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ABSTRACT OF THE DISSERTATION 

 

 

Aging, immortality and persistence produced by phenotypic heterogeneity in bacterial 

populations 

 

by 

 

Audrey Menegaz Proenca 

 

Doctor of Philosophy in Biology  

 

 

University of California San Diego, 2019 

 

 

Professor Lin Chao, Chair 

 

Senescence, the process of age-specific decrease of fitness, has puzzled evolutionary 

biologists ever since the publication of On the Origin of Species. How ubiquitous among living 

creatures is this phenotypic decline that arises with age? Up until the last decade aging seemed 

limited to multicellular organisms with a clear separation between soma and germline, as stated 

by the Evolutionary Theory of Aging. Bacteria were considered functionally immortal. However, 

with the improvement of single-cell microscopy techniques, studies revealed that prokaryotes are, 
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indeed, susceptible to aging. Bacteria inheriting a conserved cell pole, harboring larger non-genetic 

damage loads, display an aging phenotype, while its sibling rejuvenates through the inheritance of 

a reduced damage load. My research shows that aging and rejuvenation represent deterministic 

aspects of bacterial physiology, deriving from the stabilization of a population around states of 

growth equilibrium. The maintenance of this equilibrium allows for proliferative immortality. I 

demonstrate that equilibrium can be disrupted by extrinsic damage, leading to the mortality of 

aging lineages while rejuvenating lineages remain immortal. Thus, the phenotypic heterogeneity 

produced by asymmetric damage partitioning leads to differential mortality in a bacterial 

population. Finally, I offer evidence for the connection between aging and the phenotype of 

bacterial persistence, where transiently dormant cells survive antibiotic treatments. This work 

demonstrates the emergence of deterministic age structures in bacterial populations, its relevance 

for the maintenance of cellular proliferation, and offers a potential application of this research for 

a pressing public health concern.   
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INTRODUCTION 

 

The evolutionary theory of aging 

Aging is defined as a decline in fitness over time, with a decrease of reproductive outputs 

and survival rates due to the internal deterioration of an organism (Rose 1991). In essence, the 

prevalence of aging seems an evolutionary contradiction: why would natural selection not oppose 

a decrease of fitness with age, when it was shown that organisms are capable of evolving longer 

lifespans (Luckinbill et al. 1984)? The most accepted explanation, stated by the evolutionary 

theory of aging, is that mutations with deleterious effects late in life tend to accumulate because 

of the declining strength of natural selection with age (Freeman and Herron 2007). Such mutations 

may also display antagonistic pleiotropic effects —beneficial for young organisms and harmful 

for old individuals —, thus being favored by selection while manifested by the most abundant age 

class of the population (Ackermann, Schauerte, et al. 2007).  

An essential requirement of the evolutionary theory, to ensure the declining strength of 

natural selection on aging organisms, is a clear differentiation between soma and germ lines. The 

disposable soma theory is considered a mechanism of the evolutionary theory of aging, specifying 

that somatic cells accumulate various forms of damage (López-Otín et al. 2013), while the 

germline must remain intact (Kirkwood 2008). In this perspective, is seemed reasonable to believe 

that unicellular organisms were immune to aging. Without a separation between soma and 

germline, a cell would divide symmetrically and produce two organisms with similar levels of 

damage. Until recently, the only way of aging known to prokaryotes was conditional senescence, 

when organisms become unculturable due to nutrient depletion and accumulation of toxic 

metabolites (Ksia̧zek 2010b, 2010a). 
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The immortality of bacteria was first questioned with the advancement of single-cell 

microscopy techniques, revealing unexpected patterns within populations. The clearly asymmetric 

division of Caulobacter crescentus (Ackermann, Stearns, and Jenal 2003) was shown to create 

distinct fates for mother and daughter cells, which was surprisingly seconded by the 

morphologically symmetric Escherichia coli (Stewart et al. 2005). These studies demonstrated that 

bacteria also suffer an age-related loss of fitness, with lower probability of survival, growth rate 

and reproductive output. For rod-shaped bacteria, aging depends on which cellular pole is inherited 

at the time of division: a newly synthesized pole or a conserved one, with the latter accumulating 

damage in the form of protein aggregates (Lindner et al. 2008). In other words, at each division 

one of the two siblings acts as the somatic lineage, aging and storing damage while the other sibling 

rejuvenates. In the next section, we shall discuss in detail the role of asymmetry and current 

findings on bacterial aging. 

 

Aging in asymmetrically dividing bacteria 

Long before aging was a recognized phenomenon in prokaryotes, when bacteria were still 

considered functionally immortal, it was clear that these organisms exhibited patterns of 

asymmetry between sister cells and well-defined cell polarity (Maddock, Alley, and Shapiro 1993). 

C. crescentus was already a model organism for the study of polarity and asymmetry due to its 

curious life cycle: at each division, a stalked cell generates a juvenile swarmer, which disperses 

and differentiates into a stalked cell in order to reproduce (Poindexter 1964). The study of 

asymmetry mechanisms in this species led to the finding of an actin-like protein, MreB, involved 

in determination of cell polarity, cell shape regulation and positioning of origins of replication 

(Gitai, Dye, and Shapiro 2004). C. crescentus revealed a fine regulation of asymmetry through the 
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inhibition of replication in the juvenile swarmer stage (Chen et al. 2010), with a clear polarity 

already implemented in predivisional cells (Tsokos and Laub 2012). The distinct stages of 

development in C. crescentus made it the first model organism for bacterial aging. 

Bacterial aging was described through single-cell microscopy, tracking individuals over 

generations. C. crescentus aging was first observed by following stalked mother cells for 300 h of 

cultivation, as it produced swarmer daughter cells. Mother cells exhibited a decrease in age-

specific reproductive output, in a rate that exceeded linear damage accumulation (Ackermann, 

Stearns, and Jenal 2003), thus aging throughout the experiment. This pioneer study was quickly 

followed by the reporting of aging in E. coli, known for its morphologically symmetric division 

(Stewart et al. 2005). In this case, although the two daughter cells look identical, the inheritance 

of distinct cells poles produced physiologically distinct individuals. Stewart and colleagues thus 

defined bacterial age as a function of pole inheritance. At each division, one of the daughter cells 

(old daughter) inherits a conserved pole from its mother, while the other (new daughter) receives 

a newly synthesized pole. Old daughters exhibit lower growth rates than their siblings, effect that 

accumulates with increasing pole age; they also produce less offspring biomass and have higher 

probability of dying, reflecting a loss of fitness with increased age. On the other hand, the new 

daughter rejuvenates at each division, diminishing the need of cellular repair through damage 

partitioning. 

A recurring limitation of early aging experiments, however, was the analysis of long-term 

asymmetry. In this context, mathematical models and simulations play an important role on 

predicting outcomes over many bacterial generations (Nyström 2007). An early model addressed 

the data collected by Stewart et al., accounting for asymmetric cell division and the possibility of 

cellular repair (Ackermann, Chao, et al. 2007). Considering the chance of survival as a function of 
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accumulated damage, the model and simulations indicated that organisms with asymmetric 

division have an advantage over those with symmetric division, even when the likelihood of 

survival is the same for both. This study presented another side of the evolutionary theory of aging, 

in which senescence could also evolve from non-genetic damage. 

 

Aging depends on asymmetric damage accumulation 

Bacteria dispose of non-genetic damage through the formation of protein aggregates, 

composed of misfolded proteins. Bacterial aggregates are classified as inclusion bodies, 

amorphous and induced by stress responses (Sabate, De Groot, and Ventura 2010), although in 

some cases amyloid aggregates, composed by insoluble fibrils, can also form (Lindner and 

Demarez 2009). Bacteria are therefore not only a model for the evolution of aging, with the 

simplest form of soma-germline separation, but also for the study of age-related phenotypes such 

as loss of proteostasis (López-Otín et al. 2013). The formation of aggregates can be beneficial by 

clearing the cell of misfolded (Lindner et al. 2008; Rokney et al. 2009) or foreign (Lloyd-Price et 

al. 2012) proteins and concentrating the damage at the poles. Once small foci of misfolded proteins 

cluster into a large polar aggregate, it becomes anchored at the cell pole and is inherited by a 

daughter cell. Therefore, an older pole tends to accumulate larger aggregates and favor the 

generation of a new daughter free of damage (Lindner et al. 2008).  

Old daughters, due to the inheritance of a conserved cell pole over generations, tend to 

inherit larger damage loads. The polar localization of aggregates is attributed to a passive 

mechanism, where freely diffusing misfolded proteins tend to aggregate in the cellular regions free 

of the nucleoid (Winkler et al. 2010; Coquel et al. 2013), usually the poles. A sufficiently large 

aggregate can no longer diffuse, remaining trapped at the pole. This mechanism is advantageous 
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because the aggregation of damage has lower energy cost than repair or solubilization of misfolded 

proteins (Winkler et al. 2010). On a longer time frame, the process of repair and disaggregation 

takes place through polar chaperones and proteases (Rokney et al. 2009; Sabate, De Groot, and 

Ventura 2010; Baig et al. 2014), allowing for the survival of old daughters despite its larger damage 

inheritance. 

Despite the strong support for protein aggregation correlating with bacterial aging, a series 

of discrepant results questioned the generality of this phenomenon. Early models considered 

asymmetric partitioning a strategy depending on environmental conditions (Watve et al. 2006), 

and microscopy experiments suggested that aging could be dependent on the infliction of extrinsic 

damage (Rang et al. 2012). Similarly, E. coli lineages were shown to display remarkably stable 

growth over hundreds of generations when observed in a microfluidic device (Wang et al. 2010; 

Taheri-Araghi et al. 2015), which promotes unstressed growth conditions. The replicative 

immortality reported by Wang et al. seemed in direct conflict with the idea that old lineages 

accumulate damage over generations, since their results showed no decline in function with the 

consecutive inheritance of old poles. Although conciliatory explanations were offered by modeling 

(Chao 2010) and a re-evaluation of microfluidic growth data (Rang, Peng, and Chao 2011), the 

prevalence of aging in prokaryotes remained controversial. All these contradictory findings raised 

questions on whether bacteria experience a deterministic form of aging, and whether physiological 

asymmetry could be considered an aging phenotype. Addressing these issues was therefore 

essential for the advancement of the field, and for the establishment of bacteria as model organisms 

for the study of aging. 
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Chapter summaries 

The present work addresses the controversies surrounding bacterial aging, conciliating the 

discrepancies raised in the literature and establishing the connection between aging in bacterial 

and eukaryotic systems. 

In Chapter 1, we show that aging and rejuvenation represent a deterministic aspect of 

bacterial physiology. By following E. coli lineages in the stable environment of microfluidic 

devices, we demonstrate that asymmetric cell division occurs in the absence of extrinsic damage. 

In these conditions, new and old lineages reach distinct states of growth equilibrium, thus 

remaining proliferative and stable over time while displaying asymmetric physiology. Because 

cells in equilibrium continuously generate daughters of the opposite polarity, we show that 

deterministic aging structures emerge from bacterial populations, where immortal new and old 

lineages are constantly connected by processes of aging and rejuvenation.  

In Chapter 2, we show that cellular aging determines the transition from immortality to 

mortality in bacterial populations. We demonstrate that the infliction of extrinsic damage disrupts 

stable equilibrium with a dosage-dependent response. When the rates of damage accumulation 

surpass a certain threshold, old lineages lose stability and become mortal. New lineages within the 

same population, however, retain immortal proliferation due to physiological asymmetry. Thus, 

the asymmetric partitioning of damage is a key process determining the immortality or mortality 

of a cell lineage facing environmental pressures. This study provides further evidence for the 

ubiquitousness of the aging process, identifying similarities between bacterial and eukaryotic 

aging cell lineages. 

In Chapter 3, we explore the potential implications of bacterial aging for a critical public 

health issue, antibiotic persistence. Most chronic infections are caused by subpopulations of 
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antibiotic susceptible bacteria in a transient state of dormancy, defined as persistence. This 

phenotype arises due to a natural and ubiquitous heterogeneity of growth states in bacterial 

populations. Nonetheless, the origin and unifying mechanism of this dormancy remains unknown, 

with several unrelated pathways being able to trigger persistence. We show that asymmetric 

damage partitioning, by producing deterministic phenotypic heterogeneity in bacterial populations, 

could be a driver of bacterial persistence. Elucidating the link between asymmetry and persistence 

may provide a new perspective in the treatment of recalcitrant infections. 
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CHAPTER 1  

Age structure landscapes emerge from the equilibrium between aging and rejuvenation in 

bacterial populations 

 

1.1 Abstract 

The physiological asymmetry between daughters of a mother bacterium is produced by the 

inheritance of either old poles, carrying non-genetic damage, or newly synthesized poles. However, 

because bacteria display long-term growth stability leading to physiological immortality, there is 

controversy on whether asymmetry corresponds to aging. Here we show that deterministic age 

structure landscapes emerge from physiologically immortal bacterial lineages. Through single-cell 

microscopy and microfluidic techniques, we demonstrate that aging and rejuvenating bacterial 

lineages reach two distinct states of growth equilibria. These equilibria display stabilizing 

properties, which we quantified according to the compensatory trajectories of continuous lineages 

throughout generations. Finally, we show that the physiological asymmetry between aging and 

rejuvenating lineages produces complex age structure landscapes, resulting in a deterministic 

phenotypic heterogeneity that is not artifact of starvation, neither a strategy induced by extrinsic 

damage. These findings indicate that physiological immortality and cellular aging can coexist in a 

single cellular context. 

 

1.2 Introduction 

Aging, defined broadly as the decline of function and consequent loss of fitness with time, 

is a ubiquitous characteristic of biological organisms (Rose 1991; Kirkwood 2008). Although 

bacteria were traditionally thought not to age, recent studies have suggested that the phenotype is 



 11 

present in asymmetrically dividing Caulobacter crescentus and Escherichia coli (Ackermann, 

Stearns, and Jenal 2003; Stewart et al. 2005; Ackermann, Chao, et al. 2007; Lindner et al. 2008). 

Because rod-shaped bacteria such as E. coli divide at the middle, a new pole is synthesized at the 

division plane with every replication, while the distal old poles are conserved from the mother 

(Figure 1.1A). Thus, each E. coli cell has an old and a new pole. Upon division, cells inheriting 

the maternal old pole are called old daughters, while the ones inheriting the newly synthesized 

pole are called new daughters. Old poles are consecutively inherited over generations, carrying 

accumulated non-genetic damage in the form of inclusion bodies, which are aggregates of 

misfolded proteins (Lindner et al. 2008; Lindner and Demarez 2009; Winkler et al. 2010; Coquel 

et al. 2013). Old daughters, inheriting larger damage loads along with old poles, display a decline 

in growth rates associated with aging, while new daughters rejuvenate by receiving less damage. 

Nonetheless, despite a succession of reports on bacterial aging (Ackermann, Stearns, and 

Jenal 2003; Stewart et al. 2005; Ackermann, Chao, et al. 2007; Lindner et al. 2008; Winkler et al. 

2010; Coquel et al. 2013; Rang, Peng, and Chao 2011; Rang et al. 2012) and the identification of 

similar asymmetry in other systems (Laney, Olson, and Sosik 2012; Coelho et al. 2013; Coelho et 

al. 2014; Fuentealba et al. 2008), the validity and significance of the phenomenon remains 

controversial. While protein aggregates are strongly biased towards old poles in E. coli and 

reportedly correlate with functional decline (Lindner et al. 2008; Rokney et al. 2009; Winkler et 

al. 2010; Coquel et al. 2013), this association was often found to be equivocal in similar systems, 

such as fission yeast (Coelho et al. 2013; Nakaoka and Wakamoto 2017). Studies in both E. coli 

and fission yeast suggested that aging is a consequence of extrinsic damage (Rang et al. 2012; 

Coelho et al. 2013), configuring their divisional asymmetry as a conditional strategy (Watve et al. 

2006) as opposed to a deterministic process. Moreover, studies following up on the first reports of 
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bacterial aging found no reduction in the growth rate of cell lineages over hundreds of generations, 

and no physiological asymmetry between old and new daughters (Wang et al. 2010). Finally, even 

when deterioration or growth rate decreases were observed, the decline could be accounted by 

starvation. The problem arises because agar pads (Stewart et al. 2005; Lindner et al. 2008; Rang 

et al. 2012) and small microfluidic devices (such as the mother machine (Wang et al. 2010; Taheri-

Araghi et al. 2015)) were used to sustain the bacteria during time-lapse microscopy. With agar 

pads, bacteria form mini-colonies and cells located in the center could become nutrient-limited 

within a few generations. With the mother machine old daughters always reside at the blind end 

of growth channels, which is most removed from the nutrient source at the opposite and open end. 

Therefore, starvation could be present in previous bacterial aging studies. 

Despite these conflicting results on bacterial aging, diverse studies have suggested 

asymmetric damage partitioning as a common mechanism of cell maintenance. Besides bacteria 

and yeast, the physiological asymmetry between daughter cells has been observed in diatoms 

(Laney, Olson, and Sosik 2012), nematodes (Valfort et al. 2018), stem cells (Moore et al. 2015; 

Bufalino, DeVeale, and van der Kooy 2013; Ogrodnik et al. 2014), and others. Thus, the 

identification of a deterministic divisional asymmetry in bacteria, leading to aging and 

rejuvenation in clonal populations, could further characterize aging at the cellular level as a 

ubiquitous process in living organisms.  

In this study, we show that deterministic age structures emerge within single populations 

of unstressed E. coli, while maintaining long-term growth stability and proliferative immortality. 

We employed two microfluidic designs to ensure culturing of bacteria in the absence of extrinsic 

damage and to avoid starvation. Our results indicate that the asymmetry between new and old 

daughters does not correspond to differential nutrient deprivation. By following bacterial 
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populations over several generations, we show that new and old lineages stabilize around two 

distinct growth equilibrium attractors, thus exhibiting stable growth over time while displaying 

consistent asymmetry. Moreover, sister lineages are constantly generated from these equilibria. 

With every division, a new mother in equilibrium generates a new daughter like itself, and an old 

daughter that loses function over generations as it ages towards the equilibrium attractor of old 

lineages. The opposite pattern is verified when new daughters generated from old mothers 

rejuvenate towards their own equilibrium attractor. Therefore, constant patterns of aging and 

rejuvenation connect distinct growth equilibria within clonal populations, providing evidence for 

deterministic age structures in bacteria. These results suggest that key aspects of biological aging 

may have originated in single cell organisms, such as bacteria. We propose that the emergence of 

age structures allowed bacteria to evolve a more complex life history by adapting different stages 

to different ecological challenges. 

 

1.3 Results 

1.3.1 Physiological asymmetry does not derive from starvation 

To determine the presence of asymmetric damage partitioning in the absence of extrinsic 

damage, and to test if starvation — rather than aging — could account for the difference between 

old and new daughters, we measured bacterial growth in microfluidic devices. Our measurements 

are hereby presented as doubling times, corresponding to elongation rates, which represents a 

physiologically meaningful parameter, while exhibiting lower variance than division intervals 

(Figure 1.A.1). Our first microfluidic design, known as the mother machine (Wang et al. 2010; 

Taheri-Araghi et al. 2015) (Figure 1.1B), is designed to trap cells in a narrow linear channel 

(oriented vertically for reference) with a blind end at the bottom. A constant supply of nutrient 
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media flows horizontally, carrying away cells growing out of the traps and delivering nutrients 

through the open end of the features.  Thus, the bottom cells are located farthest from the nutrient 

source and a starvation gradient could exist. An attractive feature of the mother machine is that the 

linear channel reduces the tracking of cells to a one-dimensional problem. 

In our design of the mother machine, the growth traps harbored four cells for complete 

division cycles. These bacterial cells were ordered as old, new, new, and old daughters, and 

denoted as OO, ON, NN, and NO (Figure 1.1C), since the channel is too narrow for the cells to 

switch places. OO represents the cell that was an old daughter the last two generations, ON is a 

new daughter born of an old mother, and so forth. We found that ON cells displayed faster doubling 

times than OO (two-tailed paired t test, t = -23.152, df = 555, p < 0.001; Figure 1.A.2), reflecting 

the expected asymmetry between new and old daughters. However, the fact that ON is also closer 

to the nutrient source than OO (Figure 1.1C) suggests that either starvation or asymmetry could 

produce this pattern. Adding the third cell NN is still confounding because both starvation and 

aging predict that it has a shorter doubling time. It is only the inclusion of NO, and its comparison 

to NN, that distinguishes between the two explanations. While aging predicts that the rank of 

doubling times is NN < NO, since NN is the new daughter, starvation predicts the opposite due to 

NO being closest to the nutrient source. Our measurements of these cells provided clear support 

for aging over starvation, with a pair-wise comparison finding NO to display a significantly longer 

doubling time than NN (Figure 1.2A, Figure 1.A.2 and Table 1.A.1).  

The above result alone should eliminate starvation as the explanation for the observed 

physiological differences between old and new daughters, but we tested this conclusion even more 

rigorously. We employed a second microfluidic design (Mondragón-Palomino et al. 2011; Ullman 

et al. 2012), comprising large growth chambers and controlling for positional nutrient deprivation 
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by opening both ends of the traps (Figure 1.1D). In these chambers, the larger width spread cells 

into a monolayer of approximately 300 bacteria, which pushed against each other and shuffled 

positions as they elongated. Unlike the mother machine, this device did not preferentially retain 

either the old or the new daughter. Thus, we named this design, for the purpose of this study, the 

daughter device, and used it to test whether the doubling time relationship observed for OO, ON, 

NN, and NO in the mother machine could be replicated. To assemble a data set equivalent to Fig. 

2A, we identified OO cells in the daughter device as those that had been old for at least two 

generations, and then followed them forward in time to obtain the series OO, ON, NN, and NO. 

The relationships measured for OO, ON, NN, and NO in the mother machine (Figure 1.2A) and 

the daughter device (Figure 1.2B, Figure 1.A.2 and Table 1.A.1) were nearly identical. Most 

importantly, NO (20.18±0.97 min, mean ± s.d., n = 620) still had a significantly longer doubling 

time than NN (19.60±0.94 min, n = 620) in the latter device. To ensure that the shuffling was 

effective, we measured cell positions in the daughter device and found that OO, ON, NN, and NO 

experienced the same average distances from the open sides and nutrient sources (Figure 1.2C-D). 

Thus, these results indicate that bacterial populations display asymmetric physiology in the 

absence of both extrinsic damage and starvation. 

The strongest evidence that aging rather than starvation accounts for the difference between 

old and new daughters comes from a comparison of the rank order of OO, ON, NN, and NO 

doubling times. In both microfluidic devices, the rank was OO > NO > ON > NN (Figure 1.2A-

B), indicating that bacterial aging is more quantitative than just new daughters growing faster than 

old daughters. Rather, because OO and NO are not equivalent old daughters (mother machine: t = 

-6.831, df = 119.72, p < 0.001; daughter device: t = -7.876, df = 1125.5, p < 0.001; one-tailed t 

tests), history and time also matter. In the next sections, we explore and quantify the effects of 
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time on bacterial aging. 

 

1.3.2 Determinism and stochasticity explain doubling time variance 

The relationship between the doubling times of mother and daughter cells can be examined 

by a phase plane on which the doubling times of the new (T1) and old (T2) daughters are plotted 

against the doubling time T0 of their mother (Figure 1.3A and Table 1.A.2). Due to the large 

variance present in the data, we observed minimal improvement of fit for different non-linear 

models Figure 1.A.3A). Mother machine data, thus analyzed through linear regression, revealed a 

positive relationship between T0 and the pooled doubling times of the daughters (Figure 1.3A, 

black line; β = 0.28, t = 13.34, p < 0.001). Nonetheless, as mentioned above and in Figure 1.A.2, 

new and old daughters exhibited distinct doubling times. In the phase plane, this physiological 

distinction produces a visual separation between new and old subpopulations. 

To verify whether T1 and T2 subpopulations would be better explained by individual 

models, we performed a two-way ANCOVA evaluating the effect of T0 and age (new or old) on 

daughter doubling times. While both T0 (F = 209.15, p < 0.001) and age (F = 336.69, p < 0.001) 

had a significant effect on T1 and T2, there was also interaction between factors (F = 10.67, p = 

0.001). This indicates that the relationship between T1 or T2 and T0 is best described by distinct 

slopes for each subpopulation. The independent models for new (linear regression; β = 0.22, t = 

8.85, p < 0.001) and old daughters (β = 0.35, t = 11.44, p < 0.001) are shown in Figure 1.3A. Thus, 

slow growing mothers produced daughters that were also slow, a pattern consistent with the 

prevalence of aging generated by asymmetric damage partitioning. Most importantly, the T2 
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regression line lay above and had a larger slope than the line for T1, which are expected signatures 

of aging affecting old daughters more.  

Despite following the trends described by linear regression, new and old subpopulations 

displayed large variance. To determine the sources of this variance, we partitioned the sums of 

squared deviations for T1 and T2 doubling times (see Methods). We started by identifying the total 

sum of squares as the deviation of each doubling time from the population mean, obtaining SST = 

6737.66. Some of this total variance was produced by the positive relationship between a mother 

and its daughters (β = 0.28; Figure 1.3B, bottom panels). This fraction of the variance, SSM, was 

determined as the deviation of predicted pooled T1 and T2 from the population mean doubling 

time, 22.45 min. Thus, the sum of squared deviations due to maternal inheritance was obtained as 

SSM = 557.76. Due to asymmetry, however, doubling times predicted by two separate linear 

models deviated from the values predicted by the mother alone (Figure 1.3B, middle panels). This 

deviation, produced by asymmetry, was determined as SSA = 926.32. Finally, observed doubling 

times deviated from predicted values due to stochasticity, with SSS = 5253.58 (Figure 1.3B, top 

panels). By combining these values, the fraction of the variance determined by deterministic 

sources is given as (SSM + SSA)/SST = 0.22, while the remaining variance was explained by 

stochastic factors SSS/SST = 0.78. Daughter device populations obtained similar results, with 

24.9% of the variation explained by non-genetic maternal inheritance and asymmetry (Table 

1.A.3). 

These analyses suggest that the inheritance of damage across generations produces 

variance in doubling times of new and old daughters. Mother bacteria with longer doubling times 

likely carry larger accumulated damage loads, thus producing daughters with longer doubling 

times as well. Since these mothers partition damage asymmetrically upon division, asymmetry is 
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also a source of deterministic variance in bacterial populations. In the following sections, we 

further analyze the patterns emerging from deterministic sources in our populations. 

 

1.3.3 Cell lineages are predicted to achieve growth equilibrium 

To investigate stable patterns arising from lineages in the mother machine, we investigated 

predictions observed in the phase plane. The regression lines of new and old subpopulations 

displayed slopes shallower than the identity line, indicating that conditions T1 = T0 or T2 = T0 

must exist where each linear model crosses identity (Figure 1.3C). This intersection is predicted 

to be a stable point (May 1976), to which lineages converge by inheriting either pole consecutively 

over generations (Figure 1.3D). Importantly, this property does not depend on a linear relationship 

between doubling times of a mother and its daughters. The same prediction arises from non-linear 

relationships (Figure 1.A.3), provided that the slope at the intersect with identity is less than 1. 

Thus, bacterial populations are expected to stabilize around two equilibrium points where the 

doubling time of the daughter equals the doubling time of the mother, or T1 = T0 = 21.4 and T2 = 

T0 = 23.1 min. Old and new subpopulations from the mother machine concentrated around these 

predicted equilibrium values in the phase plane (Figure 1.3E). 

The verification of T1 and T2 equilibria requires long term lineage data. The longest old 

daughter lineages were obtained from the mother machine, since old daughters remain trapped at 

the bottom of growth wells (Figure 1.1C) for the length of the experiment. Our results revealed 

that the doubling times of old lineages remained remarkably stable over 53 to 60 generations 

(Figure 1.3F), which is expected in the presence of equilibrium. By following lineages in the phase 

plane, we observed that doubling times consistently cycled around an equilibrium value of 23.1 

min, despite stochastic patterns being also present (Figure 1.3G). Thus, these results suggest the 
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existence of a T2 equilibrium.  Since new daughters are only present in the mother machine traps 

for two generations, new lineages from this device were too short to verify the T1 equilibrium.  

 

1.3.4 Stable equilibria are connected by aging and rejuvenation 

Although the mother machine provided data for a strong characterization of the T2 

equilibrium, it could not harbor enough new daughter divisions to verify the T1 equilibrium. Thus, 

we switched to the daughter device, which retains equally well both daughters (Figure 1.2C-D). 

Following the approach used for characterizing the T2 equilibrium in the mother machine, we 

tracked T1 and T2 lineages inheriting the same pole consecutively over generations. The same 

general pattern seen in the mother machine was observed, except that two equilibria were now 

detected. Old and new daughter lineages achieved distinct equilibrium values of 20.6 and 19.5 min 

respectively, displaying doubling time stability over time (Figure 1.4A). On the phase plane, new 

and old lineages cycled around their respective equilibrium point (Figure 1.4B), corresponding to 

the distinct physiological states produced by asymmetric division. 

Because the doubling times of old lineages remain centered around the T2 equilibrium, the 

mean value of old daughters in equilibrium does not manifest signs of progressive deterioration or 

aging over time (Figure 1.3F and Figure 1.4A). Instead, observing aging in a bacterial population 

requires that lineages are displaced from the T2 equilibrium. Such displacements will continuously 

occur when the population harbors both the T1 and T2 equilibria. When a new daughter at the T1 

equilibrium becomes a mother, its new daughter remains at the same equilibrium, but its old 

daughter is now far removed from the T2 equilibrium (Figure 1.4C). The old lineage generated 

from this daughter will converge over generations to the T2 equilibrium (Figure 1.3D), displaying 

longer doubling times with each division, thus manifesting aging. As a result, aging is predicted 
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by the phase planes to be an integral part of bacterial populations if the T1 and T2 equilibria are 

present.  

To test this prediction, we tracked lineages emerging from either equilibrium in the 

daughter device. These lineages belong to the same population as presented above, but following 

cells that are displaced from their correct equilibrium. We identified new daughters at equilibrium 

(Figure 1.4B) and tracked a lineage of old daughters produced by these new daughters. We 

followed these old lineages over generations, and their trajectories confirmed a steady aging trend 

that connected the two equilibria (Figure 1.4D-E, Table 1.A.4). The transition from one 

equilibrium to the other required about three generations (Figure 1A.4). Similarly, we followed 

new daughter lineages emanating from the T2 equilibrium as they converged towards the T1 

equilibrium. Because this convergence was now downwards, doubling times decreased with each 

generation. Thus, the emanating new lineages were rejuvenated (Figure 1.4D-E), connecting the 

two equilibria in the opposite direction. The same trend shown in Figure 1.4D was observed when 

expanding our analysis to 5 generations (Figure 1A.4).  

We tested whether these observations corroborated the characterization of the equilibria as 

stable attractors. By analyzing the doubling time distributions of each generation presented in 

Figure 1.4D, we followed lineages leaving the opposite equilibrium and approaching their own. 

Following new lineages originated from the T2 equilibrium for three generations, we observed that 

these doubling time distributions varied significantly (Figure 1.5A; one-way ANOVA, F = 17.69, 

p < 0.001). A post-hoc analysis confirmed our observation that each new daughter distribution was 

increasingly displaced from the T2 equilibrium (Figure 1.A.4). This displacement happens 

gradually, with each generation displaying doubling times closer to the T1 equilibrium. In fact, the 

predicted equilibrium value of 19.5 min represented the true mean of the third new daughter 
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generation OONNN (one-sample t test, t = 0.512, p = 0.610), but not of its mother or grandmother 

(OONN and OON) (Table 1.A.5). This structure was also verified for old lineages leaving the T1 

equilibrium towards the T2 stable value of 20.6 min (Figure 1.5B, Figure 1.A.4, and 

Supplementary Table 1A.5; one-way ANOVA, F = 12.88, p < 0.001). These analyses suggest the 

presence of a structured doubling time increase or decrease as cells transition between equilibria 

through processes of aging and rejuvenation. 

The convergence of the emanating lineages reconfirmed the stability of the system. Our 

results showed that, besides representing equilibrium states for long term lineages, the T1 and T2 

equilibria also behave as attractors that serve as targets for displaced lineages. 

 

1.3.5 Maintenance of equilibrium in the presence of stochasticity 

To verify the stability of equilibrium attractors in the presence of stochasticity, we 

performed a mathematical analysis based on long-term old lineage data (Figure 1.3). For mother 

machine lineages, which represent the longest observation of the old lineage equilibrium, we had 

shown that stochasticity represents 78% of the doubling time variance. Although our deterministic 

factors predict stability (Figure 1.3 and Figure 1.A.3), we considered whether stochasticity would 

prevent cell lineages from remaining in equilibrium over generations. The complete mathematical 

analysis is provided in Note 1A.1. 

The combined effect of maternal doubling times and asymmetry estimate old daughter 

doubling times through a linear model of slope a = 0.347 and intercept b = 15.091 (Figure 1.3A). 

Because the slope predicted by these deterministic sources is shallower than 1, we observed the 

attractor T0 = T2 = 23.12 min. However, stochasticity could produce the variability observed in 

T2 by acting on either a (σ1) or b (σ2) (Figure 1A.4). In this case, T2 = T0*(a + ξ1) + b + ξ2, where 
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ξ1 and ξ2 are random variables drawn each generation from a Gaussian distribution with standard 

deviation of σ1 and σ2, respectively. σ1 could originate from stochasticity in processes such as 

asymmetric damage partitioning. A large σ1 could lead to a continuous displacement of the old 

lineage if a2 + σ1
2 ≥ 1, thus not allowing for stabilization (Note 1.A.1). σ2, on the other hand, 

represents an additive source of noise that does not disrupt stability. 

To estimate the values of σ1 and σ2, we considered the linear model for our mother machine 

old lineages. If we assume stochasticity to act only on the slope a = 0.374, then σ1 ≠ 0 and σ2 = 0. 

We can estimate σ1 by calculating the deviation from a for slopes calculated for each experimental 

pair of T0 and T2 in equilibrium, or (T2 – b) / T0 = a + σ1.  By performing this calculation, we 

obtained σ1 = 0.07. The opposite scenario where σ1 = 0 and σ2 ≠ 0 is also possible, in which case 

T2 – T0*a = b + σ2. In this case, our experimental doubling times indicated that σ2 = 1.62. A 

biologically realistic scenario would likely exhibit stochasticity in both σ1 and σ2, resulting in 0 < 

σ1 < 0.07 and 0 < σ2 < 1.62. Thus, σ1 = 0.07 represents the maximum stochasticity that could 

influence the stability of our population. This value satisfies the condition for stabilization where 

a2 + σ1
2 < 1, for 0.3472 + 0.072 = 0.125. Therefore, the old lineage equilibrium observed in Fig. 3 

behaves as a stable attractor.  

We further tested this assertion by estimating the doubling times of simulated old lineages 

for different starting of σ1 (Figure 1.5C-D). While an increase in stochasticity dramatically disrupts 

the stability of T2 over time, σ1 = 0.07 reproduces the pattern observed in our data (compare Figure 

1.5D to Figure 1.3F). Because lineages maintain stability when a2 + σ1
2 < 1, equilibrium will be 

present for σ1 < 0.94. The disruption of stability is easily visualized in Figure 1.5E, where we 

simulated doubling times for a range of σ1 values, following old lineages for 100 generations 

(5,000 replicates for each σ1). As σ1 approaches 0.94, the doubling time variance increases sharply, 
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indicating the loss of stabilizing properties. In this scenario, old daughter doubling times would 

become increasingly large, which in real bacteria would mean the arrest of growth and proliferation. 

As Figure 1.5E demonstrates, this threshold occurs for a much larger stochasticity than observed 

in our experiments.  

Taken together, the data from this study indicates that bacterial populations displaying 

immortal proliferation reach states of physiological equilibrium for new and old lineages. These 

equilibria behave as attractors, to which displaced lineages constantly converge through aging and 

rejuvenation. Moreover, the equilibria display stabilizing properties despite the presence of 

stochasticity in the system. Therefore, deterministic patterns of stability connected by constant 

aging and rejuvenation emerge from bacterial populations in the presence of biological 

stochasticity. 
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Figure 1.1 - Polarity structure of rod-shaped cells in microfluidic devices.  

(A) Upon division, E. coli inherit a conserved old pole, along with a newly synthesized pole formed at the site of 

fission. On the next division, the old pole is again segregated to one sibling, which is called an old daughter, while the 

maternal new pole is inherited by the other sibling, called a new daughter. Old poles are consecutively inherited 

throughout generations, carrying accumulated non-genetic damage. (B) The mother machine design allowed imaging 

of ~30 growth wells per experiment, with each well harboring an old daughter lineage. Large flow channels (top) 

provided fresh nutrients to the traps, with the flow preventing the formation of biofilms on the device. (C) Within the 

mother machine traps, the structure of bacterial lineages maintains a constant pattern. The oldest cells (OO) remain at 

the closed end, generating another daughter like itself and a new daughter (ON) upon division. When this new daughter 

divides, its old daughter (NO) will be located by the opening of the well, therefore closer to the nutrient source than 

its young sibling (NN). A doubling time asymmetry generated solely by starvation would predict that NO cells grow 

faster than NN. (D) The daughter device consisted of large growth chambers, flanked by two wide flow channels 

providing fresh medium to the colony. Since two-dimensional colonies can grow feely in this device, the lineages 

exhibit no rigid polarity structure. Scale bars = 10 µm. 
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Figure 1.2 - Doubling time asymmetry in the absence of starvation and stress.  

(A) Bacteria from the mother machine were categorized as OO, ON, NN and NO (n = 882, 882, 105, 105 cells), 

reflecting their polarity and position within the growth traps. ON cells displayed faster doubling times than OO. 

Similarly, NN grew faster than NO (two-tailed paired t test, t = -2.308, df = 104, p = 0.023) despite the latter being 

closer to the nutrient source. (B) Doubling times of OO, ON, NN and NO cells (n = 556, 556, 620, 620 cells) from the 

daughter device showed the same pattern as in the mother machine. The doubling time relationships OO > ON (t = -

17.219, df = 555, p < 0.001) and NO > NN (t = -13.564, df = 619, p < 0.001) were again verified by two-tailed paired 

t tests. Boxplots show median (center line), first and third quartiles (box limits), and minimum and maximum 

(whiskers) (C) Representation of cells within the chamber, according to their coordinates at birth. The vertical line 

represents the midline of the chamber, which is open along the Y axis on both sides. (D) We analyzed the data from 

(C) by measuring the distance of each cell from the midline of the chamber at the moment of birth, and verified no 

localization bias among sibling pairs within the daughter device (OO-ON p = 0.12, and NO-NN p = 0.98, Wilcoxon 

Signed-Ranks Test). Therefore, doubling time differences represent and effect of aging as opposed to starvation. 
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Figure 1.3 - Doubling time relationships predict stabilization at equilibrium points.  

(A) Old daughters (23.127 ± 1.903 min, n = 987 cells) displayed longer doubling times than their new siblings (21.778 

± 1.517 min, n = 987 cells) in the mother machine (t = -21.884, df = 986, p < 0.001, paired one-tailed t test), resulting 

in a separation between new and old subpopulations in the phase plane. (B) The variance in T1 and T2 was partitioned 

into three components through the estimation of sum of squared deviations. Left: Shaded areas represent the variability 

explained by each component. Maternal doubling times explain the deviation from the population mean; asymmetry 

explains the deviation from values predicted by T0 alone; and stochasticity explains the deviation of observed T1 and 

T2 from values predicted by asymmetry. Right: Density distributions showing increasing variance as more 

components are added to doubling time estimates. (C) Because the slopes of linear models between T0 and T1 or T2 

are shallower than the identity line, stable points arise at the intersection between these lines and identity. (D) 

Graphical representation of T2 lineages converging toward the predicted equilibrium through the continuous 

inheritance of old poles. (E) Most of the data points concentrated around the predicted attractors, as shown by ellipse-

like confidence regions ranging from 15% to 95% confidence. (F) Doubling times of old lineages from the mother 

machine shown over 24 h, as 13 independent lineages (n = 745 cells) remain stable over time. (G) Progression of a 

randomly chosen old lineage around the predicted equilibrium, which behaves as an attractor for the dynamic 

trajectory of the lineage over 60 generations. 
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Figure 1.4 - New and old daughters reach equilibrium in the daughter device. 

(A) New (19.365±0.907, n = 158) and old lineages (21.177±1.237, n = 116), represented by those inheriting the same 

pole for at least 4 generations, exhibited stably distinct doubling times (t = 13.354, df = 200.66, p < 0.001, one-tailed 

t test) over time. (B) By following these lineages on the phase plane, we determined the equilibrium points based on 

the linear relationships between T0 and T1 or T2. A two-way ANCOVA revealed a significant effect of T0 (F = 460.3, 

p < 0.001) and age (F = 334.2, p < 0.001) on daughter doubling times (n = 2400), with both linear models displaying 

similar slope (F = 1.051, p = 0.305). (C) Graphical representation of two daughters born from a mother at T1 

equilibrium. While its new daughter remains at equilibrium, its old daughter displays a longer doubling time. (D) Old 

lineages born from T1 equilibrium (generation 1) converge towards T2 equilibrium over three generations. The same 

is observed for new lineages born from T2 equilibrium, which converge towards T1 equilibrium over time. (E) In the 

phase plane, we can observe the trajectory of cells born from the opposite equilibrium as they consecutively approach 

the equilibrium that matches their polarity. Error bars represent mean ± s.e.m. Old lineage n = 370, 179, 70, 30; new 

lineage n = 291, 139, 62, 24 cells. 
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Figure 1.5 - Doubling time equilibria have attractive properties for displaced and stable lineages. 

(A and B) Displaced lineages from the daughter device. (A) The doubling time distribution of a 

new lineage born from an old ancestor at the T2 equilibrium shifts towards shorter doubling times 

with each generation. After three generations of rejuvenation, the distribution becomes centered at 

the T1 equilibrium. (B) The opposite pattern appears from old lineages generated from the new 

equilibrium, which converge towards the T2 attractor over generations (Table 1.A.5). (C, D and 

E) Evaluation of stochasticity in silico based on mother machine data (Figure 1.3). (C) Doubling 

times of in silico old lineages starting from the T2 equilibrium, for increasing values of σ1 in T2 = 

T0*(a + σ1) + b + σ2 (Note 1.A.1). Stochasticity disrupts stability if a2 + σ1
2 ≥ 1. (D) Doubling 

times generated for σ1 = 0.07, the maximum stochasticity expected from our experimental data. 

(E) Mean doubling time variance of in silico old lineages followed for 100 generations (5,000 

replicates) for a range of σ1 values (0.0001 to 1). When σ1 > 0.94, the stability requirement a2 + 

σ1
2 < 1 is no longer fulfilled. Shaded area represents standard deviation. 
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1.4 Discussion 

In this study, we showed that the asymmetric partitioning of damage by mother bacteria 

explains the phenotypic distinction between old and new bacterial daughters, resulting in a 

landscape of aging and rejuvenation due to the transmission of damage down the daughter lineages. 

This landscape, quantified in the absence of stress or starvation, is visualized on a phase plane 

showing the doubling times of the old and new daughters as a function of the doubling time of the 

mother (Figure 1.3A). We found that the doubling times of new and old lineages converged to 

distinct equilibrium values, T1 and T2 respectively, where they remained stable over time. 

Doubling times at the T1 equilibrium are shorter due to the inheritance of lower damage loads by 

new daughters. However, many cells within a mixed population exhibit doubling times that do not 

reside at equilibrium. For example, when a new daughter in equilibrium divides, it produces both 

a new and an old daughter. While the new daughter doubling time remains at the T1 equilibrium, 

the old daughter is born at a distance from the T2 equilibrium (Figure 1.5C). As this old daughter 

reproduces, the lineage it creates converges onto the T2 equilibrium (Figure 1.3C and Figure 1.5D). 

During the convergence, it experiences increasing doubling times and aging. Reproduction by old 

daughters in equilibrium, likewise, produces lineages of new daughters that experience 

rejuvenation through decreasing doubling times, as they converge to the T1 equilibrium (Figure 

1.5D). Thus, the equilibria are stable attractors at which equilibrium lineages remain and to which 

displaced lineages converge. It is the behavior of these lineages, which emanate from one 

equilibrium and converge onto the other, that drives the dynamics of constant aging and 

rejuvenation in bacterial populations. 

We interpret these equilibria to result from the opposing effects of aging and rejuvenation. 

All bacterial cells experience aging and rejuvenation as they grow and divide. Aging is driven by 
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the acquisition of damage through the amount a cell receives from its mother, and the de novo 

amount it accumulates during its lifetime (Chao 2010; Rang, Peng, and Chao 2011). This maternal 

contribution is evidenced by the positive slope for the regression of the doubling times of daughters 

onto their mothers (Figure 1.3A). Mothers with longer doubling times generate daughters that also 

take longer to divide, presumably because these mothers transmit larger damage loads. This 

relationship is the bacterial version of the Lansing effect of rotifers, in which the offspring of older 

parents have shorter lifespan than the offspring of younger (Albert I. Lansing 1947; A. I. Lansing 

1948). Rejuvenation results from the dilution of damage caused by the synthesis of new and 

damage-free materials by a cell, as indicated by the inheritance of a newly synthesized cell pole. 

The two stable equilibria are achieved when the dilution and acquisition of damage balance each 

other, such that a lineage allocates the same amount of damage from mother to daughter every 

generation. Because asymmetric partitioning allocates less damage to new daughters, dilution is a 

stronger factor in these cells, resulting in a shorter doubling time at equilibrium. For the same 

reasons, new daughters produced by old daughters in equilibrium experience a sudden increase in 

dilution, displaying doubling time rejuvenation as they approach the T1 equilibrium. On the other 

hand, because old daughters receive larger damage loads by asymmetric partitioning, they 

experience the opposite of new daughters. Rejuvenation also demonstrates that the distinct 

physiological states of new and old daughters are not produced by mutations. If mutations 

accounted for this difference, new daughter lineages produced by the T2 equilibrium could not be 

rejuvenated. 

The observation of large bacterial populations comprising both the T1 and T2 equilibria is 

essential for understanding the processes of bacterial aging and rejuvenation. The critical role of 

the two equilibria is demonstrated by the effect of witnessing only one equilibrium, through the 
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hypothetical case of a symmetrical bacterium (Figure 1.3B). With symmetry, identical old and new 

daughters are produced upon division and the population stabilizes around a single equilibrium. 

As a result, any observed variation of doubling times around equilibrium is properly attributed to 

stochastic noise, rather than aging and rejuvenation (Chao et al. 2016). A similar observation 

derives from the observation of the T2 equilibrium in the mother machine. While this design was 

extraordinarily innovative for the study of bacteria in physiological steady states (Wang et al. 

2010), the stability of the single T2 equilibrium, when viewed in isolation (Figure 1.3D-E), can 

give the impression that bacterial aging does not occur. Without a T1 equilibrium to create 

emanating lineages converging to T2 equilibrium, the cells in a mother machine appear to behave 

as symmetrical bacteria that do not age. 

The emergence of age structures in bacterial populations through lineages of old and new 

daughters brings a new perspective to traditional views of biological aging. Although the 

progressive functional decline in old-pole bacteria comes to a halt once the lineage reaches 

equilibrium, we anticipate that an increased damage accumulation induced by extrinsic stress could 

result in a continuous deterioration leading to mortality — a more traditional definition of aging. 

In fact, the inheritance and accumulation of non-genetic damage is associated with aging in both 

bacteria (Lindner et al. 2008; Lindner and Demarez 2009; Winkler et al. 2010) and traditional 

cellular systems (Fuentealba et al. 2008; López-Otín et al. 2013; Moore et al. 2015), which could 

propose a unifying cause for aging at the cell lineage level. By redefining the old daughter as the 

continuation of the mother (Stewart et al. 2005; Ackermann, Chao, et al. 2007; Ackermann, 

Schauerte, et al. 2007), bacterial replication can be seen as an individual mother bacterium budding 

off new daughters, thus retaining damage to produce rejuvenated individuals. Comparably to 

budding yeast (Higuchi-Sanabria et al. 2014) and the bacterium Caulobacter crescentus 
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(Ackermann, Stearns, and Jenal 2003; Ackermann, Schauerte, et al. 2007; Tsokos and Laub 2012), 

the rejuvenated new daughters of E. coli represent a physiological juvenile, although 

morphologically indistinguishable from the mother. With the evolution of a distinction between a 

mother and a juvenile state in bacteria and other systems, partly due to asymmetric damage 

partitioning, age structure emerges in the population. As a juvenile daughter ages, its different life 

stages could experience different ecology and selection pressures. Future explorations remain 

necessary to determine the resilience of these age structures in face of such extrinsic pressures. 

Taking these notions together, bacteria could serve as a model for the evolutionary origins of aging, 

providing quantifiable long-term data on cellular aging and rejuvenation. While aging in bacteria 

and traditional organisms will always have their differences, it may be that some key features of 

biological aging arose with the first microbes. 

 

1.5 Materials & Methods 

1.5.1 Bacterial strains and growth conditions 

All experiments were performed with K-12 E. coli wild-type strain MG1655. Before each 

experiment, cultures were inoculated in Luria-Bertani medium (LB broth; per liter: 10 g tryptone, 

5 g yeast extract, 5 g NaCl; Sigma-Aldrich) and grown overnight at 37° C with agitation. For 

culturing within microfluidic devices, the medium was supplemented with 0.075% Tween 20 to 

prevent the formation of biofilms. 

 

1.5.2 Microfluidic device design 

Two designs of microfluidic devices were used in this study. The first was based on the 

original mother machine design (Wang et al. 2010), modified for the inclusion of more flow 
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channels and kindly provided by Ryan Johnson (University of California, San Diego). This design 

consisted of 16 flow channels bearing 2000 wells (1.25 x 30 x 1 m) each. When loaded into the 

device, bacteria enter the growth wells and remain trapped at the closed edge, consecutively 

inheriting old poles throughout the experiment. The wells comported up to seven cells at a time, 

before cells were washed into the large flow channel. The second design, here called the daughter 

device, was originally designed for the study of genetic oscillators (Mondragón-Palomino et al. 

2011) and comprises 48 growth chambers (40 x 50 x 0.95 µm) distributed in four columns; the 

chambers are flanked by 10 µm wide channels that provided fresh culture medium to bacteria 

throughout the experiment. For both devices, master silicon wafers were used as negative molds 

for the construction of polydimethylsiloxane (PDMS) microfluidic chips. Each soft lithography 

process yields 8 to 12 devices, which are attached to 24 x 40 mm coverslips through a Si-O-Si 

covalent bond, after exposure to O2 and UV light.  

 

1.5.3 Cell loading and experimental conditions 

For loading the devices, overnight grown cultures were centrifuged for 2 min at 5300 g and 

supernatant media discarded, followed by pellet resuspension in 50 µL LB-Tween 20 medium. 

Microfluidic devices were placed in a vacuum chamber for 10 min, and then loaded with bacteria 

by laying 3 µL of culture over the loading port. After verifying successful filling of the channels, 

input and output 60 ml syringes, containing 30 ml of culture medium and 10 ml of MilliQ water 

respectively, were attached to the ports. The medium inlet was refilled as needed for the length of 

each experiment. All experiments were performed at 37º C with constant supply of growth medium 

to ensure stable growth conditions. Replicates were performed in four independent microfluidic 

devices, and imaging began immediately after loading bacteria into the chambers.  
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1.5.4 Time-lapse image acquisition 

Cell movies were collected by a Nikon Eclipse Ti-S microscope, with imaging intervals 

controlled by NIS-Elements AR software. Phase imaging of mother machine devices followed 2 

min intervals, while 20 s intervals were used for the daughter device to ensure the correct tracking 

of all lineages.  

 

1.5.5 Image analysis for the quantification of bacterial growth 

Images were analyzed with the free software ImageJ (NIH, https://imagej.nih.gov/ij). By 

following microscopy images over time, we obtained growth and position information for each 

individual cell present in the field of acquisition. Cell coordinates were recorded as Regions of 

Interest (ROI) and annotated according to pole inheritance. From the ROIs, we determined the cell 

centroids, its length immediately before and after division, and the interval between cell divisions. 

Elongation rates (r) and corresponding doubling times (ln(2)/r) were calculated from the data, and 

from the polarity annotation we determined maternity, sibling pairs and lineage trees. To ensure 

that the measurements were unbiased, we also performed blind data collections where cell length 

and time of division were recorded without previous knowledge of asymmetry and pole inheritance. 

 

1.5.6 Doubling time analysis 

Statistical analysis was performed using the software R version 3.4.1 (R Core Team 2017). 

p-values < 0.05 were considered statistically significant. Sample sizes were determined according 

to previous studies in microfluidic devices (Wang et al. 2010), which reported doubling times of 

old and new daughters in the mother machine for the strain MG1655. Doubling times were 
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recorded as defined above, and statistically analyzed without data transformations or corrections. 

Doubling times of new-old sibling pairs were compared through paired t tests as indicated in the 

figure legends. When analyzing doubling time relationships in the phase plane, linear regressions 

were performed between T0 and T1 or T0 and T2. Two-way analyses of covariance (ANCOVA) 

were performed to evaluate the effect of T0 and age (new or old) over T1 and T2. From the linear 

regressions, we determined the equilibrium points as the intersection between each linear model 

and the identity line, thus indicating a stable point where T0 = T1 or T0 = T2. Sample sizes 

(individual cells) are indicated along with reports of statistical analyses, usually located in the 

figure legends. 

Determination of cell positioning within the daughter device. Centroids obtained for each 

cell at birth were evaluated according to their distance from the meridian of the growth chamber 

(horizontal axis). The chambers are open on both sides along the vertical axis, therefore only the 

localization along the horizontal axis is relevant for starvation analyses. 

 

1.5.7 Partitioning the sum of squared deviations 

We partitioned the variance present in our data according to deterministic and stochastic 

sources. Using the sum of squared deviations method, the total variability (SST) of daughter 

doubling times was determined as the sum of T1 and T2 deviation from the population mean 

doubling times, or 

𝑆𝑆𝑇 =  ∑ (𝑇1𝑖 − 𝑇̅𝑖)
2𝑛

𝑖=1 + ∑ (𝑇2𝑖 − 𝑇̅𝑖)
2𝑛

𝑖=1    (1) 

The first component of the total variance comprised the variability produced by the positive 

relationship between T0 and pooled T1 and T2, described by the line equation 

𝑇̂𝑖 = 0.283 × 𝑇0 + 15.897   (2) 
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The deviation of values predicted by the equation above from the mean daughter doubling 

times thus represent the variability introduced by the effect of a mother on its daughters: 

𝑆𝑆𝑀 =  2 × ∑ (𝑇̂𝑖 − 𝑇̅𝑖)
2𝑛

𝑖=1  (3) 

Because new and old subpopulations are best described by individual linear models rather 

than a single one, variability is also introduced by asymmetry. We determined this component as 

the deviation of predicted T1 and T2 from the central line in equation (2): 

𝑇1̂ = 0.219 × 𝑇0 + 16.703 (4) 

𝑇2̂ = 0.347 × 𝑇0 + 15.091 (5) 

𝑆𝑆𝐴 =  ∑ (𝑇1̂1 − 𝑇̂𝑖)
2 +𝑛

𝑖=1 ∑ (𝑇2̂𝑖 − 𝑇̂𝑖)
2𝑛

𝑖=1  (6) 

The last component of the total variability is determined as the deviation due to 

stochasticity, estimating the level of noise in doubling times. It is defined as the deviation of 

observed T1 and T2 from the values predicted by asymmetry, or 

𝑆𝑆𝑆 =  ∑ (𝑇1𝑖 − 𝑇1̂𝑖)
2 +𝑛

𝑖=1 ∑ (𝑇2𝑖 − 𝑇2̂𝑖)
2𝑛

𝑖=1   (7) 

Thus, by combining the sum of squares deviations, the fraction of the variation explained 

by deterministic factors is given as (SSM + SSA)/SST, and the fraction explained by stochasticity is 

determined as SSS/SST. 

 

1.5.8 Analysis of stability in the presence of stochasticity 

The values of σ1 and σ2 were calculated from experimental doubling times of old lineages 

in equilibrium, grown in the mother machine device. For each pair of mother (T0) and daughter 

(T2), the effective slope was calculated as (T2 – b) / T0 = a + ξ1, where a and b were obtained from 

a linear regression. σ1 was calculated as the standard deviation of ξ1. A similar approach was 

performed for σ2, given T2 – T0*a = b + σ2. The resulting values were validated from an 

exploration of the parameter space for T2 = T0*(a + ξ1) + b + ξ2, where ξ1 and ξ2 are random 
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variables drawn each generation from a Gaussian distribution with standard deviation of σ1 and σ2, 

respectively. To obtain a combination of σ1 and σ2 that satisfied our data, we randomly sampled ξ1 

and ξ2 with a range of non-negative standard deviations. These values were used to predict T2 from 

T0, a and b, looking for combinations of σ1 and σ2 that minimized the difference between variances 

of observed and estimated T2. This analysis yielded a range of values from σ1 = 0.07, σ2 = 0 to σ1 

= 0, σ2 = 1.62, same output as mathematically predicted above. 

 

1.5.9 Data availability 

The data supporting the findings of this study are available within the article and 

supplementary information. 

 

1.6 Acknowledgments 

We thank M. Vergassola for assistance with the analysis of stability and stochasticity, and 

the reviewers for greatly improving this work with their suggestions. We thank R. Johnson and G. 

Graham for assistance with experimental setup, and S. Cheung, J. Chen and A. Qiu for data 

assistance. Work was supported by grants to L.C. from the National Science Foundation (DEB-

1354253). A.M.P. is supported by the Science Without Borders Fellowship / CAPES – Brazil, and 

by the Chris Wills Graduate Student Research Award. 

Chapter 1, in full, is a reprint of the material as it appears in Proenca AM, Rang CU, Buetz 

C, Shi C, Chao L (2018). Age structure landscapes emerge from the equilibrium between aging 

and rejuvenation in bacterial populations. Nature Communications 9:3722. The dissertation author 

was the primary investigator and author of this paper. 

  



 38 

1.A Appendix 

 

Figure 1.A.1 - Comparison of different growth parameters and control measurements. 

To ensure that our measurements of bacterial length were not introducing unreasonable variability in our sample, we 

compared measurements acquired from mother machine cells by different individuals in separate occasions (A and 

B). These measurements were highly correlated for both birth lengths (A) (linear regression, r = 0.904, β = 0.822, p < 

0.001) and division lengths (B) (linear regression, r = 0.895, β = 0.825, p < 0.001), thus pointing at little artificially 

introduced variability. Measurement errors will be part of unaccounted variability along with stochastic sources 

reported in this study. (C) We measured division intervals (time elapsed between birth and division) and doubling 

times (converted from elongation rates) for all cells in the daughter device. Division intervals displayed much larger 

variance than doubling times (Bartlett test, K2 = 3146.9, p < 0.001), despite exhibiting the same mean values (paired 

two-tailed t test, t = 1.212, df = 2887, p = 0.225). (D) Both doubling times and division intervals remained constant 

over time for our bacterial populations. (E) New and old daughters exhibited a significant, albeit very small, division 

interval difference (one-tailed t test, t = 1.944, df = 2851.7, p = 0.026). (F) The distinction between daughters becomes 

evident when comparing elongation rates, which combine the information of cell length and division intervals as a 

physiologically meaningful parameter. New daughters displayed faster growth (one-tailed t test, 17.842, df = 2859.9, 

p < 0.001), indicating that the physiological asymmetry arises due to faster elongation more than due to shorter division 

intervals. Thus, we performed the following analyses in this study using the more intuitive conversion of elongation 

rates into doubling times.  
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Figure 1.A.2 - Old daughters display longer doubling times in all age categories. 

(A, B and C) Mother machine data corresponding to Fig. 2A. (A) Comparing all sibling pairs, old daughters displayed 

a significantly longer doubling time (paired one-tailed t test, t = 21.884, df = 986, p <0.001). (B) Analyzing the sibling 

pairs at the closed edge of growth wells, we observed that the difference between OO and ON doubling times was 

significantly higher than zero (one-tailed t test, t = 23.152, df = 881, p < 0.001). (C) The same was verified for sibling 

pairs NO and NN, closer to the open end of the growth wells (one-tailed t test, t = 2.308, df = 1.4, p = 0.011). (D, E 

and F) Daughter device data corresponding to the same age categories. (D) Overall, old daughters displayed longer 

doubling times than new daughters (paired one-tailed t test, t = 21.805, df = 1199, p <0.001). As in the mother machine, 

the difference between doubling times was significantly higher than zero for both OO-ON pairs (E) (one-tailed t test, 

t = 19.219, df = 555, p < 0.001) and NO-NN pairs (F) (one-tailed t test, t = 13.564, df = 619, p < 0.001). 
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Figure 1.A.3 - Linear and non-linear models predict stable equilibrium points. 

(A) Linear, exponential, logarithmic, and polynomial models showed the same positive relationship between T0 and 

daughter doubling times. Comparing these models through the Akaike information criterion (AIC), we observed little 

improvement of the fit by choosing a non-linear model. (B to E) Graphical representations of linear and non-linear 

models on the phase plane. The intersection between the model and identity behaves as a stable point whenever the 

model slope is shallower than 1 at the intersection. Thus, the existence of an equilibrium is predicted by both linear 

and non-linear models. 
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Figure 1.A.4 - Stability of attractors for lineages away from equilibrium and in the presence of stochasticity.  

(A) Convergence of displaced lineages towards the correct equilibrium, expanding the visualization from Fig. 4D for 

one more generation. Because only complete lineages are considered, the sample size is reduced to 24 new and 30 old 

lineages (120 and 150 cells, respectively). (B) Autocorrelation performed for lineages from Fig. 4E cycling between 

equilibria through aging and rejuvenation. Lineages transition between equilibria in four generations. (C) Tukey’s 

range test for differences of doubling time distributions for lineages transitioning from the T2 to T1 (left) or T1 to T2 

(right) equilibrium (original distributions presented in Fig. 5A and 5B). (D and E) Graphical representation of the 

effects of stochasticity on the stability of attractors. While additive noise (represented by b + σ2) is not disruptive (D), 

multiplicative noise on the slope (a + σ1) can destabilize the attractor (E). 
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Table 1.A.1 - Data summary for boxplots in Figure 1.2A and 1.2B. 

Device Cell 
Mean ± SD 

(min) 

Lower 

whisker 

(min) 

Lower 

hinge 

(min) 

Median 

(min) 

Upper 

hinge 

(min) 

Upper 

whisker 

(min) 

mother machine OO 23.294 ± 1.783 19.104 22.084 23.173 24.230 27.404 

mother machine ON 21.849 ± 1.475 18.242 20.822 21.714 22.670 25.423 

mother machine NN 21.187 ± 1.729 18.414 20.258 20.912 21.872 24.0980 

mother machine NO 21.724 ± 2.274 18.414 20.334 21.565 22.761 25.920 

daughter device OO 20.652 ± 1.072 17.890 19.881 20.588 21.305 23.347 

daughter device ON 19.811 ± 0.988 17.671 19.157 19.772 20.427 22.316 

daughter device NN 19.604 ± 0.944 17.254 18.950 19.528 20.189 22.036 

daughter device NO 20.180 ± 0.971 17.882 19.534 20.096 20.831 22.746 
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Table 1.A.2 - Data summary for phase planes, Figure 1.3A and 1.4B. 

Device Daughter 
Mean ± SD 

(min) 

Equilibrium1 

(min) 

mother machine Old 23.127 ± 1.903 23.110 

mother machine New 21.778 ± 1.517 21.387 

daughter device Old 20.429 ± 1.064 20.579 

daughter device New 19.728 ± 0.986 19.525 

 

1Calculated according to linear regression intersect with identity line. 
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Table 1.A.3 - Variance partitioning for mother machine and daughter device. 

 Mother machine Daughter device 

 SS1 Fraction SS1 Fraction 

Maternal inheritance 557.7613 0.083 406.313 0.144 

Asymmetry 926.3173 0.137 295.917 0.105 

Stochasticity 5253.58 0.780 2115.006 0.751 

Total 6737.658  2817.236  

1SS = sum of squared deviations. 
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Table 1.A.4 - Data summary for Figure 1.4E. 

Device Daughter Generation 
Mean ± SD 

(min) 

daughter device Old 1 20.092 ± 0.051 

daughter device Old 2 20.418 ± 0.072 

daughter device Old 3 20.740 ± 0.121 

daughter device Old 4 20.779 ± 0.187 

daughter device New 1 19.946 ± 0.058 

daughter device New 2 19.831 ± 0.072 

daughter device New 3 19.574 ± 0.108 

daughter device New 4 19.435 ± 0.254 
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Table 1.A.5 - Data summary and statistics for distributions transitioning between equilibria. One-sample t tests verify 

whether the equilibrium attractors (Table 1.A.2) represent the mean value of the doubling time distribution of each 

generation. 

Device Daughter Generation Mean ± SD t df p 

daughter device OON 1 20.051 ± 0.924 4.540 61 <0.001*** 

daughter device OONN 2 19.826 ± 0.871 2.783 61 0.0071** 

daughter device OONNN 3 19.573 ± 0.854 0.512 61 0.610 

daughter device NNO 1 19.985 ± 0.877 -5.845 69 <0.001*** 

daughter device NNOO 2 20.393 ± 0.997 -1.717 69 0.090 

daughter device NNOOO 3 20.74 ± 1.014 1.175 69 0.244 
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Note 1.A.1. Analyzing the stochasticity and stability of the doubling time equilibrium in bacterial lineages. 

Reproduced with permission from Dr. Massimo Vergassola, Department of Physics, University of California, San 

Diego, La Jolla, CA 92093 

 

We consider the equation 

𝑋(𝑛 + 1) = 𝑋(𝑛)[𝑎 + 𝜉1𝑛] + 𝑏 + 𝜉2(𝑛) 

where a and b are fixed constants and the ξ’s are Gaussian independent random variables, drawn 

independently for each time interval, i.e. 〈𝜉1(𝑛)𝜉1(𝑚)〉 = 0 if n ≠ m and 〈𝜉1(𝑛)𝜉1(𝑛)〉 = 𝜎1
2. 

We first consider the deterministic case σ1 = σ2 = 0. The iteration (1) has then the fixed 

point 𝑋∗ =  
𝑏

1−𝑎
 for a < 1. For a ≥ 1, the system is unstable and X keeps growing under the 

iterations. For |a| < 1, initial deviations from the fixed point X∗ relax exponentially: 𝛿𝑋(𝑛) =

𝛿𝑋(0)𝑎𝑛, where 𝑋(𝑛) = 𝑋∗ + 𝛿𝑋(𝑛). 

For |a| < 1, we next consider the additive noise case σ1 = 0, σ2 ≠ 0. By the linearity of the 

iteration and the Gaussianity of ξ2, we obtain that X will also be Gaussian. Its mean is X∗ and the 

correlation function of its fluctuations decay exponentially with the time delay: 

〈𝛿𝑋(𝑛)𝛿𝑋(𝑚)〉 =  
𝑎|𝑛−𝑚|

1 − 𝑎2
𝜎2

2 

In other words, the process is a discrete version of the Ornstein-Uhlenbeck process in the 

(time) continuum. 

For |a| < 1, we finally consider the multiplicative noise case σ1 ≠ 0 (and for simplicity σ2 = 

0). The recurrence equation is now 

𝛿𝑋(𝑛 + 1) = 𝛿𝑋(𝑛)(𝑎 + 𝜉1(𝑛)) + 𝜉1(𝑛)𝑋∗ 

(Supplementary Equation 1) 

(Supplementary Equation 2) 

(Supplementary Equation 3) 
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The noise is now multiplying δX, which generates the non-Gaussianity of the fluctuations 

shown hereafter. 

Multiplicative noise can lead to indefinite growth along some trajectories. Indeed, if |a + 

ξ1| > 1 the amplitude of the fluctuations increases with the iteration, as it was shown above. The 

probability of |a + ξ1| > 1 is unlikely if a + σ1 << 1. However, a stretch of growing events is of 

course possible, with a probability that decays exponentially with the length of the stretch (this can 

be generally formalized using large-deviations theory). We qualitatively conclude that the far tails 

of the probability distribution for the fluctuations do not stabilize as they are affected by those 

extreme events. 

More quantitatively, we can write down the equations for the moments of the fluctuations 

〈𝛿𝑋𝑝〉 and investigate their convergence. Let us start with the variance 

〈𝛿𝑋(𝑛 + 1)2〉 = 〈𝛿𝑋(𝑛)2〉(𝑎2 + 𝜎1
2) + 𝜎1

2𝑋∗2 

which has the fixed point 

〈𝛿𝑋2〉 =
𝜎1

2𝑋∗2

1 − 𝑎2 − 𝜎1
2 

Note that the condition for stabilization of the variance is 𝑎2 + 𝜎1
2 < 1 , i.e. it is not 

guaranteed to hold by the condition for the stabilization of the mean |a| < 1. 

A similar equation can be written for the third-order moment 

〈𝛿𝑋(𝑛 + 1)3〉 = 〈𝛿𝑋(𝑛)3〉(𝑎3 + 3𝑎𝜎1
2) + 6𝑎𝑋∗𝜎1

2〈𝛿𝑋(𝑛)2〉 

Note that the third-order moment is generally non-vanishing, which illustrates the non-

Gaussianity of the fluctuations. The condition for stabilization of the third-order moment is 𝑎3 +

3𝑎𝜎1
2 < 1, i.e. 〈(𝑎 +  𝜉1)3〉  <  1. 

 

(Supplementary Equation 4) 

(Supplementary Equation 5) 

(Supplementary Equation 6) 
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The fourth-order moment obeys 

〈𝛿𝑋(𝑛 + 1)4〉 = 〈𝛿𝑋(𝑛)4〉(𝑎4 + 6𝑎2𝜎1
2 + 3𝜎1

4) + 4𝑋∗〈𝛿𝑋(𝑛)3〉(3𝑎2𝜎1
2 + 3𝜎1

4)

+ 6𝑋∗2〈𝛿𝑋(𝑛)2〉(𝑎2𝜎1
2 + 3𝜎1

4) + 3𝑋∗4𝜎1
4 

Provided lower-order moments stabilize, the additional condition of stabilization for the 

fourth-order is 〈(𝑎 +  𝜉1)4〉  <  1. 

The pattern for a generic order is clear: if lower-order moments stabilize, the additional 

condition for the stabilization of the p-th moment is 〈(𝑎 +  𝜉1)𝑝〉  <  1. These conditions are 

eventually going to be violated. Indeed, even for σ1 << 1, if we consider large even orders p = 2q, 

the equality 〈𝜉1
2𝑞〉 =  𝜎1

2𝑞(2𝑞 − 1)‼  holds and the exponentially decaying (in q) factor 𝜎1
2𝑞

 

cannot compensate for the-faster-than-exponential growth of the skip factorial (2q − 1)!!. 

In practice, for the concrete numbers a = 0.3472 and σ1 = 0.07, the conditions for 

stabilization of the first moments 𝑎2 + 𝜎1
2 = 0.125, 〈(𝑎 +  𝜉1)3〉 = 0.047, 〈(𝑎 +  𝜉1)4〉 = 0.018 

are all largely satisfied. The transition to moments that do not stabilize takes place for orders in 

the hundreds, which are unreachable and irrelevant for any realistic measurement. 

  

(Supplementary Equation 7) 
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CHAPTER 2   

Cell aging preserves cellular immortality in the presence of lethal levels of damage  

 

2.1 Abstract 

Cellular aging, a progressive functional decline driven by damage accumulation, often 

culminates in the mortality of a cell lineage. Certain lineages, however, are able to sustain long-

lasting immortality, as prominently exemplified by stem cells. Here we show that Escherichia coli 

cell lineages exhibit comparable patterns of mortality and immortality. Through single-cell 

microscopy and microfluidic techniques, we find that these patterns are explained by the dynamics 

of damage accumulation and asymmetric partitioning between daughter cells. At low damage 

accumulation rates, both aging and rejuvenating lineages retain immortality by reaching their 

respective states of physiological equilibrium. We show that both asymmetry and equilibrium are 

present in repair mutants lacking certain repair chaperones, suggesting that intact repair capacity 

is not essential for immortal proliferation. We show that this growth equilibrium, however, is 

displaced by extrinsic damage in a dosage-dependent response. Moreover, we demonstrate that 

aging lineages become mortal when damage accumulation rates surpass a threshold, while 

rejuvenating lineages within the same population remain immortal. Thus, the processes of damage 

accumulation and partitioning through asymmetric cell division are essential in the determination 

of proliferative mortality and immortality in bacterial populations. This study provides further 

evidence for the characterization of cellular aging as a general process, affecting prokaryotes and 

eukaryotes alike and according to similar evolutionary constraints. 
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2.2 Introduction 

Aging, or the progressive loss of function at the macromolecule, tissue, organ or individual 

level, is largely driven by the deterioration of intracellular processes. Accordingly, the hallmarks 

of the aging phenotype — such as telomeric attrition, mitochondrial dysfunction, loss of 

proteostasis, and genomic instability —, which have been well characterized by previous studies 

(López-Otín et al. 2013), reveal conserved genetic and biochemical pathways at the cellular level. 

Considering cellular aging as a baseline for the study of aging as a general process, we can 

summarize its mechanisms as the gradual intracellular accumulation of damage from various 

sources, along with a decreasing repair capacity. Furthermore, excessive damage accumulation 

within a cell lineage may lead to cellular senescence, when individual cells cease replicating and 

the lineage transitions to a mortal state (Aravinthan 2015; Campisi and d’Adda di Fagagna 2007; 

Jeyapalan and Sedivy 2008).  

The cellular aging process encompasses both multi and unicellular organisms, such as yeast, 

diatoms, and even bacteria (Erjavec et al. 2008; Laney, Olson, and Sosik 2012; Rang, Peng, and 

Chao 2011; Stewart et al. 2005). Due to the traditional view of unicellular prokaryotes as being 

functionally immortal, these organisms are often overlooked in the discussion of cellular aging. 

However, research in bacterial aging stands out for offering quantitative approaches to data 

collection and analysis, coupled with technical improvements on single-cell microscopy, which 

have detailed the aging phenotype and its progression. Although bacteria do not possess some of 

the eukaryotic aging targets, like telomeres and mitochondria, they are sensitive to stresses that 

induce non-genetic damage accumulation, such as oxidation and disruptions in protein folding 

(Ksia̧zek 2010; Sabate, De Groot, and Ventura 2010). Stressed bacteria accumulate misfolded 

proteins in the form of polar-localized aggregates (Lindner et al. 2008; Winkler et al. 2010; Rokney 



 56 

et al. 2009; Coquel et al. 2013), therefore displaying loss of proteostasis. Repair occurs in a slow 

and energy-consuming fashion, where chaperones such as DnaK and ClpB mediate the 

disaggregation and unfolding of damaged proteins (Sabate, De Groot, and Ventura 2010; Winkler 

et al. 2010). Additionally, the potential prokaryotic origin of mitochondria raises the possibility of 

regarding bacterial aging as a model for mitochondrial dysfunction, a noted hallmark of aging 

(López-Otín et al. 2013). 

Besides aggregating and repairing damaged components, bacterial populations have 

developed another remarkable strategy to handle non-genetic damage. Experimental data from 

long term microscopy of bacterial lineages revealed that, in the presence of intracellular damage, 

each cellular division produces two physiologically asymmetric daughters (Ackermann, Stearns, 

and Jenal 2003; Stewart et al. 2005; Lindner et al. 2008; Rang et al. 2012; Proenca et al. 2018). 

This asymmetry is generated because the damage harbored by the mother is biased towards the old 

cell pole (Lindner et al. 2008; Winkler et al. 2010), causing the daughter that inherits this pole — 

termed the old daughter — to age. Its sibling, on the other hand, rejuvenates through the inheritance 

of a lower damage load, being called the new daughter. Therefore, by partitioning damage with 

asymmetry, bacterial populations engage in a trade-off where the fast-growth of new daughters is 

sustained at the expense of the declining cellular function of old daughters. Mathematical models 

and computational simulations were developed to estimate the advantage of asymmetry, in contrast 

with a symmetric control population — a hypothetical scenario where both daughters display equal 

physiology (Chao et al. 2016). The models have shown that asymmetry is evolutionarily 

advantageous because it increases the variance of elongation rates, which in turn increases the 

efficiency of natural selection and the mean fitness of the lineage. Diverse studies are beginning 

to show that asymmetric partitioning is not unique to bacteria, but an advantageous mechanism for 
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the progression of cell lineages. In fact, this process was recently observed in neural, embryonic 

and germline stem cells (Fuentealba et al. 2008; Moore et al. 2015; Bufalino, DeVeale, and van 

der Kooy 2013), where damage allocation plays a central role in self-renewal capacity, fate 

determination, and somatic sequestration of damage. 

A better understanding on how the key features of aging are interconnected requires the 

eventual development of conceptual and mathematical models that can integrate with experimental 

studies the growth and aging of individual organisms or cells.  Unicellular systems, such as bacteria, 

satisfy all these requirements. Here we show that the maintenance of proliferative immortality in 

E. coli lineages depends on the physiological equilibrium produced by contrasting damage 

accumulation and asymmetric partitioning. We demonstrate that unstressed lineages accumulate 

damage produced by standard respiration levels, subsequently partitioning this load with a level of 

asymmetry that allows for the dilution of damage within both new and old daughters. We show 

that E. coli mutants with decreased repair capacity also exhibit asymmetric new and old daughters, 

reaching distinct states of growth equilibrium. Furthermore, bacterial aging responds with a 

positive dosage relationship to an external damaging agent, which progressively disrupts 

proteostasis by increasing damage accumulation rates and disrupting asymmetry. With a 

sufficiently elevated stress level, the damage accumulation within old lineages surpasses their 

immortality threshold, leading these lineages to arrest division and become mortal. However, due 

to asymmetric partitioning, new lineages within the same population retain proliferative 

immortality. Our results show that the appropriate model and system can contribute to identifying 

the dynamics of mortality and immortality in the context of cellular aging. 
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2.3 Results 

2.3.1 Functionally immortal bacterial lineages display damage accumulation and 

asymmetry 

To determine whether bacterial lineages undergoing immortal proliferation displayed 

damage accumulation and partitioning dynamics, we cultured unstressed Escherichia coli cells 

using microfluidic devices. We employed the “mother machine” design (Wang et al. 2010) 

containing series of 1.2 µm wide growth wells at the bottom of which an old daughter remains 

trapped for the length of the experiment. Each well was connected in one end to large flow channels, 

constantly supplying fresh culture medium to maintain a healthy state for an extended time. 

Bacteria were loaded and tracked through time-lapse microscopy for 24 h in the absence of 

extrinsic damage. As an estimate of fitness, elongation rates and corresponding doubling time 

conversions were determined for each individual, along with its age according to cell pole 

inheritance following division.  

Under such conditions, our previous studies have shown that new and old daughters display 

physiological asymmetry and long-term growth stability (Proenca et al. 2018). We confirmed these 

results in the present experiments, observing that new daughters displayed significantly faster 

elongation rates when compared to old daughters (Figure 2.1A), a distinction that remained 

constant over time. Moreover, comparing the maternal doubling time (hereby called T0) to that of 

its daughters (new = T1; old = T2) in a phase plane, a clear separation between new (21.79 ± 1.60 

min) and old (23.23 ± 2.12 min; mean ± SD) daughter subpopulations emerged (Figure 2.1B, 

Figure 2.A.1). In these conditions, the difference between T1 and T2 (n = 1,384 pairs) was 

significantly larger than zero (one sample t test, t = 24.716, df = 1383, p < 0.001). These results 



 59 

suggest that old daughters in our populations are inheriting a larger damage load upon division, 

despite the absence of extrinsic damage in our growth conditions. 

To quantify the possible damage accumulation and partitioning in these populations, we 

applied these results to a population genetics model on unicellular aging (Chao 2010). Because the 

accumulation of intrinsic damage positively correlates with increased doubling times, we can 

estimate maternal damage levels, the fraction inherited by each daughter upon division, and the 

resulting T1 and T2, reconstructing the progression of aging within a lineage. For this goal, we 

described cell lineage dynamics though three key parameters: Π, the doubling time of a damage-

free cell; λ, the rate of damage accumulation within a single cell (0 to ~0.01 min-1); and a, the 

partitioning asymmetry, ranging from 0 (complete asymmetry) to 0.5 (symmetric division).  

Our growth parameters revealed the presence of intrinsic damage and asymmetry in 

physiologically stable E. coli (Table 2.A.1). Despite the ideal growth conditions provided by our 

microfluidic device, we found that bacterial populations displayed longer doubling times (22.34 ± 

2.12 min, mean ± SD) than predicted for damage-free cells (Π = 19.66 min; one sample t test, t = 

75.04, df = 3482, p < 0.001). These longer doubling times were driven by damage accumulation 

— which occurred at an average rate λ = 0.0028 min-1 —, thus suggesting that metabolic processes 

in healthy cells may induce the retention of intrinsic damage. Finally, as suggested by the 

separation between T1 and T2 subpopulations, we verified that these damage loads were partitioned 

asymmetrically at division, with old daughters inheriting 63% of the maternal damage (a = 0.37).  

 

2.3.2 Damage accumulation and partitioning in stable growth equilibrium 

The growth parameters Π, λ and a can be used to predict doubling times T1 and T2. In Figure 

2.1B, the solid lines show predicted doubling times for our average population parameters, thus 
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showing the trend of new and old subpopulations. The crossing between these model lines and the 

identity line represents points of growth equilibrium where T0 = T1 or T0 = T2 (Figure 2.1C). 

Asymmetric populations thus stabilize around two points simultaneously — one for new lineages 

and other for the old, with cells continuously inheriting either pole remaining at equilibrium over 

generations (Rang, Peng, and Chao 2011; Chao 2010; Proenca et al. 2018). Cell lineages in 

physiological equilibrium replicate indefinitely, therefore remaining functionally immortal. 

To confirm the long-term stability of new and old lineages in our experiments, we analyzed 

linear regressions between T0 and T1 or T2 as previously described (Proenca et al. 2018) (Figure 

2.A.1). Bacterial lineages remain stable provided the existence of equilibrium points, which is 

satisfied by the intersection between each linear regression and the identity line (Figure 2.1C and 

Figure 2.A.1). This intersection occurs when the slope of T1 or T2 lines is less than 1, which our 

data satisfies for both T1 (a = 0.246, p < 0.001) and T2 (a = 0.309, p < 0.001). In the stable 

environment of microfluidic devices, this equilibrium can still be disrupted by the stochasticity 

present in doubling times. This stochasticity can be described as random variables ξ1 acting on the 

slopes in Ti = T0*(a + ξ1) + b, obtained each generation from a Gaussian distribution with standard 

deviation of σ1. Loss of equilibrium occurs when a2 + σ1
2 ≥ 1 (see Methods for details). We 

estimated σ1 for T1 and T2 lines by obtaining the deviations from slopes in (Ti – b)/T0 = a + σ1. 

Both new (σ1 = 0.0657) and old (σ1 = 0.0876) lineages satisfied the stability requirement a2 + σ1
2 

< 1, with a2 + σ1
2 = 0.0649 for T1 and a2 + σ1

2 = 0.1032 for T2. 

Besides the possibility of being disrupted by stochasticity, our aging model predicts that 

stable equilibrium can be disrupted by the accumulation of intrinsic damage (Chao 2010). Our 

parameters estimate that an increase in damage accumulation rates, from λ = 0.002 to 0.008 min-

1, would progressively drive the equilibrium points towards longer doubling times. Because 
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asymmetric partitioning produces higher doubling times in old daughters, a sufficiently intense λ 

would act as a differential mortality threshold, leading to division arrest — i.e. a state of mortality 

— in the old lineage, while new daughters remain immortal (Figure 2.1D). 

To connect our observation of immortality and growth equilibrium to the internal dynamics 

of damage accumulation and partitioning, we estimated damage loads using our growth parameters. 

From experimental doubling times, we calculated the damage loads harbored by a mother, new 

and old daughters at the time of birth (k0, k1, k2) and division (D0, D1, D2; Figure 2.1E). It is 

important to note that this model considers the entirety of damage loads present in each cell, be it 

in aggregate of diffuse form. Each cell is born with a load ki, and accumulates λ*Ti over its lifetime, 

resulting in a load Di. We verified that k2 > k1, as expected from observed doubling times and 

asymmetry (paired one-tailed t test, t = 27.988, df = 1244, p < 0.001). More, interestingly, we 

compared each mother to its old daughter and verified that k2 = k0 (paired two-tailed t test, t = 

0.373, df = 1244, p = 0.709). This indicates that old lineages in a state of equilibrium, as observed 

in the mother machine, are born with a constant level of intrinsic damage. Consequently, the 

damage accumulated by a mother over its lifetime is equivalent to the load inherited by new 

daughters upon division, or λ*T0 = k1 (t = 0.367, df = 1244, p = 0.714).  

Taken together, our results suggest that unstressed bacterial populations accumulate 

intrinsic non-genetic damage. Every generation, new daughters inherit the damage a mother 

accumulated over its lifetime (k1 = D0*a = λ*T0), while old daughters inherit the same amount the 

mother had at birth (k2 = D0*(1 – a) = k0). These dynamics of damage accumulation and partitioning 

allow for a state of physiological equilibrium, where old lineages display stable growth over time 

and retain proliferative immortality. 
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2.3.3 Large protein aggregates become anchored at old cell poles 

To visualize the biasing of damage loads towards old daughters in our microfluidic device, 

we cultured E. coli expressing the small chaperone IbpA fusioned to yellow fluorescent protein 

(YFP). IbpA-YFP was shown to co-localize with protein aggregates in bacterial cells (Lindner et 

al. 2008), thus serving as a marker for the presence and position of non-genetic damage (Rang et 

al. 2018). By culturing this strain in our microfluidic device, we observed the progressive 

accumulation of damage in the old poles of lineages in a state of equilibrium (Figure 2.1F-M). We 

quantified the inheritance of IbpA-YFP fluorescent foci by following lineages over time, 

determining the subcellular localization of the aggregate and its partitioning upon division (Coelho 

et al. 2013). Over 194 cell divisions, we observed the appearance of 43 new fluorescent foci. Small 

foci first appeared in the center of a cell 37.2% of the observations, diffusing freely throughout the 

bacteria (Figure 2.A.1). However, as these aggregates accumulated more misfolded proteins, they 

quickly became anchored at the old poles (Figure 2.1L-M), resulting in the inheritance of 

fluorescent foci by old daughters in 80.4% of observed division events (Figure 2.A.1). It is 

important to note, however, that the YFP fusion might increase aggregation rates of the small 

chaperone IbpA (Govers et al. 2018), and unstressed cells likely harbor diffuse fluorescence and 

smaller foci rather than large aggregates. Nonetheless, the IbpA-YFP marker demonstrates the 

potential for asymmetric damage partitioning arising from the anchoring of protein aggregates at 

the old poles of old daughters over several generations. 

 

2.3.4 Asymmetry and immortal proliferation in protein repair mutants 

Given the asymmetric damage partitioning in equilibrium lineages, we investigated the 

relevance of the protein repair machinery for the maintenance of proliferative immortality. For this, 
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we employed E. coli single-gene knockout mutants lacking the chaperones ClpB or DnaK (Keio 

collection), which play a prominent role in the solubilization of protein aggregates (Doyle and 

Wickner 2009; Winkler et al. 2010; Sabate, De Groot, and Ventura 2010). We cultured these cells 

in mother machine devices as described above, screening bacterial lineages for asymmetric 

damage partitioning and physiological equilibrium. By following old lineages over time, we 

verified that both new and old ∆clpB daughters displayed constant elongation rates throughout the 

experiment (Figure 2.2A). We observed that ∆clpB mutants also displayed asymmetric doubling 

times, with new (24.81 ± 1.64, mean ± SD) daughters growing faster than their old (25.97 ± 1.87, 

mean ± SD) siblings (Figure 2.2B; paired one-tailed t test, t = 16.846, df = 770, p < 0.001). A 

distinct pattern emerged from the analysis of ∆dnaK mutants, with several mortality events 

occurring over time (Figure 2.2C). Nonetheless, a significant distinction between new (28.06 ± 

2.49, mean ± SD) and old (30.20 ± 8.27, mean ± SD) daughter doubling times was observed in 

these cells (Figure 2.2D; paired one-tailed t test, t = 4.262, df = 266, p < 0.001).  

To verify the stability of growth equilibrium in asymmetric ∆clpB and ∆dnaK populations, 

we analyzed the linear models presented in Figure 2.2B and D. To include mortality events in the 

analysis, doubling times were converted to elongation rates. We investigated whether the 

stochasticity present in the data could disrupt equilibrium stability in our populations, determining 

the noise acting on regression slopes as σ1 in (Ti – b)/T0 = a + σ1. To generate 95% confidence 

intervals (CI), we performed a 10,000-fold bootstrap on T0, T1, T2 trios. We verified that ∆clpB 

mutants satisfied the stability requirement a2 + σ1
2 < 1 (Figure 2.2E), therefore remaining 

proliferatively immortal, for both new (a2 + σ1
2 = 0.035 [0.016-0.064], mean [95% CI]) and old 

lineages (a2 + σ1
2 = 0.107 [0.051-0.206]). For ∆dnaK, while new (a2 + σ1

2 = 0.241 [0.020-0.624]) 

and old lineages (a2 + σ1
2 = 0.473 [0.113-0.956]) satisfied the stability requirement, several 
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mortality events were observed, with our bootstrap analysis suggesting a 1.45% probability of 

equilibrium loss (binomial test, p < 0.001) in ∆dnaK old lineages. 

Taken together, these results suggest that repair chaperones ClpB and DnaK might have 

distinct roles in the maintenance of equilibrium stability. While the decreased protein repair 

capacity in ∆clpB mutants still allowed for the stable proliferation of new and old daughters, old 

lineages in ∆dnaK mutants begin to show signs of stability loss. We thus hypothesize that 

dynamics of damage accumulation may greatly impact proliferative immortality, with asymmetry 

determining a differential fate for new and old lineages. 

 

2.3.5 The transition from immortality to mortality is determined by damage 

accumulation and asymmetric partitioning 

To investigate whether aging cell lineages would retain physiological equilibrium — 

therefore, proliferative immortality — under increasing levels of damage accumulation, we 

cultured bacteria in the presence of extrinsic damage. We employed light excitation (490 nm 

wavelength), commonly used for green-fluorescent protein imaging, as a damaging agent known 

for inducing the production of reactive oxygen species and mitochondrial damage (Camilla U Rang 

et al. 2012; Dixit and Cyr 2003; Gourmelon, Cillard, and Pommepuy 1994; Godley et al. 2005). 

Bacteria were cultured in microfluidic devices and treated with variable lengths of light exposure, 

ranging from 70 ms to 3 s, administered every 2 min for up to 24 h. Each experiment was preceded 

by 24 h of control imaging in the absence of extrinsic damage. 

Analyzing cell lineages over time, we observed a significant decrease in elongation rates 

on each exposure treatment relative to its control (Figure 2.3A and Table 2.A.2; unpaired two-

sample t tests; p < 0.001). The treatments revealed a significant effect of both age and light 
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exposure on individual elongation rates, with new daughters maintaining significantly faster 

growth than their old siblings in all cases (Figure 2.3B). A similar effect was observed for the 

impact of light exposure and age on damage inherited at birth (Figure 2.A.2), showing that the 

overall damage inheritance increased with treatment. We determined the growth parameters of 

each treatment (Table 2.A.3), verifying that λ increased linearly with the length of exposure to 

light excitation (Figure 2.3C). This demonstrates that the rates of extrinsic damage infliction 

correlate linearly with the rate of intracellular damage accumulation for our experimental design. 

From the growth parameters Π, λ and a, we calculated the estimated doubling times of new and 

old lineages, as well as the predicted doubling time equilibria for each treatment level (Figure 2.3D 

to H). Our results showed a separation between new and old daughter subpopulations in all cases 

(Table 2.A.4).  

The increasing induction of damage accumulation led to the stabilization of new and old 

lineages at equilibria with progressively longer doubling times. Extreme damage levels caused the 

old lineage equilibrium to approach infinite doubling times (Figure 2.4A-B) with 3 s of exposure, 

meaning that old daughters undergo division arrest, suggesting a damage accumulation rate of 

0.009 min-1 as the threshold at which aging lineages transition to mortality. Fewer mortality events 

were observed in new daughters, indicating that new lineages might remain proliferative under the 

same conditions. Interestingly, we observed that the difference between damage loads at birth (k2 

and k1) was significantly reduced at 3 s of exposure, when compared to control conditions (Figure 

2.A.2; two-tailed t test, t = 2.805, df = 80.995, p = 0.0063). This outcome was surprising, since 

one of the advantages of asymmetric damage partitioning in bacterial populations is the ability to 

endure higher levels of damage (Chao et al. 2016). Therefore, we expected to find that populations 

exhibiting large damage accumulation rates should display greater asymmetry.  
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Our experiments, nonetheless, revealed a consistent pattern of diminishing asymmetry with 

the infliction of light excitation. Although all populations remained asymmetrical, with a 

maximum a = 0.47, the asymmetry coefficient approached 0.5 as λ increased Figure 2.4C). A 

possible driver of increasing symmetry would be the fast accumulation of new damaged 

components, as expressed by increasing λ, surpassing the rate at which such components aggregate. 

As a result, more damage would be partitioned as diffused rather than polar anchored molecules 

at the time of division (Chao et al. 2016), leading to an increase in stochastically partitioned 

damage. To investigate this hypothesis, we tested whether the doubling time variance produced by 

stochasticity increased with light exposure. We first normalized the doubling times of each sibling 

pair around the expected values for symmetric cells (Figure 2.4D-H) for each treatment level. This 

normalization removes the variance produced by noise in maternal growth. Since new and old 

daughters in our populations are physiologically distinct, two distributions arise from the 

normalized data. The distance (D) between these distributions is produced by asymmetry, which 

defines the variance explained by deterministic factors as D2/4 (see Methods and Chao et al. 2016 

for details). The average variance of new and old distributions (VN + VO)/ 2, on the other hand, 

represents the doubling time variance explained by stochasticity. The estimates of deterministic 

and stochastic variance were summarized in Figure 2.4I and Table 2.A.5. With higher levels of 

light excitation, we observed an increase in the variance explained by stochasticity, whereas the 

deterministic variance remained nearly constant. These results indicate that, while the 

deterministic physiological distinction between new and old daughters remains present, the 

perceived asymmetry between these lineages is attenuated by stochasticity as extrinsic damage 

levels increase. It is important to observe that, while our results depict the effect of constant 

damage exposure, other interesting outcomes could arise from transient damage pulses. 
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To determine whether new and old lineages remained in equilibrium despite the presence 

of large stochasticity, we performed a stability analysis on elongation rates. We followed the same 

principles described in Figure 2.2 and Figure 2.A.1, where a linear regression between T0 and T1 

or T0 and T2 is evaluated for its stability in crossing the identity lines. The maintenance of this 

crossing, which acts as an equilibrium attractor, determines that these lineages display stable 

growth over time, thus retaining immortal proliferation. In the presence of stochasticity acting on 

the regression slope, the condition a2 + σ1
2 < 1 must be satisfied for the retention of equilibrium. 

We estimated the slopes and σ1 values for each light exposure treatment (Figure 2.4J), performing 

a bootstrap analysis to obtain confidence intervals. The stability condition in our experiments was 

reached by all lineages until 3 s of light exposure. At 3 s of exposure, or λ = 0.009 min-1, old 

lineages reached their mortality threshold and became unstable, resulting in the mortality events 

observed in Figure 2.4A-B. All new lineages in our experiments remained stable. However, 

because the confidence intervals in Figure 2.4J indicated a chance of new lineages also losing 

stability at 3 s, we investigated the probability of retaining immortal proliferation in Figure 2.4K. 

Our analysis revealed that old lineages exhibited a significantly higher probability of losing 

equilibrium (50.24%) than new lineages (28.10%, x2 = 1027.7, df = 1, p < 0.001), therefore 

indicating that asymmetric damage partitioning leads to differential maintenance of immortality in 

new and old lineages within the same population. These results suggest that, despite the decrease 

in asymmetric partitioning, new daughters are able to endure higher levels of damage while 

remaining functionally immortal. 
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2.3.6 Old lineages transition from immortality to mortality under extrinsic stress 

To determine whether the differential mortality of new and old daughters could be 

translated to other damage sources, we repeated our experiments replacing light exposure with 

heat stress (Figure 2.5A-C) or streptomycin (Figure 2.5D-F) as damaging agents. We exposed cells 

growing in the mother machine to 38, 40 and 43°C, as heat exposure can lead to the accumulation 

of misfolded proteins and senescence (Winkler et al. 2010; Steiner et al. 2017). We observed an 

increase in mortality events at 38 and 40°C, although elongation rates remained constant over time 

(Figure 2.5A-B, Table 2.A.4). At 43°C, however, elongation rates declined and old lineages lost 

stability (a2 + σ1
2 = 1.144), while new lineages remained in equilibrium (a2 + σ1

2 = 0.965). Our 

bootstrap analysis suggested that old lineages had a higher probability of transitioning to mortality 

(67.1%) than new lineages (43.4%, x2 = 1136, df = 1, p < 0.001) (Figure 2.5C). We verified a 

similar outcome for populations exposed to 2, 4 or 5 µg.ml-1 of streptomycin, which has been 

shown to induce protein misfolding in E. coli (Ni et al. 2012; Coquel et al. 2013; Rang et al. 2012). 

While new and old lineages remained stable at 2 and 4 µg.ml-1 (Figure 2.5D-E, Table 2.A.4), both 

lineages lost stability at 5 µg.ml-1. Still, our analysis detected a differential probability of crossing 

the mortality threshold, with new lineages displaying a lower chance (81.2%) of becoming mortal 

than old lineages (88.0%, x2 = 177.13, df = 1, p < 0.001) (Figure 2.5F). Taken together, these 

results suggest that the asymmetric partitioning of damage leads to a differential transitioning from 

immortality to mortality in stressed bacterial populations. The asymmetric allocation of non-

genetic damage, whether inflicted by light exposure, heat or streptomycin, leads to higher mortality 

in old lineages while allowing the immortality of new lineages within the same population. 

Therefore, these observations offer cellular aging as a model for both the maintenance of 

continuous replication, as in stem cells, and the loss of proliferative capacity due to cellular aging.   
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Figure 2.1 - Maintenance of growth equilibrium and immortality through asymmetric damage partitioning.  

(A) New daughters (n = 1782; 0.032 ± 0.0023 min-1, mean ± SD) elongated at significantly higher rates than old 

daughters (n = 1285; 0.030 ± 0.0025 min-1, mean ± SD), a distinction that remained stable over several hours (one-

tailed t test, t = 24.747, df = 2612.5, p < 0.001). Binned data comprises mean ± SD. (B) The distinction between new 

and old daughters was also verified for the doubling times of sibling pairs (paired one-tailed t test, t = 24.716, df = 

1383, p < 0.001). The separation of new and old subpopulations, according to the estimation of growth parameters 

(see Methods), was produced by the accumulation of damage at a rate λ = 0.0028 min-1, and the partitioning such load 

with asymmetry a = 0.375. (C and D) Model predictions on cellular aging with Π = 18 min, a = 0.4. (C) With λ = 

0.002 min-1, asymmetry produces a separation between new (blue) and old (red) subpopulations. The intersection of 

model predictions and the identity line creates equilibrium points where T0 = T1 or T0 = T2, to which new or old 

daughters converge over generations (arrows). (D) With λ = 0.008 min-1, the old lineages are predicted to lose 

equilibrium and arrest division. New daughters, through constant rejuvenation, would retain replicative immortality 

at the same damage levels. (E) Damage load harbored by a mother and its daughters at the time of birth (k0, k1, k2) and 

division (D0, D1, D2). Applying the average growth parameters Π and λ to calculate k1 and k2, we verified that old 

daughters inherit larger damage loads than new daughters (paired one-tailed t test, t = 27.988, df = 1244, p < 0.001) 

and also bear more damage at the time of division (paired one-tailed t test, t = 27.914, df = 1244, p < 0.001). Bars 

represent mean ± standard error. (F to K) Time lapse microscopy images showing the accumulation of misfolded 

proteins at the old cell poles over time. The small chaperone IbpA (yellow dots) co-localizes with damaged proteins, 

allowing the visualization of protein aggregates. (L) The fluorescence profile of an old lineage expressing IbpA-YFP 

shows that a protein aggregate develops over time, remaining trapped in the old pole over generations. Fluorescence 

profiles were measured every 10 min. See also Figure 2.A.1. for non-normalized length. (M) Combined IbpA-YFP 

fluorescence heatmap of 428 old daughters at the bottom of mother machine wells, imaged over 6h. 
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Figure 2.2 - Equilibrium and asymmetry are present in repair mutants lacking ClpB or DnaK chaperones. 

(A) ∆clpB cells (n = 1642; 0.027 ± 0.002, mean ± SD) exhibited stable elongation rates over time, suggesting these 

mutants might be in growth equilibrium. A single mortality event was observed. (B) ∆clpB mutants retained 

asymmetric doubling times. A two-way ANOVA indicated a significant effect of both T0 (F = 82.32, p < 0.001) and 

age (F = 178.07, p < 0.001) on doubling times, with interaction between factors (F = 5.66, p = 0.017). (C) ∆dnaK 

mutants (n = 786, 0.0236 ± 0.004) exhibited signs of stability loss, with several mortality events occurring throughout 

the experiment. (D) Similarly to ∆clpB, ∆dnaK mutants exhibited a separation between new and old subpopulations, 

with a two-way ANCOVA indicating a significant effect of T0 (F = 12.78, p < 0.001) and age (F = 16.89, p < 0.001) 

on doubling times, with interaction between factors (F = 5.11, p = 0.024). (E) A stability analysis performed on linear 

models from (B) and (D) revealed that both strains satisfy the stability requirement a2+σ1
2 < 1. Although mortality 

events were observed for ∆dnaK mutants, the strain remains mostly stable. Our bootstrap analysis revealed a 1.45% 

probability of losing equilibrium for old lineages, and complete stability for new lineages (x2 = 129.86, df = 1, p < 

0.001). Error bars: 95% confidence intervals. 
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Figure 2.3 - Damage accumulation decreases elongation rates and displaces growth equilibrium. 

All panels depict MG1655 wild-type E. coli. (A) Exposure to phototoxic damage led to decreasing elongation rates in 

all treatment levels (length of exposure, every 2 min: 70 ms, 700 ms, 1 s, 1.5 s, 3 s). (B) Both new and old daughters 

displayed slower growth in response to phototoxic damage (F = 9272, p < 0.001), with new daughters growing faster 

than their old siblings in all cases (F = 1505, p < 0.001). There was significant interaction between age and damage 

level in determining elongation rates (F = 2384, p < 0.001; two-way ANCOVA). Data are represented as mean ± SD. 

(C) Linear correlation between length of phototoxic damage exposure and damage accumulation rates estimated for 

each treatment (p < 0.001, R2 = 0.98). Data are represented as mean ± 95% CI. (D to H) Distinct subpopulations of 

young and old daughters were observed in all treatment levels, with increasingly longer doubling time equilibria. At 

3 s of exposure (λ = 0.009 min-1), the old lineages lie at the threshold of arresting proliferation. 
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Figure 2.4 - Damage accumulation leads to mortality and disrupted asymmetry. 

All panels depict MG1655 wild-type E. coli. (A) Doubling times of an old lineage as it accumulates damage at λ = 

0.009 min-1
, induced by 3 s of light exposure. The line representing model predictions (dark red) approaches identity 

(black), indicating that these cells do not reach equilibrium. After a few generations the last daughter in the lineage 

arrests growth, which equals an infinite doubling time, which represents the crossing of a mortality threshold for the 

lineage. (B) Elongation rates of old lineages, showing the transition from control imaging (0 – 8.6 h) to the infliction 

of 3 s of light exposure every 2 min. All cells exhibited lower growth rates, culminating in division arrest for old 

daughters. New daughters outlived their old siblings by at least one generation, and were sometimes able to generate 

a new lineage in the growth wells (shown in blue and expanded in the detail). All values were normalized by the 

average control elongation rates. (C) Increasing damage accumulation rates disrupted asymmetric partitioning, as 

shown by the asymmetry coefficient approaching 0.5 (a = 0.1007*ln(λ) + 0.95, p < 0.001). Points represent average 

growth parameters and 95% confidence intervals. (D-H) Distributions of new (blue) and old (red) daughter doubling 

times were normalized around a symmetric midpoint. While the combined population has a distribution centered at 

zero (dashed black lines), new and old subpopulations split into two separate distributions. The distance between the 

averages of these distributions expresses the doubling time variance produced by deterministic physiological 

asymmetry. The average variance of new and old distributions around their own means, on the other hand, represents 

the variance produced by stochasticity. (I) Deterministic and stochastic portions of the variance from (D-H) were 

summarized for increasing light exposure, showing an increase in stochasticity. Error bars represent 95% confidence 

intervals. (J) Our stability analysis indicated that new and old daughters remained in stable equilibrium until exposed 

to 3 s of phototoxic stress. At 3 s, old daughters no longer satisfy the stability requirement (a2 + σ1
2 =1.016), thus 

transitioning to a mortal state. Error bars represent 95% confidence intervals. (K) At 3 s of exposure, old lineages 

displayed a 49.53% probability of losing equilibrium, while new lineages exhibited only a 28.10% probability of 

mortality (test for equality of proportions, x2 =1027.7, df = 1, p < 0.001). 
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Figure 2.5 - Old lineages are more likely to reach mortality when exposed to heat or streptomycin.  

All panels depict MG1655 wild-type E. coli. (A) Elongation rates over time for populations exposed to control 

temperatures, 38, 40 or 43°C heat stress (n = 875, 535, 782, and 380 cells). A few mortality events were observed for 

38 and 40°C, with elongation rates declining at 43°C. (B) At 38 and 40°C both new and old lineages satisfied the 

stability requirement a2 + σ1
2 < 1. At 43°C, new lineages in our experiment remained stable, while old lineages lost 

equilibrium. (C) At 43°C, Old lineages displayed a significantly higher probability (67.1%) of losing equilibrium than 

new lineages (43.4%, x2 = 1136, df = 1, p < 0.001). (D) Populations exposed to 0, 2, 4 or 5 µg.ml-1 streptomycin (n = 

1,322, 453, 337, and 292 cells) showed declining elongation rates over time. (E) Both lineages remained in stable 

equilibrium for 2 and 4 µg.ml-1 streptomycin, however new (a2 + σ1
2 = 1.236) and old (a2 + σ1

2 = 1.420) lineages lost 

stability at 5 µg.ml-1. (F) Although both lineages displayed a large probability of transitioning to mortality, old lineages 

(88.0%) had a higher chance of losing equilibrium than new lineages (81.2%, x2 = 177.13, df = 1, p < 0.001) at 5 

µg.ml-1 streptomycin. (B and E) Error bars represent 95% confidence intervals. 
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2.4 Discussion 

Individuals age by progressively accumulating damage over their lifespan, leading to loss 

of function late in life (Rose 1991; Kirkwood 2008). Because biological organisms are composed 

of individual cells, the process of cellular aging represents a baseline for understanding the general 

principles of aging and its phenotypic manifestations. Cellular aging comprises the dynamics of 

intracellular damage accumulation and partitioning, whose manipulation and quantification 

becomes possible in unicellular systems, such as bacteria. Bacterial populations display phenotypic 

variation arising from asymmetric cell divisions, an evolutionarily advantageous strategy for 

increasing the efficiency of natural selection (Chao et al. 2016). Previous studies have shown that, 

as a consequence of asymmetric cellular divisions, aging and rejuvenating bacterial lineages 

stabilize at distinct states of physiological equilibrium (Chao 2010; Camilla U Rang, Peng, and 

Chao 2011; Proenca et al. 2018). While in equilibrium, these lineages remain functionally 

immortal. Here we showed that this state of equilibrium is maintained by the balance between 

damage accumulation and asymmetric partitioning. Unstressed bacterial lineages, despite their 

immortal proliferation and constant environment, accumulated damage derived from standard 

metabolic rates, and partitioned around 63% of their damage load towards old daughters. Repair 

mutants lacking the repair chaperones still retained asymmetric partitioning and the ability to reach 

equilibrium, supporting the notion that asymmetry contributes towards proliferative immortality 

in lineages that must rejuvenate constantly. This is the case of stem cells, which were recently 

shown to asymmetrically segregate damaged components and proteins targeted for degradation 

(Bufalino, DeVeale, and van der Kooy 2013; Moore et al. 2015; Fuentealba et al. 2008). 

Although stem cell lineages rejuvenate at every division, their proliferation reaches 

exhaustion in old individuals (López-Otín et al. 2013). Interestingly, stem cells from old mice were 
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also shown to have a disrupted diffusion barrier (Moore et al. 2015), which renders division more 

symmetric by causing the stem sibling to inherit damaged components. Our results suggest that a 

similar phenomenon takes place in bacterial lineages. We expected to find a larger asymmetry 

between daughter cells produced under high levels of extrinsic damage, but instead the treatments 

caused a disruption in efficient asymmetric partitioning and increased stochasticity. Because 

bacterial asymmetry depends on the allocation of misfolded proteins to old cell poles, cells exposed 

to high levels of stress might be failing to sequester their damaged components. It is possible that 

old poles become saturated with damage, causing aggregates of misfolded proteins to be randomly 

deposited in the new pole or along the cell. Another possibility is that high damage accumulation 

rates interfere with the repair machinery, composed of chaperones that co-localize with damage 

and are responsible for maintaining proteostasis (Doyle and Wickner 2009; Winkler et al. 2010; 

Sabate, De Groot, and Ventura 2010). 

The fact that asymmetry was disrupted by damage accumulation did not prevent new and 

old lineages to undergo strikingly distinct paths under intense levels of extrinsic damage. When 

extreme damage accumulation rates are induced, new lineages display increased doubling times 

but remain in equilibrium. Old lineages, however, undergo division arrest as a consequence of 

inheriting larger damage loads, satisfying the classical pattern of cellular aging. In this scenario, 

old daughters have reached the mortality threshold, while new daughters remain functionally 

immortal. Asymmetry therefore allows for the coexistence of two distinct physiological states in 

a clonal cell population. If this mechanism can be extrapolated to cells within somatic tissues, 

asymmetric damage segregation could offer an explanation for the simultaneous occurrence of 

senescent and proliferative cells in aging tissues (Aravinthan 2015; Jeyapalan and Sedivy 2008). 
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Since asymmetry dictates mortality or immortality in sibling cells, it may also relate to the 

processes of cellular differentiation and fate determination. 

Addressing the study of aging from a cellular perspective, our findings showed that 

bacterial systems can provide an integrative view of the general principles driving the aging 

phenotype. From a simple cellular system, we can quantify the dynamics of damage accumulation 

and partitioning along generations. Asymmetric partitioning of damage drives cell populations to 

reach a stable equilibrium, where the aging of a lineage enables the continued rejuvenation of 

another. Moreover, even when old lineages cross the threshold and become mortal, asymmetry 

allows the survival of new daughters and ensures the continuity of the population. Applying this 

framework to the aging research may largely contribute to the understanding of an evolutionarily 

conserved basis for the progressive functional decline experienced by prokaryotes and eukaryotes 

alike.  

 

2.5 Materials and methods 

2.5.1 Bacterial strains and growth conditions 

Experiments were performed with K-12 E. coli wild-type strain MG1655 for the 

determination of damage accumulation in immortally proliferating bacteria, and for experiments 

on the disruption of growth equilibrium. The visualization of protein aggregates was performed 

with MG1655 E. coli expressing YFP bound to the small heat-shock protein IbpA, constructed 

according to Rang et al. (2018) from the construct IbpA-yfp-Cmr kindly provided by Ariel B. 

Lindner (INSERM, France) (Lindner et al. 2008). Repair mutants were screened for asymmetry 

and equilibrium using E. coli BW25113 ∆clpB (CGSC #11763) and ∆dnaK (CGSC #8342) from 

the Keio knockout collection (Baba et al. 2006). The antibiotic resistance marker was not removed 
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from these strains. For all experiments, cultures were inoculated in lysogeny broth (LB broth; per 

liter: 10 g tryptone, 5 g yeast extract, 5 g NaCl) and grown overnight at 37°C with agitation. The 

culture medium was supplemented with 0.075% Tween 20 upon inoculation within microfluidic 

devices, which prevents the formation of biofilms in the flow channels. 

 

2.5.2 Microfluidic device design and fabrication 

The device used in this study was based on the mother machine design by Wang et al. 

(2010), subsequently modified by Ryan Johnson (University of California, San Diego) for the 

addition of more growth wells. This device included 16 parallel flow channels containing 2000 

growth wells (1.25 x 30 x 1 µm) each. Polydimethylsiloxane (PDMS) microfluidic chips were 

fabricated from master silicon wafers used as negative molds, provided by the Ryan Johnson and 

the Jeff Hasty Lab (University of California, San Diego). PDMS chips fabricated through soft 

lithography yielded 12 devices per process and were attached to 24 x 40 mm coverslips through a 

covalent bond.  Previous control experiments have shown that the asymmetry observed in mother 

machine devices is not produced by starvation (Wang et al. 2010; Proenca et al. 2018) and that 

wide (> 1.0 µm) growth channels can produce cells with faster growth rates than liquid cultures 

(Yang et al. 2018). 

 

2.5.3 Cell loading and experimental conditions 

Cultures were grown overnight in LB medium and centrifuged for 2 min at 5300 g. The 

supernatant medium was subsequently discarded, and the pellet was resuspended in 50 µL of 

medium supplemented with Tween 20. Prior to loading, microfluidic devices were placed in a 

vacuum chamber for 10 to 15 min. Bacteria were loaded by placing a droplet of concentrated 
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culture over the loading port, posteriorly used as an outlet during the experiment, and a droplet of 

sterile medium over the opposite port. Once all channels were properly filled, bacteria were pushed 

into the growth traps by centrifuging the device at 1410 g for 7 min. Input and output 60 ml 

syringes were connected to the ports for a continuous supply of growth medium throughout the 

experiment. The device was incubated at 37º C during imaging. When required, extrinsic damage 

was induced by fluorescent light exposure (490 nm wavelength) using a FITC filter, set at 25% 

strength. The length of exposure to light excitation ranged from 70 ms to 3 s, applied in 2 min 

intervals. Damage induced by heat stress was produced by increasing the incubation temperature 

in the microscope chamber to 38, 40 or 43°C, which was monitored in real time. Extrinsic damage 

induced by sub-inhibitory streptomycin concentrations was introduced by adding 2, 4 or 5 µg.ml-

1 of antibiotic to the growth medium. Each of these experiments was preceded by a 24 h control 

imaging of the same bacterial lineages. 

 

2.5.4 Time-lapse image acquisition 

Cell movies were collected by a Nikon Eclipse Ti-S microscope, with imaging intervals 

controlled by NIS-Elements AR software. Phase images were collected in 2 min intervals during 

the entire length of mother machine experiments, immediately followed by the acquisition of FITC 

pictures when required. For heat or streptomycin stress experiments, no FITC imaging was used. 

 

2.5.5 Quantification of bacterial growth 

Images were analyzed with the free software ImageJ (NIH, https://imagej.nih.gov/ij), 

recording cell coordinates as Regions of Interest (ROI) and cell names as indicatives of lineage 

and cell pole inheritance. Cell lengths were determined immediately before and after each division 



 79 

and time of division was recorded. Elongation rates (r) and doubling times (ln(2)/r) were calculated 

from the data, and the resulting tables were entered in an R program to determine maternity, sibling 

pairs and lineage trees. To ensure that the measurements were unbiased, we performed blind data 

collections where elongation rates were recorded without knowledge of pole inheritance. The 

ImageJ plugin MicrobeJ was used for the creation of fluorescence profiles and heatmaps (Ducret, 

Quardokus, and Brun 2016). 

Data presented in Proenca et al. (Proenca et al. 2018) for verifying the stability of the old 

lineage equilibrium attractor was included in our control data from phase imaging, accompanied 

by new control experiments performed for this study. These experiments provided the necessary 

baseline for our aging model parameters. 

 

2.5.6 Statistical analysis 

Statistical analysis was performed using R version 3.4.1. p-values < 0.05 were considered 

statistically significant. Because distinct microfluidic devices yield small yet robust measurement 

differences, elongation rates and doubling times were normalized by population means when 

comparing data from different experiments. Data from phase imaging, our controls, were 

normalized by their respective averages. Normalized data for all replicates were pooled and 

compared by one or two sample t-tests, as reported. Data from light exposure, heat or streptomycin 

stress imaging were normalized by the respective control experiment mean elongation rates. Raw 

data corresponding to these normalizations were presented in phase planes for individual 

populations. Statistical parameters were reported as mean ± SD, or as mean ± 95% confidence 

intervals for growth parameters, as indicated in the text. Sample sizes (cells, sibling pairs or 

replicates, as informed) are indicated along with reports of statistical analyses. 
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2.5.7 Cellular aging model 

This population genetics model determines the role of asymmetric partitioning of damage 

upon cell division as a mechanism of survival in the presence of damage (Chao 2010). It was 

developed for bacterial populations, assuming that cells must build-up an intracellular product to 

a checkpoint before dividing. Based on the rate with which a bacterium accumulates damage 

during its lifetime (λ) and the doubling time of fittest cell (Π), the damage load received at birth 

(k0) by a mother bacterium can be determined from its doubling time (T0) as  

𝑘0 = 1 − (𝜆
2⁄ )𝑇0 − 𝛱

𝑇0
⁄  

The load received at birth (k0), along with the amount accumulated in its lifetime (λT0), is 

the damage a bacterium will segregate to its daughters according to the asymmetry coefficient (a), 

ranging from 0 (complete asymmetry) to 0.5 (symmetry): 

𝑘1 = (𝑘0 + 𝜆𝑇0)𝑎 

𝑘2 = (𝑘0 + 𝜆𝑇0)(1 − 𝑎) 

This asymmetric inheritance will affect the doubling times of the offspring, causing old 

daughters, which receive the higher load (k2), to slow down compared to their young siblings. The 

doubling times of each daughter, T1 and T2, are given by 

𝑇1 =
(1 − 𝑘1) − √(1 − 𝑘1)2 − 2𝛱𝜆

𝜆
 

𝑇2 =
(1 − 𝑘2) − √(1 − 𝑘2)2 − 2𝛱𝜆

𝜆
 

Estimates of doubling time equilibrium were determined as the points where prediction 

lines cross the identity, which can be calculated as 

𝛼 =
𝑎

1 − 𝑎
 

𝑇̂1 =
1 − √1 − 4𝛱𝜆(1

2⁄ + 𝛼)

2𝜆(1
2⁄ + 𝛼)
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𝑇̂2 =
1 − √1 − 4𝛱𝜆(1

2⁄ + 1
𝛼⁄ )

2𝜆(1
2⁄ + 1

𝛼⁄ )
 

 

2.5.8 Estimation of growth parameters 

The data collected for doubling times of trios composed by a mother bacterium and its two 

daughters was entered in the model to determine growth parameters. The doubling times of the 

daughters (T1 and T2) were estimated from a known maternal doubling time, using varying values 

of Π, λ and a, and compared to the observed doubling times. Optimal parameters were those that 

provided the least mean squared difference between expected and observed doubling times. An 

independent combination of Π, λ and a was estimated for each control experiment, while only λ 

and a were estimated for light treatment experiments (since Π is the baseline doubling time, it was 

provided by the respective control parameter). Non-sensical parameters were excluded based on 

previous knowledge of the model, such as the impossibility of a being either negative or larger 

than 1, or Π being larger than any observed doubling time. To obtain the 95% confidence intervals 

for each parameter, the average of results was entered in a bootstrapped estimate of parameter 

combinations, repeated 10,000 times with resampling of the observed mother and daughter trios.  

 

2.5.9 Estimation of deterministic and stochastic variance components 

Doubling time variances were analyzed for deterministic and stochastic components 

according to Chao et al. (Chao et al. 2016). For each T0, T1, T2 trio, the doubling time of a 

hypothetical symmetric daughter was estimated based on Π, λ and T0. Daughter doubling times 

were normalized by subtracting T1 and T2 from the symmetric daughter estimate, thus centering 

the mean distribution around zero. The distance (D) between the means of normalized T1 and T2 
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was estimated, as well as the variance of new (VN) and old (VO) distributions. The total variance 

(VT) in the population corresponds to VT = (VN + VO)/2 + D2/4. In this equation, D2/4 represents 

the variance produced by deterministic asymmetry.  (VN + VO)/2 represents the unexplained 

variance, produced by stochastic sources. 

 

2.5.10 Equilibrium stability analysis 

T0, T1, T2 trios from phase planes were used to determine the stability of growth equilibria 

for new and old lineages. When mortality events were common (stressed populations), elongation 

rates were used instead of doubling times. New and old lineages were analyzed separately 

according to linear regressions between T0 and T1 or T2. The effective slope for each mother-

daughter pair was determined as (Ti – b)/T0 = a + ξ1, where ξ1 represents a random variable drawn 

from a Gaussian distribution each generation. The standard deviation of the ξ1 distribution is given 

by σ1. As described by Proenca et al. (Proenca et al. 2018), a point of equilibrium where the 

regression and identity lines intersect exists as long as the condition a2 + σ1
2 < 1 is satisfied. Values 

of a2 + σ1
2 were estimated for new and old daughters of experimental populations and reported as 

bar plots for all damaging conditions. This estimate was repeated as a 10,000-fold bootstrap of T0, 

T1, T2 trios for the determination of 95% confidence intervals and equilibrium probabilities. 
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2.A Apendix 

 

 

Figure 2.A.1 - Stability and protein aggregation in unstressed populations.  

Growth stability in new and old lineages can be expressed by linear regressions between T0 and T1 (A, solid blue line) 

or T2 (B, solid red line). The intersect between regression lines and the identity line represents a point of stable 

equilibrium to which doubling times converge. Due to the doubling time variance produced by stochasticity acting on 

the slopes (σ1), given by Ti = T0*(a + σ1) + b, equilibria might be disrupted when a2 + σ1
2 ≥ 1. Dashed lines in (A) and 

(B) represent the maximum variation in regression lines obtained by the parameter σ1 acting on the slopes of our data, 

demonstrating that new and old lineages retain equilibrium in the presence of stochasticity. (C) Fluorescence profiles 

obtained in 10 min intervals for an old lineage, showing the anchoring of protein aggregates (IbpA-YFP) in the old 

pole over time. (D) Over the course of 194 cell divisions observed over 24h imaging, we verified the first appearance 

of 43 protein aggregates. The cellular localization of these new fluorescent foci showed no bias for old poles. (E) The 

partitioning of new protein aggregates upon division showed higher inheritance by new daughters (62.79% of cell 

divisions, n = 43, χ2 = 4.651, df = 1, p = 0.031). However, old daughters inherited the majority of recurring aggregates 

(97.90% of cell divisions, n = 143, χ2 = 258.69, df = 1, p < 0.001) as these became anchored to old cell poles. 
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Figure 2.A.2 - Intracellular damage levels under light exposure.  

Intracellular damage at birth (ki) and division (Di) was estimated from growth parameters extracted for each population, 

based on individual doubling times. (A) The levels of damage inherited by new (blue) and old (red) daughters 

increased with the exposure to light excitation. An ANOVA revealed a significant effect of both exposure (n = 4634 

cells, F = 2792.0, p < 0.001) and age (F = 968.4, p < 0.001) on inherited damage. Data are represented as mean ± SD. 

(B) Intracellular damage levels of populations at control conditions (reproduced from Figure 2.1E) or 3 s of light 

exposure. A significant difference was observed between k1 and k2 (paired one-tailed t test, t = 5.175, df = 69, p < 

0.001) and between D1 and D2 (paired one-tailed t test, t = 5.304, df = 69, p < 0.001) in the 3 s treatment. Old daughters 

in the treatment were born with higher damage levels than in control (two-tailed t test, t = 32.408, df = 82.118, p 

<0.001). The difference k2 – k1 was significantly higher for control than treatment cells (two-tailed t test, t = 2.805, df 

= 80.995, p = 0.0063), an indication of higher symmetry in our 3 s treatment. Data are represented as mean ± SEM. 
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Table 2.A.1 - Growth parameters of unstressed populations. Values of growth parameters Π (min), λ (min-1) and a 

obtained for wild-type populations. 

Strain Π [95% CI] λ [95% CI] a [95% CI] 

MG1655 19.735 [19.299-20.164] 0.0022 [0.0016-0.0029] 0.362 [0.330-0.385] 

MG1655 19.762 [19.318-20.192] 0.0024 [0.0018-0.0031] 0.360 [0.334-0.384] 

MG1655 21.031 [20.424-21.832] 0.0020 [0.0008-0.0031] 0.390 [0.359-0.421] 

MG1655 20.560 [19.957-21.196] 0.0023 [0.0013-0.0032] 0.377 [0.351-0.398] 

MG1655 17.211 [16.224-17.941] 0.0050 [0.0038-0.0065] 0.385 [0.353-0.414] 
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Table 2.A.2 - Elongation rates of MG1655 populations exposed to extrinsic damage. Means and standard deviations 

of normalized elongation rates (min-1) measured for each level of light exposure, heat or streptomycin, compared to 

its respective control. 

Damage 

type 

Damage 

intensity 

Control Treatment Unpaired two-tailed t test 

n Mean±SD n Mean±SD t df p 

Light 

exposure 

70 ms 939 1±0.069 810 0.986±0.087 3.803 1544 0.0001 

700 ms  756 1±0.072 793 0.928±0.076 19.21 1545 <0.001 

1000 ms 580 1±0.082 445 0.901±0.080 19.345 966.18 <0.001 

1500 ms 831 1±0.098 934 0.779±0.135 39.554 1694.8 <0.001 

3000 ms 377 1±0.090 236 0.675±0.162 28.233 326.95 <0.001 

Heat stress 

38°C 345 1±0.081 535 1.032±0.133 4.437 876.010 <0.001 

40°C 298 1±0.086 782 1.114±0.127 16.836 787.190 <0.001 

43°C 231 1±0.093 380 0.987±0.239 0.948 536.380 0.344 

Streptomycin 

2 µg 513 1±0.081 453 1.013±0.088 2.391 922.260 0.017 

4 µg 340 1±0.074 337 0.946±0.075 9.383 674.680 <0.001 

5 µg 469 1±0.073 292 0.895±0.222 7.832 330.230 <0.001 
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Table 2.A.3 - Growth parameters of MG1655 exposed to phototoxic damage. Growth parameters λ (min-1) and a 

obtained for populations exposed to phototoxic damage, using Π from each respective control population. 

Exposure (ms) λ [95% CI] a [95% CI] 

70 0.0024 [0.0021-0.0028] 0.351 [0.321-0.379] 

700 0.0038 [0.0035-0.0040] 0.378 [0.366-0.391] 

1000 0.0042 [0.0038-0.0046] 0.406 [0.388-0.425] 

1500 0.0061 [0.0057-0.0066] 0.446 [0.421-0.465] 

3000 0.0089 [0.0086-0.0092] 0.475 [0.466-0.484] 
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Table 2.A.4 - Doubling time asymmetry of MG1655 exposed to extrinsic damage. Means and standard deviations of 

new and old daughter doubling times (min), along with pairwise comparison, for populations exposed to phototoxic 

damage, heat stress or streptomycin. Pairs where one daughter arrested division were excluded. 

Damage 

type 

Damage 

level 
n 

Old daughter 

Mean±SD 

New daughter 

Mean±SD 

Paired one-tailed t test 

t df p 

Light 

exposure 

70 ms 582 23.080±1.892 21.470±1.466 14.228 290 <0.001 

700 ms 632 24.973±1.813 22.904±1.424 19.881 315 <0.001 

1000 ms 326 26.977±2.147 25.129±1.943 9.260 162 <0.001 

1500 ms 706 30.461±8.473 28.331±3.233 4.670 352 <0.001 

3000 ms 150 32.680±4.337 29.980±3.546 5.293 74 <0.001 

Heat stress 

38°C 242 23.033±1.94 20.999±1.618 13.486 241 <0.001 

40°C 352 21.45±1.627 19.666±1.174 18.676 351 <0.001 

43°C 155 22.881±3.424 22.122±4.45 3.292 154 <0.001 

Streptomycin 

2 µg 216 26.130±3.048 25.001±2.855 7.804 215 <0.001 

4 µg 162 26.628±2.243 25.751±1.902 5.686 161 <0.001 

5 µg 127 26.075±5.056 24.005±4.476 11.604 126 <0.001 
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Table 2.A.5 - Variance partitioning in populations exposed to phototoxic damage. Partitioning of doubling time 

variances into stochastic ([VN + Vo]/2) and deterministic (D2/4) components. Values presented as mean and 95% 

confidence intervals. 

Exposure (ms) D^2/4 (Vn+Vo)/2 Total Variance 

70 0.649 [0.482-0.836] 2.578 [2.223-2.953] 3.226 [2.813-3.672] 

700 1.070 [0.872-1.29] 2.657 [2.311-3.014] 3.727 [3.301-4.165] 

1000 0.854 [0.534-1.25] 4.570 [3.769-5.456] 5.425 [4.570-6.378] 

1500 0.744 [0.430-1.15] 12.829 [11.053-14.82] 13.573 [11.762-15.62] 

3000 1.823 [0.747-3.496] 13.956 [9.007-20.243] 15.780 [10.301-23.17] 
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CHAPTER 3  

A link between aging and persistence 

 

3.1 Abstract 

Despite the variety of strategies microorganisms have evolved to resist antibiotic 

treatments, most chronic infections are caused by subpopulations of susceptible bacteria in a 

transient state of dormancy. This phenotype, known as persistence, arises due to a natural and 

ubiquitous heterogeneity of growth states in bacterial populations, having been observed in 

Escherichia coli, Mycobacterium tuberculosis, Staphylococcus aureus, and many others. 

Nonetheless, the origin and unifying mechanism of this dormancy remains unknown, with several 

unrelated pathways being able to trigger persistence. Through single-cell microscopy and 

microfluidic techniques, we show that asymmetric damage partitioning, by producing 

deterministic phenotypic heterogeneity in bacterial populations, could be a driver of bacterial 

persistence. We demonstrate a relationship between the presence of protein aggregates, a marker 

for bacterial old poles, and the frequency of persister cells in a population. We also show the 

presence of deterministic asymmetry in the high-persistence mutant hipA7, widely used in 

antibiotic persistence research. Therefore, we propose asymmetric damage partitioning as the 

driver of the phenotypic heterogeneity leading to antibiotic persistence. Elucidating the link 

between asymmetry and persistence may provide a new perspective in the treatment of recalcitrant 

infections. 
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3.2 Introduction 

Despite the variety of strategies microorganisms have evolved to resist antibiotic 

treatments, most chronic infections are caused by dormant subpopulations of susceptible bacteria. 

This phenotype, known as bacterial persistence, was first recognized upon the early clinical 

administrations of penicillin (Lee, Foley, and Epstein 1944). Although the magnitude of this public 

health concern was elusive at the time, persisters are ubiquitous among bacteria and represent the 

main cause of recalcitrant infections (van den Bergh, Fauvart, and Michiels 2017). These cells are 

present in the population prior to antibiotic treatment, evading the drugs through dormancy and 

generating a new susceptible population after treatment (Balaban et al. 2004; Levin and Rozen 

2006; Lewis 2007). While the immune system alone is usually able to eliminate persisters left 

behind by antibiotics, these bacteria represent a serious concern in immunocompromised patients 

or in infections that evade immunity (van den Bergh, Fauvart, and Michiels 2017). Nonetheless, 

despite the identification of a wide variety of persistence mechanisms over the years, the current 

knowledge on this phenotype remains fragmented and often inconsistent. 

Contrary to antibiotic resistance, where bacteria employ active evasion strategies, 

persistence derives from the heterogeneity of growth states in bacterial populations. This dormancy 

or slow growth represents a distinct physiological state often attributed to stochasticity, produced 

by variations in gene expression (Shah et al. 2006; N. Wu et al. 2015; Vázquez-Laslop, Lee, and 

Neyfakh 2006), toxin production (Rotem et al. 2010; Gerdes and Maisonneuve 2012), or 

accumulation of damaged components (Leszczynska et al. 2013; Y. Wu et al. 2012). Among the 

known persistence mechanisms, the effect of toxins produced by toxin-antitoxin modules has been 

studied in most detail. These modules are ubiquitous and highly redundant in bacteria, encoding 

toxins that repress cell growth and lead to dormancy (Gerdes and Maisonneuve 2012; Schuster 



 97 

and Bertram 2013; Shah et al. 2006). Particularly, a high-persistence allele (hipA7) of the toxin 

HipA was observed in Escherichia coli, enhancing persistence rates by up to 1,000-fold due to a 

decreased interaction with the HipB antitoxin (Balaban et al. 2004; Schumacher et al. 2015; 

Germain et al. 2015; Korch, Henderson, and Hill 2003). The accumulation of HipA resulted in the 

stochastic transitioning between dormant and growing states, with persister frequencies increasing 

in stationary phase. The identification of a high-persistence mutant has allowed the observation of 

this phenotype through single-cell microscopy (Balaban et al. 2004; Mumcuoglu et al. 2008). 

However, studies following the onset of stochastic dormancy in bacterial lineages are still scarce. 

Another important mechanism for the formation of persisters is the accumulation of non-

genetic damage, which can produce deterministic heterogeneity in a population. Stressing factors, 

leading to oxidation or protein misfolding and aggregation, were shown to increase the frequency 

of persistent cells (Leszczynska et al. 2013; Y. Wu et al. 2012). Similarly, previous studies verified 

that mutations in certain chaperones impact the formation of persisters (Hansen, Lewis, and Vulić 

2008; Leszczynska et al. 2013; Vázquez-Laslop, Lee, and Neyfakh 2006) and that the SOS 

response is essential for persister formation in response to fluoroquinolones (Dörr, Lewis, and 

Vulić 2009). Contrary to the idea of a stochastic switch between dormant and active growth states, 

previous research suggests a deterministic correlation between non-genetic damage and growth 

rates in rod-shaped bacteria (Lindner et al. 2008; Winkler et al. 2010; Stewart et al. 2005). 

Misfolded proteins accumulate in the form of aggregates, which become anchored at the cell poles 

(Coquel et al. 2013). Upon division each cell inherits a newly synthesized pole, formed at the 

fission site, and an old pole carrying damage accumulated by the mother. On the following 

generation, one daughter cell (new daughter) inherits the maternal new pole, carrying little damage, 

while its sibling (old daughter) inherits an old pole harboring larger damage loads (Fig 3.1A). This 
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asymmetric damage inheritance was shown to produce phenotypic heterogeneity, leading to 

deterministic aging and rejuvenation in bacterial populations (Stewart et al. 2005; Rang, Peng, and 

Chao 2011; Proenca et al. 2018). Although it was suggested that bacterial aging could lead to the 

formation of persister cells (Klapper et al. 2007; Aldridge et al. 2012), few studies have attempted 

to trace such parallel.  

In this study, we propose a unifying explanation for antibiotic persistence by correlating 

this phenotype with bacterial aging. Through single-cell microscopy, we observed deterministic 

asymmetry in the E. coli hipA7 mutant. By culturing hipA7 populations in a microfluidic device, 

we verified a state of stable growth in both new and old lineages. Exponentially growing cultures 

of wild-type and hipA7 were nearly identical in every growth aspect, and we did not observe a 

stochastic formation of persister cells in these experiments. Curiously, our results suggest that the 

high-persistence strain has a longer lag phase, surviving treatment when antibiotics are 

administrated before its exponential phase begins. We show that a pre-treatment with sub-

inhibitory antibiotic concentrations can extend the lag phase in wild-type bacteria, increasing the 

frequency of persisters. Similarly, the induction of starvation or protein synthesis arrest produced 

persister cells from exponential cultures, suggesting that a clean growth arrest is necessary for 

survival through dormancy. 

 

3.3 Results 

3.3.1 Aging could explain antibiotic persistence 

To quantify the phenotypic asymmetry produced by bacterial aging, we cultured 

populations of wild-type (WT) E. coli MG1655 in the mother machine microfluidic device. As 

demonstrated in the previous chapters, this device allows for stable growth over several 
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generations, while trapping the old lineage at the bottom of growth wells. In such conditions, with 

abundant nutrients and constant environment, old and new lineages reach distinct states of growth 

equilibrium (Figure 3.1B and Chapter 1). These equilibria are produced by the asymmetric 

partitioning of damage present in unstressed cells, leading to slower elongation rates and longer 

doubling times in old daughters. Lineages constantly inheriting old poles remain at the old lineage 

equilibrium, while the consecutive inheritance of new poles retains lineages at the new equilibrium. 

Because each mother bacterium in equilibrium produces a daughter belonging to the opposite 

equilibrium, these stable points are connected by processes of aging and rejuvenation. 

As we have demonstrated in Chapter 2, the infliction of extrinsic damage through various 

sources has distinct consequences for old and new daughters. When rates of damage accumulation 

reach a certain threshold, old lineages lose equilibrium and arrest growth while new lineages retain 

proliferative immortality (Figure 3.1C). This threshold can be produced by phototoxic damage 

pulses with 3 s of exposure every 2 min, by 5 µg.ml-1 Streptomycin, or by 43ºC heat stress (Figure 

3.1D). While some new lineages also arrest division, old daughters consistently displayed a higher 

probability of becoming mortal at these conditions. Interestingly, these damage sources produced 

different effects over the elongation rate variance of our populations (Figure 3.1E). By partitioning 

the sums of squares into stochastic and deterministic (asymmetry and heritability) components, we 

observed that phototoxic damage produced the highest fraction of stochastic variance. 

Consequently, bacteria displayed constant elongation rates permeated by events of mortality. On 

the other hand, an increase in heritability was observed with Streptomycin, resulting in a 

progressive growth decline as shown by Figure 3.1D. 

We hypothesize that this growth arrest could be related to the dormancy phenotype leading 

to antibiotic persistence. Since old lineages tend to arrest division with a lower damage threshold, 
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we hypothesize that there is a connection between old daughters and persister cells. On the next 

sections, we will explore the phenotypic heterogeneity produced by aging, enhanced by damaging 

agents, in the presence of antibiotic treatments. 

 

3.3.2 Formation of persisters from exponentially growing populations 

To investigate the development of antibiotic persistence in old lineages, we followed E. 

coli cells growing in the mother machine as they accumulated damage and arrested division. In 

order to induce the formation of protein aggregates, increasing the doubling time difference 

between siblings and decreasing elongation rates, we exposed the culture to light excitation applied 

in 2 min intervals. Although our previous results indicate that 3 s of exposure would induce 

division arrest in old daughters, we chose a lower exposure level to allow for a higher heterogeneity 

of growth states. Thus, we employed 1.5 s of light exposure for 16 h to induce damage 

accumulation, which was followed by the addition of 100 µg.ml-1 of Streptomycin to the culture 

medium. The treatments were followed by a period of recovery, when no extrinsic damage was 

present.  

Throughout the experiment, a total of 20 cells arrested growth for intervals between 4.2 

and 25 h, 13 of which were old daughters (Figure 3.2A and 3.2B). Three of these cells became 

dormant before the addition of Streptomycin, a hallmark of bacterial persistence. Unfortunately, a 

total of 19 cells lysed during the recovery period without regaining growth activity (Figure 3.2C). 

One individual, which was the first to enter dormancy, remained stable for seven days after 

Streptomycin was removed from the system, without manifesting visible changes in cell size or 

integrity. Over several replicates of this experiment, employing distinct antibiotics (Streptomycin, 

Ampicillin, Nalidixic Acid) administered after various pre-treatments (light exposure, sub-
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inhibitory antibiotic concentrations), we obtained the same outcome. While reaching loss of 

equilibrium and its consequent growth arrest consistently, no dormant cells regained proliferation 

spontaneously. We have also attempted to induce regrowth through the supplementation of growth 

medium with the chemical chaperone MOPS, replacement of LB by minimal media, and addition 

of mammalian gut signals. No pre-treatment, antibiotic drug, or recovery condition has promoted 

persister awakening for exponential cultures. 

Since the fraction of persisters present in exponential cultures is dramatically low for an 

easy visualization of the phenotype within microfluidic devices, we attempted to reproduce a 

successful experiment performed in a batch culture. This study observed that an exponential 

culture treated with 50 µg.ml-1 Tetracycline for 30 min exhibited high rates of persistence to 100 

µg.ml-1 Ampicillin. We performed this sequence of treatments in an exponentially growing culture 

in the mother machine device (Figure 3.2D and 3.2E), observing several dormancy events. Most 

dormant cells lysed during or after the antibiotic treatment 5 h window. However, after 6h of 

antibiotic removal three old lineages resumed growth. Throughout the device, considering 1650 

growth wells, we observed a total of 160 persister lineages during the recovery period. Old lineages 

represented 83% of these persisters. The remaining 17% persisters represent wells in which the 

new lineages persisted, but the old lysed.  

These results suggest that the trigger inducing dormancy influences the ability of a cell to 

resume growth after the antibiotic treatment. While damaging agents successfully induce 

dormancy in old lineages through increased damage inheritance, these cells are likely unable to 

repair such large damage loads. Tetracycline, on the other hand, induces a non-damaging protein 

synthesis arrest, inducing the production of persisters. These results suggest that environmental 

triggers are essential for the formation of persisters from exponentially growing cultures. 
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3.3.3 High persistence mutants display long-term growth stability 

To increase the probability of observing persisters in microfluidic experiments, we 

employed the high-persistence E. coli hipA7. This mutation decreases the binding between the 

toxin HipA and its antitoxin, leading to increased dormancy rates. To observe a large population 

of this mutant, we cultured hipA7 in the daughter device and compared to wild-type bacteria. 

Populations were imaged under stable unstressed conditions throughout the experiments. 

The high-persistence mutant exhibited no anomalies in its growth physiology. Its 

elongation rates remained stable over time, with new daughters (0.029 ± 0.002 min-1, n = 1565 

cells) elongating faster than old daughters (0.028 ± 0.002 min-1, n = 1505 cells; one-tailed t test, t 

= 13.37, df = 3063.1, p < 0.001; Figure 3.3A and 3.3B). hipA7 displayed marginally slower growth 

than wild-type bacteria (Figure 3.3C), with a two-way ANOVA suggesting a significant effect of 

strain (F = 51.390; p < 0.001) and age (F = 238.001, p < 0.001) on elongation rates. This asymmetry 

was clearly visible on phase planes comparing the doubling times of a mother and its two daughters 

(Figure D and E). hipA7 new daughters (23.843 ± 1.786 min, n = 1195 cells) exhibited shorter 

doubling times than their old siblings (24.573 ± 1.749 min, n = 1195 cells; one-tailed paired t test, 

t = 12.955, df = 1194, p < 0.001). Both lineages had a positive correlation with maternal doubling 

times, with new lineages showing a higher slope (a = 0.443, p < 0.001, R2 = 0.148) than old 

lineages (a = 0.349, p < 0.001, R2 = 0.095). Nonetheless, our stability analysis (see Chapter 1) 

performed on these slopes indicated that both lineages displayed stable growth equilibrium (Figure 

3.3F), with the condition a2 + σ1
2 = 1 being largely satisfied. Thus, we found no evidence for loss 

of proliferation due to unstable growth on hipA7 lineages. 

We hypothesized that an increased stochasticity in growth physiology could lead to 

spontaneous persistence events. To address this hypothesis, we estimated the stochastic and 



 103 

deterministic components of growth variance in wild-type and hipA7 populations (see Chapter 2 

and Chao et al. 2016). We normalized each pair of siblings by the estimated doubling time for a 

symmetric cell division, thus centering the population at a mean of zero. New and old 

subpopulations compose distinct distributions, with the distance between these distributions 

representing the doubling time variance produced by deterministic asymmetry (Figure 3.3G and 

3.3H). The mean variance of the distributions, on the other hand, represents and estimate of 

stochastic variance. We observed no difference between wild-type and hipA populations in terms 

of deterministic or stochastic variance, suggesting that hipA7 is not more likely to undergo 

spontaneous growth arrest. Therefore, hipA7 mutants growing exponentially are physiologically 

equivalent to wild-type bacteria. 

In only one aspect, hipA7 displayed a remarkable distinction from wild-type E. coli. We 

observed that mutant cells loaded on a mother machine device had a longer lag phase (93.65 ± 

26.37 min, n = 60 cells), with the first generation of cells taking longer than wild-type (62.60 ± 

14.61 min, n = 60 cells; one-way ANOVA F = 64.112, p < 0.001) until the first division (Figure 

4A). This large lag phase difference is especially crucial in the interpretation of previous studies 

where the antibiotic treatment occurred within the lag phase of hipA7 (Balaban et al. 2004). While 

our attempts to produce hipA7 persisters from exponentially growing populations yield the same 

negative results as for wild-type, we observed the formation of several persister lineages when 100 

µg.ml-1 Ampicillin was introduced 1 h after loading into the microfluidic device (data under 

collection). The cells that did not start exponential growth until the antibiotic treatment survived, 

resuming growth once the antibiotic was removed. Thus, the longer lag phase observed in hipA7 

mutants is the main differential in the formation of persister cells. 
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3.3.4 Stationary phase persisters 

To explore the effect of stationary phase on persisters under single-cell microscopy, we 

cultured E. coli in agarose pads with Ampicillin. We employed the strain MG1655 containing 

yellow fluorescence protein (YFP) bound to the small chaperone IbpA, which acts as a marker for 

the subcellular localization of protein aggregates. Since protein aggregates eventually become 

anchored at the old cell poles (Chapter 2, Figure 2.1), we expect most cells containing large 

aggregates to be old daughters. We inoculated cells with 0, 1 or 2 µg.ml-1 Streptomycin to induce 

the formation of protein aggregates in stationary cultures. Overnight cultures were then loaded into 

agarose pads containing 100 µg.ml-1 Ampicillin and followed over 20 h, yielding measurements 

of cell area, protein aggregate area, and time until lysis. 

We observed the classic bi-phasic killing of bacterial populations containing persister cells 

(Figure 3.4B). The rapid killing phase corresponds to the susceptible subpopulation, which is 

followed by the slower killing rate of the persistent subpopulation. Most antibiotic persistence 

studies limit the treatment window to 4-6 h, therefore we considered persisters the cells that 

survived beyond 5 h of treatment. The pre-treatment with 1 µg.ml-1 Streptomycin led to a longer 

lag phase before the susceptible subpopulation started decaying (Figure 3.4B), which in this case 

was translated to a marginally higher persister frequency (Figure 3.4C). We further grouped the 

populations according to the presence of protein aggregates, observing the frequency of persisters 

among damaged or damage-free cells. In the 0 µg.ml-1 control, we observed no distinction between 

groups, with cells containing aggregates showing 26.63% survival, and damage-free cells 23.71% 

(X2 = 0.362, p = 0.547). However, the frequency of persisters in the 1 µg.ml-1 Streptomycin pre-

treatment was significantly higher among cells containing protein aggregates (X2 = 8.117, p = 

0.004; Figure 3.4D), relative to the 0 µg.ml-1 control. This distinction could have emerged from 
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the increased damage accumulation promoted by Streptomycin, inducing the aggregation of 

proteins in the old poles. While the same trend was visible in the 2 µg.ml-1 pre-treatment, with 

damaged cells exhibiting 54.8% persistence rates, there was no significant difference between 

groups (X2 = 0.504, p = 0.478). We believe that the smaller sample size from this last treatment 

could explain this outcome (55 cells), and intend to replicate the experiment to further explore the 

trend.  

Taking the presence of protein aggregates into the cellular context, we also considered the 

total cell area as a predictor of persistence. Overall, persisters exhibited a higher proportion of the 

cell occupied by aggregates (two-way ANOVA, F = 11.92, p = 0.0006), while this ratio did not 

change according to the Streptomycin treatment (F = 2.65, p = 0.072; Figure 3.4E). The cell area 

itself, however, was the most important factor in determining survival to 5 h of Ampicillin (Figure 

3.4F). While a larger area was observed for the population pre-treated with 2 µg.ml-1 Streptomycin 

(two-way ANOVA, F = 173.43, p < 0.001), susceptible cells also exhibited a larger initial area (F 

= 174.54, p < 0.001) than persisters. In our experimental design, cell size was the main indicator 

of whether an individual had reached stationary phase before the Ampicillin treatment. 

Taken together, our results suggest that old daughters might exhibit higher rates of 

persistence. The higher rates of persisters among cells containing protein aggregates provides a 

preliminary evidence for this hypothesis, which we are now exploring through more sophisticated 

experiments. These observations also suggest that dormancy through starvation can effectively 

produce persisters, as opposed to non-culturable cells produced by our damaging treatments. 
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Figure 3.1 - Old lineages display higher probability of arresting division when exposed to extrinsic damage. 

(A) Protein aggregates tend to accumulate in the old cell poles, leading to asymmetric damage inheritance. Cells 

inheriting conserved cell poles are called old daughters, while cells inheriting newly synthesized poles are new 

daughters. (B and C) Graphical representations of doubling times. (B) New and old lineages, consecutively inheriting 

either pole, remain in distinct growth equilibria when grown in unstressed conditions. These equilibria are connected 

by aging and rejuvenating lineages (gradient arrows). (C) When rates of damage accumulation reach a certain 

threshold, old lineages lose equilibrium and arrest growth, while new lineages are able to remain proliferative. (D) 

This loss of equilibrium was observed through the infliction of extrinsic damage by light exposure, Streptomycin and 

heat stress (see Chapter 2). (E) Damaging treatments caused different effects on the doubling time variance of bacterial 

populations, with light exposure producing the highest stochasticity and Streptomycin the highest deterministic 

variance. 
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Figure 3.2 - Antibiotic persistence in exponentially growing cultures in microfluidic devices.  

(A, B and C) The population was exposed to 1.5 s of light excitation every 2 min for 16 h, followed by treatment with 

100 µg.ml-1 Streptomycin (gray area) for 5h. A higher frequency of dormant cells was observed among old daughters, 

although all but one dormant cells lysed over the course of 25 h. (D, E and F) An exponentially growing population 

was pre-treated with 50 µg.ml-1 Tetracycline (dashed lines) for 30 min, followed by exposure to 100 µg.ml-1 Ampicillin 

(gray area) for 5h. Three old lineages produced persisters, resuming growth after the antibiotic was removed. 
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Figure 3.3 - Exponentially growing hipA7 are physiologically similar to wild-type E. coli.  

(A and B) Elongation rates over time were constant for both strains, with no spontaneous dormancy events observed 

in the daughter device (see Chapter 1). (C) Doubling times of the wild-type strain were shorter than hipA7, and both 

strains exhibited asymmetry. (D and E) Phase planes show the separation of wild-type and hipA7 into subpopulations 

of new and old daughters. The crossing between regression lines and the identity line represents a point of stable 

equilibrium to which new and old lineages regress. (F) All new and old lineages showed stable equilibrium, indicating 

that the toxin HipA did not induce dormancy in unstressed cells. (G and H) Normalized doubling time distrubutions 

used for the determination of stochastic and deterministic components of the doubling time variance. (I) Wild-type 

and hipA7 displayed a similar stochastic variance. 
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Figure 3.4 - Persistent bacteria observed in stationary phase cultures. 

(A) In the mother machine device, hipA7 mutants displayed a longer lag phase when compared to wild-type. When 

antibiotic treatments are performed within the lag window, persistence is observed. (B) Populations of E. coli MG1655 

IbpA:YFP were pre-treated with 0,1 or 2 µg.ml-1 Streptomycin in overnight cultures. These cultures were inoculated 

into agarose pads containing 100 µg.ml-1 Ampicillin, showing declining survival over time. (C and D) Error bars 

represent 95% confidence intervals. (C) Persisters were determined as cells that survived at least 5 h of Ampicillin 

treatment. The highest frequency was observed for the 2 µg.ml-1 pre-treatment. (D) Cell containing protein aggregates 

displayed higher frequency of persisters, which might suggest a connection to old daughters. (E) The proportion of 

the cell occupied by a protein aggregate was higher for persisters. (F) The initial cell area is an indicator of whether a 

cell has entered dormancy, leading smaller cells to survive antibiotic treatment. 
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3.4 Discussion 

Over the past years a wide variety of persistence mechanisms has been identified. The 

current consensus states that persister cells are present in a heterogeneous population prior to 

antibiotic treatment, representing a distinct physiological state of dormancy or slow growth 

(Balaban et al. 2019). This phenotype can be produced by variations in gene expression (Shah et 

al. 2006; N. Wu et al. 2015; Vázquez-Laslop, Lee, and Neyfakh 2006), toxin production (Rotem 

et al. 2010; Gerdes and Maisonneuve 2012), or accumulation of damaged components (Y. Wu et 

al. 2012; Leszczynska et al. 2013). However, the current knowledge on this phenotype remains 

fragmented, with most research groups focusing on specific protein pathways or toxins rather than 

looking for a general persistence framework. Moreover, these aspects of bacterial physiology are 

constantly interacting in living organisms, driving the dynamic emergence of persistence, 

responding to environmental cues and, ultimately, evolving due to selective pressures.  

This study provided evidence for an alternative persistence framework, connecting the 

phenotype to properties observed in aging populations. We have shown that the dynamics of aging 

and rejuvenation that emerge in bacterial populations could produce dormant cells (Proenca et al. 

2019), which would survive antibiotic treatment. In this scenario, both aging and persistence are 

produced by the same underlying phenotypic heterogeneity. Our results suggest that old lineages, 

which are susceptible to growth arrest, could display higher rates of persistence within a population. 

We have shown that old lineages can persist to Ampicillin when pre-treated with Tetracycline, and 

that cells containing protein aggregates — more likely to be old daughters — produce a higher 

persister frequency.  

Antibiotic persistence represents a complex phenotype, combining deterministic and 

stochastic processes and responding to environmental cues. Our results have shown that nutrient 
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limitation or Tetracycline, which induces protein synthesis arrest, were successful in triggering 

persistence. Other treatments, including light excitation and oxidative damage, could not produce 

persisters from exponentially growing cells. Because these treatments can increase lag phase, it is 

possible that studies reporting exponential phase persisters were, in fact, detecting cells carried 

over from stationary cultures (Kim and Wood 2016). To conciliate environment and cell 

physiology, our future experiments will investigate the progression of aging as populations 

approach stationary phase. Damage accumulation likely plays a role in the determination of growth 

arrest or proliferation, producing phenotypic heterogeneity. Modulating nutrient availability 

within microfluidic devices could allow us to visualize the onset of dormancy in natural conditions, 

tracking damage accumulation and partitioning over generations. 

Our future work will address persistence through a combination of experimental evolution, 

single-cell microscopy, and computational modeling. We will select bacterial populations for 

increased persistence rates, and investigate whether aging properties change in evolved 

populations. We will employ microscopy and microfluidic techniques to explore aging and 

persistence in stationary phase populations. Finally, we will apply this experimental data on the 

generation of computational models that capture the complexity of this system, producing 

predictions for the evolution of persistence. Antibiotic persistence is a complex public health 

concern, which we will continue to study through its multi-scale deterministic and stochastic 

properties. 
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3.5 Materials and Methods 

3.5.1 Bacterial strains and growth conditions 

Experiments were performed using K-12 E. coli MG1655. When the visualization of 

protein aggregates was necessary, MG1655 containing IbpA-YFP was used (A. Lindner, INSERM, 

France). The wild-type strain was compared to a high persistence mutant, MG1655 hipA7 (kindly 

provided by K. Lewis, Northeastern University). Bacteria were grown overnight in LB medium 

(lysogeny broth) at 37o C with agitation. Growth medium was supplemented with 1 or 2 µg/ml of 

Streptomycin for induction of protein aggregation, when required.  

 

3.5.2 Microfluidic devices and treatment 

Exponential growth experiments were performed using the mother machine or daughter 

device microfluidic chips. PDMS devices were fabricated through soft lithography from a master 

silicon wafer, produced by Nano3 (UC San Diego). The mother machine was based on the original 

design (Wang et al. 2010) and adapted by R. Johnson (Hasty Lab, UC San Diego). The daughter 

device was developed by O. Mondragón-Palomino (Hasty Lab, UC San Diego) (Mondragón-

Palomino et al. 2011). Overnight bacterial cultures were concentrated and loaded into the devices 

through loading ports. For experiments with the HipA7 mutant, bacteria were kept warm during 

loading due to cold sensitivity. After loading, inlet and outlet 60 ml syringes were connected to 

the ports. When necessary, the inlet was replenished or replaced throughout the experiment. 

Persister assays in microfluidic devices consisted of a 24 h control period, allowing cells 

to reach stable exponential growth, followed by a damaging treatment, antibiotic exposure, and 

recovery. Damaging treatments included light excitation (500 nm) and 1 µg/ml Streptomycin, with 

exposure lasting for 24 h. Alternatively, pre-treatment was replaced with 50 µg/ml Tetracycline 
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for 30 min. Antibiotic treatments were performed with 100 µg/ml Streptomycin or Ampicillin for 

5 h unless otherwise indicated. Recovery treatments represented a reversion to control conditions, 

washing the inlet to remove the antibiotic and providing fresh medium. 

 

3.5.3 Agarose pads for stationary cultures 

Stationary culture experiments were performed in LB agarose pads (LB medium 

supplemented with 15g/L agarose). A 10 µl pad containing 100 µg/ml Ampicillin was prepared 

immediately prior to the experiment. Overnight cultures with 1 or 2 µg/ml Streptomycin were 

inoculated onto agarose and followed over time until lysis. 

 

3.5.4 Time-lapse imaging and quantification 

Cell movies were collected by a Nikon Eclipse Ti-S microscope, with imaging intervals 

controlled by NIS-Elements AR software. Mother machine and agarose pad phase images were 

obtained in 2 min intervals, while daughter device experiments were imaged every 20 s. When 

necessary for the visualization of protein aggregation or as a source of stress, fluorescence images 

were obtained through a FITC filter (500 nm), following 2, 10 or 20 min intervals.  

These images were analyzed using the software ImageJ (NIH, https://imagej.nih.gov/ij), 

recording cell coordinates as Regions of Interest (ROI) and cell names as indicatives of lineage 

and cell pole inheritance. Cell lengths were determined immediately before and after each division 

and time of division was recorded. Elongation rates (r) and doubling times (ln(2)/r) were calculated 

from the data, and the resulting tables were entered in an R program (version 3.4.1) to determine 

maternity, sibling pairs and lineage trees. The ImageJ plugin MicrobeJ was used for detertion and 

segmentation of fluorescence images (Ducret, Quardokus, and Brun 2016). 
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CONCLUSIONS AND FUTURE DIRECTIONS 

 

The study of aging in bacterial systems can provide valuable insights on the conserved 

processes involved in the ubiquitous fitness decline observed in biological organisms over time. 

Morphologically identical bacterial cells were shown to partition non-genetic damage with 

asymmetry upon division (Stewart et al. 2005; Lindner et al. 2008). Thus, through an unexpected 

physiological mechanism, asymmetric bacteria satisfy a core requirement of the Evolutionary 

Theory of Aging, namely exhibiting an effective separation between soma and germline 

(Kirkwood 2008). This observation expanded the possibilities of using bacteria as simple model 

organisms for the study of a complex phenotype such as aging, along with its progression along 

cell lineages. 

To investigate the progression of bacterial aging, however, long-term microscopy 

techniques are essential. Early studies were successful in detecting the asymmetric phenotype by 

following bacterial colonies for a limited number of generations (Stewart et al. 2005; Rang et al. 

2012), but the advancement of single-cell microscopy techniques required the tracking of longer 

cell lineages in a stable environment. The use of microfluidic devices for the study of bacterial 

physiology offered the ideal method for this goal (Wang et al. 2010; Ferry, Razinkov, and Hasty 

2011; Mondragón-Palomino et al. 2011). Most outstanding, the mother machine microfluidic 

design allowed for the tracking of bacterial old lineages for hundreds of generations (Wang et al. 

2010). However, contrary to the earlier observations of aging, old daughter lineages grown in the 

mother machine exhibited constant growth physiology, showing no signs of fitness decline over 

time. Although modeling and data-fitting could identify hypotheses reconciling these opposing 

results (Chao 2010; Rang, Peng, and Chao 2011) and the advantage of being asymmetric (Chao et 
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al. 2016), the ideas of bacterial aging versus its long-term growth stability remained controversial 

in the field. 

Chapter 1 of the present dissertation offered a synthesis of physiological immortality and 

aging occurring in the same cellular context (Proenca et al. 2018). By following new and old cell 

lineages in microfluidic devices, we demonstrated that bacterial populations stabilize around two 

points of growth equilibrium. While remaining in equilibrium, both new and old lineages displayed 

physiological immortality through continuous proliferation with stable elongation rates. Since 

cells in equilibrium still divide with asymmetry, producing one daughter of the opposite polarity 

each generation, the stable points become connected by constant processes of aging and 

rejuvenation as lineages transition from one equilibrium to the other. These processes occur in 

unstressed populations, thus indicating the formation of deterministic age structures in bacterial 

populations. 

Chapter 2 contextualized these findings through the framework of cellular aging, 

identifying the factors operating on the transition between proliferative immortality and mortality. 

The larger field of aging has long focused on multicellular organisms, which offer a direct parallel 

with human physiology. Whereas relevant hallmarks of aging have been identified (López-Otín et 

al. 2013) and largely studied, defining aging in the cellular context, the interaction between these 

hallmarks cannot be easily observed in a complex system. We showed that bacteria can offer a 

simple model for the study of cellular aging and its progression. Through the infliction of extrinsic 

damage, we demonstrated the disruption of growth equilibrium leading to a transition between 

immortality and mortality in single cell lineages. Moreover, because of asymmetric damage 

partitioning, we showed that old lineages reach their mortality threshold whereas new lineages 
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remain proliferative within the same population. Thus, cellular aging can lead to a differential cell 

lineage fate depending on damage inheritance. 

Finally, Chapter 3 of this dissertation investigated the application of phenotypic 

heterogeneity produced by asymmetry in the context of antibiotic treatments. We focused on 

antibiotic persistence, a phenotype by which bacteria survive treatment by entering a dormant state 

prior to antibiotic exposure (Balaban et al. 2004; Levin and Rozen 2006; Maisonneuve and Gerdes 

2014). Since old lineages are more likely to arrest proliferation, we investigated the connection 

between asymmetric damage inheritance and antibiotic persistence. This work suggests a new 

application of bacterial aging studies, suggesting the connection between phenotypic heterogeneity 

and serious public health concerns. 

Future directions of this work include the furthering of antibiotic studies and the 

identification of intracellular mechanisms involved in the generation of asymmetry. Through the 

study of single gene deletion mutants, such as performed in Chapter 2, molecular pathways that 

are essential for an effective partitioning of damaged components could be identified. Furthermore, 

the investigation of bacteria other than E. coli and C. crescentus for the aging phenotype could 

determine aspects of cellular physiology that are necessary for the separation between soma and 

germline. While this work offered insights on the deterministic aspects of bacterial aging and its 

consequences for cell fate determination, we are certain the field will continue to move forward in 

the establishment of bacteria as model organisms for the ubiquitous manifestations of the aging 

phenotype. 
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