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regulatory cascade from RNA to protein.
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variants are enriched in multi-omics
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framework,Watershed, to prioritize large-

effect rare variants underlying each

outlier signal. This framework can

catalyze the interpretation of rare variants

and the discovery of rare disease genes.
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SUMMARY
Each human genome has tens of thousands of rare genetic variants; however, identifying impactful rare var-
iants remains a major challenge. We demonstrate how use of personal multi-omics can enable identification
of impactful rare variants by using theMulti-Ethnic Study of Atherosclerosis, which included several hundred
individuals, with whole-genome sequencing, transcriptomes, methylomes, and proteomes collected across
two time points, 10 years apart. We evaluated each multi-omics phenotype’s ability to separately and jointly
inform functional rare variation. By combining expression and protein data, we observed rare stop variants 62
times and rare frameshift variants 216 times as frequently as controls, compared to 13–27 times as frequently
for expression or protein effects alone. We extended a Bayesian hierarchical model, ‘‘Watershed,’’ to prior-
itize specific rare variants underlying multi-omics signals across the regulatory cascade. With this approach,
we identified rare variants that exhibited large effect sizes onmultiple complex traits including height, schizo-
phrenia, and Alzheimer’s disease.
Cell Genomics 3, 100401, October 11, 2023 ª 2023 The Author(s). 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

There are thousands of rare (minor allele frequency [MAF] < 1%)

genetic variants in every human genome but determining which,

if any, exert a significant phenotypic effect remains challenging.

Prior work has demonstrated the use of transcriptome data in

prioritizing rare variants with both large molecular and pheno-

typic effects.1,2 However, rare variants have the potential to influ-

ence additional regulatory mechanisms beyond transcription,

such as DNA methylation and protein expression, and inte-

grating corresponding functional genomics data can allow for

more comprehensive detection of impactful rare variants and un-

derstanding of their roles in the regulation of gene function.

The ability of transcriptome data to enhance prioritization of

rare variants with effects on diseases and traits3 is presumably

due to those effects propagating through the regulatory cascade

to protein levels and cellular functions. Prior work has shown that

common variants associated with changes in gene expression

can have effects on ribosome and protein levels, although those

effects are significantly reduced at the protein level.4,5 We and

others have also shown that common variants can be associated

with changes in protein abundance yet not show any impact at

the mRNA level, indicating the effects of post-translational regu-

lation, in addition to the substantial effects of post-transcrip-

tional and protein degradation regulation.4–6 In particular, the

plasma proteome contains proteins generated from many

different cell types, leading to its regular use as a source for

biomarker discovery6,7; therefore, understanding how rare ge-

netic variation impacts protein abundance in samples such as

plasma may help identify impactful rare variants from tissues

that are more challenging to transcriptome sequence.8

In this study, we expand the assessment of impactful rare vari-

ation to integrate molecular signatures across the regulatory

cascade. We analyzed measurements of DNA methylation

fromwhole blood, RNA sequencing fromperipheral bloodmono-

nuclear cells (PBMCs), and plasma proteome abundance from a

multi-ethnic cohort of �900 individuals with data from two time

points 10 years apart, and assessed the ability of each measure-

ment to prioritize nearby rare variation. Notably, we observed

that the longitudinal design of these data provided robust outlier

measurements per individual per data modality. We subse-

quently integrated these diverse functional signals into a predic-

tive model to assign probabilities to individual rare variants lead-

ing to functional effects at various levels of the regulatory

cascade. Finally, we demonstrated the utility of these predicted

functional probabilities in prioritizing variants with large effects

on downstream traits and diseases.

RESULTS

Consistency of outlier measurements across time
From a total of 1,319 participants in the Multi-Ethnic Study of

Atherosclerosis (MESA) cohort with whole-genome sequencing,

we uniformly processed transcriptomic, methylomic, and prote-

omic data for each gene in each individual after controlling for

known and hidden covariates, including genotype PCs, to calcu-

late residual Z scores. We defined outliers as those (gene, indi-

vidual) pairs which reach Z-score threshold of either 2 or 3 de-
2 Cell Genomics 3, 100401, October 11, 2023
pending on the context of our analysis. These outliers

represent levels of measured molecular signals that are signifi-

cantly higher (over-outliers) or lower (under-outliers) compared

to population mean. Assessing the correlation of multi-omics

measurements across participants between 10-year time points

of collection, plasma proteome measurements exhibited the

highest correlation (median Pearson correlation coefficient r =

0.67), followed by expression (median r = 0.24), gene-level

methylation (median r = 0.16), and gene-level splicing (median

r = 0.05) (Figure S1). Almost all measured proteins showed signif-

icant correlation between the two exams at Bonferroni-adjusted

p value threshold of 0.05 (99.7%), followed by gene expression

(60.6%), gene-level methylation (46.5%), and gene-level splicing

(10.5%).We then assessed replication across time for the subset

of measurements at the extremes of the distribution (‘‘outliers’’)

for each gene-level outlier type. We refer to those instances for

gene expression as ‘‘eOutliers,’’ methylation as ‘‘mOutliers,’’

splicing as ‘‘sOutliers,’’ and protein as ‘‘pOutliers.’’ After identi-

fying outliers in exam 1, based on an individual’s deviation

from the mean for a given gene (Z score), we assessed the pro-

portion that also had measurements at least two standard devi-

ations from themean in exam 5. Across thresholds, we observed

the highest replication for pOutliers (range 0.34–0.89), followed

by mOutliers (range 0.18–0.82), eOutliers (range 0.12–0.85) and

sOutliers (range 0.07–0.22). When focusing on the subset of

eOutliers with negative Z scores and thus very low expression,

we saw the replication rate across time increasing with threshold

stringency (Figure 1A), eventually surpassing all other replication

rates when themeasurements were over�6 standard deviations

below themean (Z <�6), at which point 79% of exam 1 eOutliers

were also seen in exam 5. This is in line with prior work demon-

strating that underexpression outliers are more often associated

with rare variants and are thus likelymore often genetically driven

than overexpression outliers.1,2 To focus on robust and more

likely genetically driven outlier events, we took advantage of

the longitudinal study design and required an outlier effect to

be seen in both time points in subsequent analyses (‘‘joint out-

liers’’). For joint outliers, we observed an average of 12.5 eOu-

tliers, 1.2 gene-level mOutliers (472 CpG-level mOutliers), 4.8

sOutliers (9.9 sOutlier clusters), and 8.3 pOutliers per individual

(Figure 1B).

We assessed the relative proportion of joint outlier events for

each omics data type. Restricting the analysis to individuals

with data in both time points, we assessed 14,290 genes across

547 individuals for eOutliers, 19,919 genes across 785 individ-

uals for mOutliers, 8,211 genes across 564 individuals for sOu-

tliers, and 1,317 proteins across 876 individuals for pOutliers.

Looking at the proportion of tests that resulted in joint outliers

at a threshold of |Z| > 3, we found the highest proportion for pOu-

tliers, followed by eOutliers (Figure 1C), consistent with the

observation that pOutliers demonstrated highest correlation

across exams. Overall, the set of pOutliers contained many

more high-abundance outliers compared to low-abundance out-

liers, while the proportions in either direction were more compa-

rable for eOutliers and mOutliers. This could reflect the dynamic

range of the protein measurements, as previous work has found

the range of protein abundances detectable to be higher than

that of mRNA transcripts,9 and there is no strict upper bound



Figure 1. Outlier calls across exams

(A) Proportion of gene-level outliers identified in exam 1 (y axis) at varying thresholds (x axis) that replicate in exam 5 at a threshold of |Z| > 2. sOutliers (gold) do not

have direction and so are shown only for the combined set of outlier calls (left), while eOutliers (green), mOutliers (red), and pOutliers (blue) are also shown split by

direction, with outliers with positive Z scores in the center (‘‘Over’’) and negative Z scores on the right (‘‘Under’’).

(B) Number of outliers identified per individual where the outlier effect is seen in both exams, using a threshold of |Z| > 3 for all gene-level outliers (left), as well as

the number of CpG-level mOutliers (center) and sOutlier clusters (right). Boxplots represent median and interquartile range.

(C) Proportion of all gene-individual pairs considered that show outlier signal in both exams, using a threshold of |Z| > 3, split by the direction of the effect.
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for high-abundance outliers, while detected protein abundances

can only decrease to 0.We further found that the number of high-

and low-abundance pOutliers discovered varies by protein type

(Figure S2A) or inferred tissue of origin (Figure S2B) and

observed that classes of proteins with higher base expression

tended to have more low-abundance pOutlier individuals than

the set of all proteins and vice versa (Figures S2C and S2D).

Outlier sharing across the regulatory cascade
While each data type was measured in different biospecimens

with DNA methylation from whole blood, expression data from

PBMCs, and protein measurements from plasma, we assessed

the sharing of outlier signals across each omics data type, as

rare-variant effects can manifest across multiple tissues.1,2 For

the set of joint outliers identified in each data type at a threshold

of |Z| > 3, we assessed the mean Z scores across exams in all

other gene-level data types. For under-eOutlier individuals,

there were significant shifts in corresponding methylation

(p = 1.5e�15, one-sided Wilcoxon rank-sum test), splicing

(p < 2.2e�16), and protein (p = 5.1e�14) Z scores. For over-eOu-

tlier individuals, there were significant shifts in methylation

(p < 2.2e�16) and splicing (p = 2.5e�5) Z scores for over-eOu-

tliers (Figure 2A). For gene-level mOutlier and sOutlier individ-

uals, there was a significant increase in the corresponding

expression Z scores (p = 2.8e�13 and p < 2.2e�16, respectively;

Figures 2B and 2C). For low-abundance pOutlier individuals,

there was a corresponding significant shift in expression values
(p = 1.1e�11), although this is not the case for high-abundance

pOutlier individuals (Figure 2D).

For eOutliers, the highest degree of sharingwas seen at the pro-

tein level. Of 485 eOutliers (|Z| > 2 in both exams) identified in

genes and individuals that also had protein measurements, we

found that 12% of those (N = 58) were shared at the protein level,

with 29.3% (N = 17) of those being high-abundance pOutliers. For

all other gene-level outlier types (mOutliers, sOutliers, and pOu-

tliers), the highest degree of sharing was seen at the expression

level, with 18.2%, 8.9%, and 3.7% of mOutliers, sOutliers, and

pOutliers, respectively (Figure S3A). Considering only under-eOu-

tliers, 20.8% of those showed outlier protein levels and for low-

abundance pOutliers; 15.1% also had outlier expression levels

(Figure S3B). Notably, outlier signals replicate bestwith consistent

directions (e.g., underexpression with underprotein levels, Fig-

ure S3C). Overall, eOutliers had the strongest shift in values for

other functional measurements and best captured outlier signals

across all other data types, particularly when the outlier effect

led to very low expression, indicating that the transcriptome

best captured effects that propagated throughout the regulatory

cascade, although any one individualmeasurement does not cap-

ture all instances of potentially abnormal function.

Rare variants contribute to outlier effects across multi-
omics data types
We expect rare variants to contribute substantially to the

observed outlier effects, as has been thoroughly demonstrated
Cell Genomics 3, 100401, October 11, 2023 3



Figure 2. Distribution of Z scores for outliers in other data types

(A) Distribution of gene-levelmethylation, gene-level splicing, and protein Z scores for eOutlier individuals (green) and non-outliers (gray) for corresponding genes,

split by the direction of the expression effect.

(B) Distribution of expression, gene-level splicing, and protein Z scores for mOutlier individuals (red) and non-outliers (gray) for corresponding genes.

(C) Distribution of expression, gene-level methylation, and protein Z scores for sOutlier individuals (gold) and non-outliers (gray) for corresponding genes.

(D) Distribution of expression, gene-level methylation, and gene-level splicing Z scores for pOutlier individuals (blue) and non-outliers (gray) for corresponding

genes, split by the direction of the expression effect.

****p < 0.0001, *p < 0.05, one-sided Wilcoxon rank-sum test on absolute value of mean Z score across both exams between outlier and non-outlier individuals.
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for transcriptome outliers2 and investigated for methylation10,11

and protein levels.12 As we have multiple omics measurements

for the same individuals and observed that a proportion of outlier

effects are shared between molecular phenotypes, we sought to

assess the degree to which rare variation contributed to each

gene-level outlier signal and the benefit of collecting multiple

omics measurements for rare-variant interpretation. Here, rare

variants were annotated from the MESA cohort as single-nucle-

otide variants and small insertions and deletions that appear at a

less than 1% frequency acrossMESA aswell as across the entire

gnomAD dataset and in all relevant gnomAD subpopulations

(STAR Methods).

Considering each of the four gene-level outlier types individu-

ally, we observed the strongest enrichment for mOutliers, which

carried rare variants in the outlier gene body or within 10 kb be-

tween 1.11 and 1.55 times as frequently as non-outliers, de-

pending on threshold stringency (|Z| threshold between 2 and

4). This was followed by eOutliers (relative risk = 1.10–1.29),

sOutliers (relative risk = 1.02–1.26), and pOutliers (relative

risk = 1.03–1.06), considering rare variants within the same

10-kb window. pOutliers had the smallest enrichment despite
4 Cell Genomics 3, 100401, October 11, 2023
having highest replication across exams; interestingly, a recent

study on common variants impacting plasma proteome quanti-

tative trait loci (pQTLs) reported �40% of proteins had only

trans-pQTLs (>500 kb from target), suggesting that protein-im-

pactful rare variants may be more often located in trans.13 Joint

CpG-level mOutliers were strongly enriched for carrying nearby

rare variants across windows that ranged from 100 bp (relative

risk = 52.9, p < 2.2e�16, one-sided t test) to 1 kb (relative

risk = 5.84, p < 2.2e�16) around the site. These enrichments

were largely driven by instances where rare variants overlapped

the CpG site itself but remain significant after removal

(Figures S4A and S4B). As a further signature of a rare-variant ef-

fect, CpG-level mOutliers also showed a significant increase in

allele-specific expression in a 1-kb window around outlier sites

(Figure S4C). When considering mOutliers in different genomic

regions relative to CpG islands and promoters, we found that

each individual has a slightly higher fraction of outliers located

within CpG islands compared to adjacent regions, and a lower

fraction of promoter-associated mOutliers compared to inter-

genic regions (Figure S5A). While we did not observe differences

in rare-variant enrichment for mOutliers located near the
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transcription start site (TSS) or not, we found that hypomethyla-

tion outliers had a higher enrichment for CpG island probes,

whereas hypermethylation outliers had a higher enrichment for

CpG shelf (Figures S5B and S5C).

Previous studies have observed stronger rare-variant enrich-

ments for under-eOutliers compared to over-eOutliers.2 For

expression, we observed similar patterns (relative risk = 1.12–

1.37 for under-eOutliers and 1.10–1.24 for over-eOutliers, where

comparing enrichment between under-eOutliers and over-eOu-

tliers resulted in p < 5e�4 for outlier threshold between 2 and

4, two-sided t tests). This observation also held for other omics

data types included in our study. When splitting by the direction

of the effect for methylation, hypomethylated mOutliers (relative

risk = 1.13–1.73) showed stronger enrichments than hyperme-

thylated mOutliers (relative risk = 1.13–1.29, p < 1.9e�4 when

comparing enrichment between hypomethylated mOutliers and

hypermethylation mOutliers for outlier threshold between 3 and

4). Likewise, for pOutliers we observed higher enrichment for un-

der-outliers (relative risk = 1.19–1.34) compared to over-outliers

(relative risk = 0.99–1.02, p < 1e�22 for outlier threshold be-

tween 2 and 4). Notably, high-abundance pOutliers were not

significantly enriched for nearby rare variation at any threshold

above |Z| > 2 (relative risk = 1.02, p = 1.54e�3 at |Z| = 2; non-sig-

nificant at |Z| > 2) (Figure 3A). This lack of enrichment was not

entirely due to the restricted set of genes assayed for protein

abundance, as restricting the set of eOutliers to the genes also

assayed at the protein level still resulted in significant enrich-

ments for nearby rare variants in the overexpression direction

at thresholds of |Z| > 2 (relative risk = 1.10, p = 1.97e�8) and |

Z| > 3 (relative risk = 1.11, p = 0.013) (Figure S6).

We next evaluated whether different categories of rare vari-

ants contributed to observed enrichments in each omics data

type. Considering different predicted effects across variants,

eOutliers were most strongly enriched for nearby rare stop and

frameshift variants, as expected based on previous work,2 while

sOutliers were most strongly enriched for nearby rare splice var-

iants, with strong enrichments also for rare stop and frameshift

variants. For gene-level mOutliers most variant categories were

not significantly enriched, but rare variants near the associated

gene’s TSS were seen 5.49 times (p < 2.2e�16, one-sided t

test) as frequently in mOutlier individuals compared to controls

(Figure 3B). While the combined sets of pOutliers were largely

not enriched for nearby rare variants overall, there was

strong enrichment for nearby rare stop (relative risk = 21.7,

p < 2.2e�16) and frameshift (relative risk = 24.4, p < 2.2e�16)

variants, although this was predominantly driven by underex-

pression pOutliers (Figure S7).

Multi-omics outliers increase discovery of rare-variant
effects
As expression outliers best captured outlier signals in other data

types (Figures 2 and S3), we assessed the gain in rare-variant en-

richments when considering eOutliers in conjunction with outliers

for each of the other data types. While for many types of variants

eOutliers alone tagged functional rare variants at a frequency

similar to that of the set ofmulti-modal outliers, therewas a subset

of variant types for which multi-omics data improved functional

rare-variant identification (Figure 3C). Most notably, the set of
gene-individual pairs that showed outlier signal at both the

expression and protein level are more strongly enriched for

nearby rare conserved non-coding (p < 4.1e�7, one-sided t

test), protein-domain region (p < 0.02), splice (p < 1.2e�5), stop

(p < 0.02), and frameshift variants (p < 1.4e�3) as compared to

the set of eOutliers or pOutliers identified alone in the same set

of genes and individuals. When considering both expression

andmethylation signals, there was an improvement in enrichment

for nearby rare TSS (p < 0.04) variants over either data type

alone, and for overlapping expression and splicing signal, the

enrichment of nearby rare conserved non-coding variants

(p < 2.0e�11) and rare splice (p < 2.7e�21) and stop variants

(p < 0.001) were all increased (Figure 3C), indicating that for spe-

cific variant effects, assessing multiple molecular signals can

improve identification of functional rare variants.

In practice, it may be difficult to collect both multiple omics

measurements from an individual as well as data across multiple

time points. While we are limited by the relatively smaller number

of proteins assayed as compared to gene expression measure-

ments, we assessed the relative gain in enrichments considering

both expression and protein outliers identified from only a single

time point as compared to outlier effects seen in each specific

omics data type measured at two time points. While the set of

overlapping eOutliers and pOutliers at a single time point is small

(N = 72 at a threshold of |Z| > 3), we do see increased enrichment

of nearby rare variation (relative risk = 1.37, p = 1.71e�4, one-

sided t test) over either joint eOutliers (relative risk = 1.23,

p < 2.2e�16) or joint pOutliers (relative risk = 1.06, p =

1.72e�9) at that same threshold or higher (Figure S8). This indi-

cates that multi-omics measurements are providing enhanced

ability to detect rare-variant-driven outliers compared to

repeated measures of a specific omics data type over time.

Replication of GTEx outlier-associated rare variants
Our previous work identified rare variants associated with multi-

tissue transcriptome outliers in the Genotype Tissue Expression

project (GTEx),2 which consisted primarily of individuals of Euro-

pean ancestry. Here, we observed significant correlation be-

tween individual outlier burden and genotype principal compo-

nents (PCs), which decreased at increasing outlier thresholds

(Figure S9). Notably, we saw little difference in rare-variant

enrichment estimates after matching each outlier individual to

a control individual by ancestry, as measured by genotype PCs

(Figure S10), and thus did not observe evidence of differences

in genetic ancestry driving the observed enrichment of rare var-

iants nearby any outlier type. Next, we evaluated the proportion

of those GTEx variants that are carried by any individual in MESA

and exhibit consistent effects on gene expression and splicing.

For eOutliers, we identified 1,348 multi-tissue eOutlier-associ-

ated variants in GTEx that were present in any MESA individual

and occurred at <1% frequency across MESA, which totaled

5,604 total variant-gene-individual instances (Figure S11A). Of

these, 888 also showed outlier expression inMESA, at a reduced

threshold of |Z| > 2 in both exams (empirical q < 0.01; Figure S11B

and STAR Methods). We found that rare stop variants are most

predictive of replicating expression effects, followed by rare

splice variants (Figure S11C). For sOutliers, we identified 1,113

multi-tissue sOutlier-associated variants in GTEx that were
Cell Genomics 3, 100401, October 11, 2023 5



Figure 3. Enrichment of rare variants near gene-level outliers

(A) Relative risk of nearby rare variants for eOutliers (green), gene-level mOutliers (red), gene-level sOutliers (gold), and pOutliers (blue) across varying Z score

thresholds (x axis). Enrichments are split by the direction of the effect for eOutliers, mOutliers, and pOutliers. Non-outliers are defined as all individuals with |Z| < 1

in both exams for the same set of genes.

(B) Relative risk of nearby rare variants with a given annotation (x axis) for eOutliers (green), gene-level mOutliers (red), gene-level sOutliers (gold), and pOutliers

(blue) at a threshold of |Z| > 3 in both exams. Non-outliers are defined as all individuals with |Z| < 1 in both exams for the same set of genes. If no outlier individual

carried a nearby rare variant in a given category, that data type is not shown.

(C) Relative risk of nearby rare variants with a given annotation (x axis) for combinations of eOutliers and the other three data types (orange) as compared to single

data type outliers, matched for the same considered genes and individuals, considering a reduced threshold of |Z| > 2 in both exams, and in both data types for the

overlapping set. Non-outliers are defined as all individuals with |Z| < 1 in both exams for the same set of genes. If no outlier individual carried a nearby rare variant in

a given category, that data type is not shown.

Error bars represent 95% confidence interval of enrichment.
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present in anyMESA individual, which totaled 5,858 total variant-

gene-individual instances (Figure S12A). Of these, 891 also

showed outlier splicing in MESA, at a reduced threshold of |

Z| > 2 in both exams (empirical q < 0.01; Figure S12B). We

observed that rare splice variants are most predictive of repli-

cating outlier splicing effects (Figure S12C).
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Development and evaluation of multi-omics rare-variant
prediction model
To leverage the full spectrumofdata available inMESA toprioritize

functional rare variants, we extended our Bayesian hierarchical

variant effect prediction model, Watershed.2 In brief, Watershed

integrates genomic annotations such as conservation scores



Figure 4. Evaluation of multi-omics Watershed model
(A) Precision-recall curves of Watershedmodels (solid lines) and genomic annotation models (GAM, dotted lines) for mRNA expression (green), methylation (red),

splicing (gold), and protein expression (blue) evaluated against (gene, individual) pairs with the same set of rare variants nearby. GAM outliers are defined by a p

value threshold of 0.05.

(B) Symmetric matrix summarizing weights of edges connecting the latent regulatory variables (Z) in the multi-omics Watershed model.

(C) Edge weights connecting top genomic annotation features to latent regulatory variables in each omic signal, ranked by the relative informativeness in

decreasing order. The top five most influential genomic annotations are shown in bold for each outlier signal. A detailed explanation of each genomic annotation

features included in the model is provided in Table S1.
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and variant annotations with observed outlier signals from func-

tional data in a latent variable model originally developed for tran-

scriptomic outliers. Here, we extended Watershed to include

mRNA expression, methylation, splicing, and protein expression

(Figure S13A). When evaluated against pairs of individuals with

thesame rarevariant near the samegene (N2pair), themulti-omics

Watershedmodel outperformed logistic regressionmodels based

on genomic annotations alone (GAM) in predicting the regulatory

status of one individual in the pair based on the genomic annota-

tionsandobservedoutlier status in theother, achievinganareaun-

der the precision-recall curve between 0.07 and 0.11 across the

fouromicsdata types (Figure4A), compared to0.02–0.06 forGAM.

Examining the learned parameters of the multi-omics Water-

shed model, we observed higher edge weights connecting

RNA and methylation, and RNA and splicing signals, compared
to those connecting protein and other signals, suggesting vary-

ing levels of information sharing between signals in modeling

rare-variant effects (Figure 4B). Consequently, the multi-omics

Watershed model outperformed corresponding RIVER models,

which were trained on single-omic data types at a time, due to

information sharing (Figure S13B). The learned weights contrib-

uted by each genomic feature also reflect known regulatory

biology, with distance-based features being highly informative

for RNA and methylation outlier signals, splicing annotations

most predictive of splicing outlier signal, and missense and

loss-of-function annotations most predictive of protein outlier

signals (Figure 4C). These results indicate that our multi-omics

Watershed model captures biological signals underlying rare

variants’ effect on outlier expression across aspects of the reg-

ulatory cascade to jointly prioritize functional rare variants.
Cell Genomics 3, 100401, October 11, 2023 7



Figure 5. Application of multi-omics Watershed model to inform trait associations

(A) Number of rare variants per individual as prioritized by each omic signal (mRNA expression, green; methylation, red; splicing, gold; protein expression, blue) at

two levels of Watershed posterior cutoff 0.5 and 0.9. Individuals with significantly large number of outlier expressions (‘‘global outliers’’) are removed. The y axis is

transformed to log scale. Boxplots represent median and interquartile range.

(B) Distribution of percentile normalized effect size for height (median and interquartile range) of all rare variants (background, gray), and those rare variants

prioritized by multi-omics Watershed in each signal at two posterior threshold values. Only rare variants mapped to genes with evidence of causing abnormal

body height as reported by the Human PhenotypeOntology (HPO) are shown (N = 1,314 genes). Number of rare variants in each category is shown in x axis labels.

Effect-size estimate was obtained from UK Biobank GWAS Round 2 using rank-normalized phenotype.

(C) Venn diagram of rare variants prioritized by each signal at a posterior threshold of 0.5.

(legend continued on next page)
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Given that we observed little difference in the enrichment of

rare-variant burden when considering all individuals or matching

by ancestry within MESA (see STAR Methods), we sought to

assess the portability of the multi-omics Watershedmodel across

ancestries. We estimated genetic ancestry based on the Human

Genome Diversity Panel with seven superpopulations14 and as-

signed population groups by thresholding the proportion of

ancestry estimates (Figure S14). We then trained the multi-omics

Watershedmodel using data fromN = 426 individuals assigned to

European ancestry and evaluated its performance onN2 pair indi-

viduals from other populations. We observed comparable predic-

tive performance in terms of area under the precision-recall curve

assessment across these populations (Figure S15), suggesting

that outlier rare-variant effects discovered in one population are

likely to exhibit comparable effects across populations, as ex-

pected if we are identifying truly causal variants in the absence

of significant non-genetic contributions.

Multi-omics prioritized rare variants are prevalent in
each individual
To assess the individual relevance of the rare variants prioritized

by the multi-omics Watershed model, we first observed that

each individual’s genome had a significant number of rare vari-

ants with large posteriors in each omics data type, with 11

RNA variants, 7 splicing variants, 17 methylation variants, and

52 protein variants with posterior R0.5 (Figure 5A). Methylation

and protein had the highest number of rare variants with pre-

dicted large effects at posterior threshold of 0.5 and 0.9. Strik-

ingly, variants prioritized by different outlier signals were largely

non-overlapping (Figure S16A), indicating that multi-omics mea-

surements provided complementary information in character-

izing effects of rare variants inaccessible to one omics data

type alone, as also supported by the increasing enrichment of

nearby rare variants when outlier signals are seen at multiple

levels.

To further characterize variants prioritized by each omics data

type within an individual, we assessed the probability of loss-of-

function intolerance (pLI) scores15 for genes mapped to variants

in each group. Notably, pLI scores were not included as an anno-

tation in the Watershed model. We observed that genes with

large-effect variants across multiple signals tended to have

lower pLI scores and thus were more tolerant of damaging mu-

tations (Figure S16B). Moreover, when we systematically

annotated Watershed-prioritized variants with Pfam protein

domain information16 from MetaDome,17 we found that variants

located at evolutionary equivalent (i.e., meta-domain) positions

had higher posteriors in all outlier signals (Figure S16C,

p < 2.2e�16, one-sided Wilcoxon rank-sum test). Overall, these

data suggest that multi-omics Watershed posteriors capture

functional impact of rare variants and provide a strong basis

for the application of Watershed posteriors to inform trait

associations.
(D) Distribution of percentile normalized effect size for height (median and interqua

of 0.5 (left, splicing; right, protein expression) and combined with another signal.

(E) Distribution of Watershed posteriors of rare variants identified in individuals w

collapsed to each gene. Shown are examples of top genes showing differential d

genes. ***p < 0.001, one-sided Wilcoxon rank-sum test on absolute value of pos
Multi-omics prioritized rare variants impact multiple
complex traits and diseases
We sought to test the hypothesis that rare variants with large

multi-omics-based Watershed posteriors are likely to be causal

for traits and diseases. We first focused on height, a highly poly-

genic and heritable trait collected for all individuals in MESA.

Based on the summary statistics estimated from a separate

cohort, UK Biobank, we identified 78,527 rare variants that over-

lap with the scored variants in our multi-omics Watershed model

which maps to 1,314 genes known to cause abnormal body

height as cataloged in the Human Phenotype Ontology

(HPO18). When restricting to variants prioritized by Watershed

with posterior >0.5 or >0.9, we observed higher effect sizes on

height as compared to background (Figures 5B and S17). The

observed higher effect sizes were robust to selecting only the

top N variants (N = 10 and 100) from each data type separately

(Figure S18A).

Notably, multi-omics outliers could prioritize Mendelian or

large-effect genes. We identified a small set of rare variants

which were mapped to Mendelian height genes with posterior

>0.5 or were among the top 100 highest posteriors in more

than one signal (Figures 5C and S18B). However, when

comparing rare variants prioritized by two signals, we found

that they had even higher effect sizes compared to those priori-

tized by single signals, which is especially prominent with

splicing and protein when combined with another signal

(Figures 5D, S18C, and S18D). Importantly, the shift in effect

size by Watershed-prioritized variants was also higher than sin-

gle-omic outliers further stratified by MAF (Figure S19), suggest-

ing that the functional correlation between Watershed posterior

and effects on trait is not solely driven by MAF. These data sup-

port the utility of collecting multi-omics measurements from the

same individuals to improve prioritization of functional rare vari-

ants with large trait effects that could potentially be missed by

traditional approaches such as genome-wide association

studies (GWASs).

We next assessedwhetherWatershed-prioritized rare variants

could be applied to enhance gene prioritization for complex

traits. We obtained body height data on N = 4,559 MESA individ-

uals and, after correcting for known covariates, identified those

with average body height (‘‘control’’ individuals, residual |

Z| < 0.2) and those with the extremes of body height (‘‘outlier’’ in-

dividuals, residual |Z| > 2). When comparing the distribution of

posteriors for all rare variants mapped to each gene between

outlier and control individuals, we were able to recapitulate

knownMendelian height genes (Figure 5E); importantly, different

signals prioritized different genes, which further highlighted the

complementary nature of each omics data type. When we com-

bined posteriors across all outlier signals for each variant and

compared the resulting gene-level p values with other gene

prioritization methods based on common variants (MAGMA19),

rare coding variants (burden test20), or expression QTLs
rtile range) for rare variants prioritized by a single signal at a posterior threshold

ith normal height (|Z| < 0.2) and abnormal height (|Z| > 2) in the MESA cohort,

istribution of posteriors in each omic signal which overlap with HPO annotated

teriors between normal and outlier individuals.
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(PrediXcan21), we found that our approach is largely independent

(Figure S20), suggesting the unique advantage of incorporating

non-coding rare variants in a gene prioritization framework.

To demonstrate the utility of multi-omics prioritized rare vari-

ants with Watershed to a diverse range of traits and diseases,

we applied similar analyses to immunological and neuropsychi-

atric traits. Here, we referenced a recent machine-learning

method that systematically characterized causal genes to pri-

marily focus on rare variants impacting genes with well-pre-

dicted trait relevance.22 For rheumatoid arthritis (RA), we identi-

fied 41,339 rare variants with effect-size estimates in GWASs

and observed that RNA posteriors strongly correlated with effect

size (median rank-normalized effect size = 0.58 for RNA posterior

prioritized rare variants compared to 0.50 for background). We

further observed that for RA, the protein signal by itself did not

prioritize rare variants with large effect size; however, it did

when combined with RNA or methylation signals (Figures S21A

and S21B). This observation held true for COVID-19 severity,

another immunological trait (Figures S21C and S21D). For Alz-

heimer’s disease (AD), methylation outliers were most predictive

of effect size, but multi-modal outliers have much higher impacts

(Figures S22A and S22C). Interestingly, joint underexpression

outliers in RNA and protein signals identified genes with estab-

lished associations with AD, such as PDGFRB23 (rs116171826,

rs149274963, and rs10071918), PTN24 (rs61735090), and

MPO25 (rs35897051), supporting the potential role for our prior-

itized variants in AD pathobiology. For schizophrenia (SCZ),

even though we had a smaller set of rare variants with effect-

size estimates (N = 2,851), we observed moderate effect size

for variants prioritized by RNA, methylation, and protein signals

and a strong shift in splicing prioritized variants (Figure S22D).

Notably, in addition to referencing external databases for identi-

fying relevant causal genes, we applied MAGMA to prioritize

genes using GWAS summary statistics. We identified 5,378

genes with MAGMA Z > 2 (schizophrenia ‘‘positive’’ genes) and

4,092 genes withMAGMA Z < 0 (schizophrenia ‘‘control’’ genes),

and when we compared rare variants with large Watershed

posteriors mapped to these two groups of genes, we observed

a significant shift in effect size only within positive genes (Fig-

ure S22E). Overall, these analyses demonstrate that the multi-

omics Watershed model represents a flexible framework, which

can be easily integrated into pipelines for connecting variants to

traits.

DISCUSSION

Rare genetic variants are collectively abundant in the human

genome due to recent population expansion.26,27 They are often

population private, unlike common variants, which are shared

across populations.28 Although rare variants have in general

larger functional effects on molecular phenotypes that can

contribute to the risk of complex diseases,29,30 their abundance

may lead to false-positive associations and thus require careful

methods for analysis and interpretation.31,32 The present study

extends efforts to identify large-effect rare variants through anal-

ysis of functional genomics data.1,2,33–37 By integrating longitudi-

nal multi-omics data collected from a diverse cohort with

matched whole-genome sequencing, we identified significant
10 Cell Genomics 3, 100401, October 11, 2023
enrichment of rare-variant burden nearbymulti-omics outlier sig-

nals across the regulatory cascade.

Our study benefited from both multi-omics data generation

and a study design including functional measurements at two

time points approximately 10 years apart. We observed higher

enrichment of rare-variant burden in multi-modal outliers

collected at a single time point compared to joint outliers across

two visits based on only a single molecular signal, which indi-

cates that multi-omics datasets can be more beneficial than col-

lecting the same measurement over multiple time points when

using those measurements to prioritize functional rare variants.

Of interest, while evidence of multi-omics signatures improved

rare-variant discovery beyond repeat measurements of any sin-

gle-omic data type alone, our work also highlighted areas of

discordance between multi-omics outliers that may be due to

buffering or unknown technical effects.

Importantly, we conducted analyses across an ancestrally

diverse cohort, including individuals with genetic ancestry from

several major (sub-)continents, namely of African, East Asian,

European, and American descent, which allows for the evalua-

tion of many additional rare variants than would be included in

a cohort containing individuals with all predominantly European

ancestry, as is often the case in genomics research due to the

over-representation of European populations.38–40 We found

that rare-variant enrichments nearby outliers did not change

when comparing against all other control individuals as opposed

to restricting to controls with similar ancestry, as has been done

in previous studies.1,2 We also found that rare variants associ-

ated with multi-tissue expression or splicing changes in GTEx,

which consists predominantly of individuals of European

ancestry, 15.8% and 15.2% replicated in MESA, which was

many more than seen after permuting expression and splicing

values. The variants discovered in GTEx that are associated

with similar transcriptomic effects in MESA were enriched

for rare stop and splice annotations, supporting the use of

both genomic annotations and functional signals in variant

prioritization.

We extended a Bayesian hierarchical variant effect prediction

model, Watershed, to synthesize genomic annotations with

observed outlier status in four omics data types. Using multi-

omics Watershed, we predicted the functional impact of more

than 30 million rare variants and observed that each person in

MESA harbors a significant number of rare variants with large

posterior probabilities of functional effect. Using this approach,

we prioritized multiple novel and known rare variants across

common and complex traits and disease including height, RA,

COVID severity, AD, and SCZ. Further, we demonstrated how

integration of this expanded set of prioritized rare variants aids

detection of causal genes.

The performance of the multi-omics Watershed model

showed good cross-population portability when trained on

European individuals and evaluated in other populations.

Because a significant fraction of predicted causal loci under-

lying complex traits are shared across populations,41 our re-

sults support the integration of functional measurements to

pinpoint variants and biological pathways to improve genetic

risk prediction for individuals of diverse ancestry backgrounds

and complement recent efforts to improve cross-population
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portability of polygenic risk scores through predicted gene ex-

pressions using common variants.42 Our data provide

compelling evidence that the Watershed model offers a flex-

ible framework for integrative analysis of multi-omics data

from diverse populations. Future research can more rigorously

evaluate the consistency of rare-variant regulatory mecha-

nisms across populations.

Our work complements the growing literature in connecting

common genetic variation to traits through molecular

QTLs.43–49 It supports a unified framework where multi-omics

functional signals can inform prioritization of genetic variation

across the entire frequency spectrum, such that the incorpora-

tion of rare variants into common variant frameworks such as

polygenic risk scoring could improve stratification of patient

risks.3 An important consideration when predicting disease

risk using Watershed posteriors on rare variants, however, is

the relevant genetic regulatory context. Our current model

was trained using multi-omics data collected from blood sam-

ples from healthy donors, which may serve as a reasonable

background for immunological traits and the two neuropsychi-

atric diseases we considered (AD and SCZ). It remains unclear

to what extent rare-variant effects manifest across different tis-

sue contexts. A multi-omics Watershed model trained on data

from other tissues and evaluated across a broader range of

traits may shed light on trait-specific optimal models for prior-

itization of rare variants. On the other hand, given the heteroge-

neous nature of omics data collected from bulk tissues, Water-

shed models trained on single-cell multi-omics outlier signals

may improve our understanding of context-specific regulatory

mechanisms and further improve the power to detect functional

rare variants.50

Our current study showed proof-of-concept analysis applying

Watershed posteriors for gene-level association tests, which

recapitulated known Mendelian height genes. Although concep-

tually simple, this framework has several key advantages. First,

we observed that multi-modal posteriors provided complemen-

tary information and prioritized a largely non-overlapping set of

rare variants. When performing gene associations, this method

can inform actionable hypotheses about molecular mechanisms

underlying top candidates. Second, because we were able to

analyze all rare variants in individuals with multi-omics measure-

ments, we assigned posterior probabilities to a large number of

non-coding rare variants. Incorporating these non-coding vari-

ants may significantly boost power for rare-variant association

studies.51 On a practical note, in large biobank-scale data,

once Watershed is trained on a subset of individuals with

multi-omics measurements, the resulting posteriors can be

applied to all individuals with whole-genome sequencing and

traits, facilitating straightforward incorporation into commonly

used rare-variant testing frameworks such as burden test,52

SKAT,53 and STAAR.54

Combined, we present a comprehensive survey of rare vari-

ants underlying multi-omics outlier signals across the regulatory

cascade. Using personal multi-omics, our Watershed model

prioritized rare variants across a broad range of complex traits.

These approaches further demonstrate a general and flexible

framework to prioritize impactful rare variants and test for gene

associations in diverse population cohorts.
Limitations of the study
Limitations of our study include reduced signal to detect outliers

impacting multiple omics measurements, which may be due to

power, noise, or true biologically distinct effects. Specifically,

we observed minimal sharing of outlier signals across omics

data types, with relatively few multi-omics outliers. We also

found that relatively few outliers in splicing and methylation sur-

vive to becomemRNA and protein expression outliers; however,

shared outliers in RNA and protein signals are associated with

higher Z scores in splicing and methylation (Figure S23). These

results are consistent with prior observations of regulatory

mechanisms that minimize the impact of outlier levels of molec-

ular phenotypes; yet, given the few joint outlier instances, it is still

challenging to generalize these findings. Additionally, not all

individuals with whole-genome sequencing had all four omics

signals directly measured, and protein expression was only

quantified for a limited set of genes and from plasma. Therefore,

we may still be underestimating the prevalence of multi-omics

outliers and missing impactful rare variants in this cohort. In

this study, we employed stringent filtering steps to ascertain out-

liers as having consistent effects measured in two independent

collections nearly 10 years apart to address potential false-pos-

itive discoveries by enriching for genetically driven outlier events.

Future studies with better additional multi-omics measurements

and expanded proteomic coverage will reveal more generaliz-

able properties of outlier propagation and optimize rare-variant

prioritization.

Themulti-omicsWatershedmodel was trained on all (gene, in-

dividual) pairs with omics data available, based on the hypothe-

sis that the regulatory effects of rare variants are largely consis-

tent across all genes and individuals. Developing Watershed

models based on omics data from subsets of genes in the

same biological pathways could aid ascertainment of whether

certain genes and pathways are more easily perturbed by rare

variants. Further, incorporation of disease cohorts and directly

modeling disease status could potentially improve discovery of

rare variants and causal genes underlying specific diseases.

Finally, because of our gene-centric design of Watershed, we

mapped rare variants to nearby genes using a 10-kb window

flanking each gene. Consequently, we were not able to evaluate

distal rare variants, nor were we equipped to dissect regulatory

mechanisms of omics signals not directly linked to genes, such

as metabolite levels. Incorporation of higher-order chromatin or-

ganization data could improve coverage of rare variants, and

introduction of additional layers in Watershed to allow hierarchi-

cal modeling of omics signals would allow more flexible analysis

of rare variants underlying multi-omics outliers.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability
Cell Genomics 3, 100401, October 11, 2023 11



Article
ll

OPEN ACCESS
d METHOD DETAILS

B The Multi-Ethnic Study of Atherosclerosis (MESA)

B RNA-sequencing data generation and processing

B DNA methylation data processing

B Plasma proteome data processing

B eOutlier calling

B mOutlier calling

B sOutlier calling

B pOutlier calling

B Outlier sharing analysis

B Variant calling and annotations

B Rare variant enrichment analysis

B Effects of ancestry on rare variant enrichment

B Replication with rare variants in GTEx

B Overview of the multi-omics Watershed model

B Details of Watershed Implementation

B GAM and RIVER

B Cross-population comparison of Watershed perfor-

mance

B Correlation of Watershed posteriors with GWAS effect

size

B Gene-based test for association with height using

Watershed posteriors

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xgen.2023.100401.

ACKNOWLEDGMENTS

The authors would like to thank V.Wang, J.Weinstock, and T. Nguyen for help-

ing with data management and members of the Montgomery and Battle labs

for input on interpretation of results. A.B., N.S., J.B., and D.E.A. were

supported by R01HL141989. N.F. was supported by the National Science

Foundation Graduate Research Fellowship, grant no. DGE – 1656518 and

a graduate fellowship from the Stanford Center for Computational, Evolu-

tionary and Human Genomics. T. Li was supported by T32 GM136577 and

American Heart Association Predoctoral Fellowship. S.B.M. was supported

by R01AG066490, R01MH125244, and U01HG009431 (ENCODE) and

R01HL142015 (TOPMed). Whole-genome sequencing (WGS) for the Trans-

Omics in Precision Medicine (TOPMed) program was supported by the Na-

tional Heart, Lung, and Blood Institute (NHLBI). WGS for ‘‘NHLBI TOPMed:

Multi-Ethnic Study of Atherosclerosis (MESA)’’ (phs001416.v1.p1) was per-

formed at the Broad Institute of MIT and Harvard (3U54HG003067-13S1).

Centralized readmapping and genotype calling, alongwith variant quality met-

rics and filtering, were provided by the TOPMed Informatics Research Center

(3R01HL-117626-02S1). Phenotype harmonization, data management, sam-

ple-identity QC, and general study coordinationwere provided by the TOPMed

Data Coordinating Center (3R01HL-120393-02S1) and TOPMed MESA Multi-

Omics (HHSN2682015000031/HSN26800004). The MESA projects are con-

ducted and supported by the National Heart, Lung, and Blood Institute (NHLBI)

in collaboration with MESA investigators. The MESA projects are conducted

and supported by the NHLBI in collaboration with MESA investigators.

Support for MESA is provided by contracts 75N92020D00001, HHSN26

8201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N9202

0D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020

D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N9202

0D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168,

N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1TR

001881, and DK063491. The authors thank the other investigators, the staff,

and the participants of the MESA study for their valuable contributions. A full
12 Cell Genomics 3, 100401, October 11, 2023
list of participating MESA investigators and institutes can be found at http://

www.mesa-nhlbi.org. The designation for lead contact was chosen between

A.B. and S.M. at random.

AUTHOR CONTRIBUTIONS

Conceptualization, T. Li, N.F., A.B., and S.B.M.; methodology, T. Li, N.F.,

B.J.S., M.A., and L.W.; software, T. Li, N.F., B.J.S., B.N., and L.W.; validation,

T. Li, N.F., A.B., and S.B.M.; formal analysis, T. Li and N.F.; investigation, T. Li,

N.F., B.J.S., F.A., S.K., L.W., E.H., and J.B.; resources, F.A., S.K., K.A., D.E.A.,

R.L.B., J.B., T.W.B., C.C., S.G., R.G., X.G., N.G., W.C.J., T. Lappalainen,

H.J.L., Y.L., D.A.N., G.P., J.K.P., P.Q., A.S., J.S., N.S., K.D.T., R.P.T.,

D.V.D.B., M.T.W., S.S.R., J.I.R., A.B., and S.B.M.; data curation, T. Li, N.F.,

F.A., S.K., K.A., D.E.A., R.L.B., J.B., T.W.B., C.C., S.G., R.G., X.G., N.G.,

W.G.J, T. Lappalainen, H.J.L., Y.L., D.A.N., G.P., J.K.P., P.Q., A.S., J.S.,

N.S., K.D.T., R.P.T., D.V.D.B., M.T.W., S.S.R., J.I.R., A.B., andS.B.M.; writing –

original draft, T. Li, N.F., A.B., and S.B.M.; writing – review & editing, all au-

thors; visualization, T. Li and N.F.; supervision, S.S.R., J.I.R., A.B., and

S.B.M.; funding acquisition, A.B. and S.B.M.

DECLARATION OF INTERESTS

S.B.M. is an advisor to BioMarin, MyOme, and Tenaya Therapeutics. A.B. is a

stockholder in Alphabet, Inc. and a consultant for Third Rock Ventures.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research.

Received: October 7, 2022

Revised: March 8, 2023

Accepted: August 10, 2023

Published: September 6, 2023

REFERENCES

1. Li, X., Kim, Y., Tsang, E.K., Davis, J.R., Damani, F.N., Chiang, C., Hess,

G.T., Zappala, Z., Strober, B.J., Scott, A.J., et al. (2017). The impact of

rare variation on gene expression across tissues. Nature 550, 239–243.

https://doi.org/10.1038/nature24267.

2. Ferraro, N.M., Strober, B.J., Einson, J., Abell, N.S., Aguet, F., Barbeira,

A.N., Brandt, M., Bucan, M., Castel, S.E., Davis, J.R., et al. (2020). Tran-

scriptomic signatures across human tissues identify functional rare ge-

netic variation. Science 369, eaaz5900. https://doi.org/10.1126/science.

aaz5900.

3. Smail, C., Ferraro, N.M., Durrant, M.G., Rao, A.S., Aguirre, M., Li, X., Glou-

demans, M.J., Assimes, T.L., Kooperberg, C., Reiner, A.P., et al. (2022).

Integration of rare large-effect expression variants improves polygenic

risk prediction. Am J Hum Genet. 109, 1055–1064. https://doi.org/10.

1016/j.ajhg.2022.04.015.

4. Battle, A., Khan, Z., Wang, S.H., Mitrano, A., Ford, M.J., Pritchard, J.K.,

and Gilad, Y. (2015). Genomic variation. Impact of regulatory variation

from RNA to protein. Science 347, 664–667. https://doi.org/10.1126/sci-

ence.1260793.

5. Solomon, T., Lapek, J.D., Jensen, S.B., Greenwald, W.W., Hindberg, K.,

Matsui, H., Latysheva, N., Braekken, S.K., Gonzalez, D.J., Frazer, K.A.,

et al. (2018). Identification of Common and Rare Genetic Variation Associ-

ated With Plasma Protein Levels Using Whole-Exome Sequencing and

Mass Spectrometry. Circ. Genom. Precis. Med. 11, e002170. https://

doi.org/10.1161/CIRCGEN.118.002170.

6. Vogel, C., and Marcotte, E.M. (2012). Insights into the regulation of protein

abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet.

13, 227–232. https://doi.org/10.1038/nrg3185.

7. Jacobs, J.M., Adkins, J.N., Qian, W.-J., Liu, T., Shen, Y., Camp, D.G., and

Smith, R.D. (2005). Utilizing human blood plasma for proteomic biomarker

https://doi.org/10.1016/j.xgen.2023.100401
https://doi.org/10.1016/j.xgen.2023.100401
http://www.mesa-nhlbi.org
http://www.mesa-nhlbi.org
https://doi.org/10.1038/nature24267
https://doi.org/10.1126/science.aaz5900
https://doi.org/10.1126/science.aaz5900
https://doi.org/10.1016/j.ajhg.2022.04.015
https://doi.org/10.1016/j.ajhg.2022.04.015
https://doi.org/10.1126/science.1260793
https://doi.org/10.1126/science.1260793
https://doi.org/10.1161/CIRCGEN.118.002170
https://doi.org/10.1161/CIRCGEN.118.002170
https://doi.org/10.1038/nrg3185


Article
ll

OPEN ACCESS
discovery. J. Proteome Res. 4, 1073–1085. https://doi.org/10.1021/

pr0500657.
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METHOD DETAILS

The Multi-Ethnic Study of Atherosclerosis (MESA)
The Multi-Ethnic Study of Atherosclerosis (MESA) is a study of the characteristics of subclinical cardiovascular disease (disease de-

tected non-invasively before it has produced clinical signs and symptoms) and the risk factors that predict progression to clinically

overt cardiovascular disease or progression of the subclinical disease.59 MESA researchers study a diverse, population-based sam-

ple of 6,814 asymptomatic men and women aged 45–84. Thirty-eight percent of the recruited participants are white, 28 percent

African American, 22 percent Hispanic, and 12 percent Asian, predominantly of Chinese descent. Participants were recruited

from six field centers across the United States: Wake Forest University, Columbia University, Johns Hopkins University, University

of Minnesota, Northwestern University and University of California - Los Angeles. Participants are being followed for identification

and characterization of cardiovascular disease events, including acute myocardial infarction and other forms of coronary heart dis-

ease (CHD), stroke, and congestive heart failure; for cardiovascular disease interventions; and for mortality. In addition to the six Field

Centers, MESA involves a Coordinating Center, a Central Laboratory, and Central Reading Centers for Computed Tomography (CT),

Magnetic Resonance Imaging (MRI), Ultrasound, and Electrocardiography (ECG). The first examination took place over two years,

from July 2000 - July 2002. It was followed by five examination periods that were 17–20 months in length. Participants have been

contacted every 9 to 12 months throughout the study to assess clinical morbidity and mortality.

Further, the TOPMed MESA Multi-omics Pilot successfully generated transcriptomic data by RNAseq, DNA methylation [850K

CpG sites], plasma proteomics by aptamer capture (SomaLogic), and untargeted and targeted metabolomics using liquid chroma-

tography/mass spectrometry (LC-MS from the Gerszten/Clish laboratory) in �1,000 multi-ethnic participants sampled at two time

points, Exam 1 and Exam 5, approximately 10 years apart. These data are being used in this study. We retain only unrelated samples

across all analyses. MESAwhole-genome sequencing data andmulti-omics data used in this study can be accessed through dbGaP

accession number dbGaP:phs001416.v1.p1.

RNA-sequencing data generation and processing
RNA-sequencing was performed at two centers, Broad Institute of MIT and Harvard and Northwest Genomics Center (NWGC).

For Broad Institute, quantification of total RNA was accomplished using the Quant-iT RiboGreen RNA Assay Kit (Invitrogen, cat

#R11490). RNA quality was assessed by RQS (RNA Quality Score) using the LabChip GX (Caliper Life Sciences). After quantification,

2 mL of a 1:1000 dilution of Ambion ERCC (External RNA Controls Consortium) RNA Spike-In Control Mix (Invitrogen, cat #4456740)

was spiked into a 200 ng aliquot of each sample destined for library construction. For library construction, an automated variant of the

Illumina TruSeq Stranded mRNA Sample Preparation Kit (Illumina, cat #RS-122-2103) was used where input RNA underwent two

rounds of poly-A selection and was fragmented and primed for cDNA synthesis. The 30 blunt ends of the ds cDNAwere subsequently

adenylated with a single ‘A’ nucleotide. This provides a complementary overhang for the ligation of adapters and prevents the cDNA

fragments from ligating to each other during this ligation reaction, thereby reducing chimera formation. Molecular adapters were then

ligated to the ends of the ds cDNA to serve as primers for PCR enrichment. Each adapter was a uniquemolecular barcode specific for

each well location of the 96-well plate. After enrichment, samples were amplified using PCR and the cDNA libraries were subse-

quently quantified using PicoGreen and then pooled in equimolarity. The entire plate was plexed together for a maximum 94-plex.

Pools were quantified using qPCR and then normalized to 2nM. Afterward, pools were denatured using 0.1 N NaOH prior to

sequencing to create single-stranded DNA to be loaded onto the sequencers. Flowcell cluster amplification and sequencing were

performed according to the manufacturer’s protocols using the Illumina HiSeq 4000. The runs were 101bp paired-end with an

eight-base index barcode read. Raw data was analyzed using the Broad Picard Pipeline which includes de-multiplexing and data

aggregation.

For NWGC, total RNA was verified using the Quant-iT RNA Assay Kit (Invitrogen, cat# Q33140) and only samples with at least

225 ng of RNA were retained. RNA Integrity Number (RIN) was estimated and verified using the Agilent 2100 Bioanalyzer (Agilent,

Santa Clara, CA) (requiring minimum RIN >5 for each sample.) To control for batch to batch variation an internal control, 250ng of

K-562 total RNA (Thermo Fisher Scientific, cat# AM7832), was added to each 96-well plate processed. Plate-to-plate expression

correlation of K-562 was typically >0.99. For library construction, Total RNA was normalized to 5ng/ul in a total volume of 50ul on

the PerkinElmer Janus Workstation (PerkinElmer, Hopkington, MA). Poly-A selection and cDNA synthesis were performed using

the TruSeq Stranded mRNA kit as outlined by the manufacturer (Illumina, cat#RS-122-2103). Total RNA was subject to two rounds

of poly-A selection through sequential binding of poly-A RNA to oligo d(T) beads and washing away of unbound RNA. Purified mRNA

was then eluted from the beads, fragmented and randomly primed for first strand synthesis using the SuperScript III reverse tran-

scriptase (Invitrogen, cat#18080085). The original RNA template was degraded and double stranded cDNA was made using the first

strand of cDNA as a template. The resulting cDNA was purified using AMPure XP beads (Beckman Coulter, A63882). Double-

stranded cDNA proceeded through a series of shotgun library steps using the TruSeq Stranded mRNA kit, as outlined by the manu-

facturer. Library molecules are adenylated (A-tailing) to accommodate the T overhang of the Illumina Truseq adapters. Full length

adapters were then ligated to the cDNA fragments, followed by an AMPure XP cleanup to remove unligated adapters. A dual indexing

strategywas adopted to avoid index hopping and to uniquely identify each library. Adapter ligated ds cDNAmolecules were amplified

by 13 cycles of PCR and subjected to a final 1X AMPure XP cleanup to remove carry over primers. All library preparation steps were

carried out on the PerkinElmer Sciclone NGSx Workstation to reduce batch to batch variability and to increase sample throughput.
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Final RNASeq libraries were quantified using the Quant-it dsDNA High Sensitivity assay. Library insert size distribution was checked

using the DNA1000 assay on the Agilent 2100 Bioanalyzer. Samples where adapter dimers constituted more than 4% of the electo-

pherogram areawere failed prior to sequencing. Technical controls (K562) were compared to expected results to ensure that batch to

batch variability was minimized. Successful libraries were normalized to 10nM for submission to sequencing. Ninety-six normalized

and indexed libraries were pooled together and denatured before cluster generation on a cBot. The 96-plex pools were loaded on

eight lanes of a flow cell and sequenced on a HiSeq4000 using illumina’s HiSeq 4000 reagents kit (cat# FC-410-1001,1002). For clus-

ter generation, every step is controlled by cBot. When cluster generation is complete, the clustered patterned flow cells are then

sequenced with sequencing software HCS (HiSeq Control Software v3.4.0.38). The runs are monitored for %Q30 bases using the

Sequencing Analysis Viewer. Using RTA 2 (Real Time Analysis 2 v2.7.7), the base calls were de-multiplexed.

For data analysis, the scripts and reference annotations used to quantify transcripts mapping to each gene are available and

described here: https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md. Briefly, RNA-seq

reads were aligned using STAR60 to the GRCh38 reference genome, and gene quantification and quality control was done using

RNA-SeQC,61 resulting in read counts and number of transcripts per million mapped reads (TPM). As described in chapter 3, we

log2-transformed the expression values (log2(TPM +2)), using the GENCODE v30 gene annotation, available at the above URL.

We subsetted to autosomal lincRNA and protein-coding genes and restricted to genes with at least 6 reads and TPM >0.1 in at least

20% of individuals.

DNA methylation data processing
DNA methylation measurements were obtained from whole blood using the Illumina EPIC chip. Initial quality control and normaliza-

tion was performed using the meffil R package62 for functional normalization. Briefly, quality control included assessing sample

swaps, of which two were identified and resolved, sample call rate, sex detection mismatches, and genotype concordance. We

exclude samples where >5% of CpG sites had a detection p value >0.01 and those that were visible outliers based on their ratio

of methylated to unmethylated signal. We also remove three samples whose genotypes did not match the SNP probes included

on the microarray (concordance threshold = 0.8). After removing samples that failed QC, we apply functional normalization,63 which

extends the idea of quantile normalization to adjust for unwanted technical variation via control probe PCs. We used 10-fold cross

validation to determine the number of control PCs to include based on the residual variance after fitting 20 PCs, and decided to

include 11, based on decreases in the residuals. We apply some additional filtering: (1) Remove individual-site instance if detection

p value >0.01, (2) Exclude probes if > 10% of values are missing, (3) Several filters based on mapping issues, non-CpG targeting, or

polymorphisms as described in,64 with suggested masking and variant annotations for this array available here: http://zwdzwd.

github.io/InfiniumAnnotation. Importantly, we removed sites if there exists a common SNV that overlap the measurement probe re-

gion, and we also removed individual-site pairs if the individual carries a rare variant in the probe’s target region.

Plasma proteome data processing
Proteomemeasurements were obtained via the SOMAscan HTS Assay 1.3K - Plasma, which is a highly multiplexed, aptamer-based

assay,65 with assessment of this array in particular described in.65,66 SomaLogic suggests several normalization steps, starting

with the observed Relative Fluorescence Intensities (RFUs) which are compared against reference values and scaled accordingly

(denoted by SomaLogic as Hybridization Control Normalization or Hyb). They also apply Median Signal Normalization

(Hyb.MedNorm), which is an intraplate normalization procedure to remove sample-to-sample differences that may be due to overall

protein concentration or experimental variation. Then there is a calibration step (Hyb.MedNorm.Cal), based on the levels of each an-

alyte within calibrator replicates. These steps are described in further detail in.66

eOutlier calling
To identify expression outliers, we take the log-transformed TPM values within each exam for autosomal lincRNA and protein-coding

genes and identify 30 hidden factors associated with technical variation via PEER.57 We then run a linear regression model with the

log-transformed TPM values as the outcome variable and the 30 hidden factors, top 11 genotype PCs, genotype of the strongest cis-

eQTL per gene, age, and sex as predictors.

We compute the model residuals using the lm() function in R. We scale the residuals from that regression to generate Z-scores

within each exam. We then require either the outlier or non-outlier signal at a given threshold to be seen in both exams for all down-

stream analyses, except for assessing replication across exams, where we apply the thresholds in each exam separately. We remove

individuals that have a number of outlier genes (|Z| > 3 in both exams) greater than 1.5*IQR based on the distribution of eOutlier burden

across all individuals.

mOutlier calling
To identify methylation outliers, we first transform the normalized beta values to m-values67:

m = log2ðbetai = ð1 � betaiÞÞ
From there, we apply the same correction approach as described above, though hidden factors via PEER57 were learned on in-

verse normalized beta values from a random subset of 100,000 CpG sites. We correct for 30 PEER factors, the top 11 genotype
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PCs, genotype of the strongest cis-mQTL per gene (with FDR <0.25), age, and sex, and again scale the residuals to generate

Z-scores per CpG site. We then filter out sites with any common SNVs overlapping the measurement probe, including the CpG

site, and individual-site instances if the individual carries a rare variant within the probe region, and retain only autosomal sites.

We remove individuals that have a number of outlier CpG sites (|Z| > 3 in both exams) greater than 1.5*IQR based on the distribution

of mOutlier burden across all individuals. To calculate gene-level methylation Z-scores, we take the median Z score across all

measured CpG sites within 1.5kb upstream of a gene’s TSS, restricting to protein-coding and lincRNA genes, as in the expression

analyses.

sOutlier calling
We applied the SPOT (SPlicing Outlier deTection) framework to detect splicing outliers similar to previous work.2 Briefly, we per-

formed intron clustering by adapting a LeafCutter pipeline58 from STAR60 -aligned junction reads. We applied custom filtering to re-

move exon-exon junctionswith low expression while retaining rare junctions by excluding junctionswhere no sample hasR 15 reads,

and further excluded exon-exon junctions with less than 40% of samples with more than three reads. We then applied the SPOT

pipeline to first fit a Dirichlet-Multinomial distribution to counts spanning alternatively spliced exon-exon junctions for each gene,

based on which we then identified individuals with significant deviation away from the population mean based on Mahalanobis dis-

tance (MD) metric. To avoid biases caused by dimensionality where clusters with larger number of exon-exon junctions show

different MD distribution compared to smaller clusters, we computed the empirical p values for each individual in each cluster by

comparing against 10,000 random samples from the fitted Dirichlet-Multinomial distribution. To map empirical p values from intron

clusters to genes, we took theminimump value (pm) across all c clusters within the span of each gene and computed the conservative

estimate of the probability of observing pm across c independently drawn uniform distributions as

Pgene = 1 � ð1 � pmÞc

Finally, we converted p values to Z-scores assuming a normal distribution.

pOutlier calling
For protein outliers, we natural log transform the normalized fluorescence values, before proceeding with the same correction pro-

cedure, where we identify 30 hidden factors via PEER57 and correct for those in addition to the top 11 genotype PCs, genotype of the

strongest cis-pQTL per gene (with FDR <0.25), age, and sex, before scaling the residuals within each exam to generate Z-scores. We

remove individuals that have a number of outlier proteins (|Z| > 3 in both exams) greater than 1.5*IQR based on the distribution of

pOutlier burden across all individuals.

Outlier sharing analysis
We assessed consistency of Z-scores by Pearson correlation across individuals for omic signals measured at two different time

points and determined significance using the t-statistic, where Bonferroni correction was used to control for Type I error. We defined

outlier (gene, individual) pairs in each omics data to have |Z| > 3 in both time points (joint outliers), where we also assessed outlier

sharing across time points and across the regulatory cascade at varying threshold of |Z| (between 2 and 10). For joint outliers in

each data type, we calculated mean Z-scores across exams, and assessed outlier sharing by taking a set of (gene, individual) pairs

with |Z| > 3 in one signal and calculated proportion of these (gene, individual) pairs in each of the other signals with a relaxed threshold

|Z| > 2, for the set of genes and individuals with both data types measured. For expression, methylation, and protein levels, we also

assessed outliers with Z < �3 (under outliers) and those with Z > 3 (over outliers) separately.

Variant calling and annotations
Whole genome sequencing was generated as described in.68 We restrict our analysis to single nucleotide variants and small inser-

tions and deletions that appear at a less than 1% frequency across MESA as well as < 1% across the entire gnomAD dataset69

and <1% in all relevant gnomAD sub-populations, including non-Finnish European, African, East Asian, and American. We annotated

the VCF using Ensembl VEP (version 10355). CADD56 scores were extracted from a pre-compiled annotation file (https://cadd.gs.

washington.edu/download) using variant scores from the hg38 genome build.

Rare variant enrichment analysis
Enrichments were calculated by restricting SNVs and indels to those that occur at less than 1% frequency acrossMESA and for those

found in gnomAD,69 also at less than 1% frequency across all of gnomAD, as well as relevant sub-populations (see above). For eOu-

tliers and pOutliers, we intersect variants with the gene body +\- 10kb on either end of the gene, based on gencode v26 annotations:

https://www.gencodegenes.org/human/release_26.html. For mOutliers, we intersect variants with varying window sizes around the

CpG site, using bedtools.70 After intersecting variants, we convert to a binary signal, with 1 indicating at least one rare variant was

found in the region for that individual and 0 indicating no rare variants. For additional annotations, we subset the full set of rare variants

to those with the given annotation, as determined via VEP,55 release 103, and CADD,56 version 1.6. Additionally, we assessed

whether each variant lies within protein meta-domains as identified by MetaDome17 after lifting over all variants to hg19.
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We calculated enrichment as the ratio between outlier and control individuals for the proportion of (gene, individuals) with rare var-

iants within 10kbwindow of the gene body, restricting to the same set of geneswith outlier measurements as before.2 The relative risk

and confidence intervals were estimated from two-way contingency tables summarizing (gene, individual) pairs for their outlier status

(outlier vs. control) and whether they contain a rare variant in each annotation, using the epitools package in R. Significance of enrich-

ment was calculated by one-sided t-test against null (relative risk of 1). We define non-outliers as those with |Z| < 1 in both exams. To

compare two enrichment tests, we estimated t-Value by the difference in the log (relative risk) divided by the overall standard error of

the difference, which was converted to p value with degree of freedom equal to the number of total outlier and control instances used

in the relative risk calculation minus 2.We compared gene-level enrichments for all signals, which required us to summarize Z-scores

for all probes and splicing clusters mapped to the same gene for methylation and splicing outlier signals.

Effects of ancestry on rare variant enrichment
To assess whether the observed enrichments were impacted by differences in genetic ancestry between outlier and non-outlier in-

dividuals within each set, even after correcting for the top 11 genotype principal components (PCs) before identifying eOutliers, mOu-

tliers, and pOutliers, we calculated the correlation between individual outlier burden (the number of outliers per data type identified for

a single individual) and loadings on genotype PC values for all outlier types, across different thresholds for the definition of outliers.

We further replicated rare variant enrichment tests by matching each outlier individual to a non-outlier individual based on closest

Euclidean distance defined by the top 11 genotype PC values and compared the resulting relative risk estimates with those from cor-

responding tests retaining all non-outlier individuals. We selected a control individual for each outlier by taking the individual from the

full set of controls (|exam 1 Z score| < 1 and |exam 5 Z score| < 1) with the lowest Euclidean distance to the outlier individual based on

the top 11 genotype PC values. Distances were calculated using the philentropy R package.

Replication with rare variants in GTEx
We subset rare variants seen in GTEx v8 to those associated tomulti-tissue expression outlier effects. We assessed the subset of the

rare SNVs and indels observed in GTEx that were also seen in any individuals in MESA and calculate the proportion that also led to

observable outlier effects at the methylation, expression, and protein level. We assessed significance of this overlap based on per-

mutations, where withinMESA, we permuted Z-scores, keepingmeasurements together across time points, within each gene across

individuals and assess the number of times aGTEx eOutlier variant is associatedwith an expression change inMESA. The empirical p

value was calculated based on 100 permutations.

To assess enrichment of different types of variants in the set of replicating variants as compared to the remaining variants, for each

annotation, we created a contingency table where the rows indicate whether or not the variant effect from GTEx was observed in

MESA and the columns contain the number of variants with and without the given annotation. We then calculated a relative risk of

a variant associated with a replicating effect having a given predicted effect, i.e., annotation again using the epitools R package

to estimate the relative risk and confidence intervals.

Overview of the multi-omics Watershed model
To integrate genomic annotation with outlier signals to prioritize rare variants with large effects across the regulatory cascade, we

extended our Bayesian hierarchical model, Watershed, which consists of a layer of genomic annotation variables (G), a fully con-

nected layer (Z) of latent regulatory variables for each of the four omic signals (mRNA expression, methylation, splicing, and protein

expression), and a layer of variables (E) representing the observed outlier status of each omics data type. We used as input p values

for each of the four signals and for all (gene, individual) pairs with at least two signals measured in MESA, along with a set of 77 binary

and continuous genomic annotations aggregated across all rare variants nearby each gene. These annotations, listed in Table S1,

served as priors in the Watershed model and as input to the genomic annotation model (GAM) using logistic regression. We curated

a comprehensive set of annotations and induced l2 sparsity constraints on bothWatershed and GAM to allow our models to learn the

most informative set of features. Watershed was then trained to learn edge weights connecting each variable and estimate posterior

probability of each rare variant leading to outlier levels of nearby gene for each of the four signals, given genomic annotations and

observed expression levels P(E|G, Z). As evaluation, we identified pairs of individuals with the same set of rare variants nearby the

same gene (N2 pair), and asked the Watershed model to predict the regulatory status of one individual in the pair based on genomic

annotations of rare variants and observed outlier status of each omic signal in the other individual. We benchmarked the performance

of multi-omics Watershed model against GAM and Bayesian models based on single outlier signals at a time (RIVER), at the same p

value threshold for defining outliers (p < 0.05). We repeated the same analysis when training the model on individuals of European

ancestry and evaluating its performance on individuals from other ancestries to assess its cross-population portability.

Details of Watershed Implementation
Watershed was designed to model instances of (gene, individual) pairs given the functional annotations of nearby rare variants and

observed outlier status of gene measurements. The multi-omics Watershed model requires two kinds of input variables:

1. A set of genomic annotation variables for each rare variant: We curated a list of N = 73 annotations for each variant, consisting of

variant effect predictor (VEP) consequences, regulatory element annotations, conservation scores, and other genomic and epige-

nomic features from other models such as CADD and ENCODE, detailed in Table S1. For each (gene, individual) pair, we aggregated
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each annotation across all rare variants within the 10kb window of the gene. Finally, we performed mean centering and scaling for

each genomic annotation variable as input to the Watershed and GAM models.

2. A set of categorical variables representing the observed outlier status of the gene: Based on the estimated p values in each signal

(mRNA expression, methylation, splicing, and protein expression), we binarized our (gene, individual) pairs as outliers in each dimen-

sion at a p value threshold of 0.05 (–pvalue_threshold = 0.05 as input to themodel). In practice, this translates roughly to the top 2%of

Z-scores in each signal (at a Z score cutoff of around 2), which we also used for evaluation of the model (–pvalue_fraction = 0.02). We

explicitly modeled over- and under-outliers for RNA, methylation, and protein levels.

To enrich for outlier signals with genetic effects, we only included genes with consistent Z-scores across the two visits by

removing (gene, individual) pairs where one visit has |Z| R3 and the other has |Z| % 1. We used median Z-scores across visits

as input to Watershed. We also removed individuals who have significantly higher number of outlier measurements (‘‘global out-

liers’’), defined as those having more than Q3 + 1.5*IQR outliers in each signal (Q3 represents 75th percentile rank value and IQR

represents interquartile range). Further, to model relationships between omic signals, we only kept (gene, individual) pairs with at

least two types of omic measurements (out of four), and filtered out genes which do not have any outlier individual in at least two

measurements.

We appliedWatershed exact inference optimization routine which is tractable for K = 4 outlier signals. To evaluate the performance

of the multi-omics Watershed model, we took pairs of individuals with the same set of rare variants nearby the same gene (‘‘N2

pairs’’), who were not included in the training of themodel, to assess the ability of themodel to predict regulatory status of the second

individual based on genomic annotations and observed outlier status of the first individual in each dimension, using area under the

precision-recall curve as a metric. In total, we had 596,288 instances of (gene, individual) pairs from 932 unique individuals, of which

we had 60,724 N2 pair individuals for evaluation of the model.

To estimateWatershed posterior probabilities, we applied the trainedmulti-omicsWatershedmodel and calculated P(Z |G, E) for all

rare variants from all (gene, individual) pairs in MESA (description of variables in Figure S13A). We scored posterior probability for a

total of 30 million (gene, individual, rare variant) triplets. By varying Watershed posterior threshold from 0.2 to 0.8, we identified be-

tween 19,589 and 199,790 variants with evidence of driving at least one outlier signal. Importantly, Watershed can model missing

outlier measurements such that each variant has posterior calculated in all four signals. We assigned a final posterior estimate for

each rare variant by taking the maximum across all individuals with the variant. We provided the list of prioritized variants at posterior

threshold 0.8 in each outlier signal in Table S2.

Of note, we also trained aWatershedmodel using signals obtained fromRNA-seq alone (mRNA expression and splicing) to assess

potential improvements of the multi-omics model over our previous work based on single data modality. The expression + splicing

(E + S) model showed similar performance when evaluated on the same set of N2 pair individuals. However, it prioritized less than 1/4

of variants identified by themulti-omicsmodel. Another unique advantage of themulti-omicsmodel is that we can estimate a variant’s

effect as long as we have data from at least one out of the four outlier signals. In other words, multi-omics Watershed can be applied

to any new cohorts with limited data, and estimate the effects of variants on all four omic signals.

GAM and RIVER
We followed previous procedures in training genomic annotation models (GAM) and RIVER models.1 Briefly, for GAM, we applied a

logistic regression model using all genomic annotations as input features and l2 regularization to promote sparsity. We used as the

response variable the binarized outlier status (a p value threshold of 0.05) for each signal. For RIVER, we ran separate Watershed

models with one outlier signal in each because it is a special case of Watershed.

Cross-population comparison of Watershed performance
Based on the seven super populations present in the Human Genome Diversity reference panel,14 we applied RFmix71 to estimate

genetic ancestry for each individual inMESA.We assigned individuals to ancestries if they have a probability >0.75 of belonging to the

group, with the exception of Hispanic population (Native Americans) where we used a threshold of 0.5 to include more people. As a

result, we identified 426 Europeans, 270 Africans, 107 East Asians, and 54 Hispanic individuals.

To assess cross-population portability of multi-omics Watershed, we constructed training data from 147,569 (gene, individual)

pairs, following the same inclusion and exclusion criteria as the main model, where all individuals are of European ancestry. We

then constructed evaluation data using N2 pairs where both individuals come from the same population. We applied the Watershed

model trained from European individuals and tested its performance separately on N2 pairs from other populations in each omic

signal, where we excluded populations with less than ten N2 pairs in each signal for evaluation. To compare statistical difference,

we designed a bootstrapping procedure to subsample half of N2 pairs in each test set 100 times and computed the distribution

of area under the precision-recall curve across bootstrapped samples. Because of sample size differences and the different total

variant burden in each population, our power to prioritize rare variants depended on ancestry. In total, we identified most variants

from individuals with African ancestry (16K at threshold of 0.5) followed by those with European ancestry (13K). East Asians and

Hsipanic/Latinx populations contributed to 2.7K and 1.4K prioritized variants.
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Correlation of Watershed posteriors with GWAS effect size
Because Watershed predicts functional impact or rare variants across the regulatory cascade, we reasoned that Watershed prior-

itized variants affecting essential genes related to a trait should have a high functional impact on the trait. To systematically test this

hypothesis, we identified several polygenic traits with summary statistics and compared the distribution of estimated effect size with

variants prioritized by Watershed at different posterior thresholds.

Specifically, we considered the following traits：

- Height:We obtained summary statistics on rank-normalized standing height fromUKBiobank release 2with 361,194 individuals

of both sexes. This data includes imputed genotypes from HRC plus UK10K & 1000 Genomes reference panels as released by

UK Biobank in March 2018.

- Rheumatoid arthritis: We obtained summary statistics from a trans-ethnic meta-analysis with 19,234 cases and 61,565 con-

trols.72.

- COVID-19 severity: We obtained summary statistics comparing severe positive cases with non-severe positive cases based on

1,244 cases and 16,413 controls from UK Biobank released in May 2021.

- Alzheimer’s Disease (AD): We obtained summary statistics from a recent meta-analysis which includes 90,338 cases and

1,036,225 controls.73.

- Schizophrenia: We obtained summary statistics from themost recent public release from the Psychiatric Genomics Consortium

(wave 3) consisting of 67,390 cases and 94,015 controls.74.

For each trait, we first lifted the summary statistics to GRCh38 genome assembly and intersected with all rare variants present in

MESA. This step resulted in varying amount of variants left because of differences in sequencing platform and imputation strategy

from different studies. In total, we had a range of thousands (schizophrenia) to hundreds of thousands (COVID-19 severity) rare var-

iants with both effect size estimation and posterior probabilities leading to outlier levels in four omic signals from multi-omics

Watershed.

We then applied percentile normalization on variant effect sizes for all such rare variants (background, all rare variants regardless of

Watershed posterior). The distribution of normalized effect size was then compared across rare variants prioritized by Watershed at

varying thresholds (0.5 or 0.9), wherewe focused on variants nearby geneswith known evidence of being causal for each trait through

the Human Phenotype Ontology (HPO18) or Open Targets.22 Given the differences in posterior distribution in each omics data type,

we also considered same number of top N variants as prioritized by Watershed for each data type in isolation (N = 10 and 100) and

compared their effect size distribution against the background. Additionally, because Watershed can leverage data from all outlier

signals and make posterior predictions even for unobserved omic measurements, we repeated this analysis after subsetting to var-

iants mapped to directly measured genes in each signal.

Gene-based test for association with height using Watershed posteriors
Among the 1,319 individuals with multi-omics measurements in MESA, we computed posterior probabilities for each rare variant

leading to outlier RNA expression, methylation, splicing, or protein expression in nearby genes. We reasoned that these posteriors

can directly reflect the functional impact of these variants on traits, particularly if they map to genes with strong evidence of asso-

ciation with the trait. We also noted that once trained, these posteriors can be applied to a much larger set of individuals with whole

genome sequencing data for association testing as long as they share those rare variants identified in the original training cohort;

therefore, Watershed posteriors can be used in a general framework as weights for gene association testing, most appealingly in

biobank scale data which do not need to have multi-omics measurements.

As a proof of concept for this workflow, we collected standing height from 4,559 individuals with whole genome sequencing and

computed residual height after regressing out age, sex, self-reported race, clinical center, and top 10 genotype PCs. We defined in-

dividuals with residual |Z| > 2 as outlier individuals, and those with residual |Z| < 0.2 as controls, resulting in 182 outlier individuals and

680 control individuals. We next collapsed all rare variants located within 10kb of the gene body for each gene, and appliedWilcoxon

rank-sum tests to assess the difference in distribution of posteriors in outlier and control individuals. This gene-level test is similar to

the burden test framework but uses Watershed posteriors as weights and incorporates many more non-coding variants. For each

gene, we compared Watershed posterior distribution for all rare variants in outlier individuals versus controls using a Wilcoxon

rank-sum test and controlled for multiple testing by the Benjamini-Hochberg procedure. We applied this analysis using posteriors

from each signal and a combined posterior summarizing the largest effects across all four signals.

We compared our test with three well-established gene prioritization methods:

1. MAGMA: we applied MAGMA gene analysis19 using the same GWAS summary statistics on height from UK Biobank and the

top SNP model to derive gene-level p values.

2. PrediXcan: we applied PrediXcan using the same GWAS summary statistics on height from UK Biobank (S-PrediXcan) and

MASHR-based eQTLmodels trained across 49 tissues in GTEx.21,75,76We chose theminimum p value across tissues to obtain

gene-level p values.
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3. Burden test: we obtained precalculated burden test results from Helix20 which is also based on UK Biobank data. We used

BOLT-LMM p values in our comparison.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses and visualization were performed using R version 4.0.3. Significance was determined at p < 0.05 after Bonferroni

correction. Description of statistical tests performed and sample size (number of individuals, genes, rare variants, and instances of

[variant, gene, individual] pairs) can be found in corresponding sections of the main text, and details of statistical analyses were

included in STAR Methods, Supplemental Information, and figure legends where applicable.
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