
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Can a Recurrent Neural Network Learn to Count Things?

Permalink
https://escholarship.org/uc/item/33h3496v

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Authors
Fang, Mengting
Zhou, Zhenglong
Chen, Sharon Y
et al.

Publication Date
2018

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33h3496v
https://escholarship.org/uc/item/33h3496v#author
https://escholarship.org
http://www.cdlib.org/

Abstract

We explore a recurrent neural network model of counting
based on the differentiable recurrent attentional model of
Gregor et al. (2015). Our results reveal that the model can
learn to count the number of items in a display, pointing to each
of the items in turn and producing the next item in the count
sequence at each step, then saying ‘done’ when there are no
more blobs to count. The model thus demonstrates that the
ability to learn to count does not depend on special knowledge
relevant to the counting task. We find that the model’s ability
to count depends on how well it has learned to point to each
successive item in the array, underscoring the importance of
coordination of the visuospatial act of pointing with the
recitation of the count list. The model learns to count items in
a display more quickly if it has previously learned to touch all
the items in such a display correctly, capturing the relationship
between touching and counting noted by Alibali and DiRusso.
In such cases it achieves performance sometimes thought to
result from a semantic induction of the ‘cardinality principle’.
Yet the errors that it makes have similarities with the patterns
seen in human children’s counting errors, consistent with idea
that children rely on graded and somewhat variable
mechanisms similar to our neural networks.

Keywords: mathematical cognition; numerical cognition;
neural networks; development; learning; transfer learning.

Introduction
Until recently it was often supposed that an understanding

of the natural or counting numbers is an inalienable feature
of mind, but most researchers no longer hold this view. The
finding that some cultures lack exact numbers and that adult
members of these cultures cannot establish exact numerical
correspondence (Gordon, 2004) has led to reconsideration of
this position. Several works (e.g. Izard et al. 2008) see
counting drawing on pre-requisite ‘core knowledge’ systems,
but still see learning to count as also depending on some sort
of learning process. One view is that this process involves
the ‘semantic induction’ (Sarnecka & Carey, 2008) of a
principle (the cardinal principle), which then supports the
ability to carry out specific number-related tasks. Yet another
perspective (Davidson, Eng and Barner, 2012) holds that
induction of a principle may not be required to achieve
success in counting. Support for this perspective comes from
these authors’ and others’ findings, showing that children
who can succeed at what is often called the ‘how many’ task
or even the somewhat harder ‘give N’ task may fail many

other tests thought to reflect what it means to understand the
cardinal principle (see also Izard et al, 2008). Thus, it is
possible that true understanding of the natural numbers may
not be required to succeed in counting tasks, in spite of the
belief (espoused by the German number theorist Kronacker)
that God made the natural numbers (Weber, 1893).

The work we report here explores how a system could learn

to carry out the ‘how many’ or (as we shall call it, the ‘count
the blobs’ task) as a stepping-stone toward a more complete
understanding of natural number. This task may be one of
the first exact number tasks mastered by young children when
they are learning to count. Our goal is to explore these
questions:

Competence: Can a recurrent neural network architecture
that can move its center of attention across a series of
‘glimpses’ learn to count the number of items in a display?

Development: Does this architecture allow us to capture
features of the developmental progression of performance
seen in children as they learn to count?

In addition to these questions, our work is guided by the
intention to explore two aspects of the nature of the setting in
which learning to count takes place.

Teacher guided learning. A central guiding principle of our
project is the view that learning to count consists, at least
in part, of a process that occurs while a learner is engaged
a learning setting with a teacher. This perspective differs
sharply from that of many researchers, who see
mathematics learning as a self-directed discovery process.
While we agree that discovery based learning is important
throughout development, we would argue that quite a lot of
what we learn is shaped in part by the instructional
interactions we have with those around us.

Cumulative and concurrent multi-task learning Often
learning to perform a task is considered in isolation, and
that has often been true in neural network research. But in
reality, we learn to count within a setting where we are also
learning many other tasks. Our work aims to allow us to
exploit obvious commonalities between tasks in the

Can a Recurrent Neural Network Learn to Count Things?

Mengting Fang (mtfang@mail.bnu.edu.cn)1, Zhenglong Zhou (zzhou34@jhu.edu)2,
Sharon Y. Chen (syc2138@columbia.edu)3, James L. McClelland (jlmcc@stanford.edu)4

1Department of Mathematics, Beijing Normal University, Beijing, China
2Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218

3Department of Computer Science, Columbia University, New York, NY, 10027
4Department Psychology, Stanford University, Stanford, CA, 94305

360

number domain, to understand how prior or concurrent
learning of one task can support learning of another task.

Description of the Focal Task
 The main task we set our network might best be called the
‘count the blobs’ task. On each trial of the task, a display is
presented containing from 1 to 15 blobs (see Figure 1) in a
50x150 pixel window. One of the network’s outputs is a point
position, consisting of an (x,y) coordinate pair which we treat
both as the center of its gaze and as the location it is touching
to in the display. (In Figure 1, this is represented by the index
finger of a hand, although no indication of the point position
actually appears in the display.) The network starts each trial
pointing to the middle of the left edge of the display area. Its
task is to point successively to each of the blobs from left to
right, outputting the current count as it points to the each
successive blob, until there are no more blobs. Upon
reaching the last blob the network should produce an ‘I’m
done’ or ‘that’s the answer’ response, and should maintain its
point on the last blob.

The Network and its Situation in its Environment
Our network is adapted from the DRAM architecture

introduced by Gregor et al (2015). It is a recurrent neural
network consisting of a ‘read’ module, similar to a retina, that
shifts its point of focus in response to the output of a ‘point’
module. In our case, the network specifies the location of the
next point relative to its current point of fixation, whereas
DRAM specifies its next fixation point relative to an external
reference point, such as the lower left hand corner of the
display. We chose to specify the next point in relative terms
for two reasons: First, visual targets are arrayed on the retina
at positions relative to the point of fixation, and eye and
movements are also specified relative to their current
position. Second, it may simplify the task of learning to shift
one’s point to the next item to the right, an ability especially
useful in counting. If one specified where to point in external
coordinates, each item in an external array would be at its
own unique position. If the next point is specified in relative
coordinates, and if objects are laid out in a culturally
conventionalized way (such as a linear array running from
left to right) then the next object to count will tend to fall in

The Differentiable Recurrent Attentional Counting Model

Figure 1. The differentiable recurrent attentional counting (DRAC) model, shown processing an input containing two
blobs to count, along with the teaching signals specifying there to look/point and what to say when counting each blob
in the display. Red arrows indicate where look/point and count-word teaching signals are injected during learning in the
count-the-blobs task. Black arrows indicate linear mappings (each considering of a weight matrix and vector of bias
weights) subject to modification during learning. Gold arrows specify unmodifiable pathways associated with managing
the model’s point of fixation on the input. The task box and associated grey arrow indicate how task information is
provided to the network. This module is only present in the task-controlled version of the model (DRACtc). The base
version of the model only learns to perform the count-the-blobs task. The task-controlled version also learns the count-
to-nine’ task and the touch-the-blobs task. In the count-to-nine task, the input is always blank (no blobs present), and
there is no look/point teaching signal. In the touch-the-blobs task, the input is an array of blobs as in the count-the-blobs
task, but no count-word target is provided.

361

a similar range of relative positions, so the stimulus for the
action, and the action itself, would be very similar, when
counting each successive item.

The output of the read module is a set of 2 arrays, one
approximating a fovea (with relatively high resolution) and
one approximating peripheral vision (with relatively low
resolution) as indicated in Fig. 2. The contents of these arrays
are the convolution of the input, relative to the current point
of fixation, through a set of 13 x 13 evenly spaced Gaussian
filters. The two arrays use a different spacing parameter s,
set to 3 pixels for the fovea array and 10 pixels for the
peripheral array. The centers of the filters are spaced s pixels
apart in both the x and y directions, with the central filter
centered on the current point of fixation, and the width
parameter of each filter is ½ s. The positions of these filters
when the point is centered on the leftmost blob in a display
are superimposed on the display image; the outputs of these
filters are shown in Figure 2b and c.

The ‘point’ module consists of an LSTM (Graves, 2013)
which receives the output of the read module as well as its
own prior state (initialized to all 0’s at the beginning of each
trial). It produces two outputs, one that is passed on to the
count module and another passed through an additional layer
of connection weights to produce the Dx and Dy values
specifying the position of the next point, as shown in Figure
1. At the beginning of each trial, the prior state of the point
module is set to all zeros, and the starting location of the point
is placed in the middle of the left edge of the display area.

The network also contains a count module, whose task is
to produce the appropriate count word, or the ‘done’ output
for each glimpse. The count module also consists of an

LSTM. It receives the output of the point module and its own
prior state (also initialized to all 0’s at the beginning of each
trial), and produces a pattern of activation propagated through
another layer of connection weights to an output layer
consisting of 16 units, one corresponding to each of the
numerals from 1 through 15 and one corresponding to the
‘I’m done’ output. The output of this layer is normalized
using the softmax function so that the sum of the activations
across these units is always equal to 1, and the response of
the network is taken to correspond to the unit with the highest
activation.

Training Regime

As an initial exploration of guided learning, we treat
learning as occurring in two modes, both involving a student
and a teacher. In the first of these modes, teacher guided
learning, the network learner L attempts to anticipate the
counting and pointing actions of a teacher T while T
demonstrates how to perform the task. T’s demonstration is
made available to L, not act actual visual or auditory inputs,
but as targets for the next count word (or ‘I’m done’ signal)
and for the next point location. In addition, L’s point of
attention for the next step is forced to correspond to T’s, so
that the teacher’s point guides where the learner is actually
looking. In the other mode, monitored performance with
feedback, L attempts to carry out the task with feedback from
T. In this mode, L is thought to overtly produce counts and
points, allowing T to evaluate L’s performance and provide
feedback (Alibali & DiRusso, 1999). In the simulations, we
assume this feedback is provided in the form of a teaching
signal or target for the correct count and point at each step in
a counting sequence, as if T provided a correct demonstration
right after L’s attempt, but without forcing L’s point at each
step in the counting and touching sequence.

To implement these stated principles of learning, we
alternate teacher guided and monitored performance trials
during training. To recap, during a teacher guided learning
trial, the network attempts to predict the teacher’s count
output and next point action at each step in processing the
current input; the teacher’s actual words and points serve as
teaching signals to the learner, and its next point is forced to
the correct location. During a monitored performance with
feedback trial, the feedback signals are the same, but the
learner’s own point output, and not the teacher’s, is used to
determine the next point of fixation.

During training, the blobs were squares with sides of length
4, 5, or 6. The x position of the center of the next blob was 7
to 10 pixels to the right of the previous x position, and the y
coordinate was chosen uniformly within the constraint that
the whole blob remained within 10± pixels of the vertical
midline of the display.

Frequency of training with arrays containing different
numbers of blobs. Researchers have long observed that we
encounter displays with a small number of items more
frequently that displays with larger numbers of items.
Accordingly, during training the frequency of a display
containing N items was proportional to 1/N2. This means that

Figure 2. Examples of the stimuli used in the experiments.
Top: locations of the centers of the Gaussian filters (blue:
retina array; orange: periphery) while the network is
fixated on the first blob in an example test display (left)
and training display (right). Bottom: output of the filter
arrays for the case shown in the top right panel.

362

the network encounters displays containing just 1 item 100
times more frequently than it encountered a display
containing 10 items. Although we tested the network’s
performance on arrays containing 1 to 9 blobs (see below),
the displays used in training contained up to 15 blobs. This
prevented the network from learning that counting stops at a
particular point within the range encompassed during testing.

Testing Regime
 We evaluated the network’s performance during testing
sessions interspersed at different time points during
learning. During each test, we assessed performance on 500
randomly generated trials of each N from 1 to 9. Test trials
are like monitored performance learning trials, but without
any teaching signal provided. The network simply steps
through a sequence of glimpses, and the results are recorded
as they would be in an experimental setting where a child’s
counting behavior is observed over a sequence of trials, while
the experimenter provides neutral encouragement after each
test item is presented. Our testing protocol followed the
approach many developmental psychologists have used,
making the conditions of testing as easy as possible, to give
the network the greatest chance of demonstrating its mastery
of the counting task (Alibali & DiRusso, 1999). Accordingly,
during testing, the blobs were always 5x5 pixels, and the blob
spacing was varied only by ±1 pixel in both the x and the y
directions. Informal testing with less uniform sizes and
positions does result in more errors, as also seen in young
children (Gelman & Gallistel, 1986).

Cumulative and Concurrent Multi-Task Learning

The final element of our investigation is the exploration of
how the learning of a focal task can be supported by previous
and/or concurrent learning of related component tasks. Our
focal, count the blobs task can be considered to involve the
coordination of two simpler tasks: Touching each of the
blobs in the array, and reciting items in order from the count
list. The required coordination involves ensuring that there
is one and only one count for each blob, so that the count
stops when there are no more blobs. To explore these issues,
we introduced a count to 15 task and a touch the blobs task.
As in the count the blobs task, teacher guided learning and
monitored performance with feedback trials alternated in
both of these tasks, so that the networks’ point of fixation was
forced to the correct position at each step on ½ of the training
trials in each task.

Count to 15 Task. This task provides the network with a way
to learn the count list, without the additional demands of
coordinating this process with successively touching each of
the items in an array. In this task, the network was shown a
blank display for 16 glimpses on each trial. The network was
asked to produce a count word according to the count list
from 1 to 15 for the first 15 glimpses and say ‘I’m done’ at
the last glimpse.

Touch the Blobs Task. This task teaches the network to
touch all the blobs in a canonical order, from left to right. On
each trial of the task, a display is presented containing from
1 to 15 blobs with frequency decreasing with N as in the count
the blobs task. The network starts each trial with its point of
fixation in the middle of the left edge of the display area. Its
task is to direct its focus of attention successively to each of
the blobs until there are no more blobs. Upon reaching the
last blob the network should maintain its point of fixation on
the last blob.

Comparison of Three Learning Conditions
 The results we present below come from two multi-task
learning conditions, and a baseline, one task learning
condition.

One-task condition (1T). In this condition, the network
simply learns to perform the count the blobs task.

Three-task condition (3T). In this condition, the network
receives interleaved trials on all three tasks.

Touch only then three-task condition (TF+3T). In this
condition, the network learned the touch the blobs task alone
until it reached a stringent performance criterion (maximum
per trial point error with 10 blobs must average less than 2.5
pixels over 100 trials in each of three successive tests
separated by 500 training iterations). The network then
proceeded to the three-task condition, receiving interleaved
training in all three tasks.

For each condition, we trained and analyzed three
independent runs of the DRAC network. For each run, after
network initialization, training began. In each training
iteration, the network processed a single training example
from each of the tasks included in the condition. After each
training trial, gradients for learning were calculated, and the
connection weights were updated. Testing occurred after
every 500 training iterations, as described above. In the
TF+3T condition, the iteration counter was reset to 0 after
reaching criterion on the touch the blobs task.

Results

Competence after Learning

We assessed the counting competence at each test point. To
do so, we determined whether the network produced a correct
count sequence and a correct point sequence on each test trial.
For a count sequence to be correct, the count response had to
progress through the correct count sequence from 1 to N and
then end with the ‘I’m done’ response. For a point sequence
to be correct, the point had to fall within a window of ±3
pixels vertically and horizontally around each successive
blob center; after correctly touching each blob once, the
network had to touch the last blob a second time for the
sequence to be scored correct. Using these measures, we

363

could then define a criterion for perfect test performance on
the count the blobs task. For performance to be perfect, both
the count sequence and the point sequence had to be correct
on all trials at all values of N – no error of either kind on any
trial.

Applying the criterion above, we found that all three
networks in each of the three learning conditions achieved
perfect performance in well under 30,000 trials, but then
made errors on some later test points. By about 30,000 trials,
all networks stopped making any errors, maintaining perfect
performance thereafter. It is striking that an approximate,
graded, gradient-based learning system can achieve such a
high standard of accuracy in this task.

Relation between Learning to Touch and Learning
to Count

We next considered whether cumulative and concurrent
learning can lead to cross-task transfer in our network,
focusing on counting performance per se. Here we drew
inspiration from the work of Alibali and DiRusso (1999) who
found that children who were better able to correctly touch a
sequence of objects also succeeded better at counting them.
In Alibali and DiRusso’s study, only the count was
considered in determining if a child performed correctly in
their counting task. We adopted a similar approach, scoring
whether the network’s count sequence was correct, regardless
of its pointing performance, then considering the relationship
between counting performance measured in this way and
pointing performance. For this assessment, we measured the

highest number of blobs each network could count correctly,
defining ‘count correctly’ for a given N as achieving a score
of 90% correct count sequences on the 500 test items
containing N blobs. We plot the results in Figure 3 for each
training condition separately, with the mean over the three
runs shown as a solid black line and the range of highest count
scores indicated by the yellow bands around the mean
performance. We stress that all three networks had the same
amount of training in counting blobs.
 The figure reveals that learning to count occurred most
quickly in the TF+3T condition. Average highest count for
the networks in this condition reached 6 by iteration 1,000,
and each of the three networks first achieved a perfect
counting score after at most 5500 training examples, though
there was some slippage in counting to 8 or 9 thereafter. In
contrast, the first perfect count score did not occur until much
later in the 3T condition or the 1T condition.
 The left panels of the figure allow us to explore how the
ability to count relates to the ability to point. As expected,
learning to point is slowest in networks trained to do only one
task; is somewhat faster in the networks trained on all three
tasks concurrently; and is near-perfect from early on in
networks trained to touch before three-task training. (The
networks trained to touch first show a transient disruption at
the start of the three task phase, then recovers to near-perfect
performance very quickly.) In summary, more experience,

Figure 3. Left: highest count achieved at different test
points. Right: Highest number of blobs touched
correctly during counting.

Figure 4. Count performance on displays with different
numbers of blobs in the network trained to touch each
blob before proceeding to the three-task training phase.
Top: Results averaged across the three networks and
smoothed to reduce variability. Bottom: Performance
of one of the three networks, showing rapid initial
learning, followed by occasional backsliding on
displays containing larger numbers of items.

364

and earlier ability, in pointing are associated with mastering
the count the blobs task more quickly.

Transitions in Performance and Error Patterns

Two final issues we consider are the developmental course of
mastering the ability to count larger and larger numbers of
things, and the nature of the network’s counting errors.
Several authors (e.g., Le Corre, Van de Walle, Brannon, and
Carey, 2006) have argued for a categorical divide, separating
children into those who can succeed at counting only very
small numbers of things (up to 3 or possibly 4) and those who
can count things up to the limit of the length of their count
list, called ‘cardinal principle’ or CP knowers. Given this, we
wondered whether our models might divide into the same two
categories, and whether, at some point in development,
individual networks would make sudden transitions from the
former to the latter group.
 We were able to explore this in the data from the networks
in the touch first then 3-task condition. The networks learn
the count-to-fifteen task, corresponding to reciting the count
list within the first 1,000 training iterations, and all already
know how to point to all the blobs before they begin to learn
to count them. In the top panel of Figure 4, we show the
results indicating the average performance in counting blobs
for these networks, smoothed to make the trends in learning
different values of N more apparent. Very quickly, these
networks master counting up to 3, then shortly thereafter,
they master the ability to count to 4, 5, and 6, with 7 lagging
only slightly behind. For comparison, in Le Corre et al, a
child is counted as a CP knower if they can give 6 objects
correctly 2/3 of the time. While counting N things is easier
than giving N things, the networks in the top panel of Figure
4 would meet this criterion after only 2000 training trials.
Prior to this, they would have scored as subset knowers by
this criterion. It is also noteworthy that children make more
errors when counting larger arrays (Alibali & DiRusso,
1999), similar to our networks.
 We also scored the errors made in counting from 1 to 9
items in the same networks. After the first test point when
each network counted perfectly (3500 iterations in the
network shown in the bottom panel of Figure 4). All of the
errors were well-formed counts of either one or two more or
one less than the correct number of items. For example, the
errors made by the network shown in the bottom panel of
Figure 4 were always over- or under-counts of exactly 1.

Discussion

We began our exploration of the DRAC network with a
question: Can a recurrent neural network learn to count
things? Our findings clearly support a yes answer to this
question. In all three of the learning conditions, all networks
mastered the ability to reliably proceed through all of the
items in an array, touching each one in turn while producing
the next number word in the count list. These findings
support the view that learning to count may not require a

special mechanism designed to acquire the counting
principles; instead it may depend on the reliance of a
powerful, yet general purpose learning system, coupled with
an environment that provides teacher-guided learning
activities, like the ones we provide for our network.

Our findings also demonstrate a great deal of cross-
influence between the ability to count and touch all the blobs
in a display. In the networks that had already master the
touch-the-blobs task, the ability to count up to 6 blobs
correctly could be acquired in only about 2,000 training trials
counting displays containing from 1 to 15 items.

The question of whether we should believe that learning to
count involves a semantic induction has been a subject of
controversy in the literature. While some have argued that it
is (Le Corre et al, 2006; Sarneca & Carey, 2008), others have
argued against this position (Davidson et al, 2012), based on
the finding that performance in a wide range of tasks exhibits
graded, rather than all-or-nothing acquisition. The pattern of
errors in Alibali and DiRusso (1999) likewise attests to
counting as a graded ability, one that varies in its success with
the degree of support provided by allowing children to point
to, or better yet to actually touch, the objects they are
counting, and with size of the set of objects to be counted.
Our current effort will certainly not fully resolve this issue,
but we hope it will encourage further exploration of
approaches that attempt to capture both the achievements and
the limitations of human counting, viewed as a learned skill
acquired gradually in a supportive learning environment.

References

Alibali, M. W., & DiRusso, A. A. (1999). The function of

gesture in learning to count: More than keeping track.
Cognitive development, 14, 37-56.

Davidson, K., Eng, K. & Barner, D. (2012). Does learning to
count involve a semantic induction? Cognition, 123, 162-
173.

Gelman, R., & Gallistel, C. R. (1986). The child's
understanding of number. Harvard University Press.

Gordon, P. (2004). Numerical cognition without words:
Evidence from Amazonia. Science, 306(5695), 496-499.

Graves, A. (2013). Generating sequences with recurrent
neural networks. arXiv preprint. arXiv:1308.0850.

Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., &
Wierstra, D. (2015). DRAW: A recurrent neural network
for image generation. arXiv preprint arXiv:1502.04623.

Izard, V., & Dehaene, S. (2008). Calibrating the mental
number line. Cognition, 106(3), 1221-1247.

Le Corre, M., Van de Walle, G., Brannon, E. M., & Carey, S.
(2006). Re-visiting the competence/performance debate in
the acquisition of the counting principles. Cognitive
psychology, 52(2), 130-169.S

Sarnecka, B. W., & Carey, S. (2008). How counting
represents number: What children must learn and when
they learn it. Cognition, 108(3), 662-674.

Weber, H. (1893), Leopold Kronecker. Mathematische
Annalen, 43: 1–25, doi:10.1007/BF01446613.

365

