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Estimation and inference on correlations between biomarkers
with repeated measures and left-censoring due to minimum
detection levels

Xianhong Xiea,*,†, Xiaonan Xuea, Stephen J. Gangeb, Howard D. Stricklera, Mimi Y. Kima,
and WIHS HPV Study Group
aDepartment of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx,
NY 10461, U.S.A
bDepartment of Epidemiology, John Hopkins Bloomberg School of Public Health, Baltimore, MD
21205, U.S.A

Abstract
Statistical approaches for estimating and drawing inference on the correlation between two
biomarkers which are repeatedly assessed over time and subject to left-censoring due to minimum
detection levels are lacking. We propose a linear mixed-effects model and estimate the parameters
with the Monte Carlo Expectation Maximization (MCEM) method. Inferences regarding the
model parameters and the correlation between the biomarkers are performed by applying Louis’s
method and the delta method. Simulation studies were conducted to compare the proposed MCEM
method with existing methods including the MLE method, the multiple imputation (MI) method,
and two widely used ad hoc approaches: replacing the censored values with the detection limit
(DL) or with half of the detection limit (HDL). The results show that the performance of the
MCEM with respect to relative bias and coverage probability for the 95% confidence interval is
superior to the DL and HDL approaches and exceeds that of the MI method at medium to high
levels of censoring, and the standard error estimates from the MCEM method are close to ideal.
The MLE method can estimate the parameters accurately; however, a non-positive definite
information matrix can occur so that the variances are not estimable. These five methods are
illustrated with data from a longitudinal HIV study to estimate and draw inference on the
correlation between HIV RNA levels measured in plasma and in cervical secretions at multiple
time points.

Keywords
information matrix; longitudinal data; mixed-effects; monte carlo expectation maximization

1. Introduction
Biomarkers of disease are often measured repeatedly over time in epidemiological studies.
In addition, the measurements may be left-censored due to minimum detection levels below
which the level of the biomarker cannot be quantified. These issues can complicate
estimation of the correlation between two different biomarkers measured in the same subject
or between levels of the same biomarker measured in two different biological specimens
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(e.g., tissue and blood). Even in the absence of left-censoring, the simple Pearson correlation
coefficient cannot be applied to such data because repeated measures from the same subject
tend to be correlated [1]. Hamlett et al. [2] proposed the use of a mixed-effects model to
estimate the correlations involving repeated measures, but these approaches cannot
accommodate left-censored observations.

In the example which motivated the methods in this paper, HIV RNA levels were assessed
in both cervical secretion and plasma specimens and levels below the limit of detection were
not measurable [3, 4]. Due to biologic compartmentalization, the two values are expected to
differ [5], but the level of correlation is a matter of research interest that is obscured by
problems caused by the lower limit of detectability. To address left-censored data of this
type, two ad hoc approaches have been widely applied: replacing the censored values with
the detection limit (DL) or with half of the detection limit (HDL), or with some other
arbitrary value related to the DL. However, the validity of these ad hoc approaches is
questionable since the variability of the observations is artificially reduced. Another
potential approach for handling left-censored data is multiple imputation (MI) [6, 7]. Rather
than filling in the censored observations with a single value, an imputation model is used to
impute multiple values for the censored observations and the usual analysis is then
performed with the multiply imputed “complete” data sets.

With a single biomarker subject to left-censoring, a maximum likelihood (ML) approach has
been proposed in which the censoring information is incorporated into the likelihood of the
observed data [8–10] to estimate the association of the biomarker (i.e., HIV RNA level) with
exposure to treatment (i.e., treatment with anti-retroviral therapy). However, little research
has been conducted to address associations/correlations between bivariate repeated
measurements (e.g., HIV RNA level in two types of specimens) with censoring. Hamlett et
al. [2] studied the multivariate repeated measurements problem without censoring by
maximizing the likelihood, but a method for inferences regarding the correlation parameters
was not addressed. Roy [11] further generalized the method in [2] to allow the measurement
errors to be correlated over time. Lyles et al. [12] studied the bivariate censoring problem
without repeated measurements by optimizing the likelihood and drawing inferences with a
profile likelihood approach. Hughes [8] studied the repeated measures with censoring
problem for a single biomarker but the inferences focused only on the fixed effect
parameters. Thiebaut et al. [13] studied bivariate correlation between CD4 count and HIV
RNA viral load with informative drop-out among HIV sero-positive patients, however only
one biomarker (i.e. HIV RNA viral load) was subject to left-censoring and the focus was on
estimating HIV treatment effect, also it was assumed that correlations between biomarkers
were completely explained by random effects for each biomarker and there was no
correlation between measurement errors. Albert [14] studied the modeling of two repeatedly
measured simian immunodeficiency virus (SIV) viral loads using two different assays with a
single random intercept for both viral loads, and the focus was on finding the best design
strategy to selectively perform the more accurate and expensive SIV viral load assay only on
a subset of individuals so as to reduce cost and maintain accuracy. When the availability of
two assays is not an issue (e.g. pilot study) and the focus is on estimating and inference on
correlations, then more accurately modeling the covariance structure becomes important; it
is desirable to allow the covariance structure to be flexible [2, 11] and use the data to
estimate the parameters in covariance under the general framework.

To our knowledge, only Hopke et al. [15] addressed multivariate repeated measures with left
censoring and relatively general covariance structure and proposed a multiple imputation
algorithm. However, left-censoring due to a minimum detection level does not satisfy the
“missing at random” condition [16] typically assumed in multiple imputation since an
observation is left-censored only when the value is lower than the detection limit; hence the
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pattern of missingness depends on the missing values, and the performance of the multiple
imputation in the case of left-censoring needs to be examined. In this paper, we propose a
maximum likelihood approach to address the bivariate repeated measures censoring problem
using Monte-Carlo Expectation Maximization (MCEM) and compare it with the two
common ad hoc approaches, DL and HDL, and the MI approach [15]. An alternative to the
MCEM method is the MLE method in which the likelihood function is approximated by a
quadrature and then optimized using a modified Newton-Raphson algorithm [9]. The
observed information matrix is obtained with numerical differentiation. We also compare
the MLE method to our MCEM approach.

We first briefly review the multivariate mixed-effects model, then describe estimation and
inference procedures for uncensored data, as well as for censored data based on the DL,
HDL, MI, MLE, and the proposed MCEM methods. Details of the derivations of the
formulas in the methods section are given in the electronic appendix. The performances of
these five methods: DL, HDL, MI, MLE, and MCEM, are compared via simulation studies.
The methods are applied to data from a longitudinal HIV RNA study which involved the
estimation and inference of correlations between HIV RNA levels in cervical secretions and
in plasma measured repeatedly over time. Finally, we discuss limitations and possible
extensions of the MCEM approach.

2. Methods
2.1. Multivariate mixed-effects model

Consider the following multivariate mixed-effects model [17]:

(1)

where yi is a ni×2 matrix (in the bivariate case) for the ith subject (i = 1, ···, m), ni is the
number of repeated measurements (or time points) for subject i, Xi and Zi are both ni×1
matrices consisting of all 1’s. The fixed effects β = (β1, β2) and the random effects bi=(bi1,
bi2) are row vectors of length two, and the measurement error εi is a ni×2 matrix, εi = (εi1T,
···, εini

T)T, T is the transpose operator. We also assume bi and εi are normally distributed,
independent and the rows of εi are mutually independent so that

(2)

where vec(·) is the vectorization operator which stacks matrix by columns:

, ai, 1≤i≤n are column vectors of the same length, Ψ and Σ
are both 2 × 2 positive definite matrices, ⊗ is the kronecker product, and In is the identity
matrix of dimension n×n. We have

(3)

where X̃i=I2⊗Xi, , Z̃i=I2⊗Zi. Let
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and denote the (j, k)-th element of yi by yijk for j=1, ···, ni; k=1, 2. The above mixed-effects
model implies the following covariance structure for yi,

The model in Hughes [8] can only handle the case when the measurement error variances

 and  are the same and the measurement error covariance σe12 is 0; the approach in
Thiebaut et al. [13] restricts the measurement error covariance σe12 to be 0; the approach in

Albert [14] restricts the random effect variances  and  to be the same and the random
effect covariance σr12 to be 0; with our approach, there is no restrictions on the parameters.

Denote the observed data by {(Qi, Ci), 1≤i≤m},

Let  and

, where θ̃ differs from θ only with respect to the

parameterization of the correlation parameters:  and

. Our goal is to estimate and draw inferences about the parameter vector
θ̃ and the correlation coefficient between the two variables

(4)

We assumed a two-level correlation structure between the two biomarkers: subject level and
time level. The quantity ρr measures the correlation between biomarkers due to subject-
specific random variation, ρe measures the correlation between biomarkers within the same
subject at the same time point due to time-specific random variation, and ρ is the overall
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correlation when both subject-specific and time-specific random variations are taken into
account.

2.2. Estimation and inference with uncensored data
When the data are uncensored, the log-likelihood has the form

(5)

where ui=vec(yi)−X̃i vec(β). The log-likelihood can be maximized with respect to θ using
the Newton-Raphson algorithm or other numerical optimization algorithm [18]. The
observed information matrix Iy (θ̂uc) at the maximum likelihood estimate (MLE), θ̂uc, can be
obtained using numeric differentiation for the negative second order derivative of the log-
likelihood. For the model considered in this paper, an analytic formula is also available
(Equation (A.3) in electronic appendix). Inferences about θ̃ can be made using the
transformed parameters η=g(θ), log square root transformation on the variances, and
Fisher’s z-transformation (without the constant 1/2) for the correlation parameters [18, 19]:

(6)

The advantage of drawing inferences using η is that the ranges of the components of η are
not constrained. The observed information for η with the MLE estimate θ̂uc is

(7)

where η̂uc = g(θ̂uc), and J(·) is the Jacobian matrix for the transformation θ=g−1(η). Sy(·) is
the gradient of the uncensored log-likelihood (electronic appendix). The variance of η̂uc can
be approximated by Ĩy(η̂uc)−1. The 100(1−α)% confidence interval for η is given by

, where zα/2 is the upper 100*α/2-th percentile of standard
normal distribution. Transforming back to the original scale, θ̃, yields the corresponding
confidence intervals.

For inferences about ρ, to which the Fisher’s z-transformation has been applied, we use the
delta method [20] to obtain:

(8)

where ρ̂uc is generated by Equation (4) with θ replaced by the MLE θ̂uc,
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Denote the right hand side of Formula (8) by v̂uc, the 100(1−α)% confidence interval for

log((1+ρ)/(1−ρ)) (denote by ρ̃) is . The confidence
interval for ρ can be obtained by transforming back to the original scale.

With the DL and HDL methods, the censored data are replaced by the values of the
detection limits and half of the detection limits, respectively, and the methods above for
uncensored data are applied.

2.3. Multiple imputation
Multiple imputation is an alternative approach for handling missing data due to censoring.
Hopke et al. [15] applied the MI method to impute missing as well as left-censored data due
to detection thresholds. The missing data and the left-censored data were imputed
differently: the former was imputed based on a normal distribution given the observed data,
parameter vector and imputed values for the left-censored data and the latter was based on a
truncated normal distribution given the observed data, parameter vector and imputed values
for the missing data. We adopted their method to address left-censored data without the
presence of other types of missingness. Specifically, a Gibbs sampler method described
below was used. Starting from an initial estimate, θ(0), and initial imputed values for
censored biomarkers, the following three steps are performed iteratively:

1.
Draw , i=1, ···, m,

2.
Draw ,

3.
Draw , i=1, ···, m,

where t indexes the iteration. A set of M (say 5) imputations for the censored y values are
drawn to yield M complete sets of data and the methods described above for uncensored
data are applied to each complete data set. The parameter estimates and variance estimates
of the transformed parameters η and ρ̃ from the different data sets are then combined as in
[21] to obtain the MI estimate, variance estimate, and degrees of freedom.

The introduction of random effects into the Gibbs sampler simplifies the random sampling.
Since the conditional distribution in Step 3 is a product of truncated univariate normal
distributions and truncated bivariate normal distributions, the censored values can be drawn
easily.

2.4. Maximum likelihood estimation method
A MLE method for left-censored HIV viral loads was proposed in Jacqmin-Gadda et al. [9].
By re-arranging the order of data in vec(yi)T according to vec(Ci) to put all observed data

before censored data ( ) for each subject, the permuted underlying variance matrix
can be written as

where  and  are the variance matrices within the observed and the censored data
respectively for subject i, and  is the covariance matrix between the censored and the

observed data for subject i. Let the corresponding partitions for permuted vec(Qi)T and 
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be ( ) and ( ) respectively. Under the assumption of multivariate normal
distribution (3) for vec(yi), the likelihood of the data is

where  is the multivariate normal density with mean  and variance , and

 is the normal distribution function for  given , which involves multivariate integral
of normal density,

with

 is the number of censored data for subject i,  are the components of .
The Fortran subroutine SADMVN by Genz [22] was used to compute the integrals, which
works well when the size of integral (i.e. ) is less than 10. The Marquardt algorithm [23]
was used on the log-likelihood with respect to the following parameters: the fixed effect
parameters and the Cholesky factorizations of Ψ and Σ, to find the optimum. The
optimization algorithm is stopped if the sum of squares of changes in parameter estimates,
the absolute change in log-likelihood, and the normalized gradients are less than some
tolerance values or maximum number of iterations has been reached. After stopping of the
optimization, the second-order finite difference method on the negative log-likelihood with
respect to the original parameter θ was used to get the observed information matrix. The
variance-covariance matrix was estimated by the inverse of the observed information matrix.
The inferences on the correlations were done with delta method. One limitation of the MLE
method is that the algorithm can generate a non-positive definite estimated information
matrix because the use of the quadrature method for the approximation of the multivariate
normal cumulative distribution function has limited precision, and the numerical
approximation of the second derivative of the log-likelihood function also has error. In the
case of a non-positive definite matrix, variance estimates cannot be obtained easily. Other
methods such as bootstrapping [24] may be used although they are computationally
intensive.

2.5. MCEM
Our MCEM method is as follows: let the complete data be {(Qi, Ci, yi, bi, εi), 1≤i≤m}, the
E-step is
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(9)

where the expectations are evaluated at the value of the current parameter estimate for θ,

, Wi,jj is the 2 × 2 submatrix of Wi corresponding to the covariance of
vec(yij)=(yij1, yij2)T, Wi,j is the 2 × 2 ni submatrix of Wi corresponding to the covariance of
vec(yij) with vec(yi). The second and third equations in (9) are derived by first computing
the conditional expectation of vec(bi) vec(bi)T and vec(εij) vec(εij)T on yi respectively, then
computing the expectations conditional on (Qi, Ci). We calculate the first and second order
moments of ui conditional on (Qi, Ci) as follows,

(10)

where  is drawn from the truncated normal distribution p(ui|Qi,Ci) using a Gibbs sampler
[8] and L is the number of draws.

The M-step is,

(11)

The derivation of Σ̂ is similar to that of Ψ̂ [25] since bi is independent from εi and the rows
of εi are independent of one another. The log-likelihood with the complete data has a similar
functional form in terms of Ψ and Σ. We note the last equation in (11) differs from the
approach in Hughes [8] in that a 2 by 2 matrix for Σ instead of a scalar is estimated,
corresponding to a more general covariance structure for the measurement errors. The EM
algorithm is stopped when the relative changes in the parameters are less than a tolerance
value or maximum number of steps has been reached. The size of Markov chain is adjusted
adaptively at each EM step by comparing the absolute changes in the estimates of fixed
effect parameters to the Monte Carlo standard errors of the fixed-effects parameters [8].

Using Equations (3.1′) and (3.2′) in [26], the observed information on the censored data
{(Qi, Ci), 1≤i≤m} is equal to

(12)

where θ̂c is the maximum likelihood estimate from the MCEM method, Syi (θ̂c) is the
gradient of the log-likelihood on yi, Iyi (θ̂c) is the corresponding observed information
matrix, Di = Eθ̂c (Syi(θ̂c)|Qi,Ci). The derivations and formulas for the gradient, information
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matrix, and the cross product of the gradient are given in the electronic appendix. To
calculate Eθ̂c (Syi(θ̂c)|Qi,Ci) and Eθ̂c(Iyi(θ̂c)|Qi,Ci), the Monte-Carlo expectations in Equation
(10) evaluated at the MLE, θ̂c, are used. To calculate Eθ̂c(Syi(θ̂c)Syi (θ̂c)T|Qi,Ci), the
following third and fourth-order conditional moments of ui are also evaluated:

(13)

Inference based on the MCEM approach is similar to that for uncensored data (Equations
(6), (7), (8)). The uncensored data estimate θ̂uc, the gradient Sy(θ̂uc), and the information
matrix Iy(θ̂uc) are simply replaced by the corresponding censored versions. Software
implementing the MCEM algorithm in C and Fortran is available to readers upon request.

Note that the MI method has been modified by Fitzgerald et al. [27] to be in the spirit of an
EM approach. Instead of drawing θ(t) from the conditional distribution (Step 2 of MI), θ(t)

assumes the values of the MLE based on the current data while the other steps remain the
same. This corresponds to a variation of the MCEM method in terms of parameter
estimation. Consider the joint distribution p(y, b, Q, C; θ) where y is the uncensored data, b
denotes the random effects, and Q and C are the censored data and censoring indicator
respectively. The MCEM approach first determines the MLE for θ, assuming y and b are
known, then takes the conditional expectation of the MLE estimate on Q and C at the
current parameter estimate. The modified MI method finds the MLE for θ using the imputed
data, then takes the expectation of the estimate over the imputed data sampled from p(y|Q,
C), which is in fact the Monte Carlo expectation. The advantage of the MCEM is that the
information matrix for all the parameters can be used for making joint and robust inferences
about the parameters [24].

3. Simulation studies
To compare the DL, HDL, MI, MLE, and MCEM methods, six sets of simulations under
model (1) were conducted assuming parameter values consistent with the data from the
example below and different censoring proportions and sample sizes. The model parameters
were set to the following values:

It follows from these assumptions that ρr=0.75, ρe=0.35, and ρ=0.56. Three sets of censoring
proportions for the first and second biomarkers were assumed: (0.20, 0.10), (0.35, 0.30) and
(0.60, 0.50). For the number of subjects, we considered two scenarios: 300 subjects with 120
subjects having three repeated measures of each of the two biomarkers, and 180 subjects
having four repeated measures; 100 subjects with 40 subjects having three repeated
measures, and 60 subjects having four repeated measures. These values were chosen so that
the simulated data would be similar to the HIV example described below. We first simulated
values of y, then the sample quantiles corresponding to the censoring levels for each
biomarker were found; any simulated values below the corresponding quantiles for the
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biomarkers were censored. Five hundred data sets were generated under each set of assumed
conditions and the five methods were applied to each simulated data set. The DL and HDL
methods were computed with R function lme. For the MI method, the following prior
parameters were used: flat prior on the fixed effect parameters, inverse Wishart distribution
with df = 2 and covariance parameter 0.5I2 on both Ψ and Σ. The Markov chain was started
using the estimates from the HDL method with censored values imputed as HDL and then
iterated 1800 steps. The values at step 1000, 1200, …, 1800 were used for multiple
imputation. For both the MLE and MCEM approach, the initial values for the parameter θ
were set to the corresponding estimates from the HDL method. The following settings were
used in our computation with the MLE method, that is, the tolerance for quadrature of
multivariate normal was 0.001; the three convergence values related to the sum of squares of
changes in parameter estimates, the absolute change in log-likelihood, and the normalized
gradients respectively were all set to 0.001; the maximal number of iterations was set to 200.
The tolerance for the relative changes in parameters for the MCEM method was set to 0.001
for N=300 and censoring proportions = (0.20, 0.10) and (0.35, 0.30); to 0.005 for N=300 and
censoring proportions = (0.60, 0.50), N=100 and censoring proportions = (0.20, 0.10) and
(0.35, 0.30); to 0.01 for N=100 and censoring proportions = (0.60, 0.50). The burn-in steps
of Markov chain was 150 and the starting size of Markov chain was 500. The maximal
number of iterations for the MCEM method was set to 50.

The methods were compared with respect to mean relative bias, relative mean squared errors
(relative MSE) and coverage probability of the 95% confidence interval [9, 28] for DL,
HDL, MI, and MCEM. The references for mean relative bias and relative mean squared
errors were both the true parameters. For simplicity, we’ll call mean relative bias simply
relative bias. We computed the empirical estimates of parameter estimates over the iterations
for the MLE method and MCEM. Since the MLE method doesn’t provide a confidence
interval on the variance parameters and correlations, and more importantly the observed
information matrices for the method were not positive definite in 68 (13.6%) simulations at
N=300 and the highest censoring proportions, the ratios of model based standard error
estimate (square root of mean variance estimates on parameters) to the empirical standard
error (sample standard deviation of parameter estimates) were computed to assess the
standard error estimates of the MLE method and MCEM. Only the simulations with positive
definite information matrices were used when calculating the empirical mean and ratio of
standard errors for the MLE method.

The results for N = 300 subjects are given in Table I and II. With a low censoring

proportion: (0.20, 0.10), the relative biases of DL and HDL for β1,β2, , ρ are
orders of magnitudes larger than the relative biases of MCEM, and are approximately two to
three times greater than the relative biases for MI. The relative biases of DL and HDL in
estimating the random effect correlation ρr are about 3 times the relative bias for MCEM
and smaller than the relative bias for MI: −0.7%, −0.6%, −1.7%, and 0.2% for DL, HDL,
MI, MCEM respectively. The relative MSE for the four methods: DL, HDL, MI, MCEM are

more comparable, especially for the parameters β2, , ρr, ρe, ρ. The coverage probabilities
with DL and HDL mostly differ from the target 95%, except for ρr and ρe. The coverage
probabilities for ρ with DL, HDL, MI, and MCEM are 87.8%, 90.2%, 95.4%, 95.4%
respectively. The coverage probabilities for all parameters with MCEM generally vary
around 95% with a minimum coverage probability of 91.6% for β1, and a maximum
coverage probability of 96.2% for ρe. The coverage probabilities with MI have more

variability, with a minimum of 50.4% for  and a maximum of 96.6% with ρe. In terms of
empirical mean, the results from the MLE method and MCEM are almost identical which
are both close to the true values, and the ratios of standard errors for the MLE and MCEM
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methods are similar, both varying around 1. In this case, all the estimated information
matrices for MLE method are positive definite.

As the censoring proportions increase, the DL, HDL and MI methods perform significantly
worse. The performance of MCEM is also detrimentally affected, but it still remains within

an acceptable range. For example, with DL and HDL, the relative biases for  increase
from −34.6% and −28.4%, respectively, at the lowest censoring proportions to −80.7% and

−75.7%, respectively at the highest censoring proportions. With MI, the relative bias for 
increases from −13.2% to −38.7%; with MCEM the bias increases from −1.3% to −3.5%.
The changes in relative biases and relative MSE for the other variance parameters,

, follow a similar pattern. The coverage probabilities of the four parameters
for DL and HDL at the high censoring proportion are all 0; the coverage probabilities with

MI are 5.0%, 35.4%, 0.6%, 2.0% for  respectively, while they all remain
around 95% with MCEM. The relative biases for ρr with DL, HDL, MI, MCEM at the high
censoring proportions are −4.4%, −3.7%, −12.9%, 1.2% respectively, so that DL and HDL
perform better than MI. The same is not true for ρe where MCEM performs better than MI,
followed by HDL and DL. The order of performance for the coverage probabilities of ρr and
ρe follows the same pattern. For the correlation parameter ρ, the relative biases for DL,
HDL, MI at the low censoring proportions are −3.4%, −2.8%, −1.1% respectively; −15.9%,
−14.0%, −11.6% at the high censoring proportions. In contrast, the relative bias for ρ with
MCEM is 0.0% at the low censoring proportions and 0.1% at the high censoring
proportions. The coverage probabilities for ρ with DL, HDL, MI, MCEM at the high
censoring proportions are 15.8%, 21.4%, 59.4%, and 95.0% respectively. The empirical
estimates of parameters for the MLE and MCEM methods are still similar at medium and
high levels of censoring proportions. No simulation and 68 simulations out of 500 produce
non-positive definite information matrices at medium and high levels of censoring,
respectively, with the MLE method. The ratios of standard errors for the MLE method at
high levels of censoring are similar to those for the MCEM method when restricted to the
simulations with positive definite information matrices.

With a smaller sample size (number of subjects = 100), the relative biases of these four
methods DL, HDL, MI, MCEM (Table III) remain similar to those observed with the larger
sample size; the relative MSE of all four methods increases; the coverage probabilities for
all parameters with DL, HDL, MI improve, but are still quite different from 95% for the

variance parameters  at the medium and high censoring proportions. The
improvement in coverage probabilities can be attributed to the larger variance estimates for
the parameters at the smaller sample size. The coverage probabilities for all parameter with
MCEM remain at the 95% nominal level. The empirical estimates of parameters and the
ratios of standard errors for the MLE and MCEM methods still follow the same pattern as in
the N=300 case (Table IV). The ratios of standard errors for the MLE method are similar to
the N=300 case; the numbers of non-positive definite information matrices at N=100 case
were 1 (0.2%), 3 (0.6%), 62 (12.4%) for low, medium and high levels of censoring
respectively.

Overall, the MCEM approach performs the best among DL, HDL, MI, MCEM in terms of
relative bias, relative MSE, and coverage probability across all values of the censoring
proportions except for one parameter, ρe. MCEM has negligible relative bias (<0.001) for ρ
at low to medium levels of censoring, and only slightly overestimates β1, ρr, and

underestimates β2 and . The standard error estimates from the MCEM method are close
to ideal. The performance of the MLE method is similar to that of the MCEM method in
terms of parameter estimates as they both aim to obtain the MLE but using different
numerical methods: one uses quadrature for likelihood and general optimization and the
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other uses Monte-Carlo approximation to the EM algorithm. However, the MLE method is
likely to result in non-positive definite information matrices particularly at high censoring
proportions or when the sample size is small. The MI method performs better than the DL
and HDL in terms of relative bias, relative MSE, and coverage probabilities at all levels of

censoring proportions for all parameters except for ρr and . For the parameter ρe, MI
always performs slightly better than the MCEM in terms of relative MSE, which indicates

that MCEM estimates ρe with more variability than MI. But MI overestimates β1, ,

ρe, and underestimates β2, , ρr, , ρ. DL and HDL tend to overestimate the means, and
underestimate the variances and all three correlation parameters. Underestimation of
variation is a result of DL and HDL methods imputing fixed values for the censored
observations, in contrast, the MI imputes random values and the MLE and MCEM methods
find the MLE without imputing. The DL variance estimates are smaller than the HDL
estimates since the former imputes the detection limits which are closer in magnitude to the
non-censored values than half the detection limits. HDL consistently does a little better than
DL with respect to relative bias, relative MSE, and coverage probability for all parameters.

4. Application
The data that we used to illustrate the methods is from the Women’s Interagency HIV Study
(WIHS), multi-center longitudinal study of HIV infection in US women. A random sample
of 248 HIV sero-positive women was selected from the WIHS to study the correlation of
HIV viral loads measured in the cervix and in plasma. The cervical HIV RNA levels and
plasma HIV RNA levels were assessed at semi-annual visits, with the number of visits
ranging from one to four (1.5 years of follow-up). The total number of person-visits was
1664. A significant proportion of HIV RNA levels was left censored: 57% of cervical HIV
RNA and 26% of plasma HIV RNA values, with corresponding censoring values of 50 and
80 copies/mL, respectively. The proportions of person-visits with left censoring on both
HIV RNA levels, cervical HIV RNA only, and plasma HIV RNA only were 23%, 34%, 3%
respectively. The objective in this example is to assess the degree to which the cervical and
plasma HIV RNA levels are correlated. We applied the DL, HDL, MI, MLE, MCEM
methods to the log10 transformed HIV RNA data. The results are shown in Tables V and
VI.

Generally the parameter estimates and confidence intervals from the DL and HDL are
similar to each other but differ from the MI and MCEM results; the MI results differ from
MCEM. The MLE method and MCEM have almost the same parameter estimates but their
standard error estimates are slightly different. Specifically, the estimate of mean
log10(cervical HIV RNA) is much higher with DL and HDL than with MI, MLE and
MCEM. On the original scale for cervical HIV RNA, the estimates for the geometric mean
HIV RNA level from DL and HDL are 288 (=10^2.46) and 194 (=10^2.29) copies/mL
respectively; the estimates from MI, MLE and MCEM are 72, 28, 28 copies/mL
respectively. Notice that 57% of cervical HIV RNA levels were below the detection limit of
50 copies/mL. The estimates from MI, MLE and MCEM therefore appear to be more
plausible. The estimates for the geometric mean level of plasma HIV RNA from DL, HDL,
MI, MLE, and MCEM methods are 1950, 1622, 912, 1148, 1148 copies/mL respectively.

As expected, the DL and HDL estimates of the variance parameters are smaller than those
from the MI, MLE and MCEM methods. The MLE and MCEM methods yield higher

variance estimates for  (for cervical HIV RNA) than the MI and lower variance

estimates for  (for plasma HIV RNA) than the MI. The MI method is biased as
shown in simulations. The direction of the bias depends on the underlying parameters and
censoring proportions. Our simulations using parameter values similar to those in the
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application showed that MI underestimates  and overestimates , so that
inferences based on these parameters for MI may not be correct. We note that the DL and
HDL correlation estimates for both the random effects and measurement errors are very
similar. The estimate for ρr is higher with MCEM compared to the corresponding DL and
HDL estimates, which in turn are higher than the MI estimate. The estimates for ρe with
MCEM and MI are similar and both are higher than the DL and HDL estimates.

The final estimate and 95% confidence interval for ρ, the correlation between cervical HIV
RNA and plasma HIV RNA, are 0.58 (95% CI: 0.53–0.63) with DL; 0.58 (95% CI: 0.52–
0.63) with HDL; 0.57 (95% CI: 0.50–0.64) with MI and 0.66 (95% CI: 0.60–0.71) with
MCEM. The MLE and MCEM methods have the same estimates of the correlation 0.66 and
standard error estimates 0.03. The DL, HDL, MI estimates are all similar to each other and
lower than the MCEM estimate, which is consistent with the patterns observed in our
simulation studies.

5. Discussion
In this paper we proposed an MCEM method with a bivariate mixed-effects model for
parameter estimation and inference in the presence of repeated measures and left-censoring.
The performance of this method was shown in our simulations to be superior to the DL,
HDL, and MI approaches with respect to relative bias, relative MSE, and coverage
probability. Even at high censoring proportions, the MCEM still performs very well, while
the DL, HDL, MI perform poorly. Although the MLE method can also estimate parameters
accurately, our simulations showed that non-positive definite information matrices occur
frequently, particularly at high levels of censoring, and therefore cannot serve as an
alternative method for MCEM. In this paper, data from an HIV study was used to illustrate
the proposed method but the approach naturally extends to other fields in which repeated
measurements and censoring of biomarker levels are both present.

We used a relatively straightforward model and covariance structure in our derivations.
Some possible extensions to the proposed approach include adjustment for covariates, more
complex random effects structures, more complex measurement error covariance structures,
and the case of more than two variables or biomarkers. To incorporate covariates into the
model, we need only to replace X in model (1) with the specific design matrix which
includes the covariates and modify β accordingly. To allow for more complex structures for
the random effects, additional rows in the bi matrix will be needed. Some examples include
random effects for both the intercept and the slope, multi-level random effects, etc… One
extension to the measurement error covariance structure can be achieved by assuming
vec(εi) ~ N(0, Σ⊗Gi), where Gi is a ni by ni positive definite matrix with some defined
structure: e.g., compound symmetry or AR(1) structure [11, 17]. Finally, one could consider
more than two variables in the mixed-effects model and estimate the intra-class correlation.
The derivation of the latter, however, will be more mathematically complex and
implementation will also be more computationally challenging.

We have not addressed model misspecification with regard to distributional assumptions or
the linear regression model assumption. Li et al. [19] considered the goodness-of-fit
problem under censoring without repeated measures; the case involving repeated measures
and censoring has not yet been addressed. The complex covariance structure for bivariate
repeated measurements in the presence of censoring makes the assessment of model fit
extremely difficult and is a potential area of future research.
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Table V

Parameter estimates and 95% confidence intervals for the application data with DL, HDL, MI, and MCEM
methods.

Parameter DL HDL MI MCEM

βcervical (= β1) 2.46 (2.36, 2.57) 2.29 (2.17, 2.41) 1.86 (1.67, 2.05) 1.45 (1.20, 1.70)

βplasma (= β2) 3.29 (3.17, 3.41) 3.21 (3.08, 3.34) 2.96 (2.77, 3.15) 3.06 (2.90, 3.23)

0.53 (0.41, 0.68) 0.66 (0.52, 0.85) 1.35 (1.03, 1.76) 2.22 (1.64, 3.00)

0.79 (0.64, 0.98) 0.93 (0.75, 1.15) 1.71 (1.32, 2.22) 1.41 (1.12, 1.79)

ρr 0.84 (0.76, 0.90) 0.84 (0.76, 0.90) 0.73 (0.63, 0.81) 0.88 (0.78, 0.93)

0.64 (0.57, 0.72) 0.80 (0.71, 0.89) 1.42 (1.20, 1.68) 2.29 (1.89, 2.77)

0.57 (0.51, 0.64) 0.67 (0.60, 0.75) 1.09 (0.92, 1.29) 0.87 (0.76, 1.00)

ρe 0.32 (0.24, 0.39) 0.31 (0.24, 0.39) 0.39 (0.27, 0.50) 0.40 (0.31, 0.49)

ρ 0.58 (0.53, 0.63) 0.58 (0.52, 0.63) 0.57 (0.50, 0.64) 0.66 (0.60, 0.71)
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