 1,

ηn =
∑

x=fn(x)

exp(Snφ(x))∑
y=fn(y) exp(Snφ(y))

δx;

when wn(x) = degfn(x), since degfn(f
i(x)) = degfn(x) for i ∈ N if fn(x) = x, we have

ηn =
∑

x=fn(x)

degfn(x) exp(Snφ(x))∑
y=fn(y) degfn(y) exp(Snφ(y))

δx.

See Section 7.4 for the proof of Corollary 1.0.10. Note that the part of Corollary 1.0.10

on iterated preimages generalizes (5.6.5) and (5.6.6) in Proposition 5.6.1 in the context of

expanding Thurston maps without periodic critical points. We also remark that our results

Corollary 1.0.6 through Corollary 1.0.10 are only known in this context. In particular, the

following questions for expanding Thurston maps f : S2 → S2 with at least one periodic

critical point are still open.

Question 1. Is the measure-theoretic entropy µ 7→ hµ(f) upper semi-continuous?

Question 2. Are iterated preimages and periodic points equidistributed with respect to the

unique equilibrium state for a Hölder continuous potential?

Note that regarding Question 2, we know that iterated preimages, counted with lo-

cal degree, are equidistributed with respect to the equilibrium state by (5.6.5) in Proposi-

tion 5.6.1. If Question 1 can be answered positively, then the mechanism of Theorem 7.1.1

works and we get that the equidistribution of periodic points from the corresponding large

deviation principle. However, for iterated preimages without counting local degree (i.e., when
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wn(·) 6= degfn(·) in Corollary 1.0.10, and in particular, when wn(·) ≡ 1), the verification of

Condition (2) mentioned earlier for Theorem 7.1.1 to apply still remains unknown. Compare

(7.2.1) and (7.2.2) in Proposition 7.2.1.

We will now give a brief description of the structure and ideas of this thesis.

After fixing some notations in Section 1.1, we review Thurston maps in Chapter 2. We

first define branched covering maps on S2 and Thurston maps in Section 2.1. We then in-

troduce cell decompositions Dn(f, C), n ∈ N, of S2 induced by a Thurston map f : S2 → S2

and a Jordan curve C ⊆ S2 containing the postcritical points post f in Section 2.2. We

then define expanding Thurston maps and combinatorially expanding Thurston maps in

Section 2.3 before proving in Lemma 2.3.5 that the union of all iterated preimages of an

arbitrary point p ∈ S2 of an expanding Thurston map is dense in S2. Next, we discuss

visual metrics on S2 for an expanding Thurston map in Section 2.4. We summarize prop-

erties of visual metrics from [BM10], especially the relation between visual metrics and the

cell decompositions, in Lemma 2.4.1 and the discussion that follows it. We also prove in

Lemma 2.4.3 that an expanding Thurston map is Lipschitz with respect to a visual metric.

M. Bonk and D. Meyer proved that for each expanding Thurston map f , there exists an

fn-invariant Jordan curve containing post f for each sufficiently large n ∈ N depending on

f (see Theorem 2.5.1). We prove in Lemma 2.5.2 a slightly stronger version of this result,

which carries additional combinatorial information of the Jordan curve. This lemma will be

used in Chapter 4 and Chapter 6. Finally, in Lemma 2.5.4, we prove that an expanding

Thurston map locally expands the distance, with respect to a visual metric, between two

points exponentially as long as they belong to one set in some particular partition of S2

induced by a backward iteration of some Jordan curve on S2. This observation, generalizing

a result of M. Bonk and D. Meyer [BM10, Lemma 16.1], enables us to establish the distortion

lemmas (Lemma 5.2.1 and Lemma 5.2.2) in Section 5.2, which serve as cornerstones for the

mechanism of thermodynamical formalism that is essential in Chapter 5.

In Chapter 3, we review some key concepts of ergodic theory. The usual notions of covers

and partitions are introduced in Section 3.1. Then in Section 3.2, measure-theoretic entropy
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and topological entropy, as well as measure-theoretic pressure and topological pressure are

introduced before measures of maximal entropy and equilibrium states are defined. Next,

we formulate the Ruelle operator Lψ for an expanding Thurston map and a real-valued

continuous function ψ on S2 in Section 3.3. We argue that it is well-defined on the space

of real-valued continuous functions on S2. We then discuss some of the properties of the

Ruelle operator. In Section 3.4, we review the notion of topological conditional entropy

h(g|λ) of a continuous map g : X → X (on a compact metric space X) given an open cover

λ of X , and the notion of topological tail entropy h∗(g) of g. The latter was first introduced

by M. Misiurewicz under the name “topological conditional entropy” [Mi73, Mi76]. We

adopt the terminology and formulations by T. Downarowicz in [Dow11]. We then define

h-expansiveness and asymptotic h-expansiveness using these notions.

Chapter 4 is devoted to the study of periodic points and the measure of maximal entropy

for an expanding Thurston map.

In Section 4.1, we study the fixed points, periodic points, and preperiodic points of the

expanding Thurston maps. For the convenience of the reader, we first provide a direct proof

in Proposition 4.1.1, using knowledge from complex dynamics, of the fact that a rational

expanding Thurston map R on the Riemann sphere has exactly 1+degR fixed points. Then

we set out to generalize this result to the class of expanding Thurston maps, and derive

Theorem 1.0.1.

We first observe that the statement of Theorem 1.0.1 agrees with what can be concluded

from the Lefschetz fixed-point theorem (see for example, [GP10, Chapter 3]) if the map f

is smooth and the graph of f intersects the diagonal of S2 × S2 transversely at each fixed

point of f . However, an expanding Thurston map may not satisfy either of these conditions.

It is not clear how to give a proof by using the Lefschetz fixed-point theorem.

The proof of Theorem 1.0.1 uses the correspondence between the fixed points of f and

the 1-tiles in some cell decomposition of S2 induced by f and its invariant Jordan curve

C ⊆ S2, for the special case when f has a special invariant Jordan curve C. In fact, f

may not have such a Jordan curve, but due to the result of [BM10] mentioned above, for
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each n large enough there exists an fn-invariant Jordan curve. We use a slightly stronger

result as formulated in Lemma 2.5.2. Then the general case follows from an elementary

number-theoretic argument. One of the advantages of this proof is that we also exhibit

an almost one-to-one correspondence between the fixed points and the 1-tiles in the cell

decomposition of S2, which leads to precise information on the location of each fixed point.

This information is essential later in the proof of the equidistribution of preperiodic and

periodic points of expanding Thurston maps in Section 4.2. As a corollary of Theorem 1.0.1,

we give a formula in Corollary 4.1.10 for the number of preperiodic points when counted

with the corresponding weight.

In Section 4.2, we prove a number of equidistribution results. More precisely, we first

prove in Theorem 4.2.7 the equidistribution of the n-tiles in the tile decompositions discussed

in Section 2.1 with respect to the measure of maximal entropy µf of an expanding Thurston

map f . The proof uses a combinatorial characterization of µf due to M. Bonk and D. Meyer

[BM10] that we will state explicitly in Theorem 4.2.6.

We then formulate the equidistribution of preimages with respect to the measure of

maximal entropy µf in Theorem 1.0.12 below. Here we denote by δx the Dirac measure

supported on a point x in S2.

Theorem 1.0.12 (Equidistribution of preimages). Let f : S2 → S2 be an expanding Thurston

map with its measure of maximal entropy µf . Fix p ∈ S2 and define the Borel probability

measures

νi =
1

(deg f)i

∑

q∈f−i(p)

degf i(q)δq, ν̃i =
1

Zi

∑

q∈f−i(p)

δq, (1.0.9)

for each i ∈ N0, where Zi = card (f−i(p)). Then

νi
w∗

−→ µf as i −→ +∞, (1.0.10)

ν̃i
w∗

−→ µf as i −→ +∞. (1.0.11)

Here degf i(x) denotes the local degree of the map f i at a point x ∈ S2. In (1.0.10),

(1.0.11), and similar statements below, the convergence of Borel measures is in the weak∗

topology, and we use w∗ to denote it.

18



After generalizing Lemma 4.2.5, which is due to M. Bonk and D. Meyer (see [BM10,

Lemma 20.2]), in Lemma 4.2.12, we prove the equidistribution of preperiodic points with

respect to µf . Note that Theorem 1.0.1 is used here.

Theorem 1.0.13 (Equidistribution of preperiodic points). Let f : S2 → S2 be an expanding

Thurston map with its measure of maximal entropy µf . For each m ∈ N0 and each n ∈ N

with m < n, we define the Borel probability measures

ξmn =
1

smn

∑

fm(x)=fn(x)

degfn(x)δx, ξ̃mn =
1

s̃mn

∑

fm(x)=fn(x)

δx, (1.0.12)

where smn , s̃
m
n are the normalizing factors defined in (4.1.6) and (4.1.7). If {mn}n∈N is a

sequence in N0 such that mn < n for each n ∈ N, then

ξmnn
w∗

−→ µf as n −→ +∞, (1.0.13)

ξ̃mnn
w∗

−→ µf as n −→ +∞. (1.0.14)

We prove in Corollary 4.1.10 that smn = (deg f)n + (deg f)m for m ∈ N0 and n ∈ N with

m < n.

As a special case of Theorem 1.0.13, we obtain the following corollary.

Corollary 1.0.14 (Equidistribution of periodic points). Let f : S2 → S2 be an expanding

Thurston map with its measure of maximal entropy µf . Then

1

1 + (deg f)n

∑

x=fn(x)

degfn(x)δx
w∗

−→ µf as n −→ +∞, (1.0.15)

1

card{x ∈ S2 | x = fn(x)}
∑

x=fn(x)

δx
w∗

−→ µf as n −→ +∞, (1.0.16)

1

(deg f)n

∑

x=fn(x)

δx
w∗

−→ µf as n −→ +∞. (1.0.17)

The equidistribution (1.0.10), (1.0.11), (1.0.15), and (1.0.16) are analogs of corresponding

results for rational maps on the Riemann sphere by M. Lyubich [Ly83]. Some ideas from

[Ly83] are used in the proofs of Theorem 1.0.12 and Theorem 1.0.13 as well. P. Häıssinsky
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and K. Pilgrim also proved (1.0.10) and (1.0.15) in their general context [HP09], which

includes expanding Thurston maps.

The equidistribution (1.0.13) and (1.0.14) are inspired by the recent work of M. Baker

and L. DeMarco [BD11]. They used some equidistribution result of preperiodic points of

rational maps on the Riemann sphere in the context of arithmetic dynamics.

We show in Corollary 4.2.15 that for each expanding Thurston map f , the exponential

growth rate of the cardinality of the set of fixed points of fn is equal to the topological

entropy htop(f) of f , which is known to be equal to log(deg f) (see for example, [BM10,

Corollary 20.8]). This is analogous to the corresponding result for expansive homeomor-

phisms on compact metric spaces with the specification property (see for example, [KH95,

Theorem 18.5.5]).

In Section 4.3, we prove in Theorem 4.3.2 that for each expanding Thurston map f with

its measure of maximal entropy µf , the measure-preserving dynamical system (S2, f, µf) is a

factor, in the category of measure-preserving dynamical systems, of the measure-preserving

dynamical system of the left-shift operator on the one-sided infinite sequences of deg f sym-

bols together with its measure of maximal entropy. This generalizes the corresponding result

in [BM10] in the category of topological dynamical systems, reformulated in Theorem 4.3.1.

In Chapter 5, we investigate the existence, uniqueness, and other properties of equilibrium

states for an expanding Thurston map. The main tool for this chapter is the thermodynam-

ical formalism.

In Section 5.1, we state the assumptions on some of the objects in the remaining part

of this thesis, which we are going to repeatedly refer to later as the Assumptions. These

assumptions are mainly for notational purpose, and are not restrictive.

In Section 5.2, following the ideas from [PU10] and [Zi96], we use the thermodynamical

formalism to prove the existence of the equilibrium states for expanding Thurston maps

and real-valued Hölder continuous potentials. We first establish two distortion lemmas

(Lemma 5.2.1 and Lemma 5.2.2), which will be used frequently throughout this paper. Next,
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we define Gibbs states and radial Gibbs states. Later in Proposition 5.2.18, we prove that

for an expanding Thurston map the notion of a Gibbs state is equivalent to that of a radial

Gibbs state if and only if the map does not have periodic critical points.

By applying the Schauder-Tikhonov Fixed Point Theorem, we establish in Theorem 5.2.10

the existence of an eigenmeasure mφ of the adjoint L∗
φ of the Ruelle operator Lφ, for a real-

valued Hölder continuous potential φ. We also show in Theorem 5.2.10 that the Jacobian

function J for f with respect to mφ is

J = c exp(−φ),

where c is the eigenvalue corresponding to mφ, which is proved to be equal to exp(P (f, φ))

later in Proposition 5.2.16. We establish in Proposition 5.2.12 that mφ is a Gibbs state. The

measure mφ may not be f -invariant. In Theorem 5.2.15, we adjust the potential φ to get

a new potential φ such that there exists an eigenfunction uφ of Lφ with eigenvalue 1. The

positive function uφ constructed as the uniform limit of the sequence

{
1

n

n−1∑

j=0

Lj
φ
(1)

}

n∈N

is shown to be bounded away from 0 and +∞, and Hölder continuous with the same exponent

as that of φ. Then we demonstrate that the measure µφ = uφmφ is an f -invariant Gibbs state.

Finally, by combining Proposition 5.2.6 and Proposition 5.2.16, we prove in Corollary 5.2.17

that µφ is an equilibrium state for f and φ.

In Section 5.3, we establish the uniqueness of the equilibrium state for an expanding

Thurston map f and a real-valued Hölder continuous potential φ. We use the idea in

[PU10] to apply the Gâteaux differentiability of the topological pressure function and some

techniques from functional analysis. More precisely, a general fact from functional anal-

ysis (recorded in Theorem 5.3.1) states that for an arbitrary convex continuous function

Q : V → R on a separable Banach space V , there exists a unique continuous linear func-

tional L : V → R tangent to Q at x ∈ V if and only if the function t 7−→ Q(x + ty) is

differentiable at 0 for all y in a subset U of V that is dense in the weak topology on V .
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One then observes that for each continuous map g : X → X on a compact metric space X ,

the topological pressure function P (g, ·) : C(X) → R is continuous and convex (see [PU10,

Theorem 3.6.1 and Theorem 3.6.2]), and if µ is an equilibrium state for g and ψ ∈ C(X),

then the continuous linear functional u 7−→
∫
u dµ, for u ∈ C(X), is tangent to P (g, ·) at

ψ (see [PU10, Proposition 3.6.6]). So in order to verify the uniqueness of the equilibrium

state for an expanding Thurston map f and a real-valued Hölder continuous potential φ,

it suffices to prove that the function t 7−→ P (f, φ + tγ) is differentiable at 0, for all γ in a

suitable subspace of C(S2). This is established in Theorem 5.3.13.

Following the procedures in [PU10] to prove Theorem 5.3.13, we introduce a new poten-

tial φ̃ induced by φ, and establish some uniform bounds in Theorem 5.3.5 and Lemma 5.3.8,

which are then used to show uniform convergence results in Theorem 5.3.9 and Lemma 5.3.11.

In some sense, Theorem 5.3.5 gives a quantitative form of the fact that Lφ̃ is almost peri-

odic (see Corollary 5.3.7), and Theorem 5.3.9 exhibits a uniform version of the contracting

behavior of Lφ̃ on a codimension-1 subspace of C(S2). As a by-product, we demonstrate

in Corollary 5.3.10 that for each expanding Thurston map f and each real-valued Hölder

continuous potential φ, the operator L∗
φ has a unique eigenmeasure mφ. Moreover, the mea-

sure µφ is the unique eigenmeasure mφ̃ of L∗
φ̃
with the corresponding eigenvalue 1. Another

consequence is Proposition 5.3.15 which implies (1.0.5) mentioned earlier.

In Section 5.4, we prove that the measure-preserving transformation f of the probabil-

ity space (S2, µφ) is exact (Theorem 5.4.3), where the equilibrium state µφ is non-atomic

(Corollary 5.4.4). It follows in particular that the transformation f is mixing and ergodic

(Corollary 5.4.6). To establish these results, we first show in Proposition 5.4.1 that

mφ

(
+∞⋃

i=0

f−i(C)
)

= µφ

(
+∞⋃

i=0

f−i(C)
)

= 0

for each Jordan curve C ⊆ S2 containing the postcritical points of f that satisfies f l(C) ⊆ C
for some l ∈ N. This proposition is also used in the proof of Theorem 5.5.1.

Theorem 5.5.1, the main result of Section 5.5, asserts that if φ and ψ are two real-

valued Hölder continuous functions with the corresponding equilibrium states µφ and µψ,
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respectively, then µφ = µψ if and only if there exists a constant K ∈ R such that φ − ψ

and K1S2 are co-homologous in the space C(S2) of real-valued continuous functions, i.e.,

φ − ψ − K1S2 = u ◦ f − u for some u ∈ C(S2). For Theorem 5.5.1, we first formulate a

form of the closing lemma for expanding Thurston maps (Lemma 5.5.6). For such maps, we

then include in Lemma 5.5.7 a direct proof of the existence of a point whose forward orbit

is dense in S2. Finally, we give the proof of Theorem 5.5.1 at the end of the section.

In Section 5.6, we first establish in Proposition 5.6.1 versions of equidistribution of preim-

ages with respect to the equilibrium state, using results we obtain in Section 5.3. These re-

sults partially generalize Theorem 1.0.12 where we treat the case for the measure of maximal

entropy. At the end of chapter, following the idea of J. Hawkins and M. Taylor [HT03], we

prove in Theorem 5.7.1 that the equilibrium state µφ from Theorem 1.0.2 is almost surely

the limit of
1

n

n−1∑

i=0

δqi

as n −→ +∞ in the weak∗ topology, where q0 is an arbitrary fixed point in S2, and for each

i ∈ N0, the point qi+1 is randomly chosen from the set f−1(qi) with the probability of each

x ∈ f−1(qi) being qi+1 conditional on qi proportional to the local degree of f at x times

exp
(
φ̃(x)

)
. This theorem is an immediate consequence of a theorem of H. Furstenberg and

Y. Kifer in [FK83] and the fact that the equilibrium state is the unique Borel probability

measure invariant under the adjoint of the Ruelle operator Lφ̃ (Corollary 5.3.10). A similar

result for certain hyperbolic rational maps on the Riemann sphere and the measures of

maximal entropy was proved by M. Barnsley [Bar88]. J. Hawkins and M. Taylor generalized

it to any rational map on the Riemann sphere of degree d ≥ 2 [HT03].

Chapter 6 is devoted to the investigation of the weak expansion properties of expanding

Thurston maps and the proof of Theorem 1.0.4.

In Section 6.1, we prove three lemmas that will be used in the proof of the asymptotic

h-expansiveness of expanding Thurston maps without periodic critical points. Lemma 6.1.1

states that any expanding Thurston map is uniformly locally injective away from the critical
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points, in the sense that if one fixes such a map f and a visual metric d on S2 for f , then for

each δ > 0 sufficiently small and each x ∈ S2, the map f is injective on the δ-ball centered

at x as long as x is not in a τ(δ)-ball of any critical point of f , where τ(δ) can be made

arbitrarily small if one sends δ to 0. In Lemma 6.1.2 we prove a few properties of flowers

in the cell decompositions of S2 induced by an expanding Thurston map and some special

f -invariant Jordan curve. Lemma 6.1.3 gives a covering lemma to cover sets of the form
n⋂
i=0

f−i(Wi) by (m+ n)-flowers, where m ∈ N0, n ∈ N, and each Wi is an m-flower.

We review some basic concepts from graph theory in Section 6.2, and provide a simple

upper bound of number of leaves of certain trees in Lemma 6.2.1. Note that we will not use

any nontrivial facts from graph theory in this thesis.

Section 6.3 consists of the proof of Theorem 1.0.4 in the form of three separate the-

orems. Namely, we show in Theorem 6.3.1 the asymptotic h-expansiveness of expanding

Thurston maps without periodic critical points. The proof relies on a quantitative upper

bound of the frequency for an orbit under such a map to get close to the set of critical points.

Lemma 6.2.1 and terminology from graph theory is used here to make the statements in the

proof precise. We then prove in Theorem 6.3.2 and Theorem 6.3.4 the lack of asymptotic

h-expansiveness of expanding Thurston maps with periodic critical points and the lack of

h-expansiveness of expanding Thurston maps without periodic critical points, respectively,

by explicit constructions of periodic sequences {vi}i∈N of m-vertices for which one can give

lower bounds for the numbers of open sets in the open cover
n−1∨
j=0

f−j (Wm) needed to cover

the set
n−1⋂
j=0

f−j(Wm(vn−j)), for l, m, n ∈ N sufficiently large. Here Wm(vn−j) denotes the

m-flower of vn−j (see (2.2.2)), and Wm is the set of all m-flowers (see (2.2.3)). These lower

bounds lead to the conclusion that the topological tail entropy and topological conditional

entropy, respectively, are strictly positive, proving the corresponding theorems (compare

with Definition 3.4.3 and Definition 3.4.4). The periodic sequence {vi}i∈N of m-vertices in

the proof of Theorem 6.3.2 shadows a certain infinite backward pseudo-orbit in such a way

that each period of {vi}i∈N begins with a backward orbit starting at a critical point p which

is a fixed point of f , and approaching p as the index i increases, and then ends with a
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constant sequence staying at p. The fact that the constant part of each period of {vi}i∈N
can be made arbitrarily long is essential here and is not true if f has no periodic critical

points. The periodic sequence {vi}i∈N0 of m-vertices in the proof of Theorem 6.3.4 shadows

a certain infinite backward pseudo-orbit in such a way that each period of {vi}i∈N0 begins

with a backward orbit starting at f(p) and p, and approaching f(p) as the index i increases,

and then ends with f(p). In this case p is a critical point whose image f(p) is a fixed point.

In both constructions, we may need to consider an iterate of f for the existence of p with the

required properties. Combining Theorems 6.3.1, 6.3.2, and 6.3.4, we get Theorem 1.0.4. This

chapter ends with a quick proof of Theorem 1.0.7, which asserts the existence of equilibrium

states for expanding Thurston maps without periodic critical points and given continuous

potentials.

Chapter 7 is devoted to the study of large deviation principles and equidistribution results

for periodic points and iterated preimages of expanding Thurston maps without periodic

critical points. The idea is to apply a general framework devised by Y. Kifer [Ki90] to obtain

level-2 large deviation principles, and to derive the equidistribution results as consequences.

In Section 7.1, we give a brief review of level-2 large deviation principles in our context.

We record the theorem of Y. Kifer [Ki90], reformulated by H. Comman and J. Rivera-Letelier

[CRL11], on level-2 large deviation principles. This result, stated in Theorem 7.1.1, will be

applied later to our context.

We generalize some characterization of topological pressure in Section 7.2 in our context.

More precisely, we use equidistribution results for iterated preimages in Proposition 5.6.1 to

show in Proposition 7.2.1 and Proposition 7.2.2 that

P (f, φ) = lim
n→+∞

1

n
log
∑

wn(y) exp(Snφ(y)), (1.0.18)

where the sum is taken over preimages under fn in Proposition 7.2.1, and over periodic

points in Proposition 7.2.2, the potential φ : S2 → R is Hölder continuous with respect to a

visual metric d, and the weight wn(y) ∈ [1, degfn(y)] for n ∈ N and y ∈ S2. We note that

for periodic points, the equation (1.0.18) is established in Proposition 7.2.2 for all expanding
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Thurston maps, but for iterated preimages, we only obtain (1.0.18) for expanding Thurston

maps without periodic critical points in Proposition 7.2.1.

In Section 7.3, by applying Theorem 7.1.1 to give a proof of Theorem 1.0.8, we finally

establish level-2 large deviation principles in the context of expanding Thurston maps without

periodic critical points and given Hölder continuous potentials.

Section 7.4 consists of the proofs of Corollary 1.0.9 and Corollary 1.0.10. We first obtain

characterizations of the measure-theoretic pressure in terms of the infimum of certain limits

involving periodic points and iterated preimages (Corollary 1.0.9). Such characterizations

are then used in the proof of the equidistribution results (Corollary 1.0.10).

1.1 Notation

Let C be the complex plane and Ĉ be the Riemann sphere. We use the convention that

N = {1, 2, 3, . . .} and N0 = {0} ∪ N. As usual, the symbol log denotes the logarithm to the

base e, and logb the logarithm to the base b for b > 0.

The cardinality of a set A is denoted by cardA. For x ∈ R, we define ⌊x⌋ as the greatest

integer ≤ x, and ⌈x⌉ the smallest integer ≥ x.

Let g : X → Y be a function between two sets X and Y . We denote the restriction of g

to a subset Z of X by g|Z .

Let (X, d) be a metric space. For subsets A,B ⊆ X , we set d(A,B) = inf{d(x, y) | x ∈
A, y ∈ B}, and d(A, x) = d(x,A) = d(A, {x}) for x ∈ X . For each subset Y ⊆ X , we denote

the diameter of Y by diamd(Y ) = sup{d(x, y) | x, y ∈ Y }, the interior of Y by int Y , and the

characteristic function of Y by 1Y , which maps each x ∈ Y to 1 ∈ R. We use the convention

that 1 = 1X when the space X is clear from the context. The identity map idX : X → X

sends each x ∈ X to x itself. For each r > 0, we define N r
d (A) to be the open r-neighborhood

{y ∈ X | d(y, A) < r} of A, and N r
d (A) the closed r-neighborhood {y ∈ X | d(y, A) ≤ r} of

A. For x ∈ X , we denote the open (resp. closed) ball of radius r centered at x by Bd(x, r)
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(resp. Bd(x, r)).

We set C(X) (resp. B(X)) to be the space of continuous (resp. bounded Borel) functions

from X to R, by M(X) the set of finite signed Borel measures, and P(X) the set of Borel

probability measures on X . For µ ∈ M(X), we use ‖µ‖ to denote the total variation norm

of µ, supp µ the support of µ, and

〈µ, u〉 =
∫
u dµ

for each u ∈ C(S2). If we do not specify otherwise, we equip C(X) with the uniform norm

‖·‖∞. For a point x ∈ X , we define δx as the Dirac measure supported on {x}. For g ∈ C(X)

we set M(X, g) to be the set of g-invariant Borel probability measures on X .

The space of real-valued Hölder continuous functions with an exponent α ∈ (0, 1] on a

compact metric space (X, d) is denoted as C0,α(X, d). For each φ ∈ C0,α(X, d),

|φ|α = sup

{ |φ(x)− φ(y)|
d(x, y)α

∣∣∣∣ x, y ∈ X, x 6= y

}
, (1.1.1)

and the Hölder norm is defined as

‖φ‖C0,α = |φ|α + ‖φ‖∞ . (1.1.2)

For given f : X → X and ϕ ∈ C(X), we define

Snϕ(x) =
n−1∑

j=0

ϕ(f j(x)) (1.1.3)

and

Wn(x) =
1

n

n−1∑

j=0

δfj(x) (1.1.4)

for x ∈ X and n ∈ N0. Note that when n = 0, by definition we always have S0ϕ = 0, and

by convention W0 = 0.
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CHAPTER 2

Thurston maps

In this chapter, we quickly go over some key concepts and results on Thurston maps, and

expanding Thurston maps in particular. For a more thorough treatment of the subject, we

refer to [BM10].

2.1 Definition for Thurston maps

Let S2 denote an oriented topological 2-sphere. A continuous map f : S2 → S2 is called a

branched covering map on S2 if for each point x ∈ S2, there exists a positive integer d ∈ N,

open neighborhoods U of x and V of y = f(x), open neighborhoods U ′ and V ′ of 0 in Ĉ,

and orientation-preserving homeomorphisms ϕ : U → U ′ and η : V → V ′ such that ϕ(x) = 0,

η(y) = 0, and

(η ◦ f ◦ ϕ−1)(z) = zd

for each z ∈ U ′. The positive integer d above is called the local degree of f at x and is

denoted by degf(x). The degree of f is

deg f =
∑

x∈f−1(y)

degf(x) (2.1.1)

for y ∈ S2 and is independent of y. If f : S2 → S2 and g : S2 → S2 are two branched covering

maps on S2, then so is f ◦ g, and

degf◦g(x) = degg(x) degf(g(x)), for each x ∈ S2, (2.1.2)

and moreover,

deg(f ◦ g) = (deg f)(deg g). (2.1.3)

28



A point x ∈ S2 is a critical point of f if degf (x) ≥ 2. The set of critical points of

f is denoted by crit f . A point y ∈ S2 is a postcritical point of f if y = fn(x) for some

x ∈ crit f and n ∈ N. The set of postcritical points of f is denoted by post f . Note that

post f = post fn for all n ∈ N.

Definition 2.1.1 (Thurston maps). A Thurston map is a branched covering map f : S2 → S2

on S2 with deg f ≥ 2 and card(post f) < +∞.

2.2 Cell decompositions

We now recall the notation for cell decompositions of S2. A cell of dimension n in S2,

n ∈ {1, 2}, is a subset c ⊆ S2 that is homeomorphic to the closed unit ball Bn in Rn. We

define the boundary of c, denoted by ∂c, to be the set of points corresponding to ∂Bn under

such a homeomorphism between c and Bn. The interior of c is defined to be inte(c) = c \∂c.
For each point x ∈ S2, the set {x} is considered a cell of dimension 0 in S2. For a cell c of

dimension 0, we adopt the convention that ∂c = ∅ and inte(c) = c.

We record the following three definitions from [BM10].

Definition 2.2.1 (Cell decompositions). Let D be a collection of cells in S2. We say that

D is a cell decomposition of S2 if the following conditions are satisfied:

(i) the union of all cells in D is equal to S2,

(ii) if c ∈ D, then ∂c is a union of cells in D,

(iii) for c1, c2 ∈ D with c1 6= c1, we have inte(c1) ∩ inte(c2) = ∅,

(iv) every point in S2 has a neighborhood that meets only finitely many cells in D.

Definition 2.2.2 (Refinements). Let D′ and D be two cell decompositions of S2. We say

that D′ is a refinement of D if the following conditions are satisfied:
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(i) every cell c ∈ D is the union of all cells c′ ∈ D′ with c′ ⊆ c.

(ii) for every cell c′ ∈ D′ there exits a cell c ∈ D with c′ ⊆ c,

Definition 2.2.3 (Cellular maps and cellular Markov partitions). Let D′ and D be two cell

decompositions of S2. We say that a continuous map f : S2 → S2 is cellular for (D′,D) if

for every cell c ∈ D′, the restriction f |c of f to c is a homeomorphism of c onto a cell in D.

We say that (D′,D) is a cellular Markov partition for f if f is cellular for (D′,D) and D′ is

a refinement of D.

Let f : S2 → S2 be a Thurston map, and C ⊆ S2 be a Jordan curve containing post f .

Then the pair f and C induces natural cell decompositions Dn(f, C) of S2, for n ∈ N0, in the

following way:

By the Jordan curve theorem, the set S2 \ C has two connected components. We call the

closure of one of them the white 0-tile for (f, C), denoted by X0
w, and the closure of the other

one the black 0-tile for (f, C), denoted by X0
b . The set of 0-tiles is X0(f, C) = {X0

b , X
0
w}.

The set of 0-vertices is V0(f, C) = post f . We set V
0
(f, C) = {{x} | x ∈ V0(f, C)}. The set

of 0-edges E0(f, C) is the set of the closures of the connected components of C \post f . Then
we get a cell decomposition

D0(f, C) = X0(f, C) ∪ E0(f, C) ∪V
0
(f, C)

of S2 consisting of cells of level 0, or 0-cells.

We can recursively define unique cell decompositions Dn(f, C), n ∈ N, consisting of n-

cells such that f is cellular for (Dn+1(f, C),Dn(f, C)). We refer to [BM10, Lemma 5.4] for

more details. We denote by Xn(f, C) the set of n-cells of dimension 2, called n-tiles ; by

En(f, C) the set of n-cells of dimension 1, called n-edges ; by V
n
(f, C) the set of n-cells of

dimension 0; and by Vn(f, C) the set
{
x
∣∣ {x} ∈ V

n
(f, C)

}
, called the set of n-vertices. The

k-skeleton, for k ∈ {0, 1, 2}, of Dn(f, C) is the union of all n-cells of dimension k in this cell

decomposition.
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We record Proposition 6.1 of [BM10] here in order to summarize properties of the cell

decompositions Dn(f, C) defined above.

Proposition 2.2.4 (M. Bonk & D. Meyer, 2010). Let k, n ∈ N0, let f : S2 → S2 be a

Thurston map, C ⊆ S2 be a Jordan curve with post f ⊆ C, and m = card(post f).

(i) The map fk is cellular for (Dn+k(f, C),Dn(f, C)). In particular, if c is any (n+k)-cell,

then fk(c) is an n-cell, and fk|c is a homeomorphism of c onto fk(c).

(ii) Let c be an n-cell. Then f−k(c) is equal to the union of all (n+k)-cells c′ with fk(c′) = c.

(iii) The 1-skeleton of Dn(f, C) is equal to f−n(C). The 0-skeleton of Dn(f, C) is the set

Vn(f, C) = f−n(post f), and we have Vn(f, C) ⊆ Vn+k(f, C).

(iv) card(Xn(f, C)) = 2(deg f)n, card(En(f, C)) = m(deg f)n, and card(Vn(f, C)) ≤ m(deg f)n.

(v) The n-edges are precisely the closures of the connected components of f−n(C)\f−n(post f).

The n-tiles are precisely the closures of the connected components of S2 \ f−n(C).

(vi) Every n-tile is an m-gon, i.e., the number of n-edges and the number of n-vertices

contained in its boundary are equal to m.

We also note that for each n-edge e ∈ En(f, C), n ∈ N0, there exist exactly two n-tiles

X,X ′ ∈ Xn(f, C) such that X ∩X ′ = e.

For n ∈ N0, we define the set of black n-tiles as

Xn
b (f, C) = {X ∈ Xn(f, C) | fn(X) = X0

b },

and the set of white n-tiles as

Xn
w(f, C) = {X ∈ Xn(f, C) | fn(X) = X0

w}.

It follows immediately from Proposition 2.2.4 that

card (Xn
b (f, C)) = card (Xn

w(f, C)) = (deg f)n (2.2.1)
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for each n ∈ N0. Moreover, for n ∈ N, we define the set of black n-tiles contained in a white

(n− 1)-tile as

Xn
bw(f, C) = {X ∈ Xn

b (f, C) | ∃X ′ ∈ Xn−1
w (f, C), X ⊆ X ′},

the set of black n-tiles contained in a black (n− 1)-tile as

Xn
bb(f, C) = {X ∈ Xn

b (f, C) | ∃X ′ ∈ Xn−1
b (f, C), X ⊆ X ′},

the set of white n-tiles contained in a black (n− 1)-tile as

Xn
wb(f, C) = {X ∈ Xn

w(f, C) | ∃X ′ ∈ Xn−1
b (f, C), X ⊆ X ′},

and the set of white n-tiles contained in a while (n− 1)-tile as

Xn
ww(f, C) = {X ∈ Xn

w(f, C) | ∃X ′ ∈ Xn−1
w (f, C), X ⊆ X ′}.

In other words, for example, a black n-tile is an n-tile that is mapped by fn to the black

0-tile, and a black n-tile contained in a white (n − 1)-tile is an n-tile that is contained in

some white (n− 1)-tile as a set, and is mapped by fn to the black 0-tile.

If we fix the cell decomposition Dn(f, C), n ∈ N0, we can define for each v ∈ Vn(f, C)
the n-flower of v as

W n(v) =
⋃

{inte(c) | c ∈ Dn(f, C), v ∈ c}. (2.2.2)

Note that flowers are open (in the standard topology on S2). Let W
n
(v) be the closure of

W n(v). We define the set of all n-flowers by

Wn(f, C) = {W n(v) | v ∈ Vn(f, C)}. (2.2.3)

From now on, if the map f and the Jordan curve C are clear from the context, we will

sometimes omit (f, C) in the notation above.

Remark 2.2.5. For n ∈ N0 and v ∈ Vn, we have

W
n
(v) = X1 ∪X2 ∪ · · · ∪Xm,
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where m = 2degfn(v), and X1, X2, . . .Xm are all the n-tiles that contain v as a vertex (see

[BM10, Lemma 7.2]). Moreover, each flower is mapped under f to another flower in such

a way that is similar to the map z 7→ zk on the complex plane. More precisely, for n ∈ N0

and v ∈ Vn+1, there exists orientation preserving homeomorphisms ϕ : W n+1(v) → D and

η : W n(f(v)) → D such that D is the unit disk on C, ϕ(v) = 0, η(f(v)) = 0, and

(η ◦ f ◦ ϕ−1)(z) = zk

for all z ∈ D, where k = degf(v). Let W
n+1

(v) = X1 ∪ X2 ∪ · · · ∪ Xm and W
n
(f(v)) =

X ′
1 ∪X ′

2 ∪ · · ·∪X ′
m′ , where X1, X2, . . .Xm are all the (n+1)-tiles that contain v as a vertex,

listed counterclockwise, and X ′
1, X

′
2, . . .X

′
m′ are all the n-tiles that contain f(v) as a vertex,

listed counterclockwise, and f(X1) = X ′
1. Then m = m′k, and f(Xi) = X ′

j if i ≡ j (mod k),

where k = degf (v). (See also Case 3 of the proof of Lemma 5.2 in [BM10] for more details.)

We denote, for each x ∈ S2,

Un(x) =
⋃

{Y n ∈ Xn | there exists Xn ∈ Xn with x ∈ Xn, Xn ∩ Y n 6= ∅}, (2.2.4)

and for each integer m ≤ −1, set Um(x) = S2. We define the n-partition On of S2 induced

by (f, C) as
On = {inte(Xn) |Xn ∈ Xn} ∪ {inte(en) | en ∈ En} ∪V

n
. (2.2.5)

2.3 Notions of expansion for Thurston maps

We now define two notions of expansion introduced by M. Bonk and D. Meyer [BM10].

It is proved in [BM10, Corollary 6.4] that for each expanding Thurston map f (see

Definition 2.3.3 below), we have card(post f) ≥ 3.

Definition 2.3.1 (Joining opposite sides). Fix a Thurston map f with card(post f) ≥ 3

and an f -invariant Jordan curve C containing post f . A set K ⊆ S2 joins opposite sides of

C if K meets two disjoint 0-edges when card(post f) ≥ 4, or K meets all three 0-edges when

card(post f) = 3.
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Definition 2.3.2 (Combinatorial expansion). Let f be a Thurston map. We say that f is

combinatorially expanding if card(post f) ≥ 3, and there exists an f -invariant Jordan curve

C ⊆ S2 (i.e., f(C) ⊆ C) with post f ⊆ C, and there exists a number n0 ∈ N such that none

of the n0-tiles in Xn0(f, C) joins opposite sides of C.

Definition 2.3.3 (Expansion). A Thurston map f : S2 → S2 is called expanding if there

exist a metric d on S2 that induces the standard topology on S2 and a Jordan curve C ⊆ S2

containing post f such that

lim
n→+∞

max{diamd(X) |X ∈ Xn(f, C)} = 0.

We call such a Thurston map an expanding Thurston map.

Remarks 2.3.4. It is clear that if f is an expanding Thurston map, so is fn for each

n ∈ N. We observe that being expanding is a topological property of a Thurston map and

independent of the choice of the metric d that generates the standard topology on S2. By

Lemma 8.1 in [BM10], it is also independent of the choice of the Jordan curve C containing

post f . More precisely, if f is an expanding Thurston map, then

lim
n→+∞

max
{
diamd̃(X)

∣∣X ∈ Xn
(
f, C̃

)}
= 0,

for each metric d̃ that generates the standard topology on S2 and each Jordan curve C̃ ⊆ S2

that contains post f .

P. Häıssinsky and K. Pilgrim developed a notion of expansion in a more general context

for finite branched coverings between topological spaces (see [HP09, Section 2.1 and Sec-

tion 2.2]). This applies to Thurston maps and their notion of expansion is equivalent to our

notion defined above in the context of Thurston maps (see [BM10, Proposition 8.2]). Such

concepts of expansion are natural analogs, in the contexts of finite branched coverings and

Thurston maps, to some of the more classical versions, such as expansive homeomorphisms

and forward-expansive continuous maps between compact metric spaces (see for example,

[KH95, Definition 3.2.11]), and distance-expanding maps between compact metric spaces
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(see for example, [PU10, Chapter 4]). Our notion of expansion is not equivalent to any such

classical notion in the context of Thurston maps. In fact, as mentioned in the introduction,

there are subtle connections between our notion of expansion and some classical notions of

weak expansion. Chapter 6 will be devoted to this topic. See Theorem 1.0.4 for the precise

statement.

Lemma 2.3.5. Let f : S2 → S2 be an expanding Thurston map. Then for each p ∈ S2, the

set
+∞⋃
n=1

f−n(p) is dense in S2, and

lim
n→+∞

card(f−n(p)) = +∞. (2.3.1)

Proof. Let C ⊆ S2 be a Jordan curve containing post f . Let d be any metric on S2 that

generates the standard topology on S2.

Without loss of generality, we assume that p ∈ X0
w where X0

w ∈ X0
w(f, C) is the white

0-tile in the cell decompositions induced by (f, C). The proof for the case when p ∈ X0
b

where X0
b ∈ X0

b(f, C) is the black 0-tile is similar.

By Proposition 2.2.4(ii), for each n ∈ N and each white n-tile Xn
w ∈ Xn

w(f, C), there is a

point q ∈ Xn
w with fn(q) = p. Since f is an expanding Thurston map,

lim
n→+∞

max{diamd(X) |X ∈ Xn(f, C)} = 0. (2.3.2)

Then the density of the set
+∞⋃
n=1

f−n(p) follows from the observation that for each n ∈ N, each

black n-tile Xn
b ∈ Xn

b (f, C) intersects nontrivially with some white n-tile Xn
w ∈ Xn

w(f, C).

By the above observation, the triangular inequality, and the fact that diamd(S
2) > 0 and

S2 is connected in the standard topology, the equation (2.3.1) follows from (2.3.2).

2.4 Visual metric

For an expanding Thurston map f , we can fix a particular metric d on S2 called visual

metric for f . For the existence and properties of such metrics, see [BM10, Chapter 8].

For a visual metric d for f , there exists a unique constant Λ > 1 called the expansion
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factor of d (see [BM10, Chapter 8] for more details). One major advantage of a visual

metric d is that in (S2, d) we have good quantitative control over the sizes of the cells in

the cell decompositions discussed above. We summarize several results of this type ([BM10,

Lemma 8.10, Lemma 8.12, Lemma 8.13]) in the lemma below.

Lemma 2.4.1 (M. Bonk & D. Meyer, 2010). Let f : S2 → S2 be an expanding Thurston

map, and C ⊆ S2 be a Jordan curve containing post f . Let d be a visual metric on S2 for f

with expansion factor Λ > 1. Then there exist constants C ≥ 1, C ′ ≥ 1, K ≥ 1, and n0 ∈ N0

with the following properties:

(i) d(σ, τ) ≥ C−1Λ−n whenever σ and τ are disjoint n-cells for n ∈ N0.

(ii) C−1Λ−n ≤ diamd(τ) ≤ CΛ−n for all n-edges and all n-tiles τ for n ∈ N0.

(iii) Bd(x,K
−1Λ−n) ⊆ Un(x) ⊆ Bd(x,KΛ−n) for x ∈ S2 and n ∈ N0.

(iv) Un+n0(x) ⊆ Bd(x, r) ⊆ Un−n0(x) where n = ⌈− log r/ logΛ⌉ for r > 0 and x ∈ S2.

(v) For every n-tile Xn ∈ Xn(f, C), n ∈ N0, there exists a point p ∈ Xn such that

Bd(p, C
−1Λ−n) ⊆ Xn ⊆ Bd(p, CΛ

−n).

Conversely, if d̃ is a metric on S2 satisfying conditions (i) and (ii) for some constant

C ≥ 1, then d̃ is a visual metric with expansion factor Λ > 1.

Recall Un(x) is defined in (2.2.4).

In addition, we will need the fact that a visual metric d induces the standard topology

on S2 ([BM10, Proposition 8.9]) and the fact that the metric space (S2, d) is linearly locally

connected ([BM10, Proposition 16.3]). A metric space (X, d) is linearly locally connected if

there exists a constant L ≥ 1 such that the following conditions are satisfied:

1. For all z ∈ X , r > 0, and x, y ∈ Bd(z, r) with x 6= y, there exists a continuum E ⊆ X

with x, y ⊆ E and E ⊆ Bd(z, rL).
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2. For all z ∈ X , r > 0, and x, y ∈ X \ Bd(z, r) with x 6= y, there exists a continuum

E ⊆ X with x, y ⊆ E and E ⊆ X \Bd(z, r/L).

We call such a constant L ≥ 1 a linear local connectivity constant of d.

Remark 2.4.2. If f : Ĉ → Ĉ is a rational expanding Thurston map, then a visual metric is

quasisymmetrically equivalent to the chordal metric on the Riemann sphere Ĉ (see [BM10,

Corollary 19.4]). Here the chordal metric σ on Ĉ is given by σ(z, w) = 2|z−w|√
1+|z|2

√
1+|w|2

for

z, w ∈ C, and σ(∞, z) = σ(z,∞) = 2√
1+|z|2

for z ∈ C. We also note that a quasisymmetric

embedding of a bounded connected metric space is Hölder continuous (see [He01, Section 11.1

and Corollary 11.5]). Accordingly, the classes of Hölder continuous functions on Ĉ equipped

with the chordal metric and on S2 = Ĉ equipped with any visual metric for f are the same

(upto a change of the Hölder exponent).

An expanding Thurston map is Lipschitz with respect to a visual metric.

Lemma 2.4.3. Let f : S2 → S2 be an expanding Thurston map, and d be a visual metric on

S2 for f with expansion factor Λ > 1. Then f is Lipschitz with respect to d.

Proof. Fix a Jordan curve C ⊆ S2 containing post f . Let x, y ∈ S2 and we assume that

0 < d(x, y) < K−1Λ−2, (2.4.1)

where K ≥ 1 is a constant from Lemma 2.4.1 depending only on f , C, and d.

Setm = max
{
k ∈ N0

∣∣ y ∈ Uk(x)
}
, where Uk(x) is defined in (2.2.4). By Lemma 2.4.1(iii),

the number m is finite. Then y /∈ Um+1(x). Thus by Lemma 2.4.1(iii),

1

K
Λ−m−1 ≤ d(x, y) ≤ KΛ−m.

By (2.4.1) we get m ≥ 1. Since f(y) ∈ f (Um(x)) ⊆ Um−1(f(x)) by Proposition 2.2.4, we

get from Lemma 2.4.1(iii) that

d(f(x), f(y)) ≤ KΛ−m+1.
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Therefore,
d(f(x), f(y))

d(x, y)
≤ KΛ−m+1

1
K
Λ−m−1

= K2Λ2,

and f is Lipschitz with respect to d.

2.5 Invariant curves

A Jordan curve C ⊆ S2 is f -invariant if f(C) ⊆ C. We are interested in f -invariant Jordan

curves that contain post f , since for such a curve C, the partition (D1(f, C),D0(f, C)) is

then a cellular Markov partition for f . According to Example 15.5 in [BM10], f -invariant

Jordan curves containing post f need not exist. However, M. Bonk and D. Meyer [BM10,

Theorem 1.2] proved that there exists an fn-invariant Jordan curve C containing post f for

each sufficiently large n depending on f .

Theorem 2.5.1 (M. Bonk & D. Meyer, 2010). Let f : S2 → S2 be an expanding Thurston

map. Then for each n ∈ N sufficiently large, there exists a Jordan curve C ⊆ S2 containing

post f such that fn(C) ⊆ C.

We will need a slightly stronger version in Chapter 4 and Chapter 6. Its proof is almost

the same as that of [BM10, Theorem 1.2]. For the convenience of the reader, we include the

proof here.

Lemma 2.5.2. Let f : S2 → S2 be an expanding Thurston map, and C̃ ⊆ S2 be a Jordan

curve with post f ⊆ C̃. Then there exists an integer N(f, C̃) ∈ N such that for each n ≥
N(f, C̃) there exists an fn-invariant Jordan curve C isotopic to C̃ rel. post f such that no

n-tile in Dn(f, C) joins opposite sides of C.

Proof. By [BM10, Lemma 15.9], there exists an integer N(f, C̃) ∈ N such that for each

n ≥ N(f, C̃), there exists a Jordan curve C′ ⊆ f−n(C̃) that is isotopic to C̃ rel. post f , and no

n-tile for (f, C̃) joins opposite sides of C′. Let H : S2× [0, 1] → S2 be this isotopy rel. post f .

We set Ht(x) = H(x, t) for x ∈ S2, t ∈ [0, 1]. We have H0 = idS2 and C′ = H1(C̃) ⊆ f−n(C̃).
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If F = fn, then postF = post f and F is also an expanding Thurston map ([BM10,

Lemma 8.4]). Note that F is cellular for (Dn(f, C̃),D0(f, C̃)). So D1(F, C̃) = Dn(f, C̃) (see
[BM10, Lemma 5.4]). Thus no 1-cell for (H1◦F, C′) joins opposite sides of C′, and thus H1◦F
is combinatorially expanding for C′. Note that C′ contains post(H1 ◦ F ) = postF = post f .

By Corollary 13.18 in [BM10], there exists a homeomorphism φ : S2 → S2 that is isotopic

to the identity rel. post (H1 ◦ F ) such that φ(C′) = C′ and G = φ ◦H1 ◦ F is an expanding

Thurston map. Since φ◦H1 is isotopic to the identity on S2 rel. postF , the pair F and G are

Thurston equivalent. By Theorem 10.4 in [BM10], there exists a homeomorphism h : S2 → S2

that is isotopic to the identity on S2 rel. F−1(postF ) with F ◦ h = h ◦ G. Set C = h(C′).

Then C is a Jordan curve in S2 that is isotopic to C′ rel. F−1(postF ) and thus isotopic to C̃
rel. postF . Since F (C) = F (h(C′)) = h(G(C′)) = h(φ(H1(F (C′)))) ⊆ h(φ(C′)) = h(C′) = C,
we get that C is F -invariant.

Moreover, since no 1-cell for (H1◦F, C′) joins opposite sides of C′, H1◦F (C′) ⊆ H1(C̃) = C′,

φ : S2 → S2 is a homeomorphism isotopic to the identity rel. post(H1 ◦ F ) with φ(C′) = C′,

G = φ◦H1 ◦F , we can conclude that G(C′) ⊆ C′ and no 1-cell for (G, C′) joins opposite sides

of C′. Since h : S2 → S2 is a homeomorphism, C = h(C′), and F ◦ h = h ◦ G, we can finally

conclude that no 1-cell for (F, C) joins opposite sides of C. Therefore no n-cell for (f, C) joins
opposite sides of C.

Compared with [BM10, Lemma 1.2], the above lemma carries additional combinatorial

information of C, i.e., no n-tile joins opposite sides of C. In fact, we will only need the

following corollary of Lemma 2.5.2 in Chapter 4 and Chapter 6.

Corollary 2.5.3. Let f : S2 → S2 be an expanding Thurston map. Then there exists a

constant N(f) > 0 such that for each n ≥ N(f), there exists an fn-invariant Jordan curve

C containing post f such that no n-tile in Dn(f, C) joins opposite sides of C.

Proof. We can choose an arbitrary Jordan curve C̃ ⊆ S2 containing post f and set N(f) =

N(f, C̃), and C an fn-invariant Jordan curve containing post f as in Lemma 2.5.2.
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We now establish a generalization of [BM10, Lemma 16.1]. It is an essential ingredient

for the distortion lemmas (Lemma 5.2.1 and Lemma 5.2.2) that we will repeatedly use in

Chapter 5 and Chapter 7.

Lemma 2.5.4. Let f : S2 → S2 be an expanding Thurston map, and C ⊆ S2 be a Jordan

curve that satisfies post f ⊆ C and fnC(C) ⊆ C for some nC ∈ N. Let d be a visual metric on

S2 for f with expansion factor Λ > 1. Then there exists a constant C0 > 1, depending only

on f , d, C, and nC, with the following property:

If k, n ∈ N0, X
n+k ∈ Xn+k(f, C), and x, y ∈ Xn+k, then

1

C0
d(x, y) ≤ d(fn(x), fn(y))

Λn
≤ C0d(x, y). (2.5.1)

Proof. In this proof, we set a constant K = 2max{1, lf}, where lf is the Lipschitz constant

of f with respect to d. Let N = nC .

By Remark 2.3.4, the map fN is an expanding Thurston map. It is easy to see from

Lemma 2.4.1 that the metric d is a visual metric for the expanding Thurston map fN with

expansion factor ΛN . So by Lemma 16.1 in [BM10], there exists a constant D ≥ 1 depending

only on fN , C, and d such that for each k, l ∈ N0, each X ∈ X(l+k)N(f, C), and each pair of

points x, y ∈ X , we have

1

D
d(x, y) ≤ d(f lN(x), f lN(y))

ΛlN
≤ Dd(x, y). (2.5.2)

Fix m, l ∈ N0, s, t ∈ {0, 1, . . . , N − 1}, X ∈ X(mN+s)+(lN+t)(f, C), and x, y ∈ X .

We prove the second inequality in (2.5.1) with n = mN+s and k = lN+t by considering

the following cases depending on whether l = 0 or l ≥ 1.

If l = 0, then by Lemma 2.4.3 and the fact that K > lf ,

d
(
f lN+t(x), f lN+t(y)

)
≤ Ktd(x, y) ≤ K2Nd(x, y)ΛlN+t.
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If l ≥ 1, then by Lemma 2.4.3, (2.5.2), and the fact that K > lf ,

d
(
f lN+t(x), f lN+t(y)

)

=d
(
f (l−1)N+(N−s)

(
f t+s(x)

)
, f (l−1)N+(N−s)

(
f t+s(y)

))

≤KN−sd
(
f (l−1)N

(
f t+s(x)

)
, f (l−1)N

(
f t+s(y)

))

≤KN−sDd
(
f t+s(x), f t+s(y)

)
Λ(l−1)N

≤KN−sD
(
Kt+sd (x, y)

)
ΛlN+t

≤K2NDd(x, y)ΛlN+t.

We consider the first inequality in (2.5.1) with n = mN + s and k = lN + t now. By

Proposition 2.2.4(i), we can choose Y ∈ X(m+l+2)N (f, C) and two points x′, y′ ∈ Y such that

f 2N−s−t(Y ) = X , f 2N−s−t(x′) = x, and f 2N−s−t(y′) = y. Note that 2N − s− t ≥ 2. Then by

Lemma 2.4.3, (2.5.2), and the fact that K > lf ,

d
(
f lN+t(x), f lN+t(y)

)

=d
(
f lN+t

(
f 2N−s−t(x′)

)
, f lN+t

(
f 2N−s−t(y′)

))

=d
(
f lN+2N−s(x′), f lN+2N−s(y′)

)

≥K−sd
(
f lN+2N(x′), f lN+2N(y′)

)

≥K−sD−1d(x′, y′)ΛlN+2N

≥K−sD−1K−(2N−s−t)d(x, y)ΛlN+t

≥K−2ND−1d(x, y)ΛlN+t.

Therefore,
1

C0

d(x, y) ≤ d(f lN+t(x), f lN+t(y))

ΛlN+t
≤ C0d(x, y),

where C0 = K2ND is a constant depending only on f , d, C, and N = nC .

41



CHAPTER 3

Ergodic theory

In this chapter, we first recall some key concepts from ergodic theory and dynamical systems.

We then define the Ruelle operator for expanding Thurston maps, which is the key tool

and object of investigation in the thermodynamical formalism in Chapter 5. Finally, we

discuss various weak expansion properties in dynamical systems. Such notions will be used

in Chapter 6 and Chapter 7.

3.1 Covers and partitions

Let (X, d) be a compact metric space and g : X → X a continuous map.

A cover of X is a collection ξ = {Aj | j ∈ J} of subsets of X with the property that
⋃
ξ = X , where J is an index set. The cover ξ is an open cover if Aj is an open set for each

j ∈ J . The cover ξ is finite if the index set J is a finite set.

A measurable partition ξ of X is a cover ξ = {Aj | j ∈ J} of X consisting of countably

many mutually disjoint Borel sets Aj , j ∈ J , where J is a countable index set. For x ∈ X ,

we denote by ξ(x) the unique element of ξ that contains x.

Let ξ = {Aj | j ∈ J} and η = {Bk | k ∈ K} be two covers of X , where J and K are

the corresponding index sets. We say ξ is a refinement of η if for each Aj ∈ ξ, there exists

Bk ∈ η such that Aj ⊆ Bk. The common refinement ξ ∨ η of ξ and η defined as

ξ ∨ η = {Aj ∩ Bk | j ∈ J, k ∈ K}

is also a cover. Note that if ξ and η are both open covers (resp., measurable partitions), then

ξ∨η is also an open cover (resp., a measurable partition). Define g−1(ξ) = {g−1(Aj) | j ∈ J},
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and denote for n ∈ N,

ξng =

n−1∨

j=0

g−j(ξ) = ξ ∨ g−1(ξ) ∨ · · · ∨ g−(n−1)(ξ),

and let ξ∞g be the smallest σ-algebra containing
+∞⋃
n=1

ξng .

We adopt the following definition from [Dow11, Remark 6.1.7].

Definition 3.1.1 (Refining sequences of open covers). A sequence of open covers {ξi}i∈N0

of a compact metric space X is a refining sequence of open covers of X if the following

conditions are satisfied

(i) ξi+1 is a refinement of ξi for each i ∈ N0.

(ii) For each open cover η of X , there exists j ∈ N such that ξi is a refinement of η for

each i ≥ j.

By the Lebesgue Number Lemma ([Mu00, Lemma 27.5]), it is clear that for a compact

metric space, refining sequences of open covers always exist.

3.2 Entropy and pressure

Let (X, d) be a compact metric space and g : X → X a continuous map. For n ∈ N and

x, y ∈ X ,

dng (x, y) = max
{
d
(
gk(x), gk(y)

)∣∣k ∈ {0, 1, . . . , n− 1}
}

defines a new metric on X . A set F ⊆ X is (n, ǫ)-separated, for some n ∈ N and ǫ > 0, if for

each pair of distinct points x, y ∈ F , we have dng (x, y) ≥ ǫ. For ǫ > 0 and n ∈ N, let Fn(ǫ)

be a maximal (in the sense of inclusion) (n, ǫ)-separated set in X .

For each ψ ∈ C(X), the following limits exist and are equal, and we denote the limits by
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P (g, ψ) (see for example, [PU10, Theorem 3.3.2]):

P (g, ψ) = lim
ǫ→0

lim sup
n→+∞

1

n
log

∑

x∈Fn(ǫ)

exp(Snψ(x))

= lim
ǫ→0

lim inf
n→+∞

1

n
log

∑

x∈Fn(ǫ)

exp(Snψ(x)), (3.2.1)

where Snψ(x) =
n−1∑
j=0

ψ(gj(x)) is defined in (1.1.3). We call P (g, ψ) the topological pressure

of g with respect to the potential ψ. The quantity htop(g) = P (g, 0) is called the topological

entropy of g. Note that P (g, ψ) is independent of d as long as the topology on X defined by

d remains the same (see [PU10, Section 3.2]).

We now review measure-theoretic counterparts of the concepts above.

The information function I maps a measurable partition ξ of X to a µ-a.e. defined

real-valued function on X in the following way:

I(ξ)(x) = − logµ(ξ(x)), for x ∈ X. (3.2.2)

Here ξ(x) denotes the unique element of ξ that contains x.

Let ξ be a measurable partition of X . The entropy of ξ is

Hµ(ξ) = −
∑

j∈J

µ(Aj) log (µ(Aj)) ,

where 0 log 0 is defined to be 0. One can show (see [Wa82, Chapter 4]) that if Hµ(ξ) < +∞,

then the following limit exists:

hµ(g, ξ) = lim
n→+∞

1

n
Hµ(ξ

n
g ) ∈ [0,+∞).

The measure-theoretic entropy of g for µ is given by

hµ(g) = sup{hµ(g, ξ) | ξ is a measurable partition of X with Hµ(ξ) < +∞}. (3.2.3)

For each ψ ∈ C(X), the measure-theoretic pressure Pµ(g, ψ) of g for the measure µ and the

potential ψ is

Pµ(g, ψ) = hµ(g) +

∫
ψ dµ. (3.2.4)
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By the Variational Principle (see for example, [PU10, Theorem 3.4.1]), we have that for

each ψ ∈ C(X),

P (g, ψ) = sup{Pµ(g, ψ) |µ ∈ M(X, g)}. (3.2.5)

In particular, when ψ is the constant function 0,

htop(g) = sup{hµ(g) |µ ∈ M(X, g)}. (3.2.6)

A measure µ that attains the supremum in (3.2.5) is called an equilibrium state for the

transformation g and the potential ψ. A measure µ that attains the supremum in (3.2.6) is

called a measure of maximal entropy of g.

3.3 The Ruelle operator for expanding Thurston maps

Let f : S2 → S2 be an expanding Thurston map and ψ ∈ C(S2) a continuous function. We

define the Ruelle operator Lψ on C(S2) as the following

Lψ(u)(x) =
∑

y∈f−1(x)

degf (y)u(y) exp(ψ(y)), (3.3.1)

for each u ∈ C(S2). To show that Lψ is well-defined, we need to prove that Lψ(u)(x) is

continuous in x ∈ S2 for each u ∈ C(S2). Indeed, by fixing an arbitrary Jordan curve

C ⊆ S2 containing post f , we know that for each x in the white 0-tile X0
w,

Lψ(u)(x) =
∑

X∈X1
w

u(yX) exp(ψ(yX)),

where yX is the unique point contained in the white 1-tileX with the property that f(yX) = x

(Proposition 2.2.4(i)). If we move x around continuously within X0
w, then yX moves around

continuously within X for each X ∈ X1
w. Thus Lψ(u)(x) restricted to X0

w is continuous in x.

Similarly, Lψ(u)(x) restricted to the black 1-tile X0
b is also continuous in x. Hence Lψ(u)(x)

is continuous in x ∈ S2.

Note that by a similar argument as above, we see that the Ruelle operator Lψ : C(S2) →
C(S2) has a natural extension to the space of real-valued bounded Borel functions B(S2)

(equipped with the uniform norm) given by (3.3.1) for each u ∈ B(S2).
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It is clear that Lψ is a positive, continuous operator on C(S2) (resp. B(S2)) with the

operator norm sup{Lψ(1)(x) | x ∈ S2}. Moreover, we note that by induction and (2.1.2) we

have

Lnψ(u)(x) =
∑

y∈f−n(x)

degfn(y)u(y) exp(Snψ(y)), (3.3.2)

and

Lψ(u(v ◦ f))(x) =
∑

y∈f−1(x)

degf(y)u(y)(v ◦ f)(y) exp(ψ(y)) = v(x)Lψ(u)(x), (3.3.3)

for u, v ∈ B(S2), x ∈ S2, and n ∈ N. Recall that the adjoint operator L∗
ψ : C

∗(S2) → C∗(S2)

of Lψ acts on the dual space C∗(S2) of the Banach space C(S2). We identify C∗(S2) with

the space M(S2) of finite signed Borel measures on S2 by the Riesz representation theorem.

From now on, we write 〈µ, u〉 =
∫
u dµ whenever u ∈ B(S2) and µ ∈ M(S2).

Lemma 3.3.1. Let f : S2 → S2 be an expanding Thurston map, ψ ∈ C(S2), and µ ∈ C∗(S2).

Then

(i) 〈L∗
ψ(µ), u〉 = 〈µ,Lψ(u)〉 for u ∈ B(S2).

(ii) For each Borel set A ⊆ S2 on which f is injective, we have that f(A) is a Borel set,

and

L∗
ψ(µ)(A) =

∫

f(A)

(degf(·) exp(ψ)) ◦ (f |A)−1 dµ. (3.3.4)

Recall that a collection P of subsets of a set Ω is a π-system if it is closed under inter-

section, i.e., if A,B ∈ P then A ∩ B ∈ P. A collection L of subsets of Ω is a λ-system if

the following are satisfied: (1) Ω ∈ L. (2) If B,C ∈ L and B ⊆ C, then C \ B ∈ L. (3) If

An ∈ L, n ∈ N, with An ⊆ An+1, then
⋃
n∈N

An ∈ L.

Proof. For (i), it suffices to show that for each Borel set A ⊂ S2,

〈L∗
ψ(µ),1A〉 = 〈µ,Lψ(1A)〉. (3.3.5)

Let L be the collection of Borel sets A ⊆ S2 for which (3.3.5) holds. Denote the collection

of open subsets of S2 by G. Then G is a π-system.
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We first observe from (3.3.1) that if {un}n∈N is a non-decreasing sequence of real-valued

functions on S2, then so is {Lψ(un)}n∈N.

By the definition of L∗
ψ, we have

〈L∗
ψ(µ), u〉 = 〈µ,Lψ(u)〉 (3.3.6)

for u ∈ C(S2). Fix an open set U ⊆ S2, then there exists a non-decreasing sequence {gn}n∈N
of real-valued continuous functions on S2 supported in U such that gn converges to 1U

pointwise as n −→ +∞. Then {Lψ(gn)}n∈N is also a non-decreasing sequence of continu-

ous functions, whose pointwise limit is Lψ(1U ). By the Lebesgue Monotone Convergence

Theorem and (3.3.6), we can conclude that (3.3.5) holds for A = U . Thus G ⊆ L.

We now prove that L is a λ-system. Indeed, since (3.3.6) holds for u = 1S2, we get

S2 ∈ L. Given B,C ∈ L with B ⊆ C, then 1C − 1B = 1C\B and Lψ(1C) − Lψ(1B) =

Lψ(1C − 1B) = Lψ(1C\B) by (3.3.1). Thus C \ B ∈ L. Finally, given An ∈ L, n ∈ N,

with An ⊆ An+1, and let A =
⋃
n∈N

An. Then {1An}n∈N and {Lψ(1An)}n∈N are non-decreasing

sequences of real-valued Borel functions on S2 that converge to 1A and Lψ(1A), respectively,
as n −→ +∞. Then by the Lebesgue Monotone Convergence Theorem, we get A ∈ L.

Hence L is a λ-system.

Recall that Dynkin’s π-λ theorem (see for example, [Bi95, Theorem 3.2]) states that if

P is a π-system and L is a λ-system that contains P, then the σ-algebra σ(P) generated by

P is a subset of L. Thus by Dynkin’s π-λ theorem, the Borel σ-algebra σ(G) is a subset of

L, i.e., equality (3.3.5) holds for each Borel set A ⊆ S2.

For (ii), we fix a Borel set A ⊆ S2 on which f is injective. By (3.3.1), we get that

Lψ(1A)(x) 6= 0 if and only if x ∈ f(A). Thus f(A) is Borel. Then (3.3.4) follows immediately

from (i) and (3.3.1) for u ∈ B(S2).
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3.4 Weak expansion properties

The topological tail entropy was first introduced by M. Misiurewicz under the name “topo-

logical conditional entropy” [Mi73, Mi76]. We adopt the terminology in [Dow11] (see [Dow11,

Remark 6.3.18]).

Definition 3.4.1 (Topological conditional entropy and topological tail entropy). Let (X, d)

be a compact metric space and g : X → X a continuous map. The topological conditional

entropy h(g|λ) of g given λ, for some open cover λ, is

h(g|λ) = lim
l→+∞

lim
n→+∞

1

n
H

(
n−1∨

i=0

g−i (ξl)

∣∣∣∣∣

n−1∨

j=0

g−j (λ)

)
, (3.4.1)

where {ξl}l∈N0 is an arbitrary refining sequence of open covers, and for each pair of open

covers ξ and η,

H(ξ|η) = log
(
max
A∈η

{
min

{
card ξA

∣∣∣ ξA ⊆ ξ, A ⊆
⋃

ξA

}})
(3.4.2)

is the logarithm of the minimal number of sets from ξ sufficient to cover any set in η.

The topological tail entropy h∗(g) of g is defined by

h∗(g) = lim
m→+∞

lim
l→+∞

lim
n→+∞

1

n
H

(
n−1∨

i=0

g−i (ξl)

∣∣∣∣∣

n−1∨

j=0

g−j (ηm)

)
, (3.4.3)

where {ξl}l∈N0 and {ηm}m∈N0 are two arbitrary refining sequences of open covers, and H is

as defined in (3.4.2).

Remark 3.4.2. The topological entropy of g (see Section 3.3) is htop(g) = h(g|{X}), where
{X} is the open cover of X consisting of only one open set X . See for example, [Dow11,

Section 6.1]. It is also clear from Defintion 3.4.1 that for open covers ξ and η of X , we have

h(g|ξ) ≤ h(g|η) if ξ is a refinement of η.

The limits in (3.4.1) and (3.4.3) always exist, and both h(g|λ) and h∗(g) are indepen-

dent of the choices of refining sequences of open covers {ξl}l∈N0 and {ηm}m∈N0 , see [Dow11,

Section 6.3], especially the comments after [Dow11, Definition 6.3.14].
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The topological tail entropy h∗ is also well-behaved under iterations, as it satisfies

h∗(gn) = nh∗(g) (3.4.4)

for each n ∈ N and each continuous map g : X → X on a compact metric space X ([Mi76,

Proposition 3.1]).

The concept of h-expansiveness was introduced by R. Bowen in [Bow72]. We adopt the

formulation in [Mi76] (see also [Dow11]).

Definition 3.4.3 (h-expansiveness). A continuous map g : X → X on a compact metric

space X is called h-expansive if there exists a finite open cover λ of X such that h(g|λ) = 0.

A weaker property was then introduced by M. Misiurewicz in [Mi73] (see also [Mi76,

Dow11]).

Definition 3.4.4 (Asymptotic h-expansiveness). We say that a continuous map g : X → X

on a compact metric space X is asymptotically h-expansive if h∗(g) = 0.

Recall that a continuous map g : X → X on a compact metric space X is forward

expansive if there exists ǫ > 0 such that for each x ∈ X , we have Φǫ(x) = {x}. Here

Φǫ(x) = {y ∈ X | d(gn(x), gn(y)) ≤ ǫ for all n ≥ 0},

for ǫ > 0 and x ∈ X . M. Misiurewicz showed that if g is expansive then it is h-expansive, and

that if g is and h-expansive then it is asymptotic h-expansive [Mi76]. He also showed that if

g is asymptotic h-expansive, then the measure-theoretic entropy µ 7→ hµ(g) is upper semi-

continuous as a function on the space M(X, g) of g-invariant Borel probability measures

[Mi76].
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CHAPTER 4

The measure of maximal entropy

4.1 Number and locations of fixed points

The main goal of this section is to prove Theorem 1.0.1; namely, that the number of fixed

points, counted with appropriate weights, of an expanding Thurston map f is exactly 1 +

deg f . In order to prove Theorem 1.0.1, we first establish in Lemma 4.1.2 and Lemma 4.1.3 an

almost one-to-one correspondence between fixed points and 1-tiles in the cell decomposition

D1(f, C) for an expanding Thurston map f with an f -invariant Jordan curve C containing

post f . As a consequence, we establish in Corollary 4.1.10 an exact formula for the number

of preperiodic points, counted with appropriate weights. We end this section by establishing

a formula for the exact number of periodic points with period n, n ∈ N, for expanding

Thurston maps without periodic critical points.

Let f be a Thurston map and p ∈ S2 a periodic point of f of period n ∈ N, we define the

weight of p (with respect to f) as the local degree degfn(p) of f
n at p. When f is understood

from the context and p is a fixed point of f , we abbreviate it as the weight of p. We will

prove in this section that each expanding Thurston map f has exactly 1+deg f fixed points,

counted with weight.

Note the difference between the weight and the multiplicity of a fixed point of a rational

map (see [Mi06, Chapter 12]). In comparison, the multiplicity of a fixed point p ∈ C of a

rational map g : Ĉ → Ĉ is degg̃(p), where g̃(z) = g(z) − z. For every expanding rational

Thurston map R : Ĉ → Ĉ, M. Bonk and D. Meyer proved that R has no periodic critical

points (see [BM10, Proposition 19.1]). So the weight of every fixed point of R is 1. We can
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prove that R has exactly 1 + degR fixed points by using basic facts in complex dynamics,

even though it will follow as a special case of our general result in Theorem 1.0.1. For the

relevant definitions and general background of complex dynamics, see [CG93] and [Mi06].

Proposition 4.1.1. Let R : Ĉ → Ĉ be a expanding rational Thurston map, then R has

exactly 1 + degR fixed points. Moreover, the weight degR(q) of each fixed point q of R is

equal to 1.

Proof. Conjugating R by a fractional linear automorphism of the Riemann sphere if neces-

sary, we may assume that the point at infinity is not a fixed point of R.

Since R is expanding, R is not the identity map. By Lemma 12.1 in [Mi06], which is

basically an application of the fundamental theorem of algebra, we can conclude that R

has 1 + degR fixed points, counted with multiplicity. For rational Thurston maps, being

expanding is equivalent to having no periodic critical points (see [BM10, Proposition 19.1]).

So the weight degR(q) of every fixed point q of R is exactly 1. Thus it suffices now to prove

that each fixed point q of R has multiplicity 1.

Suppose a fixed point p of R has multiplicity m > 1. In the terminology of complex

dynamics, q is then a parabolic fixed point with multiplier 1 and multiplicity m. Then by

Leau-Fatou flower theorem (see for example, [Mi06, Chapter 10] or [Br10, Theorem 2.12]),

there exists an open set U ⊆ S2 such that f(U) ⊆ U and U 6= S2 (by letting U be one

of the attracting petals, for example). This contradicts the fact that the function R, as an

expanding Thurston map, is eventually onto, i.e., for each nonempty open set V ⊆ S2, there

exists a number m ∈ N such that Rm(V ) = S2.

In order to see that R is eventually onto, let d be a metric on S2 and C ⊆ S2 be a Jordan

curve, as given in Definition 2.3.3. Since V is open, it contains some open ball in the metric

space (S2, d). Then since R is expanding, by Definition 2.3.3, we can conclude that there

exists a constant m ∈ N, a black m-tile Xm
b ∈ Xm

b (R, C) and a white m-tile Xm
w ∈ Xm

w (R, C)
such that Xm

b ∪Xm
w ⊆ V . Thus Rm(V ) ⊇ Rm(Xm

b ∪Xm
w ) = S2. Therefore, R is eventually

onto.
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For general expanding Thurston maps, we need to use the combinatorial information

from [BM10].

Lemma 4.1.2. Let f be an expanding Thurston map with an f -invariant Jordan curve C
containing post f . If X ∈ X1

ww(f, C)∪X1
bb(f, C) is a white 1-tile contained in the while 0-tile

X0
w or a black 1-tile contained in the black 0-tile X0

b , then X contains at least one fixed point

of f . If X ∈ X1
wb(f, C) ∪ X1

bw(f, C) is a white 1-tile contained in the black 0-tile X0
b or a

black 1-tile contained in the white 0-tile X0
w, then inte(X) contains no fixed points of f .

Recall that cells in the cell decompositions are by definition closed sets, and the set of

0-tiles X0(f, C) consists of the white 0-tile X0
w and the black 0-tile X0

b .

Proof. If X ∈ X1
ww(f, C) ∪ X1

bb(f, C), then X ⊆ f(X). By Proposition 2.2.4(i), f |X is a

homeomorphism from X to f(X), which is one of the two 0-tiles. Hence, f(X) is homeo-

morphic to the closed unit disk. So by Brouwer’s fixed point theorem, (f |X)−1 has a fixed

point p. Thus p is also a fixed point of f .

If X ∈ X1
wb(f, C), then inte(X) ⊆ inte(X0

b ) and f(X) = X0
w. Since X0

w ∩ inte(X0
b ) = ∅,

the map f has no fixed points in inte(X). The case when X ∈ X1
bw(f, C) is similar.

Lemma 4.1.3. Let f be an expanding Thurston map with an f -invariant Jordan curve C
containing post f such that no 1-tile in D1(f, C) joins opposite sides of C. Then for every

n ∈ N, each n-tile Xn ∈ Xn(f, C) contains at most one fixed point of fn.

Proof. Fix an arbitrary n ∈ N. We denote F = fn and consider the cell decompositions

induced by F and C in this proof. Note that F is also an expanding Thurston map and there

is no 1-tile in D1(F, C) joining opposite sides of C.

It suffices to prove that each 1-tile X1 ∈ X1 contains at most one fixed point of F .

Suppose that there are two distinct fixed points p, q of F in a 1-tile X1. We prove that

there is a contradiction in each of the following cases.

Case 1: at least one of the fixed points, say p, is in inte(X1). Then X1 ∈ X1
ww ∪X1

bb by

Lemma 4.1.2. Since p is contained in the interior of X1 ∩ F (X1), we get that X1 ⊆ F (X1).
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Since F |X1 is a homeomorphism from X1 to F (X1) (see Proposition 2.2.4(i)), we define a

2-tile X2 = (F |X1)−1(X1) ⊆ X1. Then we get that p ∈ inte(X2) and F (X2) = X1. On

the other hand, the point q must be in X2 as well for otherwise there exists q′ 6= q such

that q′ ∈ X2 and F (q′) = q, thus q′ and q are two distinct points in X1 whose images

under F are q, contradicting the fact that F |X1 is a homeomorphism from X1 to F (X1) and

X1 ⊆ F (X1). Similarly we can inductively construct an (n + 1)-cell Xn+1 ⊆ Xn such that

F (Xn+1) = Xn, p ∈ inte(Xn+1), and q ∈ Xn+1, for each n ∈ N. This contradicts the fact

that F is an expanding Thurston map, see Remark 2.3.4.

Case 2: there exists a 1-edge e ∈ E1 such that p, q ∈ e. Note that e ⊆ X1. Then one of

the fixed points p and q, say p, must be contained in the interior of e, for otherwise p, q are

distinct 1-vertices that are fixed by F , thus they are both 0-vertices, hence X1 joins opposite

sides, a contradiction. Since F (e) is a 0-edge by Proposition 2.2.4, and p ∈ F (e), there exists

a 1-edge e′ ⊆ F (e) with p ∈ e′. Thus e′ intersects with e at the point p, which is an interior

point of e. So e′ = e, and e ⊆ F (e). Then by the same argument as when p ∈ inte(X1) in

Case 1, we can get a contradiction to the fact that F is an expanding Thurston map.

Case 3: the points p, q are contained in two distinct 1-edges e1, e2 of X1, respectively,

and e1∩ e2 6= ∅. Since F is an expanding Thurston map, we have m = card(postF ) ≥ 3 (see

[BM10, Corollary 6.4]). So X1 is an m-gon (see Proposition 2.2.4(vi)). Since e1 ∩ e2 6= ∅,
we get card(e1 ∩ e2) = 1, say e1 ∩ e2 = {v}. By Case 2, we get that v 6= p and v 6= q.

Note that p ∈ F (e1), q ∈ F (e2), and F (e1), F (e2) are 0-edges. If at least one of p and q is a

1-vertex, thus a 0-vertex as well, then since Proposition 2.2.4(i) implies that F (e1) 6= F (e2),

we can conclude that X1 touches at least three 0-edges, thus joins opposite sides of C, a
contradiction. Hence p ∈ inte(e1) and q ∈ inte(e2). So e1 ⊆ F (e1), e2 ⊆ F (e2), and

{v} = e1 ∩ e2 ⊆ F (e1) ∩ F (e2) = F (e1 ∩ e2) = F ({v}),

by Proposition 2.2.4(i). Thus F (v) = v. Then e1 contains two distinct fixed points p and v

of F , which is impossible by Case 2.

Case 4: the points p, q are contained in two distinct 1-edges e1, e2 of X
1, respectively, and
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e1 ∩ e2 = ∅. Thus card(postF ) ≥ 4 by Proposition 2.2.4(vi), and F (e1) and F (e2) are a pair

of disjoint edges of F (X1) by Proposition 2.2.4(i). But p = F (p) ∈ F (e1), q = F (q) ∈ F (e2),

so X1 joins opposite sides of C, a contradiction.

Combining all cases above, we can conclude, therefore, that each 1-tile X1 ∈ X1 contains

at most one fixed point of F .

We can immediately get an upper bound of the number of periodic points of an expanding

Thurston map from Lemma 4.1.3.

Corollary 4.1.4. Let f be an expanding Thurston map. Then for each n ∈ N sufficiently

large, the number of fixed points of fn is ≤ 2(deg f)n. In particular, the number of fixed

points of f is finite.

Proof. By Corollary 2.5.3, for each n ≥ N(f), where N(f) ∈ N is a constant as given in

Corollary 2.5.3, there exists an fn-invariant Jordan curve C containing post f such that no

n-tile inDn(f, C) joins opposite sides of C. Let F = fn. So F is an expanding Thurston map,

and C is an F -invariant Jordan curve containing postF such that no 1-tile in D1(F, C) joins
opposite sides of C. By Proposition 2.2.4(iv), the number of 1-tiles in X1(F, C) is exactly

2 degF = 2(deg f)n. By Lemma 4.1.3, we can conclude that there are at most 2(deg f)n

fixed points of F = fn.

Since each fixed point of f is also a fixed point of fn, for each n ∈ N, the number of fixed

points of f is finite.

The following lemma in some sense generalizes Lemma 4.1.3 to Jordan curves that are

not necessarily f -invariant, but fnc-invariant for some nc ∈ N. The conclusions of both

lemmas hold when n is sufficiently large, which is a combinatorial condition in Lemma 4.1.3

and a metric condition for the following lemma. The proof of the following lemma is simpler,

but the proof of Lemma 4.1.3 is more self-contained. I will not use the following lemma in

this chapter, and but it will be used in Chapter 7.
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Lemma 4.1.5. Let f : S2 → S2 be an expanding Thurston map, and C ⊆ S2 be a Jordan

curve that satisfies post f ⊆ C and fnC(C) ⊆ C for some nC ∈ N. Let d be a visual metric on

S2 for f with expansion factor Λ > 1. Then there exists N0 ∈ N such that for each n ≥ N0

and each n-tile Xn ∈ Xn(f, C), the number of fixed points of fn contained in Xn is at most

1.

Proof. By Lemma 2.5.4, for each i ∈ N, each i-tile X i ∈ Xi(f, C), and each pair of points

x, y ∈ X i, we have

d
(
f i(x), f i(y)

)
≥ Λi

C0
d(x, y),

where C0 > 1 is a constant depending only on f and d from Lemma 2.5.4.

We choose N0 ∈ N such that ΛN0 > C0.

Let n ≥ N0 and Xn ∈ Xn(f, C). Suppose two distinct points p, q ∈ X satisfy fn(p) = p

and fn(q) = q. Then

1 =
d (fn(p), fn(q))

d(p, q)
≥ Λn

C0
> 1,

a contradiction. This completes the proof.

Lemma 4.1.6. Let f be an expanding Thurston map with an f -invariant Jordan curve C
containing post f . Then

deg(f |C) = card(X1
ww(f, C))− card(X1

bw(f, C)) = card(X1
bb(f, C))− card(X1

wb(f, C)). (4.1.1)

Here deg(f |C) is the degree of the map f |C : C → C. Roughly speaking, it measures the

total number of times the image of C under f winds around C along the orientation of C.
See for example, [Ha02, Section 2.2] for a precise definition.

Note that the first equality in (4.1.1), for example, says that the degree of f restricted

to C is equal to the number of white 1-tiles contained in the white 0-tile minus the number

of black 1-tiles contained in the white 0-tile.

Recall that for each continuous path γ : [a, b] → C \ {0} on the Riemann sphere Ĉ, with

a, b ∈ R and a < b, we can define the variation of the argument along γ, denoted by V (γ), as
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the change of the imaginary part of the logarithm along γ. Note that V (γ) is invariant under

an orientation-preserving reparametrization of γ and if γ̃ : [a, b] → Ĉ reverses the orientation

of γ, i.e., γ̃(t) = γ(a + b − t), then V (γ̃) = −V (γ). We also note that if γ is a loop, then

V (γ) = 2π Indγ(0), where Indγ(0) is the winding number of γ with respect to 0 [Burc79,

Chapter IV].

Proof. Consider the cell decompositions induced by (f, C). Let X0
w be the white 0-tile.

We start with proving the first equality in (4.1.1).

By the Schoenflies theorem (see, for example, [Mo77, Theorem 10.4]), we can assume

that S2 is the Riemann sphere Ĉ, and X0
w is the unit disk with the center 0 disjoint from

f−1(C).

For each 1-edge e ∈ E1, we choose a parametrization γ+e : [0, 1] → C\{0} of e with positive

orientation (i.e., with the white 1-tile on the left), and a parametrization γ−e : [0, 1] → C\{0}
of e with negative orientation. Then f ◦ γ+e and f ◦ γ−e are parametrizations of one of the

0-edges on the unit circle C, with positive orientation and negative orientation, respectively.

We claim that

∑

X∈X1
ww

∑

e∈E1,e⊆∂X

V (f ◦ γ+e )−
∑

X∈X1
bw

∑

e∈E1,e⊆∂X

V (f ◦ γ+e ) =
∑

e∈E1,e⊆C

V (f ◦ γe), (4.1.2)

where on the right-hand side, γe = γ+e if e ⊆ C ∩ X for some X ∈ X1
ww and γe = γ−e if

e ⊆ C ∩ X for some X ∈ X1
bw, or equivalently, γe parametrizes e in such a way that X0

w is

always on the left of e for each e ∈ E1 with e ⊆ C.

We observe that the left-hand side of (4.1.2) is the sum of V (f ◦ γ+e ) over all 1-edges

e in the boundary of a white 1-tile X ⊆ X0
w plus the sum of V (f ◦ γ−e ) over all 1-edges e

in the boundary of a black 1-tile X ⊆ X0
w. Since each 1-edge e with inte(e) ⊆ X0

w is the

intersection of exactly one 1-tile in X1
ww and one 1-tile in X1

bw, the two terms corresponding

to a 1-edge e that is not contained in C cancel each other. Moreover, there is exactly one

term for each 1-edge e ⊆ X0
w that is contained in C, and e that corresponds to such a term

is parametrized in such a way that X0
w is on the left of e. The claim now follows.
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We then note that by Proposition 2.2.4(i), the left-hand side of (4.1.2) is equal to

∑

X∈X1
ww

2π −
∑

X∈X1
bw

2π = 2π
(
card(X1

ww)− card(X1
bw)
)
,

and the right-hand side of (4.1.2) is equal to

2π Indf◦γC(0) = 2π deg(f |C),

where γC is a parametrization of C with positive orientation. Hence the first equality in

(4.1.1) follows.

The second equality in (4.1.1) follows by symmetry, in the sense that we could have

exchanged the colors of the 0-tiles and thus exchanged the colors of all tiles. It also follows

from the fact that

card(X1
ww) + card(X1

wb) = deg f = card(X1
bb) + card(X1

bw).

Let f be an expanding Thurston map with an f -invariant Jordan curve C containing

post f . We orient C in such a way that the white 0-tile lies on the left of C. Let p ∈ C be a

fixed point of f . We say that f |C preserves the orientation at p (resp. reverses the orientation

at p) if there exists an open arc l ⊆ C with p ∈ l such that f maps l homeomorphically to

f(l) and f |C preserves (resp. reverses) the orientation on l. More concretely, when p is a 1-

vertex, let l1, l2 ⊆ C be the two distinct 1-edges on C containing p; when p ∈ inte(e) for some

1-edge e ⊆ C, let l1, l2 be the two connected components of e \ {p}. Then f |C preserves the

orientation at p if l1 ⊆ f(l1) and l2 ⊆ f(l2), and reverses the orientation at p if l2 ⊆ f(l1) and

l1 ⊆ f(l2). Note that it may happen that f |C neither preserves nor reverses the orientation

at p, because f |C need not be a local homeomorphism near p, where it may behave like a

“folding map”.

Lemma 4.1.7. Let f be an expanding Thurston map with an f -invariant Jordan curve C
containing post f . Then the number of fixed points of f |C where f |C preserves the orienta-

tion minus the number of fixed points of f |C where f |C reverses the orientation is equal to

deg(f |C)− 1.
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Proof. Let ψ : [0, 1] → C be a continuous map such that ψ|(0,1) : (0, 1) → C \ {x0} is an

orientation-preserving homeomorphism, and ψ(0) = ψ(1) = x0 for some x0 ∈ C that is not

a fixed point of f |C. Note that for each x ∈ C with x 6= x0, ψ
−1(x) is a well-defined number

in (0, 1). In particular, ψ−1(y) is a well-defined number in (0, 1) for each fixed point y of

f |C. Define π : R → C by π(x) = ψ(x − ⌊x⌋). Then π is a covering map. We lift f |C ◦ ψ
to G : [0, 1] → R such that π ◦ G = f |C ◦ ψ and G(0) = ψ−1(f(x0)) ∈ (0, 1). So we get the

following commutative diagram:

R

π

��
[0, 1]

f |C◦ψ
//

G

==
③
③
③
③
③
③
③
③

C.

Then G(1)−G(0) ∈ Z and

deg(f |C) = G(1)−G(0). (4.1.3)

Observe that y ∈ C is a fixed point of f |C if and only if G(ψ−1(y))−ψ−1(y) ∈ Z. Indeed, if

y ∈ C is a fixed point of f |C, then π◦G◦ψ−1(y) = f |C(y) = y. Thus G◦ψ−1(y)−ψ−1(y) ∈ Z.

Conversely, if G◦ψ−1(y)−ψ−1(y) ∈ Z, then y 6= x0 since G(ψ
−1(x0))−ψ−1(x0) = G(0)−0 ∈

(0, 1), thus

f |C(y) = f |C ◦ ψ ◦ ψ−1(y) = π ◦G ◦ ψ−1(y) = π ◦ ψ−1(y) = y.

For each m ∈ Z, we define the line lm to be the graph of the function x 7→ x +m from

R to R.

Let y ∈ C be any fixed point of f |C. Since by Corollary 4.1.4 fixed points of f are isolated,

there exists a neighborhood (s, t) ⊆ (0, 1) such that ψ−1(y) ∈ (s, t) and for each fixed point

z ∈ C \ {y} of f |C, ψ−1(z) /∈ (s, t). Define k = G(ψ−1(y))− ψ−1(y); then k ∈ Z. Moreover,

z ∈ C is a fixed point of f |C if and only if the graph of G intersects with lm at the point

(ψ−1(z), G (ψ−1(z)) for some m ∈ Z.

Depending on the orientation of f |C at the fixed point y ∈ C, we get one of the following

cases:
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Figure 4.1.1: The lines lk for k ∈ Z and an example of the graph of G.

1. If f |C preserves the orientation at y, then the graph of G|(s,ψ−1(y)) lies strictly between

the lines lk−1 and lk, and the graph of G|(ψ−1(y),t) lies strictly between the lines lk and

lk+1.

2. If f |C reverses the orientation at y, then the graph of G|(s,ψ−1(y)) lies strictly between

the lines lk and lk+1, and the graph of G|(ψ−1(y),t) lies strictly between the lines lk−1

and lk.

3. If f |C neither preserves nor reverses the orientation at y, then the graph of G|(s,t)\{ψ−1(y)}

either lies strictly between the lines lk−1 and lk or lies strictly between the lines lk and

lk+1.

Thus the number of fixed points of f |C where f |C preserves the orientation is exactly the

number of intersections between the graph of G and the lines lm with m ∈ Z, where the

graph of G crosses the lines from below, and the number of fixed points of f |C where f |C
reserves the orientation is exactly the number of intersections between the graph of G and

the lines lm with m ∈ Z, where the graph of G crosses the lines from above. Therefore the

number of fixed points of f |C where f |C preserves the orientation minus the number of fixed

points of f |C where f |C reverses the orientation is equal to G(1)−G(0)−1 = deg(f |C)−1.
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For each n ∈ N and each expanding Thurston map f : S2 → S2, we denote by

Pn,f = {x ∈ S2 | fn(x) = x, fk(x) 6= x, k ∈ {1, 2, . . . , n− 1}} (4.1.4)

the set of periodic points of f with period n, and by

pn,f =
∑

x∈Pn,f

degfn(x), p̃n,f = cardPn,f (4.1.5)

the numbers of periodic points x of f with period n, counted with and without weight

degfn(x), respectively, at each x. In particular, P1,f is the set of fixed points of f and

p1,f = 1 + deg f as we will see in the proof of Theorem 1.0.1 below. More generally, for all

m ∈ N0 and n ∈ N with m < n, we denote by

Smn = {x ∈ S2 | fm(x) = fn(x)} (4.1.6)

the set of preperiodic points of f with parameters m,n and by

smn =
∑

x∈Smn

degfn(x), s̃mn = cardSmn (4.1.7)

the numbers of preperiodic points of f with parameters m,n, counted with and without

weight degfn(x), respectively, at each x. Note that in particular, for each n ∈ N, S0
n = P1,fn

is the set of fixed points of fn.

Proposition 4.1.8. Let F : S2 → S2 be an expanding Thurston map with an F -invariant

Jordan curve C containing postF such that no 1-tile in D1(F, C) joins opposite sides of C.
Then F has 1 + degF fixed points, counted with weight given by the local degree degF (x) of

the map at each fixed point x.

Proof. We consider the cell decompositions induced by (F, C) in this proof. Let ww =

cardX1
ww be the number of white 1-tiles contained in the white 0-tile, bw = cardX1

bw be

the number of black 1-tiles contained in the white 0-tile, wb = cardX1
wb be the number of

white 1-tiles contained in the black 0-tile, and bb = cardX1
bb be the number of black 1-tiles

contained in the black 0-tile. Note that ww + wb = bw + bb = deg F .
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By Corollary 4.1.4, we know that fixed points of F are isolated.

Note that

ww + bb = degF + deg(F |C), (4.1.8)

which follows from the equation ww − bw = deg(F |C) by Lemma 4.1.6, and the equation

bw + bb = deg F .

We define sets

A = {X ∈ X1
ww | there exists p ∈ C ∩X with F (p) = p},

B = {X ∈ X1
bw | there exists p ∈ C ∩X with F (p) = p},

and let a = cardA, b = cardB.

We then claim that

a− b = deg(F |C)− 1. (4.1.9)

In order to prove this claim, we will first prove that a− b is equal to the number of fixed

points of F |C where F |C preserves the orientation minus the number of fixed points of F |C
where F |C reverses the orientation.

So let p ∈ C be a fixed point of F |C.

1. If p is not a critical point of F , then either F |C preserves or reverses the orientation at

p. In this case, the point p is contained in exactly one white 1-tile and one black 1-tile.

(a) If F |C preserves the orientation at p, then p is contained in exactly one white

1-tile that is contained in the white 0-tile, and p is not contained in any black

1-tile that is contained in the while 0-tile.

(b) If F |C reverses the orientation at p, then p is contained in exactly one black 1-tile

that is contained in the white 0-tile, and p is not contained in any white 1-tile

that is contained in the while 0-tile.
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bw

ww ww

e1 e2p

Figure 4.1.2: Case (2)(a) where F (e1) ⊇ e1 and F (e2) ⊇ e2.

ww

bw bw

e1 e2p

Figure 4.1.3: Case (2)(b) where F (e1) ⊇ e2 and F (e2) ⊇ e1.

bw ww

ww bw

e1 e2p

Figure 4.1.4: Case (2)(c) where F (e1) = F (e2) ⊇ e1.

ww bw

bw ww

e1 e2p

Figure 4.1.5: Case (2)(d) where F (e1) = F (e2) ⊇ e2.
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2. If p is a critical point of F , then p = F (p) ∈ post f and so there are two distinct

1-edges e1, e2 ⊆ C such that {p} = e1 ∩ e2. We refer to Figures 4.1.2 to 4.1.5.

(a) If e1 ⊆ F (e1) and e2 ⊆ F (e2), then p is contained in exactly k white and k − 1

black 1-tiles that are contained in the white 0-tile, for some k ∈ N. Note that in

this case F |C preserves the orientation at p.

(b) If e2 ⊆ F (e1) and e1 ⊆ F (e2), then p is contained in exactly k − 1 white and k

black 1-tiles that are contained in the white 0-tile, for some k ∈ N. Note that in

this case F |C reverses the orientation at p.

(c) If e1 ⊆ F (e1) = F (e2), then p is contained in exactly k white and k black 1-tiles

that are contained in the white 0-tile, for some k ∈ N. Note that in this case F |C
neither preserves nor reverses the orientation at p.

(d) If e2 ⊆ F (e1) = F (e2), then p is contained in exactly k white and k black 1-tiles

that are contained in the white 0-tile, for some k ∈ N. Note that in this case F |C
neither preserves nor reverses the orientation at p.

It follows then that a− b is equal to the number of fixed points of F |C where F |C preserves

the orientation minus the number of fixed points of F |C where F |C reverses the orientation.

Then the claim follows from Lemma 4.1.7.

Next, we are going to prove that the number of fixed points of F , counted with weight

given by the local degree, is equal to

ww + bb − a+ b, (4.1.10)

which, by (4.1.8) and the claim above, is equal to

degF + deg(F |C)− (deg(F |C)− 1) = 1 + degF.

Indeed, by Lemma 4.1.2 and Lemma 4.1.3, each 1-tile that contributes in (4.1.10), i.e.,

each 1-tile in X1
ww ∪X1

bb ∪B ∪A, contains exactly one fixed point (not counted with weight)
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of F . On the other hand, each fixed point is contained in at least one of the 1-tiles in

X1
ww ∪X1

bb ∪B ∪ A. Let p be a fixed point of F , then one of the following happens:

1. If p /∈ C, then p is not contained in any 1-edges e since F (e) ⊆ C. So p ∈ inte(X)

for some X ∈ X1
ww ∪X1

bb \ (A ∪B), by Lemma 4.1.2. So each such p contributes 1 to

(4.1.10).

2. If p ∈ C but p /∈ critF , then p is not a 1-vertex, so either p is contained in exactly two

1-tiles X ∈ X1
ww and X ′ ∈ X1

bb, or p is contained in exactly two 1-tiles X ∈ X1
bw and

X ′ ∈ X1
wb. In either case, p contributes 1 to (4.1.10).

3. If p ∈ C and p ∈ critF , then p is a 0-vertex, so the part that p contributes in (4.1.10)

counts the number of black 1-tiles that contains p, which is exactly the weight degF (p)

of p.

The proof is now complete.

We can use some elementary number-theoretic argument to generalize Proposition 4.1.8

to all expanding Thurston maps, thus proving Theorem 1.0.1.

Proof of Theorem 1.0.1. We first observe that by Proposition 4.1.8, the theorem holds for f

replaced by F = fn for each n ≥ N(f) where N(f) is a constant as given in Corollary 2.5.3

depending only on f . Indeed, let C be an fn-invariant Jordan curve containing post f such

that no n-tile in Dn(f, C) joins opposite sides of C as given in Corollary 2.5.3. So C is an

F -invariant Jordan curve containing postF such that no 1-tile in D1(F, C) joins opposite

sides of C. Proposition 4.1.8 now applies.

Next, choose a prime r ≥ N(f). Note that the set of fixed points of f r can be decomposed

into periodic orbits under f of length r or 1, since r is a prime. Let p be a fixed point of f r.

By using the following formula derived from (2.1.2),

degfr(p) = degf(p) degf(f(p)) degf(f
2(p)) · · ·degf (f r−1(p)), (4.1.11)

we can conclude that
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(1) if p /∈ crit(f r), or equivalently, degfr(p) = 1, and

(i) if p is in a periodic orbit of length r, then p, f(p), . . . , f r−1(p) /∈ crit f , or equiva-

lently, the local degrees of f r at these points are all 1;

(ii) if p is in a periodic orbit of length 1, then p /∈ crit f , or equivalently, degf(p) = 1;

(2) if p ∈ crit(f r), and

(i) if p is in a periodic orbit of length r, then all p, f(p), . . . , f r−1(p) are fixed points

of f r with the same weight degfr(p) = degfr(f
k(p)) for each k ∈ N;

(ii) if p is in a periodic orbit of length 1, then p ∈ crit f and the weight of f r at p is

degfr(p) = (degf(p))
r.

Note that a fixed point p ∈ S2 of f r is a fixed point of f if and only if p is in a periodic orbit

of length 1 under f . So by first summing the weight of the fixed points of f r in the same

periodic orbit then summing over all such orbits and applying Fermat’s Little Theorem, we

can conclude that

p1,fr =
∑

x∈P1,fr

degfr(x)

=
∑

(1)(i)

r +
∑

(1)(ii)

1 +
∑

(2)(i)

r degfr(p) +
∑

(2)(ii)

(degf(p))
r

≡
∑

(1)(ii)

1 +
∑

(2)(ii)

degf(p)

= p1,f (mod r),

where on the second line, the first sum ranges over all periodic orbits in Case (1)(i), the

second sum ranges over all periodic orbits in Case (1)(ii), the third sum ranges over all

periodic orbits of the form {p, f(p), . . . , f r−1(p)} in Case (2)(i), the last sum ranges over all

periodic orbits of the form {p} in Case (2)(ii). Thus by (2.1.3) and Fermat’s Little Theorem

again, we have

0 = deg(f r) + 1− p1,fr ≡ (deg f)r + 1− p1,f ≡ 1 + deg f − p1,f (mod r). (4.1.12)
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By choosing the prime r larger than |1 + deg f − p1,f |, we can conclude that p1,f = 1 +

deg f .

In particular, we have the following corollary in which the weight for all points are trivial.

Corollary 4.1.9. If f is an expanding Thurston map with no critical fixed points, then there

are exactly 1+deg f distinct fixed points of f . Moreover, if f is an expanding Thurston map

with no periodic critical points, then there are exactly 1+(deg f)n distinct fixed points of fn,

for each n ∈ N.

Proof. The first statement follows immediately from Theorem 1.0.1.

To prove the second statement, we first recall that if f is an expanding Thurston map,

so is fn for each n ∈ N. Next we note that for each fixed point p ∈ S2 of fn, n ∈ N, we have

degfn(p) = 1. For otherwise, suppose degfn(p) > 1 for some n ∈ N, then

1 < degfn(p) = degf(p) degf (f(p)) degf (f
2(p)) · · ·degf(fn−1(p)).

Thus at least one of the points p, f(p), f 2(p), . . . , fn−1(p) is a periodic critical point of f , a

contradiction. The second statement now follows.

We recall the definition of smn in (4.1.6) and (4.1.7).

Corollary 4.1.10. Let f be an expanding Thurston map. For each m ∈ N0 and n ∈ N with

m < n, we have

smn = (deg f)n + (deg f)m. (4.1.13)

Proof. For all m ∈ N0 and n ∈ N with m < n, we have

smn =
∑

x∈Smn

degfn(x) =
∑

y=fn−m(y)

∑

x∈f−m(y)

degfn(x)

=
∑

y=fn−m(y)

degfn−m(y)
∑

x∈f−m(y)

degfm(x)

=
(
(deg f)n−m + 1

)
(deg f)m.

The last equality follows from (2.1.1), (2.1.3), and Theorem 1.0.1.
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Finally, for expanding Thurston maps with no periodic critical points, we derive a formula

for pn,f , n ∈ N, from Theorem 1.0.1 and the Möbius inversion formula (see for example,

[Bak85, Section 2.4]).

Definition 4.1.11. The Möbius function, µ(u), is defined by

µ(n) =





1 if n = 1;

(−1)r if n = p1p2 . . . pr, and p1, . . . , pr are distinct primes;

0 otherwise.

Corollary 4.1.12. Let f be an expanding Thurston map without any periodic critical points.

Then for each n ∈ N, we have

pn,f =
∑

d|n

µ(d)p1,fn/d =





∑
d|n

µ(d)(deg f)n/d if n > 1;

1 + deg f if n = 1.

Proof. The first equality follows from the Möbius inversion formula and the equation p1,fn =
∑
d|n

pd,f , for n ∈ N. The second equality follows from Theorem 1.0.1 and the following fact

(see for example, [Bak85, Section 2.4]):

∑

d|n

µ(d) =





1 if n = 1,

0 if n > 1.

4.2 Equidistribution

In this section, we derive various equidistribution results as stated in Theorem 1.0.12, The-

orem 1.0.13, and Corollary 1.0.14. We prove these results by first establishing a general

statement in Theorem 4.2.7 on the convergence of the distributions of the white n-tiles in the

tile decompositions discussed in Section 2.1, in the weak* topology, to the unique measure of

maximal entropy of an expanding Thurston map. More precisely, we show in Theorem 4.2.7
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that the distributions of the points, each of which is located “near” its corresponding white

n-tile where the correspondence is a bijection, converges in the weak* topology to µf as

n −→ +∞. Then Theorem 1.0.12 follows from Theorem 4.2.7. Theorem 1.0.13 finally fol-

lows after we prove a technical bound in Lemma 4.2.12 generalizing a corresponding lemma

from [BM10]. As a special case, we obtain Corollary 1.0.14. Theorem 1.0.1 is used in several

places in this section.

Let f be an expanding Thurston map. Then

htop(f) = log(deg f), (4.2.1)

and there exists a unique measure of maximal entropy µf for f (see [BM10, Theorem 20.9]

and [HP09, Section 3.4 and Section 3.5]). Moreover, for each n ∈ N, the unique measure

of maximal entropy µfn of the expanding Thurston map fn is equal to µf (see [BM10,

Theorem 20.7 and Theorem 20.9]).

We recall that in a compact metric space (X, d), a sequence of finite Borel measures µn

converges in the weak∗ topology to a finite Borel measure µ, or µn
w∗

−→ µ, as n −→ +∞ if

and only if lim
n→+∞

∫
u dµn =

∫
u dµ for each u ∈ C(X).

We need the following lemmas for weak∗ convergence.

Lemma 4.2.1. Let X and X̃ be two compact metric spaces and φ : X → X̃ a continuous

map. Let µ and µi, for i ∈ N, be finite Borel measures on X. If

µi
w∗

−→ µ as i −→ +∞,

then φ∗(µ) and φ∗(µi), i ∈ N, are finite Borel measures on X̃, and

φ∗(µi)
w∗

−→ φ∗(µ) as i −→ +∞.

Recall for a continuous map φ : X → X̃ between two metric spaces and a Borel measure

ν on X , the push-forward φ∗(ν) of ν by φ is defined to be the unique Borel measure that

satisfies (φ∗(ν))(B) = ν (φ−1(B)) for each Borel set B ⊆ X̃ .
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Proof. By the Riesz representation theorem (see for example, [Fo99, Chapter 7]), the lemma

follows if we observe that for each h ∈ C
(
X̃
)
, we have

∫

X̃

h dφ∗(µi) =

∫

X

(h ◦ φ) dµi i−→+∞−→
∫

X

(h ◦ φ) dµ =

∫

X̃

h dφ∗(µ).

Lemma 4.2.2. Let (X, d) be a compact metric space, and I be a finite set. Suppose that µ

and µi,n, for i ∈ I and n ∈ N, are finite Borel measures on X, and wi,n ∈ [0,+∞), for i ∈ I

and n ∈ N such that

1. µi,n
w∗

−→ µ, as n −→ +∞, for each i ∈ I,

2. lim
n→+∞

∑
i∈I

wi,n = r for some r ∈ R.

Then
∑
i∈I

wi,nµi,n
w∗

−→ rµ as n −→ +∞.

Proof. For each u ∈ C(X) and each n ∈ N,
∣∣∣∣∣

∫
u d

(∑

i∈I

wi,nµi,n

)
− r

∫
u dµ

∣∣∣∣∣ ≤
∑

i∈I

wi,n

∣∣∣∣
∫
u dµi,n −

∫
u dµ

∣∣∣∣+
∣∣∣∣r −

∑

i∈I

wi,n

∣∣∣∣
∫
|u| dµ.

Since µi,n
w∗

−→ µ, as n −→ +∞, for each i ∈ I, and lim
n→+∞

∑
i∈I

wi,n = r, we can conclude that

the right-hand side of the inequality above tends to 0 as n −→ +∞.

We record the following well-known lemma, sometimes known as the Portmanteau The-

orem, and refer the reader to [Bi99, Theorem 2.1] for the proof.

Lemma 4.2.3. Let (X, d) be a compact metric space, and µ and µi, for i ∈ N, be Borel

probability measures on X. Then the following are equivalent:

1. µi
w∗

−→ µ as i −→ +∞;

2. lim sup
i→+∞

µi(F ) ≤ µ(F ) for each closed set F ⊆ X;

3. lim inf
i→+∞

µi(G) ≥ µ(G) for each open set G ⊆ X;
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4. lim
i→+∞

µi(B) = µ(B) for each Borel set B ⊆ X with µ(∂B) = 0.

Lemma 4.2.4. Let (X, d) be a compact metric space. Suppose that Ai ⊆ X, for i ∈ N, are

finite subsets of X with maps φi : Ai → X such that

lim
i→+∞

max{d(x, φi(x)) | x ∈ Ai} = 0.

Let mi : Ai → R, for i ∈ N, be functions that satisfy

sup
i∈N

‖mi‖1 = sup
i∈N

∑

x∈Ai

|mi(x)| < +∞.

Define for each i ∈ N,

µi =
∑

x∈Ai

mi(x)δx, µ̃i =
∑

x∈Ai

mi(x)δφi(x).

If

µi
w∗

−→ µ as i −→ +∞,

for some finite Borel measure µ on X, then

µ̃i
w∗

−→ µ as i −→ +∞.

Proof. It suffices to prove that for each continuous function g ∈ C(X),

∫
g dµi −

∫
g dµ̃i −→ 0 as i −→ +∞.

Indeed, g is uniformly continuous, so for each ǫ > 0, there exists N ∈ N such that for each

n > N and for each x ∈ An, we have |g(x)− g(φn(x))| < ǫ. Thus

∣∣∣∣
∫
g dµn −

∫
g dµ̃n

∣∣∣∣ ≤
∑

x∈An

|g(x)− g(φn(x))| |mn(x)| ≤ ǫ sup
n∈N

‖mn‖1 .

The following lemma is a reformulation of Lemma 20.2 in [BM10]. We will later generalize

it in Lemma 4.2.12.
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Lemma 4.2.5 (M. Bonk & D. Meyer, 2010). Let f be an expanding Thurston map, and

C ⊆ S2 be an fN -invariant Jordan curve containing post f for some N ∈ N. Then there

exists a constant L0 ∈ [1, deg f) with the following property:

For each m ∈ N0 with m ≡ 0 (mod N), there exists a constant D0 > 0 such that for each

k ∈ N0 with k ≡ 0 (mod N) and each m-edge e, there exists a collection M0 of (m+ k)-tiles

with cardM0 ≤ D0L
k
0 and e ⊆ int

( ⋃
X∈M0

X
)
.

Let F be an expanding Thurston map with an F -invariant Jordan curve C ⊆ S2 contain-

ing postF . As before, we let ww = cardX1
ww denote the number of white 1-tiles contained

in the white 0-tile, bw = cardX1
bw the number of black 1-tiles contained in the white 0-tile,

wb = cardX1
wb the number of white 1-tiles contained in the black 0-tile, and bb = cardX1

bb

the number of black 1-tiles contained in the black 0-tile. We define

w =
bw

bw + wb
, b =

wb
bw + wb

. (4.2.2)

Note that (see the discussion in [BM10] proceeding Lemma 20.1 in Chapter 20) bw, wb, w, b >

0, w + b = 1, and

|ww − bw| < degF. (4.2.3)

M. Bonk and D. Meyer gave the following characterization of the unique measure of

maximal entropy of F (see [BM10, Proposition 20.7 and Theorem 20.9]):

Theorem 4.2.6 (M. Bonk & D. Meyer, 2010). Let F be an expanding Thurston map with an

F -invariant Jordan curve C ⊆ S2. Then there is a unique measure of maximal entropy µF

of F , which is characterized among all Borel probability measures by the following property:

For each n ∈ N0 and each n-tile Xn ∈ Xn(F, C),

µ(Xn) =





w(degF )−n if Xn ∈ Xn
w(F, C),

b(degF )−n if Xn ∈ Xn
b (F, C).

(4.2.4)

We now state our first characterization of the measure of maximal entropy µf of an

expanding Thurston map f .
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Theorem 4.2.7. Let f be an expanding Thurston map with its measure of maximal en-

tropy µf . Let C ⊆ S2 be an fn-invariant Jordan curve containing post f for some n ∈ N.

Fix a visual metric d for f . Consider any sequence of non-negative numbers {αi}i∈N0

with lim
i→+∞

αi = 0, and any sequence of maps {βi}i∈N0 with βi sending each white i-tile

X i ∈ Xi
w(f, C) to a point βi(X

i) ∈ Nαi
d (X i). Let

µi =
1

(deg f)i

∑

Xi∈Xi
w(f,C)

δβi(Xi), i ∈ N0.

Then

µi
w∗

−→ µf as i −→ +∞.

Recall that Nαi
d (X i) denotes the open αi-neighborhood of X i in (S2, d). This theorem

says that a sequence of probability measures {µi}i∈N, with µi assigning the same weight to

a point near each white i-tile, converges in the weak∗ topology to the measure of maximal

entropy. In some sense, it asserts the equidistribution of the white i-tiles with respect to the

measure of maximal entropy.

We first prove a weaker version of the above theorem.

Proposition 4.2.8. Let F be an expanding Thurston map with its measure of maximal

entropy µF and an F -invariant Jordan curve C ⊆ S2 containing postF . Consider any

sequence of maps {βi}i∈N0 with βi sending each white i-tile X i ∈ Xi
w(F, C) to a point βi(X

i) ∈
inte(X i) for each i ∈ N0. Let

µi =
1

(degF )i

∑

Xi∈Xi
w(F,C)

δβi(Xi), i ∈ N0.

Then

µi
w∗

−→ µF as i −→ +∞.

Proof. Note that cardXi
w = (degF )i, so µi is a probability measure for each i ∈ N0. Thus by

Alaoglu’s theorem, it suffices to prove that for each Borel measure µ which is a subsequential

limit of {µi}i∈N0 in the weak∗ topology, we have µ = µF .
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Let {in}n∈N ⊆ N be an arbitrary strictly increasing sequence such that

µin
w∗

−→ µ as n −→ +∞,

for some Borel measure µ. Clearly µ is also a probability measure.

Recall the definitions of w, b ∈ (0, 1) and ww, bw, wb, bb (see (4.2.2)). For each m, i ∈ N0

with 0 ≤ m ≤ i, each white m-tile Xm
w ∈ Xm

w , and each black m-tile Xm
b ∈ Xm

b , by the

formulas in Lemma 20.1 in [BM10], we have

µi(X
m
w ) =

1

(degF )i
card{X i ∈ Xi

w |X i ⊆ Xm
w }

=
1

(degF )i
(
w(degF )i−m + b(ww − bw)

i−m
)
, (4.2.5)

and similarly,

µi(X
m
b ) =

1

(degF )i
(
w(degF )i−m − b(ww − bw)

i−m
)
. (4.2.6)

We claim that for each m-tile Xm ∈ Xm with m ∈ N0, we have µ(∂Xm) = 0.

To establish the claim, by Proposition 2.2.4(vi), it suffices to prove that µ(e) = 0 for

each m-edge e with m ∈ N0. Applying Lemma 4.2.5 in the case f = F and n = 1, we get

that there exist constants 1 < L0 < deg F and D0 > 0 such that for each k ∈ N0, there is a

collection Mk
0 of (m+ k)-tiles with cardMk

0 ≤ D0L
k
0 such that e is contained in the interior

of the set
⋃

X∈Mk
0

X . So by (4.2.3), (4.2.5), (4.2.6), and Lemma 4.2.3, we get

µ(e) ≤ µ

(
int
( ⋃

X∈Mk
0

X
))

≤ lim sup
l→+∞

µm+k+l

(
int
( ⋃

X∈Mk
0

X
))

≤ lim sup
l→+∞

∑

X∈Mk
0

µm+k+l(X) ≤
∑

X∈Mk
0

lim sup
l→+∞

µm+k+l(X) ≤ D0L
k
0

w + b

(deg F )m+k
.

By letting k −→ +∞, we get µ(e) = 0, proving the claim.

Thus by (4.2.3), (4.2.5), (4.2.6), the claim, and Lemma 4.2.3, we can conclude that for

each m ∈ N0, and each white m-tile Xm
w ∈ Xm

w , each black m-tile Xm
b ∈ Xm

b , we have that

µ(Xm
w ) = lim

n→+∞
µin(X

m
w ) = w(degF )−m,
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µ(Xm
b ) = lim

n→+∞
µin(X

m
b ) = b(degF )−m.

By Theorem 4.2.6, therefore, the measure µ is equal to the unique measure of maximal

entropy µF of F .

As a consequence of the above proposition, we have

Corollary 4.2.9. Let f be an expanding Thurston map with its measure of maximal entropy

µf . Let C ⊆ S2 be an fn-invariant Jordan curve containing post f for some n ∈ N. Fix an

arbitrary p ∈ inte(X0
w) where X

0
w is the white 0-tile for (f, C). Define, for i ∈ N,

νi =
1

(deg f)i

∑

q∈f−i(p)

δq.

Then

νi
w∗

−→ µf as i −→ +∞.

Proof. First observe that since p is contained in the interior of the white 0-tile, each q ∈
f−n(p) is contained in the interior of one of the white n-tiles, and each white n-tile contains

exactly one q with fn(q) = p. So by Proposition 4.2.8,

νni
w∗

−→ µfn as i −→ +∞, (4.2.7)

where µfn is the unique measure of maximal entropy of fn, which is equal to µf (see [BM10,

Theorem 20.7 and Theorem 20.9]).

Then note that for k > 1,

f∗νk =
1

(deg f)k

∑

q∈f−k(p)

δf(q) =
1

(deg f)k−1

∑

q∈f−k+1(p)

δq = νk−1. (4.2.8)

The second equality above follows from the fact that the number of preimages of each point

in f−k+1(p) is exactly deg f .

So by (4.2.7), (4.2.8), Lemma 4.2.1, and the fact that µf is invariant under pushforward

of f from Theorem 20.9 in [BM10], for each k ∈ {0, 1, . . . , n− 1}, we get

νni−k = (f∗)
kνni

w∗

−→ (f∗)
kµf = µf as i −→ +∞.
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Therefore

νi
w∗

−→ µf as i −→ +∞.

Proof of Theorem 4.2.7. Fix an arbitrary p ∈ inte(X0
w) in the interior of the while 0-tile X0

w

for the cell decomposition induced by (f, C).

As in the proof of Corollary 4.2.9, for each i ∈ N0, there is a bijective correspondence

between points in f−i(p) and the set of white i-tiles, namely, each q ∈ f−i(p) corresponds to

the unique white i-tile, denoted by Xq, containing q. Then we define functions φi : f
−i(p) →

S2 by setting φi(q) = βi(Xq).

Let Λ > 1 be the expansion factor of our fixed visual metric d. There exists C ≥ 1 such

that for each n ∈ N0 and each n-tile Xn ∈ Xn, diamd(X
n) ≤ CΛ−n (see Lemma 2.4.1). So

for each i ∈ N0 and each q ∈ f−i(p), we have

d(q, φi(q)) ≤ d(φi(q), Xq) + diamd(Xq) ≤ αi + CΛ−i.

Thus lim
i→+∞

max{d(x, φi(x)) | x ∈ f−i(p)} = 0.

For i ∈ N0, define

µ̃i =
1

(deg f)i

∑

q∈f−i(p)

δq.

Note that for i ∈ N0,

µi =
1

(deg f)i

∑

Xi∈Xi
w(f,C)

δβi(Xi) =
1

(deg f)i

∑

q∈f−i(p)

δφi(q).

Then by Corollary 4.2.9,

µ̃i
w∗

−→ µf as i −→ +∞.

Therefore, by Lemma 4.2.4 with Ai = f−i(p) and mi(x) =
1

(deg f)i
, i ∈ N0, we can conclude

that

µi
w∗

−→ µf as i −→ +∞.

Remarks 4.2.10. We can replace “white” by “black”, Xi
w byXi

b, andX
0
w byX0

b in the state-

ments of Theorem 4.2.7, Proposition 4.2.8, and Corollary 4.2.9. The proofs are essentially

the same.
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We are now ready to prove the equidistribution of preimages of an arbitrary point with

respect to the measure of maximal entropy µf .

Proof of Theorem 1.0.12. By Theorem 1.2 in [BM10] or Corollary 2.5.3, we can fix an fn-

invariant Jordan curve C ⊆ S2 containing post f for some n ∈ N. We consider the cell

decompositions induced by (f, C).

We first prove (1.0.10).

We assume that p is contained in the (closed) white 0-tile. The proof for the case when

p is contained in the black 0-tile is exactly the same except that we need to use a version of

Theorem 4.2.7 for black tiles instead of using Theorem 4.2.7 literally, see Remark 4.2.10.

Observe that for each i ∈ N0 and each q ∈ f−i(p), the number of white i-tiles that

contains q is exactly degf i(q). On the other hand, each white i-tile contains exactly one

point q with f i(q) = p. So we can define βi : X
i
w → S2 by mapping a white i-tile to the point

q in it that satisfies f i(q) = p. Define αi ≡ 0. Theorem 4.2.7 applies, and thus (1.0.10) is

true.

Next, we prove (1.0.11). The proof breaks into three cases.

Case 1. Assume that p /∈ post f . Then degf(x) = 1 for all x ∈
+∞⋃
n=1

f−n(p). So ν̃i = νi for

each i ∈ N. Then (1.0.11) follows from (1.0.10) in this case.

Case 2. Assume that p ∈ post f and p is not periodic. Then there exists N ∈ N such

that f−N(p) ∩ post f = ∅. For otherwise, there exists a point z ∈ post f which belongs to

f−c(p) for infinitely many distinct c ∈ N. In particular, there exist two integers a > b > 0

such that z ∈ f−a(p) ∩ f−b(p). Then fa−b(p) = p, a contradiction. So degf(q) = 1 for

each q ∈ ⋃
x∈f−N (p)

+∞⋃
i=1

f−i(x). Note that for each x /∈ post f and each i ∈ N, the number of

preimages of x under f i is exactly (deg f)i. Then for each i ∈ N, Zi+N = ZN(deg f)
i, and

ν̃i+N =
1

Zi+N

∑

q∈f−(i+N)(p)

δq =
1

ZN

∑

x∈f−N (p)

(
1

(deg f)i

∑

q∈f−i(x)

δq

)
.
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For each x ∈ f−N(p), by Case 1,

1

(deg f)i

∑

q∈f−i(x)

δq
w∗

−→ µf as i −→ +∞.

Thus each term in the sequence {ν̃i+N}i∈N is a convex combination of the corresponding

terms in sequences of measures, each of which converges to µf in the weak∗ topology. Hence

by Lemma 4.2.2, the sequence {ν̃i+N}i∈N also converges to µf in the weak∗ topology in this

case.

Case 3. Assume that p ∈ post f and p is periodic with period k ∈ N. Let l = card(post f).

We first note that for each m,N ∈ N, the inequality

Zm+N ≥ (Zm − l)(deg f)N ,

and equivalently,
Zm
Zm+N

≤ 1

(deg f)N
+

l

Zm+N

hold, since there are at most l points in Zm ∩ post f . So by Lemma 2.3.5, for each ǫ > 0 and

each N large enough such that 1/(deg f)N < ǫ/2 and l/Zm+N < ǫ/2, we get Zm/Zm+N < ǫ

for each m ∈ N. We fix j ∈ N large enough such that Zm−jk/Zm < ǫ for each m > jk.

Observe that for each m > jk,

ν̃m =
1

Zm

∑

q∈f−m(p)

δq =
1

Zm

( ∑

q∈f−(m−jk)(p)

δq +
∑

x∈f−jk(p)\{p}

∑

q∈f−(m−jk)(x)

δq

)

=
Zm−jk

Zm

(
1

Zm−jk

∑

q∈f−(m−jk)(p)

δq

)
+

1

Zm

∑

x∈f−jk(p)\{p}

(4.2.9)

card
(
f−(m−jk)(x)

)( 1

card (f−(m−jk)(x))

∑

q∈f−(m−jk)(x)

δq

)
.

Note that no point x ∈ f−jk(p) \ {p} is periodic. Indeed, if x ∈ f−jk(p) \ {p} were peri-

odic, then x ∈
k−1⋃
i=0

f i(p), and so x would have period k as well. Thus x = f jk(x) = p, a

contradiction. Hence by Case 1 and Case 2, for each x ∈ f−jk(p) \ {p},

1

card (f−(m−jk)(x))

∑

q∈f−(m−jk)(x)

δq
w∗

−→ µf as m −→ +∞.
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Let µ ∈ P(S2) be an arbitrary subsequential limit of {ν̃m}m∈N in the weak∗ topology.

For each strictly increasing sequence {mi}i∈N in N that satisfies

ν̃mi
w∗

−→ µ as i −→ +∞,

we can assume, due to Alaoglu’s Theorem, by choosing a subsequence if necessary, that

Zmi−jk
Zmi

(
1

Zmi−jk

∑

q∈f−(mi−jk)(p)

δq

)
w∗

−→ η as i −→ +∞,

for some Borel measure η with total variation ‖η‖ ≤ ǫ. Observe that for each i ∈ N,

1

Zmi

∑

x∈f−jk(p)\{p}

card
(
f−(mi−jk)(x)

)
= 1− Zmi−jk

Zmi
,

since p ∈ f−jk(p) and card
(
f−(mi−jk)(p)

)
= Zmi−jk. By choosing a subsequence of {mi}i∈N

if necessary, we can assume that there exists r ∈ [0, ǫ] such that

lim
i→+∞

Zmi−jk
Zmi

= r.

So by taking the limits of both sides of (4.2.9) in the weak∗ topology along the subsequence

{mi}i∈N, we get from Lemma 4.2.2 that µ = η + (1− r)µf . Thus

‖µ− µf‖ ≤ ‖η‖+ r ‖µf‖ ≤ 2ǫ.

Since ǫ is arbitrary, we can conclude that µ = µf . We have proven in this case that each

subsequential limit of {ν̃m}m∈N in the weak∗ topology is equal to µf . Therefore (1.0.11) is

true in this case.

In order to prove Theorem 1.0.13, we will need Lemma 4.2.12 which is a generalization

of Lemma 4.2.5.

Lemma 4.2.11. Let f be an expanding Thurston map and d = deg f . Then there exist

constants C > 0 and α ∈ (0, 1] such that for each nonempty finite subset M of S2 and each

n ∈ N, we have

1

dn

∑

x∈M

degfn(x) ≤ Cmax

{(
cardM

dn

)α
,
cardM

dn

}
. (4.2.10)
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Note that when cardM ≤ dn, the right-hand side of (4.2.10) becomes C
(
cardM
dn

)α
.

Proof. Let m = cardM . Set

D =
∏

x∈crit f

degf(x).

In order to establish the lemma, we consider the following three cases.

Case 1: Suppose that f has no periodic critical points. Then since for each x ∈ S2 and

each n ∈ N,

degfn(x) = degf(x) degf(f(x)) · · ·degf(fn−1(x)), (4.2.11)

it is clear that degfn(x) ≤ D. So

1

dn

∑

x∈M

degfn(x) ≤ D
m

dn
.

Thus in this case, C = D and α = 1.

Case 2: Suppose that f has periodic critical points, but all periodic critical points are

fixed points of f .

Let T0 = {x ∈ crit f | f(x) = x} be the set of periodic critical points of f . Then define

recursively for each i ∈ N,

Ti = f−1(Ti−1) \
i−1⋃

j=0

Tj.

Define T−1 = S2 \
+∞⋃
j=0

Tj, and T̃i = S2 \
i⋃

j=0

Tj for each i ∈ N0. Set t0 = cardT0. Since

T0 ⊆ post f , we have 1 ≤ t0 < +∞. Then for each i ∈ N, we have

cardTi ≤ dit0.

We note that if degf(x) = d for some x ∈ T0, then f−i(x) = {x} for each i ∈ N,

contradicting Lemma 2.3.5. So degf (x) ≤ d − 1 for each x ∈ T0. Thus for each x ∈ T0 and

each m ∈ N, we have

degfm(x) ≤ (d− 1)m.
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Moreover, for each i,m ∈ N with i < m and each x ∈ Ti, we get

degfm(x) = degf(x) degf(f(x)) · · ·degf (f i−1(x)) degfm−i(f i(x)) ≤ D(d− 1)m−i.

Similarly, for each i,m ∈ N with i ≥ m and each x ∈ T̃i, we have

degfm(x) ≤ D.

Thus for each n ∈ N,

1

dn

∑

x∈M

degfn(x) =
1

dn

+∞∑

j=−1

∑

x∈M∩Tj

degfn(x) ≤
1

dn

( n∑

j=0

∑

x∈M∩Tj

D(d− 1)n−j +
∑

x∈M∩T̃n

D

)
.

Note that the more points in M lie in Tj with j ∈ [0, n] as small as possible, the larger the

right-hand side of the last inequality is. So the right-hand side of the last inequality is

≤ 1

dn

( ⌈logd⌈
m
t0

⌉⌉∑

j=0

(cardTj)D(d− 1)n−j +mD

)

≤Dt0
dn

⌈logd⌈
m
t0

⌉⌉∑

j=0

dj(d− 1)n−j +
mD

dn

≤Dt0
(
d− 1

d

)n ⌈logdm⌉∑

j=0

(
d

d− 1

)j
+
mD

dn

=Dt0

(
d− 1

d

)n ( d
d−1

)⌈logdm⌉+1 − 1
d
d−1

− 1
+
mD

dn

≤Dt0
(
d− 1

d

)n(
d

d− 1

)2+logdm

(d− 1) +
mD

dn

≤Dt0
d2

d− 1

((
d− 1

d

)n−logdm

+
m

dn

)

=
1

2
Ef

(
d(n−logdm) logd

d−1
d +

m

dn

)

≤Ef max
{(m

dn

)logd d
d−1

,
m

dn

}
,

where Ef = 2Dt0
d2

d−1
is a constant that only depends on f . Thus in this case, C = Ef and

α = logd
d
d−1

∈ (0, 1].

Case 3: Suppose that f has periodic critical points that may not be fixed points of f .
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Set κ to be the product of the periods of all periodic critical points of f .

We claim that each periodic critical point of fκ is a fixed point of fκ. Indeed, if x is a

periodic critical point of fκ satisfying fκp(x) = x for some p ∈ N, then by (4.2.11), there

exists an integer i ∈ {0, 1, . . . , κ − 1} such that f i(x) ∈ crit f . Then f i(x) is a periodic

critical point of f , so fκ(f i(x)) = f i(x). Thus

fκ(x) = fκ−i(f i(x)) = fκ−i+κ(f i(x)) = · · · = fκ−i+(p−1)κ(f i(x)) = fκp(x) = x.

The claim now follows.

Note that for each n ∈ N,

1

dn

∑

x∈M

degfn(x) ≤ dκ
1

dκ⌈
n
κ
⌉

∑

x∈M

deg
fκ⌈

n
κ ⌉(x).

Hence by applying Case 2 for fκ, we get a constant Efκ that depends only on f , such that

the right-hand side of the above inequality is

≤ dκEfκ max

{(
m

dκ⌈
n
κ
⌉

)logdκ
dκ

dκ−1

,
m

dκ⌈
n
κ
⌉

}
≤ dκEfκ max

{(m
dn

)logdκ dκ

dκ−1
,
m

dn

}
.

Thus in this case C = dκEfκ and α = logdκ
dκ

dκ−1
∈ (0, 1].

Now we formulate a generalization of Lemma 4.2.5.

Lemma 4.2.12. Let f be an expanding Thurston map, and C ⊆ S2 be an fN -invariant

Jordan curve containing post f for some N ∈ N. Then there exists a constant L ∈ [1, deg f)

with the following property:

For eachm ∈ N0, there exists a constant D > 0 such that for each k ∈ N0 and eachm-edge

e, there exists a collection M of (m+ k)-tiles with cardM ≤ DLk and e ⊆ int
( ⋃
X∈M

X
)
.

Proof. We denote d = deg f , and consider the cell decompositions induced by (f, C) in this

proof.

Step 1: We first assume that for some m ∈ N, there exist constants L ∈ [1, d) and D > 0

such that for each k ∈ N0 and each m-edge e, there exists a collectionM of (m+k)-tiles with
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cardM ≤ DLk and e ⊆ int
( ⋃
X∈M

X
)
. Then by Proposition 2.2.4(i), for each (m−1)-edge e,

we can choose an m-edge e′ such that f(e′) = e. For each k ∈ N0, there exists a collectionM ′

of (m+ k)-tiles with cardM ′ ≤ DLk and e′ ⊆ int
( ⋃
X∈M ′

X
)
. We set M to be the collection

{f(X) |X ∈M ′} of (m−1+k)-tiles. Then cardM ≤ cardM ′ ≤ DLk and e ⊆ int
( ⋃
X∈M

X
)
.

Hence, it suffices to prove the lemma for “each m ∈ N0 with m ≡ 0 (mod N)” instead of

“each m ∈ N0”.

Step 2: We will prove the following statement by induction on κ:

For each κ ∈ {0, 1, . . . , N − 1}, there exists a constant Lκ ∈ [1, d) with the following

property:

For each m ∈ N0 with m ≡ 0 (mod N), there exists a constant Dκ > 0 such that for

each k ∈ N0 with k ≡ κ (mod N) and each m-edge e, there exists a collection Mm,k,e

of (m+ k)-tiles that satisfies cardMm,k,e ≤ DκL
k
κ and e ⊆ int

( ⋃
X∈Mm,k,e

X
)
.

Lemma 4.2.5 gives the case for κ = 0. For the induction step, we assume the above

statement for some κ ∈ [0, N − 1].

Let i ∈ N0 and p ∈ S2 be an i-vertex. We define the i-flower W i(p) as in [BM10] by

W i(p) =
⋃

{inte(c) | c ∈ Di, p ∈ c},

By definition, the only i-vertex contained in W i(p) is p, and the interior inte(e) of an i-edge

e is a subset of W i(p) if and only if p ∈ e. Note that the number of i-tiles in W i(p) is

2 degf i(p), i.e.,

card{X ∈ Xi | p ∈ X} = 2degf i(p). (4.2.12)

By [BM10, Lemma 7.11], there exists a constant β ∈ N, which depends only on f and C,
such that for each i ∈ N and each i-tile X ∈ Xi, X can be covered by a union of at most β

(i+ 1)-flowers.

Fix an arbitrary m ∈ N0 with m ≡ 0 (mod N), and fix an arbitrary m-edge e.
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By the induction hypothesis, there exist constants Dκ > 0 and Lκ ∈ [1, d) such that for

each k ∈ N0 with k ≡ κ + 1 (mod N), there exists a collection Mm,k−1,e of (m + k − 1)-

tiles with cardMm,k−1,e ≤ DκL
k−1
κ and e ⊆ int

( ⋃
X∈Mm,k−1,e

X
)
. Each X ∈ Mm,k−1,e can

be covered by β (m + k)-flowers Wm+k(p). We can then construct a set F ⊆ Vm+k of

(m+ k)-vertices such that

cardF ≤ βDκL
k−1
κ (4.2.13)

and
⋃

X∈Mm,k−1,e

X ⊆
⋃

p∈F

Wm+k(p). (4.2.14)

We define

Mm,k,e = {X ∈ Xm+k |X ∩ F 6= ∅}. (4.2.15)

Then e ⊆ int
( ⋃
X∈Mm,k,e

X
)
, and by (4.2.12),

cardMm,k,e ≤
∑

p∈F

2 degfm+k(p). (4.2.16)

Since Lκ ∈ [1, d), there exists K ∈ N, depending only on f , C, m, and κ, such that for

each i ≥ K, we have βDκL
i−1
κ ≤ dm+i.

Thus by (4.2.13), (4.2.16), and Lemma 4.2.11, for each k ≥ K with k ≡ κ+ 1 (mod N),

there exist constants C > 0 and α ∈ (0, 1], both of which depend only on f , such that

cardMm,k,e ≤ 2
∑

p∈F

degfm+k(p) ≤ 2Cd(m+k)(1−α)
(
βDκL

k−1
κ

)α
(4.2.17)

= 2Cdm(1−α)βαDα
κL

−α
κ

(
d1−αLακ

)k
.

Let Lκ+1 = d1−αLακ . Since Lκ ∈ [1, d), we get Lκ+1 ∈ [Lκ, d) ⊆ [1, d). Note that Lκ+1 only

depends on f , C, and κ. We define

τ = max

{
2
∑

p∈V

degfm+i(p)

∣∣∣∣ i ≤ K, V ⊆ Vm+i, cardV ≤ βDκL
k−1
κ

}
.

Since τ is the maximum over a finite set of numbers, τ < +∞. We set

Dκ+1 = max{τ, 2Cdm(1−α)βαDα
κL

−α
κ }. (4.2.18)
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Then by (4.2.16), (4.2.17), and (4.2.18), we get that for each k ∈ N0 with k ≡ κ+1 (mod N),

cardMm,k,e ≤
∑

p∈F

2 degfm+k(p) ≤ Dκ+1L
k
κ+1. (4.2.19)

We note that τ only depends on f , C, m, and κ, so Dκ+1 also only depends on f , C, m, and

κ.

This completes the induction.

Step 3: Now we define

L = max{Lκ | κ ∈ {0, 1, . . . , N − 1}}.

For each fixed m ∈ N0 with m ≡ 0 (mod N), we set

D = max{Dκ | κ ∈ {0, 1, . . . , N − 1}},

and for each given k ∈ N0 and e ∈ Em, let M = Mm,k,e. Then we have cardM ≤ DLk and

e ⊆ int
( ⋃
X∈M

X
)
. We note that here L only depends on f and C, and on the other hand, D

only depends on f , C, and m. The proof is now complete.

Remarks 4.2.13. It is also possible to prove the previous lemma by observing that C
equipped with the restriction of a visual metric d for f is a quasicircle (see [BM10, The-

orem 1.8]), and S2 equipped with d is linearly locally connected (see [BM10, Proposi-

tion 16.3]). A metric space X , that is homeomorphic to the plane and with X linearly

locally connected and ∂X a Jordan curve, has the property that ∂X is porous in X (see

[Wi07, Theorem IV.14]). Then we can mimic the original proof of Lemma 20.2 in [BM10].

We are finally ready to prove the equidistribution of the preperiodic points with respect

to the measure of maximal entropy µf .

Proof of Theorem 1.0.13. Fix an arbitrary N ≥ N(f) where N(f) is an constant as given in

Corollary 2.5.3 depending only on f . We also fix an fN -invariant Jordan curve C containing

post f such that no N -tile in DN(f, C) joins opposite sides of C as given in Corollary 2.5.3.
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In the proof below, we consider the cell decompositions Di(f, C), i ∈ N0, induced by (f, C),
and denote d = deg f .

Since ξmn and ξ̃mn are Borel probability measures for all m ∈ N0 and n ∈ N with m < n,

by Alaoglu’s Theorem, it suffices to prove that in the weak∗ topology, every convergent

subsequence of {ξmnn }n∈N and {ξ̃mnn }n∈N converges to µf .

Proof of (1.0.13):

Let {ni}i∈N be a strictly increasing sequence with

ξ
mni
ni

w∗

−→ µ as i −→ +∞,

for some measure µ.

Case 1 for (1.0.13): We assume in this case that there is no constant K ∈ N such that

for all i ∈ N, ni−mni ≤ K. Then by choosing a subsequence of {ni}i∈N if necessary, we can

assume that ni −mni −→ +∞ as i −→ +∞.

Here is the idea of the proof in this case. By the spirit of Lemma 4.1.2 and Lemma 4.1.3,

there is an almost bijective correspondence between the fixed points of fn−mn and the (n−
mn)-tiles containing such points. The correspondence is particularly nice away from C. Thus
there is almost a bijective correspondence between the preperiodic points in Smnn and the

n-tiles containing such points. So if we can control the behavior near C, then Theorem 4.2.7

applies and we finish the proof in this case. Finally the control we need is provided by

Lemma 4.2.12.

Now we start to implement this idea. We fix a 0-edge e0 ⊆ C. Observe that for each

i ∈ N, we can pair a white i-tile X i
w ∈ Xi

w and a black i-tile X i
b ∈ Xi

b whose intersection

X i
w ∩X i

b is an i-edge contained in f−i(e0). There are a total of di such pairs and each i-tile

is in exactly one such pair. We denote by Pi the collection of the unions X i
w ∪ X i

b of such

pairs, i.e.,

Pi = {X i
w ∪X i

b |X i
w ∈ Xi

w, X
i
b ∈ Xi

b, X
i
w ∩X i

b ∩ f−i(e0) ∈ Ei}.

We denote P′
i = {A ∈ Pi |A ∩ C = ∅}.
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By Lemma 4.2.12, there exists 1 ≤ L < d and C > 0 such that for each i ∈ N there

exists a collection M of i-tiles with cardM ≤ CLi such that C is contained in the interior

of the set
⋃

X∈M

X . Note that L and C are constants independent of i. Observe that for each

A ∈ Pi that does not contain any i-tile in the collection M , we have A∩X ⊆ ∂
( ⋃
X∈M

X
)
for

each X ∈ M , so A ∩ int
( ⋃
X∈M

X
)
= ∅. Since the number of distinct A ∈ Pi that contains

an i-tile in M is bounded above by CLi, we get

card(P′
i) ≥ di − CLi. (4.2.20)

Note that for each i ∈ N and each A ∈ P′
i, either A ⊆ X0

w or A ⊆ X0
b where X0

w (resp.

X0
b ) is the white (resp. black) 0-tile for (f, C). So by Proposition 2.2.4(i) and Brouwer’s

Fixed Point Theorem, there is a map τ : P′
i → P1,f i from P′

i to the set of fixed points of f i

such that τ(A) ∈ A. Note if a fixed point x of f i has weight degf i(x) > 1, then x has to be

contained in post f ⊆ C. Thus degf i(τ(A)) = 1 for all A ∈ P′
i.

If for some A ∈ P′
i, the point τ(A) were on the boundaries of the two i-tiles whose union

is A, then τ(A) would have to be contained in C since the boundaries are mapped into C
under f i. Thus for each A ∈ P′

i, the point τ(A) is contained in the interior of one of the two

i-tiles whose union is A. Hence τ is injective. Moreover,

degf i+j(x) = 1 for each j ∈ N0 and each x ∈
⋃

A∈P′
i

f−j(τ(A)). (4.2.21)

For each i ∈ N, we choose a map βni : X
ni
w → S2 by letting βni(X) be the unique

point in f−mni (τ(A)) ∩ B where B ∈ Pni with X ⊆ B, if there exists A ∈ P′
ni−mni

with

fmni (X) ⊆ A; and by letting βni(X) be an arbitrary point inX if there exists no A ∈ P′
ni−mni

with fmni (X) ⊆ A.

We fix a visual metric d for f with expansion factor Λ > 1. Note that Λ depends only on

f and d. Then diamd(A) < cΛ−i for each i ∈ N, where c ≥ 1 is a constant depending only

on f , d, and C (See Lemma 2.4.1(ii)). Define αn = cΛ−n for each n ∈ N. Thus αni and βni

satisfy the hypothesis in Theorem 4.2.7. Define µni as in Theorem 4.2.7. Then

µni
w∗

−→ µf as i −→ +∞, (4.2.22)
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by Theorem 4.2.7.

We claim that the total variation
∥∥µni − ξ

mni
ni

∥∥ of µni− ξ
mni
ni converges to 0 as i −→ +∞.

Assuming the claim, then by (4.2.22), we can conclude that (1.0.13) holds in this case.

To prove the claim, by Corollary 4.1.10, we observe that for each i ∈ N,

∥∥µni − ξ
mni
ni

∥∥ ≤
∥∥∥∥µni −

1

dni−mni

∑

A∈P′
ni−mni

1

dmni

∑

q∈f−mni (τ(A))

δq

∥∥∥∥

+

∥∥∥∥
(

1

dni
− 1

dni + dmni

) ∑

A∈P′
ni−mni

∑

q∈f−mni (τ(A))

δq

∥∥∥∥ (4.2.23)

+

∥∥∥∥
1

dni−mni + 1

∑

A∈P′
ni−mni

1

dmni

∑

q∈f−mni (τ(A))

δq − ξ
mni
ni

∥∥∥∥.

In the first term on the right-hand side of (4.2.23), each δq in the summations cancels with

the corresponding term in the definition of µni. So the first term on the right-hand side

of (4.2.23) is equal to the difference of the total variations of the two measures, which by

(4.2.20), is

≤ 1− (dni−mni − CLni−mni )dmni

dni
= C

(
L

d

)ni−mni
.

In the second term on the right-hand side of (4.2.23), the total number of terms in the

summations is bounded above by dni. So the second term on the right-hand side of (4.2.23)

is

≤
∣∣∣∣
1

dni
− 1

dni + dmi

∣∣∣∣ d
ni.

In the third term on the right-hand side of (4.2.23), by (4.2.21), degfni (q) = 1 for each

A ∈ P′
ni−mni

and each q ∈ f−mni (τ(A)). So by (1.0.12) and Corollary 4.1.10, each δq in the

summations cancels with the corresponding δq in ξ
mni
ni . So the third term on the right-hand

side of (4.2.23) is equal to the difference of the total variations of the two measures, which

by (4.2.20) and Corollary 4.1.10, is

≤ 1− (dni−mni − CLni−mni )dmni

(dni−mni + 1)dmni
=

1 + CLni−mni

dni−mni + 1
.

Since ni−mni −→ +∞ as i −→ +∞, each term on the right-hand side of (4.2.23) converges
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to 0 as i −→ +∞. So
∥∥µni − ξ

mni
ni

∥∥ −→ 0 as i −→ +∞

as claimed.

Case 2 for (1.0.13): We assume in this case that there is a constant K ∈ N such that for

all i ∈ N, ni − mni ≤ K. Then by choosing a subsequence of {ni}i∈N if necessary, we can

assume that there exists some constant l ∈ [0, K] such that for all i ∈ N, ni−mni = l. Note

that in this case, mni −→ +∞ as i −→ +∞.

Then by Corollary 4.1.10 and Theorem 1.0.1,

ξ
mni
ni =

1

dmni (dl + 1)

∑

x∈S
mni
ni

degfni (x)δx

=
1

dl + 1

∑

y=f l(y)

degf l(y)

(
1

dmni

∑

x∈f−mni (y)

degfmni (x)δx

)
.

By Theorem 1.0.12, for each y ∈ S2,

1

dmni

∑

x∈f−mni (y)

degfmni (x)δx
w∗

−→ µf as i −→ +∞.

So each term in the sequence {ξmnini }i∈N is a convex combination of the corresponding terms

in sequences of measures, each of which converges in the weak∗ topology to µf . Hence by

Lemma 4.2.2, {ξmnini }i∈N also converges to µf in the weak∗ topology. It then follows that

µ = µf . Thus (1.0.13) follows in this case.

Proof of (1.0.14):

Let {ni}i∈N be a strictly increasing sequence with

ξ̃
mni
ni

w∗

−→ µ̃ as i −→ +∞,

for some measure µ̃.

Case 1 for (1.0.14): We assume in this case that there is no constant K ∈ N such that

for all i ∈ N, ni−mni ≤ K. Then by choosing a subsequence of {ni}i∈N if necessary, we can

assume that ni −mni −→ +∞ as i −→ +∞.

88



The idea of the proof in this case is similar to that of the proof of Case 1 for (1.0.13).

We use the same notation as in the proof of Case 1 for (1.0.13). Then (1.0.14) follows in

this case if we can prove that
∥∥∥µni − ξ̃

mni
ni

∥∥∥ converges to 0 as i −→ +∞.

As before, we observe that

∥∥∥µni − ξ̃
mni
ni

∥∥∥ ≤
∥∥∥∥µni −

1

dni−mni

∑

A∈P′
ni−mni

1

dmni

∑

q∈f−mni (τ(A))

δq

∥∥∥∥

+

∥∥∥∥
(

1

dni
− 1

s̃
mni
ni

) ∑

A∈P′
ni−mni

∑

q∈f−mni (τ(A))

δq

∥∥∥∥ (4.2.24)

+

∥∥∥∥
1

s̃
mni
ni

∑

A∈P′
ni−mni

∑

q∈f−mni (τ(A))

δq − ξ̃
mni
ni

∥∥∥∥.

As the first term on the right-hand side of (4.2.23) discussed before, the first term on the

right-hand side of (4.2.24) is

≤ 1− (dni−mni − CLni−mni )dmni

dni
= C

(
L

d

)ni−mni
.

In the second term on the right-hand side of (4.2.24), the total number of terms in the

summations is bounded above by dni. By (4.2.20), (4.2.21), and Corollary 4.1.10, we have

dmni (dni−mni + 1) = s
mni
ni ≥ s̃

mni
ni ≥ dmni card(P′

ni−mni
) ≥ dmni (dni−mni − CLni−mni ).

(4.2.25)

So the second term on the right-hand side of (4.2.24) is

≤
∣∣∣∣
1

dni
− 1

s̃
mni
ni

∣∣∣∣ d
ni =

∣∣∣∣1−
dni

s̃
mni
ni

∣∣∣∣ ≤ max
{ 1

dni−mni
,
CLni−mni

dni−mni

}
.

In the third term on the right-hand side of (4.2.24), by (4.2.21), degfni (q) = 1 for each

A ∈ P′
ni−mni

and each q ∈ f−mni (τ(A)). So by (1.0.12), each δq in the summations cancels

with the corresponding δq in ξ̃
mni
ni . So the third term on the right-hand side of (4.2.24) is

equal to the difference of the total variations of the two measures, which by (4.2.25) and

(4.2.20), for ni −mni large enough, is

≤ dni + dmni − (dni−mni − CLni−mni )dmni

s̃
mni
ni

≤ 1 + CLni−mni

dni−mni − CLni−mni
.
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Since ni−mni −→ +∞ as i −→ +∞, each term on the right-hand side of (4.2.24) converges

to 0 as i −→ +∞. So we can conclude that
∥∥∥µni − ξ̃

mni
ni

∥∥∥ −→ 0 as i −→ +∞.

So µ̃ = µf . Thus (1.0.14) follows in this case.

Case 2 for (1.0.14): We assume in this case that there is a constant K ∈ N such that for

all i ∈ N, ni − mni ≤ K. Then by choosing a subsequence of {ni}i∈N if necessary, we can

assume that there exists some constant l ∈ [0, K] such that for all i ∈ N, ni−mni = l. Note

that in this case, mni −→ +∞ as i −→ +∞.

Then for each i ∈ N, we have

ξ̃
mni
ni =

1

s̃
mni
ni

∑

x∈S
mni
ni

δx =
1

s̃
mni
ni

∑

y=f l(y)

Zmni ,y

(
1

Zmni ,y

∑

x∈f−mni (y)

δx

)
,

where Zm,y = card (f−m(y)) for each y ∈ S2 and each m ∈ N0. Note that for each i ∈ N, we

have

s̃
mni
ni =

∑

y=f l(y)

Zmni ,y.

Denote, for each i ∈ N and each y ∈ S2, the Borel probability measure µi,y =
1

Zmni ,y

∑
x∈f−mni (y)

δx.

Then by Theorem 1.0.12, we have

µi,y
w∗

−→ µf as i −→ +∞.

So each term in {ξ̃mnini }i∈N is a convex combination of the corresponding terms in sequences

of measures, each of which converges in the weak∗ topology to µf . Hence by Lemma 4.2.2,

{ξ̃mnini }i∈N also converges to µf in the weak∗ topology. It then follows that µ̃ = µf . Thus

(1.0.14) follows in this case.

The proof of Theorem 1.0.13 also gives us the following corollary.

Corollary 4.2.14. Let f be an expanding Thurston map. If {mn}n∈N is a sequence in N0

such that mn < n for each n ∈ N and lim
n→+∞

n−mn = +∞, then

lim
n→+∞

s̃mnn
smnn

= 1. (4.2.26)
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Proof. By the proof of Theorem 1.0.13, especially (4.2.25), we get that for each n ∈ N,

dn−mn − CLn−mn

dn−mn + 1
≤ s̃mnn
smnn

≤ 1, (4.2.27)

where d = deg f . Then (4.2.26) follows from the fact that 1 ≤ L < d and the condition that

lim
n→+∞

n−mn = +∞.

By (4.2.1), Theorem 1.0.1, and Corollary 4.2.14 with mn = 0 for each n ∈ N, we get the

following corollary, which is an analog of the corresponding result for expansive homeomor-

phisms on compact metric spaces with the specification property (see, for example, [KH95,

Theorem 18.5.5]).

Corollary 4.2.15. Let f be an expanding Thurston map. Then for each constant c ∈ (0, 1),

there exists a constant N ∈ N such that for each n ≥ N ,

cenhtop(f) = c(deg f)n < card{x ∈ S2 | fn(x) = x}

≤
∑

x=fn(x)

degfn(x) = (deg f)n + 1 <
1

c
enhtop(f).

In particular,

lim
n→+∞

card{x ∈ S2 | fn(x) = x}
exp (nhtop(f))

= lim
n→+∞

card{x ∈ S2 | fn(x) = x}
(deg f)n

= 1.

Finally, we get the equidistribution of the periodic points with respect to the measure of

maximal entropy µf as an immediate corollary.

Proof of Corollary 1.0.14. We get (1.0.15) and (1.0.16) from Theorem 1.0.13 with mn = 0

for all n ∈ N. Then (1.0.17) follows from (1.0.16) and Corollary 4.2.15.

4.3 Expanding Thurston maps as factors of the left-shift

M. Bonk and D. Meyer [BM10] proved that for an expanding Thurston map f , the topological

dynamical system (S2, f) is a factor of a certain classical topological dynamical system,

namely, the left-shift on the one-sided infinite sequences of deg f symbols. The goal of this
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section is to generalize this result to the category of measure-preserving dynamical systems.

The invariant measure for each measure-preserving dynamical system considered in this

section is going to be the unique measure of maximal entropy of the corresponding system.

Let X and X̃ be topological spaces, and f : X → X and f̃ : X̃ → X̃ be continuous maps.

We say that the topological dynamical system (X, f) is a factor of the topological dynamical

system (X̃, f̃) if there is a surjective continuous map ϕ : X̃ → X such that ϕ◦ f̃ = f ◦ϕ. For
measure-preserving dynamical systems (X, g, µ) and (X̃, g̃, µ̃) where X and X̃ are measure

spaces, g : X → X and g̃ : X̃ → X̃ measurable maps, and µ ∈ M(X, g) and µ̃ ∈ M(X̃, g̃),

we say that the measure-preserving dynamical system (X̃, g̃, µ̃) is a factor of the measure-

preserving dynamical system (X, g, µ) if there is a measurable map ϕ : X̃ → X such that

ϕ ◦ g̃ = g ◦ ϕ and ϕ∗µ̃ = µ. Thus we get the following commutative diagram:

X̃
f̃

//

ϕ

��

X̃

ϕ

��
X

f
// X

We recall a classical example of symbolic dynamical systems, namely (Jωk ,Σ), where the

alphabet Jk = {0, 1, . . . , k − 1} for some k ∈ N, the set of infinite words Jωk =
+∞∏
i=1

Jk, and Σ

is the left-shift operator with

Σ(i1, i2, . . . ) = (i2, i3, . . . )

for each (ii, i2, . . . ) ∈ Jωk . We equip Jωk with a metric d such that the distance between two

distinct infinite words (i1, i2, . . . ) and (j1, j2, . . . ) is
1
m
, where m = min{n ∈ N | in 6= jn}.

Define the set of words of length n as Jnk =
∏n

i=1 Jk, for n ∈ N and J0
k = {∅} where ∅

is considered as the word of length 0, which is also denoted by (). Denote the set of finite

words by J∗
k =

+∞⋃
n=0

Jnk . Then the left-shift operator Σ is defined on J∗
k \ J0

k naturally by

Σ(i1, i2, . . . , in) = (i2, i3, . . . , in).

It is well-known that the dynamical system (Jωk ,Σ) has a unique measure of maximal

entropy ηΣ, which is characterized by the property that

ηΣ (C(j1, j2, . . . , jn)) = k−n,
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for n ∈ N and j1, j2, . . . , jn ∈ Jk, where

C(j1, j2, . . . , jn) = {(i1, i2, . . . ) ∈ Jωk | i1 = j1, i2 = j2, . . . , in = jn} (4.3.1)

is the cylinder set determined by j1, j2, . . . , jn (see for example, [KH95, Section 4.4]).

We will prove that for each expanding Thurston map f with deg f = k and its measure

of maximal entropy µf , the measure-preserving dynamical system (S2, f, µf) is a factor of

the system (Jωk ,Σ, ηΣ).

We now review a construction from [BM10] for the convenience of the reader.

Let f : S2 → S2 be an expanding Thurston map, and C ⊆ S2 a Jordan curve with

post f ⊆ C. Consider the cell decompositions induced by the pair (f, C). Let k = deg f .

Fix an arbitrary point p ∈ inte(X0
w). Let q1, q2, . . . , qk be the distinct points in f−1(p).

For i = 1, 2, . . . , k, we pick a continuous path αi : [0, 1] → S2 \ post f with αi(0) = p and

αi(1) = qi.

We construct ψ : J∗
k → S2 inductively such that ψ(I) ∈ f−n(p), for each n ∈ N0 and

I ∈ Jnk , in the following way:

Define ψ(∅) = p, and ψ((i)) = qi for each (i) ∈ J1
k . Suppose that ψ has been defined for all

I ∈
n⋃
j=0

J jk , where n ∈ N. Now for each (i1, i2, . . . , in+1) ∈ Jn+1
k , the point ψ((i1, i2, . . . , in)) ∈

f−n(p) has already been defined. Since fn(ψ((i1, i2, . . . , in))) = p and fn : S2\f−n(post f) →
S2\post f is a covering map, the path αin+1 has a unique lift α̃in+1 : [0, 1] → S2 with α̃in+1(0) =

ψ((i1, i2, . . . , in)) and f
n ◦ α̃in+1 = αin+1 . We now define ψ((i1, i2, . . . , in+1)) = α̃in+1(1). Note

that then

fn+1(ψ((i1, i2, . . . , in+1))) = fn+1(α̃in+1(1)) = f(αin+1(1)) = f(qin+1) = p.

Hence ψ((i1, i2, . . . , in+1)) ∈ f−(n+1)(p). This completes the inductive construction of ψ.

Note that ψ : J∗
k → S2 induces a map ψ̃ : J∗

k →
+∞⋃
n=0

Xn
w by mapping each (i1, i2, . . . , in) ∈

Jnk to the unique white n-tile Xn
w ∈ Xn

w containing ψ((i1, i2, . . . , in)) ∈ f−n(p).

By the proof of Theorem 1.6 in Chapter 9 of [BM10], for each n ∈ N, ψ|Jnk : Jnk → f−n(p)

is a bijection. Hence ψ̃|Jnk : Jnk → Xn
w for n ∈ N0, and ψ̃ : J

∗
k →

+∞⋃
n=0

Xn
w are also bijections.
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Moreover, by the proof of Theorem 1.6 in [BM10], we have that for each (i1, i2, . . . ) ∈ Jωk ,

{ψ((i1, i2, . . . , in))}n∈N is a Cauchy sequence in (S2, d), for each visual metric d for f . So as

shown in the proof of Theorem 1.6 in [BM10], the map ϕ : Jωk → S2 defined by

ϕ((i1, i2, . . . )) = lim
n→+∞

ψ((i1, i2, . . . , in)) (4.3.2)

satisfies

1. ϕ is continuous,

2. f ◦ ϕ = ϕ ◦ Σ,

3. ϕ : Jωk → S2 is surjective.

We now reformulate Theorem 1.6 from [BM10] in the following way.

Theorem 4.3.1 (M. Bonk & D. Meyer 2010). Let f : S2 → S2 be an expanding Thurston map

with deg f = k. Then (S2, f) is a factor of the topological dynamical system (Jωk ,Σ). More

precisely, the surjective continuous map ϕ : Jωk → S2 defined above satisfies f ◦ ϕ = ϕ ◦ Σ.

We will strengthen Theorem 4.3.1 in the following theorem.

Theorem 4.3.2. Let f : S2 → S2 be an expanding Thurston map with deg f = k. Then

(S2, f, µf) is a factor of the measure-preserving dynamical system (Jωk ,Σ, ηΣ), where µf and

ηΣ are the unique measures of maximal entropy of (S2, f) and (Jωk ,Σ), respectively. More

precisely, the surjective continuous map ϕ : Jωk → S2 defined above satisfies f ◦ ϕ = ϕ ◦ Σ

and ϕ∗ηΣ = µf .

Proof. Let C ⊆ S2 be a Jordan curve containing post f . Let d be a visual metric on S2 for

f with expansion factor Λ > 1. Note that Λ depends only on f and d. Consider the cell

decompositions induced by (f, C).

By Theorem 4.3.1, it suffices to prove that ϕ∗ηΣ = µf .
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For each n ∈ N, we fix a function β̃n : J
n
k → Jωk which maps each (i1, i2, . . . , in) ∈ Jnk to

(i1, i2, . . . , in, in+1, . . . ) ∈ Jωk , for some arbitrarily chosen in+1, in+2, · · · ∈ Jk depending on

i1, i2, . . . , in. In other words, β̃n extends a finite word of length n to an arbitrary infinite

word.

Define βn = ϕ ◦ β̃n ◦ ψ̃−1, for each n ∈ N, where ψ̃ is defined earlier in this section.

We claim that the maps βn : X
n
w → S2 with n ∈ N satisfy the hypothesis for βn in

Theorem 4.2.7, namely,

max{d(βn(Xn
w), X

n
w) |Xn

w ∈ Xn
w} −→ 0 as n −→ +∞.

Indeed, by the construction of ϕ, β̃n, ψ and ψ̃ above, we have that βn maps a white n-tile

Xn
w to the limit of a Cauchy sequence

(ψ((j1, j2, . . . , jm)))m∈N

such that ψ((j1, j2, . . . , jn)) ∈ Xn
w. Since for each m ∈ N, the points ψ((j1, j2, . . . , jm)) and

ψ((j1, j2, . . . , jm+1)) are joined by a lift of one of the paths α1, α2, . . . , αk (defined above) by

fm, by Lemma 8.11 in [BM10], we have that

d (ψ((j1, j2, . . . , jm)), ψ((j1, j2, . . . , jm+1))) ≤ CΛ−m,

for all m ∈ N, where C > 0 is a constant depending only on f , d, and the curves αi,

i ∈ {1, 2, . . . , k}, in the construction of ψ. In particular, both C and Λ are independent of

m and (j1, j2, . . . ) ∈ Jωk . So d(βn(X
n
w), X

n
w) ≤ C Λn

1−Λ
for each n ∈ N and each Xn

w ∈ Xn
w. The

above claim follows.

For i ∈ N, define

ηi =
1

ki

∑

I∈Jik

δβ̃i(I).

Observe that for all n ∈ N and m ∈ N with m ≥ n, and each (i1, i2, . . . , in) ∈ Jnk , we have

ηm(C(i1, i2, . . . , in)) = ηΣ(C(i1, i2, . . . , in)),
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where C(i1, i2, . . . , in) is defined in (4.3.1). So by the uniform continuity of each continuous

function on Jωk , it is easy to see that

ηi
w∗

−→ ηΣ as i −→ +∞. (4.3.3)

Note that since ψ̃|Jnk : Jnk → Xn
w is a bijection for each n ∈ N0, we have for each i ∈ N,

ϕ∗ηi =
1

ki

∑

I∈Jik

δϕ◦β̃i(I) =
1

ki

∑

Xi∈Xi
w

δϕ◦β̃i◦ψ̃−1(Xi) =
1

ki

∑

Xi∈Xi
w

δβi(Xi).

Hence, by Theorem 4.2.7,

ϕ∗ηi
w∗

−→ µf as i −→ +∞. (4.3.4)

Therefore, by (4.3.3), (4.3.4), and Lemma 4.2.1, we can conclude that ϕ∗ηΣ = µf .
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CHAPTER 5

Equilibrium states

5.1 The Assumptions

We state below the hypothesis under which we will develop our theory in most parts of

Chapter 5 and Chapter 7. We will repeatedly refer to such assumptions in these chapters.

The Assumptions.

1. f : S2 → S2 is an expanding Thurston map.

2. C ⊆ S2 is a Jordan curve containing post f with the property that there exists nC ∈ N

such that fnC(C) ⊆ C and fm(C) * C for each m ∈ {1, 2, . . . , nC − 1}.

3. d is a visual metric on S2 for f with expansion factor Λ > 1 and a linear local connec-

tivity constant L ≥ 1.

4. φ ∈ C0,α(S2, d) is a real-valued Hölder continuous function with an exponent α ∈ (0, 1].

Observe that by Theorem 2.5.1, for each f in (1), there exists at least one Jordan curve

C that satisfies (2). Since for a fixed f , the number nC is uniquely determined by C in (2),

in the remaining part of the paper we will say that a quantity depends on C even if it also

depends on nC.

Recall that the expansion factor Λ of a visual metric d on S2 for f is uniquely determined

by d and f . We will say that a quantity depends on f and d if it depends on Λ.
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Note that even though the value of L is not uniquely determined by the metric d, in the

remainder of this paper, for each visual metric d on S2 for f , we will fix a choice of linear

local connectivity constant L. We will say that a quantity depends on the visual metric d

without mentioning the dependence on L, even though if we had not fixed a choice of L, it

would have depended on L as well.

In the discussion below, depending on the conditions we will need, we will sometimes say

“Let f , C, d, φ, α satisfy the Assumptions.”, and sometimes say “Let f and d satisfy the

Assumptions.”, etc.

5.2 Existence

By the work of P. Häıssinsky and K. Pilgrim [HP09], and M. Bonk and D. Meyer [BM10],

we know that there exists a unique measure of maximal entropy µf for f , and that

htop(f) = log(deg f).

In this section, we generalize the existence part of this result to equilibrium states for real-

valued Hölder continuous potentials. We prove the uniqueness in the next section.

We first establish the following two distortion lemmas that serve as the cornerstones for

all the analysis in the thermodynamical formalism.

Lemma 5.2.1. Let f , C, d, L, Λ, φ, α satisfy the Assumptions. Then there exists a constant

C1 = C1(f, C, d, φ, α) depending only on f , C, d, φ, and α such that

|Snφ(x)− Snφ(y)| ≤ C1d(f
n(x), fn(y))α, (5.2.1)

for n,m ∈ N0 with n ≤ m, Xm ∈ Xm(f, C), and x, y ∈ Xm. Quantitatively, we choose

C1 =
|φ|αCα

0

1− Λ−α
, (5.2.2)

where C0 > 1 is a constant depending only on f , C, and d from Lemma 2.5.4.

Note that due to the convention described in Section 5.1, we do not say that C1 depends

on Λ or nC.
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Proof. For n = 0, inequality (5.2.1) trivially follows from the definition of Sn.

By Lemma 2.5.4, we have that for each m ∈ N0, each m-tile Xm ∈ Xm(f, C), each

x, y ∈ Xm, and for 0 ≤ j ≤ n ≤ m,

d(f j(x), f j(y)) ≤ C0Λ
−(n−j)d(fn(x), fn(y)).

So |φ(f j(x))− φ(f j(y))| ≤ |φ|αCα
0 Λ

−α(n−j)d(fn(x), fn(y))α. Thus for each n ∈ N with

n ≤ m, we have

|Snφ(x)− Snφ(y)| ≤
n−1∑

j=0

∣∣φ(f j(x))− φ(f j(y))
∣∣

≤ |φ|αCα
0 d(f

n(x), fn(y))α
n−1∑

j=0

Λ−α(n−j)

≤ |φ|αCα
0 d(f

n(x), fn(y))α
+∞∑

k=0

Λ−αk

≤ |φ|αCα
0

1− Λ−α
d(fn(x), fn(y))α

=C1d(f
n(x), fn(y))α.

Lemma 5.2.2. Let f , C, d, L, Λ, φ, α satisfy the Assumptions. Then there exists C2 =

C2(f, C, d, φ, α) ≥ 1 depending only on f , C, d, φ, and α such that for each x, y ∈ S2, and

each n ∈ N0, we have

∑
x′∈f−n(x)

degfn(x
′) exp(Snφ(x

′))

∑
y′∈f−n(y)

degfn(y
′) exp(Snφ(y′))

≤ exp (4C1Ld(x, y)
α) ≤ C2, (5.2.3)

where C1 is the constant from Lemma 5.2.1. Quantitatively, we choose

C2 = exp
(
4C1L

(
diamd(S

2)
)α)

= exp

(
4
|φ|αC0

1− Λ−1
L
(
diamd(S

2)
)α
)
, (5.2.4)

where C0 > 1 is a constant depending only on f , C, and d from Lemma 2.5.4.

Proof. We denote Σ(x, n) =
∑

x′∈f−n(x)

degfn(x
′) exp(Snφ(x

′)) for x ∈ S2 and n ∈ N0.

We start with proving the first inequality in (5.2.3).
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Let X0 be either the black 0-tile X0
b or the white 0-tile X0

w in X0(f, C). For n ∈ N0 and

Xn ∈ Xn(f, C) with fn(Xn) = X0, by Proposition 2.2.4(i), fn|Xn is a homeomorphism of

Xn onto X0. So for x, y ∈ X0, there exist unique points x′, y′ ∈ Xn with x′ ∈ f−n(x) and

y′ ∈ f−n(y). Then by Lemma 5.2.1, we have

exp (Snφ(x
′)− Snφ(y

′)) ≤ exp (C1d(f
n(x′), fn(y′))α) = exp (C1d(x, y)

α) .

Thus exp (Snφ(x
′)) ≤ exp (C1d(x, y)

α) exp (Snφ(y
′)) .

By summing the last inequality over all pairs of x′, y′ that are contained in the same n-tile

Xn with fn(Xn) = X0, and noting that each x′ (resp. y′) is contained in exactly degfn(x
′)

(resp. degfn(y
′)) distinct n-tiles Xn with fn(Xn) = X0, we can conclude that

Σ(x, n)

Σ(y, n)
≤ exp (C1d(x, y)

α) .

Recall that f , C, d, L, Λ, φ, α satisfy the Assumptions. We then consider arbitrary

x ∈ X0
w and y ∈ X0

b . Since the metric space (S2, d) is linearly locally connected with a

linear local connectivity constant L ≥ 1, there exists a continuum E ⊆ S2 with x, y ∈ E and

E ⊆ Bd(x, Ld(x, y)). We can then fix a point z ∈ C ∩ E. Thus, we have

Σ(x, n)

Σ(y, n)
≤Σ(x, n)

Σ(z, n)

Σ(z, n)

Σ(y, n)
≤ exp (C1 (d(x, z)

α + d(z, y)α))

≤ exp (2C1(diamd(E))
α) ≤ exp (4C1Ld(x, y)

α) .

Finally, (5.2.4) follows from (5.2.2) in Lemma 5.2.1.

Let f , C, d, L, Λ, φ, α satisfy the Assumptions. We now define the Gibbs states with

respect to f , C, and φ.

Definition 5.2.3. A Borel probability measure µ ∈ P(S2) is a Gibbs state with respect to

f , C, and φ if there exist constants Pµ ∈ R and Cµ ≥ 1 such that for each n ∈ N0, each n-tile

Xn ∈ Xn(f, C), and each x ∈ Xn, we have

1

Cµ
≤ µ(Xn)

exp(Snφ(x)− nPµ)
≤ Cµ. (5.2.5)
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Compare the above definition with the following one, which is used for some classical

dynamical systems.

Definition 5.2.4. A Borel probability measure µ ∈ P(S2) is a radial Gibbs state with

respect to f , d, and φ if there exist constants P̃µ ∈ R and C̃µ ≥ 1 such that for each n ∈ N0,

and each x ∈ S2, we have

1

C̃µ
≤ µ

(
Bd(x,Λ

−n)
)

exp
(
Snφ(x)− nP̃µ

) ≤ C̃µ. (5.2.6)

One observes that for each Gibbs state µ with respect to f , C, and φ, the constant Pµ is

unique. Similarly, the constant P̃µ is unique for each radial Gibbs state with respect to f ,

d, and φ.

Example 5.2.5. Let f : S2 → S2 be an expanding Thurston map. There exists a unique

measure of maximal entropy µ0 of f (see [HP09, Section 3.4 and Section 3.5] and [BM10,

Theorem 20.9]), which is an equilibrium state for a potential φ ≡ 0. We can show that µ0 is

a Gibbs state for f , C, φ ≡ 0, whenever C is a Jordan curve on S2 containing post f .

Indeed, we know that there exist constants w, b ∈ (0, 1) depending only on f such that

for each n ∈ N0, each white n-tile Xn
w ∈ Xn

w(f, C), and each black n-tile Xn
b ∈ Xn

b (f, C),
we have µ0(X

n
w) = w(deg f)−n and µ0(X

n
b ) = b(deg f)−n ([BM10, Proposition 20.7 and

Theorem 20.9]). Thus µ0 is a Gibbs state for f , C, φ ≡ 0, with Pµ0 = deg f = htop(f) (see

[BM10, Corollary 20.8]).

As we see from the example above, Definition 5.2.3 is a more appropriate definition for

expanding Thurston map. Moreover, we will prove in Proposition 5.2.18 that the concept

of a Gibbs state and that of a radial Gibbs state coincide if and only if f has no periodic

critical point.

Proposition 5.2.6. Let f , C, nC, d, φ, α satisfy the Assumptions. Then for each f -invariant

Gibbs state µ ∈ M(S2, f) with respect to f , C, and φ, we have

Pµ ≤ hµ(f) +

∫
φ dµ ≤ P (f, φ). (5.2.7)
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Proof. Note that the second inequality follows from the Variational Principle (3.2.5) (see for

example, [PU10, Theorem 3.4.1] for details).

Let N = nC.

Recall measurable partitions On, n ∈ N, of S2 defined in (2.2.5). Since fN(C) ⊆ C, it is
clear that OiN is a refinement of OjN for i ≥ j ≥ 1. Observe that by Proposition 2.2.4(i)

and induction, we can conclude that for each k ∈ N,

ON ∨ f−N(ON) ∨ · · · ∨ f−kN(ON) = O(k+1)N . (5.2.8)

So for m, k ∈ N, the measurable partition
kN+m−1∨

j=0

f−j(ON) is a refinement of O(k+1)N .

By Shannon-McMillan-Breiman Theorem (see for example, [PU10, Theorem 2.5.4]),

hµ(f, ON) =
∫
fI dµ, where

fI = lim
n→+∞

1

n+ 1
I

( n∨

j=0

f−j(ON)

)
µ-a.e. and in L1(µ),

and the information function I is defined in (3.2.2).

Note that for n ∈ N, c ∈ On, and X
n ∈ Xn(f, C), either c ∩Xn = ∅ or c ⊆ Xn.

For n ∈ N0 and x ∈ S2, we denote by Xn(x) any one of the n-tiles containing x. Recall

that On(x) denotes the unique set in the measurable partition On that contains x. Note that

On(x) ⊆ Xn(x). By (5.2.8) and (5.2.5) we get

∫
fI dµ = lim

k→+∞

∫
1

kN + 1
I

( kN∨

j=0

f−j(ON)

)
(x) dµ(x)

≥ lim inf
k→+∞

∫
1

kN + 1
I(O(k+1)N )(x) dµ(x)

≥ lim inf
k→+∞

∫
1

kN + 1

(
− logµ

(
X(k+1)N (x)

))
dµ(x)

≥ lim inf
k→+∞

∫
(k + 1)NPµ − S(k+1)Nφ(x)− logCµ

(k + 1)N
dµ(x)

= Pµ − lim inf
k→+∞

1

(k + 1)N

∫
S(k+1)Nφ(x) dµ(x)

= Pµ −
∫
φ dµ,
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where the last equality comes from (1.1.3) and the identity
∫
ψ ◦ f dµ =

∫
ψ dµ for each ψ ∈

C(S2) which is equivalent to the fact that µ is f -invariant. Since ON is a finite measurable

partition, the condition that Hµ(ON) < +∞ in (3.2.3) is fulfilled. By (3.2.3), we get that

hµ(f) ≥ hµ(f, ON) ≥ Pµ −
∫
φ dµ.

Therefore, Pµ ≤ hµ(f) +
∫
φ dµ.

Definition 5.2.7. Let f : S2 → S2 be an expanding Thurston map and µ ∈ P(S2) a Borel

probability measure on S2. A Borel function J : S2 → [0,+∞) is a Jacobian (function) for

f with respect to µ if for every Borel A ⊆ S2 on which f is injective, the following equation

holds:

µ(f(A)) =

∫

A

J dµ. (5.2.9)

Corollary 5.2.8. Let f : S2 → S2 be an expanding Thurston map. For each ψ ∈ C(S2) and

each Borel probability measure µ ∈ P(S2), if L∗
ψ(µ) = cµ for some constant c > 0, then the

Jacobian J for f with respect to µ is given by

J(x) =
c

degf (x) exp(ψ(x))
for x ∈ S2. (5.2.10)

Proof. We fix some C, d, L, Λ that satisfy the Assumptions.

By Lemma 3.3.1, for every Borel A ⊆ S2 on which f is injective, we have that f(A) is

Borel, and

µ(A) =
L∗
ψ(µ)(A)

c
=

∫

f(A)

1

J ◦ (f |A)−1
dµ, (5.2.11)

for the function J given in (5.2.10).

Since f is injective on each 1-tile X1 ∈ X1(f, C), and both X1 and f(X1) are closed

subsets of S2 by Proposition 2.2.4, in order to verify (5.2.9), it suffices to assume that

A ⊆ X for some 1-tile X ∈ X1(f, C). Denote the restriction of µ on X by µX , i.e., µX

assigns µ(B) to each Borel subset B of X .

Let µ̃ be a function defined on the set of Borel subsets of X in such a way that µ̃(B) =

µ(f(B)) for each Borel B ⊆ X . It is clear that µ̃ is a Borel measure on X . In this notation,
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we can write (5.2.11) as

µX(A) =

∫

A

1

J |X
dµ̃, (5.2.12)

for each Borel A ⊆ X .

By (5.2.12), we know that µX is absolutely continuous with respect to µ̃. On the other

hand, since J is positive and uniformly bounded away from +∞ on X , we can conclude that

µ̃ is absolutely continuous with respect to µX . Therefore, by the Radon-Nikodym theorem,

for each Borel A ⊆ X , we get µ(f(A)) = µ̃(A) =
∫
A
J |X dµX =

∫
A
J dµ.

Lemma 5.2.9. Let f : S2 → S2 be an expanding Thurston map, and C ⊆ S2 be a Jordan

curve containing post f . Then there exists a constant M ∈ N with the following property:

For each m ∈ N with m ≥ M , each n ∈ N0, and each n-tile Xn ∈ Xn(f, C), there exist

a white (n+m)-tile Xn+m
w ∈ Xn+m

w (f, C) and a black (n+m)-tile Xn+m
b ∈ Xn+m

b (f, C) such
that Xn+m

w ∪Xn+m
b ⊆ inte(Xn).

Proof. We fix some d, L, Λ that satisfy the Assumptions.

By Lemma 2.4.1(v), there exists a constant C ≥ 1 depending only on f , C, and d such

that for each k ∈ N0, each k-tile Z
k ∈ Xk(f, C), there exists a point q ∈ Zk such that

Bd(q, C
−1Λ−k) ⊆ Zk ⊆ Bd(q, CΛ

−k).

We setM = ⌈logΛ(4C2)⌉+1. We fix an arbitrary n ∈ N and an n-tileXn ∈ Xn(f, C). Choose
a point p ∈ Xn with Bd(p, C

−1Λ−n) ⊆ Xn ⊆ Bd(p, CΛ
−n). Then for each m ∈ N with

m ≥ M , we have 4CΛ−(n+m) < C−1Λ−n, and we can choose Xn+m, Y n+m ∈ Xn+m(f, C) in

such a way thatXn+m is the (n+m)-tile containing p and Y n+m∩Xn+m = en+m ∈ En+m(f, C)
for each m > M . Thus diamd(X

n+m) ≤ 2CΛ−(n+m), diamd(Y
n+m) ≤ 2CΛ−(n+m), and

Xn+m ∪ Y n+m ⊆ Bd

(
p, 4CΛ−(n+m)

)
⊆ Bd

(
p, C−1Λ−n

)
⊆ inte(Xn).

Moreover, exactly one of Xn+m and Y n+m is a white (n+m)-tile and the other one is a black

(n+m)-tile.
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Theorem 5.2.10. Let f : S2 → S2 be an expanding Thurston map, and d be a visual metric

on S2 for f . Let φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function with an exponent

α ∈ (0, 1]. Then there exists a Borel probability measure mφ ∈ P(S2) such that

L∗
φ(mφ) = cmφ, (5.2.13)

where c = 〈L∗
φ(mφ),1〉. Moreover, any mφ ∈ P(S2) that satisfies (5.2.13) for some c > 0

has the following properties:

(i) The Jacobian for f with respect to mφ is

J(x) = c exp(−φ(x)).

(ii) mφ

(
+∞⋃
j=0

f−j(post f)

)
= 0.

(iii) The map f with respect to mφ is forward quasi-invariant (i.e., for each Borel set

A ⊆ S2, if mφ(A) = 0, then mφ(f(A)) = 0), and nonsingular (i.e., for each Borel set

A ⊆ S2, mφ(A) = 0 if and only if mφ(f
−1(A)) = 0).

We will see later in Corollary 5.3.10 that mφ ∈ P(S2) satisfying (5.2.13) is unique. We

will also prove in Corollary 5.4.4 that mφ is non-atomic.

Proof. We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1 for

the existence of such C).

Define τ : P(S2) → P(S2) by τ(µ) =
L∗
φ(µ)

〈L∗
φ(µ),1〉

. Then τ is a continuous transformation on

the nonempty, convex, compact (in the weak∗ topology, by Alaoglu’s theorem) space P(S2) of

Borel probability measures on S2. By the Schauder-Tikhonov Fixed Point Theorem (see for

example, [PU10, Theorem 3.1.7]), there exists a measure mφ ∈ P(S2) such that τ(mφ) = mφ.

Thus L∗
φ(mφ) = cmφ with c = 〈L∗

φ(mφ),1〉.

By Corollary 5.2.8, the formula for the Jacobian for f with respect to mφ is

J(x) = c(degf (x) exp(φ(x)))
−1, for x ∈ S2. (5.2.14)
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Since
+∞⋃
j=0

f−j(post f) is a countable set, the property (ii) follows if we can prove that

mφ({y}) = 0 for each y ∈
+∞⋃
j=0

f−j(post f). Since for each x ∈ S2,

mφ({f(x)}) =
c

degf(x) exp(φ(x))
mφ({x}), (5.2.15)

it suffices to prove that mφ({x}) = 0 for each periodic x ∈ post f .

Suppose that there exists x ∈ post f such that f l(x) = x for some l ∈ N andmφ({x}) 6= 0.

Then by (5.2.15), (2.1.2), and induction,

mφ({x}) =
cl

degf l(x) exp (Slφ(x))
mφ({x}), (5.2.16)

where Slφ is defined in (1.1.3). Thus cl = degf l(x) exp (Slφ(x)).

Similarly, for each k ∈ N and each y ∈ f−kl(x), we have

mφ({x}) =
ckl

degfkl(y) exp (Sklφ(y))
mφ({y}). (5.2.17)

Thus

mφ({y}) =
degfkl(y) exp(Sklφ(y))(
degf l(x)

)k
exp(Sklφ(x))

mφ({x}). (5.2.18)

Note that for each k ∈ N, we have x ∈ Vkl(f, C). The closure of the (kl)-flower W kl(x)

of x contains exactly 2
(
degf l(x)

)k
distinct (kl)-tiles whose intersection is {x} (see [BM10,

Lemma 7.2(i)]). By Lemma 5.2.9, there exists m ∈ N that only depends on f , C, and d

such that for each k ∈ N, each (kl)-tile Xkl ∈ Xkl(f, C) contained in W
kl
(x), there exists

a ((k + m)l)-tile X(k+m)l ∈ X(k+m)l(f, C) such that X(k+m)l ⊆ inte
(
Xkl
)
. So there exists

a unique y ∈ X(k+m)l ⊆ inte
(
Xkl
)
such that f (k+m)l(y) = x by Proposition 2.2.4(i), see

Figure 5.2.1. For each k ∈ N, we denote by Tk the set consisting of one such y from each

(kl)-tile Xkl ⊆W
kl
(x). Note that

Tk = 2
(
degf l(x)

)k
. (5.2.19)

Then {Tk}k∈N is a sequence of subsets of
+∞⋃
j=0

f−j(post f). Since f is expanding, we can

choose an increasing sequence {ki}i∈N of integers recursively in such a way that W lki+1(x) ∩
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Figure 5.2.1: A (kl)-flower W kl(x), with card(post f) = 3.

( i⋃
j=1

Tkj

)
= ∅ for each i ∈ N. Then {Tki}i∈N is a sequence of mutually disjoint sets. Thus

by Lemma 5.2.1, there exists a constant D that only depends on f , C, d, φ, and α such that

mφ

( +∞⋃

j=0

f−j(post f)

)
≥

+∞∑

i=1

∑

y∈Tki

mφ({y})

=
+∞∑

i=1

∑

y∈Tki

degf(ki+m)l(y) exp(S(ki+m)lφ(y))
(
degf l(x)

)ki+m exp(S(ki+m)lφ(x))
mφ({x})

≥mφ({x})
+∞∑

i=1

∑

y∈Tki

exp(Skilφ(y)− Skilφ(x)) exp(−2ml ‖φ‖∞)
(
degf l(x)

)ki+m

≥mφ({x})
+∞∑

i=1

∑

y∈Tki

exp(D − 2ml ‖φ‖∞)
(
degf l(x)

)m (
degf l(x)

)ki .

Combining the above with (5.2.19), we get

mφ

( +∞⋃

j=0

f−j(post f)

)
=
mφ({x}) exp(D − 2ml ‖φ‖∞)(

degf l(x)
)m

+∞∑

i=1

2 = +∞.

This contradicts the fact that mφ is a finite Borel measure.
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Next, in order to prove the formula for the Jacobian for f with respect to mφ in property

(i), we observe that by Lemma 3.3.1 and (5.2.14), for every Borel set A ⊆ S2 on which f is

injective, we have that f(A) is a Borel set and

mφ(f(A)) = mφ(f(A) \ post f) = mφ(f(A \ (post f ∪ crit f)))

=

∫

A\(post f ∪ crit f)

c exp(−φ) dmφ =

∫

A

c exp(−φ) dmφ.

Finally, we prove the last property. Fix a Borel set A ⊆ S2 with mφ(A) = 0. For

each 1-tile X1 ∈ X1(f, C), the map f is injective both on A ∩ X1 and on f−1(A) ∩ X1 by

Proposition 2.2.4(i). So it follows from the formula for the Jacobian thatmφ (f (A ∩X1)) = 0

and mφ (f
−1(A) ∩X1) = 0. Thus mφ(f(A)) = 0 and φ(f−1(A)) = 0. It is clear now that f

is forward quasi-invariant and nonsingular with respect to mφ.

Proposition 5.2.11. Let f , d, φ, α satisfy the Assumptions. Let mφ be a Borel probability

measure defined in Theorem 5.2.10 with L∗
φ(mφ) = cmφ where c = 〈L∗

φ(mφ),1〉. Then for

every Borel set A ⊆ S2, we have

1

deg f

∫

A

J dmφ ≤ mφ(f(A)) ≤
∫

A

J dmφ.

where J = c exp(−φ).

Proof. We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions.

The second inequality follows from Definition 5.2.7 and Theorem 5.2.10.

Let B = f(A) ∩X0
w and C = f(A) ∩ inte(X0

b ), where X
0
w, X

0
b ∈ X0(f, C) are the white

0-tile and the black 0-tile, respectively. Then B ∩C = ∅ and B ∪C = f(A). For each white

1-tile X1
w ∈ X1

w(f, C) and each black 1-tile X1
b ∈ X1

b(f, C), we have

∫

f−1(B)∩X1
w

J dmφ = mφ(B),

∫

f−1(C)∩ inte(X1
b )

J dmφ = mφ(C),

by Definition 5.2.7 and Theorem 5.2.10. Then the first inequality follows from the fact that

card (X1
w(f, C)) = card (X1

b(f, C)) = deg f (see (2.2.1)).
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Proposition 5.2.12. Let f , C, d, φ, α satisfy the Assumptions. Let mφ be a Borel probability

measure defined in Theorem 5.2.10 which satisfies L∗
φ(mφ) = cmφ where c = 〈L∗

φ(mφ),1〉.
Then mφ is a Gibbs state with respect to f , C, and φ, with

Pmφ = log c = lim
n→+∞

1

n
logLnφ(1)(y), (5.2.20)

for each y ∈ S2.

In particular, since the existence of mφ in Theorem 5.2.10 is independent of C, this

proposition asserts that mφ is a Gibbs state with respect to f , C, and φ, for each C that

satisfies the Assumptions. In general, it is not clear that a Gibbs state with respect to f , C1,
and φ is also a Gibbs state with respect to f , C2, and φ, even though the answer is positive

in the case when f has no periodic critical points as shown in Corollary 5.2.19.

Proof. We first need to prove that µ = mφ satisfies (5.2.5).

We observe that

mφ(f
i(B)) =

∫

B

exp(i log c− Siφ(x)) dmφ(x) (5.2.21)

for n ∈ N, i ∈ {0, 1, . . . , n}, and each Borel set B ⊆ S2 on which fn is injective. Indeed, by

the formula for the Jacobian in Theorem 5.2.10, for a given Borel set A ⊆ S2 on which f is

injective, we have
∫

f(A)

g(x) dmφ(x) =

∫

A

(g ◦ f)(x) exp(log c− φ(x)) dmφ(x)

for each simple function g on S2, thus also for each integrable function g. We establish

(5.2.21) for each n ∈ N and each Borel set B ⊆ S2 on which fn is injective by induction on

i. For i = 0, equation (5.2.21) holds trivially. Assume that (5.2.21) is established for some

i ∈ {0, 1, . . . , n− 1}, then since f i is injective on f(B), we get

mφ(f
i+1(B)) =

∫

f(B)

exp(i log c− Siφ(x)) dmφ(x) =

∫

B

exp((i+ 1) log c− Si+1φ(x)) dmφ(x).

The induction is now complete. In particular, by Proposition 2.2.4(i),

mφ(f
n(Xn)) =

∫

Xn

exp(n log c− Snφ(x)) dmφ(x),
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for n ∈ N and Xn ∈ Xn(f, C).

Thus by Lemma 5.2.1, there exists a constant C ≥ 1 such that for each n ∈ N0, each

Xn ∈ Xn(f, C), and each x ∈ Xn,

mφ(f
n(Xn)) ≥ C−1 exp(n log c− Snφ(x))mφ(X

n)

and

mφ(f
n(Xn)) ≤ C exp(n log c− Snφ(x))mφ(X

n).

Note that fn(Xn) is either the black 0-tile X0
b ∈ X0(f, C) or the white 0-tile X0

w ∈ X0(f, C).
Both X0

b and X0
w are of positive mφ-measure, for otherwise, suppose that mφ(X

0) = 0 for

some X0 ∈ X0(f, C), then by Proposition 5.2.11, mφ(f
j(X0)) = 0, for each j ∈ N. Then by

Lemma 5.2.9, mφ(S
2) = 0, a contradiction. Hence (5.2.5) follows, and mφ is a Gibbs state

with respect to f , C, and φ, with Pmφ = log c.

To finish the proof, we note that by (3.3.2) and Lemma 5.2.2, for each x, y ∈ S2 and each

n ∈ N0, we have
1

C2
≤

Lnφ(1)(x)
Lnφ(1)(y)

≤ C2, (5.2.22)

where C2 is a constant depending only on f , C, d, φ, and α from Lemma 5.2.2. Since

〈mφ,Lnφ(1)〉 = 〈(L∗
φ)
n(mφ),1〉 = 〈cnmφ,1〉 = cn, by (3.3.2) and (5.2.22), we have that for

each arbitrarily chosen y ∈ S2,

log c = lim
n→+∞

1

n
log

∫
Lnφ(1)(x) dmφ(x)

= lim
n→+∞

1

n
log

∫
Lnφ(1)(y) dmφ(x) (5.2.23)

= lim
n→+∞

1

n
logLnφ(1)(y).

Corollary 5.2.13. Let f , d, φ, α satisfy the Assumptions. Then the limit lim
n→+∞

1
n
logLnφ(1)(x)

exists for each x ∈ S2 and is independent of x ∈ S2.

We denote the limit as Dφ ∈ R.
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Proof. By Theorem 5.2.10 , there exists a measure mφ such as the one in Proposition 5.2.12.

The limit then clearly only depends on f , d, φ, and α, and in particular, does not depend

on C or the choice of mφ.

Let f , C, d, φ, α satisfy the Assumptions. We define the function

φ = φ−Dφ ∈ C0,α(S2, d). (5.2.24)

Then

Lφ = e−DφLφ. (5.2.25)

If mφ is a Gibbs state from Theorem 5.2.10, then by Proposition 5.2.12 and Corollary 5.2.13

we have

L∗
φ(mφ) = eDφmφ = ePmφmφ, (5.2.26)

and

L∗
φ
(mφ) = mφ, (5.2.27)

since for each u ∈ C(S2),

〈L∗
φ
(mφ), u〉 = 〈mφ,Lφ(u)〉 = e−Dφ〈mφ,Lφ(u)〉 = e−Dφ〈L∗

φ(mφ), u〉 = 〈mφ, u〉.

We summarize in the following lemma the properties of Lφ that we will need.

Lemma 5.2.14. Let f , C, d, L, Λ, φ, α satisfy the Assumptions. Then there exists a

constant C3 = C3(f, C, d, φ, α) depending only on f , C, d, φ, and α such that for each

x, y ∈ S2 and each n ∈ N0 the following equations are satisfied

Ln
φ
(1)(x)

Ln
φ
(1)(y)

≤ exp (4C1Ld(x, y)
α) ≤ C2, (5.2.28)

1

C2

≤ Ln
φ
(1)(x) ≤ C2, (5.2.29)

∣∣∣Lnφ(1)(x)−Ln
φ
(1)(y)

∣∣∣ ≤ C2 (exp (4C1Ld(x, y)
α)− 1) ≤ C3d(x, y)

α, (5.2.30)

where C1, C2 are constants in Lemma 5.2.1 and Lemma 5.2.2 depending only on f , C, d, φ,
and α.
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Proof. Inequality (5.2.28) follows from (5.2.25), (3.3.2), and Lemma 5.2.2.

To prove (5.2.29), we choose a Gibbs state mφ with respect to f , C, and φ from Theo-

rem 5.2.10. Then by (5.2.27) and (5.2.28), we have

Ln
φ
(1)(x) ≤ C2

〈
mφ,Lnφ(1)

〉
= C2

〈
(L∗

φ
)n(mφ),1

〉
= C2〈mφ,1〉 = C2.

The first inequality in (5.2.29) can be proved similarly.

Applying (5.2.28) and (5.2.29), we get

Ln
φ
(1)(x)−Ln

φ
(1)(y) =

(
Ln
φ
(1)(x)

Ln
φ
(1)(y)

− 1

)
Ln
φ
(1)(x) ≤ C2

(
e4C1Ld(x,y)α − 1

)
≤ C3d(x, y)

α,

for some constant C3 depending only on L, C1, C2, and diamd(S
2).

We can now prove the existence of an f -invariant Gibbs state.

Theorem 5.2.15. Let f : S2 → S2 be an expanding Thurston map and C ⊆ S2 be a Jordan

curve containing post f with the property that fnC(C) ⊆ C for some nC ∈ N and f i(C) * C for

each i ∈ {1, 2, . . . , nC −1}. Let d be a visual metric on S2 for f with expansion factor Λ > 1.

Let φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function with an exponent α ∈ (0, 1].

Then the sequence
{

1
n

n−1∑
j=0

Lj
φ
(1)
}
n∈N

converges uniformly to a function uφ ∈ C0,α(S2, d),

which satisfies

Lφ(uφ) = uφ, (5.2.31)

and
1

C2
≤ uφ(x) ≤ C2, for each x ∈ S2, (5.2.32)

where C2 ≥ 1 is a constant from Lemma 5.2.2. Moreover, if we let mφ be a Gibbs state from

Theorem 5.2.10, then ∫
uφ dmφ = 1, (5.2.33)

and µφ = uφmφ is a Gibbs state with respect to f , C, and φ, with

Pµφ = Pmφ = Dφ = lim
n→+∞

1

n
logLnφ(1)(y), (5.2.34)

for each y ∈ S2, and

f∗(µφ) = µφ. (5.2.35)
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Proof. In order to prove this theorem, we first establish (5.2.31), (5.2.32), and (5.2.33) for a

subsequential limit of the sequence
{

1
n

n−1∑
j=0

Lj
φ
(1)
}
n∈N

, then prove the above sequence has a

unique subsequential limit, and finally justify (5.2.34) and (5.2.35).

Define, for each n ∈ N, un = 1
n

n−1∑
j=0

Lj
φ
(1). Then {un}n∈N is a uniformly bounded sequence

of equicontinuous functions on S2 by (5.2.29) and (5.2.30). By the Arzelà-Ascoli Theorem,

there exists a continuous function uφ ∈ C(S2) and an increasing sequence {ni}i∈N in N such

that uni → uφ uniformly on S2 as i −→ +∞.

To prove (5.2.31), we note that by the definition of un and (5.2.29), we have that for each

i ∈ N,
∥∥Lφ(uni)− uni

∥∥
∞

=
1

ni

∥∥∥Lni
φ
(1)− 1

∥∥∥
∞

≤ 1 + C2

ni
.

By letting i −→ +∞, we can conclude that
∥∥Lφ(uφ)− uφ

∥∥
∞

= 0. Thus (5.2.31) holds.

By (5.2.29), we have that C−1
2 ≤ un(x) ≤ C2, for each n ∈ N and each x ∈ S2. Thus

(5.2.32) follows.

By (5.2.27) and definition of un, we have
∫
un dmφ =

∫
1 dmφ = 1 for each n ∈ N. Then

by the Lebesgue Dominated Convergence Theorem, we can conclude that

∫
uφ dmφ = lim

i→+∞

∫
uni dmφ = 1,

proving (5.2.33).

Next, we prove that uφ is the unique subsequential limit of the sequence {un}n∈N with

respect to the uniform norm. Suppose that vφ is another subsequential limit of un, n ∈ N,

with respect to the uniform norm. Then vφ is also a continuous function on S2 satisfying

(5.2.31), (5.2.32), and (5.2.33) by the argument above. Let

t = sup{s ∈ R | uφ(x)− svφ(x) > 0 for all x ∈ S2}.

By (5.2.32), t ∈ (0,+∞). Then there is a point y ∈ S2 such that uφ(y) − tvφ(y) = 0. By

(3.3.2) and the equation

Lφ(uφ − tvφ) = uφ − tvφ,
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which comes from (5.2.31), we get that uφ(z) − tvφ(z) = 0 for all z ∈ f−1(y). Inductively,

we can conclude that uφ(z) − tvφ(z) = 0 for all z ∈ ⋃
i∈N

f−i(y). By Lemma 2.3.5, the set
⋃
i∈N

f−i(y) is dense in S2. Hence uφ = tvφ on S2. Since both uφ and vφ satisfy (5.2.33), we

get t = 1. Thus uφ = vφ. We have proved that un converges to uφ uniformly as n −→ +∞.

We now prove that uφ ∈ C0,α(S2, d). Indeed, for each ǫ > 0, there exists n ∈ N such that

‖un − uφ‖∞ < ǫ. Then by (5.2.30), for each x, y ∈ S2, we have

|uφ(x)− uφ(y)| ≤ |uφ(x)− un(x)|+ |un(x)− un(y)|+ |un(y)− uφ(y)|

≤2ǫ+
1

n

n−1∑

j=0

∣∣∣Lj
φ
(1)(x)− Lj

φ
(1)(y)

∣∣∣ ≤ 2ǫ+ C3d(x, y)
α,

where C3 is a constant in (5.2.30) from Lemma 5.2.14. By letting ǫ −→ 0, we conclude that

uφ ∈ C0,α(S2, d).

Since mφ is a Gibbs state by Proposition 5.2.12, then by (5.2.32), µφ = uφmφ is also a

Gibbs state with Pµφ = Pmφ = Dφ = lim
n→+∞

1
n
logLnφ(1)(y) for each y ∈ S2, proving (5.2.34).

Finally we need to prove that µφ is f -invariant. It suffices to prove that 〈µφ, g◦f〉 = 〈µφ, g〉
for each g ∈ C(S2). Indeed, by (5.2.27), (5.2.31), and (3.3.3), we get

〈µφ, g ◦ f〉 = 〈mφ, uφ(g ◦ f)〉 =
〈
L∗
φ
(mφ), uφ(g ◦ f)

〉

=
〈
mφ,Lφ(uφ(g ◦ f))

〉
=
〈
mφ, gLφ(uφ)

〉
= 〈mφ, guφ〉 = 〈µφ, g〉.

Remark. By a similar argument to that in the proof of the uniqueness of the subsequential

limit of
{

1
n

n−1∑
j=0

Lj
φ
(1)
}
n∈N

, one can show that uφ is the unique eigenfunction, upto scalar

multiplication, of Lφ corresponding to the eigenvalue 1.

We now get the following characterization of the topological pressure P (f, φ) of an ex-

panding Thurston map f with respect to a Hölder continuous potential φ.

Proposition 5.2.16. Let f , d, φ, α satisfy the Assumptions. Then for each x ∈ S2, we

have

P (f, φ) = lim
n→+∞

1

n
log

∑

y∈f−n(x)

degfn(y) exp(Snφ(y)) = Dφ. (5.2.36)

114



Recall that Dφ = Pmφ = Pµφ = log c = log
∫
Lφ(1) dmφ, using the notation from Propo-

sition 5.2.12 and Theorem 5.2.15.

Proof. We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1 for

the existence of such C).

By Corollary 5.2.13 and (3.3.2), for each x ∈ S2, the limit in (5.2.36) always exists and

is equal to Dφ, independent of x. Moreover, for an f -invariant Gibbs measure µφ from

Theorem 5.2.15 with Pµφ = Dφ, we get from Proposition 5.2.6 that

Dφ = Pµφ ≤ P (f, φ). (5.2.37)

Now it suffices to prove Dφ ≥ P (f, φ).

Note that by Lemma 2.4.1(ii), there is a constant C ≥ 1 depending only on f , C, and d
such that for each n ∈ N0 and each n-tile Xn ∈ Xn(f, C), we have C−1Λ−n ≤ diamd(X

n) ≤
CΛ−n.

Fix m ∈ N, let ǫ = CΛ−m. For each n ∈ N0, let Fn(m) be a maximal (n, ǫ)-separated

subset of S2.

We claim that if y1, y2 ∈ Fn(m) and y1, y2 ∈ Xm+n for some (m + n)-tile Xm+n in

Xm+n(f, C), then y1 = y2.

Indeed, for each integer j ∈ [0, n− 1], we have that

d(f j(y1), f
j(y2)) ≤ diamd(f

j(Xm+n)) ≤ CΛ−(m+n−j) < ǫ. (5.2.38)

So suppose that y1 6= y2, then y1, y2 would not be (n, ǫ)-separated, a contradiction.

We fix x ∈ inte(X0
w) and y ∈ inte(X0

b ) where X0
w and X0

b are the white 0-tile and

black 0-tile in X0(f, C), respectively. We can now construct an injective map in : Fn(m) →
f−(m+n)(x) ∪ f−(m+n)(y) for each n ∈ N by demanding that z ∈ Fn(m) and in(z) ∈
f−(m+n)(x) ∪ f−(m+n)(y) be in the same (m + n)-tile. Since for each Xm+n ∈ Xm+n(f, C),
card

(
Xm+n ∩ (f−(m+n)(x) ∪ f−(m+n)(y))

)
= 1, it follows that in is well-defined (but not nec-

essarily uniquely defined) for each n ∈ N. Thus by Lemma 5.2.1 and Lemma 5.2.2, we have
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that for each n ∈ N,

∑

z∈Fn(m)

exp(Snφ(z)) ≤ C4

∑

z∈f−(m+n)(x)∪f−(m+n)(y)

exp(Snφ(z))

≤C4e
m‖φ‖∞

( ∑

z∈f−(m+n)(x)

exp(Sm+nφ(z)) +
∑

z∈f−(m+n)(y)

exp(Sm+nφ(z))

)

≤C4(1 + C2) exp(m ‖φ‖∞)
∑

z∈f−(m+n)(x)

exp(Sm+nφ(z)),

where C4 = exp
(
C1

(
diamd(S

2)
)α)

, and C1, C2 are constants from Lemma 5.2.1 and Lemma 5.2.2.

By taking logarithm and next dividing by n on both sides, then taking n −→ +∞ and finally

taking m −→ +∞ to make ǫ −→ 0, we get from (3.2.1) that

P (f, φ) = lim
m→+∞

lim inf
n→+∞

1

n
log

∑

w∈Fn(m)

exp(Snφ(w))

≤ lim sup
m→+∞

lim inf
n→+∞

1

n
log

∑

z∈f−(m+n)(x)

exp(Sm+nφ(z))

= lim sup
m→+∞

lim inf
n→+∞

1

m+ n
log

∑

z∈f−(m+n)(x)

exp(Sm+nφ(z))

= lim sup
m→+∞

lim inf
n→+∞

1

n
log

∑

z∈f−n(x)

exp(Snφ(z))

= Dφ,

where the last equality follows from Corollary 5.2.13, (3.3.2), and the fact that x /∈ post f .

The following corollary gives the existence part of Theorem 1.0.2.

Corollary 5.2.17. Let f : S2 → S2 be an expanding Thurston map and d be a visual metric

on S2 for f . Let φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function with an exponent

α ∈ (0, 1]. Then there exists an equilibrium state for f and φ. In fact, any measure µφ defined

in Theorem 5.2.15 is an equilibrium state for f and φ.

Proof. We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1

for the existence of such C). Consider an f -invariant Gibbs state µφ with respect to f ,
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C, and φ from Theorem 5.2.15. Then by Theorem 5.2.15 and Proposition 5.2.16, we have

Pµφ = Dφ = P (f, φ). Then by Proposition 5.2.6, we have Pµφ = hµφ +
∫
φ dµφ = P (f, φ).

Therefore, µφ is an equilibrium state for f and φ.

We end this section by proving in Proposition 5.2.18 that the concept of a Gibbs state

and that of a radial Gibbs state coincide if and only if the expanding Thurston map has no

periodic critical point. The proof of the forward implication relies on the existence of Gibbs

states for f , C, and φ that satisfy the Assumptions proved in Proposition 5.2.12.

Proposition 5.2.18. Let f , C, d, φ, α satisfy the Assumptions. Then a radial Gibbs state µ

with respect to f , d, and φ must be a Gibbs state with respect to f , C, and φ, with P̃µ = Pµ.

Moreover, the following are equivalent:

1. f has no periodic critical point.

2. A Borel probability measure µ ∈ P(S2) is a Gibbs state with respect to f , C, and φ if

and only if it is a radial Gibbs state with respect to f , d, and φ.

3. There exists a radial Gibbs state for f , d, and φ.

The implication from (1) to (2) generalizes Proposition 20.10 in [BM10], which states

that for an expanding Thurston map f with no periodic critical point and with the measure

of maximal entropy µ and a visual metric d, the metric measure space (S2, d, µ) is Ahlfors

regular.

Proof. By Lemma 2.4.1(v), there exists a constant C ≥ 1 such that for each n ∈ N0, and

each n-tile Xn ∈ Xn, there exists a point p ∈ Xn with

Bd(p, C
−1Λ−n) ⊆ Xn ⊆ Bd(p, CΛ

−n).

Thus there exists m1 ∈ N such that for each n ∈ N0, each Xn ∈ Xn, there exists p ∈ Xn

such that

Bd

(
p,Λ−(n+m1)

)
⊆ Xn ⊆ Bd

(
p,Λ−(n−m1)

)
. (5.2.39)
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On the other hand, by Lemma 2.4.1(iv), there exists m2 ∈ N such that for each x ∈ S2 and

each n ∈ N0, we have

Un+m2(x) ⊆ Bd(x,Λ
−n) ⊆ Un−m2(x), (5.2.40)

where the sets U l(x) for l ∈ N0 and x ∈ S2 are defined in (2.2.4).

Note that for each n ∈ N0 and each y ∈ Un(x), by choosing z ∈ Y n∩Xn withXn, Y n ∈ Xn

and x ∈ Xn, y ∈ Y n, and applying Lemma 5.2.1, we get

|Snφ(x)− Snφ(y)| ≤ |Snφ(x)− Snφ(z)| + |Snφ(z)− Snφ(y)| ≤ 2C1

(
diamd(S

2)
)α
,

where C1 is a constant from Lemma 5.2.1.

If µ is a radial Gibbs state with constants P̃µ and C̃µ, then for each n ∈ N0 and each

n-tile Xn ∈ Xn, there exists p ∈ Xn such that

µ(Xn) ≤ µ
(
Bd

(
p,Λ−(n−m1)

))
≤ C̃µ exp

(
Sn−m1φ(x)− (n−m1)P̃µ

)

≤ C̃µ exp
(
m1 ‖φ‖∞ +m1P̃µ

)
exp

(
Snφ(x)− nP̃µ

)
,

and

µ(Xn) ≥ µ
(
Bd

(
p,Λ−(n+m1)

))
≥ 1

C̃µ
exp

(
Sn+m1φ(x)− (n+m1)P̃µ

)

≥ 1

C̃µ exp
(
m1 ‖φ‖∞ +m1P̃µ

) exp
(
Snφ(x)− nP̃µ

)
.

Thus µ is a Gibbs state for f , C, and φ, with Pµ = P̃µ.

To prove the equivalence, we start with the implication from (1) to (2).

We have already shown above that any radial Gibbs state for f , d, and φ must be a Gibbs

state for f , C, and φ.

If we assume that f has no periodic critical point, then there exists a constant K ∈ N

such that for each x ∈ S2 and each n ∈ N0, the set Un(x) is a union of at most K distinct

n-tiles, i.e.,

card{Y n ∈ Xn | there exists an n-tile Xn ∈ Xn with x ∈ Xn and Xn ∩ Y n 6= ∅} ≤ K.
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Indeed, if f has no periodic critical point, then there exists a constant N ∈ N such that

degfn(x) ≤ N for all x ∈ S2 and all n ∈ N ([BM10, Lemma 17.1]). Since each n-flower

W n(p) for p ∈ Vn is covered by exactly 2 degfn(p) distinct n-tiles ([BM10, Lemma 7.2(i)]),

Un(x) is covered by a bounded number of n-flowers and thus covered by a bounded number,

independent of x ∈ S2 and n ∈ N0, of distinct n-tiles.

If µ is a Gibbs state with constants Pµ and Cµ, then by (5.2.40) and Lemma 5.2.1, for

each n ∈ N0 and each x ∈ S2, we have

µ
(
Bd(x,Λ

−n)
)
≥µ
(
Un+m2(x)

)
≥ C−1

µ exp(Sn+m2φ(x)− (n +m2)Pµ)

≥ 1

Cµ exp(m2 ‖φ‖∞ +m2Pµ)
exp(Snφ(x)− nPµ),

and moreover, if n ≥ m2, then

µ
(
Bd(x,Λ

−n)
)
≤ µ

(
Un−m2(x)

)
≤

∑

X∈Xn−m2

X⊆Un−m2 (x)

µ(X)

≤KCµ exp
(
2C1

(
diamd(S

2)
)α)

exp(Sn−m2φ(x)− (n−m2)Pµ)

≤KCµ exp
(
2C1

(
diamd(S

2)
)α

+m2 (‖φ‖∞ + Pµ)
)
exp(Snφ(x)− nPµ),

and if n < m2, then

µ(Bd(x,Λ
−n)) ≤ 1 ≤ exp (m2(‖φ‖∞ + Pµ)) exp(Snφ(x)− nPµ).

Thus µ is a radial Gibbs state for f , d, and φ.

Next, we show that (2) implies (3).

We assume (2) now. Let µ = mφ, where mφ is from Theorem 5.2.10. Then by Proposi-

tion 5.2.12, µ is a Gibbs state for f , C, and φ. Thus µ is also a radial Gibbs state for f , d,

and φ.

Finally, we prove the implication from (3) to (1) by contradiction.

Assume that f has a periodic critical point x ∈ S2 with a period l ∈ N, and let µ be a

radial Gibbs state for f , d, and φ with constants P̃µ and C̃µ. So µ is also a Gibbs state for

f , C, and φ with constants Pµ = P̃µ and Cµ, as shown in the first part of the proof.
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We note that x ∈ post f ⊆ Vn for each n ∈ N0. By (2.2.2), (2.2.4), and (5.2.40), for each

n ∈ N,

W
nl+m2

(x) ⊆ Unl+m2(x) ⊆ Bd(x,Λ
−nl).

Recall that the number of distinct (nl +m2)-tiles contained in W
nl+m2

(x) is 2 degfnl+m2 (x).

Denote these (nl + m2)-tiles by Xnl+m2
i ∈ Xnl+m2, i ∈

{
1, 2, . . . , 2 degfnl+m2 (x)

}
. Then

by Lemma 5.2.9, there exists an (nl + m2 + M)-tile Yi ∈ Xnl+m2+M such that Yi ⊆
inte

(
Xnl+m2
i

)
. Here M ∈ N is a constant from Lemma 5.2.9. We fix xi ∈ Yi for each

i ∈
{
1, 2, . . . , 2 degfnl+m2 (x)

}
. Note that Yi ∩ Yj = ∅ for 1 ≤ i < j ≤ 2 degfnl+m2 (x). Thus

C̃µ exp(Snlφ(x)− nlPµ) ≥ µ
(
Bd(x,Λ

−nl)
)

≥µ
(
W

nl+m2
(x)
)
≥

2 deg
fnl+m2

(x)∑

i=1

µ(Yi)

≥2 degfnl+m2 (x)
1

Cµ
exp (Snl+m2+Mφ(xi)− (nl +m2 +M)Pµ)

≥ 2
(
degf l(x)

)n

Cµ exp(M ‖φ‖∞ +MPµ)
exp(Snl+m2φ(xi)− (nl +m2)Pµ)

≥2
(
degf l(x)

)n
exp(Snl+m2φ(x)− (nl +m2)Pµ)

Cµ exp (M ‖φ‖∞ +MPµ + C1 (diamd(S2))α)

≥
(
degf l(x)

)n
exp(Snlφ(x)− nlPµ)

Cµ exp ((m2 +M) ‖φ‖∞ + (m2 +M)Pµ + C1 (diamd(S2))α)
,

where the second-to-last inequality follows from Lemma 5.2.1 and the fact that xi, x ∈ Xnl+m2
i

for i ∈
{
1, 2, . . . , 2 degfnl+m2 (x)

}
, and C1 is a constant from Lemma 5.2.1. So

(
degf l(x)

)n ≤ C̃µCµ exp
(
(m2 +M)(‖φ‖∞ + Pµ) + C1

(
diamd(S

2)
)α)

,

for each n ∈ N. However, since x is a periodic critical point of f , we have degf l(x) > 1, a

contradiction.

As an immediate consequence, we get that if the expanding Thurston map does not have

periodic critical points, then the property of being a Gibbs state does not depend on the

choice of the Jordan curve C ⊆ S2 that satisfies the Assumptions.
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Corollary 5.2.19. Let f , d, φ, α satisfy the Assumptions. We assume that f does not have

periodic critical points. Let C1 and C2 be Jordan curves on S2 that satisfy the Assumptions

for C, and µ ∈ P(S2) be a Borel probability measure. Then µ is a Gibbs state with respect

to f , C1, and φ if and only if µ is a Gibbs state with respect to f , C2, and φ.

Proof. By Proposition 5.2.18, since f does not have periodic critical points, f is a Gibbs

state with respect to f , C1, and φ if and only if f is a radial Gibbs state with respect to f ,

d, and φ if and only if f is a Gibbs state with respect to f , C2, and φ.

5.3 Uniqueness

To prove the uniqueness of the equilibrium state of a continuous map g on a compact metric

space X , one of the techniques is to prove the (Gâteaux) differentiability of the topological

pressure function P (g, ·) : C(X) → R. We summarize the general ideas below, but refer the

reader to [PU10, Section 3.6] for a detailed treatment in the case of forward-expansive maps

and distance expanding maps.

For a continuous map g : X → X on a compact metric space X , the topological pressure

function P (g, ·) : C(X) → R is Lipschitz continuous ([PU10, Theorem 3.6.1]) and convex

([PU10, Theorem 3.6.2]). For an arbitrary convex continuous function Q : V → R on a real

topological vector space V , we call a continuous linear functional L : V → R tangent to Q

at x ∈ V if

Q(x) + L(y) ≤ Q(x+ y), for each y ∈ V. (5.3.1)

We denote the set of all continuous linear functionals tangent to Q at x ∈ V by V ∗
x,Q. It is

known (see for example, [PU10, Proposition 3.6.6]) that if µ ∈ M(X, g) is an equilibrium

state for g and φ ∈ C(X), then the continuous linear functional u 7−→
∫
u dµ for u ∈ C(X)

is tangent to the topological pressure function P (g, ·) at φ. Indeed, let φ, γ ∈ C(X) and

µ ∈ M(X, g) be an equilibrium state for g and φ. Then P (g, φ+γ) ≥ hµ(g)+
∫
φ+γ dµ by the

Variational Principle (3.2.5), and P (g, φ) = hµ(g)+
∫
φ dµ. It follows that P (g, φ)+

∫
γ dµ ≤
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P (g, φ+ γ).

Thus in order to prove the uniqueness of the equilibrium state for an expanding Thurston

map f : S2 → S2 and a real-valued Hölder continuous potential φ, it suffices to prove that

card
(
V ∗
φ,P (f,·)

)
= 1. Then we can apply the following fact from functional analysis (see

[PU10, Theorem 3.6.5] for a proof):

Theorem 5.3.1. Let V be a separable Banach space and Q : V → R be a convex continuous

function. Then for each x ∈ V , the following statements are equivalent:

1. card
(
V ∗
x,Q

)
= 1.

2. The function t 7−→ Q(x+ ty) is differentiable at 0 for each y ∈ V .

3. There exists a subset U ⊆ V that is dense in the weak topology on V such that the

function t 7−→ Q(x+ ty) is differentiable at 0 for each y ∈ U .

Now the problem of the uniqueness of equilibrium states transforms to the problem of

(Gâteaux) differentiability of the topological pressure function. To investigate the latter, we

need a closer study of the fine properties of the Ruelle operator Lφ.

A function h : [0,+∞) → [0,+∞) is an abstract modulus of continuity if it is continuous

at 0, non-decreasing, and h(0) = 0. Given any metric d on S2 that generates the standard

topology, any constant b ∈ [0,+∞], and any abstract modulus of continuity h, we define the

subclass Cb
h(S

2, d) of C(S2) as

Cb
h(S

2, d) = {u ∈ C(S2) | ‖u‖∞ ≤ b and for x, y ∈ S2, |u(x)− u(y)| ≤ h(d(x, y))}.

Note that by the Arzelà-Ascoli Theorem, each Cb
h(S

2, d) is precompact in C(S2) equipped

with the uniform norm. It is easy to see that each Cb
h(S

2, d) is actually compact. On the

other hand, for u ∈ C(S2), we can define an abstract modulus of continuity by

h(t) = sup{|u(x)− u(y)| | x, y ∈ S2, d(x, y) ≤ t} (5.3.2)

for t ∈ [0,+∞), so that u ∈ Cβ
h (S

2, d), where β = ‖u‖∞.

We will need the following lemma in this section.
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Lemma 5.3.2. Let (X, d) be a metric space. For each pair of constants b1, b2 ≥ 0 and each

pair of abstract moduli of continuity h1, h2, there exists a constant b ≥ 0 and an abstract

modulus of continuity h such that

{
u1u2

∣∣ u1 ∈ Cb1
h1
(X, d), u2 ∈ Cb2

h2
(X, d)

}
⊆ Cb

h(X, d), (5.3.3)

and for each c > 0,

{1
u

∣∣∣u ∈ Cb1
h1
(X, d), u(x) ≥ c for each x ∈ X

}
⊆ Cc−1

c−2h1
(X, d). (5.3.4)

Proof. For u1 ∈ Cb1
h1
(X, d), u2 ∈ Cb2

h2
(X, d), we have ‖u1u2‖∞ ≤ b1b2, and for x, y ∈ X ,

|u1(x)u2(x)− u1(y)u2(y)| ≤ |u1(x)| |u2(x)− u2(y)|+ |u2(y)| |u1(x)− u1(y)|

≤b1h2(d(x, y)) + b2h1(d(x, y)).

For c > 0 and u ∈ Cb1
h1
(X, d) with u(x) ≥ c for each x ∈ X , we have

∥∥ 1
u

∥∥
∞

≤ 1
c
, and for

x, y ∈ X , ∣∣∣∣
1

u(x)
− 1

u(y)

∣∣∣∣ ≤
∣∣∣∣
u(x)− u(y)

u(x)u(y)

∣∣∣∣ ≤
1

c2
h1(d(x, y)).

Let f , d, φ, α satisfy the Assumptions. Recall that by (5.2.24) and Proposition 5.2.16,

φ = φ− P (f, φ).

We define the function

φ̃ = φ− P (f, φ) + log uφ − log(uφ ◦ f), (5.3.5)

where uφ is the continuous function given by Theorem 5.2.15. Then for u ∈ C(S2) and

x ∈ S2, we have

Lφ̃(u)(x) =
∑

y∈f−1(x)

degf (y)u(y) exp(φ(y)− P (f, φ) + log uφ(y)− log uφ(f(y)))

=
1

uφ(x)

∑

y∈f−1(x)

degf (y)u(y)uφ(y) exp(φ(y)− P (f, φ)) =
1

uφ(x)
Lφ(uuφ)(x),
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and thus

Ln
φ̃
(u)(x) =

1

uφ(x)
Ln
φ
(uuφ)(x), for n ∈ N. (5.3.6)

Recall mφ from Theorem 5.2.10. Then we can show that µφ = uφmφ satisfies

L∗
φ̃
(µφ) = µφ. (5.3.7)

Indeed, by (5.3.6) and (5.2.27), for u ∈ C(S2),

∫
u d
(
L∗
φ̃
(µφ)

)
=

∫
Lφ̃(u)uφ dmφ =

∫
Lφ(uuφ) dmφ

=

∫
uuφ d

(
L∗
φ
(mφ)

)
=

∫
uuφ dmφ =

∫
u dµφ.

By (5.2.31) and (5.3.6), Lφ̃(1) = 1
uφ
Lφ(uφ) = 1, i.e.,

∑

y∈f−1(x)

degf (y) exp φ̃(y) = 1 for x ∈ S2. (5.3.8)

Lemma 5.3.3. Let f , d, φ, α satisfy the Assumptions. Then the operator norm of Lφ̃ is

given by ‖Lφ̃‖ = 1. In addition, Lφ̃(1) = 1.

Proof. By (5.3.8), for each x ∈ S2 and each u ∈ C(S2), we have

∣∣∣Lφ̃(u)(x)
∣∣∣ =

∣∣∣∣
∑

y∈f−1(x)

degf (y)u(y) exp φ̃(y)

∣∣∣∣ ≤ ‖u‖∞
∑

y∈f−1(x)

degf(y) exp φ̃(y) = ‖u‖∞ .

Thus ‖Lφ̃‖ ≤ 1. Since Lφ̃(1) = 1 by (5.3.8), ‖Lφ̃‖ = 1.

Lemma 5.3.4. Let f , d, φ, α satisfy the Assumptions. Then

φ̃ ∈ C0,α(S2, d). (5.3.9)

Proof. We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1 for

the existence of such C). By Theorem 5.2.15, uφ ∈ C0,α(S2, d) and C−1
2 ≤ uφ(x) ≤ C2 for each

x ∈ S2, where C2 ≥ 1 is a constant from Lemma 5.2.2. So log uφ ∈ C0,α(S2, d). Note that

φ ∈ C0,α(S2, d), so by (5.3.5) it suffices to prove that uφ ◦ f ∈ C0,α(S2, d). But this follows

from the fact that f is Lipschitz with respect to d (Lemma 2.4.3) and uφ ∈ C0,α(S2, d).
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Theorem 5.3.5. Let f , C, d, Λ, L satisfy the Assumptions. Then for each α ∈ (0, 1], each

b ≥ 0, and each θ ≥ 0, there exist constants b̂ ≥ 0 and Ĉ ≥ 0 with the following property:

For each abstract modulus of continuity h, there exists an abstract modulus of continuity

h̃ such that for each φ ∈ C0,α(S2, d) with |φ|α ≤ θ, we have

{
Ln
φ
(u) | u ∈ Cb

h(S
2, d), n ∈ N0

}
⊆ C b̂

ĥ
(S2, d), (5.3.10)

{
Ln
φ̃
(u) | u ∈ Cb

h(S
2, d), n ∈ N0

}
⊆ Cb

h̃
(S2, d), (5.3.11)

where ĥ(t) = Ĉ(tα+h(2C0Lt)) is an abstract modulus of continuity, and C0 > 1 is a constant

depending only on f , C, and d from Lemma 2.5.4.

Proof. Fix arbitrary α ∈ (0, 1], b ≥ 0, and θ ≥ 0. By Lemma 5.2.14, for n ∈ N0, u ∈
Cb
h(S

2, d), and φ ∈ C0,α(S2, d) with |φ|α ≤ θ, we have

∥∥∥Lnφ(u)
∥∥∥
∞

≤ ‖u‖∞
∥∥∥Lnφ(1)

∥∥∥
∞

≤ C2 ‖u‖∞ ,

where C2 is the constant defined in (5.2.4) in Lemma 5.2.2. So we can choose b̂ = C2b. Note

that by (5.2.4) that C2 only depends on f , C, d, θ, and α.

LetX0 be either the white 0-tileX0
w ∈ X0(f, C) or the black 0-tileX0

b ∈ X0(f, C). IfXm ∈
Xm(f, C) is an m-tile with fm(Xm) = X0 for some m ∈ N0, then by Proposition 2.2.4(i),

the restriction fm|Xm of fm to Xm is a bijection from Xm to X0. So for each x ∈ X0,

there exists a unique point contained in Xm whose image under fm is x. We denote this

unique point by xm(X
m). Note that for each z = xm(X

m), the number of distinct m-tiles

X ∈ Xm(f, C) that satisfy both fm(X) = X0 and xm(X) = z is exactly degfm(z).
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Then for each x, y ∈ X0, we have

∣∣∣Lnφ(u)(x)− Ln
φ
(u)(y)

∣∣∣

=

∣∣∣∣
∑

Xn∈Xn(f,C)
fn(Xn)=X0

(u exp(Snφ))(xn(X
n))− (u exp(Snφ))(yn(X

n))

∣∣∣∣

≤
∣∣∣∣

∑

Xn∈Xn(f,C)
fn(Xn)=X0

u(xn(X
n))
(
exp(Snφ(xn(X

n)))− exp(Snφ(yn(X
n)))

) ∣∣∣∣

+

∣∣∣∣
∑

Xn∈Xn(f,C)
fn(Xn)=X0

exp(Snφ(yn(X
n))) (u(xn(X

n))− u(yn(X
n)))

∣∣∣∣.

The second term above is

≤ C2h(C0Λ
−nd(x, y)) ≤ C2h(C0d(x, y)),

due to (5.2.29) and the fact that d(xn(X
n), yn(X

n)) ≤ C0Λ
−nd(x, y) by Lemma 2.5.4, where

the constant C0 comes from.

In order to bound the first term, we define

A+
n = {Xn ∈ Xn(f, C) | fn(Xn) = X0, Snφ(xn(X

n)) ≥ Snφ(yn(X
n))},

and

A−
n = {Xn ∈ Xn(f, C) | fn(Xn) = X0, Snφ(xn(X

n)) < Snφ(yn(X
n))}.

126



Then by (3.3.2), Lemma 5.2.1, and Lemma 5.2.14 the first term is

≤
∑

Xn∈A+
n

‖u‖∞
(
exp(Snφ(xn(X

n)))− exp(Snφ(yn(X
n)))

)

+
∑

Xn∈A−
n

‖u‖∞
(
exp(Snφ(yn(X

n)))− exp(Snφ(xn(X
n)))

)

= ‖u‖∞

(( ∑
Xn∈A+

n

exp(Snφ(xn(X
n)))

∑
Xn∈A+

n

exp(Snφ(yn(Xn)))
− 1

)
∑

Xn∈A+
n

eSnφ(yn(X
n))

+

( ∑
Xn∈A−

n

exp(Snφ(yn(X
n)))

∑
Xn∈A−

n

exp(Snφ(xn(Xn)))
− 1

)
∑

Xn∈A−
n

eSnφ(xn(X
n))

)

≤2bC2(exp(C1d(x, y)
α)− 1)

≤2bC̃3d(x, y)
α,

for some constant C̃3 > 0 that only depends on C1, C2, and diamd(S
2), where C1 > 0 is the

constant defined in (5.2.2) in Lemma 5.2.1 and C2 ≥ 1 is the constant defined in (5.2.4) in

Lemma 5.2.2. Note that the justification of the second inequality above is similar to that

of (5.2.30) in Lemma 5.2.14. We observe that by (5.2.2) and (5.2.4), both C1 and C2 only

depend on f , C, d, θ, and α, so does C̃3.

Hence we get

∣∣∣Lnφ(u)(x)−Ln
φ
(u)(y)

∣∣∣ ≤ 2bC̃3d(x, y)
α + C2h(C0d(x, y)).

Now we consider arbitrary x ∈ X0
w and y ∈ X0

b . Since the metric space (S2, d) is linearly

locally connected with a linear local connectivity constant L ≥ 1, there exists a continuum

E ⊆ S2 with x, y ∈ E and E ⊆ Bd(x, Ld(x, y)). We can then choose z ∈ C ∩ E. Note that

max{d(x, z), d(y, z)} ≤ 2Ld(x, y).
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Hence we get

∣∣∣Lnφ(u)(x)−Ln
φ
(u)(y)

∣∣∣ ≤
∣∣∣Lnφ(u)(x)− Ln

φ
(u)(z)

∣∣∣ +
∣∣∣Lnφ(u)(z)−Ln

φ
(u)(y)

∣∣∣

≤2bC̃3d(x, z)
α + C2h(C0d(x, z)) + 2bC̃3d(z, y)

α + C2h(C0d(z, y))

≤8bLC̃3d(x, y)
α + 2C2h(2C0Ld(x, y)).

By choosing Ĉ = max
{
8bLC̃3, 2C2

}
, which only depends on f , C, d, θ, and α, we complete

the proof of (5.3.10).

We now prove (5.3.11).

We fix an arbitrary φ ∈ C0,α(S2, d) with |φ|α ≤ θ. Then by (5.2.32) in Theorem 5.2.15

and (5.2.4) in Lemma 5.2.2, we have

‖uφ‖∞ ≤ b1,

where b1 = exp
(
4 θC0

1−Λ−1L
(
diam(S2)

)α)
. By Theorem 5.2.15 and (5.2.30) in Lemma 5.2.14,

for each x, y ∈ S2, we have

|uφ(x)− uφ(y)| =
∣∣∣∣∣ lim
n→+∞

1

n

n−1∑

j=0

(
Lj
φ
(1)(x)−Lj

φ
(1)(x)

)
∣∣∣∣∣

≤ lim sup
n→+∞

1

n

n−1∑

j=0

∣∣∣Lj
φ
(1)(x)−Lj

φ
(1)(x)

∣∣∣

≤ C2 (exp (4C1Ld(x, y)
α)− 1) .

So

uφ ∈ Cb1
h1
(S2, d), (5.3.12)

where h1 is an abstract modulus of continuity given by

h1(t) = C2 (exp (4C1Lt
α)− 1) , for t ∈ [0,+∞).

Thus by Lemma 5.3.2, there exist a constant b2 ≥ 0 and an abstract modulus of continuity

h2 such that

{
uuφ

∣∣ u ∈ Cb
h(S

2, d), φ ∈ C0,α(S2, d), |φ|α ≤ θ
}
⊆ Cb2

h2
(S2, d). (5.3.13)
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Then by (5.3.6), (5.3.13), (5.3.10), and Lemma 5.3.2, we get that there exist a constant

b3 ≥ 0 and an abstract modulus of continuity h̃ such that

{
Ln
φ̃
(u)
∣∣u ∈ Cb

h(S
2, d), n ∈ N0

}
⊆ Cb3

h̃
(S2, d), (5.3.14)

for each φ ∈ C0,α(S2, d) with |φ|α ≤ θ.

On the other hand, by Lemma 5.3.3,
∥∥∥Ln

φ̃
(u)
∥∥∥
∞

≤ ‖u‖∞ ≤ b for each u ∈ Cb
h(S

2, d), each

n ∈ N0, and each φ ∈ C0,α(S2, d). Therefore, we have proved (5.3.11).

As a consequence, both Lφ and Lφ̃ are almost periodic.

Definition 5.3.6. A bounded linear operator L : B → B on a Banach space B is almost

periodic if for each z ∈ B, the closure of the set {Ln(z) |n ∈ N0} is compact in the norm

topology.

Corollary 5.3.7. Let f , d, φ, and α satisfy the Assumptions. Let C(S2) be equipped with

the uniform norm. Then both Lφ : C(S2) → C(S2) and Lφ̃ : C(S2) → C(S2) are almost

periodic.

Proof. Fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1 for the

existence of such C). For each u ∈ C(S2), we have u ∈ Cβ
h (S

2, d) for β = ‖u‖∞ and some

abstract modulus of continuity h defined in (5.3.2). Then the corollary follows immediately

from Theorem 5.3.5 and Arzelà-Ascoli theorem.

Lemma 5.3.8. Let f and d satisfy the Assumptions. Let g be an abstract modulus of

continuity. Then for α ∈ (0, 1], K ∈ (0,+∞), and δ1 ∈ (0,+∞), there exist constants

δ2 ∈ (0,+∞) and n ∈ N with the following property:

For each u ∈ C+∞
g (S2, d), each φ ∈ C0,α(S2, d), and each choice of mφ from Theo-

rem 5.2.10, if ‖φ‖C0,α ≤ K,
∫
uuφ dmφ = 0, and ‖u‖∞ ≥ δ1, then

∥∥∥Ln
φ̃
(u)
∥∥∥
∞

≤ ‖u‖∞ − δ2.
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Note that at this point, we have not proved yet that mφ from Theorem 5.2.10 is unique.

We will prove it in Corollary 5.3.10. Recall that uφ is the continuous function defined in

Theorem 5.2.15 that only depends on f and φ.

Proof. Fix arbitrary constants α ∈ (0, 1], K ∈ (0,+∞), and δ1 ∈ (0,+∞). Fix ǫ > 0

small enough such that g(ǫ) < δ1
2
. Fix a choice of mφ, an arbitrary φ ∈ C0,α(S2, d), and an

arbitrary u ∈ C+∞
g (S2, d) with ‖φ‖C0,α ≤ K,

∫
uuφ dmφ = 0, and ‖u‖∞ ≥ δ1.

We pick a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1 for the

existence of such C).

By Lemma 2.4.1(iv), there exists n ∈ Z depending only on f , C, d, g, and δ1 such

that for each z ∈ S2, we have Un(z) ⊆ Bd(z, ǫ), where U
n(z) is defined in (2.2.4). Since

∫
uuφ dmφ = 0, there exist points y1, y2 ∈ S2 such that u(y1) ≤ 0 and u(y2) ≥ 0.

We fix a point x ∈ S2. Since fn(Un(y1)) = S2, there exists y ∈ f−n(x) such that

y ∈ Un(y1) ⊆ Bd(y1, ǫ). Thus

u(y) ≤ u(y1) + g(ǫ) <
δ1
2

≤ ‖u‖∞ − δ1
2
.

So by Lemma 5.3.3 and (3.3.2) we have

Ln
φ̃
(u)(x) =degfn(y)u(y) exp

(
Snφ̃(y)

)
+

∑

w∈f−n(x)\{y}

degfn(w)u(w) exp
(
Snφ̃(w)

)

≤
(
‖u‖∞ − δ1

2

)
degfn(y) exp

(
Snφ̃(y)

)
+ ‖u‖∞

∑

w∈f−n(x)\{y}

degfn(w) exp
(
Snφ̃(w)

)

≤‖u‖∞
∑

w∈f−n(x)

degfn(w) exp
(
Snφ̃(w)

)
− δ1

2
exp

(
Snφ̃(y)

)

= ‖u‖∞ − δ1
2
exp

(
Snφ̃(y)

)
.

Similarly, there exists z ∈ f−n(x) such that z ∈ Un(y2) ⊆ Bd(y2, ǫ) and

Ln
φ̃
(u)(x) ≥ −‖u‖∞ +

δ1
2
exp

(
Snφ̃(z)

)
.

Hence we get ∥∥∥Ln
φ̃
(u)
∥∥∥
∞

≤ ‖u‖∞ − δ1
2
inf
{
exp

(
Snφ̃(w)

) ∣∣w ∈ S2
}
. (5.3.15)
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Now it suffices to bound each term in the definition of φ̃ in (5.3.5).

First, by the hypothesis, ‖φ‖∞ ≤ ‖φ‖C0,α ≤ K (see (1.1.2)).

Next, for each fixed x ∈ S2, by Proposition 5.2.16, we have

P (f, φ) = lim
n→+∞

1

n
log

∑

y∈f−n(x)

degfn(y) exp(Snφ(y))

≤ lim
n→+∞

1

n
log

∑

y∈f−n(x)

degfn(y) exp(nK)

= K + lim
n→+∞

1

n
log

∑

y∈f−n(x)

degfn(y)

= K + log(deg f).

Similarly, P (f, φ) ≥ −K + log(deg f). So |P (f, φ)| ≤ K + |log(deg f)|.

Finally, by Theorem 5.2.15 and (5.2.4) in Lemma 5.2.2, we have

‖uφ‖∞ ≤ C2 ≤ exp (C5) ,

where

C5 = 4
KC0

1− Λ−1
L
(
diamd(S

2)
)α
,

and C0 > 1 is a constant from Lemma 2.5.4 depending only on f , C, and d.

Therefore, by (5.3.5) and (5.3.15),
∥∥∥Ln

φ̃
(u)
∥∥∥
∞

≤ ‖u‖∞ − δ2, where

δ2 =
δ1
2
exp (−n (2K + |log(deg f)|+ 2C5)) ,

which only depends on f , d, α, K, δ1, g, and n.

Theorem 5.3.9. Let f : S2 → S2 be an expanding Thurston map. Let d be a visual metric

on S2 for f with expansion factor Λ > 1. Let b ∈ (0,+∞) be a constant and h : [0,+∞) →
[0,+∞) an abstract modulus of continuity. Let H be a bounded subset of C0,α(S2, d) for

some α ∈ (0, 1]. Then for each u ∈ Cb
h(S

2, d), each φ ∈ H, and each choice of mφ from

Theorem 5.2.10, we have

lim
n→+∞

∥∥∥∥Lnφ(u)− uφ

∫
u dmφ

∥∥∥∥
∞

= 0. (5.3.16)
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If, in addition,
∫
uuφ dmφ = 0, then

lim
n→+∞

∥∥∥Ln
φ̃
(u)
∥∥∥
∞

= 0. (5.3.17)

Moreover, the convergence in both (5.3.16) and (5.3.17) is uniform in u ∈ Cb
h(S

2, d), φ ∈ H,

and the choice of mφ.

The equation (5.3.17) demonstrates the contracting behavior of Lφ̃ on a codimension-1

subspace of C(S2).

Proof. Let L be a linear local connectivity constant of d. Fix a constant K ∈ (0,+∞) such

that ‖φ‖C0,α ≤ K for each φ ∈ H .

We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1 for the

existence of such C).

Let Mφ be the set of possible choices of mφ from Theorem 5.2.10, i.e.,

Mφ = {m ∈ P(S2) | L∗
φ(m) = cm for some c ∈ R}. (5.3.18)

We recall that µφ defined in Theorem 5.2.15 by µφ = uφmφ depends on the choice of mφ.

Define for each n ∈ N0,

an = sup
{∥∥∥Ln

φ̃
(u)
∥∥∥
∞

∣∣∣φ ∈ H, u ∈ Cb
h(S

2, d),

∫
u dµφ = 0, mφ ∈Mφ

}
.

By Lemma 5.3.3, ‖Lφ̃‖ = 1, so
∥∥∥Ln

φ̃
(u)
∥∥∥
∞

is non-increasing in n for fixed φ ∈ H and

u ∈ Cb
h(S

2, d). Note that a0 ≤ b < +∞. Thus {an}n∈N0 is a non-increasing sequence of

non-negative real numbers.

Suppose now that lim
n→+∞

an = a > 0. By Theorem 5.3.5, there exists an abstract modulus

of continuity g such that

{
Ln
φ̃
(u)
∣∣n ∈ N0, φ ∈ H, u ∈ Cb

h(S
2, d)

}
⊆ Cb

g(S
2, d).

Note that for each φ ∈ H , each n ∈ N0, and each u ∈ Cb
h(S

2, d) with
∫
uuφ dmφ = 0, we have

∫
Ln
φ̃
(u)uφ dmφ =

∫
Ln
φ̃
(u) dµφ = 0 by (5.3.7). So by applying Lemma 5.3.8 with g, α,K, and
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δ1 =
a
2
, we find constants n0 ∈ N and δ2 > 0 such that

∥∥∥Ln0

φ̃

(
Ln
φ̃
(u)
)∥∥∥

∞
≤
∥∥∥Ln

φ̃
(u)
∥∥∥
∞
− δ2, (5.3.19)

for each n ∈ N0, each φ ∈ H , each mφ ∈Mφ, and each u ∈ Cb
h(S

2, d) with
∫
uuφ dmφ = 0 and∥∥∥Ln

φ̃
(u)
∥∥∥
∞

≥ a
2
. Since lim

n→+∞
an = a, we can fix m > 1 large enough such that am ≤ a + δ2

2
.

Then for each φ ∈ H , each mφ ∈ Mφ, and each u ∈ Cb
h(S

2, d) with
∫
u dµφ = 0 and∥∥∥Lm

φ̃
(u)
∥∥∥
∞

≥ a
2
, we have

∥∥∥Ln0+m

φ̃
(u)
∥∥∥
∞

≤
∥∥∥Lm

φ̃
(u)
∥∥∥
∞
− δ2 ≤ am − δ2 ≤ a− δ2

2
. (5.3.20)

On the other hand, since
∥∥∥Ln

φ̃
(u)
∥∥∥
∞

is non-increasing in n, we have that for each φ ∈ H ,

each mφ ∈ Mφ, and each u ∈ Cb
h(S

2, d) with
∫
u dµφ = 0 and

∥∥∥Lm
φ̃
(u)
∥∥∥
∞
< a

2
, the following

holds: ∥∥∥Ln0+m

φ̃
(u)
∥∥∥
∞

≤
∥∥∥Lm

φ̃
(u)
∥∥∥
∞
<
a

2
. (5.3.21)

Thus an0+m ≤ max
{
a− δ2

2
, a
2

}
< a, contradicting the fact that {an}n∈N0 is a non-increasing

sequence and the assumption that lim
n→+∞

an = a. This proves the uniform convergence in

(5.3.17).

Next, we prove the uniform convergence in (5.3.16). By Lemma 5.2.1, Lemma 5.2.2,

Lemma 5.3.3, and (5.3.6), for each u ∈ Cb
h(S

2, d), each φ ∈ H , and each mφ ∈Mφ, we have

∥∥∥∥Lnφ(u)− uφ

∫
u dmφ

∥∥∥∥
∞

(5.3.22)

≤‖uφ‖∞
∥∥∥∥
1

uφ
Ln
φ
(u)−

∫
u dmφ

∥∥∥∥
∞

= ‖uφ‖∞
∥∥∥∥Lnφ̃

(
u

uφ

)
−
∫

u

uφ
dµφ

∥∥∥∥
∞

= ‖uφ‖∞
∥∥∥∥Lnφ̃

(
u

uφ
− 1

∫
u

uφ
dµφ

)∥∥∥∥
∞

.

By (5.2.32) and (5.2.4), we have

exp (−C5) ≤ ‖uφ‖∞ ≤ exp (C5) , (5.3.23)
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where

C5 = 4
KC0

1− Λ−1
L
(
diamd(S

2)
)α
,

and C0 is a constant from Lemma 2.5.4 depending only on f , C, and d. Let v = u
uφ

−
1

∫
u
uφ

dµφ. Then v satisfies

‖v‖∞ ≤ 2

∥∥∥∥
u

uφ

∥∥∥∥
∞

≤ 2b exp (C5) . (5.3.24)

Due to the first inequality in (5.3.23) and the fact that uφ ∈ C0,α(S2, d) by Theorem 5.2.15,

we can apply Lemma 5.3.2 and conclude that there exists an abstract modulus of continuity g

of u
uφ

such that g is independent of the choices of u ∈ Cb
h(S

2, d), φ ∈ H , and mφ ∈Mφ. Thus

v ∈ C b̂
g(S

2, d), where b̂ = 2b exp(C5). Note that
∫
vuφ dmφ =

∫
v dµφ = 0. Finally, we can

apply the uniform convergence in (5.3.17) with u = v to conclude the uniform convergence

in (5.3.16) by (5.3.22) and (5.3.23).

Theorem 5.3.9 implies in particular the uniqueness of mφ and µφ.

Corollary 5.3.10. Let f , d, φ, α satisfy the Assumptions. Then the measure mφ ∈ P(S2)

defined in Theorem 5.2.10 is unique, i.e., mφ is the unique Borel probability measure on S2

that satisfies L∗
φ(mφ) = cmφ for some constant c ∈ R. Moreover, µφ = uφmφ is the unique

Borel probability measure on S2 that satisfies L∗
φ̃
(µφ) = µφ. In particular, we have mφ̃ = µφ.

Proof. Let mφ, m̂φ ∈ P(S2) be two measures, both of which arise from Theorem 5.2.10.

Recall that for each u ∈ C(S2), there exists some abstract modulus of continuity h such

that u ∈ Cβ
h (S

2, d), where β = ‖u‖∞. Then by (5.3.16) and (5.2.32), we see that
∫
u dmφ =

∫
u dm̂φ for each u ∈ C(S2). Thus mφ = m̂φ.

By (5.3.7), L∗
φ̃
(µφ) = µφ. Since φ̃ ∈ C0,α(S2, d) by Lemma 5.3.4, we get that µφ = mφ̃

and µφ is the only Borel probability measure on S2 that satisfies L∗
φ̃
(µφ) = µφ.

Lemma 5.3.11. Let f and d satisfy the Assumptions. Let b ≥ 0 be a constant and h an

abstract modulus of continuity. Let H be a bounded subset of C0,α(S2, d) for some α ∈ (0, 1].
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Then for each x ∈ S2, each u ∈ Cb
h(S

2, d), and each φ ∈ H, we have

lim
n→+∞

1
n

∑
y∈f−n(x)

degfn(y) (Snu(y)) exp(Snφ(y))

∑
y∈f−n(x)

degfn(y) exp(Snφ(y))
=

∫
u dµφ. (5.3.25)

Moreover, the convergence is uniform in x ∈ S2, u ∈ Cb
h(S

2, d), and φ ∈ H.

Proof. We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1 for

the existence of such C). By (3.3.2) and (2.1.2), for x ∈ S2, u ∈ Cb
h(S

2, d), φ ∈ H , and

n ∈ N,

1
n

∑
y∈f−n(x)

degfn(y) (Snu(y)) exp(Snφ(y))

∑
y∈f−n(x)

degfn(y) exp(Snφ(y))

=

1
n

n−1∑
j=0

∑
y∈f−n(x)

degfn(y)u(f
j(y)) exp(Snφ(y))

Lnφ(1)(x)

=

1
n

n−1∑
j=0

∑
z∈f−(n−j)(x)

∑
y∈f−j(z)

degfn−j (z) degfj (y)u(z)e
Sjφ(y)+Sn−jφ(z)

Lnφ(1)(x)

=

1
n

n−1∑
j=0

∑
z∈f−(n−j)(x)

degfn−j (z)u(z)Ljφ(1)(z) exp(Sn−jφ(z))

Lnφ(1)(x)

=

1
n

n−1∑
j=0

Ln−jφ

(
uLjφ(1)

)
(x)

Lnφ(1)(x)

=

1
n

n−1∑
j=0

Ln−j
φ

(
uLj

φ
(1)
)
(x)

Ln
φ
(1)(x)

.

By Theorem 5.3.5,
{
Ln
φ
(1) |n ∈ N0

}
⊆ C b̂

ĥ
(S2, d), for some constant b̂ ≥ 0 and some abstract

modulus of continuity ĥ, which are independent of the choice of φ ∈ H . Thus by Lemma 5.3.2,

{
uLn

φ
(1) |n ∈ N0, u ∈ Cb

h(S
2, d)

}
⊆ Cb1

h1
(S2, d), (5.3.26)

for some constant b1 ≥ 0 and some abstract modulus of continuity h1, which are independent

of the choice of φ ∈ H .
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Hence, by Theorem 5.3.9 and Corollary 5.3.10, we have

∥∥∥Llφ(1)− uφ

∥∥∥
∞

−→ 0, (5.3.27)

and ∥∥∥∥Llφ
(
uLj

φ
(1)
)
− uφ

∫
uLj

φ
(1) dmφ

∥∥∥∥
∞

−→ 0, (5.3.28)

as l −→ +∞, uniformly in j ∈ N0, φ ∈ H , and u ∈ Cb
h(S

2, d).

Fix a constant K ∈ (0,+∞) such that for each φ ∈ H , ‖φ‖C0,α ≤ K. By (5.2.32) and

(5.2.4), we have that for each x ∈ S2,

exp(−C5) ≤ uφ(x) ≤ exp(C5), (5.3.29)

where

C5 = 4
KC0

1− Λ−1
L
(
diamd(S

2)
)α
,

and C0 ≥ 1 is a constant from Lemma 2.5.4 depending only on f , C, and d. So by (5.3.26),

we get that for j ∈ N0, u ∈ Cb
h(S

2, d), and φ ∈ H ,

∥∥∥∥uφ
∫
uLj

φ
(1) dmφ

∥∥∥∥
∞

≤ ‖uφ‖∞
∥∥∥uLj

φ
(1)
∥∥∥
∞

≤ b1 exp(C5). (5.3.30)

By (5.3.10) in Theorem 5.3.5 and (5.3.26), we get some constant b2 > 0 such that for all

j, l ∈ N0, each u ∈ Cb
h(S

2, d), and each φ ∈ H ,

∥∥∥Llφ
(
uLj

φ
(1)
)∥∥∥

∞
< b2. (5.3.31)

Hence we can conclude from (5.3.30), (5.3.31), and (5.3.28) that

lim
n→+∞

1

n

∣∣∣∣
n−1∑

j=0

Ln−j
φ

(
uLj

φ
(1)
)
(x)−

n−1∑

j=0

uφ(x)

∫
uLj

φ
(1) dmφ

∣∣∣∣ = 0,

uniformly in u ∈ Cb
h(S

2, d), φ ∈ H , and x ∈ S2. Thus by (5.3.27) and (5.3.29), we have

lim
n→+∞

∣∣∣∣∣

1
n

n−1∑
j=0

Ln−j
φ

(
uLj

φ
(1)
)
(x)

Ln
φ
(1)(x)

−
1
n

n−1∑
j=0

uφ(x)

∫
uLj

φ
(1) dmφ

uφ(x)

∣∣∣∣∣ = 0,
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uniformly in u ∈ Cb
h(S

2, d), φ ∈ H , and x ∈ S2. Combining the above with (5.3.26), (5.3.27),

(5.3.29), and the calculation in the beginning part of the proof, we can conclude, therefore,

that the left-hand side of (5.3.25) is equal to

lim
n→+∞

1

n

n−1∑

j=0

∫
uLj

φ
(1) dmφ = lim

n→+∞

1

n

n−1∑

j=0

∫
uuφ dmφ =

∫
u dµφ,

and the convergence is uniform in u ∈ Cb
h(S

2, d) and φ ∈ H .

We record the following well-known fact for the convenience of the reader.

Lemma 5.3.12. For each metric d on S2 that generates the standard topology on S2 and

each α ∈ (0, 1], C0,α(S2, d) is a dense subset of C(S2) with respect to the uniform norm. In

particular, C0,α(S2, d) is a dense subset of C(S2) in the weak topology.

Proof. The lemma follows from the fact that the set of Lipschitz functions are dense in C(S2)

with respect to the uniform norm (see for example, [He01, Theorem 6.8]).

Theorem 5.3.13. Let f : S2 → S2 be an expanding Thurston map, and d be a visual metric

on S2 for f . Let φ, γ ∈ C0,α(S2, d) be real-valued Hölder continuous functions with an

exponent α ∈ (0, 1]. Then for each t ∈ R, we have

d

dt
P (f, φ+ tγ) =

∫
γ dµφ+tγ . (5.3.32)

Proof. We will use the well-known fact from real analysis that if a sequence {gn}n∈N of real-

valued differentiable functions defined on a finite interval in R converges pointwise to some

function g and the sequence of the corresponding derivatives
{

dgn
dt

}
n∈N

converges uniformly

to some function h, then g is differentiable and dg
dt

= h.

Fix a point x ∈ S2 and a constant l ∈ (0,+∞). For n ∈ N and t ∈ R, define

Pn(t) =
1

n
log

∑

y∈f−n(x)

degfn(y) exp(Sn(φ+ tγ)(y)). (5.3.33)
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Observe that there exists a bounded subset H of C0,α(S2, d) such that φ + tγ ∈ H for

each t ∈ (−l, l). Then by Lemma 5.3.11,

dPn
dt

(t) =

1
n

∑
y∈f−n(x)

degfn(y)(Snγ(y)) exp(Sn(φ+ tγ)(y))

∑
y∈f−n(x)

degfn(y) exp(Sn(φ+ tγ)(y))
(5.3.34)

converges to
∫
γ dµφ+tγ as n −→ +∞, uniformly in t ∈ (−l, l).

On the other hand, by Proposition 5.2.16, for each t ∈ (−l, l), we have

lim
n→+∞

Pn(t) = P (f, φ+ tγ). (5.3.35)

Hence P (f, φ+ tγ) is differentiable with respect to t on (−l, l) and

d

dt
P (f, φ+ tγ) = lim

n→+∞

dPn
dt

(t) =

∫
γ dµφ+tγ .

Since l ∈ (0,+∞) is arbitrary, the proof is complete.

Theorem 5.3.14. Let f : S2 → S2 be an expanding Thurston map and d be a visual metric

on S2 for f . Let φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function with an exponent

α ∈ (0, 1]. Then there exists a unique equilibrium state µφ for f and φ. Moreover, the map f

with respect to µφ is forward quasi-invariant (i.e., for each Borel set A ⊆ S2, if µφ(A) = 0,

then µφ(f(A)) = 0), and nonsingular (i.e., for each Borel set A ⊆ S2, µφ(A) = 0 if and only

if µφ(f
−1(A)) = 0).

Proof. The existence is proved in Corollary 5.2.17.

We now prove the uniqueness.

Since φ ∈ C0,α(S2, d), by Theorem 5.3.13 the function

t 7−→ P (f, φ+ tγ)

is differentiable at 0 for γ ∈ C0,α(S2, d). Recall that by Lemma 5.3.12 C0,α(S2, d) is dense in

C(S2) in the weak topology. We note that the topological pressure function P (f, ·) : C(S2) →
R is convex continuous (see for example, [PU10, Theorem 3.6.1 and Theorem 3.6.2]). Thus
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by Theorem 5.3.1 with V = C(S2), x = φ, U = C0,α(S2, d), and Q = P (f, ·), we get

card
(
V ∗
φ,P (f,·)

)
= 1.

On the other hand, if µ is an equilibrium state for f and φ, then by (3.2.4) and (3.2.5),

hµ(f) +

∫
φ dµ = P (f, φ),

and for each γ ∈ C(S2),

hµ(f) +

∫
(φ+ γ) dµ ≤ P (f, φ+ γ).

So
∫
γ dµ ≤ P (f, φ + γ) − P (f, φ). Thus by (5.3.1), the continuous functional γ 7−→

∫
γ dµ

on C(S2) is in V ∗
φ,P (f,·). Since µφ = uφmφ defined in Theorem 5.2.15 is an equilibrium state

for f and φ, and card
(
V ∗
φ,P (f,·)

)
= 1, we get that each equilibrium state µ for f and φ must

satisfy
∫
γ dµ =

∫
γ dµφ for γ ∈ C(S2), i.e., µ = µφ.

The fact that the map f is forward quasi-invariant and nonsingular with respect to µφ

follows from the corresponding result for mφ in Theorem 5.2.10, Lemma 5.3.4, and the fact

that mφ̃ = µφ from Corollary 5.3.10.

Remark. Since the entropy map µ 7−→ hµ(f) for an expanding Thurston map f is affine

(see for example, [Wa82, Theorem 8.1]), i.e., if µ, ν ∈ M(S2, f) and p ∈ [0, 1], then

hpµ+(1−p)ν(f) = phµ(f) + (1 − p)hν(f), so is the pressure map µ 7−→ Pµ(f, φ) for f and

a Hölder continuous potential φ : S2 → R. Thus the uniqueness of the equilibrium state

µφ and the Variational Principle (3.2.5) imply that µφ is an extreme point of the convex

set M(S2, f). It follows from the fact (see for example, [PU10, Theorem 2.2.8]) that the

extreme points of M(S2, f) are exactly the ergodic measures in M(S2, f) that µφ is ergodic.

However, we are going to prove a much stronger ergodic property of µφ in Section 5.4.

The following proposition is an immediate consequence of Theorem 5.3.9.

Proposition 5.3.15. Let f , d, φ satisfy the Assumptions. Let µφ be the unique equilibrium

state for f and φ. Then for each Borel probability measure µ ∈ P(S2), we have

(
L∗
φ̃

)n
(µ)

w∗

−→ µφ as n −→ +∞. (5.3.36)
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Proof. Recall that for each u ∈ C(S2), there exists some abstract modulus of continuity h

such that u ∈ Cβ
h (S

2, d), where β = ‖u‖∞. By Theorem 5.3.14 and Theorem 5.2.15, we

have µφ = uφmφ as constructed in Theorem 5.2.15. Then by Lemma 5.3.3 and (5.3.17) in

Theorem 5.3.9,

lim
n→+∞

〈(
L∗
φ̃

)n
(µ), u

〉
= lim
n→+∞

(〈
µ,Ln

φ̃
(u− 〈µφ, u〉1)

〉
+
〈
µ,Ln

φ̃
(〈µφ, u〉1)

〉)

=0 + 〈µ, 〈µφ, u〉1〉 = 〈µφ, u〉,

for each u ∈ C(S2). Therefore, (5.3.36) holds.

5.4 Ergodic properties

In this section, we first prove that if f , C, d, and φ satisfies the Assumptions, then any edge

in the cell decompositions induced by f and C is a zero set with respect to the measures mφ

or µφ. This result is also important for Theorem 5.5.1. We then show in Theorem 5.4.3 that

the measure-preserving transformation f of the probability space (S2, µφ) is exact (Defini-

tion 5.4.2), and as an immediate consequence, mixing (Corollary 5.4.6). Another consequence

of Theorem 5.4.3 is that µφ is non-atomic (Corollary 5.4.4).

Proposition 5.4.1. Let f , C, nC, d, φ, α satisfy the Assumptions. Let µφ be the unique

equilibrium state for f and φ, and mφ be as in Corollary 5.3.10. Then

mφ

(
+∞⋃

i=0

f−i(C)
)

= µφ

(
+∞⋃

i=0

f−i(C)
)

= 0. (5.4.1)

Proof. Since µφ ∈ M(S2, f) is f -invariant, and C ⊆ f−inC(C) for each i ∈ N, we have

µφ (f
−inC(C) \ C) = 0 for each i ∈ N. Since f is expanding, by Lemma 5.2.9, there exists m ∈

N and an (mnC)-tile X ∈ XmnC such that X ∩C = ∅. Then ∂X ⊆ fmnC(C)\C. So µφ(∂X) =

0. Since µφ = uφmφ, where uφ is bounded away from 0 (see Theorem 5.2.15), we have

mφ(∂X) = 0. Note that fmnC |∂X is a homeomorphism from ∂X to C (see Proposition 2.2.4).

Thus by the information on the Jacobian for f with respect to mφ in Theorem 5.2.10, we

get mφ(C) = 0.
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Now suppose there exist k ∈ N and a k-edge e ∈ Ek such that mφ(e) > 0. Then by using

the Jacobian for f with respect to mφ again, we get mφ(C) > 0, a contradiction. Hence

mφ

(
+∞⋃
i=0

f−i(C)
)

= 0. Since µφ = uφmφ, we get µφ

(
+∞⋃
i=0

f−i(C)
)

= 0.

For each Borel measure µ on a compact metric space (X, d), we denote by µ the completion

of µ, i.e., µ is the unique measure defined on the smallest σ-algebra B containing all Borel

sets and all subsets of µ-null sets, satisfying µ(E) = µ(E) for each Borel set E ⊆ X .

Definition 5.4.2. Let g be a measure-preserving transformation of a probability space

(X, µ). Then g is called exact if for every measurable set E with µ(E) > 0 and measurable

images g(E), g2(E), . . . , the following holds:

lim
n→+∞

µ (gn(E)) = 1.

Note that in Definition 5.4.2, we do not require µ to be a Borel measure. In the case

when g is a Thurston map on S2 and µ is a Borel measure, the set gn(E) is a Borel set

for each n ∈ N and each Borel set E ⊆ S2. Indeed, a Borel set E ⊆ S2 can be covered by

n-tiles in the cell decompositions of S2 induced by g and any Jordan curve C ⊆ S2 containing

post g. For each n-tile X ∈ Xn(f, C), the restriction gn|X of gn to X is a homeomorphism

from the closed set X onto gn(X) by Proposition 2.2.4. It is then clear that the set gn(E) is

also Borel.

We now prove that the measure-preserving transformation f of the probability space

(S2, µφ) is exact. The argument that we use here is similar to that in the proof of the

exactness of an open, topologically exact, distance-expanding self-map of a compact metric

space equipped with a certain Gibbs state ([PU10, Theorem 5.2.12]).

Theorem 5.4.3. Let f : S2 → S2 be an expanding Thurston map and d be a visual metric on

S2 for f . Let φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function with an exponent

α ∈ (0, 1]. Let µφ be the unique equilibrium state for f and φ, and µφ its completion.

Then the measure-preserving transformation f of the probability space (S2, µφ) (resp.

(S2, µφ)) is exact.
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Proof. We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1 for

the existence of such C).

Since µφ = uφmφ, by (5.2.32), it suffices to prove that

lim
n→+∞

mφ(S
2 \ fn(A)) = 0

for each Borel set A ⊆ S2 with mφ(A) > 0.

Let A ⊆ S2 be an arbitrary Borel subset of S2 with mφ(A) > 0. Then there exists a

compact set E ⊆ A such that mφ(E) > 0. Fix an arbitrary ǫ > 0. Since f is expanding,

by Lemma 5.2.9, n-tiles have uniformly small diameters if n is large. This and the outer

regularity of the Borel measures enable us to choose N ∈ N such that for each n ≥ N , the

collection

Pn = {Xn ∈ Xn(f, C) |Xn ∩ E 6= ∅}

of n-tiles satisfies mφ (
⋃

Pn) ≤ mφ(E) + ǫ. Thus for each n ≥ N , we have mφ

( ⋃
Xn∈Pn

Xn \

E
)
≤ ǫ. So

∑
Xn∈Pn

mφ (X
n \ E) ≤ ǫ by Proposition 5.4.1. Hence

∑
Xn∈Pn

mφ (X
n \ E)

∑
Xn∈Pn

mφ (Xn)
≤ ǫ

mφ(E)
. (5.4.2)

Thus for each n ≥ N , there exists some n-tile Y n ∈ Pn such that

mφ(Y
n \ E)

mφ(Y n)
≤ ǫ

mφ(E)
. (5.4.3)

By Proposition 2.2.4(i), the map fn is injective on Y n. So by Theorem 5.2.10, Lemma 5.2.1,

(5.2.4), and (5.4.3), we have

mφ (f
n(Y n) \ fn(E))

mφ (fn(Y n))
≤ mφ (f

n(Y n \ E))
mφ (fn(Y n))

=

∫

Y n\E

exp(−Snφ) dmφ

∫

Y n
exp(−Snφ) dmφ

≤ C2
2

mφ(Y
n \ E)

mφ(Y n)
≤ C2

2ǫ

mφ(E)
,

where C2 ≥ 1 is the constant defined in (5.2.4) that depends only on f , C, d, φ, and α.

By Lemma 5.2.9, there exists k ∈ N that depends only on f and C such that fk(X0
w) =
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fk(X0
b ) = S2, where X0

w and X0
b are the while 0-tile and the black 0-tile, respectively. Since

fn(Y n) is either X0
w or X0

b , by Proposition 5.2.11, for each n ≥ N ,

mφ

(
S2 \ fn+k(E)

)
≤ mφ

(
fk (fn(Y n) \ fn(E))

)

≤
∫

fn(Y n)\fn(E)

exp(−Skφ) dmφ ≤ exp(k ‖φ‖∞)
C2

2ǫ

mφ(E)
.

Since ǫ > 0 was arbitrary, we get

lim
n→+∞

mφ

(
S2 \ fn+k(E)

)
= 0. (5.4.4)

Thus

lim
n→+∞

mφ (f
n(A)) ≥ lim

n→+∞
mφ (f

n(E)) = 1.

Hence the measure-preserving transformation f of the probability space (S2, µφ) is exact.

Next, we observe that since f is µφ-measurable, and is a measure-preserving transfor-

mation of the probability space (S2, µφ), it is clear that f is also µφ-measurable, and is a

measure-preserving transformation of the probability space (S2, µφ).

To prove that the measure-preserving transformation f of the probability space (S2, µφ)

is exact, we consider a µφ-measurable set B ⊆ S2 with µφ(B) > 0. Since µφ is the completion

of the Borel probability measure µφ, we can choose Borel sets A and C such that A ⊆ B ⊆
C ⊆ S2 and µφ(B) = µφ(A) = µφ(C) = µφ(A) = µφ(C). For each n ∈ N, we have fn(A) ⊆
fn(B) ⊆ fn(C) and both fn(A) and fn(C) are Borel sets (see the discussion following

Definition 5.4.2). Since f is forward quasi-invariant with respect to µφ (see Theorem 5.3.14),

it is clear that µφ (f
n(A)) = µφ (f

n(C)). Thus

µφ (f
n(A)) = µφ (f

n(A)) = µφ (f
n(B)) = µφ (f

n(C)) = µφ (f
n(C)) .

Therefore, lim
n→+∞

µφ (f
n(B)) = lim

n→+∞
µφ (f

n(A)) = 1.

Let µ be a measure on a topological space X . Then µ is called non-atomic if µ({x}) = 0

for each x ∈ X .

The following corollary strengthens Theorem 5.2.10.
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Corollary 5.4.4. Let f , d, φ, α satisfy the Assumptions. Let µφ be the unique equilibrium

state for f and φ, and mφ be as in Corollary 5.3.10. Then both µφ and mφ as well as their

corresponding completions are non-atomic.

Proof. Since µφ = uφmφ, where uφ is bounded away from 0 (see Theorem 5.2.15), it suffices

to prove that µφ is non-atomic.

Suppose there exists a point x ∈ S2 with µφ({x}) > 0, then for all y ∈ S2, we have

µφ({y}) ≤ max{µφ({x}), 1− µφ({x})}.

Since the transformation f of (S2, µφ) is exact by Theorem 5.4.3, we get that µφ({x}) = 1

and f(x) = x.

We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1 for the

existence of such C). It is clear from Lemma 5.2.9 that there exist n ∈ N and an n-tile

Xn ∈ Xn(f, C) with x /∈ Xn. Then µφ(X
n) = 0, which contradicts with the fact that µφ is

a Gibbs state for f , C, and φ (see Theorem 5.2.15 and Definition 5.2.3).

The fact that the completions are non-atomic now follows immediately.

Let f , d, φ, α satisfy the Assumptions. Let µφ be the unique equilibrium state for f

and φ, and µφ its completion. Then by Theorem 2.7 in [Ro49], the complete separable

metric space (S2, d) equipped the complete non-atomic measure µφ is a Lebesgue space in

the sense of V. Rokhlin. We omit V. Rokhlin’s definition of a Lebesgue space here and refer

the reader to [Ro49, Section 2], since the only results we will use about Lebesgue spaces are

V. Rokhlin’s definition of exactness of a measure-preserving transformation on a Lebesgue

space and its implication to the mixing properties. More precisely, in [Ro61], V. Rokhlin

gave a definition of exactness for a measure-preserving transformation on a Lebesgue space

equipped with a complete non-atomic measure, and showed [Ro61, Section 2.2] that in such

a context, it is equivalent to our definition of exactness in Definition 5.4.2. Moreover, he

proved [Ro61, Section 2.6] that if a measure-preserving transformation on a Lebesgue space
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equipped with a complete non-atomic measure is exact, then it is mixing (he actually proved

that it is mixing of all degrees, which we will not discuss here).

Let us recall the definition of mixing for a measure-preserving transformation.

Definition 5.4.5. Let g be a measure-preserving transformation of a probability space

(X, µ). Then g is called mixing if for all measurable sets A,B ⊆ X , the following holds:

lim
n→+∞

µ
(
g−n(A) ∩ B

)
= µ(A) · µ(B).

We call g ergodic if for each measurable set E ⊆ X , g−1(E) = E implies either µ(E) = 0 or

µ(E) = 1.

It is well-known and easy to see that if g is mixing, then it is ergodic (see for example,

[Wa82]).

Corollary 5.4.6. Let f , d, φ, α satisfy the Assumptions. Let µφ be the unique equilibrium

state for f and φ, and µφ its completion. Then the measure-preserving transformation f of

the probability space (S2, µφ) (resp. (S
2, µφ)) is mixing and ergodic.

Proof. By the discussion preceding Definition 5.4.5, we know that the measure-preserving

transformation f of (S2, µφ) is mixing and thus ergodic. Since any µφ-measurable sets

A,B ⊆ S2 are also µφ-measurable, the measure-preserving transformation f of (S2, µφ) is

also mixing and ergodic.

5.5 Co-homologous potentials

The goal of this section is to prove in Theorem 5.5.1 that two equilibrium states are identical

if and only if there exists a constant K ∈ R such that K1S2 and the difference of the

corresponding potentials are co-homologous (see Definition 5.5.2). We use some of the ideas

from [PU10] in the process of proving Theorem 5.5.1. We establish a form of the closing

lemma for expanding Thurston maps in Lemma 5.5.6.
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Theorem 5.5.1. Let f : S2 → S2 be an expanding Thurston map, and d be a visual metric

on S2 for f . Let φ, ψ ∈ C0,α(S2, d) be real-valued Hölder continuous functions with an

exponent α ∈ (0, 1]. Let µφ (resp. µψ) be the unique equilibrium state for f and φ (resp. ψ).

Then µφ = µψ if and only if there exists a constant K ∈ R such that φ − ψ and K1S2 are

co-homologous in the space C(S2) of real-valued continuous functions.

Definition 5.5.2. Let g : X → X be a continuous map on a metric space (X, d). Let

K ⊆ C(X) be a subspace of the space C(X) of real-valued continuous function on X . Two

functions φ, ψ ∈ C(X) are said to be co-homologous (in K) if there exists u ∈ K such that

φ− ψ = u ◦ g − u.

Remark 5.5.3. As we will see in the proof of Theorem 5.5.1 at the end of this section, if

µφ = µψ then the corresponding u can be chosen from C0,α(S2, d).

Lemma 5.5.4. Let f and C satisfy the Assumptions. If f(C) ⊆ C, then for m,n ∈ N with

m ≥ n and each m-vertex vm ∈ Vm(f, C) with W
m
(vm) ⊆ Wm−n(fn(vm)), there exists

x ∈ W
m
(vm) such that fn(x) = x.

Here W
m
(vm) denotes the closure of the open set Wm(vm).

Proof. Since vm ∈ Wm−n(fn(vm)) and f(C) ⊆ C, depending on the location of vm, there are

exactly three cases, namely, (i) vm = fn(vm); (ii) vm is contained in the interior of some

(m− n)-edge; (iii) vm is contained in the interior of some (m− n)-tile. We will find a fixed

point x ∈ W
m
(vm) of fn in each case.

Case 1. When vm = fn(vm), we can just set x = vm.

Case 2. When vm ∈ inte(em−n) for some (m− n)-edge em−n ∈ Em−n with inte(em−n) ⊆
Wm−n (fn(vm)), it is clear that Wm(vm) ⊆ X1 ∪X2 when X1, X2 ∈ Xm−n form the unique

pair of distinct (m − n)-tiles contained in Wm−n (fn(vm)) with X1 ∩ X2 = em−n. We can

choose a pair of distinct m-tiles Y1, Y2 ∈ Xm with Y1∪Y2 ⊆ W
m
(vm), fn(Y1) = X1, f

n(Y2) =

X2, and Y1 ∩ Y2 = em for some m-edge em ∈ Em. If either Y1 ⊆ X1 or Y2 ⊆ X2, say

Y2 ⊆ X2, then since X2 is homeomorphic to the closed unit disk in R2, and fn maps Y2
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Figure 5.5.1: An example for Case 2 when Y2 ⊆ X2.

homeomorphically onto X2 (Proposition 2.2.4(i)), we can conclude by applying Brouwer’s

Fixed Point Theorem on ((fn)|Y2)−1 that there exists a fixed point x ∈ Y2 of fn. (See for

example, Figure 5.5.1.) So we can assume without loss of generality that Y1 ⊆ X2 and

Y2 ⊆ X1. Suppose now that inte(em) ⊆ inte(Xi), then Y1 ∪ Y2 ⊆ Xi, for i ∈ {1, 2}. So

em ⊆ em−n. Since fn maps em homeomorphically onto em−n by Proposition 2.2.4(i), and

em−n is homeomorphic to the closed unit interval in R, it is clear that there exists a fixed

point x ∈ em of fn. (See for example, Figure 5.5.2.)

Case 3. When vm ∈ inte(Xm−n) for some (m − n)-tile Xm−n ∈ Xm−n contained in

W
m−n

(fn(vm)), it is clear that Wm(vm) ⊆ Xm−n. Let Xm ∈ Xm be an m-tile contained in

W
m
(vm) such that fn(Xm) = Xm−n. Since Xm−n is homeomorphic to the closed unit disk in

R2, and fn maps Xm homeomorphically onto Xm−n (Proposition 2.2.4(i)), we can conclude

by applying Brouwer’s Fixed Point Theorem on ((fn)|Xm)−1 that there exists a fixed point

x ∈ Xm of fn.

Lemma 5.5.5. Let f and C satisfy the Assumptions. Then there exists a number κ ∈ N0

such that the following statement holds:
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Figure 5.5.2: An example for Case 2 when Y1 * X1, Y2 * X2.

For each x ∈ S2, each n ∈ N0, and each n-tile Xn ∈ Xn(f, C), if x ∈ Xn, then there

exists an n-vertex vn ∈ Vn(f, C) ∩Xn with

Un+κ(x) ⊆W n(vn). (5.5.1)

Proof. We will first find κ ∈ N0 such that the statement above holds when n = 0. We will

then show that the same κ works for arbitrary n ∈ N0.

We fix a visual metric d on S2 for f with expansion factor Λ > 1.

Note that the collection of 0-flowers {W 0(v0) | v0 ∈ V0} forms a finite open cover of S2.

By the Lebesgue Number Lemma ([Mu00, Lemma 27.5]), there exists a number ǫ > 0 such

that any set of diameter at most ǫ is a subset of W 0(v0) for some v0 ∈ V0. Here ǫ depends

only on f , C, and d. Then by Proposition 2.4.1(iii), there exists κ ∈ N0 depending only on f ,

C, and d such that diamd(U
κ(x)) < ǫ for x ∈ S2. So for each x ∈ S2, there exists a 0-vertex

v0 ∈ V0 such that Uκ(x) ⊆ W 0(v0). Let X0 ∈ X0 be a 0-tile with x ∈ X0, then clearly

v0 ∈ X0.

In general, we fix x ∈ S2, n ∈ N0, and X
n ∈ Xn with x ∈ Xn. Set A = Vn ∩ Xn. By
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Proposition 2.2.4, we have fn(W n(vn)) = W 0(fn(vn)) and fn(∂W n(vn)) = ∂W 0(fn(vn)) for

each vn ∈ A. Suppose Un+κ(x) * W n(vn) for all vn ∈ A. Since x ∈ Xn and Un+κ(x) is

connected, we have Un+κ(x) ∩ ∂W n(vn) 6= ∅, and thus by Proposition 2.2.4(i)

Uκ(fn(x)) ∩ ∂W 0(fn(vn)) ⊇ fn(Un+κ(x)) ∩ fn(∂W n(vn)) 6= ∅,

for each vn ∈ A. Since fn(A) = V0 by Proposition 2.2.4, it follows that Uκ(fn(x)) *W 0(v0)

for all v0 ∈ V0, contradicting the discussion above for the case when n = 0.

Finally, we note that (5.5.1) holds or fails independently of the choice of d. Therefore,

the number κ depends only on f and C.

The following result can be considered as a form of the closing lemma for expanding

Thurston maps. It is a key ingredient in the proof of Proposition 5.5.8, which will be used

to prove Theorem 5.5.1. Note that Lemma 5.5.6 is more technical and in some sense slightly

stronger than the closing lemma for forward-expansive maps (see [PU10, Corollary 4.2.5]).

We need it in this slightly stronger form, since the distortion lemmas (Lemma 5.2.1 and

Lemma 5.2.2) cannot be applied in the proof of Proposition 5.5.8.

Lemma 5.5.6 (Closing lemma). Let f , C, d, Λ satisfy the Assumptions. If f(C) ⊆ C, then
there exist M ∈ N0, δ0 ∈ (0, 1), and β0 > 1 such that the following statement holds:

For each δ ∈ (0, δ0], if x ∈ S2 and l ∈ N satisfy l > M and d(x, f l(x)) ≤ δ, then

there exists y ∈ S2 such that f l(y) = y ∈ UN+l(x) and d(f i(x), f i(y)) ≤ β0δΛ
−(l−i) for each

i ∈ {0, 1, . . . , l}, where N =
⌈
− logΛ

(
δ−1
0 δ
) ⌉

∈ N0.

Proof. Define

δ0 = (2K)−1Λ−(κ+1), (5.5.2)

β0 = 4K2Λκ+1 = 2Kδ−1
0 , (5.5.3)

M =
⌈
logΛ

(
10K2

) ⌉
+ κ ∈ N0, (5.5.4)

where K ≥ 1 and κ ∈ N0 are constants depending only on f , C, and d from Lemma 2.4.1

and Lemma 5.5.5, respectively.
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We fix δ ∈ (0, δ0] and set

β = β0δ. (5.5.5)

Note that N =
⌈
− logΛ

(
δ−1
0 δ
) ⌉

=
⌈
− logΛ

β
2K

⌉
∈ N0 by (5.5.5) and (5.5.3). So

2KΛ−N ≤ β ≤ 2KΛ−N+1, (5.5.6)

and by (5.5.5) and (5.5.3), we have

δ ≤ (2K)−1Λ−(N+κ). (5.5.7)

Recall that by Lemma 2.4.1(iii), for z ∈ S2 and n ∈ N0, we have

Bd(z,K
−1Λ−n) ≤ Un(z) ≤ Bd(z,KΛ−n). (5.5.8)

Fix x ∈ S2 and l ∈ N as in the lemma. Let XN ∈ XN be an N -tile containing f l(x). By

Lemma 5.5.5, there exists an N -vertex vN ∈ VN ∩XN such that

UN+κ
(
f l(x)

)
⊆WN

(
vN
)
. (5.5.9)

There exist XN+l ∈ XN+l and vN+l ∈ VN+l ∩XN+l such that x ∈ XN+l, f l
(
XN+l

)
= XN ,

and f l
(
vN+l

)
= vN . Since l > M and WN+l

(
vN+l

)
⊆ UN+l(x), we get from (5.5.7), (5.5.8),

and (5.5.4) that if z ∈ WN+l
(
vN+l

)
, then

d
(
f l(x), z

)
≤ d

(
f l(x), x

)
+d(x, z) ≤ δ+2KΛ−(N+l) ≤ Λ−(N+κ)

2K
+
2KΛ−(N+κ)

10K2
≤ K−1Λ−(N+κ).

Thus by (5.5.8) and (5.5.9), we get

W
N+l (

vN+l
)
⊆ UN+κ

(
f l(x)

)
⊆WN

(
vN
)
.

By Lemma 5.5.4, there exists y ∈ W
N+l (

vN+l
)
⊆ UN+l(x) such that f l(y) = y.

It suffices now to verify that d (f i(x), f i(y)) ≤ β0δΛ
−(l−i) for i ∈ {0, 1, . . . , l}. Indeed,

since by Proposition 2.2.4,

{f i(x), f i(y)} ⊆W
N+l−i (

f i
(
vN+l

))
⊆ UN+l−i

(
f i
(
vN+l

))
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for i ∈ {0, 1, . . . , l}, we get from (5.5.8), (5.5.6), and (5.5.5) that

d
(
f i(x), f i(y)

)
≤ 2KΛ−(N+l−i) ≤ βΛ−(l−i) = β0δΛ

−(l−i).

The next lemma follows from the topological transitivity (see [PU10, Definition 4.3.1]) of

expanding Thurston maps and Lemma 4.3.4 in [PU10]. We include a direct proof here for

completeness.

Lemma 5.5.7. Let f : S2 → S2 be an expanding Thurston map. Then there exists a point

x ∈ S2 such that the set {fn(x) |n ∈ N} is dense in S2.

Proof. By Theorem 1.6 in [BM10], the topological dynamical system (S2, f) is a factor of

the topological dynamical system (Jω,Σ) of the left-shift Σ on the space Jω of all infinite

sequences in a finite set J of cardinality card J = deg f . More precisely, if we equip Jω =
+∞∏
i=1

J

with the product topology, where J = {1, 2, . . . , deg f}, and let the left-shift operator Σ map

(i1, i2, . . . ) ∈ Jω to (i2, i3, . . . ), then there exists a surjective continuous map ξ : Jω → S2

such that ξ ◦ Σ = f ◦ ξ.

It suffices now to find y ∈ Jω such that the set {Σn(y) |n ∈ N} is dense in Jω. Indeed,

if we let {wi}i∈N be an enumeration of all elements in the set
+∞⋃
i=1

J i of all finite sequences in

J , and set y to be the concatenation of w1, w2, . . . , then it is clear that {Σn(y) |n ∈ N} is

dense in Jω.

Following similar argument as in the proof of Proposition 4.4.5 in [PU10], we get the next

proposition. Note that here we do not explicitly use the distortion lemmas (Lemma 5.2.1

and Lemma 5.2.2).

Proposition 5.5.8. Let f , C, d, Λ satisfy the Assumptions. Let φ, ψ ∈ C0,α(S2, d) be

real-valued Hölder continuous functions with an exponent α ∈ (0, 1]. If f(C) ⊆ C, then the

following conditions are equivalent:
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(i) If x ∈ S2 satisfies fn(x) = x for some n ∈ N, then Snφ(x) = Snψ(x).

(ii) There exists a constant C > 0 such that |Snφ(x)−Snψ(x)| ≤ C for x ∈ S2 and n ∈ N0.

(iii) There exists u ∈ C0,α(S2, d) such that φ− ψ = u ◦ f − u.

Proof. The implication from (iii) to (ii) holds since |Snφ(x)−Snψ(x)| = |(u◦fn)(x)−u(x)| ≤
2 ‖u‖∞ for x ∈ S2 and n ∈ N.

To prove that (ii) implies (i), we suppose that fn(x) = x and D = Snφ(x)− Snψ(x) 6= 0

for some x ∈ S2 and some n ∈ N. Then |Sniφ(x) − Sniψ(x)| = iD > C for i large enough,

contradicting (ii).

We now prove the implication from (i) to (iii).

Let x ∈ S2 be a point from Lemma 5.5.7 so that the set A = {f i(x) | i ∈ N} is dense in

S2. Set xi = f i(x) for i ∈ N. Note that xi 6= xj for j > i ≥ 0. Denote η = φ − ψ. Then

η ∈ C0,α(S2, d). We define a function v on A by setting v(xn) = Snη(x). We will prove that

v extends to a Hölder continuous function u ∈ C0,α(S2, d) defined on S2 by showing that v

is Hölder continuous with an exponent α on A.

Fix some n,m ∈ N with n < m and d(xn, xm) <
1
2
δ0, where δ0 ∈ (0, 1) is a constant

depending only on f , C, and d from Lemma 5.5.6. Set ǫ = d(xn, xm). We can choose

k ∈ N such that d(xm, xk) < ǫ and k > m + M , where M ∈ N0 is a constant from

Lemma 5.5.6. Note that d(xn, xk) ≤ d(xn, xm) + d(xm, xk) < 2ǫ < δ0 and k > n + M .

Thus by applying Lemma 5.5.6 with δ = 2ǫ, there exist periodic points p, q ∈ S2 such that

fk−n(p) = p, fk−m(q) = q, d (f i(xn), f
i(p)) < β0δΛ

−(k−n−i) for i ∈ {0, 1, . . . , k − n}, and
d (f j(xm), f

j(q)) < β0δΛ
−(k−m−j) for j ∈ {0, 1, . . . , k − m}, where β0 > 0 is a constant
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depending only on f , C, and d from Lemma 5.5.5. Then by (i), we get that

|v(xn)− v(xm)| = |Snη(x)− Smη(x)|leq|Sk−nη(xn)|+ |Sk−mη(xm)|

=|Sk−nη(xn)− Sk−nη(p)|+ |Sk−mη(xm)− Sk−mη(q)|

≤
k−n−1∑

i=0

∣∣η
(
f i(xn)

)
− η

(
f i(p)

)∣∣ +
k−m−1∑

j=0

∣∣η
(
f j(xm)

)
− η

(
f j(q)

)∣∣

≤ |η|α βα0 δα
(
k−n−1∑

i=0

Λ−α(k−n−i) +

k−m−1∑

j=0

Λ−α(k−m−i)

)

≤21+α |η|α βα0 ǫα
∞∑

i=0

Λ−αi = Cd(xn, xm)
α,

where C = 21+α(1 − Λ−α)−1 |η|α βα0 is a constant depending only on f , C, d, η, and α.

It immediately follows that v extends continuously to a Hölder continuous function u ∈
C0,α(S2, d) with an exponent α defined on A = S2. Since u|A = v and

(v ◦ f)(xi)− v(xi) = v(xi+1)− v(xi) = Si+1η(x)− Siη(x) = η(f i(x)) = φ(xi)− ψ(xi),

for i ∈ N, we get that (u ◦ f)(y)− u(y) = φ(y)− ψ(y) for y ∈ S2 by continuity.

We are now ready to prove Theorem 5.5.1.

Proof of Theorem 5.5.1. We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see

Theorem 2.5.1 for the existence of such C).

We first prove the backward implication. We assume that

φ− ψ −K1S2 = u ◦ f − u (5.5.10)

for some u ∈ C(S2) and K ∈ R. It follows immediately from Proposition 5.2.16 that

P (f, φ) = P (f, ψ) +K. (5.5.11)

By Theorem 5.2.15, Proposition 5.2.16, Corollary 5.2.17, and Theorem 5.3.14, the measure µφ

(resp. µψ) is a Gibbs state with respect to f , C, and φ (resp. ψ) with constants Pµφ = P (f, φ)
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and Cµφ (resp. Pµψ = P (f, ψ) and Cµψ). Then by (5.2.5), (5.5.10), and (5.5.11), for i ∈ N0

and X i ∈ Xi(f, C),

µφ(X
i)

µψ(X i)
≤ CµφCµψ

exp(Siψ(x)− iP (f, ψ))

exp(Siφ(x)− iP (f, φ))

= CµφCµψ exp(u(x)− (u ◦ f)(x)) ≤ CµφCµψ exp(2 ‖u‖∞), (5.5.12)

where x ∈ X i. Let E ⊆ S2 be a Borel set with µψ(E) = 0. Fix an arbitrary number ǫ > 0.

We can find an open set U ⊆ S2 such that E ⊆ U and µψ(U) < ǫ. Set

V =
⋃{

inte(X)

∣∣∣∣X ∈
+∞⋃

i=0

Vi(f, C), X ∩ E 6= ∅, X ⊆ U

}
.

Then E ⊆ V ∪A, where A =
+∞⋃
i=0

f−i(C). By Proposition 5.4.1, we have µφ(A) = µψ(A) = 0.

So by (5.5.12), we get

µφ(E) ≤ µφ(V ) ≤ Dµψ(V ) ≤ Dµψ(U) < Dǫ,

where D = CµφCµψ exp(2 ‖u‖∞). Thus µφ is absolutely continuous with respect to µψ. Sim-

ilarly µψ is absolutely continuous with respect to µφ. On the other hand, by Corollary 5.4.6,

both µφ and µψ are ergodic measures. So suppose µφ 6= µψ, then they must be mutually

singular (see for example, [Wa82, Theorem 6.10(iv)]). Hence µφ = µψ.

We will now prove the forward implication. We assume µφ = µψ.

Denote F = fn, where n = nC is a number from the Assumptions with fn(C) = F (C) ⊆ C.
By Remark 2.3.4 the map F is also an expanding Thurston map.

For the rest of the proof, we denote Smη =
m−1∑
i=0

η ◦ f i and S̃mη =
m−1∑
i=0

η ◦F i for η ∈ C(S2)

and m ∈ N0.

Denote φn = Snφ and ψn = Snψ. It follows immediately from Lemma 2.4.3 that φn, ψn ∈
C0,α(S2, d).

Note that since µφ is an equilibrium state for f and φ, it follows that µφ is also an

equilibrium state for F and φn. Indeed, by (3.2.4) and the fact that hµφ(f
n) = nhµφ(f) (see
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for example, [Wa82, Theorem 4.13]), we have

Pµφ(F, φn) = hµφ(f
n) +

∫
Snφ dµφ = nhµφ(f) + n

∫
φ dµφ = nP (f, φ) = P (F, φn),

where the last equality follows immediately from Proposition 5.2.16. Similarly, the measure

µφ = µψ is an equilibrium state for F and ψn.

Thus by Theorem 5.2.15, Proposition 5.2.16, Corollary 5.2.17, and Theorem 5.3.14, the

measure µφ = µψ is both a Gibbs state with respect to F , C, and φn, and with constants

P (F, φn) and C, as well as a Gibbs state with respect to F , C, and ψn, and with constants

P (F, ψn) and C
′, for some C ≥ 1 and C ′ ≥ 1. By (5.2.5), we have

1

CC ′
≤ exp

(
S̃mφn(x)− S̃mψn(x)−mP (F, φn) +mP (F, ψn)

)
≤ CC ′

for x ∈ S2 and m ∈ N0. So
∣∣∣S̃mφn(x)− S̃mψn(x)

∣∣∣ ≤ log(CC ′) for x ∈ S2 and m ∈ N0, where

φn(x) = φn(x) − P (F, φn) ∈ C0,α(S2, d) and ψn(x) = ψn(x) − P (F, ψn) ∈ C0,α(S2, d). By

Proposition 5.5.8, there exists u ∈ C0,α(S2, d) such that

(u ◦ fn)(x)− u(x) = φn(x)− ψn(x) = Snφ(x)− Snψ(x)− δ (5.5.13)

for x ∈ S2, where δ = P (F, φn)− P (F, ψn).

Fix an arbitrary point y ∈ S2. By subtracting (5.5.13) with x = y from (5.5.13) with

x = f(y), we get

(u ◦ fn+1)(y)− (u ◦ fn)(y) + (u ◦ f)(y)− u(y) = (φ ◦ fn)(y)− φ(y)− (ψ ◦ fn)(y) + ψ(y),

or equivalently,

φ(fn(y))−ψ(fn(y))− (u ◦ f)(fn(y))+ u(fn(y)) = φ(y)−ψ(y)− (u ◦ f)(y)+ u(y). (5.5.14)

Let z ∈ S2 be a point from Lemma 5.5.7 so that the set A = {fni(z) | i ∈ N} is dense in

S2. By replacing y in (5.5.14) with fni(z) for i ∈ N0 and induction, we get that

φ(fni(z))− ψ(fni(z))− (u ◦ f)(fni(z)) + u(fni(z)) = K

for i ∈ N, where K = φ(z) − ψ(z) − (u ◦ f)(z) + u(z). Since A is dense in S2, we get that

φ(x) − ψ(x) − (u ◦ f)(x) + u(x) = K for x ∈ S2, i.e., the functions φ − ψ and K1S2 are

co-homologous in C0,α(S2, d).
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5.6 Equidistribution

In this section, we will discuss equidistribution results for preimages. Let f , d, φ, α satisfy

the Assumptions and let µφ be the unique equilibrium state for f and φ throughout this sec-

tion. We prove in Proposition 5.6.1 three versions of equidistribution of preimages under fn

as n −→ +∞ with respect to µφ and mφ as defined in Corollary 5.3.10, respectively. Propo-

sition 5.6.1 partially generalizes Theorem 1.0.12, where we established the equidistribution

of preimages with respect to the measure of maximal entropy.

Proposition 5.6.1. Let f , d, φ, α satisfy the Assumptions. Let µφ be the unique equilibrium

state for f and φ, and mφ be as in Corollary 5.3.10 and φ̃ as defined in (5.3.5). For each

sequence {xn}n∈N of points in S2, we define the Borel probability measures

ξn =
1

Zn(φ)

∑

y∈f−n(xn)

degfn(y) exp (Snφ(y)) δy, (5.6.1)

ξ̂n =
1

Zn(φ)

∑

y∈f−n(xn)

degfn(y) exp (Snφ(y))
1

n

n−1∑

i=0

δf i(y), (5.6.2)

ξ̃n =
1

Zn
(
φ̃
)

∑

y∈f−n(xn)

degfn(y) exp
(
Snφ̃(y)

)
δy, (5.6.3)

for each n ∈ N0, where Zn(ψ) =
∑

y∈f−n(xn)

degfn(y) exp (Snψ(y)), for ψ ∈ C(S2). Then

ξn
w∗

−→ mφ as n −→ +∞, (5.6.4)

ξ̂n
w∗

−→ µφ as n −→ +∞, (5.6.5)

ξ̃n
w∗

−→ µφ as n −→ +∞. (5.6.6)

We note that when φ ≡ 0 and xn = xn+1 for each n ∈ N, the versions (5.6.4) and (5.6.6)

reduce to (1.0.10) of Theorem 1.0.12.

Proof. We note that (5.6.5) follows directly from Lemma 5.3.11.

The proof of (5.6.4) is similar to that of Lemma 5.3.11. For the completeness, we include

it here in detail.
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For each sequence {xn}n∈N of points in S2, and each u ∈ C(S2, d), by (3.3.2) and (5.2.25)

we have

〈ξn, u〉 =
Lnφ(u)(xn)
Lnφ(1)(xn)

=
Ln
φ
(u)(xn)

Ln
φ
(1)(xn)

.

By Theorem 5.3.9,

∥∥∥Lnφ(1)− uφ

∥∥∥
∞

−→ 0 and

∥∥∥∥Lnφ(u)− uφ

∫
u dmφ

∥∥∥∥
∞

−→ 0

as n −→ +∞. So by (5.2.32),

lim
n→+∞

Ln
φ
(u)(xn)

Ln
φ
(1)(xn)

=

∫
u dmφ.

Hence, (5.6.4) holds.

Finally, (5.6.6) follows from (5.6.4) and the fact that φ̃ ∈ C0,α(S2, d) (Lemma 5.3.4) and

mφ̃ = µφ (Corollary 5.3.10).

5.7 A random iteration algorithm

In this section, we follow the idea of [HT03] to prove that for each p ∈ S2, the equilib-

rium state µφ for an expanding Thurston map f and a given real-valued Hölder continuous

potential (with respect to a visual metric) is almost surely the limit of

1

n

n−1∑

i=0

δqi

as n −→ +∞ in the weak* topology, where q0 = p, and qi is one of the points x in f−1(qi−1),

chosen with probability degf(x) exp
(
φ̃(x)

)
, for each i ∈ N. Here φ̃ is defined in (5.3.5).

Note that when φ ≡ 0, we have that µφ is the measure of maximal entropy of f and that

φ̃ = −htop(f) = − log(deg f), thus degf (x) exp
(
φ̃(x)

)
=

degf (x)

deg f
.

To give a more precise formulation, we will use the language of Markov process from the

probability theory (see, for example, [Du10] for an introduction).

Let (X, d) be a compact metric space. Equip the space P(X) of Borel probability mea-

sures with the weak∗ topology. A continuous map X → P(X) assigning to each x ∈ X
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a measure µx defines a random walk on X . We define the corresponding Markov operator

Q : C(X) → C(X) by

Qφ(x) =

∫
φ(y) dµx(y). (5.7.1)

Let Q∗ be the adjoint operator of Q, i.e., for each φ ∈ C(X) and ρ ∈ P(X),
∫
Qφ dρ =

∫
φ d(Q∗ρ). (5.7.2)

Consider a stochastic process (Ω,F , P ), where

1. Ω = {(ω0, ω1, . . . ) |ωi ∈ X, i ∈ N0} =
+∞∏
i=0

X , equipped with the product topology,

2. F is the Borel σ-algebra on Ω,

3. P ∈ P(Ω).

This process is a Markov process with transition probabilities {µx}x∈X if

P{ωn+1 ∈ A |ω0 = z0, ω1 = z1, . . . , ωn = zn} = µzn(A) (5.7.3)

for all n ∈ N0, Borel subsets A ⊆ X , and z0, z1, . . . , zn ∈ X .

The transition probabilities {µx}x∈X are determined by the operator Q and so we can

speak of a Markov process determined by Q.

Let f , d, φ, α satisfy the Assumptions. Set Q = Lφ̃. Then for each u ∈ C(S2),

Qu(x) =

∫
u(y) dµx(y),

where

µx =
∑

z∈f−1(x)

degf(z) exp
(
φ̃(z)

)
δz.

By (5.3.8), we get that µx ∈ P(S2) for each x ∈ S2. We showed that the Ruelle operator in

(3.3.1) is well-defined, from which it immediately follows that the map x 7→ µx from S2 to

P(S2) is continuous with respect to weak∗ topology on P(S2).

Fix an arbitrary z ∈ S2. Then there exists a unique Markov process (Ω,F , Pz) determined

by Q with
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1. Ω =
+∞∏
i=0

S2, equipped with the product topology,

2. F being the Borel σ-algebra on Ω,

3. Pz being a Borel probability measure on Ω satisfying

Pz{ωn+1 ∈ A |ω0 = z, ω1 = z1, . . . , ωn = zn} = µzn(A)

for all n ∈ N, Borel subset A ⊆ S2, and z1, z2, . . . , zn ∈ S2.

The existence and uniqueness of Pz follows from [Lo77, Theorem 1.4.2]. Since the Markov

process (Ω,F , Pz) is determined by f and φ as well, we will also call (Ω,F , Pz) the Markov

process determined by f and φ.

Now we can formulate our main theorem for this section.

Theorem 5.7.1. Let f : S2 → S2 be an expanding Thurston map and d be a visual metric on

S2 for f . Let φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function with an exponent

α ∈ (0, 1]. Let µφ be the unique equilibrium state for f and φ Let (Ω,F , Pz) be the Markov

process determined by f and φ. Then for each z ∈ S2, we have that Pz-almost surely,

1

n

n−1∑

j=0

δωj
w∗

−→ µφ as n −→ +∞. (5.7.4)

In other words, if we fix a point z ∈ S2 and set it as the first point in an infinite

sequence, and choose each of the following points randomly according to the Markov process

determined by f and φ, then Pz-almost surely, the probability measure equally distributed

on the first n points in the sequence converges in the weak∗ topology to µf as n −→ +∞.

In order to prove Theorem 5.7.1, we need a theorem of H. Furstenberg and Y. Kifer from

[FK83].

Theorem 5.7.2 (H. Furstenberg & Y. Kifer 1983). Let Ω = {ωn ∈ X |n ∈ N0} be the

Markov process determined by the operator Q. Assume that there exists a unique Borel
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probability measure µ that is invariant under the adjoint operator Q∗ on P(X). Then for

each ω0 ∈ X, we have that Pω0-almost surely,

1

n

n−1∑

j=0

δωj
w∗

−→ µ as n −→ +∞. (5.7.5)

Theorem 5.7.1 follows immediately from Theorem 5.7.2 and the fact that the equilibrium

state µφ is the unique Borel probability measure on S2 that satisfies L∗
φ̃
(µφ) = µφ (see

Corollary 5.3.10).
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CHAPTER 6

Asymptotic h-Expansiveness

In this Chapter, we investigate the weak expansion properties of expanding Thurston maps,

summarized in Theorem 1.0.4. We first prove four lemmas in Section 6.1 and Section 6.2 in

preparation for the proof of Theorem 1.0.4, which is given in Section 6.3.

6.1 Some properties of expanding Thurstons maps

We need the following three lemmas for the proof of the asymptotic h-expansiveness of

expanding Thurston maps with no periodic critical points.

Lemma 6.1.1 (Uniform local injectivity away from the critical points). Let f , d satisfy the

Assumptions. Then there exists a number δ0 ∈ (0, 1] and a function τ : (0, δ0] → (0,+∞)

with the following properties:

(i) lim
δ→0

τ(δ) = 0.

(ii) For each δ ≤ δ0, the map f restricted to any open ball of radius δ centered outside

the τ(δ)-neighborhood of crit f is injective, i.e., f |Bd(x,δ) is injective for each x ∈ S2 \
N
τ(δ)
d (crit f).

This lemma is straightforward to verify, but for the sake of completeness, we include the

proof here.

Proof. We first define a function r : S2 \ crit f → (0,+∞) in the following way

r(x) = sup{R > 0 | f |Bd(x,R) is injective},
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for x ∈ S2 \ crit f . Note that r(x) ≤ d(x, crit f) < +∞ for each x ∈ S2 \ crit f . We

also observe that the supremum is attained, since otherwise, suppose f(y) = f(z) for some

y, z ∈ Bd(x, r(x)), then f is not injective on the ball Bd(x,R0) containing y and z with

R0 =
1
2
(r(x) + max{d(x, y), d(x, z)}) < r(x), a contradiction.

We claim that r is continuous.

Indeed, we observe that for each pair of distinct points x, y ∈ S2, we have r(x) ≥
r(y)−d(x, y). This is true since if r(y)−d(x, y) > 0, then Bd(x, r(y)−d(x, y)) ⊆ Bd(y, r(y)).

Now by symmetry, r(y) ≥ r(x)− d(x, y). So |r(x)− r(y)| ≤ d(x, y), and the claim follows.

Next, we fix a sufficiently small number t0 > 0 with S2 \ N t0
d (crit f) 6= ∅. We define a

function σ : (0, t0] → (0,+∞) by setting

σ(t) = inf{r(x) | x ∈ S2 \N t
d(crit f)}

for t ∈ (0, t0]. We observe that σ is continuous and non-decreasing. Since r(x) ≤ d(x, crit f)

for each x ∈ S2 \ crit f , we can conclude that lim
t→0

σ(t) = 0. By the definition of σ, we get

that f |Bd(x,σ(t)) is injective, for t ∈ (0, t0] and x ∈ S2 \N t
d(crit f).

Finally, we construct τ : (0, δ0] → (0,+∞), where δ0 = min{1, σ(t0)} by setting

τ(δ) = inf{t ∈ (0, t0] | σ(t) ≥ δ} (6.1.1)

for each δ ∈ (0, δ0]. We note that lim
δ→0

τ(δ) = 0.

For δ ∈ (0, δ0] and t ∈ (τ(δ), t0], we have σ(t) ≥ δ by (6.1.1) and the fact that σ

is non-decreasing. Since σ is continuous on (0, t0], we get σ(τ(δ)) ≥ δ. For each x ∈
S2 \N τ(δ)

d (crit f), we know from the definition of σ that f |Bd(x,σ(τ(δ))) is injective. Therefore
f |Bd(x,δ) is injective.

Lemma 6.1.2. Let f and C satisfy the Assumptions. Fix m,n ∈ N0 with m < n. If f(C) ⊆ C
and no 1-tile in X1(f, C) joins opposite sides of C, then the following statements hold:

(i) For each n-vertex v ∈ Vn(f, C) and each m-vertex w ∈ Vm(f, C), if v /∈ W
m
(w), then

Wm(w) ∩W n(v) = ∅.
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(ii) For each n-tile Xn ∈ Xn(f, C), there exists an m-vertex vm ∈ Vm(f, C) such that

Xn ⊆Wm(vm).

(iii) For each pair of distinct m-vertices p, q ∈ Vm(f, C), W n+1
(p) ∩W n+1

(q) = ∅.

Recall that W n is defined in (2.2.2) and W
n
(p) is the closure of W n(p). Note that a

flower is an open set (see [BM10, Lemma 7.2]) and by definition a tile is a closed set.

Proof. We first observe that in order to prove any of the statements in the lemma, it suffices

to assume n = m+ 1. So we will assume, without loss of generality, that n = m+ 1.

(i) Since v /∈ W
m
(w), by (2.2.2) we get that v /∈ c for each m-cell c ∈ Dm with w ∈ c.

Since f(C) = C, for each n-cell c′ ∈ Dn and each m-cell c ∈ Dm, if c ∩ inte(c′) 6= ∅, then
c′ ⊆ c (see Lemma 4.3 and the proof of Lemma 4.7 in [BM10]). Thus c ∩ inte(c′) = ∅ for

c ∈ Dm and c′ ∈ Dn with w ∈ c and v ∈ c′. So Wm(w) ∩W n(v) = ∅ by (2.2.2).

(ii) Let Xm ∈ Xm be the unique m-tile with Xn ⊆ Xm. Depending on the location of

Xn in Xm, it suffices to prove statement (ii) in the following cases:

(1) Assume that Xn ⊆ inte(Xm). Then Xn ⊆Wm(vm) for any vm ∈ Xm ∩Vm.

(2) Assume that ∅ 6= Xn ∩ e ⊆ inte(e) for some m-edge e ∈ Em with e ⊆ Xm. Then since

no 1-tile joins opposite sides of C, by Proposition 2.2.4(i), either Xn ∩ ∂Xm ⊆ inte(e)

or there exists e′ ∈ Em such that Xn ∩ ∂Xm ⊆ inte(e) ∪ inte(e′) and e ∩ e′ = {v} for

some v ∈ Vm. In the former case, choose any vm ∈ e ∩Vm; and in the latter case, let

vm = v. Then Xn ⊆Wm(vm).

(3) Assume Xn∩Vm 6= ∅. Since no 1-tile joins opposite sides of C, by Proposition 2.2.4(i),

there exists some m-vertex vm ∈ Vm such that Xn∩Vm = {vm}. Let e, e′ ∈ Em be the

two m-edges that satisfy e∪ e′ ⊆ Xm and e ∩ e′ = {vm}. Then by Proposition 2.2.4(i)

and the assumption that no 1-tile joins opposite sides of C, we get that Xn ∩ ∂Xm ⊆
{vm} ∪ inte(e) ∪ inte(e′). Thus Xn ⊆ Wm(vm).

163



(iii) We observe that since no 1-tile in X1 joins opposite sides of C and f(C) ⊆ C, by
Proposition 2.2.4(i), each (k + 1)-tile Xk+1 contains at most one k-vertex, for k ∈ N0.

Let p, q ∈ Vm be distinct. Then by Remark 2.2.5 and the observation above, we know

q /∈ W
n
(p). So by part (i), we get W n(p) ∩ W n+1(q) = ∅. Since flowers are open sets,

we have W n(p) ∩ W
n+1

(q) = ∅. It suffices to prove that W
n+1

(p) ⊆ W n(p). Indeed this

inclusion is true; for otherwise, there exists an (n + 1)-tile Xn+1 ⊆ W
n+1

(p) and a point

x ∈ W
n
(p) \W n(p) such that {x, p} ⊆ Xn+1. By (2.2.2) and applying Proposition 2.2.4(i),

we get a contradiction to the assumption that no 1-tile in X1 joins opposite sides of C.

Let f : S2 → S2 be an expanding Thurston map, and C ⊆ S2 a Jordan curve containing

post f such that f(C) ⊆ C. We denote, for m ∈ N0, n ∈ N, q ∈ S2, and qi ∈ Vm(f, C) for
i ∈ {0, 1, . . . , n− 1},

Em(q0, q1, . . . , qn−1; q) =
{
x ∈ f−n(q)

∣∣ f i(x) ∈ W
m
(qi), i ∈ {0, 1, . . . , n− 1}

}
(6.1.2)

=f−n(q) ∩
( n−1⋂

i=0

f−i
(
W

m
(qi)
))

,

where W
m
(qi) is the closure of the m-flower Wm(qi) as defined in Section 2.1.

Lemma 6.1.3. Let f : S2 → S2 be an expanding Thurston map, and C ⊆ S2 a Jordan curve

containing post f such that f(C) ⊆ C. Then

n⋂

i=0

f−i(Wm(pi)) ⊆
⋃

x∈Em(p0,p1,...,pn−1;pn)

Wm+n(x), (6.1.3)

for m ∈ N0, n ∈ N, and pi ∈ Vm(f, C) for i ∈ {0, 1, . . . , n}. Here Em is defined in (6.1.2).

Proof. We prove the lemma by induction on n ∈ N.

For n = 1, we know that for all p0, p1 ∈ Vm(f, C),

Wm(p0) ∩ f−1(Wm(p1)) ⊆
⋃{

Wm+1(x)
∣∣ x ∈ f−1(p1), x ∈ W

m
(p0)

}
=

⋃

x∈Em(p0;p1)

Wm+1(x)

by (6.1.2) and the fact that Wm+1(x)∩Wm(p0) = ∅ if both x ∈ Vm+1(f, C) and x /∈ W
m
(p0)

are satisfied (see Lemma 6.1.2(i)).
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We now assume that the lemma holds for n = l for some l ∈ N.

We fix a point pi ∈ Vm(f, C) for each i ∈ {0, 1, . . . , l, l + 1}. Then
l+1⋂

i=0

f−i(Wm(pi)) = Wm(p0) ∩ f−1

( l+1⋂

i=1

f−(i−1)(Wm(pi))

)
.

By induction hypothesis, the right-hand side of the above equation is a subset of

Wm(p0) ∩ f−1

( ⋃

x∈Em(p1,p2,...,pl;pl+1)

Wm+l(x)

)

=
⋃

x∈Em(p1,p2,...,pl;pl+1)

(
Wm(p0) ∩ f−1

(
Wm+l(x)

))

⊆
⋃

x∈Em(p1,p2,...,pl;pl+1)

(⋃{
Wm+l+1(y) | y ∈ f−1(x), y ∈ W

m
(p0)

})

=
⋃

x∈Em(p1,p2,...,pl;pl+1)

⋃

y∈Em(p0;x)

Wm+l+1(y),

where the last two lines is due to (6.1.2) and the fact that Wm+l+1(y)∩Wm(p0) = ∅ if both

y ∈ Vm+l+1(f, C) and y /∈ W
m
(p0) are satisfied (see Lemma 6.1.2(i)).

We claim that

⋃

x∈Em(p1,p2,...,pl;pl+1)

Em(p0; x) = Em(p0, p1, . . . , pl; pl+1).

Assuming the claim, we then get

l+1⋂

i=0

f−i(Wm(pi)) ⊆
⋃

x∈Em(p0,p1,...,pl;pl+1)

Wm+l+1(y).

Thus it suffices to prove the claim now. Indeed, by (6.1.2),

⋃

x∈Em(p1,p2,...,pl;pl+1)

Em(p0; x)

=

{
y ∈ f−1(x)

∣∣∣∣ y ∈ W
m
(p0), x ∈ f−l(pl+1) ∩

( l⋂

i=1

f−i+1
(
W

m
(pi)
))}

=

{
y ∈ f−l−1(pl+1)

∣∣∣∣ y ∈ W
m
(p0), f(y) ∈

l⋂

i=1

f−i+1
(
W

m
(pi)
)}

=Em(p0, p1, . . . , pl; pl+1).

The induction step is now complete.
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6.2 Concepts from graph theory

We now review the notions of a simple directed graph and of a finite rooted tree that will be

used in the proof of Theorem 6.3.1. Since the only purpose of such notions is to make the

statements and proofs precise, and we will not use any nontrivial facts from graph theory, we

adopt here a simplified approach to define relevant concepts as quickly as possible (compare

[BJG09]).

A simple directed graph G = (V(G), E(G)) is made up from a set of vertices V(G) and a

set of directed edges

E(G) ⊆ V(G)× V(G) \ {(v, v) | v ∈ V(G)}.

A simple directed graph G is finite if cardV(G) < +∞. Two vertices v, w ∈ V(G) are

connected by a directed edge (v, w) if (v, w) ∈ E(G). If e = (v, w) ∈ E(G), then we call v

the initial vertex of e, denoted by i(e), and w the terminal vertex of e, denoted by t(e).

The indegree of a vertex v ∈ V(G) is d−(v) = card{w ∈ V(G) | (w, v) ∈ E(G)}, and the

outdegree of v is d+(v) = card{w ∈ V(G) | (v, w) ∈ E(G)}. A path from a vertex v ∈ V(G) to
a vertex w ∈ V(G) is a finite sequence of vertices v = v0, v1, v2, . . . , vn−1, vn = w such that

(vi, vi+1) ∈ E(G) for each i ∈ {0, 1, . . . , n− 1}. The length of such a path is n. The distance

from v to w is the minimal length of all paths from v to w. By convention, the distance from

v to v is 0, and if there is no path from v to w for v 6= w, then the distance from v to w is

∞. If the distance of v to w is n ∈ N0, then we say that w is at a distance n from v.

A finite simple directed graph T is a finite rooted tree if there exists a vertex r ∈ V(T )

such that for each vertex v ∈ V(T ) \ {r} there exists a unique path from r to v. We call

such a simple directed graph a finite rooted tree with root r, and r the root of T . Note that

a finite rooted tree has a unique root. A vertex v of a finite rooted tree T is called a leaf (of

T ) if d+(v) = 0. If (v, w) ∈ E(T ), then w is said to be a child of v.

Lemma 6.2.1 (A bound for the number of leaves). Let T be a finite rooted tree with root r

whose leaves are all at the same distance from r. Assume that there exist constants c, k ∈ N

with the following properties:
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Figure 6.2.1: The function h for a finite rooted tree.

(i) d+(x) ≤ c for each vertex x ∈ V(T ),

(ii) for each leaf v, the number of vertices w with d+(w) ≥ 2 in the path from r to v is at

most k.

Then number of leaves of T is at most ck.

Proof. Let N ∈ N0 be the distance from r to any leaf of T . For each n ∈ N0, we define Vn
as the set of vertices of T at distance n from r. It is clear that a vertex v ∈ V(T ) is a leaf

of T if and only if v ∈ VN .

We can recursively construct a function h : V(T ) → L by setting h(r) = 1, and for each

v ∈ V(T ), defining h(v) = h(w)
d+(w)

, where w ∈ V(T ) is the unique vertex with (w, v) ∈ E(T ).

See Figure 6.2.1.

By the two properties in the hypothesis, we have h(v) ≥ c−k for each leaf v ∈ V(T )

of T . On the other hand, it is easy to see from induction that
∑
w∈Vn

h(w) = 1 for each

n ∈ {0, 1, . . . , N}. In particular, we have
∑

w∈VN

h(w) = 1. Thus cardVN ≤ ck. Therefore, the

number of leaves of T is at most ck.

6.3 Proof of Theorem 1.0.4

We split Theorem 1.0.4 into three parts and prove each one separately here.
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Theorem 6.3.1. An expanding Thurston map f : S2 → S2 with no periodic critical points

is asymptotically h-expansive.

Proof. We need to show h∗(f) = 0. By (3.4.4), it suffices to prove that f i is asymptotically

h-expansive for some i ∈ N. Note that by (2.1.2), f i has no periodic critical points for each

i ∈ N if f does not. Thus by Lemma 2.5.2, we can assume, without loss of generality, that

there exists a Jordan curve C ⊆ S2 containing post f such that f(C) ⊆ C, and no 1-tile joins

opposite sides of C. We consider the cell decompositions of S2 induced by f and C in this

proof.

Recall that Wi defined in (2.2.3) denotes the set of all i-flowers W i(p), p ∈ Vi, for each

i ∈ N0.

Since f is expanding, it is easy to see from Lemma 2.4.1, Proposition 2.2.4, and the

Lebesgue Number Lemma ([Mu00, Lemma 27.5]) that {Wi}i∈N0 forms a refining sequence

of open covers of S2 (see Definition 3.1.1). Thus it suffices to prove that

h∗(f) = lim
m→+∞

lim
l→+∞

lim
n→+∞

1

n
H

(
n−1∨

i=0

f−i
(
Wl
)
∣∣∣∣∣

n−1∨

j=0

f−j (Wm)

)
= 0. (6.3.1)

See (3.4.2) for the definition of H .

We now fix arbitrary n,m, l ∈ N that satisfy m+ n > l > m.

The plan for the proof is the following. We will first obtain an upper bound for the

number of (m + n − 1)-flowers needed to cover each element A in the cover
n−1∨
j=0

f−j (Wm)

of S2. By Lemma 6.1.3, it suffices to find an upper bound for cardEm(p0, p1, . . . , pn−2; pn−1)

for p0, p1, . . . , pn−1 ∈ Vm. We identify Em(p0, p1, . . . , pn−2; pn−1) with the set of leaves of a

certain rooted tree. By Lemma 6.2.1, we will only need to bound the number of vertices with

more than one child in each path connecting the root with some leave. This can be achieved

after one observes that for an expanding Thurston map with no periodic critical points, the

frequency for an orbit getting near the set of critical points is bounded from above. After

this main step, we will then find an upper bound for the number of (l + n)-tiles needed to

cover A. By observing that each (l+ n)-tile is a subset of some element in
n−1∨
j=0

f−j
(
Wl
)
, we
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(pn−1, 0)

(v, 3)

Figure 6.3.1: An example of T with n = 5 and c(v, 3) = 4.

will finally obtain a suitable upper bound for H

(
n−1∨
i=0

f−i
(
Wl
)
∣∣∣∣∣
n−1∨
j=0

f−j (Wm)

)
which leads

to (6.3.1).

Let A ∈
n−1∨
j=0

f−j(Wm), say

A =

n−1⋂

i=0

f−i(Wm(pi)) (6.3.2)

where p0, p1, . . . , pn−1 ∈ Vm. By Lemma 6.1.3,

A ⊆
⋃

x∈Em(p0,p1,...,pn−2;pn−1)

Wm+n−1(x), (6.3.3)

where Em is defined in (6.1.2).

We can construct a rooted tree T from Em(p0, p1, . . . , pn−2; pn−1) as a simple directed

graph. The set V(T ) of vertices of T is

V(T ) =
n−1⋃

i=0

{
(f i(x), n− 1− i) ∈ S2 × N0

∣∣ x ∈ Em(p0, p1, . . . , pn−2; pn−1)
}
.

Two vertices (x, i), (y, j) ∈ V(T ) are connected by a directed edge ((x, i), (y, j)) ∈ E(V) if

and only if f(y) = x and j = i + 1. Clearly the simple directed graph T constructed this

way is a finite rooted tree with root (pn−1, 0) ∈ V(T ).

Observe that if a vertex (x, i) ∈ V(T ) is a leaf of T , then x ∈ f−n+1(pn−1) and i = n− 1.

For each (x, i) ∈ V(T ), we write c(x, i) = d+((x, i)), i.e.,

c(x, i) = card{(y, i+ 1) ∈ V(T ) | f(y) = x}. (6.3.4)
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We make the convention that for each x ∈ S2 and each i ∈ Z, if (x, i) /∈ V(T ), then

c(x, i) = −1. See Figure 6.3.1 for an example of T .

Recall that by (6.1.2),

Em(p0, p1, . . . , pn−2; pn−1) =
{
y ∈ f−n+1(pn−1)

∣∣ f i(y) ∈ W
m
(pi), i ∈ {0, 1, . . . , n− 2}

}
.

So if (x, i) ∈ V(T ), then c(x, i) is at most the number of distinct preimages of x under f

contained in W
m
(pi+1). Thus

0 ≤ c(x, i) ≤ deg f for (x, i) ∈ V(T ). (6.3.5)

Fix a visual metric d on S2 for f with expansion factor Λ > 1. The map f is Lipschitz

with respect to d (see Lemma 2.4.3). Then there exists a constant K ≥ 1 depending only

on f and d such that d(f(x), f(y)) ≤ Kd(x, y) for x, y ∈ S2. We may assume that K ≥ 2.

Define

Nc = max{min{i ∈ N | f j(x) /∈ crit f if j ≥ i} | x ∈ crit f}.

The maximum is taken over a finite set of integers since f has no periodic critical points. So

Nc ∈ N. Note that by definition, if x ∈ crit f , then f i(x) ∈ post f \ crit f for each i ≥ Nc.

Denote the shortest distance between a critical point and the set post f \ crit f by

Dc = min{d(x, y) | x ∈ post f \ crit f, y ∈ crit f}.

Then Dc ∈ (0,+∞) since both post f \ crit f and crit f are nonempty finite sets.

We now proceed to find an upper bound for

card
{
i ∈ {0, 1, . . . , n− 1}

∣∣ c(f i(z), n− 1− i) ≥ 2
}

for each (z, n − 1) ∈ V(T ), uniform in (z, n − 1). Recall that z ∈ f−n+1(pn−1) for each

(z, n− 1) ∈ V(T ). We fix such a point z.

In order to find an upper bound, we first define, for each i ∈ N sufficiently large,

Mi =

⌊
logK

(
Dc − τ(3CΛ−i)

τ(3CΛ−i)

)⌋
− 2, (6.3.6)
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pn−1 W
m
(pn−1)

W
m
(pn−2)

W
m
(pn−3)

W
m
(pk)

W
m
(pk−1)

W
m
(p1)

W
m
(p0)

fn−3(z)

fk(z)

fk−1(z)

z

∗3

∗2

∗1 <r

<r

<r

Figure 6.3.2: ∗1, ∗2, ∗3 ∈ crit f , r = τ(3CΛ−m), and c(fk(z), n− 1− i) = 2.
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where the function τ is from Lemma 6.1.1, and C ≥ 1 is a constant depending only on f , C,
and d from Lemma 2.4.1. Note that τ(3CΛ−i) −→ 0 as i −→ +∞ (Lemma 6.1.1), thus Mi

is well-defined for i sufficiently large, and

lim
i→+∞

Mi = +∞. (6.3.7)

We assume thatm is sufficiently large such that the following conditions are both satisfied:

(i) m > logΛ
(
3C
δ0

)
,

(ii) Mm > Nc,

where δ0 ∈ (0, 1] is a constant that depends only on f and d from Lemma 6.1.1. Note that

by Lemma 2.4.1, each m-flower is of diameter at most 2CΛ−m. Thus condition (i) implies

that for each v ∈ Vm, each pair of points x, y ∈ W
m
(v) satisfy d(x, y) < 3CΛ−m < δ0.

Fix k ∈ {0, 1, . . . , n−1} with c
(
fk(z), n− 1− k

)
≥ 2. Then k 6= 0 and the number of dis-

tinct points in W
m
(pk−1) that are mapped to fk(z) under f is at least c

(
fk(z), n− 1− k

)
≥

2. Thus f is not injective onW
m
(pk−1). See Figure 6.3.2. By Lemma 2.4.1, diamd

(
W

m
(pk−1)

)
≤

2CΛ−m. Since fk−1(z) ∈ W
m
(pk−1), the map f is not injective on Bd

(
fk−1(z), 3CΛ−m

)
.

Then since 3CΛ−m < δ0, by Lemma 6.1.1,

d
(
fk−1(z), crit f

)
< τ

(
3CΛ−m

)
.

Choose w ∈ crit f that satisfies d
(
fk−1(z), w

)
< τ (3CΛ−m) . Then for each j ∈ N0,

d
(
fk+j−1(z), f j(w)

)
< Kjτ

(
3CΛ−m

)
. (6.3.8)

We will show that in the sequence fk(z), fk+1(z), . . . , fk+Mm(z), the number of terms

fk+j(z), 0 ≤ j ≤Mm, for which the vertex

(
fk+j(z), n− 1− k − j

)
∈ V(T )

has at least two children is bounded above by Nc, i.e.,

card
{
j ∈ {0, 1, . . . ,Mm}

∣∣ c
(
fk+j(z), n− 1− k − j

)
≥ 2
}
≤ Nc. (6.3.9)
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Note that Mm is defined in (6.3.6). Here we use the convention that for each x ∈ S2 and

each i ∈ Z, if (x, i) /∈ V(T ), then c(x, i) = −1.

Indeed, for each j ∈ {Nc, Nc+1, . . . ,min{Mm, n−1−k}}, we have f j(w) ∈ post f \crit f .
Note that here Mm > Nc by condition (ii) on m. Thus by (6.3.8) and (6.3.6),

d
(
fk+j−1(z), crit f

)
≥ d

(
crit f, f j(w)

)
− d

(
f j(w), fk+j−1(z)

)

≥ Dc −Kjτ(3CΛ−m)

≥ Dc −KMmτ(3CΛ−m)

≥ Dc −
(
Dc − τ(3CΛ−m)

τ(3CΛ−m)

)
τ(3CΛ−m)

= τ(3CΛ−m).

Hence by Lemma 6.1.1, the restriction of f to Bd

(
fk+j−1(z), 3CΛ−m

)
is injective. Note that

fk+j−1(z) ∈ W
m
(pk+j−1), and by Lemma 2.4.1, diamd

(
W

m
(pk+j−1)

)
≤ 2CΛ−m. So f is

injective on W
m
(pk+j−1). Thus

c
(
fk+j(z), n− 1− k − j

)
= 1

for each j ∈ {Nc, Nc + 1, . . . ,min{Mm, n− 1− k}}. Hence

c
(
fk+j(z), n− 1− i− j

)
∈ {1,−1}

for each j ∈ {Nc, Nc + 1, . . . ,Mm}. Then (6.3.9) holds.

Thus we get that

card
{
i ∈ {0, 1, . . . , n− 1}

∣∣ c(f i(z), n− 1− i) ≥ 2
}
≤ Nc

⌈
n

Mm

⌉
(6.3.10)

for each (z, n− 1) ∈ V(T ).

Hence by (6.3.10), (6.3.5), and Lemma 6.2.1, we can conclude that the number of leaves

of T is at most (deg f)Nc(
n
Mm

+1), or equivalently,

cardEm(p0, p1, . . . , pn−2; pn−1) ≤ (deg f)Nc(
n
Mm

+1). (6.3.11)
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We have obtained an upper bound for the number of (m+n− 1)-flowers needed to cover

A. Next, we will find an upper bound for the number of (m+n− 1)-tiles, and consequently,

an upper bound for the number of (l + n)-tiles, needed to cover A.

Denote the maximum number of i-tiles contained in the closure of any i-flower, over all

i ∈ N0, by Wf , i.e.,

Wf = sup
{
card

{
X i ∈ Xi

∣∣X i ⊆ W
j
(v)
} ∣∣ j ∈ N0, v ∈ Vj

}
.

Observe that Wf = sup{2 degf i(v) | i ∈ N0, v ∈ Vi}. Since f has no periodic critical points,

it follows from [BM10, Lemma 17.1] that Wf is a finite number that only depends on f .

Thus we can cover A in (6.3.2) by a collection of (m+ n− 1)-tiles of cardinality at most

Wf(deg f)
Nc( n

Mm
+1).

On the other hand, we claim that each (l+n)-tile X l+n ∈ Xl+n is a subset of at least one

element in the open cover
n−1∨
i=0

f−i(Wl) of S2. To prove the claim, we first fix an (l + n)-tile

X l+n ∈ Xl+n. By Proposition 2.2.4(ii) and Lemma 6.1.2(ii), for each i ∈ {0, 1, . . . , n − 1},
there exists an l-vertex vi ∈ Vl such that f i

(
X l+n

)
⊆ W l(vi). Thus

X l+n ⊆
n−1⋂

i=0

f−i
(
W l(vi)

)
.

The proof for the claim is complete.

Note that for each (m+ n− 1)-tile Xm+n−1 ∈ Xm+n−1, the collection

{
X l+n ∈ Xl+n

∣∣X l+n ⊆ Xm+n−1
}

forms a cover of Xm+n−1, and has cardinality at most (2 deg f)l−m+1, which follows immedi-

ately from Proposition 2.2.4.

Hence, we get that for each element A of
n−1∨
j=0

f−j(Wm), we can find a cover of A con-

sisting of elements of
n−1∨
i=0

f−i(Wl) in such a way that the cardinality of the cover is at most

(2 deg f)l−m+1Wf(deg f)
Nc( n

Mm
+1).
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We conclude that

h∗(f) ≤ lim
m→+∞

lim
l→+∞

lim
n→+∞

1

n
log
(
(2 deg f)l−m+1Wf (deg f)

Nc( n
Mm

+1)
)

= lim
m→+∞

lim
l→+∞

lim
n→+∞

1

n
Nc

(
n

Mm
+ 1

)
log(deg f)

= lim
m→+∞

Nc log(deg f)

Mm

= 0.

The last equality follows from (6.3.7). Therefore h∗(f) = 0.

Recall that a point x ∈ S2 is a periodic point of f : S2 → S2 with period n if fn(x) = x

and f i(x) 6= x for each i ∈ {1, 2, . . . , n− 1}.

Theorem 6.3.2. An expanding Thurston map f : S2 → S2 with at least one periodic critical

point is not asymptotically h-expansive.

Proof. We need to show h∗(f) > 0. By (3.4.4), it suffices to prove that f i is not asymptoti-

cally h-expansive for some i ∈ N. Note that by (2.1.2), if a point x ∈ S2 is a periodic critical

point of f i for some i ∈ N, then it is a periodic point of f and there exists j ∈ N0 such that

f j(x) is a periodic critical point of f . Thus each periodic critical point of f τ is a fixed point

of f τ if τ ∈ N is a common multiple of the periods of all the periodic critical points of f .

Hence by Lemma 2.5.2, we can assume, without loss of generality, that there exists a Jordan

curve C ⊆ S2 containing post f such that f(C) ⊆ C, and no 1-tile joins opposite sides of C,
and each periodic critical point of f is a fixed point of f .

Let p be a critical point of f that is fixed by f .

In addition, we can assume, without loss of generality, that f−1(p) \ C 6= ∅. Indeed, by

Lemma 2.3.5, there exists j ∈ N such that f−j(p) \ C 6= ∅. We replace f by f j, and observe

that by (2.1.2) and the fact that each periodic critical point of f is a fixed point of f , the

set of periodic critical points of f and that of f j coincide. Note that for the new map and

its invariant curve C, no 1-tile joins opposite sides of C, and each periodic critical point is a

fixed point.
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From now on, we consider the cell decompositions of S2 induced by f and C in this proof.

Recall that for i ∈ N0, we denote by Wi as in (2.2.3) the set of all i-flowers W i(p) where

p ∈ Vi.

Since f is expanding, it is easy to see from Lemma 2.4.1, Proposition 2.2.4, and the

Lebesgue Number Lemma ([Mu00, Lemma 27.5]) that {Wi}i∈N0 forms a refining sequence

of open covers of S2 (see Definition 3.1.1). Thus it suffices to prove that

h∗(f) = lim
m→+∞

lim
l→+∞

lim
n→+∞

1

n
H

(
n−1∨

i=0

f−i
(
Wl
)
∣∣∣∣∣

n−1∨

j=0

f−j (Wm)

)
> 0.

See (3.4.2) for the definition of H .

Our plan is to construct a sequence {vi}i∈N of m-vertices such that for each n ∈ N,

the number of elements in
n−1∨
i=0

f−i
(
Wl
)
needed to cover Bn =

n−1⋂
j=0

f−j(Wm(vn−j)) can be

bounded from below in such a way that h∗(f) > 0 follows immediately. More precisely, we

observe that the more connected components Bn has, the harder to cover Bn. So we will

choose {vi}i∈N as a periodic sequence of m-vertices shadowing an infinite backward pseudo-

orbit under iterations of f in such a way that each period of {vi}i∈N begins with a backward

orbit starting at p and approaching p as the index i increases, and then ends with a constant

sequence staying at p. By a recursive construction, we keep track of each Bn by a finite

subset Vn ⊆ Bn with the property that card(A ∩ Vn) ≤ 1 for each A ∈
n−1∨
i=0

f−i
(
Wl
)
. A

quantitative control of the size of Vn leads to the conclusion that h∗(f) > 0. The fact that

the constant part of each period of {vi}i∈N can be made arbitrarily long is essential here and

is not true if f has no periodic critical points.

For this we fix m, l ∈ N with l > m+ 100.

Let k = degf(p). Then k > 1.

Define q0 = p and choose q1 ∈ f−1(p) \ C. Then q1 is necessarily a 1-vertex, but not a

0-vertex, i.e., q1 ∈ V1 \V0. Since q1 /∈ C, we have q1 ∈ W 0(p). By (2.2.2), the only 2-vertex

contained in W 2(p) is p. So q1 ∈ W 0(p) \W 2(p). Since f (W i(p)) = W i−1(p) for each i ∈ N

(see Remark 2.2.5), we can recursively choose qj ∈ Vj for j ∈ {2, 3, . . . , m} such that
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(i) f(qj) = qj−1,

(ii) qj ∈ W j−1(p) \W j+1(p).

We define a singleton set Qm = {qm}.

We set q1m = qm.

Next, we choose recursively, for each j ∈ {m + 1, m + 2, . . . , l − 2}, a set Qj with

cardQj = kj−m consisting of distinct points qij ∈ Vj, i ∈ {1, 2, . . . , kj−m}, such that

(i) f(Qj) = Qj−1,

(ii) Qj ⊆W j−1(p) \W j+1(p).

Note by Remark 2.2.5, it is clear that these two properties uniquely determines Qj from

Qj−1.

Finally, we construct recursively, for j ∈ {l − 1, l, l + 1}, a set Qj with cardQj = kl−2−m

consisting of distinct points qij ∈ Vj, i ∈
{
1, 2, . . . , kl−2−m

}
, such that

(i) f(qij) = qij−1,

(ii) Qj ⊆W j−1(p) \W j+1(p).

We will now construct recursively, for each n = (l + 1)s + r, with s ∈ N0 and r ∈
{0, 1, . . . , l}, an m-vertex vn ∈ Vm and a set of n-vertices Vn ⊆ Vn such that the following

properties are satisfied:

(1) Vn ⊆ Wm(vn) for n ∈ N0;

(2) f (Vn) = Vn−1 for n ∈ N;

(3) For s ∈ N0, and

(i) for r = 0, V(l+1)s+r ⊆W l(p),
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(ii) for r ∈ {1, 2, . . . , m}, V(l+1)s+r ⊆W l+1
(
v(l+1)s+r

)
,

(iii) for r ∈ {m + 1, m + 2, . . . , l − 2}, there exists, for each i ∈ {1, 2, . . . , kr−m}, a
subset V i

(l+1)s+r of V(l+1)s+r such that

(a) V i
(l+1)s+r ∩ V

j
(l+1)s+r = ∅ for 1 ≤ i < j ≤ kr−m,

(b)
kr−m⋃
i=1

V i
(l+1)s+r = V(l+1)s+r,

(c) V i
(l+1)s+r ⊆W l+1 (qir),

(iv) for r ∈ {l− 1, l}, there exists, for each i ∈ {1, 2, . . . , kl−2−m}, a subset V i
(l+1)s+r of

V(l+1)s+r such that

(a) V i
(l+1)s+r ∩ V j

(l+1)s+r = ∅ for 1 ≤ i < j ≤ kl−2−m,

(b)
kl−2−m⋃
i=1

V i
(l+1)s+r = V(l+1)s+r,

(c) V i
(l+1)s+r ⊆W l+1 (qir);

(4) for n ∈ N0, A ∈
n−1∨
i=0

f−i
(
Wl
)
, and x, y ∈ Vn with x 6= y, we have {x, y} * A.

We start our construction by first defining vn ∈ Vm for each n ∈ N. For s ∈ N0 and

r ∈ {0, 1, . . . , m}, set v(l+1)s+r = qr. For s ∈ N0 and r ∈ {m+1, m+2, . . . , l}, set v(l+1)s+r = p.

We now define Vn recursively.

Let V0 = {q0}. Clearly V0 satisfies properties (1) through (4).

Assume that Vn is defined and satisfies properties (1) through (4) for each n ∈ {0, 1, . . . , (l+
1)s + r}, where s ∈ N0 and r ∈ {0, 1, . . . , l}. We continue our construction in the following

cases depending on r.

Case 1. Assume r ∈ {0, 1, . . . , m− 1}. Then v(l+1)s+r = qr and v(l+1)s+r+1 = qr+1.

Since f
(
W l+1 (qr+1)

)
= W l (qr) (see Remark 2.2.5), and V(l+1)s+r ⊆ W l(qr) by the in-

duction hypothesis, we can choose, for each x ∈ V(l+1)s+r, a point x′ ∈ W l+1(qr+1) such that
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f(x′) = x. Then define V(l+1)s+r+1 to be the collection of all such chosen x′ that corresponds

to x ∈ V(l+1)s+r. Note that

cardV(l+1)s+r+1 = cardV(l+1)s+r.

All properties required for V(l+1)s+r+1 in the induction step are trivial to verify. We only

consider the last property here. Indeed, suppose that x, y ∈ V(l+1)s+r+1 satisfy that x 6= y

and {x, y} ⊆ A for some A ∈
(l+1)s+r∨
i=0

f−i
(
Wl
)
. Then by construction f(x), f(y), and f(A)

satisfy

(a) f(A) ⊆ B for some B ∈
(l+1)s+r−1∨

i=0

f−i
(
Wl
)
,

(b) f(x), f(y) ∈ V(l+1)s+r, and f(x) 6= f(y),

(c) {f(x), f(y)} ⊆ f(A) ⊆ B.

This contradicts property (4) for V(l+1)s+r in the induction hypothesis.

Case 2. Assume r ∈ {m,m + 1, . . . , l − 3}. Then v(l+1)s+r+1 = p, v(l+1)s+m = qm, and

when r 6= m, we have v(l+1)s+r = p.

If r = m, we define V 1
(l+1)s+r = V(l+1)s+r. Recall that q

1
m = qm.

Note that for each i ∈ {1, 2, . . . , kr+1−m}, f
(
W l+2

(
qir+1

))
= W l+1 (qjr) for some j ∈

{1, 2, . . . , kr−m} (see Remark 2.2.5), and V j
(l+1)s+r ⊆ W l+1 (qjr) by the induction hypothesis.

For each j ∈ {1, 2, . . . , kr−m}, each x ∈ V j
(l+1)s+r, and each i ∈ {1, 2, . . . , kr+1−m} with

f
(
W l+2

(
qir+1

))
= W l+1 (qjr), we can choose a point x′ ∈ W l+2

(
qir+1

)
such that f(x′) = x.

Then define V i
(l+1)s+r+1 to be the collection of all such chosen x′ that corresponds to x ∈

V j
(l+1)s+r. Set V(l+1)s+r+1 =

kr+1−m⋃
i=1

V i
(l+1)s+r+1.

Since Qr+1 ⊆ Vr+1 ∩Wm(p), r ∈ {m,m+ 1, . . . , l − 3}, l > m+ 100, and no 1-tile joins

opposite sides of C, we get that

(a) for i, j ∈ {1, 2, . . . , kr+1−m} with i 6= j, by Lemma 6.1.2(iii),

W l+2
(
qir+1

)
∩W l+2

(
qjr+1

)
= ∅,
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and so V i
(l+1)s+r+1 ∩ V

j
(l+1)s+r+1 = ∅,

(b) V(l+1)s+r+1 ⊆Wm(p).

Thus

cardV(l+1)s+r+1 = k cardV(l+1)s+r.

We only need to verify property (4) required for V(l+1)s+r+1 in the induction step now. In-

deed, suppose that x, y ∈ V(l+1)s+r+1 with x 6= y and {x, y} ⊆ A for some A ∈
(l+1)s+r∨
a=0

f−a
(
Wl
)
.

Then A ⊆ W l(vl) for some vl ∈ Vl. By construction, there exist i, j ∈ {1, 2, . . . , kr+1−m}
such that x ∈ W l+2

(
qir+1

)
and y ∈ W l+2

(
qjr+1

)
. Note that qir+1, q

j
r+1 ∈ Vr+1, r ∈

{m,m+1, . . . , l−3}, and l > m+100. So qir+1, q
j
r+1 ∈ Vl−2. Since x ∈ W l(vl)∩W l+2

(
qir+1

)
,

we get qir+1 ∈ W
l
(vl) by Lemma 6.1.2(i), and thus vl ∈ W

l
(qir+1). Similarly vl ∈ W

l
(qjr+1).

Since qir+1, q
j
r+1 ∈ Vl−2 and no 1-tile joins opposite sides of C, we get from Lemma 6.1.2(iii)

that qir+1 = qjr+1, i.e., i = j. Thus f(x) 6= f(y) by construction. But then f(x), f(y), and

f(A) satisfy

(a) f(A) ⊆ B for some B ∈
(l+1)s+r−1∨

a=0

f−a
(
Wl
)
,

(b) f(x), f(y) ∈ V(l+1)s+r, and f(x) 6= f(y),

(c) {f(x), f(y)} ⊆ f(A) ⊆ B.

This contradicts property (4) for V(l+1)s+r in the induction hypothesis.

Case 3. Assume r ∈ {l − 2, l − 1, l}, then v(l+1)s+r+1 = v(l+1)s+r = p.

Note that for each i ∈ {1, 2, . . . , kl−2−m}, f
(
W l+2

(
qir+1

))
= W l+1 (qir) (see Remark 2.2.5),

and V i
(l+1)s+r ⊆ W l+1 (qir) by the induction hypothesis. For each j ∈ {1, 2, . . . , kl−2−m} and

each x ∈ V i
(l+1)s+r, we can choose a point x′ ∈ W l+2

(
qir+1

)
such that f(x′) = x. Then define

V i
(l+1)s+r+1 to be the collection of all such chosen x′ that corresponds to x ∈ V i

(l+1)s+r. Set

V(l+1)s+r+1 =
kl−2−m⋃
i=1

V i
(l+1)s+r+1.

Since Qr+1 ⊆ Vr+1 ∩W r(p), r ∈ {l − 2, l− 1, l}, and l > m+ 100, we get that
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(a) for i, j ∈ {1, 2, . . . , kl−2−m} with i 6= j,

f
(
V i
(l+1)s+r+1

)
∩ f
(
V j
(l+1)s+r+1

)
= V i

(l+1)s+r ∩ V j
(l+1)s+r = ∅

(by the induction hypothesis), and so

V i
(l+1)s+r+1 ∩ V j

(l+1)s+r+1 = ∅,

(b) V(l+1)s+r+1 ⊆Wm(p),

(c) if r = l, then V(l+1)s+r+1 ⊆ W l(p).

Thus

cardV(l+1)s+r+1 = cardV(l+1)s+r.

We only need to verify the last property required for V(l+1)s+r+1 in the induction step

now. Indeed, suppose that x, y ∈ V(l+1)s+r+1 with x 6= y and {x, y} ⊆ A for some A ∈
(l+1)s+r∨
i=0

f−i
(
Wl
)
. Then by construction f(x), f(y), and f(A) satisfy

(a) f(A) ⊆ B for some B ∈
(l+1)s+r−1∨

i=0

f−i
(
Wl
)
,

(b) f(x), f(y) ∈ V(l+1)s+r, and f(x) 6= f(y),

(c) {f(x), f(y)} ⊆ f(A) ⊆ B.

This contradicts property (4) for V(l+1)s+r in the induction hypothesis.

The recursive construction and the inductive proof of the properties of the construction

are now complete.

Note that by our construction, we have

cardV(l+1)s = k(l−m−2)s, s ∈ N. (6.3.12)
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For each s ∈ N, we consider

B(l+1)s =

(l+1)s−1⋂

j=0

f−j
(
Wm

(
v(l+1)s−j

))
∈

(l+1)s−1∨

j=0

f−j (Wm) .

Then V(l+1)s ⊆ B(l+1)s by properties (1) and (2) of the construction. On the other hand, by

property (4), if A ⊆
(l+1)s−1∨
j=0

f−j
(
Wl
)
satisfies

⋃
A ⊇ B(l+1)s ⊇ V(l+1)s.

So cardA ≥ cardV(l+1)s.

Thus by (3.4.3), (3.4.2), and (6.3.12),

h∗(f) = lim
m→+∞

lim
l→+∞

lim
n→+∞

1

n
H

(
n−1∨

i=0

f−i
(
Wl
)
∣∣∣∣∣

n−1∨

j=0

f−j (Wm)

)

≥ lim inf
m→+∞

lim inf
l→+∞

lim inf
s→+∞

1

(l + 1)s
log
(
k(l−m−2)s

)

= lim inf
m→+∞

lim inf
l→+∞

l −m− 2

l + 1
log k

= log k

> 0.

Therefore, the map f is not asymptotically h-expansive.

Lemma 6.3.3. Let g : X → X be a continuous map on a compact metric space (X, d). If g

is h-expansive then so is gn for each n ∈ N.

The converse can also be easily established, i.e., if gn is h-expansive for some n ∈ N, then

so is g. But we will not need it in this paper.

Proof. We first observe from Definition 3.1.1 that if {ξl}l∈N0 is a refining sequence of open

covers, then so is {ξnl }l∈N0 for each n ∈ N, where ξnl =
n−1∨
i=0

g−i (ξl). We also note that given

an open cover λ of X , we have

mn−1∨

i=0

g−i (λ) =

m−1∨

j=0

(gn)−j (λn)
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for n,m ∈ N, where λn =
n−1∨
k=0

g−k (λ).

Assume that g is h-expansive, then h(g|λ) = 0 for some finite open cover λ of X . Thus

for each n ∈ N,

h(g|λ) = lim
l→+∞

lim
m→+∞

1

mn
H

(
mn−1∨

i=0

g−i (ξl)

∣∣∣∣∣

mn−1∨

j=0

g−j (λ)

)

=
1

n
lim
l→+∞

lim
m→+∞

1

m
H

(
m−1∨

i=0

(gn)−i (ξnl )

∣∣∣∣∣

m−1∨

j=0

(gn)−j (λn)

)

=
1

n
h (gn|λn) ,

where ξnl , λ
n are defined as above. Note that λn is also a finite open cover of X . Therefore

h (gn|λn) = 0, i.e., gn is h-expansive.

The proof of the following theorem is similar to that of Theorem 6.3.2, and slightly

simpler. However, due to subtle differences in both notation and constructions, we include

the proof for the convenience of the reader.

Theorem 6.3.4. No expanding Thurston map is h-expansive.

Proof. Let f be an expanding Thurston map.

By Theorem 6.3.2 and the fact that if f is h-expanding then it is asymptotically h-

expansive (see [Mi76, Corollary 2.1]), we can assume that f has no periodic critical points.

Note that by (2.1.2), if a point x ∈ S2 is a periodic critical point of f i for some i ∈ N,

then there exists j ∈ N0 such that f j(x) is a periodic critical point of f . So f i has no periodic

critical points for i ∈ N.

By Lemma 6.3.3, it suffices to prove that there exists i ∈ N such that f i is not h-expansive.

Thus by Lemma 2.5.2, we can assume, without loss of generality, that there exists a Jordan

curve C ⊆ S2 containing post f such that f(C) ⊆ C and no 1-tile joins opposite sides of C.

In addition, we can assume, without loss of generality, that there exists a critical point

p ∈ crit f \C with f 2(p) = f(p) 6= p. Indeed, we can choose any critical point p0 ∈ crit f , then
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f 2i(p0) = f i(p0) 6= p0 for some i ∈ N since f has no periodic critical points. By Lemma 2.3.5,

there exist j ∈ N and p ∈ f−ij(p0) \ C. We replace f by f i(j+1). Note that for this new map

f , we have p ∈ crit f \ C, f 2(p) = f(p) 6= p, f(C) ⊆ C and no 1-tile joins opposite sides of C.

Let k = degf(p). Then k > 1.

From now on, we consider the cell decompositions of S2 induced by f and C in this proof.

Recall that Wi defined in (2.2.3) denotes the set of all i-flowers W i(v), v ∈ Vi, for each

i ∈ N0.

Since f is expanding, it is easy to see from Lemma 2.4.1, Proposition 2.2.4, and the

Lebesgue Number Lemma ([Mu00, Lemma 27.5]) that {Wi}i∈N0 forms a refining sequence

of open covers of S2 (see Definition 3.1.1). Thus by Remark 3.4.2 and Definition 3.1.1, it

suffices to prove that

h(f |Wm) = lim
l→+∞

lim
n→+∞

1

n
H

(
n−1∨

i=0

f−i
(
Wl
)
∣∣∣∣∣

n−1∨

j=0

f−j (Wm)

)
> 0

for each m ∈ N sufficient large. See (3.4.2) for the definition of H .

Our plan is to construct a sequence {vi}i∈N0 of m-vertices such that for each n ∈ N0,

the number of elements in
n−1∨
i=0

f−i
(
Wl
)
needed to cover Bn =

n−1⋂
j=0

f−j(Wm(vn−j)) can be

bounded from below in such a way that h(f |Wm) > 0 follows immediately. More precisely,

we observe that the more connected components Bn has, the harder to cover Bn. So we will

choose {vi}i∈N0 as a periodic sequence of m-vertices shadowing an infinite backward pseudo-

orbit under iterations of f in such a way that each period of {vi}i∈N0 begins with a backward

orbit starting at f(p) and p, and approaching f(p) as the index i increases, and then ends

with f(p). By a recursive construction, we keep track of each Bn by a finite subset Vn ⊆ Bn

with the property that card(A ∩ Vn) ≤ 1 for each A ∈
n−1∨
i=0

f−i
(
Wl
)
. A quantitative control

of the size of Vn leads to the conclusion that h(f |Wm) > 0 for each m sufficiently large.

For this we fix m, l ∈ N with l > 2m+ 100 > 200.

Define q1 = p. Then q1 is necessarily a 1-vertex, but not a 0-vertex, i.e., q1 ∈ V1 \V0.

Since q1 = p /∈ C, we have q1 ∈ W 0(f(p)). By (2.2.2), the only 2-vertex contained in
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W 2(f(p)) is f(p). So q1 ∈ W 0(f(p)) \W 2(f(p)). Since f(W i(f(p))) = W i−1(f(p)) for each

i ∈ N (see Remark 2.2.5), we can recursively choose qj ∈ Vj for each j ∈ {2, 3, . . . , m + 2}
such that

(i) f(qj) = qj−1,

(ii) qj ∈ W j−1(f(p)) \W j+1(f(p)).

Set q0 = qm+2.

Since f(W i(p)) = W i−1(f(p)) for each i ∈ N, and k = degf(p) > 1, we can choose

distinct points pi ∈ Vm+3, i ∈ {1, 2, . . . , k}, such that

(i) f(pi) = qm+2,

(ii) pi ∈ Wm+2(p) \Wm+4(p).

We will now construct recursively, for each n = (m + 2)s + r with s ∈ N0 and r ∈
{0, 1, . . . , m+ 1}, an m-vertex vn ∈ Vm and a set of n-vertices Vn ⊆ Vn such that for each

n ∈ N0, the following properties are satisfied:

(1) Vn ⊆ Wm(vn);

(2) f(Vn) = Vn−1 if n 6= 0;

(3) (i) Vn ⊆Wm+1+r(qr) if n = (m+2)s+r for some s ∈ N0 and some r ∈ {1, 2, . . . , m+

1},

(ii) Vn ⊆Wm+1+m+2(q0) if n = (m+ 2)s for some s ∈ N0;

(4) cardVn = k⌈
n

m+2
⌉;

(5) for A ∈
n−1∨
i=0

f−i
(
Wl
)
and x, y ∈ Vn with x 6= y, we have {x, y} * A.
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We start our construction by first defining vn ∈ Vm for each n ∈ N0. For s ∈ N0 and

r ∈ {1, 2, . . . , m}, set v(m+2)s+r = qr. For s ∈ N0 and r ∈ {0, m+ 1}, set v(m+2)s+r = f(p).

We now define Vn recursively.

Let V0 = {qm+2}. Clearly V0 satisfies properties (1) through (5) in the induction step.

Assume that Vn is defined and satisfies properties (1) through (5) for each n ∈ {0, 1, . . . , (m+

2)s+r}, where s ∈ N0 and r ∈ {0, 1, . . . , m+1}, we continue our construction in the following

cases depending on r.

Case 1. Assume r = 0. Then v(m+2)s+r = f(p) and v(m+2)s+r+1 = q1 = p.

Note that V(m+2)s+r ⊆W 2m+3(qr) by the induction hypothesis, qr = qm+2 ∈ Wm+1(f(p)),

f(pi) = qr, and f (W
2m+4(pi)) =W 2m+3(qr) for each i ∈ {1, 2, . . . , k} (see Remark 2.2.5). Fix

an arbitrary i ∈ {1, 2, . . . , k}. We can choose, for each x ∈ V(m+2)s+r, a point x′ ∈ W 2m+4(pi)

such that f(x′) = x. Then define V i
(m+2)s+r+1 to be the collection of all such chosen x′ that

corresponds to x ∈ V(m+2)s+r. Set

V(m+2)s+r+1 =

k⋃

i=1

V i
(m+2)s+r+1.

Since pi ∈ Wm+2(p) and V i
(m+2)s+r+1 ⊆ W 2m+4(pi), we get that V i

(m+2)s+r+1 ⊆ Wm+2(p).

So V(m+2)s+r+1 ⊆Wm+2(p) ⊆Wm(p). Since v(m+2)s+r+1 = q1 = p, properties (1) and (3) are

verified. Property (2) is clear from the construction.

To establish property (4), it suffices to show that V i
(m+2)s+r+1 ∩ V j

(m+2)s+r+1 = ∅ for

1 ≤ i < j ≤ k. Indeed, since V i
(m+2)s+r+1 ⊆ W 2m+4(pi) and V j

(m+2)s+r+1 ⊆ W 2m+4(pj), it

suffices to prove thatW
2m+4

(pi)∩W
2m+4

(pj) = ∅. Suppose thatW 2m+4
(pi)∩W

2m+4
(pj) 6= ∅,

then since no 1-tile joins opposite sides of C, and pi, pj ∈ Vm+3, we get from Lemma 6.1.2(iii)

that pi = pj, i.e., i = j. But i < j, a contradiction.

We only need to verify property (5) now. Indeed, suppose that distinct points x, y ∈

V(m+2)s+r+1 satisfy {x, y} ⊆ A for some A ∈
(m+2)s+r∨

a=0

f−a
(
Wl
)
. Then A ⊆ W l(vl) for some

vl ∈ Vl. By construction, there exist i, j ∈ {1, 2, . . . , k} such that x ∈ W 2m+4(pi) and

y ∈ W 2m+4(pj). Since l > 2m + 100 and x ∈ W l(vl) ∩W 2m+4(pi), we get vl ∈ W
2m+4

(pi)
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by Lemma 6.1.2(i). Similarly vl ∈ W
2m+4

(pj). Then by the argument above, we get that

pi = pj , i.e., i = j. Thus f(x) 6= f(y) by construction. But then f(x), f(y), and f(A) satisfy

(a) f(A) ⊆ B for some B ∈
(m+2)s+r−1∨

a=0

f−a
(
Wl
)
,

(b) f(x), f(y) ∈ V(m+2)s+r, and f(x) 6= f(y),

(c) {f(x), f(y)} ⊆ f(A) ⊆ B.

This contradicts property (5) for V(m+2)s+r in the induction hypothesis.

Case 2. Assume r 6= 0, i.e., r ∈ {1, 2, . . . , m+ 1}.

Note that V(m+2)s+r ⊆Wm+1+r(qr), f(qr+1) = qr, and by Remark 2.2.5, f (Wm+1+r+1(qr+1)) =

Wm+1+r(qr). We can choose, for each x ∈ V(m+2)s+r, a point x′ ∈ Wm+1+r+1(qr+1) such that

f(x′) = x. Then define V(m+2)s+r+1 to be the collection of all such chosen x′ that corresponds

to x ∈ V(m+2)s+r. Properties (2), (3), and (4) are clear from the construction. To establish

property (1) in the case when r ∈ {1, 2, . . . , m−1}, we recall that v(m+2)s+r+1 = qr+1. For the

case when r ∈ {m,m+1}, we note that V(m+2)s+r+1 ⊆Wm+1+r+1(qr+1) and qr+1 ∈ W r(f(p)),

so

V(m+2)s+r+1 ⊆W 2m(qr+1) ⊆Wm(f(p)) = Wm
(
v(m+2)s+r+1

)
.

We only need to verify property (5) now. Indeed, suppose that distinct points x, y ∈

V(m+2)s+r+1 satisfy {x, y} ⊆ A for some A ∈
(m+2)s+r∨

i=0

f−i
(
Wl
)
. Then by construction

f(x), f(y), and f(A) satisfy

(a) f(A) ⊆ B for some B ∈
(m+2)s+r−1∨

i=0

f−i
(
Wl
)
,

(b) f(x), f(y) ∈ V(m+2)s+r, and f(x) 6= f(y),

(c) {f(x), f(y)} ⊆ f(A) ⊆ B.

This contradicts property (5) for V(m+2)s+r in the induction hypothesis.
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The recursive construction and the inductive proof of the properties of the construction

are now complete.

For each s ∈ N, we consider

B(m+2)s =

(m+2)s−1⋂

j=0

f−j
(
Wm

(
v(m+2)s−j

))
∈

(m+2)s−1∨

j=0

f−j (Wm) .

Then V(m+2)s ⊆ B(m+2)s by properties (1) and (2) of the construction. On the other hand,

by property (5), if A ⊆
(m+2)s−1∨

j=0

f−j
(
Wl
)
satisfies

⋃
A ⊇ B(m+2)s ⊇ V(m+2)s.

So cardA ≥ cardV(m+2)s = ks, where the equality follows from property (4).

Thus by (3.4.2),

h(f |Wm) = lim
l→+∞

lim
n→+∞

1

n
H

(
n−1∨

i=0

f−i
(
Wl
)
∣∣∣∣∣

n−1∨

j=0

f−j (Wm)

)

≥ lim inf
l→+∞

lim inf
s→+∞

1

(m+ 2)s
log (ks) =

log k

m+ 2
> 0.

Therefore, the map f is not h-expansive.

Proof of Theorem 1.0.7. By Alaoglu’s theorem, the space M(S2, f) of f -invariant Borel

probability measures equipped with the weak∗ topology is compact. Since the measure-

theoretic entropy µ 7→ hµ(f) is upper semi-continuous by Corollary 1.0.6, so is µ 7→ Pµ(f, ψ)

by (3.2.4). Thus µ 7→ Pµ(f, ψ) attains its supremum over M(S2, f) at a measure µψ, which

by the Variational Principle (3.2.5) is an equilibrium state for the map f and the potential

ψ.
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CHAPTER 7

Large deviation principles

7.1 Level-2 large deviation principles

Let X be a compact metrizable topological space. Recall that P(X) is the set of Borel

probability measures on X . We equip P(X) with the weak∗ topology. Note this topology

is metrizable (see for example, [Con85, Theorem 5.1]). Let I : P(X) → [0,+∞] be a lower

semi-continuous function, i.e., I satisfy the condition that lim infy→x I(y) ≥ I(x) for all

x ∈ P(X).

A sequence {Ωn}n∈N of Borel probability measures on P(X) is said to satisfy a large

deviation principle with rate function I if for each closed subset F of P(X) and each open

subset G of P(X) we have

lim sup
n→+∞

1

n
log Ωn(F) ≤ − inf{I(x) | x ∈ F},

and

lim inf
n→+∞

1

n
log Ωn(G) ≥ − inf{I(x) | x ∈ G}.

We will apply the following theorem due to Y. Kifer [Ki90, Theorem 4.3], reformulated

by H. Comman and J. Rivera-Letelier [CRL11, Theorem C].

Theorem 7.1.1 (Y. Kifer, 1990; H. Comman & J. Rivera-Letelier, 2011). Let X be a compact

metrizable topological space, and let g : X → X be a continuous map. Fix φ ∈ C(X), and let

H be a dense vector subspace of C(X) with respect to the uniform norm. Let Iφ : P(X) →
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[0,+∞] be the function defined by

Iφ(µ) =





P (g, φ)−
∫
φ dµ− hµ(g) if µ ∈ M(X, g);

+∞ if µ ∈ P(X) \M(X, g).

We assume the following conditions are satisfied:

(i) The measure-theoretic entropy hµ(g) of g, as a function of µ defined on M(X, g)

(equipped with the weak∗ topology), is finite and upper semi-continuous.

(ii) For each ψ ∈ H, there exists a unique equilibrium state for the map g and the potential

φ+ ψ.

Then every sequence {Ωn}n∈N of Borel probability measures on P(X) such that for each

ψ ∈ H,

lim
n→+∞

1

n
log

∫

P(X)

exp

(
n

∫
ψ dµ

)
dΩn(µ) = P (g, φ+ ψ)− P (g, φ), (7.1.1)

satisfies a large deviation principle with rate function Iφ, and it converges in the weak∗

topology to the Dirac measure supported on the unique equilibrium state for the map g and

the potential φ. Furthermore, for each convex open subset G of P(X) containing some

invariant measure, we have

lim
n→+∞

1

n
log Ωn(G) = lim

n→+∞

1

n
log Ωn

(
G
)
= − inf

G
Iφ = − inf

G

Iφ.

Recall that P (g, φ) is the topological pressure of the map g with respect to the potential

φ.

In our context, X = S2, the map g = f where f : S2 → S2 is an expanding Thurston

map with no periodic critical points. Fix a visual metric d on S2 for f . The function φ is a

real-valued Hölder continuous function with an exponent α ∈ (0, 1]. Then H = C0,α(S2, d)

is the space of real-valued Hölder continuous functions with the exponent α on (S2, d).

Note that C0,α(S2, d) is dense in C(S2) (equipped with the uniform norm) (Lemma 5.3.12).

Condition (i) is satisfied by Corollary 1.0.6. Condition (ii) is guaranteed by Theorem 1.0.2.

Thus we just need to verify (7.1.1) for the sequences that we will consider in this chapter.
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7.2 Characterizations of the pressure P (f, φ)

Let f , d, φ, α satisfy the Assumptions. Recall that mφ is the unique eigenmeasure of L∗
φ, i.e.,

the unique Borel probability measure on S2 that satisfies L∗
φ(mφ) = cmφ for some constant

c ∈ R (compare Theorem 5.2.10 and Corollary 5.3.10).

We now prove a slight generalization of Proposition 5.2.16.

Proposition 7.2.1. Let f , d, φ, α satisfy the Assumptions. Then for each sequence {xn}n∈N
in S2, we have

P (f, φ) = lim
n→+∞

1

n
log

∑

y∈f−n(xn)

degfn(y) exp(Snφ(y)). (7.2.1)

If we also assume that f has no periodic critical points, then for an arbitrary sequence of

functions {wn : S2 → R}n∈N satisfying wn(x) ∈ [1, degfn(x)] for each n ∈ N and each x ∈ S2,

we have

P (f, φ) = lim
n→+∞

1

n
log

∑

y∈f−n(xn)

wn(y) exp(Snφ(y)). (7.2.2)

Proof. We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1 for

the existence of such C). By Proposition 5.2.16, for each x ∈ S2 we have

P (f, φ) = lim
n→+∞

1

n
log

∑

y∈f−n(x)

degfn(y) exp(Snφ(y)).

Combining this equation with (5.2.3) in Lemma 5.2.2, we get (7.2.1).

Assume now that f has no periodic critical points. Then there exists a finite number

M ∈ N that depends only on f such that degfn(x) ≤ M for n ∈ N0 and x ∈ S2 [BM10,

Lemma 17.1]. Thus for each n ∈ N,

1 ≤

∑
y∈f−n(xn)

degfn(y) exp(Snφ(y))

∑
y∈f−n(xn)

wn(y) exp(Snφ(y))
≤M.

Hence (7.2.2) follows from (7.2.1).

While Proposition 7.2.1 is a statement for iterated preimages, the next proposition is for

periodic points. Recall that P1,fn = {x ∈ S2 | fn(x) = x} for n ∈ N.
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Proposition 7.2.2. Let f , d, φ, α satisfy the Assumptions. Fix an arbitrary sequence of

functions {wn : S2 → R}n∈N satisfying wn(x) ∈ [1, degfn(x)] for each n ∈ N and each x ∈ S2.

Then

P (f, φ) = lim
n→+∞

1

n
log

∑

x∈P1,fn

wn(x) exp(Snφ(x)). (7.2.3)

Proof. We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions (see Theorem 2.5.1 for

the existence of such C).

By Proposition 7.2.1, it suffices to prove that there exist C > 1 and z ∈ S2 such that for

each n ∈ N sufficiently large,

1

C
≤

∑
x∈P1,fn

wn(x) exp(Snφ(x))

∑
x∈f−n(z)

degfn(x) exp(Snφ(x))
≤ C. (7.2.4)

We fix a 0-edge e0 ⊆ C and a point z ∈ inte(e0).

By Proposition 5.4.1, mφ(C) = 0. By the continuity of mφ, we can find δ > 0 such that

mφ

(
N δ
d (C)

)
<

1

100
. (7.2.5)

Note that degfn(y) = 1 if fn(y) = z for n ∈ N. We define, for each n ∈ N0, the probability

measure

νn =
∑

x∈f−n(z)

degfn(x) exp (Snφ(x))∑
y∈f−n(z) degfn(y) exp (Snφ(y))

δx =
∑

x∈f−n(z)

exp (Snφ(x))∑
y∈f−n(z) exp (Snφ(y))

δx.

(7.2.6)

Let N0 ∈ N be the constant from Lemma 4.1.5. By (5.6.4) in Proposition 5.6.1, νn
w∗

−→ mφ

as n −→ +∞. So by Lemma 4.2.3, we can choose N1 > N0 such that for each n ∈ N with

n > N1, we have

νn
(
N δ
d (C)

)
<

1

10
. (7.2.7)

By Lemma 2.4.1, it is clear that we can choose N2 > N1 such that for each n ∈ N with

n > N2, and each n-tile Xn ∈ Xn,

diamd(X
n) <

δ

10
. (7.2.8)
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We observe that for each i ∈ N, we can pair a white i-tile X i
w ∈ Xi

w and a black i-tile

X i
b ∈ Xi

b whose intersection X i
w ∩X i

b is an i-edge contained in f−i(e0). There are a total of

(deg f)i such pairs and each i-tile is in exactly one such pair. We denote by Pi the collection

of the unions X i
w ∪X i

b of such pairs, i.e.,

Pi = {X i
w ∪X i

b |X i
w ∈ Xi

w, X
i
b ∈ Xi

b, X
i
w ∩X i

b ∩ f−i(e0) ∈ Ei}.

We denote Pδ
i = {A ∈ Pi |A \N δ

d (C) 6= ∅}.

We now fix an integer n > N2.

Then Pδ
n forms a cover of S2 \ N δ

d (C). For each A ∈ Pδ
n, by (7.2.8) we have A ∩ C = ∅.

So A ⊆ inteX0
w or A ⊆ inteX0

b , where X
0
w and X0

b are the white 0-tile and the black 0-

tile in X0, respectively. So by Brouwer’s Fixed Point Theorem (see for example, [Ha02,

Theorem 1.9]) and Lemma 4.1.5, we can define a function p : Pδ
n → P1,fn in such a way that

p(A) is the unique fixed point of fn contained in A. (For example, if A ∈ Pδ
n is the union

of a black n-tile Xn
b and a white n-tile Xn

w and is a subset of the interior of the black 0-tile,

then there is no fixed point of fn in Xn
w, and by applying Brouwer’s Fixed Point Theorem

to the inverse of fn restricted to Xn
b , we get a fixed point x ∈ Xn

b of fn, which is the unique

fixed point of fn in Xn
b by Lemma 4.1.5.) Moreover, for each A ∈ Pδ

n, p(A) ∈ intA, so

degfn(p(A)) = 1 = wn(p(A)). In general, by Lemma 4.1.5, each A ∈ Pn contains at most 2

fixed points of fn.

We also define a function q : Pn → f−n(z) in such a way that q(A) is the unique preimage

of z under fn that is contained in A, for each A ∈ Pn (see Proposition 2.2.4). We note that

if Xn
w ∈ Xn

w and Xn
b ∈ Xn

b are the n-tiles that satisfy Xn
w ∪Xn

b = A ∈ Pn and en = Xn
w ∩Xn

b ,

then q(A) ∈ en. Thus in particular, degfn(q(A)) = 1 for each A ∈ Pn.

Hence by construction, we have

∑

x∈f−n(z)

eSnφ(x) =
∑

A∈Pδn

eSnφ(q(A)) +
∑

A∈Pn\Pδn

eSnφ(q(A)), (7.2.9)

and

∑

A∈Pδn

eSnφ(p(A)) ≤
∑

x∈P1,fn

wn(x)e
Snφ(x) ≤

∑

A∈Pδn

eSnφ(p(A)) +
∑

A∈Pn\Pδn

∑

x∈A∩P1,fn

eSnφ(x). (7.2.10)
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The last inequality in (7.2.10) is due to the fact that if x ∈ P1,fn satisfies degfn(x) ≥ 2, then

x ∈ Vn with x /∈ ⋃Pδ
n, and the number of A ∈ Pn that contains x is at least degfn(x) (and

at most 2 degfn(x)).

By (5.2.1) in Lemma 5.2.1, we get

1

C3
≤

∑
A∈Pδn

eSnφ(p(A))

∑
A∈Pδn

eSnφ(q(A))
≤ C3, (7.2.11)

and since in addition, card(A ∩ P1,fn) ≤ 2 for A ∈ Pn by Lemma 4.1.5, we have
∑

A∈Pn\Pδn

∑
x∈A∩P1,fn

eSnφ(x)

∑
A∈Pn\Pδn

eSnφ(q(A))
≤ 2C3, (7.2.12)

where

C3 = exp
(
C1

(
diamd(S

2)
)α)

,

and C1 > 0 is a constant from Lemma 5.2.1. Both C1 and C3 depend only on f , C, d, φ, and
α.

By (7.2.9), (7.2.6), and (7.2.7), we get

∑

x∈f−n(z)

eSnφ(x) ≥
∑

A∈Pδn

eSnφ(q(A)) ≥ 9

10

∑

x∈f−n(z)

eSnφ(x). (7.2.13)

Hence, by (7.2.10), (7.2.11), and (7.2.13), we have
∑

x∈P1,fn

wn(x)e
Snφ(x)

∑
x∈f−n(z)

degfn(x)e
Snφ(x)

≥

∑
A∈Pδn

eSnφ(p(A))

10
9

∑
A∈Pδn

eSnφ(q(A))
≥ 9

10C3

.

On the other hand, by (7.2.9), (7.2.10), (7.2.11), (7.2.12), and (7.2.13), we get
∑

x∈P1,fn

wn(x)e
Snφ(x)

∑
x∈f−n(z)

degfn(x)e
Snφ(x)

≤

∑
A∈Pδn

eSnφ(p(A)) +
∑

A∈Pn\Pδn

∑
x∈A∩P1,fn

eSnφ(x)

∑
x∈f−n(z)

eSnφ(x)

≤

∑
A∈Pδn

eSnφ(p(A))

∑
A∈Pδn

eSnφ(q(A))
+

∑
A∈Pn\Pδn

∑
x∈A∩P1,fn

eSnφ(x)

10
∑

A∈Pn\Pδn

eSnφ(q(A))
≤ C3 +

2

10
C3.

Thus (7.2.4) holds if we choose C = 2C3 and n > N2. The proof is now complete.
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7.3 Proof of large deviation principles

Proof of Theorem 1.0.8. Let φ ∈ C0,α(S2, d) for some α ∈ (0, 1].

We apply Theorem 7.1.1 with X = S2, g = f , and H = C0,α(S2, d). Note that C0,α(S2, d)

is dense in C(S2) with respect to the uniform norm (Lemma 5.3.12). Theorem 1.0.2 implies

Condition (ii) in the hypothesis of Theorem 7.1.1. Condition (i) follows from Corollary 1.0.6,

(3.2.6), and the fact that htop(f) = log(deg f) [BM10, Corollary 20.8].

It now suffices to verify (7.1.1) for each of the sequences {Ωn(xn)}n∈N and {Ωn}n∈N of

Borel probability measures on P(S2).

Fix an arbitrary ψ ∈ C0,α(S2, d).

By (7.2.2) in Proposition 7.2.1,

lim
n→+∞

1

n
log

∫

P(S2)

exp

(
n

∫
ψ dµ

)
dΩn(xn)(µ)

= lim
n→+∞

1

n
log

∑

y∈f−n(xn)

wn(y) exp(Snφ(y))∑
z∈f−n(xn)

wn(z) exp(Snφ(z))
e
∑n−1
i=0 ψ(f i(y))

= lim
n→+∞

1

n

(
log

∑

y∈f−n(xn)

wn(y)e
Sn(φ+ψ)(y) − log

∑

z∈f−n(xn)

wn(z)e
Sn(φ)(z)

)

=P (f, φ+ ψ)− P (f, φ).

Similarly, by (7.2.3) in Proposition 7.2.2, we get

P (f, φ+ ψ)− P (f, φ) = lim
n→+∞

1

n
log

∫

P(S2)

exp

(
n

∫
ψ dµ

)
dΩn(µ)

The theorem now follows from Theorem 7.1.1.

7.4 Equidistribution revisited

Proof of Corollary 1.0.9. We prove the first equality in (1.0.8) now.

Fix µ ∈ M(S2, f) and a convex local basis Gµ at µ. By (1.0.6) and the upper semi-
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continuity of hµ(f) (Corollary 1.0.6), we get

−Iφ(µ) = inf
G∈Gµ

(
sup
G

(−Iφ)
)

= inf
G∈Gµ

(
− inf

G
Iφ
)
.

Then by (1.0.6) and (1.0.7),

− P (f, φ) +

∫
φ dµ+ hµ(f) = −Iφ(µ) = inf

G∈Gµ

(
− inf

G
Iφ
)

= inf
G∈Gµ

{
lim

n→+∞

1

n
log

∑

y∈f−n(xn),Wn(y)∈G

wn(y) exp(Snφ(y))

Zn(φ)

}
,

where we write Zn(φ) =
∑

z∈f−n(xn)

wn(z) exp(Snφ(z)). By (7.2.2) in Proposition 7.2.1, we have

P (f, φ) = lim
n→+∞

1
n
logZn(φ). Thus the first equality in (1.0.8) follows.

By similar arguments, with (7.2.1) in Proposition 7.2.1 replaced by (7.2.3) in Proposi-

tion 7.2.2, we get the second equality in (1.0.8).

Proof of Corollary 1.0.10. Recall that Wn(x) =
1
n

n−1∑
i=0

δf i(x) ∈ P(S2) for x ∈ S2 and n ∈ N

as defined in (1.1.4). We write

Z+
n (G) =

∑

y∈f−n(xn),Wn(y)∈G

degfn(y) exp(Snφ(y))

and

Z−
n (G) =

∑

y∈f−n(xn),Wn(y)/∈G

degfn(y) exp(Snφ(y))

for each n ∈ N and each open set G ⊆ P(S2).

Let Gµφ be a convex local basis of P(S2) at µφ. Fix an arbitrary convex open set G ∈ Gµφ .

By the uniqueness of the equilibrium state in our context and Corollary 1.0.9, we get

that for each µ ∈ P(S2) \ {µφ}, there exist numbers aµ < P (f, φ) and Nµ ∈ N and an open

neighborhood Uµ ⊆ P(S2) \ {µφ} containing µ such that for each n > Nµ,

Z+
n (Uµ) ≤ exp(naµ). (7.4.1)

Since P(S2) is compact in the weak∗ topology by Alaoglu’s theorem, so is P(S2) \G. Thus

there exists a finite set {µi | i ∈ I} ⊆ P(S2) \G such that

P(S2) \G ⊆
⋃

i∈I

Uµi . (7.4.2)
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Here I is a finite index set. Let a = max{aµi | i ∈ I}. Note that a < P (f, φ). By Corol-

lary 1.0.9 with µ = µφ, we get that

P (f, φ) ≤ lim
n→+∞

1

n
logZ+

n (G). (7.4.3)

Combining (7.4.3) with (7.2.1) in Proposition 7.2.1, we get that the equality holds in (7.4.3).

So there exist numbers b ∈ (a, P (f, φ)) and N ≥ max{Ni | i ∈ I} such that for each n > N ,

Z+
n (G) ≥ exp(nb). (7.4.4)

We claim that every subsequential limit of {νn}n∈N in the weak∗ topology lies in the

closure G of G. Assuming that the claim holds, then since G ∈ Gµφ is arbitrary, we get that

any subsequential limit of {νn}n∈N in the weak∗ topology is µφ, i.e., νn
w∗

−→ µφ as n −→ +∞.

We now prove the claim. We first observe that for each n ∈ N,

νn =
∑

y∈f−n(xn)

wn(y) exp(Snφ(y))

Z+
n (G) + Z−

n (G)
Wn(y)

=
Z+
n (G)

Z+
n (G) + Z−

n (G)
ν ′n +

∑

y∈f−n(xn),Wn(y)/∈G

wn(y)e
Snφ(y)

Z+
n (G) + Z−

n (G)
Wn(y),

where ν ′n =
∑

y∈f−n(xn),Wn(y)∈G

wn(y) exp(Snφ(y))

Z+
n (G)

Wn(y).

Note that since a < b, by (7.4.2), (7.4.1), and (7.4.4),

0 ≤ lim
n→+∞

Z−
n (G)

Z+
n (G)

≤ lim
n→+∞

∑
i∈I Z

+
n (Ui)

Z+
n (G)

≤ lim
n→+∞

card(I) exp(na)

exp(nb)
= 0.

So lim
n→+∞

Z+
n (G)

Z+
n (G)+Z−

n (G)
= 1, and that the total variation

∥∥∥∥∥
∑

y∈f−n(xn),Wn(y)/∈G

wn(y) exp(Snφ(y))

Z+
n (G) + Z−

n (G)
Wn(y)

∥∥∥∥∥ ≤

∑
y∈f−n(xn),Wn(y)/∈G

wn(y) exp(Snφ(y)) ‖Wn(y)‖

Z+
n (G) + Z−

n (G)

≤ Z−
n (G)

Z+
n (G) + Z−

n (G)
−→ 0

as n −→ +∞. Thus a measure is a subsequential limit of {νn}n∈N if and only if it is a

subsequential limit of {ν ′n}n∈N. Note that v′n is a convex combination of measures in G, and
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G is convex, so ν ′n ∈ G, for n ∈ N. Hence each subsequential limit of {νn}n∈N lies in the

closure G of G. The proof of the claim is complete now.

By similar arguments as in the proof of the convergence of {νn}n∈N above, with (7.2.2)

in Proposition 7.2.1 replaced by (7.2.3) in Proposition 7.2.2, we get that ηn
w∗

−→ µφ as

n −→ +∞.
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203


	Introduction
	Notation

	Thurston maps
	Definition for Thurston maps
	Cell decompositions
	Notions of expansion for Thurston maps
	Visual metric
	Invariant curves

	Ergodic theory
	Covers and partitions
	Entropy and pressure
	The Ruelle operator for expanding Thurston maps
	Weak expansion properties

	The measure of maximal entropy
	Number and locations of fixed points
	Equidistribution
	Expanding Thurston maps as factors of the left-shift

	Equilibrium states
	The Assumptions
	Existence
	Uniqueness
	Ergodic properties
	Co-homologous potentials
	Equidistribution
	A random iteration algorithm

	Asymptotic h-Expansiveness
	Some properties of expanding Thurstons maps
	Concepts from graph theory
	Proof of Theorem 1.0.4

	Large deviation principles
	Level-2 large deviation principles
	Characterizations of the pressure P(f,)
	Proof of large deviation principles
	Equidistribution revisited

	References



