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Abstract 

We explore a recurrent neural network model of counting 
based on the differentiable recurrent attentional model of 
Gregor et al. (2015).   Our results reveal that the model can 
learn to count the number of items in a display, pointing to each 
of the items in turn and producing the next item in the count 
sequence at each step, then saying ‘done’ when there are no 
more blobs to count.  The model thus demonstrates that the 
ability to learn to count does not depend on special knowledge 
relevant to the counting task.  We find that the model’s ability 
to count depends on how well it has learned to point to each 
successive item in the array, underscoring the importance of 
coordination of the visuospatial act of pointing with the 
recitation of the count list.  The model learns to count items in 
a display more quickly if it has previously learned to touch all 
the items in such a display correctly, capturing the relationship 
between touching and counting noted by Alibali and DiRusso.  
In such cases it achieves performance sometimes thought to 
result from a semantic induction of the ‘cardinality principle’. 
Yet the errors that it makes have similarities with the patterns 
seen in human children’s counting errors, consistent with idea 
that children rely on graded and somewhat variable 
mechanisms similar to our neural networks. 

Keywords: mathematical cognition; numerical cognition; 
neural networks; development; learning; transfer learning. 

Introduction 
Until recently it was often supposed that an understanding 

of the natural or counting numbers is an inalienable feature 
of mind, but most researchers no longer hold this view.  The 
finding that some cultures lack exact numbers and that adult 
members of these cultures cannot establish exact numerical 
correspondence (Gordon, 2004) has led to reconsideration of 
this position.  Several works (e.g. Izard et al. 2008) see 
counting drawing on pre-requisite ‘core knowledge’ systems, 
but still see learning to count as also depending on some sort 
of learning process.  One view is that this process involves 
the ‘semantic induction’ (Sarnecka & Carey, 2008) of a 
principle (the cardinal principle), which then supports the 
ability to carry out specific number-related tasks. Yet another 
perspective (Davidson, Eng and Barner, 2012) holds that 
induction of a principle may not be required to achieve 
success in counting.  Support for this perspective comes from 
these authors’ and others’ findings, showing that children 
who can succeed at what is often called the ‘how many’ task 
or even the somewhat harder ‘give N’ task may fail many 

other tests thought to reflect what it means to understand the 
cardinal principle (see also Izard et al, 2008). Thus, it is 
possible that true understanding of the natural numbers may 
not be required to succeed in counting tasks, in spite of the 
belief (espoused by the German number theorist Kronacker) 
that God made the natural numbers (Weber, 1893). 

 
The work we report here explores how a system could learn 

to carry out the ‘how many’ or (as we shall call it, the ‘count 
the blobs’ task) as a stepping-stone toward a more complete 
understanding of natural number.  This task may be one of 
the first exact number tasks mastered by young children when 
they are learning to count.  Our goal is to explore these 
questions:  
 

Competence: Can a recurrent neural network architecture 
that can move its center of attention across a series of 
‘glimpses’ learn to count the number of items in a display? 

 
Development: Does this architecture allow us to capture 
features of the developmental progression of performance 
seen in children as they learn to count? 
 

In addition to these questions, our work is guided by the 
intention to explore two aspects of the nature of the setting in 
which learning to count takes place. 

 
Teacher guided learning. A central guiding principle of our 
project is the view that learning to count consists, at least 
in part, of a process that occurs while a learner is engaged 
a learning setting with a teacher.  This perspective differs 
sharply from that of many researchers, who see 
mathematics learning as a self-directed discovery process.  
While we agree that discovery based learning is important 
throughout development, we would argue that quite a lot of 
what we learn is shaped in part by the instructional 
interactions we have with those around us. 
 
Cumulative and concurrent multi-task learning Often 
learning to perform a task is considered in isolation, and 
that has often been true in neural network research.  But in 
reality, we learn to count within a setting where we are also 
learning many other tasks.  Our work aims to allow us to 
exploit obvious commonalities between tasks in the 
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number domain, to understand how prior or concurrent 
learning of one task can support learning of another task. 
 

Description of the Focal Task 
     The main task we set our network might best be called the 
‘count the blobs’ task.  On each trial of the task, a display is 
presented containing from 1 to 15 blobs (see Figure 1) in a 
50x150 pixel window. One of the network’s outputs is a point 
position, consisting of an (x,y) coordinate pair which we treat 
both as the center of its gaze and as the location it is touching 
to in the display. (In Figure 1, this is represented by the index 
finger of a hand, although no indication of the point position 
actually appears in the display.)  The network starts each trial 
pointing to the middle of the left edge of the display area.  Its 
task is to point successively to each of the blobs from left to 
right, outputting the current count as it points to the each 
successive blob, until there are no more blobs.  Upon 
reaching the last blob the network should produce an ‘I’m 
done’ or ‘that’s the answer’ response, and should maintain its 
point on the last blob. 
 

The Network and its Situation in its Environment 
Our network is adapted from the DRAM architecture 

introduced by Gregor et al (2015).  It is a recurrent neural 
network consisting of a ‘read’ module, similar to a retina, that 
shifts its point of focus in response to the output of a ‘point’ 
module. In our case, the network specifies the location of the 
next point relative to its current point of fixation, whereas 
DRAM specifies its next fixation point relative to an external 
reference point, such as the lower left hand corner of the 
display.  We chose to specify the next point in relative terms 
for two reasons:  First, visual targets are arrayed on the retina 
at positions relative to the point of fixation, and eye and 
movements are also specified relative to their current 
position.  Second, it may simplify the task of learning to shift 
one’s point to the next item to the right, an ability especially 
useful in counting.  If one specified where to point in external 
coordinates, each item in an external array would be at its 
own unique position.  If the next point is specified in relative 
coordinates, and if objects are laid out in a culturally 
conventionalized way (such as a linear array running from 
left to right) then the next object to count will tend to fall in 

The Differentiable Recurrent Attentional Counting Model

 
Figure 1. The differentiable recurrent attentional counting (DRAC) model, shown processing an input containing two 
blobs to count, along with the teaching signals specifying there to look/point and what to say when counting each blob 
in the display.  Red arrows indicate where look/point and count-word teaching signals are injected during learning in the 
count-the-blobs task.  Black arrows indicate linear mappings (each considering of a weight matrix and vector of bias 
weights) subject to modification during learning.  Gold arrows specify unmodifiable pathways associated with managing 
the model’s point of fixation on the input.   The task box and associated grey arrow indicate how task information is 
provided to the network.  This module is only present in the task-controlled version of the model (DRACtc).  The base 
version of the model only learns to perform the count-the-blobs task.  The task-controlled version also learns the count-
to-nine’ task and the touch-the-blobs task.  In the count-to-nine task, the input is always blank (no blobs present), and 
there is no look/point teaching signal.  In the touch-the-blobs task, the input is an array of blobs as in the count-the-blobs 
task, but no count-word target is provided. 
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a similar range of relative positions, so the stimulus for the 
action, and the action itself, would be very similar, when 
counting each successive item. 

The output of the read module is a set of 2 arrays, one 
approximating a fovea (with relatively high resolution) and 
one approximating peripheral vision (with relatively low 
resolution) as indicated in Fig. 2.  The contents of these arrays 
are the convolution of the input, relative to the current point 
of fixation, through a set of 13 x 13 evenly spaced Gaussian 
filters.  The two arrays use a different spacing parameter s, 
set to 3 pixels for the fovea array and 10 pixels for the 
peripheral array. The centers of the filters are spaced s pixels 
apart in both the x and y directions, with the central filter 
centered on the current point of fixation, and the width 
parameter of each filter is ½ s.  The positions of these filters 
when the point is centered on the leftmost blob in a display 
are superimposed on the display image; the outputs of these 
filters are shown in Figure 2b and c. 

The ‘point’ module consists of an LSTM (Graves, 2013) 
which receives the output of the read module as well as its 
own prior state (initialized to all 0’s at the beginning of each 
trial).  It produces two outputs, one that is passed on to the 
count module and another passed through an additional layer 
of connection weights to produce the Dx and Dy values 
specifying the position of the next point, as shown in Figure 
1.  At the beginning of each trial, the prior state of the point 
module is set to all zeros, and the starting location of the point 
is placed in the middle of the left edge of the display area. 

The network also contains a count module, whose task is 
to produce the appropriate count word, or the ‘done’ output 
for each glimpse.  The count module also consists of an 

LSTM. It receives the output of the point module and its own 
prior state (also initialized to all 0’s at the beginning of each 
trial), and produces a pattern of activation propagated through 
another layer of connection weights to an output layer 
consisting of 16 units, one corresponding to each of the 
numerals from 1 through 15 and one corresponding to the 
‘I’m done’ output.  The output of this layer is normalized 
using the softmax function so that the sum of the activations 
across these units is always equal to 1, and the response of 
the network is taken to correspond to the unit with the highest 
activation. 

 
Training Regime 

As an initial exploration of guided learning, we treat 
learning as occurring in two modes, both involving a student 
and a teacher. In the first of these modes, teacher guided 
learning, the network learner L attempts to anticipate the 
counting and pointing actions of a teacher T while T 
demonstrates how to perform the task.  T’s demonstration is 
made available to L, not act actual visual or auditory inputs, 
but as targets for the next count word (or ‘I’m done’ signal) 
and for the next point location.  In addition, L’s point of 
attention for the next step is forced to correspond to T’s, so 
that the teacher’s point guides where the learner is actually 
looking.  In the other mode, monitored performance with 
feedback, L attempts to carry out the task with feedback from 
T.   In this mode, L is thought to overtly produce counts and 
points, allowing T to evaluate L’s performance and provide 
feedback (Alibali & DiRusso, 1999).  In the simulations, we 
assume this feedback is provided in the form of a teaching 
signal or target for the correct count and point at each step in 
a counting sequence, as if T provided a correct demonstration 
right after L’s attempt, but without forcing L’s point at each 
step in the counting and touching sequence. 

To implement these stated principles of learning, we 
alternate teacher guided and monitored performance trials 
during training.  To recap, during a teacher guided learning 
trial, the network attempts to predict the teacher’s count 
output and next point action at each step in processing the 
current input; the teacher’s actual words and points serve as 
teaching signals to the learner, and its next point is forced to 
the correct location. During a monitored performance with 
feedback trial, the feedback signals are the same, but the 
learner’s own point output, and not the teacher’s, is used to 
determine the next point of fixation.   

During training, the blobs were squares with sides of length 
4, 5, or 6. The x position of the center of the next blob was 7 
to 10 pixels to the right of the previous x position, and the y 
coordinate was chosen uniformly within the constraint that 
the whole blob remained within 10± pixels of the vertical 
midline of the display. 

Frequency of training with arrays containing different 
numbers of blobs. Researchers have long observed that we 
encounter displays with a small number of items more 
frequently that displays with larger numbers of items.  
Accordingly, during training the frequency of a display 
containing N items was proportional to 1/N2.  This means that 

 
Figure 2. Examples of the stimuli used in the experiments.  
Top: locations of the centers of the Gaussian filters (blue: 
retina array; orange: periphery) while the network is 
fixated on the first blob in an example test display (left) 
and training display (right).  Bottom: output of the filter 
arrays for the case shown in the top right panel. 
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the network encounters displays containing just 1 item 100 
times more frequently than it encountered a display 
containing 10 items.  Although we tested the network’s 
performance on arrays containing 1 to 9 blobs (see below), 
the displays used in training contained up to 15 blobs.  This 
prevented the network from learning that counting stops at a 
particular point within the range encompassed during testing. 
 
Testing Regime 
   We evaluated the network’s performance during testing 
sessions interspersed at different time points during 
learning.  During each test, we assessed performance on 500 
randomly generated trials of each N from 1 to 9. Test trials 
are like monitored performance learning trials, but without 
any teaching signal provided. The network simply steps 
through a sequence of glimpses, and the results are recorded 
as they would be in an experimental setting where a child’s 
counting behavior is observed over a sequence of trials, while 
the experimenter provides neutral encouragement after each 
test item is presented.  Our testing protocol followed the 
approach many developmental psychologists have used, 
making the conditions of testing as easy as possible, to give 
the network the greatest chance of demonstrating its mastery 
of the counting task (Alibali & DiRusso, 1999).  Accordingly, 
during testing, the blobs were always 5x5 pixels, and the blob 
spacing was varied only by ±1 pixel in both the x and the y 
directions. Informal testing with less uniform sizes and 
positions does result in more errors, as also seen in young 
children (Gelman & Gallistel, 1986). 

 
Cumulative and Concurrent Multi-Task Learning 
 
The final element of our investigation is the exploration of 
how the learning of a focal task can be supported by previous 
and/or concurrent learning of related component tasks.  Our 
focal, count the blobs task can be considered to involve the 
coordination of two simpler tasks:  Touching each of the 
blobs in the array, and reciting items in order from the count 
list.  The required coordination involves ensuring that there 
is one and only one count for each blob, so that the count 
stops when there are no more blobs.   To explore these issues, 
we introduced a count to 15 task and a touch the blobs task. 
As in the count the blobs task, teacher guided learning and 
monitored performance with feedback trials alternated in 
both of these tasks, so that the networks’ point of fixation was 
forced to the correct position at each step on ½ of the training 
trials in each task. 

Count to 15 Task. This task provides the network with a way 
to learn the count list, without the additional demands of 
coordinating this process with successively touching each of 
the items in an array. In this task, the network was shown a 
blank display for 16 glimpses on each trial. The network was 
asked to produce a count word according to the count list 
from 1 to 15 for the first 15 glimpses and say ‘I’m done’ at 
the last glimpse. 
 

Touch the Blobs Task. This task teaches the network to 
touch all the blobs in a canonical order, from left to right. On 
each trial of the task, a display is presented containing from 
1 to 15 blobs with frequency decreasing with N as in the count 
the blobs task. The network starts each trial with its point of 
fixation in the middle of the left edge of the display area.  Its 
task is to direct its focus of attention successively to each of 
the blobs until there are no more blobs.  Upon reaching the 
last blob the network should maintain its point of fixation on 
the last blob. 

 
Comparison of Three Learning Conditions 
    The results we present below come from two multi-task 
learning conditions, and a baseline, one task learning 
condition. 
 
One-task condition (1T). In this condition, the network 
simply learns to perform the count the blobs task. 
 
Three-task condition (3T). In this condition, the network 
receives interleaved trials on all three tasks. 
 
Touch only then three-task condition (TF+3T). In this 
condition, the network learned the touch the blobs task alone 
until it reached a stringent performance criterion (maximum 
per trial point error with 10 blobs must average less than 2.5 
pixels over 100 trials in each of three successive tests 
separated by 500 training iterations).  The network then 
proceeded to the three-task condition, receiving interleaved 
training in all three tasks. 
 
For each condition, we trained and analyzed three 
independent runs of the DRAC network.  For each run, after 
network initialization, training began.  In each training 
iteration, the network processed a single training example 
from each of the tasks included in the condition.  After each 
training trial, gradients for learning were calculated, and the 
connection weights were updated.  Testing occurred after 
every 500 training iterations, as described above. In the 
TF+3T condition, the iteration counter was reset to 0 after 
reaching criterion on the touch the blobs task. 

Results 
 
Competence after Learning 
 
We assessed the counting competence at each test point.  To 
do so, we determined whether the network produced a correct 
count sequence and a correct point sequence on each test trial.  
For a count sequence to be correct, the count response had to 
progress through the correct count sequence from 1 to N and 
then end with the ‘I’m done’ response.  For a point sequence 
to be correct, the point had to fall within a window of ±3 
pixels vertically and horizontally around each successive 
blob center; after correctly touching each blob once, the 
network had to touch the last blob a second time for the 
sequence to be scored correct. Using these measures, we 
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could then define a criterion for perfect test performance on 
the count the blobs task.  For performance to be perfect, both 
the count sequence and the point sequence had to be correct 
on all trials at all values of N – no error of either kind on any 
trial. 

Applying the criterion above, we found that all three 
networks in each of the three learning conditions achieved 
perfect performance in well under 30,000 trials, but then 
made errors on some later test points.  By about 30,000 trials, 
all networks stopped making any errors, maintaining perfect 
performance thereafter.  It is striking that an approximate, 
graded, gradient-based learning system can achieve such a 
high standard of accuracy in this task. 
 
Relation between Learning to Touch and Learning 
to Count 
 
We next considered whether cumulative and concurrent 
learning can lead to cross-task transfer in our network, 
focusing on counting performance per se.  Here we drew 
inspiration from the work of Alibali and DiRusso (1999) who 
found that children who were better able to correctly touch a 
sequence of objects also succeeded better at counting them.  
In Alibali and DiRusso’s study, only the count was 
considered in determining if a child performed correctly in 
their counting task.  We adopted a similar approach, scoring 
whether the network’s count sequence was correct, regardless 
of its pointing performance, then considering the relationship 
between counting performance measured in this way and 
pointing performance.  For this assessment, we measured the 

highest number of blobs each network could count correctly, 
defining ‘count correctly’ for a given N as achieving a score 
of 90% correct count sequences on the 500 test items 
containing N blobs.  We plot the results in Figure 3 for each 
training condition separately, with the mean over the three 
runs shown as a solid black line and the range of highest count 
scores indicated by the yellow bands around the mean 
performance.  We stress that all three networks had the same 
amount of training in counting blobs. 
    The figure reveals that learning to count occurred most 
quickly in the TF+3T condition.  Average highest count for 
the networks in this condition reached 6 by iteration 1,000, 
and each of the three networks first achieved a perfect 
counting score after at most 5500 training examples, though 
there was some slippage in counting to 8 or 9 thereafter. In 
contrast, the first perfect count score did not occur until much 
later in the 3T condition or the 1T condition. 
    The left panels of the figure allow us to explore how the 
ability to count relates to the ability to point.  As expected, 
learning to point is slowest in networks trained to do only one 
task; is somewhat faster in the networks trained on all three 
tasks concurrently; and is near-perfect from early on in 
networks trained to touch before three-task training. (The 
networks trained to touch first show a transient disruption at 
the start of the three task phase, then recovers to near-perfect 
performance very quickly.)   In summary, more experience, 

Figure 3. Left: highest count achieved at different test 
points.  Right: Highest number of blobs touched 
correctly during counting.   
 

 
Figure 4. Count performance on displays with different 
numbers of blobs in the network trained to touch each 
blob before proceeding to the three-task training phase.  
Top: Results averaged across the three networks and 
smoothed to reduce variability.  Bottom: Performance 
of one of the three networks, showing rapid initial 
learning, followed by occasional backsliding on 
displays containing larger numbers of items. 
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and earlier ability, in pointing are associated with mastering 
the count the blobs task more quickly. 
  
Transitions in Performance and Error Patterns 

 
Two final issues we consider are the developmental course of 
mastering the ability to count larger and larger numbers of 
things, and the nature of the network’s counting errors. 
Several authors (e.g., Le Corre, Van de Walle, Brannon, and 
Carey, 2006) have argued for a categorical divide, separating 
children into those who can succeed at counting only very 
small numbers of things (up to 3 or possibly 4) and those who 
can count things up to the limit of the length of their count 
list, called ‘cardinal principle’ or CP knowers.  Given this, we 
wondered whether our models might divide into the same two 
categories, and whether, at some point in development, 
individual networks would make sudden transitions from the 
former to the latter group.   
    We were able to explore this in the data from the networks 
in the touch first then 3-task condition. The networks learn 
the count-to-fifteen task, corresponding to reciting the count 
list within the first 1,000 training iterations, and all already 
know how to point to all the blobs before they begin to learn 
to count them.  In the top panel of Figure 4, we show the 
results indicating the average performance in counting blobs 
for these networks, smoothed to make the trends in learning 
different values of N more apparent.  Very quickly, these 
networks master counting up to 3, then shortly thereafter, 
they master the ability to count to 4, 5, and 6, with 7 lagging 
only slightly behind.  For comparison, in Le Corre et al, a 
child is counted as a CP knower if they can give 6 objects 
correctly 2/3 of the time.  While counting N things is easier 
than giving N things, the networks in the top panel of Figure 
4 would meet this criterion after only 2000 training trials.  
Prior to this, they would have scored as subset knowers by 
this criterion.  It is also noteworthy that children make more 
errors when counting larger arrays (Alibali & DiRusso, 
1999), similar to our networks. 
    We also scored the errors made in counting from 1 to 9 
items in the same networks.  After the first test point when 
each network counted perfectly (3500 iterations in the 
network shown in the bottom panel of Figure 4).  All of the 
errors were well-formed counts of either one or two more or 
one less than the correct number of items.  For example, the 
errors made by the network shown in the bottom panel of 
Figure 4 were always over- or under-counts of exactly 1. 

Discussion 
 
We began our exploration of the DRAC network with a 
question: Can a recurrent neural network learn to count 
things?  Our findings clearly support a yes answer to this 
question.  In all three of the learning conditions, all networks 
mastered the ability to reliably proceed through all of the 
items in an array, touching each one in turn while producing 
the next number word in the count list.  These findings 
support the view that learning to count may not require a 

special mechanism designed to acquire the counting 
principles; instead it may depend on the reliance of a 
powerful, yet general purpose learning system, coupled with 
an environment that provides teacher-guided learning 
activities, like the ones we provide for our network. 

Our findings also demonstrate a great deal of cross-
influence between the ability to count and touch all the blobs 
in a display.  In the networks that had already master the 
touch-the-blobs task, the ability to count up to 6 blobs 
correctly could be acquired in only about 2,000 training trials 
counting displays containing from 1 to 15 items. 

The question of whether we should believe that learning to 
count involves a semantic induction has been a subject of 
controversy in the literature.  While some have argued that it 
is (Le Corre et al, 2006; Sarneca & Carey, 2008), others have 
argued against this position (Davidson et al, 2012), based on 
the finding that performance in a wide range of tasks exhibits 
graded, rather than all-or-nothing acquisition.  The pattern of 
errors in Alibali and DiRusso (1999) likewise attests to 
counting as a graded ability, one that varies in its success with 
the degree of support provided by allowing children to point 
to, or better yet to actually touch, the objects they are 
counting, and with size of the set of objects to be counted.  
Our current effort will certainly not fully resolve this issue, 
but we hope it will encourage further exploration of 
approaches that attempt to capture both the achievements and 
the limitations of human counting, viewed as a learned skill 
acquired gradually in a supportive learning environment. 
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