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Abstract

Objectives—To estimate prevalence, examine time trends, and test for clinical correlates and 

outcomes associated with HIV-1 intersubtype recombination under a full-genome sequencing 

context in a rural community in Mbarara, Uganda, where HIV-1 subtypes A1 and D co-circulate.

Methods—Near-full-genome HIV-1 Sanger sequence data was collected from plasma samples of 

504 treatment-naïve individuals, who then received PI or NNRTI-containing regimens and were 

monitored for up to 7.5 years. Subtypes were inferred by Los Alamos RIP 3.0 and compared with 

Sanger/REGA and MiSeq/RIP. “Non-recombinants” and “recombinants” infections were 

compared in terms of pre-therapy viral load, CD4 count, post-therapy time to virologic 

suppression, virologic rebound, first CD4 rise above baseline and sustained CD4 recovery.

Results—Prevalence of intersubtype recombinants varied depending on the genomic region 

examined: gag (15%), prrt (11%), int (8%), vif (10%), vpr (2%), vpu (9%), GP120 (8%), GP41 

(18%), and nef (4%). Of the 200 patients with near-full-genome data, prevalence of intersubtype 

recombination was 46%; the most frequently observed recombinant was A1-D (25%). Sanger/
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REGA and MiSeq/RIP yielded generally consistent results. Phylogenetic tree revealed most 

recombinants did not share common ancestors. No temporal trend was observed (all p>0.1). 

Subsequent subtype switches were detected in 27 of 143 (19%) subjects with follow-up sequences. 

Non-recombinant versus recombinants infections were not significantly different in any pre- nor 

post-therapy clinical correlates examined (all p>0.2).

Conclusion—Intersubtype recombination was highly prevalent (46%) in Uganda if the entire 

HIV genome was considered, but was not associated with clinical correlates nor therapy outcomes.

Keywords

Uganda; Africa; recombinants; non-B subtypes; full-genome sequencing; virologic outcomes; 
consequence; HIV-1; clinical outcomes; deep sequencing

Introduction

HIV-1 Group M, which currently dominates the glob al epidemic, is classified into subtypes 

(or clades) A1, A2, A3, A4, B, C, D, F1, F2, G, H, J, K and various circulating recombinant 

forms (CRFs) such as AB, AE, and AG [1]. Because the virus’ life cycle involves packing 

two full-length RNA genomes during viral particles assembly, it provides chances for an 

event called “template switching” during reverse transcription, leading to the generation of 

recombinant daughter genomes that contains portions of the parental templates [2].

It has been estimated that HIV-1 CRFs and unique recombinant forms (URFs) are currently 

responsible for 18–20% of the infections worldwide, and are especially prominent in 

African, Asian and South American countries where multiple subtypes cocirculate [3]. 

However, most studies that report the prevalence of intersubtype recombinant viruses 

examine only a specific part of the HIV-1 genome, mainly from pol due to its usage in drug 

resistance testing and its availability in public databases.

Relevant to this study, prevalence of A1-D recombinants in rural Uganda was estimated to 

be 6–19% based on pol and/or GP41 sequences conglomerated from multiple cohorts and 

sequence database in multiple studies [4–6]. A small scale study examined near-full-genome 

data from 46 patients in Rakai, Uganda and reported 30% recombinants [7]. Another study 

reported a 30% prevalence of AD recombinants by pol and its enrichment in severely septic 

patients [8]. Little is known about pre- and post-treatment virologic and immunologic 

impacts associated with infections by these recombinant viruses.

The Uganda AIDS Rural Treatment Outcomes (UARTO) cohort consists of over 500 HIV-

infected patients in Mbarara, Uganda, where HIV-1 subtypes A1 and D co-circulate [9–11]. 

Plasma samples were available before and after treatment initiation, and virologic and 

immunologic outcome data were collected for over seven years post-therapy. As such, this 

cohort provides an excellent opportunity to observe the natural prevalence and clinical 

impact of HIV recombinants.

The objective of this study is to estimate prevalence, examine time trends, and test for 

clinical correlates and outcomes associated with infections by HIV-1 intersubtype 

recombinants. We hypothesize that prevalence of recombinants is higher than previously 
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reported if examined under a near-full-genome-sequencing context, and that infection with 

HIV-1 recombinants, compared to non-recombinants, is associated with negative pre-therapy 

clinical correlates and inferior post-therapy virologic and immunologic responses.

Methods

Ethics Statement

The study was approved by the Mbarara University of Science and Technology Human 

Subjects Committee and Partners Healthcare Human Subjects Committee, the Uganda 

Council of Science and Technology, the University of British Columbia/Providence Health 

Care Research Ethics Board (H11-01642) and the University of California Human Research 

Subjects Committee. All participants provided written informed consent.

Cohort Description

The Uganda AIDS Rural Treatment Outcomes (UARTO) [12–14] is a cross-sectional cohort 

of 504 initially treatment-naïve HIV-1 infected subjects. They were followed primarily at the 

Immune Suppression Syndrome (ISS) Clinic in Mbarara, Uganda, a rural community 4.5 

hours by automobile from the capital city of Kampala. Subjects were enrolled just before the 

start of antiretroviral regimen from June 27, 2005 to April 8, 2010, and were longitudinally 

followed every three to six months to receive viral load and CD4 count monitoring for up to 

7.5 years until January 11, 2013 or until lost to follow-up. Among the 504 participants, 296 

post-therapy follow up samples were available for HIV-1 RNA sequencing from 143 unique 

individuals.

HIV-1 Near- full-genome PCR amplification

Total nucleic acid was extracted from 500 μL of plasma samples using NucliSENS easyMag 

(bioMérieux). All PCR and sequencing primer sequences, and thermocycler methods are 

listed in Supplementary Tables 1–3. Briefly, reverse transcription and nested-PCR reactions 

were performed using a three-reaction five-amplicon approach with near-full-genome 

coverage. The five overlapping amplicons covered gag to protease(pr) (HXB2 coordinate 

680–2724), pr to reverse transcriptase(rt) (2011–3798), rt to vpu (3626–5980), vpr to GP120 

(5549–7760) and GP41 to nef (7652–9610).

Sanger sequencing

Bulk sequencing was performed on ABI 3730 DNA Sequencer using BigDye Terminator 

v3.1 Cycle Sequencing Kit (Applied Biosystems). Chromatograms were aligned against 

HXB2 references sequences by our in-house automated alignment and base-calling program 

RECall [15], resulting in seven sequence databases for each of gag, prrt, int, vif, vpr, vpu, 

partial GP120, GP41 and nef, which were concatenated to create near-full-genome 

sequences. For more details on alignment, concatenation and quality control, refer to 

Supplementary Material and Methods. Los Alamos PhyML 3.0 was used to construct 

phylogenetic trees from these concatenated near-full-genome sequences along with relevant 

Los Alamos 2010 HIV-1 subtype references (Figure 1).
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Subtyping and recombinants inferences

Los Alamos RIP 3.0 was used in our primary analysis. In our gene-by-gene examination, 

RIP window size 400 with confidence interval 95% was arbitrary selected to infer subtype 

for sequences with HXB2 reference sequence >600 nucleotides in length (gag, prrt, int, 
GP41, nef), otherwise, RIP window size 100 with confidence interval 90% was used (vif, 
vpr, vpu, partial GP120). In our near-full-genome examination, RIP window size 400 with 

confidence interval 95% was used. A sample was called a “non-recombinant” when RIP 

returned a single subtype inference (eg. A1) and a “recombinant” when RIP detected 

multiple subtypes within a fragment (eg. A1-D). We defined a “subtype switch” event as 

having any discordant subtyping results in a series of longitudinal samples from a single 

patient (eg. switching from A1-D recombinant to D). For comparison, we repeated 

subtyping and recombinants inferences for prrt using another algorithm REGA 2.0 

(BIOAFRICA) with default settings.

Definitions of therapy outcomes

Virologic suppression was defined as <400 copies HIV RNA/mL to reflect the viral load 

detection limit during the initial years of the follow-up period. Four therapy outcomes were 

examined: (i) time to virologic suppression (first of two consecutive viral load <400 copies 

HIV RNA/mL), (ii) time to post-therapy virologic rebound (first of two consecutive viral 

load ≥400 copies HIV RNA/mL post-suppression, defined as the number of day since the 

first of two consecutive virologic suppression event), (iii) time to first CD4 rise (any post-

therapy CD4 count above baseline), and (iv) time to sustained CD4 recovery (first of two 

consecutive post-therapy CD4 count increase of >200 cells/μL from pre-therapy count, or 

first of two consecutive post-therapy CD4 count >350 cells/μL). “Lost to follow-up” was 

defined as the lack of an event until study cutoff and having the last clinic visit >18 months 

(548 days) before study cutoff. A sample R script on the definitions and data extraction for 

virologic outcome is available in Gist (https://gist.github.com/guineverelee/public). 

Transmitted drug resistance data for this cohort was defined by the WHO list [16] and was 

previously published by our group [17]. Post-treatment drug resistance was defined using 

Stanford HIVdb [18].

Statistical Methods

All statistical analyses were performed using R, SAS and/or GraphPad Prism 5.0. Two-tailed 

Mann-Whitney tests were used to compare age, pre-therapy viral load, pre-therapy CD4 

count, and follow up duration. Log-rank tests were used to compare Kaplan-Meier curves of 

time to virologic suppression, virologic rebound, CD4 rise and CD4 recovery.

Two-tailed Fisher’s exact test was used to compare gender distribution and the extent of lost 

to follow up. Multivariate Cox Proportional Hazard confounder models were used for time 

to virologic suppression and time to post-suppression virologic rebound. The initial list of 

variables included in the full Cox models were “recombinants or non-recombinants,” “age at 

enrollment,” “gender,” “baseline viral load,” “baseline CD4 count,” “number of follow up 

visits,” “mean visit interval in days (per 10 increase),” “year of therapy start (dichotomized 

into >2007 versus ≤2007)” and “type of first regimen (nevirapine-based versus others).” 

Then, variables were dropped one-at-a-time using the lowest relative change in the 
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coefficient for the variable related to the outcome as a criterion, until the maximum change 

from the full model exceeded 5% [19]. Statistical significance was defined as p<0.05 in all 

analyses. Note, Bonferroni correction for multiple comparisons could arguably be used 

instead (p = 0.05/26 = 0.002); this value is provided here for benchmarking purpose.

MiSeq (Illumina) Deep Sequencing

For each sample, the five nested second-round PCR amplicons from three reactions were 

pooled (5μL each) and purified using AMPure Beads (Agilent). Library was prepared with 

Nextera XT kits according to manufacturer’s protocol and sequenced with MiSeq Reagent 

Kit V2 (500-cycles) with a target coverage depth at 8000. FASTQ outputs were processed by 

our in-house bioinformatics pipeline (version 6.8). Quality cutoff q15 was chosen. Each 

genomic region (gag, pr, rt, int, vif, vpr, vpu, env and nef) was aligned using bowtie 

separately. Briefly, shortgun reads were initially aligned to its corresponding HXB2 

reference sequences followed by a reiterative process to obtain sample-specific reference 

sequences. Then, one consensus sequence per sample per genomic region was created at a 

20% nucleotide mixtures cutoff. Sequences with an average coverage depth <10 were 

excluded from subsequent analyses. “Concordance between Sanger and MiSeq” was defined 

as “either having completely identical subtype inference results (eg. Sanger A1 versus 

MiSeq A1) or having partially concordant results (eg. Sanger A1 versus MiSeq A1-D 

recombinant).” The following sequences were excluded from our analyses for quality 

control: (1) sequences with an average coverage depth <10 across the target genomic region, 

(2) sequences that were shorter than 400 or 100 nucleotides in length for RIP window size 

400 and 100 analyses respectively, and (3) sequences which RIP failed to yield a subtype 

inference and returned as “None Significant.” A secondary analysis specifically examined 

samples with coverage depth between 10 and 100.

Results

Pre-therapy Baseline Characteristics (n=504)

Cross-sectional pre-therapy baseline HIV+ plasma samples were collected from 2005 to 

2010 from 504 HIV-infected patients immediately before initiation of antiretroviral therapy. 

At baseline, 69% were female, median age was 35 (Q1–Q3 29– 39), median baseline viral 

load and CD4 count were 1×105 copies HIV RNA/mL (Q1–Q3 4×104–4×105) and 132 cells/

μL (Q1–Q3 75–200). Initial regimens were primarily NVP- (86%) and EFV-based (12%) in 

combination with lamivudine (3TC) and zidovudine (AZT).

Prevalence of HIV-1 Intersubtype Recombination

When each genomic region was individually examined, intersubtype recombinants were 

detected at the following frequencies in pre-treatment samples: gag (15%), prrt (11%), int 
(8%), vif (10%), vpr (2%), vpu (9%), GP120 (8%), GP41 (18%), and nef (4%) as shown in 

Table 1 column gag to nef. Of the 200 patients who had sequence data available across all 

genomic regions, nucleotides from all genomic regions were concatenated to produce near-

full-genome HIV data to be re-analyzed by RIP. Prevalence of intersubtype recombination 

detected anywhere along the genome was 46% (Table 1, column “Near-Full-Genome”). The 

most frequently detected recombinant was A1-D (25%). Stratification by year revealed no 
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temporal trend in the prevalence of recombinants (all p>0.1, Supplementary Table 4). 

Phylogenetic analysis by maximum-likelihood tree of these 200 near-full-genome sequences 

showed that most A1-D and D-A1 recombinants did not cluster into monophyletic groups 

and did not share common ancestor(s), suggesting multiple recombination events (Figure 1). 

Recombinant breakpoints scattered across the genome (Figure 2). To assess the consistency 

of RIP’s subtype inferences compared to other subtyping algorithms, we submitted all prrt 
sequences to REGA 2.0 (BIOAFRICA) for a representative comparison. Overall, REGA 

predicted a higher prevalence of recombinants in prrt (20%) than RIP (11%) and their results 

were 89% concordant.

Longitudinal switches in HIV-1 subtypes

Since none of the 143 individuals whom we had longitudinal sequences for were among the 

200 whom we had near-complete full-genome data, we proceeded to estimate prevalence of 

switches in each genomic region. Longitudinal sequences were available from 77 subjects 

(gag), 90 (prrt), 67 (int), 63 (vif), 59 (vpr), 77 (vpu), 31 (GP120), 80 (GP41) and 86 (nef). 
Longitudinal subtype switches were observed in 5% of the subjects (gag), 9% (prrt), 6% 

(int), 2% (vif), 3% (vpr), 3% (vpu), 13% (GP120), 8% (GP41) and 7% (nef). Details of these 

37 cases of subtype switches in 27/143 subjects (19%) are listed in Supplementary Tables 

5a–i. To explore potential reasons for switches, we examined phylogenetic trees, and found 

that one discordant sample from patient MBA1100 was an immediate neighbor of MBA1101 

in a phylogenetic tree of all available vif sequences, suggesting potential labeling error 

(Supplementary Table 5b), whereas in another case nef sequences of patient MBA1435 

switched from A1 to G, but all sequences formed a tight monophyletic group on a 

phylogenetic tree of the entire cohort’s nef sequences, suggesting potential RIP artifacts 

(Supplementary Table 5i). No potential explanation for other switch cases was found.

Comparison with Illumina (MiSeq) near-full-genome deep sequencing data

To examine whether another sequencing method would yield consistent subtyping results, 

we performed near-full-genome Nextera XT MiSeq deep-sequencing, consensus nucleotide 

sequence generation and RIP subtyping on 23 randomly selected samples. Of these, 20 were 

pre-therapy baseline samples from 20 unique individuals, and three were post-therapy 

samples from three unique individuals. Paired Sanger and MiSeq data were successfully 

obtained for 22 (gag), 22 (prrt), 11 (int), 19 (vif), 19 (vpr), 22 (vpu), 19 (partial GP120), 16 

(GP41), 20 (nef) and 19 (near-full-genome). RIP subtype inferences were always concordant 

between Sanger sequences and MiSeq-derived consensus in all of gag, prrt, int, vpr, vpu, 

GP120, GP41, nef and full-genome data; the two discordant cases were observed in vif (first 

case Sanger “D” but MiSeq “C”; second case Sanger “D” but MiSeq “B”). Among the 19 

pre-therapy samples with near-full-genome MiSeq data, 11 (58%) were inferred by RIP as 

recombinants, closely resembling the value estimate by Sanger near-full-genome data (46%, 

Table 1).

Furthermore, among all the above paired results, we observed 30 cases in which the average 

MiSeq coverage depths were extremely low between 10 and 100, mainly in int (9/30, 30%) 

and vif (12/30, 40%). Interestingly, in 29/30 cases, RIP subtype inferences at this low 
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coverage depth remained completely concordant between paired Sanger and MiSeq-derived 

sequences.

The remaining 1/30 case was a GP120 sequence; RIP failed to associate both the Sanger and 

MiSeq-derived sequences with any known subtype or recombinants. Also of note was that of 

the 19 paired GP120 Sanger and MiSeq sequences that covered the first 160 nucleotides of 

GP120, MiSeq successfully yielded full-length GP120 consensus sequences that included all 

the variable loops in 16/19 (84%) cases. In contrast, we were unable to obtain clean Sanger 

sequence data beyond approximately the 160th nucleotide in GP120 due to the high 

sequence diversity in env resulting in base-calling ambiguities.

Baseline Clinical Correlates and Therapy Outcomes (n=200)

We dichotomized the 200 patients with near-full-genome data into “non-recombinants” 

(54%) and “recombinants” (46%) HIV-1 infections, and compared their pre- and post-

therapy-initiation clinical correlates. At pre-therapy baseline, the two groups were not 

significantly different in gender (67% versus 70% female, p=0.8 Fisher two-tailed), baseline 

viral load (Figure 3a, p=0.7 Mann-Whitney), and baseline CD4 count (Figure 3b, p=0.2 

Mann-Whitney). Subjects infected with recombinants were slightly younger (median age 35 

versus 34, p=0.04 Mann-Whitney). At post-therapy, univariate tests showed marginally 

significant differences in “time to virologic suppression” (Figure 3c non-adjusted, p=0.03 

Log-rank), but were not significantly different in “time to post-suppression virologic 

rebound” (Figure 3d non-adjusted, p=0.1 Log-rank), “time to first CD4 rise above baseline” 

(Figure 3e, p=0.3 Log-rank) and “time to sustained CD4 recovery” (Figure 3f, p=0.6 Log-

rank). Neither the “proportion of subjects lost to follow up” nor “duration of follow up” 

were significantly different between groups (all p>0.2). Next, we further explored the 

marginal differences observed in virologic outcomes using multivariate Cox Proportional 

Hazard confounder models: After adjustment, both “time to virologic suppression” and 

“time to post-therapy virologic rebound” were not significantly different between groups 

(Figure 3c adjusted p=0.3, hazard ratio recombinants/non-recombinants 0.8, 95% confidence 

interval 0.6–1.1, controlling for visit interval, year of therapy start and type of first regimen; 

Figure 3d adjusted p=0.4, hazard ratio 1.6, 95% confidence interval 0.6–4.5, controlling for 

age, gender, baseline viral load and visit interval). Finally, we compared the prevalence of 

transmitted drug resistance and the prevalence of any major drug resistance mutations in 

recombinants versus non-recombinant groups and did not find significant difference between 

groups (p=0.7 and 1.0 Fisher Exact 2-tail).

Discussion

In summary, our near-full-genome sequencing approach revealed a high prevalence of 

infections by intersubtype HIV-1 recombinants (46%, without time trend) in a rural African 

community where multiple HIV subtypes cocirculate. We also provided evidence that most 

of these recombinants arose from independent recombination events, and found evidence of 

longitudinal subtype switches. Importantly, our study provided evidence that infections with 

recombinant HIV was not associated with any negative pre- nor post-therapy virologic nor 

immunologic clinical correlates.
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Our reported prevalence of Uganda’s HIV-1 recombinants in prrt (11%) fell within the range 

previously reported (6–19%) [4–6]. Importantly, we showed that the prevalence of 

intersubtype recombinants is a lot higher under a full-genome context (Table 1, column gag 
to nef). This finding has several implications. First, it points out that studies that used only 

part of the genome to estimate recombination prevalence may result in underestimation. 

Second, it suggests that HIV subtype studies on disease progression and clinical impacts 

could be biased depending on the genomic region used for subtyping. For instance, 

numerous studies reported that subtype D infections (by pol) as being more aggressive with 

a faster disease progression [20–22]. However, in our current report, multiple patients had 

subtype D in pol, but A1 in GP41. This may also have an implication on subtype-specific 

vaccine development strategies. Third, our observation that these recombinants did not tend 

to share common ancestors in a phylogenetic tree suggests that recombination is very 

frequent in HIV natural biology, and may even contribute to the change of subtype over time 

that we have observed (on top of other explanations such as undetected sample-mixed-up 

and/or superinfections). This knowledge of recombination frequency may help further our 

understanding about the natural “template switch” frequency during the reverse transcription 

step in HIV’s life cycle.

Our conclusion on the prevalence of recombinants is limited by our choice of subtyping 

algorithm and its settings. We have arbitrary chosen RIP with a window size 400 and 

confidence interval of 95% for genes that are >600 nucleotides in length; otherwise window 

size 100 and confidence interval of 90% is chosen. It should be noted that a lower “input 

sequence length to RIP window size” ratio corresponds to a decreased sensitivity for 

recombinants detection. Since these ratios differ in each genomic region examined in our 

gene-by-gene analyses (Table 1, column gag to nef), comparison of percentage prevalence of 

recombinants between genomic regions would not be appropriate. A fair estimation of the 

prevalence of recombinants (46%) was obtained in our near-full-genome concatenation 

approach: All sequences were 8625 nucleotides in length, and a constant RIP window size of 

400 with 95% confidence interval was used. In addition, we also showed that a different 

subtyping algorithm, REGA, called more recombinants in prrt than RIP did, which 

highlighted the variability introduced by different algorithms and settings.

Another technical limitation relates to primer mismatch bias, which could potentially lead to 

a preferential amplification of one of the amplicons over another in our duplex A or dulplex 

B reactions, and/or preferential amplification of one subtype over another. To address this 

concern, we reviewed our dataset to compare the number of successful amplifications and 

the distribution of subtypes across amplicons (Table 1). First, we observed that the number 

of successful amplifications of each region were comparable, ranging from 387 to 486 

successes (excluding GP120, of which Sanger sequence data was uncallable over the variant 

stretch of the genome, likely due to excessive indels). Since all 504 samples were subjected 

to the same reactions A1/A2, B1/B2 and C, this comparable success rate implies that there 

was at least a low degree of bias in amplification efficiency between amplicons. Next, Table 

1 shows that the percentage distribution of subtypes between genomic regions were also 

comparable across amplicons (duplex A1 contained gag; A2 vpu; duplex B1 prrt; B2 GP41, 

nef; reaction C: int, vif, vpr). Cross these amplicons, %Subtype-A1 ranged from 43.0% to 

53.4%, %C ranged from 3.6% to 10.1%, and %D ranged from 30.3% to 39.4%. In other 
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words, we did not observe one subtype being over-represented in one amplicon compared to 

another. Although we cannot rule out the absence/presence of primer amplification bias due 

to primer mismatches, these observations suggest comparable amplification efficiency across 

genome and across subtypes.

Our conclusion on the clinical impacts of recombinant HIV-1 is limited by sample size and 

sampling intervals. We only had 200 patients who had near-full-genome sequencing data 

available and were thus included in the clinical outcome analyses. Much larger study with 

more patients will be need to increase statistical power. Furthermore, these patients were 

scheduled to receive virologic and immunologic monitoring every three to six months, 

which resulted in the “staircase-like” shapes observed in the Kaplan-Meier curves (instead 

of smooth curves) in Figure 3c–f. This factor, compounded with the relatively low number of 

subjects in both groups (n≤100), might have compromised the statistical comparisons.

Finally, our conclusion that Sanger and MiSeq produced highly concordant subtyping results 

is limited by the lower PCR/sequencing success rate in int and vif. This was potentially due 

to our “equal volume pooling” approach (instead of an “equal mole pooling” approach) 

during the MiSeq library preparation step, which reflects different PCR amplification 

efficiency between amplicons for this particular set of samples. However, our results also 

suggest that an average MiSeq coverage depth of 10–100 can still very accurately predict 

Sanger subtyping results across all genomic regions in these Ugandan non-subtype B HIV 

samples. This agrees with previous observations that MiSeq can accurately predict Sanger-

derived rt sequences at coverage depth below 100 [23]. Furthermore, we showed that MiSeq 

was more successful in yielding full-length GP120 sequences compared to Sanger 

sequencing, supporting the move to deep sequencing in HIV env genetic studies.

In conclusion, this study revealed a high prevalence of HIV-1 infections by intersubtype 

recombinants in a rural African community where subtype A1 and D cocirculate, but 

showed that infections by recombinants did not impact pre- nor post- therapy virologic nor 

immunologic clinical correlates and therapy outcomes. Future studies should continue to 

monitor intersubtype recombinants in this and other similar communities under a full-

genome sequencing context to keep check of their spread, evolution and clinical impacts.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Phylogenetic analysis by maximum-likelihood tree (PhyML) of the 200 near-full-genome 

sequences showed that recombinants did not share a common ancestor, suggesting multiple 

recombination events.
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Figure 2. 
Recombination mapping by RIP shows that breakpoints were scattered across the HIV 

genome (n=92 full-genome recombinants; RIP window size 400, confidence threshold 95%).
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Figure 3. 
Non-recombinant versus recombinants infections were not significantly different in any pre- 

nor post-therapy clinical correlates examined.
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