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Abstract
There is no standard approach to compare the success of

different neural network architectures utilized for time series
synthesis. This hinders the evaluation and decision process,
as to which architecture should be leveraged for an unknown
data set. We propose a combination of metrics, which empiri-
cally evaluate the performance of neural network architectures
trained for time series synthesis. With these measurements
we are able to account for temporal correlations, spatial cor-
relations and mode collapse issues within the generated time
series.

We further investigate the interaction of different genera-
tor and discriminator architectures between each other. The
considered architectures include recurrent neural networks,
temporal convolutional networks and transformer-based net-
works. So far, the application of transformer-based models is
limited for time series synthesis. Hence, we propose a new
transformer-based architecture, which is able to synthesise
time series. We evaluate the proposed architectures and their
combinations in over 500 experiments, amounting to over
2500 computing hours. We provide results for four data sets,
one univariate and three multivariate. The data sets vary with
regard to length, as well as patterns in temporal and spatial
correlations.

We use our metrics to compare the performance of genera-
tive adversarial network architectures for time series synthesis.
To verify our findings we utilize quantitative and qualitative
evaluations. Our results indicate that temporal convolutional
networks currently outperform recurrent neural network and
transformer based approaches with regard to fidelity and flex-
ibility of the generated time series data. Temporal convolu-
tional network architecture are the most stable architecture for
a mode collapse prone data set. The performance of the trans-
former models strongly depends on the data set characteristics,
it struggled to synthesise data sets with high temporal and
spatial correlations. Discriminators with recurrent network
architectures suffer from vanishing gradients. We also show,
that the performance of the generative adversarial networks
depends more on the discriminator rather than the generator.

1 Introduction

Machine Learning (ML) is a wide research field nowadays,
offering new possibilities and promising solutions for a range

of data driven problems. One of the main limitations in ML
is the availability and accessibility of large problem specific
data sets, which hinders the performance and generalizability
of the trained models. Using generative models for data gener-
ation and augmentation is a growing field of research aiming
to counteract this issue. Specifically in the image domain, it
has been shown to improve the accuracy of the models using
the synthetic data [34]. The possibility of generating or ex-
tending data sets mitigates the problems of data acquisition
or limited data sets due to security and privacy concerns, or
restrictions (e.g., GDPR) [10, 27]. 60% of the data used for
the development of ML driven applications are predicted to
stem from synthetic data generation by 20241. Synthetic data
can be used to extend unbalanced data sets, or to augment
failure cases and anomalies. In order to utilize the synthesised
data, synthetic data generation must fulfill strict properties.
Generated samples should be drawn from the same data dis-
tribution as the underlying ground truth data [27]. Further, a
non-biased heterogeneous data set must be the result of any
synthetic data generation. In cases where privacy concern is
the main limitation, synthetic data generation must not expose
critical information of the real data. Synthesised data sets are
relevant for different data types such as audio, text, images
and also time series. Synthetic time series, which are the
focus of our work, aid research by being used to pre-train
models, obfuscate sensitive information or augment unbal-
anced data sets. Synthetic data applications are widespread
in several domains, for example, generated time series allow
system administrators to modify their resource allocation in
order to improve the overall performance of their provided
services [30].

Currently, a Generative Adversarial Network (GAN) [11]
is the predominant architecture used for data synthesis. The
main issue within the research landscape of time series gener-
ation, however, is an the lack of comparability and evaluation
between the proposed architectures (it is unfortunately not
exclusive to it). It is unclear, which neural network architec-
ture is the most suitable for an unknown data set. Hence, in
this work we focus on evaluating the state of art in time series
synthesis GAN architectures.

Time series analysis can be challenging, since the data con-
tains spatial and temporal correlations, often not clearly cap-
tured in visualisations. Spatial correlation pattern is present, if
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multiple channels of the same time series influence each other.
A temporal correlation refers to observations at a present time
point correlating with observations in the past.

With this in mind, our main goal in this work is to answer
the following question:

• What are the most suitable GAN architectures to capture
spatial and temporal correlations of time series?

• How can the architectures and the generated data be
compared and evaluated against each other?

As part of this work, we develop an approach to make the
performance of multiple GAN models comparable. We evalu-
ate nine different GAN architectures, in over 500 experiments
amounting to a total of over 2500 computation hours. We
use measurements from the area of time series analysis and
time series similarity to evaluate the success of the time se-
ries synthesis. Our main contributions lie in the insights as
to which GAN architecture fits which task best, as well as
a comprehensive pipeline to evaluate synthetic time series
fidelity.

The remainder of this work is organized as follows. Sec-
tion 2 provides the fundamentals of time series evaluation,
neural networks and data synthesis. Section 3 gives an
overview of the state-of-the-art for synthesising and evaluat-
ing time series data, as well as neural network comparison
work. Section 4 describes the methodology, followed by the
data used in our work in Section 5. We then detail our ap-
proach for synthesizing and comparing time series data in
Section 7. The results of this work are presented in Section 7
and are discussed in Section 8. Section 9 concludes and
summarizes our work.

2 Background

2.1 Data Synthesis
In order to evaluate and analyze data generated by ML applica-
tions, knowledge about its probability distribution is required.
Generating desired artificial data with certain statistical char-
acteristics by estimating the underlying distribution function
has been a focus in research for over a decade [11]. Probabil-
ity distribution estimation is relevant in different domains and
for different data types such as audio, text, images and time
series. When knowledge about the underlying distribution
function is present a deep generative model such as the deep
Boltzmann machine [32] can be utilized. However this re-
quirement cannot always be satisfied [11]. Other approaches
such as Noise-Contrastive Estimation (NCE) and Variational
Autoencoders (VAEs) have been proposed for data synthesis
task, but both have limitations while estimating probability
distributions [11]. While VAEs have been successfully used
for end tasks such as anomaly detection [37], the research
field has not experienced a push in recent years, similar to

that provided by image synthesis for GANs. Hence, in this
work, we focus our attention on GANs, as they are, as of now,
the go-to architecture approach for data generation tasks. In
the following, we provide further background of GANs as
well as possible modifications and optimization approaches.

2.1.1 Generative Adversarial Networks

In 2014, Goodfellow et al. [11] suggested GANs to implicitly
estimate the probability distribution of training data via an
adversarial process. A GAN framework consists of two neu-
ral networks, which compete against each other: a generator,
which generates synthetic data and a discriminator, which
aims to distinguish between real data and the generated data
of the generator. The generator is trained to transform a fixed
input noise distribution into the underlying ground truth data
distribution. A uniform or normal distribution is commonly
chosen for this noise distribution pz(z), also called latent
space. The process of generating data by mapping a noise
vector sampled from the latent space is noted by G(z;θG)
with z ∼ pz(z). Considering the present data distribution
x ∼ pdata(x) and z ∼ pz(z), D(x,θD) and D(G(z;θG),θD) rep-
resent the differentiation process of the discriminator. A value
function is optimized by the GAN during the training process,
in order to minimize the Kullback-Leibler divergence between
the underlying distribution and the estimated distribution. The
Kullback-Leibler divergence measures the dissimilarity be-
tween two probability distributions. It achieves its minimum
value, when the underlying and estimated distribution are ex-
actly similar. This value function is displayed in Equation 1.
V (D,G) contains two parts for its calculation. The first part
considers how accurate the discriminator classifies real data
as "non-fake". For the second part, the discriminator is asked
to classify data which is synthesised by the generator. The
task of the generator to synthesise data, which the discrimi-
nator cannot distinguish from real samples, is equivalent to
maximizing D(G(z)). The generator cannot influence the first
part of the equation directly. This leads to training the gen-
erator to minimize Equation 2. As the discriminator itself
can influence both parts of the equation V (D,G) it aims to
maximize Equation 3.

V (D,G) = IEx∼pdata(x)[logD(x)]

+ IEz∼pz(z)[log(1−D(G(z)))] (1)

min
G

V (D,G) = IEz∼pz(z)[log(1 − D(G(z)))] (2)

max
D

V (D,G) = IEx∼pdata(x)[logD(x)]

+ IEz∼pz(z)[log(1−D(G(z)))] (3)

2
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The optimization of these neural networks is realized by ap-
plying gradient decent and ascent utilizing back-propagation
with respect to trainable parameters (θG and θD). The training
procedure consists of alternately training the generator and
discriminator in a minimax game. Goodfellow et al. [11]
state, that with this value function and optimizing approach,
the generator is able to recover the data distribution, as long
as enough training iterations are provided.

The architecture suggested by Goodfellow et al. [11] is
shown in Figure 1.

The resulting trained GAN should be able to synthesise
data sets with two properties [27]:

1. High fidelity: The generated samples should be drawn
from the ground truth data distribution.

2. High flexibility: The generated data set should consist
unique data samples. This can only be achieved, if no
mode collapse occurs while training the GAN.

2.1.2 Generative Adversarial Modifications

The original GAN architecture as proposed by Goodfellow
et al. [11] is prone to training instabilities. Specifically, non-
convergence, mode collapse and vanishing gradients limit
the performance of the GAN architecture [1, 12, 29]. Non-
convergences occurs, when the GAN model parameters os-
cillate and never converge. In contrast, vanishing gradients
can occur, when the discriminator does not provide sufficient
feedback to the generator, which hinders the learning process.
If the generator is only able to generate samples with low
variety, a mode collapse is present. To counteract these prob-
lems several modifications to the value function [1, 12], the
adversarial training and neural network architectures [5, 19]
have been proposed.

Loss Functions Goodfellow et al. [11] recognized them-
selves, that their initial loss function as described in Equa-
tion 1 can lead to unstable training in early iterations. For
more stable training they propose, that the generator should
not try to minimize IEz∼pz(z)[log(1−D(G(z)))] but maximize
IEz∼pz(z)[log(D(G(z)))] instead.

One limitation of the GAN training proposed by Goodfel-
low et al. [11] is that a good balance between the training of
the discriminator and generator is required. With the original
GAN setup, the discriminator can not be trained until opti-
mum, because the generator would not receive sufficient gra-
dients in this case. To counteract this issue Arjovsky, Chintala,
and Bottou [1] suggest to use a Wasserstein GAN (WGAN).
The WGAN utilizes a critic instead of a discriminator. The
critic has a linear output function instead of classifying the
generated and real samples into a range of [0;1]. The critic is
trained to classify the generated data with small values and
the training data with high values. To train the critic, the
authors show that it is required to keep the weights of the

Artificial Neural Network (ANN) in a compact space. To
achieve this constraint, they propose to clip the weights of
the ANN. Other approaches include using gradient penalty
terms to enforce this constraint [12]. This Wasserstein loss
function allows to train the discriminator to optimum, which
still provides sufficient gradients to the generator. In general,
this WGAN leads to more stable GAN training.

2.2 Time Series Synthesis
In order to discuss time series synthesis, a brief definition of
time series itself is necessery. A time series is an ordered
sequence of data points [7]. These data points represent
observations of specific values at given timestamps. In our
work, we assume time series with equidistant data points.
Such discrete-time data can be denoted as X = {x1,x2, . . . ,xn}
with n indicating the length of the time series. If xi ∈ R, the
time series consists of only a single value at each time-step
and is called univariate. However, it is common that xi ∈ Rd ,
where each time-step contains multiple channels. Such time
series are called multivariate time series [13], which are the
main focus of this work.

While the concept of GANs is not limited to any domain,
the computer vision research field was a pioneer utilizing
GANs for image synthesis tasks [5, 11, 19]. As mentioned
by Goodfellow et al. [11] a straightforward implementa-
tion of a GAN would consist of two Multi Layer Percep-
tron (MLP) networks for the generator and discriminator part.
This architecture was substituted by Convolutional Neural
Networks (CNNs), which have multiple benefits for computer
vision tasks compared to MLP networks [5, 19, 31].

Lin et al. [27] note that GAN architectures, that were
designed for computer vision tasks are not able to be used
effectively for time series synthesis tasks. The authors fur-
ther argue that CNNs cannot detect the complex correlations
of time series accurately. This results in a low fidelity of
the generated samples [27]. Generally speaking, time se-
ries have the following properties, that have to be considered
when designing a GAN architecture for time series synthesis:
Temporal Correlations (e.g., diurnal cycles and Long Range
Dependencies); and Spatial Correlations.

3 Related Work

This section provides an overview of approaches to synthe-
sise time series data. We discuss ANN-based approaches and
their respective architectures. For this, we focus on Recur-
rent Neural Network (RNN) [10], Temporal Convolutional
Network (TCN) [36] and transformer [26] architectures to
synthesise time series data, discussing their limitations and
applications. We then cover approaches to compare the perfor-
mance of different ANN models, in general, followed by time

2Icons designed by www.freepik.com
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Figure 1: GAN architecture suggested by Goodfellow et al. [11] used for data distribution estimation. The GAN models consists
of a generator and discriminator, which play a minimax game to optimize the model.2

series synthesis evaluation. These methods can be categorized
into time series analysis, descriptive statistics, distribution
comparison, supervised evaluation and downstream tasks.
Figure 2 displays the different fields utilized in the current
state of the art. Noticeably, there exists no common evalu-
ation method in the context of time series synthesis, which
limits the comparability of results.

3.1 Time Series Synthesis using Generative Ad-
versarial Networks

The introduction of GANs [11] led to major improvements
for synthetic image generation in recent years. In the field
of computer vision, GANs can be trained to generate photo-
realistic images [19, 20]. Currently, CNNs are utilized by
most GAN architectures [19, 20].

Based off of that, GAN approaches for time series synthe-
sis [6, 10, 27, 36] have been successfully proposed. However,
time series data holds different characteristics when com-
pared to images [27]. CNN-based GAN architectures were
not able to be used for time series tasks without any modifica-
tions [27]. The receptive field size of CNNs increases linearly
compared to the number of layers used [3]. Based on the re-
quired receptive field size, synthesising time series data with
long temporal correlations is limited. Additionally, when syn-
thesising multivariate time series, the GAN architecture has
to capture correlations between the different time-dependent
variables of the time series as well.

Recurrent Neural Network based Approaches Esteban,
Hyland, and Rätsch [10] proposed to utilize the potential of
RNNs to modify the GAN architecture for time series tasks.
The authors implemented the RNN by using Long Short-Term
Memory (LSTM) layers [15]. With this approach Esteban,
Hyland, and Rätsch [10] argue, that the generator and discrim-

3Icons designed by www.freepik.com

inator part of the GAN are able to process time series more
effectively by accounting for temporal correlations.

The authors utilized this architecture to synthesise sine
waves, the MNIST data set and patient information of an
intensive care unit, which was provided by the Electronic
Intensive Care Unit (eICU) Collaborative Research Database.
The authors synthesised patient time series, which contains
regularly-sampled data measured by bedside monitors. The
MNIST4 data set contains grey-scale images of hand-written
digits with a image size of 282. The authors flattened the
MNIST images into a vector of size 784 and interpreted it as
a time series. The used data sets vary with regard to spatial
and temporal correlations.

To evaluate the success of the time series synthesis, Es-
teban, Hyland, and Rätsch [10] utilized a downstream task,
methods for distribution comparison and a latent space anal-
ysis. A downstream task describes an approach to use the
generated samples of a GAN to either train or evaluate a sepa-
rate machine learning algorithm. It is then trained or evaluated
on the real data set. If the generated samples share similar
characteristics to the real data set, the performance of the
downstream task algorithm should not vary.

Additionally, the authors evaluated the fidelity of the gen-
erated data by calculating the maximum mean discrepancy.
The maximum mean discrepancy quantifies if two sets of time
series were generated by the same distribution. For this task,
a kernel function is required, and the authors used the Eu-
clidean Distance (ED) to compute the similarity score. While
the maximum mean discrepancy quantifies how similar the
generated examples are on average to the training data set,
this can lead to issues if the underlying data distribution is
heterogeneous with multiple clusters. In this case it might
be more suitable to only consider the similarity to the clos-
est neighbours. Additionally, the authors did not evaluate
how similar their generated data are to the training data with
regards to irregularities, noise and seasonalities.

4http://yann.lecun.com/exdb/mnist/
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Figure 2: Overview of evaluation approaches for time series synthesis. Overall, authors used methods from the field of time series
analysis, descriptive statistics, distribution comparison, downstream tasks and latent space analysis to evaluate the performance
of their neural networks.3

Lin et al. [27] extended the architecture proposed by Este-
ban, Hyland, and Rätsch [10] and introduced DoppelGANger.
DoppelGANger was trained to synthesise data sets with tem-
poral and spatial correlations as well as univariate and mul-
tivariate time series. The authors synthesised the univariate
Wikipedia Web Traffic (WWT) data set, which tracks the
number of daily views for various articles. The proposed
architecture counteracts the limitations of RNNs, which fail
for long sequences due to exploding/vanishing gradients.

DoppelGANger generated multiple time series points from
a single output of the RNN by using an MLP. Thereby, Dop-
pelGANger can process longer and variable sequences more
effectively. Lin et al. [27] achieved this by extending the
GAN output by a flag, which indicates if the time series is
complete. While Esteban, Hyland, and Rätsch [10] coupled
the generation of attributes and features, Lin et al. [27] no-
ticed, that it is beneficial to isolate the generation process of
attributes and features. With this architecture, it is possible to
later retrain the attribute MLP to hide certain characteristics
of the training data. This can make membership inference
attacks, which try to determine if a record was part of the
training data for an ML model, more difficult. Furthermore,
DoppelGANger utilizes an auxiliary discriminator, which
only classifies the attributes of input samples. Thereby at
early steps the generator can focus on learning realistic at-
tributes. This improves the unstable training of the generator.
Lin et al. [27] remark, that data with high variance was more
prone to mode collapse. Therefore they normalized the time
series in order to achieve more stable training. A min/max
generator is utilized to generate non-normalized time series
data. To evaluate the success of the time series synthesis, Lin
et al. [27] compared the generated data with the underlying
data set with regard to temporal correlations, spatial corre-
lations and a downstream task. They compared their results
to the benchmarks of other baseline models. Those baseline
models included Markov-models, non-linear auto regressive
model, RNN in a non-GAN context and an MLP-based GAN.
The authors did not compare their benchmarks to other RNN-
based GAN models. To account for temporal correlations, the
authors compared the auto-correlation of generated examples

4Icons designed by www.freepik.com

and training examples.
While RNNs improved the performance of GANs for time

series generation, they still come with downsides with regard
to stable gradients, memory consumption and training time.

Temporal Convolution Network based Approaches To
counteract limitations of RNNs, Bai, Kolter, and Koltun [3]
analyzed the possibility of modifying CNNs for time series
tasks. Bai, Kolter, and Koltun [3] proposed TCNs. With an
introduction of a dilation factor at each layer, it is possible
to achieve a flexible receptive field size. Additionally TCNs
greatly reduce computation time when compared to RNNs.
Bai, Kolter, and Koltun [3] provide empirical results that
TCNs can outperform RNNs for time series tasks. However
the authors did not provide empirical results for data synthe-
sis tasks. Wiese et al. [36] introduced QuantGAN, a deep
generation network used for generation of financial time se-
ries. The generator and discriminator part contain TCN layers
to capture long range dependencies, such as the presence
of volatility clusters [36]. QuantGAN is trained to generate
univariate time series data, which represent the log value of
the percentage change of a share. Wiese et al. [36] argue,
that the training of a TCN based GAN is more stable with
regard to vanishing/exploding gradients than a RNN based
approach. For evaluation purposes the authors compared the
distributions by calculating an earth mover distance, which
can be seen as a similar measurement as the maximum mean
discrepancy used by Esteban, Hyland, and Rätsch [10]. To ac-
count for temporal correlations in the time series data the auto
correlation and a leverage effect score is computed. The au-
thors did not compare their benchmarks to RNN-based GAN
approaches.

Transformer based Approaches The usage of transformer
models for time series tasks is limited so far. Additional
temporal processing is required to capture time-varying re-
lationships for time series Sequence-to-Sequence (Seq2Seq)
tasks.

Lim et al. [26] modified the transformer architecture for
multi-horizon time series forecasting. The transformer based
architecture was trained to predict multiple time steps in ad-
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vance. The model considered static information, observed
information and known future information as inputs. Lim
et al. [26] used static covariate encoders that allow the net-
work to condition temporal forecasts on static metadata. The
resulting Temporal Fusion Transformer (TFT) utilized LSTM
encoder and decoder components to capture time-varying re-
lationships before applying a temporal self-attention compo-
nent. The authors argue, that the LSTM component is used for
local processing, but they do not discuss, if this architecture
should be seen as an approach to counteract vanishing gradi-
ents issues of RNN or a modification to the transformer model
for time series tasks. Gating components were implemented
to allow the network to skip parts which are unnecessary for
a given data set.

However, it is still unknown how transformer architectures
can be utilized for data generation tasks via GANs for time
series. Recently Jiang, Chang, and Wang [18] implemented
a GAN architecture called TransGAN to generate images,
which is based on a transformer generator and discriminator.
As previous research suggests, image GAN architectures do
require modifications for time series tasks [27].

3.2 GAN Performance Comparison

In the computer vision domain, Lucic et al. [28] investigated
the performance of different loss functions for the task of
image synthesis. The authors utilized four common computer
vision data sets for this task. As the focus was on evaluating
different loss functions, the architecture of the GAN mod-
els was fixed. The authors performed a parameter search to
find the best configuration for each model. This included
optimizer specific parameters, loss function specific values
and the number of times the discriminator is trained before
updating the generator. The authors utilized a random search
and computed the Fréchet Inception Distance (FID) between
generated and training examples every five epochs. After
finding the best configuration for each model, the training of
these selected models is re-run to estimate the stability of the
GAN models.

With the introduction of TCN networks, Bai, Kolter, and
Koltun [3] provided empirical results for their performance.
They compared the TCNs to multiple RNN networks, in-
cluding LSTM-based ANNs. The authors evaluated the per-
formance of TCN models with minimal tuning for multiple
sequence modeling tasks, commonly used for benchmarking
purposes. The authors did not provide empirical results for
data generation by GANs. Bai, Kolter, and Koltun [3] per-
formed a grid search for the parameters of the RNN-based
models. The parameters search included optimizer parame-
ters and a limited amount of architectural parameters. For
the TCN models no parameters search was performed and the
kernel size and number of layers was only modified for each
task to adapt the required receptive field size.

3.3 Data Synthesis Evaluation

Accurate evaluation metrics are required to judge the per-
formance of synthesised data. This necessity is amplified
by the unstable training process of a GAN. For image gen-
eration, common evaluation metrics such as the Inception
Score (IS) [33] and FID are used to compare the performance
of different GAN architectures. The IS considers the variety
and quality of the generated images to measure how realistic
the learned distribution is. For this task a pre-trained Incep-
tion classifier network is utilized. The FID can detect mode
collapse issues in image generation and is a suitable metric to
account for image diversity. However, Barratt and Sharma [4]
arguem that the IS is an undesirable metric to evaluate GANs
in the computer vision field. One benefit when working with
GANs in the computer vision field is that, the performance
of GANs can be roughly estimated by qualitative evaluation.
This pattern can be seen by most researchers simply provid-
ing example images in their work. However, for time series
generation, such qualitative measurements are limited and
quantitative measurements such as the IS and FID have not
yet been introduced.

For time series data, it is common to evaluate if temporal
correlations were learned by the GAN. For this purpose Lin
et al. [27] and Wiese et al. [36] compared the auto correla-
tion of generated data to the underlying training set. Esteban,
Hyland, and Rätsch [10] did not provide any evaluation that
aims to measure if temporal correlation were learned. Lin
et al. [27] used the length distribution to measure the quality
of the generated data. This measurement is only suitable for
GAN models, which can generate time series with various
lengths. To account for spatial correlations, Leznik et al. [24]
also compared the correlation coefficient of the generated data.
The authors synthesised a Content Delivery Network (CDN)
data set from a production environment, which contains time
series with high temporal and spatial correlations. Comparing
descriptive measurements of generated time series as can also
provide insights [24]. Leznik et al. [24] utilized different
entropy measurements to compare the generated time series
with regard to information and noise. Using downstream tasks
can also provide insight if the GAN was able to learn the un-
derlying data distribution correctly. To avoid privacy concerns
the GAN model should not overfit the training data [10, 27].
Therefore, an analysis of the latent space via interpolation can
be used [10]. For this purpose the difference to the nearest
neighbours can be analyzed [27].

Overall it is noticeable, that the presented work used differ-
ent measurements to evaluate the success of the time series
synthesis. Not a single metric was consistently used in all
listed approaches. Additionally, no paper compared their ap-
proach to another approach utilizing their suggested metrics.
GAN specific problems, such as mode collapse, were neither
investigated, nor quantified. Some authors provided bench-
marks for baseline models, however no results were provided
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by comparing different GAN architectures. These limitations
are partly caused by the authors synthesising different data
sets. With these limitations, it is unknown, which neural net-
work architecture is the most suitable for an unknown data
set.

4 Methodology

As seen in Section 3, there is no common approach to evalu-
ate and compare the performance of different GAN models.
Therefore, we propose an approach to use a combination of
time series analysis and distance measurements to empirically
evaluate the performance of the data synthesis task. With
these measurements, we can compare generated time series
with regard to fidelity and flexibility. Generated samples of
the GANs are utilized to compute the measurements for eval-
uation purposes. These computed values are then compared
to the same measurements computed on a set of the training
examples.

Based on the current state of the art, we consider architec-
tures based on RNN, TCN and transformers. These are the
go-to architectures for time series tasks. We investigate the
interaction of GAN models with mixed network architectures
based on the mentioned building blocks.

To improve the generalizabilty of the results, we perform a
network parameter search for each architecture before compar-
ing its performance. This network parameter search includes
architecture specific parameters, e.g., number of channels in a
convolutional layer. Further, GAN specific parameters which
influence the training are investigated, such as the alternate
training setup. Based on this parameter search, we narrow the
scope and further optimize the best performing GAN models.
The performance of the data synthesis is then evaluated.

Evaluation Metrics We utilize multiple metrics to compare
the performance of different GAN models. We select metrics
to account for fidelity and flexibility of the generated time
series. We lay a specific focus to evaluate similarity between
the generated time series and the training data with regard
to temporal correlations, spatial correlations, noise and un-
certainty. In contrast to the suggested evaluation approaches
listed in Section 3, we also consider metrics to account for
possible mode collapse issues.

Network Architectures Based on the state of the art,
we consider RNN, TCN and transformer architectures for
the comparison task. The RNN architectures we use are
based on Esteban, Hyland, and Rätsch [10], Lin et al. [27]
and Leznik et al. [24]. These authors utilize an LSTM block
to process the time series and MLP layers to achieve the
desired output dimensionality.

For the TCN networks, we utilize the modified convolu-
tional layers proposed by Bai, Kolter, and Koltun [3]. Wiese

et al. [36] leveraged the TCN layers for a univariate time se-
ries synthesis task. We modify this architecture to generate
multivariate time series.

The application of transformer models for time series tasks
is limited so far, and does not offer viable transformer-based
GAN architectures for time series synthesis. In this work, we
modify the TFT architecture proposed by Lim et al. [26] for
the task of time series generation.

Parameter Search To improve the generalizabilty of the
results we perform a parameter search for every architecture
before comparing the performance. For the parameters search
we consider architecture specific parameters, such as the num-
ber of layers, as well as GAN training specific parameters,
such as the alternate training setup. Based on the that, we
perform a grid search which evaluates all possible parameter
combinations. We limit the scope of this parameters search
based on parameters suggested by previous research (cf. Sec-
tion 3). Based on this parameter search, the GAN models
with selected parameters are trained and the success of the
data synthesis between the different architectures is evaluated.
Our approach is illustrated in Figure 3.

Data Sets Data sets vary with regard to possible temporal
correlations, for multi-variate time series data, spatial corre-
lations are also a factor. With these information in mind, we
want to evaluate the performance of the different GAN archi-
tectures based on multiple data sets, which cover different
characteristics and domains. Additionally, we introduce rare
events in the form of anomalies into one of the data sets, to
show the ability of network to learn the underlying data dis-
tribution including anomalous events. We provide empirical
results for data sets with varying temporal correlations and
spatial correlations. While most time series data sets include
multi-variate time series, we also consider univariate time
series without any spatial correlations. For the time series
data characteristics, we analyze the data sets with the help of
time series decomposition and the Pearson correlation. For
the initial prototyping phase, we utilize an artificially created
time series data set.

5 Data Sets

We consider four data sets with different characteristics. We
use an artificial sine data set to provide empirical results based
on available ground truth information, following the approach
of Esteban, Hyland, and Rätsch [10]. We also provide em-
pirical results for an univariate data set. The remaining two
multivariat data sets, differ in regard to spatial and temporal
correlations as well as their respective domains. The chosen
data sets was shown to be used in synthesis tasks by GAN
architectures (cf. Section 3).
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Figure 3: Process used to evaluate and compare the different architectures for the research question. First, we perform a parameter
search to find the optimal configuration for each architecture. We then compare the best performing architectures.

In line with Leznik et al. [24] this work focuses on syn-
thesising time series with a fixed length. According to Lin
et al. [27], RNN-based GAN models struggle to synthesise
time series with more than 500 time steps. Therefore, for all
data sets, time series with a modest length of 256 data points
are used to train the GAN model. This should not hinder the
performance of RNN-based architectures due to vanishing
gradient problems.

As suggested by Lin et al. [27] all data sets are normalized
to a range of [0;1] to prevent mode collapse issues.

In the following, the data sets are described in detail. A Fast
Fourier Transformation (FFT), a time series decomposition
and Pearson correlation computations are utilized to calculate
temporal correlations, seasonality and spatial correlations in
the data.

5.1 Sine and Cosine Waves

For the artificial data set we use sine and cosine waves with
varying frequencies. Each time series consists of a periodic
wave with a single-frequency component. After normalizing
the data, each time series can be well defined by its frequency
component. All periodical time series contain at least one
completed period and a maximum of five. In order to gen-
erate a multivariate time series, we shift the periodic wave
along the y-axis by a constant value at each time point for the
second channel. This creates a data set with a perfect spatial
correlation.

After applying a min-max scaler on each periodic wave
the amplitude of all training examples are equivalent and the
samples only vary with regard to their frequency component.
The amplitudes of the first channel are in range of [0;0.9] and
of the second channel in range of [0.1;1]. The periodical sig-
nals have a fixed length of 256, and a minimal period length

is defined before sampling training data from this artificial
distribution. Another major benefit when working with sine
and cosine waves is, that in the initial protoyping phase, the
performance of the GANs can be judged by qualitative mea-
surements. For the sine and cosine data set 10000 samples
are drawn from an uniform distribution which defines the
frequency component.

5.2 Content Delivery Network Cache Utiliza-
tion

In line with Leznik et al. [24], we use the public accessible
information about downloading content from cache to serve
users of a CDN of the British Telecom (BT) from three dif-
ferent backbone locations to evaluate the performance of the
different architectures for a data set with high spatial and tem-
poral correlations. The information is extracted from inner-
core nodes in London, UK. The cache access is measured in
bits per seconds and was sampled every 1200 seconds for the
time span between 2016 and 2017. This leads to a time series
length of 19728. For security reasons, time stamp information
is obfuscated, and the cache utilization is normalized. We
detected the high temporal correlations by applying an FFT
on the time series data (cf. Figure 4). Throughout 2016 to
2017, a strong daily cycle is present. The same patterns are
present in each channel of the time series.

We use a sliding window approach to generate multiple
time series from the original data. To generate a data set
with the maximum number of examples, we shift the sliding
window by a single time series step at each iteration.

Extracting time series with a length of 256 with the given
resolution of a sample every 20 minutes, results in each train-
ing examples covering roughly 3.5 days. As the CDN data
set is already normalized, no min-max scaling is applied.
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Figure 4: Results of FFT applied on a single channel of the
CDN data set. The results of the FFT imply, that a strong daily
seasonality is present. The X-axis represents the frequency
component, with f requency = 1 being the daily seasonality.

Assuming the original time series is defined as X ∈
[0;1]19728×3, the generation of the training data set T with the
sliding window approach can be noted as:

T = {{xi,xi+1, . . . ,xi+255} | 0 ≤ i ≤ 19472} (4)

with xi ∈ [0;1]3 representing the observed values at time
point i.

Examples of the extracted training data set T are shown in
Figure 5.

5.2.1 Rare Events

We manually introduced rare events in the form of anoma-
lies into the CDN data set. Hereby, we consider point and
collective anomalies, as those generally allow for a visual
inspection and evaluation of the data. An individual data
point that is considered anomalous with respect to the rest of
the data is a point anomaly. As a real-life example, a system
shutdown or a sudden spike out of the scope of the currently
measured system performance is considered a point anomaly.
A collection of data points that is anomalous in respect to the
entire data set is known as a collective anomaly. Yet, here
individual points by themselves may or may not be considered
as an anomaly.

In our case, we have used sudden load spikes in the mea-
surements as well as missing measurements caused, e.g., by a
system shutdown as a ground truth.

5.3 Electronic Intensive Care Unit
The second multivariate multivariate data set presents less
temporal correlations. Time series data of patients from multi-
ple critical care units in 2014 and 2015 throughout the United
States are used. The data is provided be the eICU Collabo-
rative Research Database and was already used by Esteban,
Hyland, and Rätsch [10]. Of the available data, the periodical
measurements, which are collected from bedside sensors are
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(b) Example 2

Figure 5: Visualization of two examples from the training
data set T , which was created by applying the sliding window
approach with a fixed length of 256 on the CDN data set.
In each plot the multivariate time series are displayed. Each
channel represents the normalized cache utilization of a single
location. Each time series covers a time span of roughly 3.5
days. The diurnal cycles and high correlation between the
cache utilization of different locations can be seen.
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Figure 6: Result of FFT analysis applied on the respiration
rate channel of 1000 examples of the eICU data set. Com-
pared to Figure 4 no obvious patterns can be seen. The highest
peak is achieved in the lowest frequency component. This
frequency bin contains non-periodic components.

synthesized as part of this work. The database archived these
measurements as 5 minute median values.

The GANs are trained to synthesize the heart rate, respira-
tory rate and the O2 saturation. To detect seasonalities and
cycles in the eICU data set, the time series data are trans-
formed into the frequency domain via FFT. The result of
applying an FFT on the respiration rate of 1000 patients data
can be seen in Figure 6 and does not indicate any obvious
seasonality in the eICU data set. The same pattern is present
for the heart rate and O2 saturation channels. The FFT anal-
ysis found a relevant low frequency component, which can
be attributed to non-periodical components in the time series
such as an overall trend increase. With time series only cov-
ering less than a day, patterns such as diurnal trends can not
be detected. In general, the multivariate time series do not
contain as strong cycles and seasonalities as the CDN data
set.

The eICU data set can vary with regard to time series length
and data quality. The GANs are trained to synthesise time
series with fixed length of 256. Therefore only observations
of patients, which stayed at for least 21 hours in the intensive
care unit are used. As some time series can exceed the time
series length of 256 we cap all remaining time series to a
length of 256. To counteract anomalies in the data set, only
patient data without missing values are considered. These
filtering approaches resulted in 7917 relevant patient time
series. The resulting training data set can then be defined
as X ∈ [0;1]7917×256×3. Examples of this training set X are
displayed in Figure 7.

5.4 Wikipedia Web Traffic

To evaluate the architectures for a univariate context without
any spatial correlations, we use the WWT data set, as previ-
ously done by Lin et al. [27]. The WWT data sets contains
the daily views of different Wikipedia articles. From this data
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Figure 7: Visualization of two examples from the training
data set X extracted from the eICU data set. In each plot the
multivariate time series is displayed. Each channel represents
one vital metric which was measured from bedside sensors.
Each time series covers a time span of roughly 21 hours. No
obvious patterns or seasonalities can be seen.

set the daily views of 117277 articles are used. The daily
views were recoreded from July 2015 to the end of 2016 over
a period of 550 days. The FFT analysis indicates that the
presence of seasonalities is limited. As the resolution of the
data set only provides daily views and does not cover multiple
years, seasonality with durations of less than a day or longer
than a year cannot be observed.

As a first pre-processing step, all time series are fixed to a
length of 256. Initial data analysis indicates, that the data set
contains extreme outliers with in the form of peak values for
daily views. The average daily views for the whole data set
is 1545, while the median value is 187. These outliers have
the negative effect, that a simple min-max scaling in order to
normalize the data, will lead to most time series having values
close to 0. This can lead to vanishing gradient problems when
working with sigmoid layers for the generator. To counteract
this issue, we apply a logarithmic scaling to all values. After
applying this scaling, the distribution does not contain such
extreme outliers. A boxplot of the peak daily views for each
article before and after applying the scaling is displayed in
Figure 9.

After applying the logarithmic scaling, a simple min-max
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Figure 8: Result of FFT analysis applied on 1000 examples
of the WWT data set. Each line represents the FFT results
of the daily views of a single wikipedia article. Similar to
Figure 6 no obvious patterns can be seen. The highest peak is
achieved in the lowest frequency component. This frequency
bin contains non-periodic components.
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Figure 9: Visualization of the distribution of the peak daily
views of the WWT data set (a) before and (b) after applying
a log scaling. The data set before normalization contains
extreme outliers.
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Figure 10: Visualization of two examples from the training
data set X extractred from the WWT data set. Each time
series covers an time span of roughly 256 days. By visual
evaluation the seasonality in the WWT is lower compared to
the CDN data set.

scaler is used to normalized the data set. The resulting training
data set can then be defined as X ∈ [0;1]117277×256×1.

Examples of this training set X are displayed in Figure 10.

5.5 Data Set Comparison

Temporal Correlations To quantify the findings of the FFT,
we further use a time series decomposition.

The time series decomposition is not applied to the sine
data set, as the sine wave is a periodical signal, with no trend
or residual component. As a first step, it has to be determined,
if a multiplicative or additive model is present for each data set.
Considering the CDN data set, the amplitudes of the seasonal
variations are not constant. Further, we could not verify the
presence of any seasonalities for the eICU and WWT data set.
Hence, for all data, we assume a multiplicative model. An
example of a time series decomposition on an sample of the
CDN data set is shown in Figure 11.

Considering a univariate time series Y ∈ [0;1]n, a sea-
sonal decomposition will result in T ∈ [0;1]n, S ∈ [0;1]n and
E ∈ [0;1]n. For multivariate time series we apply the sea-
sonal decomposition on each channel. In advance, we need
to define the length of the seasonal component under inves-
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Figure 11: Time series decomposition on a sample of theCDN
data set. The time series decomposition is done with a period
length of 72, which equals to the daily seasonalities being
analyzed. The trend and residual component lack 36 values
at the beginning and end of the time series due to the time
series decomposition. A strong daily cycle can be observed
in the seasonal component.

tigation. Then, the influence of this seasonal component S
can be analyzed. For this task, we calculate the ratio between
the maximum value and minimum value of the time series S.
This ratio value indicates how big the seasonal component is
in a multiplicative model, i.e, how much variance of the time
series values is explained by the seasonal component. The
seasonal effects in a multiplicative model can be seen as a
percentage scaling factor at each time step. We utilize this
percentage scaling factor to investigate the influence of the
seasonal components within each time series. This allows us
to compare the temporal correlations of different data sets.
The procedure of calculating this ratio value r for an univari-
ate time series Y with a given period length pl can be noted
as:

T,S,E = seasonalDecompose (Y, pl) (5)

r =
max(S)
min(S)

(6)

The calculation of this ratio value for a daily seasonality
for one time series is visualized in Figure 12, where r is
calculated for one location of a CDN sample. In the plot, the
red arrow indicates the difference between the max and min
value, which are used for the r calculation.

We use the median value of the calculated ratio values of all
time series in a data set X to calculate an influence factor rpl .
We investigate the influence of hourly and daily seasonalities
in the CDN data set, with the given resolution and time series
length. We consider weekly and monthly seasonalities for the
WWT data set. As the used time series of the eICU data set
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Figure 12: Visualization of max and min values of seasonal
component S extracted by the time series decomposition on a
CDN example with a period length of a single day. The max
and min values are used to calculate r.

only cover 21 hours, seasonalities with a length of 10 minutes,
one and two hours are analyzed.

The results of the time series decomposition of the CDN,
WWT and eICU are listed in Table 1. The CDN data set
contains strong daily seasonalities. In contrast, there are no
major seasonal patterns present in the WWT or eICU data
set.

Table 1: Result of the seasonal decomposition of the time
series extracted from the CDN, eICU and WWT data set. The
r values indicate the influence of the seasonal components on
the time series for specific time periods in the data, ranging
from ten minutes to monthly spans. A higher value indicates
a higher influence.

Data set r10min rhourly r2h rdaily rweekly rmonthly
CDN#0 - 1.0288 1.0784 22.0307 - -
CDN#1 - 1.0190 1.0631 19.5571 - -
CDN#2 - 1.025 1.0793 21.0257 - -
WWT - - - - 1.0602 1.0751

eICU O2 1.0005 1.0059 1.0118 - - -
eICU HR 1.0014 1.0212 1.0434 - - -
eICU RR 1.0066 1.0791 1.1577 - - -

Spatial Correlations In order to characterise the data sets
with regard to spatial correlation, we utilize the Pearson cor-
relation coefficient. For this task, we calculate the correlation
coefficient between each channel for each time series of the
multivariate data sets. After calculating the correlation coeffi-
cient for each time series, the average value is computed for
each data set. The results of this analysis are listed in Table 2.
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Table 2: Result of the spatial correlation analysis of the time
series extracted from the CDN, eICU and sine data set. Val-
ues indicate the average correlation between the channels of
the multivariate time series. The correlation coefficient is
limited to a range between −1 and 1. −1 and 1 indicate a
perfect correlation, while 0 indicates no correlation between
the channels of the time series.

Data set Average Pearson-Correlation
Sine 1.0
CDN 0.92
eICU 0.35

The analysis shows that the CDN data set contains a strong
spatial correlation indicated by a high Pearson correlation
coefficient between the different inner-nodes. This means
that the amount of user request at each inner-node correlate
strongly and an increase of user requests at one location leads
correlates with user requests at the other locations as well.
In comparison, the multivariate time series of the eICU data
set do not contain as strong spatial correlations. As to be
expected, the constructed sine data set contains a perfect
spatial correlation, due to the second channel of the time
series merely being shifted.

5.6 Summary

We use four different data sets to answer the posed research
question. The CDN data set contains multivariate time series
with strong daily seasonality and a high spatial correlation.
In contrast, the multivariate eICU data set does not contain
any seasonalities and the spatial correlation is smaller. To
evaluate the performance in a univariate context, we utilize
the WWT data set. It does not contain a strong seasonality in
the training set.

Table 3 summarizes the data sets and their characteristics.
Noticeably, even though the CDN and WWT data set are

both represent user requests, they have different character-
istics with regard to seasonalities and temporal correlations.
This can, however, be mainly caused by the resolution of the
data.

Table 3: Summary of the data sets after pre-processing, which
are used for the architecture comparison.

Data
set

#
examples

periodic #
channels

spatial
correlation

CDN 19472 strong
daily

3 high

WWT 117277 low 1 -
eICU 7917 low 3 low
Sine 20000 yes 2 perfect

6 Approach

This section focuses on our approach, used to implement
the methodology proposed in Section 4. We describe the
architectures used for the different GAN models in detail.
Afterwards, we list the proposed evaluation metrics, which
we use to evaluate the generated data and GAN architectures.
Lastly, we provide details about our parameter search.

6.1 Network Architectures

Recurrent Neural Networks For the RNN-based models,
we utilize an LSTM block in the network architectures, as it
is a common approach to counteract the limitations of van-
ishing gradients in RNN-based models. For the discriminator
architecture, the output of the LSTM blocks is flattened and
then transformed by multiple dense layers. A softmax layer
is used to achieve the classification task. Initial experiments
showed, that a naive LSTM block suffered from vanishing
gradient problems. To counteract this issue, a skip connection
is implemented over the LSTM block of the discriminator, as
suggested by [26]. A batch-normalization layer [16] is used
to achieve more stable training. To counteract mode collapse
issues a dropout setting was used for the LSTM neurons to
improve the training by introducing noise. An illustration of
the discriminator architecture is displayed in Figure 13.

For the RNN generator part, we also utilize an LSTM block.
Here, a naive LSTM block is sufficient as the generator did
not suffer from vanishing gradient problems. This LSTM
block with multiple layers and a predefined number of hidden
neurons processes a sampled noise vector. In line with the dis-
criminator part, multiple dense layers are utilized to achieve
the required output dimensionality. We normalized the data
sets as suggested by Lin et al. [27], and use a sigmoid layer
to transform the generated time series in a range of [0;1]. An
illustration of this architecture can be seen in Figure 14.

Temporal Convolutional Networks For the TCN-based
models, we utilize multiple temporal blocks as proposed
by Bai, Kolter, and Koltun [3]. The temporal blocks are
used to process the input time series.

The discriminator uses a temporal block to classify the in-
put time series. In line with Wiese et al. [36] we use the last
element of each feature map, named head element. This head
element contains all necessary information if the receptive
field size of the TCN block covers the whole input sequence.
If this is not satisfied an information loss in the early parts of
the time series is occurring. As with the RNN-based archi-
tecture, we use multiple dense layers to achieve the required
output dimensionality. The output is fed through a softmax
layer to calcuate the classification scores.

We reuse the suggested discriminator architecture for the
generative model and only modify the dense layers for this
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Figure 13: LSTM based discriminator architecture. The sam-
ple, which should be classified is fed into multiple LSTM-
layers with a fixed number of hidden neurons. A skip connec-
tion over the LSTM block is used to counteract the problem
of vanishing gradients. A batch normalization layer [16] is
used to achieve more stable training. The transformed time
series is then flattened and fed into a dense layer. Afterwards
a softmax or sigmoid layer is used to achieve the classification
task.

task. An illustration of the architectures can be found in
Figure 15 and Figure 16.

Transformer We use a transformer architecture based on
Lim et al. [26]. The authors utilized this TFT for a time series
prediction task. For this task, the they feed static information,
observed, past and known future information into the TFT
model. We use their TFT as a basis and modify it for our data
generation task. In a GAN context, no static information or
known future information is present, we therefore remove this
components of the architecture. The attention block within the
TFT architecture uses a masked multi-head attention mech-
anism, which processes the past inputs and known future
inputs. We replace this multi-head attention mechanism with
a multi-head self attention mechanism, which solely processes
the time series (corresponding to past inputs in a multi hori-
zon context). In contrast to the current state of the art, our
transformer architecture is specifically modified for the data
generation task. The exact architecture for discriminator and
generator model is as follows: The inputs to the modified

Figure 14: LSTM based generator architecture. The sampled
noise vector is fed into multiple LSTM layers. The output of
the LSTM layers is flattened and multiple dense layers are
applied to achieve the mutlivariate time series. A sigmoid
layer is used to transform the generated time series into a
range of [0,1].

TFT architecture are fed into an embedding layer realized
by a dense layer. After this embedding a Variable Selection
Network is applied. The Variable Selection Network is used
for judicious selection of the multivariate input vector [26].
The Variable Selection Network is realized by applying gated
residual networks, which can be seen as a dynamic skip con-
nection mechanism [14]. A positional encoding is added to
the time series before feeding it into an LSTM block. The
LSTM block is realized by multiple LSTM layers with a fixed
number of hidden neurons. The output of the LSTM block is
combined with a skip connection and fed into a gating compo-
nent realized by a gated linear unit [8] in order to focus on the
important features of the time series. A batch normalization
layer is used to increase the stability of the training. Then, a
multi-head self attention mechanism is used to transform the
time series with an unlimited look back. The output of this
transformer component is combined with a skip connection.
Afterwards multiple gating and normalization components are
applied. Lastly, multiple dense layers are used to achieve the
desired output dimensionality for discriminator and generator
accordingly. In the discriminator model a softmax layer is uti-
lized to achieve the classification scores, while the generator
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Figure 15: TCN based discriminator architecture. The sample,
which should be classified is fed into multiple temporal blocks.
Afterwards the heads of the transformed time series are used
and a single dense layer is applied to achieve a vector with
the desired number of classes. Lastly, a softmax layer is used
to classify the sample.

uses a sigmoid layer.
While we reduce the complexity of the original model [26]

due to smaller number of input features, the complexity of
the architecture, specifically when compared to the RNN and
TCN setup is evident.

Illustrations of our modified TFT architecture are displayed
in Figure 17 and Figure 18.

6.2 Evaluation Metrics
In order to evaluate the performance of a GAN model, the
underlying ground truth data distribution has to be compared
with the estimated distribution. When comparing two un-
known distribution, only samples drawn from these distribu-
tions are available. In the case of a GAN, sampling from the
learned distribution corresponds to transforming noise vectors
into time series with the generator. To evaluate how success-
ful the estimation of the probability distribution is, multiple
empirical metrics are utilized. We focus on evaluating the
performance by considering the similarity of the distribu-
tions with regard to temporal correlations, spatial correlations,
noise and mode collapse issues.

6.2.1 Squared Difference Calculation

We compute different evaluation metrics (M) on a the gen-
erated time series and the training set. A similar approach
was proposed by Lucic et al. [28], which evaluated generated
and real samples every five epochs. The chosen training time

Figure 16: TCN based generator architecture. The sampled
noise vector is fed into multiple temporal blocks. Afterwards,
the heads of the transformed time series are used and multiple
dense layers are applied to achieve the mutlivariate time series.
A sigmoid layer is used to transform the generated time series
into a range of [0,1].

series to be compared are selected at random. We define
the set of generated time series as G, and the set of chosen
training time series as R. We calculate the metrics of M on
each time series within each set. Before training the GAN
models, we define a fixed noise vector in advance. Fixing this
noise vector helps analyze the progress and convergence of
the GAN model. This defined noise vector is used to generate
the set G at each training epoch. We define this noise vector
to generate ten time series at each training epoch to build the
set G (|G|= 10) .

Before training a GAN model, we sample 500 random time
series from the training data to create set R (|R|= 500). In the
following we will note the set G as the "generated" set and
the set R as the "reference" set. To empirically measure how
similar set G and R are with regard to a defined metric, we
compute the average value within each set and calculate the
squared difference between both values. The process of this
squared difference calculation used to account for temporal
correlations, spatial correlations and entropy is visualized
in Figure 19.

Generally speaking, considering an evaluation metric f (x)
with:
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Figure 17: Transformer based discriminator architecture. The
sample is fed into an embedding dense layer and afterwards
a variable selection network realized by gated residual net-
works [14]. An LSTM block is used to detect temporal corre-
lations in the time series. Afterwards, multiple gating com-
ponents are used to focus on the important parts of the time
series. A multi-head self attention mechanism is used to
achieve an unlimited receptive field size. After applying ad-
ditional gating and normalization layers, the flattened time
series is fed into a dense and sigmoid or softmax layer to
achieve the classification task.

f (x) : [0;1]256×d → R (7)

with d being the dimensionality of the time series, which
transforms a time series into an empirical value, the calcula-
tion can be described as:

f ch
re f erence =

∑r j∈R f (r j)

|R|
,1 ≤ ch ≤ d (8)

f ch
generated =

∑x j∈G f (x j)

|G|
,1 ≤ ch ≤ d (9)

Figure 18: Transformer based generator architecture. The
noise is fed into an embedding dense layer and afterwards
a variable selection network realized by gated residual net-
works [14]. A LSTM block is used to detect temporal corre-
lations in the time series. Afterwards, multiple gating com-
ponents are used to focus on the important parts of the time
series. A multi-head self attention mechanism is used to
achieve an unlimited receptive field size. After applying addi-
tional gating and normalization layers a dense and sigmoid
layer is utilized to generate the desired time series.

fout put =
∑

d
ch=1 ( f ch

re f erence − f ch
generated)

2

d
(10)

With our approach, this fout put value indicates how similar
R and G are with regard to the considered evaluation met-
ric. The value specifies the difference between the set G
and R, therefore a smaller value corresponds to a better data
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Figure 19: Visualization of the calculation of the squared
difference used to compare two distribution based on a pre-
defined metric. ti represents a time series drawn from the
training set, with n = 500, while g j represents a generated
time series, with k = 10. This approach is used for Discrete
Fourier Transformation (DFT), Pearson correlation and en-
tropy.

distribution estimation by the GAN model.
We consider following metrics for the squared difference

calculation:

Temporal Correlation Common approaches compute a
DFT or an auto-correlation for to account for temporal corre-
lations. While Lin et al. [27] utilized the auto-correlation to
analyze the temporal correlation, we propose to leverage the
DFT. The information gained by an auto-correlation analysis
is similar to an DFT as it represents the normalized spectral
density after a DFT [21]. Our initial experiments indicate,
that undesired noise included in generated time series can be
more easily detected by a DFT than an auto-correlation anal-
ysis. To visualize this pattern, Figure 20 compares the output
of an FFT and auto-correlation computed on sine waves with
different amount of noise.

We use an FFT analysis to transform a time series into its
frequency domain. By dividing each amplitude value by the
sum of all amplitudes in the frequency spectrum, we com-
pare the distributions of frequencies. With this in mind, we
remove the lowest frequency bin to discard the frequency
components extracted from non-periodic components of the
time series. For our comparison, we only compare the high-
est probabilities (peaks) of the frequency spectrum. As a
result of data analysis for the training data sets the number
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(c) Auto-correlation applied on sine waves from Figure 20a.

Figure 20: Illustration of FFT and auto-correlation calculation
on sine data with varying noise. In columns from left to
right more noise is added to the signal. Compared to FFT,
the added noise is harder to detect by the auto-correlation
analysis.

of relevant frequencies peaks, which should be compared are
pre-determined. All time series within the sine and cosine
data consist of a single frequency component. Therefore, we
consider only the frequency with the highest amplitude. For
the CDN data set analysis has shown, that the time series
consists of three major frequency components. For the eICU
and WWT data set, only the frequency with the highest ampli-
tude is considered. The amplitudes of the extracted frequency
components are then compared and the distance is calculated,
which should be as small as possible. Since we only aim to
account for temporal correlations with this measurement, this
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FFT comparison is done for each channel in the time series
separately.

Spatial Correlation We follow the approach suggested
by Leznik et al. [24] to utilize a correlation coefficient to
measure the spatial correlation within the generated time se-
ries. For the correlation coefficient we compute the Pearson
correlation. We consider all possible channel tuples for the
calculation of fout put . If the generated samples are drawn
from the same distribution a similar correlation coefficient
should be found.

Noise and Uncertainty Following the approach of Leznik
et al. [24] we calculate and compute an entropy measurement.
With such a measurement we can evaluate if the generated
time series contain similar noise and uncertainty information.
Here, the Approximate Entropy (ApEn), which is an adaption
of the entropy measurement for time series, is used, as it
allows to measure the repeatability and predictability within
a time series.

Limitations The squared difference comparison based on
the mentioned measurements helps to evaluate how similar
both distributions are with regard to temporal correlation, spa-
tial correlation and more. However, with our approach, the
squared difference is calculated based on an average value
extracted from samples of these distributions. This approach
does not provide insight how the drawn samples are dis-
tributed in the multi-dimensional space. Specifically, we
cannot compare distinct samples but only the average values
calculated based on these samples.

6.2.2 Time Series Similarity

We include time series similarity measurements for our evalu-
ation to counteract the limitations of the squared difference
calculation. Measuring the similarity between time series data
can help detect the nearest neighbour in the multi-dimensional
space. In order to apply a similarity measurement we need
to define a distance metric first. For our approach, we utilize
the ED to measure the similarity between time series. For
multivariate time series we average the distances computed
on each channel.

Following the approach of Arnout et al. [2] we use the
Incoming Nearest Neighbor Distance (INND) and Outgoing
Nearest Neighbor Distance (ONND) to gain insight about the
performance of GANs models by comparing the distance of
samples from the underlying and estimated distribution. In
addition, we compute the Intra-Class Distance (ICD) for the
generated time series.

We use the INND to measure a successful estimation of the
distribution function, which correlates to the model generating
realistic time series. To empirically evaluate the flexibility
of the generated time series we use the ONND measurement.

Figure 21: Illustration of Incoming Nearest Neighbour Dis-
tance. Considering training data set R = {s1,s2,s3, . . . ,sn}
and generated data G = {g1, . . . ,gi} and a defined distance
measurement d(sk,g j) : Rn×d × Rn×d → R+ the nearest
neighbour of the training data set is calculated for each gener-
ated data point g j.

However, the ONND metric does not consider the distances
between the generated samples explicitly, hence we include
the ICD measurement to account for mode collapse issues.

Incoming Nearest Neighbour Distance The INND calcu-
lates the nearest neighbour of the training data set R for each
generated example of set G. An illustration of the INND
based on a set of training data and set of generated data is
displayed in Figure 21.

A successful estimation of the distribution function should
result in close neighbours in the training data set for each
generated data sample. For our evaluation, we calculate the
distance to the closest neighbour in a set R for each generated
time series in G and average these distances. Considering the
set of generated samples G and the set of training samples R,
we compute the overall innd_score with a predefined distance
measurement d(a,b) as:

INND(x j,R) = min{d(x j,sk)|rk ∈ R} (11)

innd_score =
∑x j∈G INND(x j,R)

|G|
(12)

We expect that in the training process of a successful GAN
the innd_score decreases. However, the innd_score should
not equal 0, which would indicate that the GAN can only
generate copies of the training data.

Outgoing Nearest Neighbour Distance The ONND calcu-
lates for each training example of set R the nearest generated
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Figure 22: Illustration of Outgoing Nearest Neighbour Dis-
tance. Considering training data set R = {s1,s2,s3, . . . ,sn}
and generated data G = {g1, . . . ,gi} and a defined distance
measurement d(sk,g j) : Rn×d × Rn×d → R+ the nearest
neighbour of the generated data set is calculated for each
training data point sk.

example in set G. An illustration of the ONND based on a
set of training data and set of generated data is displayed in
Figure 22.

Ideally, a GAN model should result in a small ONND
for most training samples in set R. This corresponds to the
GAN model being able to produce time series in the multi-
dimensional space covered by the training data distribution.
As with the INND measurement, we calculate the distance
to the closest neighbour and average these distances. Consid-
ering the set of generated samples G and the set of training
samples R, we compute the overall onnd_score with a prede-
fined distance measurement d(a,b) as:

ONND(x j,G) = min{d(x j,gk)|gk ∈ G} (13)

onnd_score =
∑x j∈R ONND(x j,G)

|R|
(14)

We expect, that in a successful training process of a GAN,
which is able to produce time series without mode collapse
issues, the onnd_score decreases. The onnd_score provides
an indication about possible mode collapse issue by measur-
ing which areas of the multi-dimensional space are covered
by the generated samples of set G.

Intra Class Distance The ICD represents the average simi-
larity of the generated time series within set G. We compute
the icd_score considering a distance metric d(a,b) and the
set of generated samples G as:

Intra-Class Distance

Figure 23: Illustration of Intra Class Distance. Considering
the generated data G = {g1,g2, . . . ,gk} and a defined distance
measurement d(gi,g j) : Rn×d ×Rn×d → R+ the average dis-
tance between the generated examples is computed.

icd_score =
∑x j∈G ∑xk∈G d(x j,xk)

|G|2
(15)

Figure 23 visualizes the computation of the icd_score.
A GAN model with mode collapse issues would result in

similar samples within set G. In contrast to the innd_score
and onnd_score, a higher icd_score indicates a better GAN
performance.

6.3 Parameter Search
In order to compare the performance of the different GAN
architectures, we evaluate multiple configurations to achieve
a better generalization of the research results. For this task
we utilize a grid search. Such a grid search was already
utilized by Bai, Kolter, and Koltun [3]. While Lucic et al. [28]
performed a random search, with a vast amount of varying
parameters, we chose a grid search with a smaller amount of
varying parameters to cover the entire search space. For our
grid search we consider architecture dependent parameters as
well as GAN training specific parameters. As we are utilizing
a grid search, we limit the scope of the search space by fixing
other parameters in advance. Based on our computation, we
assume that the parameters are transferable to other data sets,
as suggested by Lucic et al. [28].

6.3.1 LSTM Parameters

For the LSTM based models we compare the performance
of LSTM blocks with one and two LSTM layers. In line
with Bai, Kolter, and Koltun [3], we choose this parameter
for the grid search to see if multiple LSTM layers provide
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any benefit. We fixed 100 hidden neurons for the LSTM
layers. This configuration was already suggested by Leznik
et al. [24] and Esteban, Hyland, and Rätsch [10]. We tested
other number of hidden neurons for the LSTM layer, but
the preliminary results on the sine data set indicated, that
the configurations proposed by the authors work best. For
the dropout layer used within the LSTM block we choose a
dropout of 0.2.

6.3.2 TCN Parameters

For the TCN based models, we compare the performance
of temporal blocks with 10 and 20 channels. Following the
approach of Bai, Kolter, and Koltun [3] we choose the kernel
size and number of layers to result in a receptive field size,
which covers to whole input sequence. We set the kernel size
to 7 and 8 layers, resulting in a receptive field size bigger than
256. As the sequence length is fixed for all data sets, we use
these parameters for all experiments.

6.3.3 TFT Parameters

In line with our grid search for the LSTM models we test
if additional LSTM layers improve the performance of TFT
based models. For the other parameters we chose the parame-
ters suggested by Lim et al. [26] for the UCI Electricity Load
Diagrams5 dataset. We modify the dropout value to 0.2 based
on initial results. We did not observe performance changes
in those initial experiments when varying other parameters.
Therefore, we used an embedding dimension of 8, 160 hidden
neurons and 4 attention heads for all experiments.

6.3.4 GAN Parameters

We evaluate architectural independent configurations to in-
crease the possible generalization of the results. E.g., different
setups for the alternating training between the generator and
discriminator are tested.

Alternate Training A GAN model is optimized by alternat-
ing between training the discriminator and generator. A good
balance between training these two components is required to
achieve a sufficient results of the minimax game [11]. How-
ever, there is no common approach for choosing this balance.
Increasing the number of times the generator is trained in
comparison to the discriminator helps to improve the conver-
gence of the GAN training. Yet, training the generator too
often can lead to a mode collapse, where the generator only
produces one example, which is classified as most plausible
by the discriminator. We vary the alternating training for our
comparison task by training the generator and discriminator
equally often or training one component three times more

5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

often than the other one. Lucic et al. [28] considered a similar
setting for their comparison.

Training Details For our experiments we use Adam op-
timizers [22] with a learning rate of 0.00005, beta1 of 0.5
and beta2 of 0.999 to train the discriminator and generator
components. The Adam optimizer includes an momentum
term for its gradient descent to speed up the training proce-
dure. In the initial tests, we considered different learning rates
and an RMSProp optimizer for comparison reasons. Based
on the initial experiments on the sine data set we chose the
aforementioned configurations.

For the loss function we utilize the modified minimax
loss function. We also modified our GAN models to use
the Wasserstein loss proposed by Arjovsky, Chintala, and
Bottou [1]. We considered a clipping approach and gradi-
ent penalty approach to enforce the weight constraints. For
the clipping approach we noticed, that the clipping parame-
ters suggested by Arjovsky, Chintala, and Bottou [1] are not
transferable to time series architectures. With the gradient
penalty approach, we only observed an increase in training
time. Therefore, we use the modified minimax loss function
for all experiments.

We sample our noise vectors for the generator from a stan-
dard normal distribution. A standard normal distribution
was already utilized by Esteban, Hyland, and Rätsch [10]
and Leznik et al. [24]. We selected the noise vector to be of
the same dimensionality as the time series in the training data
set. In the initial experiments we tested if an increased dimen-
sionality would help, but we could not verify this assumption.

A batch size of 512 is used. This setting resulted in the
best trade-off between performance and training time in the
initial experiments compared to lower batch sizes.

6.3.5 Procedure

We consider mixed architectures, based on TCN,LSTM and
TFT for the comparison task. The set of architectures A can
be defined as:

A = {TCN,LST M,T FT}×{TCN,LST M,T FT} (16)

Resulting in nine different generator and discriminator com-
binations. We perform the parameter search for each architec-
ture individually. To reduce computation time, the parameter
search is conducted on the artificial (sine) and one real (CDN)
data sets. The parameters of the CDN data set are then trans-
ferred to the WWT and eICU data sets.

We then compare the architectures based on the best per-
forming configurations. Here we evaluate performance on all
data sets. As suggested Lucic et al. [28] we train additional
models for the best performing configuration to account for
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instability issues. For this task we train 5 additional mod-
els for all data sets for each architecture and average their
measurement scores.

6.4 Inference Process
While generating time series data for evaluation purposes, we
do not deactivate the dropout layers in the generator mod-
els. While this is uncommon for standard ANN tasks this
approach was already utilized by Isola et al.[17]. In a GAN
context this helps to generate time series with high fidelity
and counteract mode collapse issues by introducing noise to
the generation process.

7 Results

In the following, we provide the empirical results of the com-
parison runs between the different architectures. Based on the
combination of different GAN architectures and the parame-
ter space, our experiments contain 612 trained GAN models,
with an overall computation run time of 2610 hours.

7.1 Parameter Search
To allow a fair comparison, we conducted an extensive param-
eter search to find the optimal setup for each GAN architec-
ture. In the following we will refer to (G,D) as a GAN model.
G and D are placeholders for the corresponding generator
and discriminator architectures. The results of the parameter
search are listed Table 4.

7.2 Quantitative Results
In the narrowed search, we train five GAN models of the
best performing configurations for each (G,D) combination.
The scores for each evaluation metric were averaged over
these five runs. The results for all data sets in Table 5. The
values are rounded to five decimal places and the three best
performing architectures according to each metric are marked
bold.

Sine & Cosine Considering our evaluation metrics, the ar-
chitectures with a TCN discriminator performed the best. A
full TCN setup, with a TCN generator and discriminator part
had the most successful data synthesis over all runs. As the
frequency component solely defines the training data, our
temporal correlation metric can give the best indication of a
successful data distribution estimation. When analysing this
metric it can be seen, that the setups with a TCN discriminator
are the most stable, which correlates to our other measure-
ments. We use the ICD to evaluate the performance with
regard to a possible mode collapse. A low score in this metric
indicates that a mode collapse occurred. Table 5 shows, that
a GAN setup with a TCN generator and LSTM discriminator

Table 4: Results of the parameter search. The best performing
configurations for each (G,D) GAN. The columns indicate
which parameters were varied for the parameter search. The
specific search is explained in Section 6.3
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D
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G
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D
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artificial 3 3 10 2
real 1 1 10 2
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D
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G
# layers

D
# layers

artificial 1 3 1 1
real 3 3 1 1
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Set

D
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G
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D
# channels

artificial 3 3 2 10
real 3 1 2 10

TCN, TCN
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Set

D
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G
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D
# channels

artificial 3 3 10 20
real 1 1 10 20
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artificial 3 1 1 20
real 3 1 1 20

LSTM, LSTM
Data
Set
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G
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D
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artificial 3 1 2 1
real 3 1 1 1
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D
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artificial 1 3 20 2
real 1 1 10 1

TFT, LSTM
Data
Set

D
Steps
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G
# layers

D
# layers

artificial 3 1 1 2
real 3 3 1 1
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Generator Discriminator
Temporal

Correlation
Spatial

Correlation
ICD INND ONND

Appx.
Entropy

Temporal
Correlation

Spatial
Correlation

ICD INND ONND
Appx.

Entropy

Sine eICU

TCN TCN 0.02332 0.00015 10.06231 0.53573 72.74083 0.00148 0.00200 0.10909 2.46944 1.67306 3.50805 0.08154
LSTM TCN 0.01996 0.00075 1.77302 9.67138 88.52687 0.00317 0.00261 0.075323 0.78862 2.73161 4.94537 0.07222
TFT TCN 0.01775 0.00000 1.05250 12.23117 80.75530 0.00926 0.00183 0.405765 29.29440 16.44228 7.51501 0.04232
TCN LSTM 0.07313 0.15511 7.12300 58.69233 111.73984 0.17102 0.00395 0.01481 0.12036 139.37538 153.68854 0.08339

LSTM LSTM 0.10324 0.17809 0.03923 96.70890 153.44000 0.09419 0.00337 0.02525 0.00881 181.20906 222.09209 0.09554
TFT LSTM 0.04116 0.00040 18.57820 34.09213 79.64032 0.05801 0.00325 0.23396 7.70013 2.72719 3.14137 0.07647
TCN TFT 0.10878 0.50436 1.26913 94.31486 120.93548 0.09099 0.00167 0.06978 21.92763 43.52272 48.16701 0.08618

LSTM TFT 0.09896 0.56957 0.00797 74.99265 101.63118 0.25078 0.00236 0.06175 16.83475 31.82086 43.68840 0.17196
TFT TFT 0.08530 0.34764 1.38502 68.03877 93.94007 0.11558 0.00161 0.04572 4.04906 0.66680 2.35166 0.05636

CDN WWT

TCN TCN 0.00055 0.00374 10.2777 3.17988 6.59869 0.015180 0.00028 7.03195 0.35826 1.07870 0.00080
LSTM TCN 0.00038 0.00381 14.94560 3.12956 5.98848 0.00526 0.00020 7.00606 0.32634 0.99887 0.00236
TFT TCN 0.00106 0.00587 44.44957 38.61944 21.82845 0.02415 0.00022 7.70210 0.30861 0.87396 0.00186
TCN LSTM 0.00842 0.62799 0.36461 137.72078 163.00755 0.00813 0.00182 7.95031 55.20507 61.08195 0.13351

LSTM LSTM 0.00595 0.56521 0.00456 148.11764 199.05331 0.08650 0.00112 0.01699 28.05824 45.40631 0.13530
TFT LSTM 0.00088 0.00133 12.85012 5.18976 7.14789 0.03194 0.00085 7.44699 0.27199 0.85406 0.01187
TCN TFT 0.00370 0.36310 24.79750 84.80797 93.53913 0.03446 0.00063 8.36950 3.08563 6.51213 0.09195

LSTM TFT 0.00239 0.195973 4.03003 65.44299 97.71488 0.03276 0.00165 3.12135 11.49566 29.11385 0.57385
TFT TFT 0.00203 0.62835 14.38590 25.20930 25.82004 0.03994 0.00035 7.22410 0.33559 0.93286 0.00236

Table 5: Evaluation metrics of the different GAN architectures for all four data sets. For each metric, the best three scores are
marked as bold.

as well as a GAN setup with a TFT generator and LSTM
discriminator resulted in high ICD values. However, these
models were not able to recover the data distributions suc-
cessfully and only produced noise. When these outliers are
not considered, a full TCN setup was the only model without
mode collapse issues for the artificial data set.

CDN A before, the architectures with a TCN discriminator
performed best. For the CDN data set a setup with an LSTM
generator and a TCN discriminator had the most successful
data synthesis over all runs. When considering the INND mea-
surement, which indicates the fidelity of the generated data, it
is noticeable that architectures without a TCN discriminator
struggle to synthesise realistic time series. This pattern is also
indicated by our temporal correlation measurement, which is
important for the CDN data set with high seasonalities. The
synthesis of the CDN data set resulted in fewer mode collapse
issues. Most architectures were able to generate examples
with high variance for the CDN data set, which is shown by
higher ICD values. Noticeably, the synthesis of rare events
does not deviate the behaviour of the GANs. We attribute this
to the fact that the point and collective anomalies are averaged
out while calculating the data statistics. However, the goal
here is to show the ability to mimic the distribution including
the anomalous data points.

eICU For the eICU data set, a setup with a TFT generator
and a TFT discriminator had the most successful data synthe-
sis over all runs. This is shown by a high fidelity according
to all evaluation metrics. While GAN models with a TFT dis-
criminator and without a TFT generator performed worse. It
is generally noticeable, that architectures with a TCN discrim-

inator offer sufficient all around performance. The training
of the GAN models was stable with regard to mode collapse
issues. According to the INND metric, it can be seen that
in addition to the TCN discriminator based models, the TFT
based models are able to generate realistic examples.

WWT Architectures with a TCN discriminator performed
the best and the estimated data distribution of a full TFT GAN
is similar to the training data distribution. While the full TFT
GAN did not achieve top scores in most measurements, a high
fidelity of the generated data is indicated by stable scores in
all metrics. For the WWT data set, a setup with a TFT gen-
erator and a TCN discriminator had the most successful data
synthesis over all runs. Considering the ICD of the gener-
ated examples, nearly all architectures were able to estimate
data distributions with no mode collapse. When analyzing
the INND, all TCN-discriminator based models were able to
produce samples, which have close neighbours in the training
data distribution.

7.3 Qualitative Results

We provide qualitative analysis in this section, first, we use the
qualitative analysis to visualize the issues of mode collapse
for the sine data set. Then, we utilize verify the fidelity of the
generated time series. For this task we provide a generated
time series for each data set, its closest neighbour within the
training data set, and a random time series from the training
data set.
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7.3.1 Mode Collapse Issues

For visualization purposes, Figure 24 shows the output of two
GAN models. The GAN models were trained to synthesise
the on the sine data set. One GAN model is successful, while
the other one suffered mode collapse issues. The following
figure displays this pattern, which was already empirically
captured by the ICD (see Table 5). While the sine waves seem
alike at first glance, notice how the frequency of the example
samples does not vary at all in the mode collapse case, while
the successful training examples differ in their frequency.

7.3.2 Fidelity of Generated Time Series

After visualizing generated samples for our artificial multi-
class data set in Figure 24, we provide visual examples of
generated time series for the real data sets. The synthesised
time series are displayed in Figure 25.

The figure shows synthesised examples for each data set,
with their nearest neighbour and a random time series of
the corresponding data set. We use the ED to detect the
nearest neighbour. The provided generated time series were
synthesised by full TCN GANs, as they resulted in the best
overall data estimation for all data sets.

Sine & Cosine The TCN GAN was able to produce realistic
time series for the exemplary artificial data set. In addition,
the generated time series are well behaved periodic waves
with close to zero noise.

CDN The time series synthesised for the CDN data set has
similar characteristics with regard to cycles and spatial corre-
lations to the training data. The GAN was able to produce a
time series with diurnal cycles and high spatial correlations.

CDN - Rare Events The synthesis of anomalous events
shows, depicted in Figure 26, shows the ability to synthesize
the data distribution, including anomalous events. We opted to
show the rather easily distinguishable case of a collective data
anomaly in the form of a simulated outage. However, given
the ability to replicate the underlying data distribution, the
argument for the synthesis of more subtle rare and anomalous
events such as change points can be made.

eICU The synthesised time series displayed in Figure 25b is
similar to its nearest neighbour. This indicates high fidelity of
the generated time series. However, the generated time series
is not an exact copy of the training data, which is desired for
time series synthesis.

WWT The generated time series displayed in Figure 25c
has a close neighbour within the training set in the multi-
dimensional space. In contrast, the random time series, cap-
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(a) Output of a GAN model with an LSTM generator and TCN
discriminator which resulted in a mode collapse. The produced time
series are sine waves, but all generated examples are very similar.
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(b) Output of a GAN model with a TCN generator and TCN dis-
criminator which resulted in no mode collapse. The produced time
series are sine waves and the generated time series contain different
frequencies.

Figure 24: A mode collapse during training in the sine data
set, notice how the upper sine wave experience the same
periodicity, while the lower example samples differ in their
frequency.
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Figure 25: Visualization of generated examples by GANs with a TCN generator and TCN discriminator trained on the data sets.
For each generated time series, its nearest neighbour and random example of the training are displayed trained data set. For the
distance calculation, the ED is used.
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Figure 26: Collective anomalies synthesis on the CDN data
set using the TCN GAN setup. The anomalies, corresponding
to an outage, are inbetween the red lines.

turing the daily views of another article is different with regard
to the average daily views.

Overview Overall, the TCN models were able to generate
time series with high fidelity for all data sets. In addition,
when not experiencing a mode collapse, the generator did
not copy the time series of the training set, but rather learned
the underlying distribution. Our qualitative evaluation is able
to underline findings of the quantitative evaluation in regard
to the overall rank scores, and the ability to recognize mode
collapse issues.

Noticeably, the performance of a full TFT GAN model
varied a lot with regard to the data sets. We analyzed the
Pearson correlation coefficient and the FFT comparison to

investigate this issues. We found, that the average squared
difference for the Pearson correlation and the FFT metric
is high for the sine and CDN data set for the TFT model,
suggesting a high spatial correlation and seasonalities as the
issue in these data sets.

7.4 Resource Consumption

We investigate the resource consumption of the different GAN
architectures. We assume, that TCN-based models consume
less memory and the parallelization of the computation results
in faster training times. To verify these assumptions in a
GAN context, we compare the required resources to train the
different GAN models.

For this, we consider configurations with the same alternate
training setup, as configurations with an increased amount
of generator training steps will scale linearly and result in
a higher run time per epoch. Hence, the average memory
consumption and training time of all configurations with one
discriminator step and one generator step are averaged for
each architecture.

A full TCN setup requires roughly half the amount of re-
sources compared to a full LSTM setup. A full TFT setup
requires roughly ten times more resources than TCN and five
times more resources than LSTM. Hereby, the sheer compute
power and time required for a TCN setup, shall be taken into
account when considering an architecture, as it does, as of
now, offer the return on investment in regards to data fidelity
versus compute time and allocated resources. The results are
listed in Table 6.
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Figure 27: Results overview of the evaluation metrics computed for all architectures on the four data sets. A lower value indicates
a better performance for all metrics except acINND.
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Table 6: Average run time per epoch in seconds and aver-
age GPU memory consumption in GB while training GAN
models with different architectures. Architectures with the
least resource consumption are marked in bold. Values are
averaged over four/eight (Sine/CDN data set) configurations
with the same alternate training setup.

G D Sine
Time per

epoch

Sine
Memory

consumption

CDN
Time per

epoch

CDN
Memory
consump-

tion
TCN TCN 6.36s 2.39 5.5s 2.4
TCN LSTM 9.32s 2.69 8.38s 2.71
TCN TFT 35.42s 9.40 33.07s 9.22

LSTM TCN 14.15s 4.69 8.59s 5.01
LSTM LSTM 11.35s 4.55 10.61s 4.74
LSTM TFT 37.42s 11.33 36.24s 11.38
TFT TCN 23.11s 17.17 18.70s 15.29
TFT LSTM 25.72s 17.25 21.92s 15.36
TFT TFT 51.85s 23.25 47.37s 21.27

8 Discussion

In the following, we focus on providing context for the em-
pirical results of Section 7, discussing the results in regards
to the related work. We further evaluate the usability and
threats to validity of our approach. Lastly, we debate the
generalizability of our results.

8.1 Evaluation Metrics
We have focused on comparing the performance of different
GAN models by utilizing metrics from several domains. Most
state-of-the-art approaches evaluate the performance of their
GAN models with a limited set of measurements. By em-
ploying measurements from the field of time series analysis
and time series similarity, this work was able to evaluate the
performance of GAN models with regard to temporal correla-
tions, spatial correlations, mode collapse issues and nearest
neighbours of an unknown distributions.

E.g, Esteban, Hyland, and Rätsch [10] did not consider
any entropy metrics to measure irregularities and noise in
the generated time series. Additionally, the authors did not
utilize an auto-correlation or DFT to consider the temporal
correlations of the generated time series. Lin et al. [27] did not
measure irregularities and noise in the generated time series.
Leznik et al. [24] were the only authors to consider entropy
measurements for the evaluation task. All the authors did
not utilize a metric to account for mode collapse issues while
evaluating their GAN models. In contrast, our work was able
to detect mode collapse issue with the ICD measurement.

8.2 Architecture Comparison
Considering the results of the four synthesised data sets, two
clusters appear. The first cluster consists of the artificial sine
data set and the CDN data set. In this cluster GAN models
with a TCN discriminator achieved the best data synthesis,

while LSTM and TFT based discriminators struggled to syn-
thesise time series with a high fidelity and flexibility.

The second cluster consists of the WWT and eICU data
set. In contrast to the first cluster, a full TFT setup resulted in
generated time series with higher fidelity and flexibility in this
cluster. For the eICU data set the full TFT setup performed
well in all evaluation metrics.

In order to understand, why the full TFT setup struggled
to synthesise realistic examples for the sine and CDN data
set, we analyzed our measurement scores. Noticeably, the
TFT setup was not able to learn the temporal and spatial cor-
relations as suggested by the FFT and correlation metrics. In
contrast, GAN models with a TCN discriminator were able
to capture those patterns. For the WWT and eICU data set,
the full TFT setup was able to achieve scores similar or even
better than the TCN-discriminator-based models (Table 5).
This is visualized in Figure 27. This suggests, that the TFT
model was not able to capture the spatial correlation and sea-
sonalities of the time series in the first cluster. Considering
the analysis done in section 5, the sine and CDN data sets
contain periodic time series with high spatial correlations. In
contrast, the WWT and eICU data set contain less seasonali-
ties and a lower spatial correlations (none for the univariate
WWT data set). Based on these results, we argue, that the
TFT model was not able to synthesise periodic time series
with a high spatial correlation. However, for data sets, that
do not fulfill these characteristics, the TFT GAN model was
able to produce time series with high fidelity and variation.

Over all data sets a full TCN setup was the most stable
architecture. The GAN models trained with this architecture
were the only models to not suffer from mode collapse.

For this work we followed the approach by Isola et al. [17]
to not deactivate the dropout layers while generating time
series for evaluation purposes. We applied this for all archi-
tectures, expect the LSTM generator, which does not contain
a dropout layer. Here, we noticed, that the added noise by
this approach resulted in higher fidelity in the generated time
series. When deactivating the dropout layers the generator
produced time series with low variance. While Isola et al. [17]
synthesised images, we argue that it is beneficial for time se-
ries GANs to follow this approach.

Generally, the LSTM discriminator did not perform well
due to vanishing gradient problems. These problems occurred
especially when using a sigmoid output layer in the generators
in order to achieve a time series in range of [0;1]. We have
tried multiple modifications to the LSTM architecture, but
none could resolve this problem. For example, we tested bi-
directional as well as directional LSTM layers, followed up
by different approaches to achieve the desired classification
task.

We chose a fixed sequence length of 256 for all data sets.
When decreasing the sequence length it has to be expected
that the performance of the LSTM architectures and TFT
architectures, which contain an LSTM block, would improve.
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The results we provide can be seen as an extension of
the prior work from Bai, Kolter, and Koltun [3]. While Bai,
Kolter, and Koltun [3] provided empirical results for TCN per-
formance in time series tasks, this work extends these results
for the task of data distribution estimation of time series via
GANs and it also considers transformer-based architectures.

The results indicate, that the performance of these GAN
models depend on the discriminator architecture. Overall, we
suggest to use a TCN generator and TCN discriminator for
unknown time series synthesis. When considering resource
consumption, the TCN models could be trained twice as fast
with half the amount of memory required compared to LSTM
based models. Our suggested transformer model were ineffi-
cient compared to the other architectures. Further, the TCN
models provided the most stable time series synthesis for
all data sets (see Figure 27). This includes the fidelity and
variation of the generated time series.

8.3 Threats to Validity

Squared Difference Calculation A GAN model implicitly
estimates an unknown distribution, however, only generated
examples can be utilized to evaluate the performance. The
ground-truth data distribution, which should be estimated, is
represented by a set of training examples. The size of this set
is limited by definition. Therefore, the two data distributions
can only be compared by computing measurements on the
samples. For this task, we generated 10 random examples at
each epoch while training the GAN networks. The measure-
ments of time series analysis and time series similarity were
computed and averaged over these 10 examples. For the train-
ing data set, 500 random examples were taken to compute
the same metrics for the training data set. After averaging
the metrics over the 500 examples the squared difference was
computed.

The accuracy of comparing two distributions based on met-
rics computed on samples is correlated to the number of sam-
ples used for the comparison task. Increasing the number of
samples would remove noise from our results.

The 500 examples taken to compute the metrics for the
training data set were also used to train the GAN. For other
ML applications, it is common to use a separate test split to
evaluate the performance. In the context of a GAN model,
where the task is to estimate the unknown data distribution,
we argue, that evaluating the performance based on training
examples does not introduce a bias, as the number of training
sample used for this task is small compared to the overall data
set size. With this approach, it is unlikely, that the generator
part of the GAN models overfits these random samples. We
account for possible overfitting to the training data with our
quantitative and qualitative analysis.

The assumption for our squared difference approach to
work is, that the average value of a metric extracted from
samples can represent the data set well. For the data sets,

which were used in the comparison task, this assumption is
fulfilled.

For data sets, which do not fulfill this assumption, encap-
sulating the characteristics of a data set by an average value
loses information. We can counteract this information loss by
interpreting the metrics extracted per sample as a distribution.
Those values sampled from an unknown distribution function
could then be compared to the samples from the other distri-
bution. The Kullback-Leibler-Divergence is an example to
measure the similarity between two distributions [23].

Fast Fourier Transformation Analysis Our FFT evalua-
tion metric only compares the peaks in the frequency spec-
trum. This hinders the framework to detect if the generated
time series contains frequency components of similar fre-
quency bands. To discuss if this could bias the results, the
characteristics of the two data sets with high seasonalities are
used.

For the CDN data set, all extracted time series contain the
same seasonalities and the generated time series contain the
peaks at the same frequency bands. This can be seen in Fig-
ure 25a, where a generated time series contains the same daily
cycles as the training time series. Therefore, it was enough
to only compare the peaks in the frequency spectrum. A well
defined sine wave only contains a single frequency compo-
nent. Therefore, it is enough to evaluate the performance in
the frequency spectrum by peak values.

Privacy Measurements We did not consider privacy mea-
surements for the empirical results The performance of the
architectures was compared with regard to fidelity and vari-
ability of the generated time series. The INND and ONND
metrics could be leveraged in future work to analyze if the
generated time series leak sensitive information.

Additionally, the GAN architecture could be modified to
use differential privacy [9] (DP) for privacy-preserving. For
this task, the gradient descent utilizes clipped and noisy gradi-
ents to not over-fit certain examples. However, Lin et al. [27]
argue, that current DP mechanisms require improvements to
be utilized in time series GANs.

Transformer Architecture Initial results indicate, that
transformer models as proposed by Vaswani et al. [35] are not
suitable for time series data. Therefore, we modified the TFT
architecture as proposed by Lim et al. [26] for the GAN archi-
tecture. The TFT architecture contains an LSTM block, and
it is unclear, if this should be characterised as a transformer
model with an LSTM component, or a complex RNN model.
Lim et al. [26] argue that the LSTM component processes
local information, while the multi-head attention mechanisms
is utilized to integrate this information by the self-attention-
mechanism. We argue, that this TFT model should be seen
as a modification of RNNs, which utilizes the self attention
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mechanism to counteract the issues of vanishing gradients for
long time series tasks. This might also explain, why the TFT
discriminator did not suffer from the same vanishing gradient
problems as the LSTM discriminator. The training time of
the TFT transformer may be attributed our training approach.
Li et al. [25] argue that training wider and deeper models, at
least for NLP use cases, converges faster and lead to more
robust models.

Parameter Search To limit the scope of the parameter
search, we fixed some parameters in advance. For all GAN
models the same GAN training parameters were used. This in-
cludes the optimizer, learning rate, latent space, loss function,
batch size and number of epochs.

For the TCNs the number of layers and kernel size was
fixed to achieve a receptive field size, which covers the whole
input sequence. It is not clear how the performance of the
TCN models varies with an even higher receptive field size.
For the LSTM models and TFT models a fixed number of
hidden neurons in the LSTM block was used. Further param-
eters such as the embedding dimension, dropout and attention
heads were not varied for the TFT models.

We chose these configurations after analyzing preliminary
results based on visual evaluation on the sine data set, assum-
ing the selected parameters are transferable to the other data
sets. According to Lucic et al. [28] this might not always be
the case.

Data Sets We provide results for four data sets of varying
characteristics. It has become apparent, that the artificial sine
data set is especially prone to mode collapse issues. This
may be caused by the normalization of each training example.
After applying the pre-processing the sine data set has a low
variance. This contradicts the proposal of Lin et al. [27] to
normalize data sets in order to decrease the variance and coun-
teract mode collapse issues. We assume, that their approach
only helps data sets with extreme outliers. As many real data
sets are also prone to mode collapse issues, this setup pro-
vided relevant empirical results as to which architectures are
more stable.

9 Conclusion

This work proposed multiple metrics to counteract the com-
mon problem of evaluating the performance of a data distri-
bution estimation task for time series to account for different
patterns and characteristics of the data.

These metrics were then used to compare the performance
of common neural network architectures used for time series
generation tasks. We evaluated the suitability of the metric
by qualitative and quantitative analysis.

We provided empirical results for the comparison of the ar-
chitectures in a GAN context for time series tasks for multiple

data sets, which has not been done so far.
The empirical results we provide indicate that a TCN ar-

chitecture is beneficial for GAN models due to efficiency,
performance and training stability. As the TCN GANs were
successful for all data sets with varying characteristics, it can
be expected that the empirical results are generalizable to
other data sets. The LSTM discriminator used suffered im-
mensely from vanishing gradient problems. This problem
was not present in the LSTM generator part. The empirical
results indicate that the TFT model struggled to synthesise
time series with high spatial-correlation and seasonalities,
and is hence only suitable to synthesise time series with low
temporal and spatial correlations. For these data sets, a full
TFT GAN resulted in the best time series synthesis. However,
the resource consumption of the TFT architecture is immense
compared to TCN models.

To verify the empirical results with regard to different GAN
and ANN parameters, future work could include further pa-
rameters in the parameter search to investigate the influence
of different optimizer, loss functions and architecture parame-
ters on varying data sets and architectures. While we chose a
grid search to cover all possible configurations, future work
could consider applying a random search instead. A bigger
number of parameters could be investigated by utilizing a
random search.

Overall, our contribution includes a rigorous extensive eval-
uation of multiple GAN architectures for the purpose of time
series synthesis We propose an approach to combine time
series specific measurements, such as similarity, spatial and
temporal correlation and GAN specific measurements, such
as the possibility to detect mode collapse during the training
process. We provide a clear structured approach for future
research to apply to a given data set before settling on the
target GAN architecture.
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