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Review Article
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We review some recent progress in the exploration of pseudospin-1 physics using dielectric photonic crystals (PCs). We show
some physical implications of the PCs exhibiting an accidental degeneracy induced conical dispersion at the Γ point, such as the
realization of zero refractive index medium and the zero Berry phase of a loop around the nodal point.The photonic states of such
PCs near the Dirac-like point can be described by an effective spin-orbit Hamiltonian of pseudospin-1. The wave propagation in
the positive, negative, and zero index media can be unified within a framework of pseudospin-1 description. A scale change in PCs
results in a rigid band shift of the Dirac-like cone, allowing for the manipulation of waves in pseudospin-1 systems in much the
same way as applying a gate voltage in pseudospin-1/2 graphene. The transport of waves in pseudospin-1 systems exhibits many
interesting phenomena, including super Klein tunneling, robust supercollimation, and unconventional Anderson localization.The
transport properties of pseudospin-1 systems are distinct from their counterparts in pseudospin-1/2 systems, which will also be
presented for comparison.

1. Introduction

Graphene has become a fertile platform to explore phe-
nomena related to Dirac particles predicted in fundamental
physics and to realize peculiar physical phenomena in mate-
rials science [1–15]. These interesting phenomena include
unconventional half-integer quantum Hall effect in graphene
when subjected tomagnetic fields [4–6], Klein paradox that a
classically forbidden region is transparent for Dirac electrons
[7, 15], weak antilocalization due to the destructive interfer-
ence between two counter-propagating backscattering waves
[8, 9], Zitterbewegung of Dirac electrons in the presence
of confining potentials [10, 11, 15], and supercollimation
of electron wave packets in graphene subjected to one-
dimensional (1D) disordered potentials [14]. The low-energy
quasiparticles in graphene can be described by a massless
Dirac equation and the wave function can be expressed in
the form of a two-component spinor [15–17] due to the
two sublattice degrees of freedom in graphene. As such,
graphene is called a “pseudospin-1/2” system. We note that
the spin here is not the intrinsic spin of electrons, but a
pseudospin referring to the spatial degree of freedom of
the wave function. Such pseudospin-1/2 systems can also be

found in other systems [18–24], such as topological insulators
in which the surface state dispersion exhibits a Dirac cone
[18, 19], and photonic and phononic crystals in triangular or
honeycomb lattices in which Dirac cones are found at the
corners of the Brillouin zone [20–23].

With the rapid progress of experimental techniques,
systems with higher pseudospin values, such as pseudospin-
1, have been constructed using various artificial materials
via a fine tuning of system parameters. A pseudospin-1
system is characterized by two linear bands meeting and
intersecting with an additional flat band at a Dirac-like
point. Such systems have attracted quite a bit of attention.
The most typical lattice structure to realize pseudospin-1
systems is the Lieb lattice. Its sublattice symmetry protects
the existence of a flat band. Pseudospin-1 systems have been
realized experimentally in different artificially constructed
systems. For example, it is found that the above Dirac-like
dispersion can be realized at the corner of the Brillouin
zone by placing bosonic cold atoms into an optical Lieb
lattice [25–27]. In addition, a photonic Lieb lattice formed
by an array of optical waveguides can also exhibit the Dirac-
like dispersion [28–31]. More recently, two groups presented
two different methods for realizing an electronic Lieb lattice
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through atommanipulationwith a low-temperature scanning
tunneling microscope (STM) [32, 33]. Drost et al. removed
atoms from a chlorine layer placed on top of a Cu(100)
crystal surface, leaving the desired Lieb lattice formed by
the atomic vacancies [32]. In contrast, Slot et al. achieved
the Lieb lattice not by vacancies but through adding carbon
monoxide (CO) molecules to the top of a Cu(111) surface
[33]. Theoretical works also predict that such a Dirac-like
cone can be found in artificial crystals of ultracold atoms
in Dice (T3) or stacked triangular lattices [34–40], and
some electronic materials, such as transition-metal oxide
SrTiO3/SrIrO3/SrTiO3 trilayer heterostructures [41], blue
phosphorene oxide [42], and graphene-In2Te2 bilayer [43]. In
those systems, the pseudospin-1 character emerges from the
embedded sublattice degrees of freedom. In addition, some
two-dimensional (2D) photonic crystals (PCs) are found to
carry a Dirac-like cone at k=0 induced by the accidental
degeneracy of monopole and dipole excitations [21, 22, 44–
50], which combine to give three degrees of freedom. For
such PCs, calculations using effective medium theory show
that both effective permittivity and permeability reach zero
at the Dirac-like point frequency [22, 44–50]. Above/below
the Dirac-like point frequency, the effective parameters are
positive/negative. Different pseudospin number leads to dif-
ferent boundary conditions and makes a marked difference
on the transport properties of the pseudospin-1 systems.
Many interesting transport phenomena, which are different
from those in pseudospin-1/2 systems, have been predicted
in pseudospin-1 systems. For example, in the presence of 1D
potential barrier, there is a so-called super Klein tunneling
effect for pseudospin-1 systems [26, 27, 35, 47, 48], that is
unity transmission for all incident angles when the incident
energy is half of the potential barrier. In a pseudospin-1 super-
lattice formed by aKronig-Penney type of photonic potential,
an electromagnetic (EM) wave packet can propagate in the
superlattice without any distortion of shape [47]. We call
such phenomenon “supercollimation”. When pseudospin-
1 systems are subjected to 1D disordered potentials, two
unconventional localization behaviors are found for obliquely
incident waves. One is nonuniversal critical behavior for
which the critical exponent of the localization length depends
strongly on the type of disorder [51]. Another is the existence
of a minimum localization length at some critical disorder
strength beyond which the waves become less localized [52].
In the presence of a circular potential barrier, a perfect caustic
phenomenon can occur for large scatterer size when the
incident energy equals half of the barrier due to the super-
Klein tunneling effect [53]. Furthermore, in the low-energy
regime, a superscattering phenomenon occurs for an arbi-
trarily weak scatterer, i.e., extraordinarily strong scattering
characterized by an unusually large cross section [54]. It was
also reported that when a spatially uniform electric field is
suddenly applied to an electronic pseudospin-1 system, the
resulting current can be enhanced by the flat band in both the
linear and nonlinear response regimes, compared with that in
the pseudospin-1/2 system [55].

Unlike artificially ultracold atom and electronic Lieb
lattices, PCs do not require extremely low temperature
and atomic level manipulation. The photonic pseudospin-1

system was first experimentally demonstrated in the
microwave frequency regime [44] and later in the optical
regime [46]. The notion of pseudospin-1 was subsequently
extended to aperiodic systems, as conical dispersions at k=0
can also be realized in some photonic quasicrystals as well as
the effective zero refractive index [50].

Since pseudospin-1 systems were proposed to realize
using artificially constructed ultracold-atom systems around
nine years ago, many new interesting phenomena have been
discovered in the past few years as mentioned before. While
recent experiments demonstrate the viability of realizing
pseudospin-1 systems with ultracold-atom or electronic Lieb
lattices, it still remains challenging to achieve a long enough
coherence length, which makes it difficult to have complex
junctions in such systems to observe the theoretically pre-
dicted novel behaviors experimentally. Thus, in the review,
we give a comprehensive review of the theoretical predictions
and experimental progress on the pseudospin-1 systems with
a focus on the newly discovered phenomena in PC-based
systems. Due to the ease of fabrication and absence of
complex interactions between photons, these phenomena
may finally be tested in systems formed by PCs. In Section 2,
we introduce the relation between the pseudospin-1 dielectric
PCs and the zero refractive index effective media, and the
experimental realizations of such PCs. In Section 3, we show
the calculation of the Berry phase for a loop encircling the
Dirac-like point. In Section 4, we relate the Dirac-like cone
dispersion of PCs to the spin-orbit Hamiltonian description
of pseudospin-1 based on the zero refractive index effective
medium description, and we show the photonic counterpart
of the gate voltage in graphene. The 1D transport phenomena
in pseudospin-1 systems are reviewed in Section 5, includ-
ing Klein tunneling, supercollimation and unconventional
Anderson localization behaviors in disordered 1D potentials
for oblique incident angles. A brief summary is given in
Section 6.

2. Effective Medium Description of
Pseudospin-1 PCs

It is well known that the lattice symmetry of the 2D PCs
with a triangular lattice guarantees the existence of Dirac
cones at the Brillouin zone corners with a pseudospin-
1/2 character [20–23]. However, effective medium theory is
only good for small k vectors (long wavelength) and is not
applicable in general for Dirac cones located at the Brillouin
zone boundary. At the Brillouin zone center, the lattice
symmetry alone gives quadratic dispersions only. It is found
that for some 2D dielectric PCs with C4𝑣 or C3𝑣 symmetries,
e.g., square or triangular lattices, the monopole and dipole
excitations can become triply degenerate by fine tuning of
the radii or permittivity of cylinders so that a Dirac-like cone
appears at k=0, in which the conical dispersions intersect
with an additional flat band at the Dirac-like point [22, 44,
45]. Such degeneracy is not given by the lattice symmetry.
Instead, it occurs only for some specific values of the radius
and permittivity of the dielectric rods composed of the PCs
and hence the degeneracy is accidental. As an example, in
Figure 1(a), we show the three eigenfrequency surfaces near
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Figure 1: (a) The Dirac-like cone dispersion near the Γ point (k=0)
calculated for a 2D square lattice PC with dielectric cylinders in
air. The permittivity and radii of the cylinders are 𝜀 = 12.5 and𝑟 = 0.2𝑎 (𝑎 is the lattice constant), and c is the speed of light in
vacuum.The inset shows the unit cell of the PC. Adapted from [47].
(b)The frequency dependence of the effective permittivity (𝜀𝑒𝑓𝑓) and
permeability (𝜇𝑒𝑓𝑓) near theDirac-like point frequency𝜔𝐷.The inset
shows the nearly constant effective impedance obtained from 𝜀𝑒𝑓𝑓
and 𝜇𝑒𝑓𝑓.
k=0 calculated for the transverse electric (TE) modes for a
2D square lattice PC with dielectric cylinders in air. Here, TE
modes refer to the EMmodes with the electric field along the
axis of cylinders.The inset of Figure 1(a) shows the unit cell of
the PC. The permittivity and radii of the dielectric cylinders
are taken as 𝜀 = 12.5 and 𝑟 = 0.2𝑎 (𝑎 is the lattice constant). It
can be clearly seen that near k=0, a Dirac cone (blue) meets
and intersects with a nearly flat band (green) at the Dirac-like
point frequency. The modes in the Dirac cone are transverse
EM modes with a finite group velocity, while those modes
in the flat band are longitudinal EM modes with the locally
averaged magnetic field vector aligned with the k-vector and
having nearly zero group velocity [44, 45].

The optical properties of such 2D PCs exhibiting a Dirac-
like cone near k=0 is the same as an effective medium with
zero refractive index at the Dirac-like point frequency. In

Figure 1(b), we show the effective permittivity (𝜀𝑒𝑓𝑓) and
permeability (𝜇𝑒𝑓𝑓) near the Dirac-like point frequency of
the PC calculated by the effective medium theory [56]. We
note that both 𝜀𝑒𝑓𝑓 (red solid circles) and 𝜇𝑒𝑓𝑓 (blue open
circles) reach zero at the Dirac-like point frequency 𝜔𝐷 =1.0826𝜋(𝑐/𝑎) (c is the speed of light in vacuum), and their
dispersions are linear with a frequency change given by 𝛿𝜔 =𝜔 − 𝜔𝐷, giving rise to a nearly constant effective impedance
as shown in the inset of Figure 1(b). As we will show later,
these features are very important when we map the Dirac-
like cone dispersion at k=0 onto a spin-orbit Hamiltonian of
pseudospin 1 based on the effective medium description. It
should be pointed out that the effective material constitutive
parameters of 2D PCs are anisotropic. If we assume that the
PCs are arranged periodically in the xy plane and the rods are
along z-direction, the effective permittivity and permeability
can be described by diagonal tensors←→𝜀 = diag(𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑧𝑧)
and ←→𝜇 = diag(𝜇𝑥𝑥, 𝜇𝑦𝑦, 𝜇𝑧𝑧), respectively, with 𝜀𝑥𝑥 = 𝜀𝑦𝑦
and 𝜇𝑥𝑥 = 𝜇𝑦𝑦 for triangular and square lattices [57]. For
TE modes, only 𝜀𝑧𝑧, 𝜇𝑥𝑥, and 𝜇𝑦𝑦 enter the wave propagation
problem. Thus, the effective parameters 𝜀𝑒𝑓𝑓 and 𝜇𝑒𝑓𝑓 shown
in Figure 1(b) are actually 𝜀𝑒𝑓𝑓 = 𝜀𝑧𝑧 and 𝜇𝑒𝑓𝑓 = 𝜇𝑥𝑥 = 𝜇𝑦𝑦 .
Compared with a single zero material (𝜀𝑒𝑓𝑓 = 0 or 𝜇𝑒𝑓𝑓 =0 but not both), the double-zero material here has a finite
impedance, which is a desirable feature in eliminating strong
reflections from the interface.

The PC with 𝜀𝑒𝑓𝑓 = 𝜇𝑒𝑓𝑓 = 0 was first realized exper-
imentally in the microwave regime by arranging alumina
rods (𝑟 = 3.75mm and 𝜀 = 8.8) in a square lattice (𝑎 =17mm) in air [44]. Using this PC structure, some unique
properties arising from zero refractive index were demon-
strated experimentally, such as cloaking and lensing [44].
The PC at optical frequencies was implemented by a stack of
square-cross-section silicon rods (𝜀 = 13.7, width=260 nm,
and 𝑎 = 600nm) embedded in SiO2 (𝜀 = 2.25) [46]. The
experimentally observed angular selectivity of transmission
and directive spontaneous emission from quantum dots
placed within the material provide direct evidence that the
PC has indeed a near-zero refractive index near the Dirac-
like point frequency [46]. We note here that since the PC
is all dielectric, it is much less absorptive than conventional
metal-basedmetamaterials inwhich themetallic components
induce large ohmic loss at high frequencies. Periodicity is
not a necessary condition to realize the Dirac-like cone at
k=0.TheDirac-like cone dispersion and zero refractive index
were also realized experimentally in a 2D 12-fold photonic
quasicrystal constructed by placing dielectric rods at the 2D
dodecagonal lattice sites generated by the square-triangle
tiling model [50].

3. Berry Phase of the Dirac-Like Cone

It is well known that the Dirac cone of graphene and its
photonic counterpart give rise to a Berry phase of 𝜋 [15,
58]. It is interesting to know if the additional flat band
affects the Berry phase of the Dirac-like cone. In general,
one can calculate numerically the eigenmodes of the PC to
obtain the Berry phase. For square or triangular lattice PCs
composed of cylindrical rods, one can conveniently use the
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multiple scattering theory (MST) to obtain the eigenmodes
[44, 45]. For the Dirac-like cones studied in this review, it is
sufficient to consider the monopolar (𝑚 = 0) and dipolar
(𝑚 = ±1) terms only [44]. Here m denotes the angular
momentum number of the eigenmode. The MST equations
can be expressed as [44]

(𝑆0 − 1𝐷−1 −𝑆1 𝑆2−𝑆−1 𝑆0 − 1𝐷0 −𝑆1𝑆−2 −𝑆−1 𝑆0 − 1𝐷1)(𝑏−1𝑏0𝑏1) = 0, (1)

where𝐷𝑚 and 𝑏𝑚 are the T-matrix coefficients and the mode
amplitudes of Mie scattering, respectively, and 𝑆𝑚 denotes
the lattice sum with 𝑆−𝑚 = −𝑆∗𝑚, with 𝑚 = 0, ±1. At
the Dirac-like point, where 𝜔 = 𝜔𝐷 and k = 0, we have𝑆0 = 1/𝐷0 = 1/𝐷±1 [44]. Near the Dirac-like point, one
can take Taylor expansions with respect to k and 𝜔 for 𝑆𝑚
and 𝐷𝑚 (𝑚 = 0, ±1) up to the first order of k and 𝛿𝜔 =𝜔 − 𝜔𝐷. Thus, one can obtain 𝑆0 − 1/𝐷0 ≈ 𝑖𝐴0 ⋅ (𝜔 − 𝜔𝐷),𝑆0 − 1/𝐷±1 ≈ 𝑖𝐴1 ⋅ (𝜔 − 𝜔𝐷), 𝑆1 ≈ 𝐶1𝑘𝑒𝑖𝜙k and 𝑆±2 ≈0, where 𝐴0, 𝐴1, and 𝐶1 are real, and 𝑘 and 𝜙k are the
magnitude and angle of k in the polar coordinate [44, 45].
By letting the determinant of the 3 × 3 matrix in (1) equal
to zero, one can obtain three solutions: 𝜔 − 𝜔𝐷 = 𝑠V𝑔𝑘 with𝑠 = 0, ±1 and V𝑔 = √2|𝐶1|/√𝐴0𝐴1. When 𝑠 = 0, the
eigenvector is |Φ𝑠,k⟩ = (𝑒𝑖𝜙k 0 𝑒−𝑖𝜙k)𝑇, which corresponds
to the flat band. When 𝑠 = ±1, the eigenvectors are |Φ𝑠,k⟩ =(−𝑖𝑠𝐶1𝑒𝑖𝜙k/𝐴1V𝑔 1 𝑖𝑠𝐶1𝑒−𝑖𝜙k/𝐴1V𝑔)𝑇, corresponding to the
two linear bands [45]. Using the three eigenvectors, one can
obtain the Berry phase for each band of the Dirac-like cone;
that is, 𝛾 = ∮ 𝑖⟨Φ𝑠,k | ∇kΦ𝑠,k⟩ ⋅ 𝑑k = 0 [45], which is different
from that of the Dirac cone in grapheme [15].

4. Pseudospin-1 Description of
a Dirac-Like Cone in PCs

4.1. Spin-Orbit Hamiltonian Near k = 0 from Maxwell’s
Equations. We start from the Maxwell’s equations and apply
effective medium theory to demonstrate that the Dirac-
like conical dispersion of PCs near k = 0 can be related
to an effective spin-orbit Hamiltonian of pseudospin 1. We
will assume that bands forming the Dirac cone are derived
from monopole and dipole excitations and under those
circumstances, we can safely apply effective medium theory
to describe EMwave propagation in 2DPCs near a Dirac-like
point at the Brillouin zone center. The waves are assumed to
be TE modes propagating in the effective medium (xy plane)
of 2D PCs shown in Section 2, with electric field along z-
direction and magnetic field in the xy plane. As we discussed
in Section 2, for the effective material constitutive tensors of
PCs, we only need to take into consideration 𝜀𝑧𝑧, 𝜇𝑥𝑥, and 𝜇𝑦𝑦.
We note that all three parameters are functions of frequency𝜔. By letting 𝜀𝑧𝑧 = 𝜀 and 𝜇𝑥𝑥 = 𝜇𝑦𝑦 = 𝜇, the Maxwell’s
equations can be expressed in the following matrix form [47]:

(
(

0 −𝑖 𝜕𝜕𝑥 − 𝜕𝜕𝑦 0−𝑖 𝜕𝜕𝑥 + 𝜕𝜕𝑦 0 −𝑖 𝜕𝜕𝑥 − 𝜕𝜕𝑦0 −𝑖 𝜕𝜕𝑥 + 𝜕𝜕𝑦 0 )
)

𝜓̃
= 𝜔(𝜇 0 00 2𝜀 00 0 𝜇)𝜓̃,

(2)

where 𝜓̃ is 𝜓̃𝑇 = (−𝑖𝐻𝑥 − 𝐻𝑦, 𝐸𝑧, 𝑖𝐻𝑥 − 𝐻𝑦)𝑇 for transverse
modes and 𝜓̃𝐿 = (𝐻𝑥 − 𝑖𝐻𝑦, 𝐸𝑧, −𝐻𝑥 − 𝑖𝐻𝑦)𝑇 with 𝐸𝑧 being
spatially independent for longitudinal modes, respectively.
We note that 𝜓̃ are different from the eigenvectors of PCs
in Section 3, where the three components correspond to
the mode amplitudes of Mie scattering with the angular
momentum number m=-1, 0, and 1, respectively. As shown
in Section 2, for PCs with a conical dispersion at k = 0, the
effective permittivity 𝜀 and permeability 𝜇 approach linearly
to zero at the Dirac-like point frequency 𝜔𝐷, and we have𝜔𝜀 ≅ (𝜔 − 𝜔𝐷)𝜀 and 𝜔𝜇 ≅ (𝜔 − 𝜔𝐷)𝜇 in the neighborhood
of 𝜔𝐷 [44, 47]. The system parameters 𝜀 = 𝜔𝐷(𝑑𝜀/𝑑𝜔)|𝜔=𝜔𝐷
and 𝜇 = 𝜔𝐷(𝑑𝜇/𝑑𝜔)|𝜔=𝜔𝐷 must be positive definite in order
for the energy density to be nonnegative [44, 47].

Through the Fourier transform of 𝜓̃ in k-space, i.e.,𝜓̃(k) = (1/2𝜋) ∫ 𝜓̃𝑒−𝑖k⋅r𝑑r, we get 𝜓̃(k)𝑇 = (−𝑖𝐻(k)𝑥 − 𝐻(k)𝑦 ,𝐸(k)𝑧 , 𝑖𝐻(k)𝑥 − 𝐻(k)𝑦 )𝑇 for transverse modes and 𝜓̃(k)𝐿 = (𝐻(k)𝑥 −𝑖𝐻(k)𝑦 , 𝐸(k)𝑧 , −𝐻(k)𝑥 − 𝑖𝐻(k)𝑦 )𝑇 for longitudinal modes, with𝐻(k)𝑚 = (1/2𝜋) ∫𝐻𝑚𝑒−𝑖k⋅r𝑑r (𝑚 = 𝑥, 𝑦), and 𝐸(k)𝑧 = (1/2𝜋) ∫𝐸𝑧𝑒−𝑖k⋅r𝑑r. Using the above linear approximations of 𝜔𝜀
and 𝜔𝜇, (2) can be transformed to the following equation in
k-space

( 0 𝑘𝑥 − 𝑖𝑘𝑦 0𝑘𝑥 + 𝑖𝑘𝑦 0 𝑘𝑥 − 𝑖𝑘𝑦0 𝑘𝑥 + 𝑖𝑘𝑦 0 )𝜓̃(k)
= 𝛿𝜔(𝜇 0 00 2𝜀 00 0 𝜇) 𝜓̃(k), (3)

where 𝛿𝜔 = 𝜔 − 𝜔𝐷, and 𝑘𝑥 (𝑘𝑦) is the projection of the 2D
wavevector k on the x (y) axis. We note that, for longitudinal
modeswith any nonzerok, the component𝐸(k)𝑧 is zero.Using a
similarity transformation with 𝑈 = diag(2√𝜀/𝜇, √2, 2√𝜀/𝜇)
and 𝜓̃(k) = 𝑈𝜓(k), we can rewrite (3) as

1√2𝜀𝜇 ( 0 𝑘𝑥 − 𝑖𝑘𝑦 0𝑘𝑥 + 𝑖𝑘𝑦 0 𝑘𝑥 − 𝑖𝑘𝑦0 𝑘𝑥 + 𝑖𝑘𝑦 0 )𝜓(k)
= 𝛿𝜔𝜓(k). (4)
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As can be seen in Figure 1(b), the effective constitutive
parameters of the PCs are negative (𝜀, 𝜇 < 0) below theDirac-
like point frequency 𝜔𝐷, while they are positive (𝜀, 𝜇 > 0)
above 𝜔𝐷. Right at 𝜔𝐷, the effective refractive index is zero
(𝜀 = 𝜇 = 0). The sign change of 𝛿𝜔 in (4) is directly related to
the sign change of 𝜀 and 𝜇 in (2) when the frequency crosses
over 𝜔𝐷. Thus, the positive and negative index behaviors of
the system are treated by (4) in a unified framework. Equation
(4) can be further rewritten as𝐻𝜓(k) = 𝛿𝜔𝜓(k) with𝐻 = V𝑔S ⋅ k, (5)

by using the following spin-1 matrices, i.e., S = 𝑆𝑥𝑥+𝑆𝑦𝑦with
𝑆𝑥 = 1√2 (0 1 01 0 10 1 0) ,
𝑆𝑦 = 1√2 (0 −𝑖 0𝑖 0 −𝑖0 𝑖 0) . (6)

Here V𝑔 = 1/√𝜀𝜇 is the group velocity of the conical
dispersion [47]. Equation (4) or (5) represents a spin-orbit
interaction of pseudospin 1. Three normalized eigenvectors
can be obtained for (4) or (5):

𝜓(k)𝑠 = 12 (𝑠𝑒−𝑖𝜃k√2𝑠𝑒𝑖𝜃k ) (𝑠 = ±1)
and 𝜓(k)𝑠 = 1√2 (𝑒−𝑖𝜃k0−𝑒𝑖𝜃k) (𝑠 = 0) . (7)

Here 𝜃k is the angle between thewavevector k and the positive
x-direction. The three bands of the Dirac-like cone can be
clearly seen from the corresponding eigenvalues 𝛿𝜔 = 𝑠V𝑔|k|
(𝑠 = 0, ±1). Here 𝑠 = ±1 correspond to the upper (𝑠 = +1)
and lower (𝑠 = −1) conical bands, while 𝑠 = 0 corresponds
to the flat band. The 𝑠 values also represent three pseudospin
states in which the pseudospin is either parallel (𝑠 = +1),
perpendicular (𝑠 = 0), or antiparallel (𝑠 = −1) to the
wavevector k. The chiralities of the upper and lower cones
are opposite. From (7), we can obtain that the Berry phase𝛾 equals 0 for a loop around the Dirac-like cone, according
to the formula 𝛾 = 𝑖 ∮⟨𝜓(k)𝑠 |∇k|𝜓(k)𝑠 ⟩ ⋅ 𝑑k. This is consistent
with the results obtained from the MST theory for a realistic
PC structure shown in Section 3. For comparison, the
corresponding Berry phase is 𝜋 for pseudospin-1/2 systems
(e.g., graphene). This shows immediately that while both
pseudospin-1 and pseudospin-1/2 systems are characterized
by conical dispersions, the physics involving wave scattering
are quite different. Next, we will show that the normalized
eigenvector 𝜓(k)+1 in (7) corresponds to a transverse mode in

a positive medium (𝜀, 𝜇 > 0), while 𝜓(k)−1 corresponds to
one in a negative medium (𝜀, 𝜇 < 0). For the TE modes
under investigations, the electric field 𝐸(k)𝑧 in the normalized
eigenvectors 𝜓(k)𝑠 (𝑠 = ±1) is taken as 1. For arbitrary values of𝐸(k)𝑧 , we have 𝜓(k)𝑇 = 𝐸(k)𝑧 𝜓(k)±1 . From the Maxwell’s equations,
the magnetic field H(k) can be expressed as H(k) = 𝐻(k)𝑥 𝑥 +𝐻(k)𝑦 𝑦 with 𝐻(k)𝑥 = (𝑘𝑦/𝜔𝜇)𝐸(k)𝑧 and 𝐻(k)𝑦 = −(𝑘𝑥/𝜔𝜇)𝐸(k)𝑧 .
Using the first-order approximation of 𝜔𝜇, i.e., 𝜔𝜇 ≈ (𝜔 −𝜔𝐷)𝜇 and the linear dispersion 𝜔− 𝜔𝐷 = 𝑠V𝑔|k|, we can write𝐻(k)𝑥 ≈ 𝑠(sin𝜃k/V𝑔𝜇)𝐸(k)𝑧 and 𝐻(k)𝑦 ≈ −𝑠(cos𝜃k/V𝑔𝜇)𝐸(k)𝑧 , i.e.,
H(k) = 𝑠k̂ × E(k)/(V𝑔𝜇) for 𝑠 = ±1, where k̂ = k/|k| is a unit
vector indicating the direction of wavevector k. We see that𝑠 = +1 describes a transverse mode in positive media for
which the three vectors E(k),H(k), and k̂ form a right-handed
triad, while 𝑠 = −1 describes one in negative media for which
they form a left-handed triad. In terms of electromagnetic
fields, the eigenvectors are rewritten as

𝜓(k)𝑇 = 𝐸(k)𝑧 𝜓(k)±1 = 12 (−√𝜇/𝜀 (𝑖𝐻(k)𝑥 + 𝐻(k)𝑦 )√2𝐸(k)𝑧√𝜇/𝜀 (𝑖𝐻(k)𝑥 − 𝐻(k)𝑦 ) ) . (8)

When 𝑠 = 0, the eigenvector 𝜓(k)𝑠 corresponds to a longi-
tudinal mode. In terms of electromagnetic fields, it can be
expressed as [47],

𝜓(k)𝐿 = ( 𝐻(k)𝑥 − 𝑖𝐻(k)𝑦0−𝐻(k)𝑥 − 𝑖𝐻(k)𝑦 ). (9)

It should be mentioned that in our effective medium descrip-
tion the group velocity of the flat band is zero. However,
in realistic PC structures, for k near the Dirac-like point,
the group velocity can be small and negligible. When k is
far away from the Dirac-like point, the effective medium
description fails so that the band is not flat any more,
i.e., it has finite group velocity and the band modes are
not longitudinal modes either. Due to the orthogonality
between the transverse and longitudinal modes, these flat
band modes near the Dirac-like point are almost impossible
to be excited by incidence of a propagating transversemode in
experiments.Thus, we ignore these longitudinal modes when
we study the transport properties of the transverse waves in
Section 5. To detect these flat band modes experimentally,
one may put a point source inside the 2D PCs. In this case,
a localized excitation appears in the vicinity of the source,
whichmoves with the position of source. For ultracold atoms
in a Lieb lattice, the atoms can be transferred coherently into
the flat band by actively engineering the population and phase
on each lattice site [25]. For an array of optical waveguides
with a Lieb lattice configuration, the flat band mode can be
excited by a structured excitation of the three sublattices [28–
31].
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4.2. Photonic Counterpart of Gate Voltage. It is well known
that electron transport in graphene can be manipulated by
applying a gate voltage to form complex junctions, with
which many interesting transport phenomena have been
observed experimentally or predicted theoretically, such as
Klein tunneling [7, 15] and supercollimation of electron wave
packets [12–14]. Onemight be interested to know whether we
can find the photonic counterpart of gate voltage in graphene
which can shift the Dirac-like cones rigidly up or down in
frequency with the group velocity essentially unchanged, and
whether the application of such photonic potentials in PCs
will result in any new physical phenomena. It is also well
known in classical wave physics that one possible way to
manipulate the propagation of waves is tomake the structural
variation in the system to form a certain structural pattern.
We will see that, for dielectric PCs, a particular kind of
structural change is equivalent to applying a gate voltage in
electrons. Such structurally induced photonic potential will
play a significant role in the dynamics of pseudospin-1 wave
packets.

Here we show that such a frequency upshift or downshift
of the Dirac-like cone can be easily achieved by changing the
length scale of a dielectric PC [47]. Suppose that a dielectric
structure with a spatial configuration of dielectric 𝜀(r) is
scaled uniformly by a factor 𝑠 to achieve a new configuration𝜀󸀠(r) = 𝜀(r/𝑠), the mode frequency 𝜔󸀠 and wavevector k󸀠
of the new configuration can be obtained by rescaling the
mode frequency 𝜔 and wavevector k of the old one through
the relations 𝜔󸀠 = 𝜔/𝑠 and k󸀠 = k/𝑠, according to the
scaling properties of theMaxwell’s equations [59].We assume
that the materials consisting of the structure have frequency-
independent permittivity in the operational frequency range.
It can be seen clearly from the scaling relations that the
change of length scale can shift up/down the Dirac-like point
frequency, Δ𝜔𝐷 = 𝜔󸀠𝐷 − 𝜔𝐷 = [1/𝑠 − 1]𝜔𝐷. Here 𝜔𝐷 and𝜔󸀠𝐷 indicate the respectiveDirac-like point frequencies of the
original and scaled PCs. More importantly, the scaling does
not change the group velocity of the conical dispersion,

V󸀠𝑔 = ∇k󸀠𝜔󸀠 = ∇𝑠k󸀠 (𝑠𝜔󸀠) = ∇k𝜔 = V𝑔, (10)

where 𝑣𝑔 and 𝑣
󸀠
𝑔 indicate the respective group velocities

before and after the scaling. The change of length scales of
dielectric PCs plays the role of the gate voltage in graphene,
shifting rigidly the conical dispersions of PCs in frequency.
As a photonic analog of electron potential, the length-scaling
induced Dirac-like point frequency shift (Δ𝜔𝐷) is effectively
a photonic gate potential 𝑉 with 𝑉 = Δ𝜔𝐷 = 𝜔󸀠𝐷 − 𝜔𝐷.
If the local length scales of the PCs are modulated along
one direction, for example, the x-direction, we can construct
a 1D photonic potential 𝑉(𝑥) = 𝜔󸀠𝐷(𝑥) − 𝜔𝐷. The total
Hamiltonian now becomes𝐻 = V𝑔S ⋅ k + 𝑉 (𝑥) I. (11)

I is a 3 × 3 identity matrix. From (11), pseudospin-1
waves propagating along the x-direction do not experience
backscattering from the 1D photonic potential, which leads
to one-way transport phenomenon. From the EMwave point

of view, this is a result of impedance matching because
the impedance is a scale invariant constant near the Dirac-
like point frequency, as shown analytically in [47] and
numerically in the inset of Figure 1(b).

To see how pseudospin-1 waves are scattered by 1D
potential, we need to consider the boundary conditions at
the interface. Assuming that 𝜓 = (𝜓1, 𝜓2, 𝜓3)𝑇is a general
solution of (11), we can obtain three boundary conditions at
an interface 𝑥 = 𝑥0 by integrating the wave equation 𝐻𝜓 =𝛿𝜔𝜓 over a small interval 𝑥 ∈ [𝑥0 − 𝜂, 𝑥0 + 𝜂] along the x-
direction and taking the limit 𝜂 󳨀→ 0 [27, 35, 47],𝜓2 (𝑥0 − 𝜂) = 𝜓2 (𝑥0 + 𝜂) , (12)𝜓1 (𝑥0 − 𝜂) + 𝜓3 (𝑥0 − 𝜂)= 𝜓1 (𝑥0 + 𝜂) + 𝜓3 (𝑥0 + 𝜂) , (13)[𝛿𝜔 − 𝑉 (𝑥0 − 𝜂)] (𝜓3 (𝑥0 − 𝜂) − 𝜓1 (𝑥0 − 𝜂))= [𝛿𝜔 − 𝑉 (𝑥0 + 𝜂)] (𝜓3 (𝑥0 + 𝜂) − 𝜓1 (𝑥0 + 𝜂)) . (14)

If the wave function takes the form of (8) or (9), we directly
obtain that (12)-(14) are equivalent to the continuity of 𝐸𝑧,𝐻𝑦, and 𝜇𝐻𝑥, respectively, i.e., the boundary conditions
required by TE waves. We note here that only the first two
boundary conditions, i.e., Eqs. (12) and (13), are indepen-
dent because the continuity of 𝜓2 implies the continuity
of [𝛿𝜔 − 𝑉][𝜓3 − 𝜓1] [47]. It is consistent with EM wave
theory in which, for time-harmonic fields, the continuity
of the tangential E and H components across interfaces
implies the continuity of normal B and D components
[60].

5. Transport Properties of Pseudospin-1
Waves in 1D Potentials

5.1. Klein Tunneling of Pseudospin-1 EM Waves. We now
consider the scattering of pseudospin-1 EM waves travelling
in the xy plane by a 1D square photonic potential barrier. The
scattering process is schematically depicted in Figure 2(a).
The wave functions in the three regions of Figure 2(a) can be
written in terms of the eigenvectors in (7).The wave function
in region I can be expressed as

𝜓I = 𝑎02 (𝑠𝑒−𝑖𝜃√2𝑠𝑒𝑖𝜃)𝑒𝑖(q0𝑥𝑥+𝑞0𝑦𝑦)
+ 𝑏̃02 (𝑠𝑒−𝑖(𝜋−𝜃)√2𝑠𝑒𝑖(𝜋−𝜃))𝑒𝑖(−𝑞0𝑥𝑥+𝑞0𝑦𝑦), (15)

with 𝑠 = sgn(𝛿𝜔), 𝜃 = arctan(𝑞0𝑦/𝑞0𝑥), 𝑞0𝑥 = |q0| cos 𝜃, 𝑞0𝑦 =|q0| sin 𝜃, and |q0| = |𝛿𝜔|/V𝑔. In region II, we have
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Figure 2: (a) Schematic diagram illustrating the scattering of an
incident wave by a square photonic potential barrier. (b) A square
photonic potential barrier constructed by a PC sandwich structure.
Both PC1 and PC2 are square lattice dielectric photonic crystals,
but with different length scales (𝑎1 = 15𝑎2/14 and 𝑟1 = 15𝑟2/14).
The PC1 and PC2 domains have a thickness of 15𝑎2 and 40𝑎2,
respectively. The length scale change induces a rigid band shift of
the conical dispersion. Adapted from [47].

𝜓II = 𝑐2 (𝑠󸀠𝑒−𝑖𝜙√2𝑠󸀠𝑒𝑖𝜙)𝑒𝑖(𝑞1𝑥𝑥+𝑞0𝑦𝑦)
+ 𝑑2 (𝑠󸀠𝑒−𝑖(𝜋−𝜙)√2𝑠󸀠𝑒𝑖(𝜋−𝜙))𝑒𝑖(−𝑞1𝑥𝑥+𝑞0𝑦𝑦), (16)

with 𝜙 = 𝜋 + arctan(𝑞0𝑦/𝑞1𝑥), 𝑠󸀠 = sgn(𝛿𝜔 − 𝑉0), and 𝑞1𝑥 =−√(𝑉0 − 𝛿𝜔2)2/(V2𝑔) − 𝑞20𝑦. In region III, we have

𝜓III = 𝑎12 (𝑠𝑒−𝑖𝜃√2𝑠𝑒𝑖𝜃)𝑒𝑖(q0𝑥𝑥+𝑞0𝑦𝑦)
+ 𝑏̃12 (𝑠𝑒−𝑖(𝜋−𝜃)√2𝑠𝑒𝑖(𝜋−𝜃))𝑒𝑖(−𝑞0𝑥𝑥+𝑞0𝑦𝑦). (17)

A transfer matrix M can be defined by the relation,(𝑎1𝑏1) = M(𝑎0𝑏0) , (18)

where 𝑎0 = 𝑎0𝑒𝑖𝑞0𝑥𝑥0 , 𝑏0 = 𝑏̃0𝑒−𝑖𝑞0𝑥𝑥0 , 𝑎1 = 𝑎1𝑒𝑖𝑞0𝑥(𝑥0+𝐷)and𝑏1 = 𝑏̃1𝑒−𝑖𝑞0𝑥(𝑥0+𝐷). Here 𝑥 = 𝑥0 and 𝑥 = 𝑥0 + 𝐷 are the left
and right boundaries of the square barrier, respectively [see
Figure 2(a)]. The transfer matrix can be obtained from the
boundary conditions shown in (12) and (13) as

M (𝐷) = (𝛼 (𝐷) 𝛽 (−𝐷)𝛽 (𝐷) 𝛼 (−𝐷)) , (19)

with the elements,𝛼 (𝐷) = cos 𝑞1𝑥𝐷 + 𝑖2𝑠𝑠󸀠 sin 𝑞1𝑥𝐷( cos 𝜃cos 𝜙 + cos𝜙
cos 𝜃) ,𝛽 (𝐷) = 𝑖2𝑠𝑠󸀠 sin 𝑞1𝑥𝐷( cos 𝜃cos 𝜙 − cos𝜙

cos 𝜃) . (20)

We can obtain the transmission through the barrier from the
transfer matrixM,𝑇 (𝜃)= cos2𝜙 cos2𝜃(cos 𝑞1𝑥𝐷 cos𝜙 cos 𝜃)2 + (sin2𝑞1𝑥𝐷/4) (cos2𝜙 + cos2𝜃)2 . (21)

For normal incidence (𝜃 = 0), it is obvious that 𝑇(𝜃 =0) = 1 for any value of 𝛿𝜔. Such perfect transmission
phenomenon at normal incidence is a manifestation of Klein
tunneling effect in pseudospin-1 systems. For pseudospin-1
EM waves, the perfect transmission can be interpreted as a
consequence of impedance matching at normal incidence.
At a finite incident angle, for values of 𝑞1𝑥𝐷 satisfying the
relation 𝑞1𝑥𝐷 = 𝑚𝜋 (𝑚 ∈ integers), we will have 𝑇(𝜃) =1 due to Fabry-Perot resonances. More interestingly, when𝛿𝜔 = 𝑉0/2, we have 𝑞1𝑥 = −𝑞0𝑥 and 𝜙 = 𝜋−𝜃, and then obtain𝑇(𝜃) = 1 for any incident angle. Such all-angle transparency
is called “super Klein tunneling”, which can only happen for
pseudospin-1 systems.

The super Klein tunneling effect was verified numerically
using a realistic PC sandwich structure [47]. It can also
be understood from the standpoint of impedance matching
in EM wave theory. When 𝛿𝜔 = 𝑉0/2, the permittivities
and permeabilities in the background and potential barrier
are equal in magnitude but opposite in sign [47], thus the
impedance is matched for all incident angles, which in turn
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leads to all-angle unity transmission. In EM wave theory,
it is known that two adjacent layers, in case that they have
equal thickness and their permittivities and permeabilities are
equal inmagnitude but opposite in sign, can “optically cancel”
each other in space, and are called “complementarymaterials”
in the metamaterial literature [61]. Interestingly, one may
take the pseudospin-1 photonic system as a candidate to
realize “complementary materials”. We note that “comple-
mentary materials” were extensively studied in the field of
metamaterials which typically require the use of metallic
inclusions to achieve the effective negative medium in order
to cancel the optical path in a positive medium. However,
the huge ohmic loss of metals at high frequencies makes
it not so promising to realize them at optical frequencies.
Pseudospin-1 photonic system is hence a good candidate
since the PCs are all dielectric so that they have low loss
even at high frequencies. Recently, experimental realiza-
tion of complementary materials has been demonstrated
in the microwave regime using PCs composed of alumina
(𝜀 = 8.1) rods in air [62, 63]. It looks promising to push
the working frequency to the optical regime in the near
future.

We will show below how pseudospin-1 EM waves are
scattered when they meet a 1D potential barrier in the case
that 𝛿𝜔 deviates from𝑉0/2. To study the scattering properties
in realistic PC systems, a photonic potential barrier can be
constructed using a PC sandwich structure. As shown in
Figure 2(b), the sandwich structure is composed of two types
of PCs, labelled as PC1 and PC2. Both of them are 2D square
lattices of dielectric cylinders embedded in air. The dielectric
constant 𝜀 of the cylinders is 12.5.The radii of the cylinders in
the two PCs are 𝑟𝑖 = 0.2𝑎𝑖 (𝑖 = 1, 2) with 𝑎1 = (15/14)𝑎2,
where 𝑎1 and 𝑎2 are the lattice constants of PC1 and PC2,
respectively. With the choice of the above parameters, both
PCs exhibit a Dirac-like cone near k = 0 with the group
velocity V𝑔 = 0.2962𝑐, where 𝑐 is the speed of light in vacuum.
The Dirac-like point frequencies of PC1 and PC2 are 𝜔𝐷1 =1.0826𝜋(𝑐/𝑎1) and 𝜔𝐷2 = 1.0826𝜋(𝑐/𝑎2), respectively. The
effective photonic potential shift between PC1 and PC2 is𝑉0 = 𝜔𝐷2 − 𝜔𝐷1 = (1/15)𝜔𝐷2. Let us consider an example
in which PC1 and PC2 have a thickness of 15𝑎2 and 40𝑎2,
respectively, and we numerically calculate the incident-angle
dependence of the transmission of the PC sandwich structure
at the reduced frequency 𝛿𝜔 = 𝜔 − 𝜔𝐷1 = 0.0436𝜋𝑐/𝑎2.
The results are plotted by red open circles in Figure 3.
The perfect transmission for the case of normal incidence
(𝜃 = 0) is a manifestation of “Klein tunneling”. At finite
incident angles, we find some other transmission peaks with𝑇(𝜃) = 1 at angles satisfying the relation 𝑞1𝑥𝐷 = 𝑚𝜋 (𝑚 ∈
integers) as a consequence of Fabry-Perot resonances. When
the incident angle is larger than the critical angle 𝜃𝑐 =
sin−1((𝑉0 − 𝛿𝜔)/𝛿𝜔) ≅ 410, total reflection occurs and
no transmission is found. The result of 𝑇(𝜃) from (21) for𝛿𝜔 = 0.0436𝜋𝑐/𝑎2 is also shown in Figure 3 (blue solid
line). Excellent agreement is found between the prediction
from (21) and the numerical result for the realistic structure.
For comparison, we plot the transmission in Figure 3 for
Dirac electrons in graphene (green dotted line) through a
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Figure 3: Transmissions calculated for a PC sandwich structure (red
open circles), using (21) (blue solid line) and for Dirac electrons in
graphene (green dotted line). The photonic potential 𝑉0 and group
velocity V𝑔 in (21) are obtained from the PC sandwich structure
shown in Figure 2(b), and the reduced frequency 𝛿𝜔 is taken to
be 𝛿𝜔 = 0.0436𝜋𝑐/𝑎2. For Dirac electrons, the electron energy 𝐸
satisfies 𝐸/ℏV𝐹 = 𝛿𝜔/V𝑔 while potential height 𝑈0 meets 𝑈0/ℏV𝐹 =𝑉0/V𝑔, with V𝐹 being the Fermi velocity of Dirac electrons. The
barrier width is𝐷 = 40𝑎2.
potential barrier with the same width 𝐷 = 40𝑎2. We take
the energy 𝐸 and potential height 𝑈0 as 𝐸/ℏV𝐹 = 𝛿𝜔/V𝑔
and 𝑈0/ℏV𝐹 = 𝑉𝑜/V𝑔, respectively, with V𝐹 being the Fermi
velocity of Dirac electrons. Note that Dirac electrons and
pseudospin-1 EM waves have transmission peaks at the same
angles due to Fabry-Perot effect. However, Dirac electrons
with a pseudospin of 1/2 in graphene have much deeper
transmission dips, which indicates that electrons experience
much stronger anisotropic scattering by the 1D potential. It
is found that the above difference is due to their different
boundary conditions [47].

5.2. Supercollimation of Wave Packets in a Superlattice of
Photonic Crystals. The supercollimation here refers to a
transport phenomenon that a wave packet can propagate
a long distance in a 2D system while preserving its shape.
Such a phenomenon was predicted theoretically in certain
graphene superlattices consisting of two alternating layers
with equal thickness due to anisotropic renormalization of
the group velocity [13]. The occurrence of this phenomenon
for pseudospin- 1/2 system requires a specific condition
on the product of the barrier height difference and layer
thickness. However, we will see that it is more robust for
pseudospin-1 EMwaves as collimation can occur without any
condition [47]. We consider here a pseudospin-1 superlattice
formed by a Kronig-Penney type of photonic potential along
the x-direction [see Figure 4(a)]. The thickness of each layer
is taken to be d, the potential height is𝑉0, and lattice constant
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Figure 4: (a) Schematic picture of a pseudospin-1 superlattice
formed by a Kronig-Penney type photonic potential. (b)Thewedge-
shaped dispersion structure of pseudospin-1 EM waves near 𝛿𝜔 =𝑉0/2 for a superlattice realized by alternating stacks of PC1 and PC2
(see Figure 2). Both PC1 and PC2 have the same thickness 𝑑 = 15𝑎2,
i.e., the spatial period of the superlattice is 𝐿 = 30𝑎2. The photonic
potential is set at 𝑉0 = 𝜔𝐷2/15. (c) The magnitude of electric field
distribution of a Gaussian wave packet at 𝑡 = 0 with the reduced
center frequency 𝛿𝜔𝑐 = 0.06𝜋V𝑔/𝐿 and the half width 𝑟0 = 30𝑑. (d)
and (e)Themagnitude of electric field distributions of the Gaussian
wave packet at 𝑡 = 1200𝑑/V𝑔 in a single PC (left panel) and in the
PC superlattice (right panel) with the initial propagation direction
in an angle 𝜃 = 00 (d) and 450 (e), respectively.The results show the
supercollimation induced by the superlattice. Adapted from [47].

is L. For one unit cell of the periodic structure, the transfer
matrix is the product of two parts,

M𝑐𝑒𝑙𝑙 = P (𝐿 − 𝑑)M (𝑑) , (22)

whereM(𝑑) is the part for the barrier layer as shown in (19)
and P(𝐿 − 𝑑) describes the part of transfer matrix in the
background layer,

P (𝐿 − 𝑑) = (𝑒𝑖𝑞0𝑥(𝐿−𝑑) 00 𝑒−𝑖𝑞0𝑥(𝐿−𝑑)) . (23)

Using (22) in conjunction with the Bloch theorem, we obtain
the following dispersion relation for the superlattice [47],

cos 2𝑘𝑥𝑑 = cos 𝑞1𝑥𝑑 cos 𝑞0𝑥𝑑− sin 𝑞1𝑥𝑑 sin 𝑞0𝑥𝑑2 [(𝛿𝜔 − 𝑉0) q0𝑥𝛿𝜔q1𝑥+ 𝛿𝜔q1𝑥(𝛿𝜔 − 𝑉0) q0𝑥 ] ,
(24)

where 𝑞20𝑥 + 𝑘2𝑦 = (𝛿𝜔/V𝑔)2, 𝑞21𝑥 + 𝑘2𝑦 = [(𝛿𝜔 − 𝑉0)/V𝑔]2, 𝑘𝑥
is the Bloch wavevector, and 𝑘𝑦 is the wavevector component
along y direction. When 𝛿𝜔 = 𝑉0/2, it is found from (24)
that the equifrequency curve is a straight line along the 𝑘𝑦
axis with 𝑘𝑥 = 0. It is clear that the group velocity in the
y direction is zero for this equifrequency line. This result
holds for all nonzero values of 𝑉0. We plot the dispersion
relation of (24) in Figure 4(b) for a superlattice with 𝑑 =15𝑎2, 𝐿 = 30𝑎2, and 𝑉0 = 𝜔𝐷2/15, where 𝑎2 is the lattice
constant of PC2, and 𝑉0 is the potential shift between PC1
and PC2 (see Figure 2). A wedge structure can be clearly
seen in Figure 4(b), exhibiting a dispersionless behavior
along the 𝑘𝑦 direction even when 𝛿𝜔 ̸= 𝑉0/2. A wedge
equation, 𝛿𝜔 = 𝑠V𝑔|𝑘𝑥| + 𝑉0/2 (𝑠 = ±1), can be found
when |𝑘𝑦| << 𝑉0/2V𝑔 by expanding (24) in the vicinity of𝛿𝜔 = 𝑉0/2. It can be seen clearly from this equation that
within the wedge-like dispersion structure, the 1D periodic
modulation of photonic potential reduces the group velocity
in y direction to zero. On the other side, it makes no impact
on the one in x-direction. Similar to the case in some special
graphene (pseudospin-1/2) superlattice [12, 13], such wedge
structure will lead to the supercollimation of pseudospin-
1 wave packets in a superlattice of PCs due to the strong
anisotropic renormalization of group velocity mentioned
above, which means that a wave packet constructed in the
frequency range of the wedge-like dispersion can be guided
to propagate without distortion of shape along the potential
modulation direction of the superlattice, independent of its
initial direction of motion. It is worth noting here that for
graphene, as a pseudospin-1/2 system, the wedge structure
can only be achieved under certain special conditions that
the periodic potentials 𝑈0 and the layer thickness d should
satisfy the relation 𝑈0 = 2𝜋ℏV𝐹/𝑑 [12–14]. However, for a
pseudospin-1 system, such a structure can be found for all
nonzero values of 𝑉0 if each layer of the superlattice has the
same thickness, i.e., 𝐿 = 2𝑑 [47].
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Figures 4(c)–4(e) show numerically the supercollimation
phenomenon for a pseudospin-1 system in a Gaussian wave
packet propagation simulation. In the simulation, we take the
potential height as the photonic potential shift between PC1
and PC2 shown in Figure 2(b), i.e., 𝑉0 = 𝜔𝐷2/15, and the
width 𝑑 = 15𝑎2. The superlattice is connected to a lead which
is a PC with a photonic potential 𝑉0/2, and then a Gaussian
wave packet is sent from the lead towards the superlattice.The
initial wave packet in the form 𝐸𝑧 = 𝐸0exp[−|r− rc|2/𝑟20 +𝑖kc ⋅(r − rc)] is shown in Figure 4(c). Here rc is the initial center
of wave packet at a distance 𝑑 away from the left end of the
superlattice, 𝛿𝜔𝑐 = 0.06𝜋V𝑔/𝐿 is the reduced center frequency
with the definition 𝛿𝜔𝑐 ≡ 𝛿𝜔 − 𝑉0/2 = V𝑔|kc| and 𝑟0 = 30𝑑
is the half width of wave packet. Figures 4(d) and 4(e) show
the evolution of the wave packet from the initial position for
two cases: one with incident angle 𝜃 = 00 [Figure 4(d)] and
another with 𝜃 = 450 [Figure 4(e)]. When the superlattice
is absent, the wave packet propagates along the direction
of initial center wave vector marked by the red arrow and
spreads sideway rapidly. However, when the superlattice is
present, the Gaussian wave packet always propagates along
the potential modulation direction (𝑥-direction), irrespective
of the initial direction ofmotion. Furthermore, it is found that
at the incident angle 𝜃 = 450, the wave packet is stretched and
tilted, which can be attributed to the strong dependence of the
reflections on the value of 𝑘𝑦 around 𝜃 = 450 when the wave
packet enters the superlattice from the lead. The wave packet
will remain undistorted after it enters the superlattice [47].

5.3. Unconventional Anderson Localization in 1D Random
Potentials. Wave travelling in a disordered medium can
become localized due to interference effect. While the local-
ization of scalar waves are well understood, the problem
becomes more complex if the wave is propagating in a
disordered medium with an underlying lattice structure. In
the past few years, the effect of disorder on waves propa-
gating in artificial materials has also received considerable
attention [14, 64–76].Many interesting phenomenahave been
predicted, such as suppression of Anderson localization in
disordered metamaterials [67–72], angle-dependent electron
transmission [74–76], and delocalization of relativistic Dirac
particles in disordered 1D systems [73]. Here we review some
surprising and counterintuitive wave localization behaviors
for pseudospin-1 systems subjected to 1D disordered poten-
tials.

In conventional 1D disordered materials, all states must
become localized due to the coherent backscattering effect
[77–81]. However, for pseudospin-1 systems, waves propa-
gating in the normal direction experience no backscattering
from a disordered 1D potential and only acquire a random
phase in the spatial wave function [47]. Such one-way trans-
port behavior was first discovered in pseudospin-1/2 systems
[15, 73, 82, 83]. For pseudospin-1 EMwaves considered in this
review, the absence of backscattering in normal incidence can
be understood from the classical wave impedance matching
between any two neighboring layers, as we discussed in
Section 4.2. Anderson localization can hence occur only for
obliquely incident waves.

The systems considered here are 1D pseudospin-1 stacks
ofN uniform layers. Each layer is assumed to have a thickness
d, but has a step-wise-constant random potential V(x). Here
we take the Dirac-like point of the background medium as
the zero of the photonic potential, i.e., V = 0. We consider
the propagation of a plane wave through the multilayers at an
oblique incident angle 𝜃 (𝜃 ̸= 0) with a reduced frequency 𝛿𝜔.
Thewave equation of pseudospin-1 EMwaves in a 1D random
potential can be written in a Hamiltonian form as (11),𝐻𝜓 = [V𝑔󳨀→S ⋅ 󳨀→k + 𝑉 (𝑥) I] 𝜓 = 𝛿𝜔𝜓. (25)

For convenience, we use the normalized frequency 𝐸 =𝛿𝜔/V𝑔 and random potential 𝑉(𝑥) = 𝑉(𝑥)/V𝑔 in the
following. The normalized potential in each layer fluctuates
independently, with a uniform distribution in the interval
[−𝑊,𝑊], where𝑊 is the random strength of the normalized
potential. The localization length 𝜉, defined as the reciprocal
of the Lyapunov exponent 𝛾, can be obtained from the
following relation,𝜉 = 𝛾−1 = − lim

𝑁󳨀→∞

2𝑁𝑑⟨ln𝑇𝑁⟩𝑐 , (26)

where 𝑇𝑁 is the transmission coefficient and ⟨⟩𝑐 denotes
ensemble averaging.

In Figure 5(a), we show the dependence of the localization
length on the random strength𝑊 at a particular normalized
frequency 𝐸 = 0.02 for three different incident angles.
Results are calculated by the transfer matrix method (TMM)
and averaged over an ensemble of 4000 configurations. The
sample size N is taken to be five times that of the localization
length. We see that at small randomness, 𝜉 decays with
the randomness according to a general form 𝜉 ∝ 𝑊−2
as expected. However, as 𝑊 increases, 𝜉 drops suddenly
to a minimum at a critical random strength 𝑊𝑐 = 𝐸,
regardless of incident angle, and rises immediately afterward.
The sudden change of localization behavior near𝑊𝑐 indicates
the occurrence of some sharp transition between the two
regions: 𝑊 < 𝑊𝑐 and 𝑊 > 𝑊𝑐. In Figure 6, we plot the
localization length as a function of incident angle 𝜃 in the
two regions. We find that the asymptotic 𝜃-dependence of 𝜉
indeed changes from 𝜉 ∝ sin−4𝜃 (𝑊 < 𝑊𝑐) to 𝜉 ∝ sin−2𝜃
(𝑊 > 𝑊𝑐) when𝑊moves across the critical random strength𝑊𝑐 = 𝐸. The V-shape turnaround of localization length
occurring at a critical random strength and the change of
the asymptotic behaviors in the 𝜃-dependence are proper-
ties unique to pseudospin-1 systems and not found in any
ordinary disordered systems. In ordinary materials, stronger
disorder causes enhanced backscattering, and therefore a
monotonic decrease of localization length with increasing
disorder. In Figure 5(b), we show a similar plot as Figure 5(a)
except that we now fix the incident angle at sin 𝜃 = 0.3 and
plot 𝜉 as a function of random strength 𝑊 at three different
values of 𝐸. It is clearly seen that the same localization
characteristics are found in three different regions of𝑊, i.e.,𝑊 < 𝐸,𝑊 ≈ 𝐸, and𝑊 > 𝐸.
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Figure 5: Localization length as a function of normalized random potential strength for different incident angles and 𝐸 in pseudospin-1 and
-1/2 systems subjected to 1D disordered potentials.The results are calculatedusing the transfer-matrixmethod (TMM). (a) Localization length
for three different incident angles in pseudospin-1 systems. (b) Localization length for three different values of 𝐸 in pseudospin-1 systems. (c)
Same as (a), but for pseudospin-1/2. (d) Same as (b), but for pseudospin-1/2. The localization lengths at small𝑊 are fitted by the dotted lines,
showing a 𝜉 ∝ 𝑊 −2 behavior. Adapted from [52].

For pseudospin-1/2 systems, the Hamiltonian can be
written in the following form, [ℏV𝑔󳨀→S ⋅ 󳨀→k + 𝑉(𝑥)I]𝜓 =𝐸𝜓, where 󳨀→𝑆 is now a 2D Pauli vector in xy plane and E
is the incident energy of pseudospin-1/2 quasiparticles. The
localization length is plotted against the random strength for
different incident angles and energies in Figures 5(c) and
5(d). Note here that for pseudospin-1/2 systems, we define
the normalized energy 𝐸 and random potential 𝑉(𝑥) as 𝐸 =𝐸/ℏV𝑔 and 𝑉(𝑥) = 𝑉(𝑥)/ℏV𝑔, respectively. It is found that
there is also a localization lengthminimum in pseudospin-1/2
systems after which the localization length increases again,
but the sharp change in 𝜉 found in pseudospin-1 systems is
absent in pseudospin-1/2 transport. Instead, the localization
length 𝜉 crosses over smoothly from a decreasing behavior at

small random strength to an increasing one at large random
strength. The minimum occurs at the random strength
around a few 𝐸. Furthermore, as can be seen in Figure 6,
the 𝜃-dependence of localization length in both decreasing
and increasing regions shows an asymptotic behavior of 𝜉 ∝
sin−2𝜃, in sharp contrast to pseudospin-1 behavior.

The above anomalous localization behaviors can be
understood from the following analytic analysis. It turns out
that (25) can be transformed into a scalar equation using a
new coordinate u [52]:𝑑2Ψ𝑑𝑢2 + Ψ = 𝑘2𝑦(𝐸 − 𝑈 (𝑢))2Ψ, (27)
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a 𝜉 ∝ sin−4𝜃 behavior. For all other three cases, the localization
length at small 𝜃 is well fitted by 𝜉 ∝ sin−2𝜃. Adapted from [52].

where 𝑢 = ∫𝑥
0
(𝐸 − 𝑉(𝑥󸀠))𝑑𝑥󸀠 and 𝑈(𝑢) = 𝑉(𝑥). In (27), the

oblique angle appears in the scattering term. In the case of
normal incidence, i.e., 𝑘𝑦 = 0, the scattering term vanishes,
and (27) then describes wave propagation in a homogeneous
medium and contains two general solutions, Ψ ∝ 𝑒±𝑖𝑢 =
exp[±𝑖 ∫𝑥

0
(𝐸 − 𝑉(𝑥󸀠))𝑑𝑥󸀠]. We can see that the random phase

accumulation due to 1D random potential during the one-
way transport is now absorbed in the new coordinate u.
Similarly, a scalar wave equation for pseudospin-1/2 systems
can be constructed according to pseudospin-1/2 Hamiltonian
equation,𝑑2Ψ𝑑𝑢2 + Ψ = 𝑘2𝑦(𝐸 − 𝑈 (𝑢))2Ψ + 𝑘𝑦Ψ𝑁+1∑𝑖=1𝑈𝑖𝛿 (𝑢 − 𝑢𝑖) , (28)

with𝑈𝑖 = 1/(𝐸− v𝑖) − 1/(𝐸− v𝑖−1). Here 𝑢𝑖 is the ith interface
of the layered structure in the u coordinate and v𝑖 is the
normalized random potential in ith layer.

We can qualitatively understand from the scattering
terms in (27) and (28) why the 𝜃-dependence of 𝜉 in the
two pseudospin systems behaves differently at small 𝑊.
For ordinary disordered materials, the localization length in
disordered 1D systems has the same order of magnitude as
the mean free path, and the latter is inversely proportional
to the square of the scattering strength [79]. For small values
of 𝑘𝑦, the 𝑘2𝑦 dependence of the effective scattering potential
in (27) leads to a 𝜉 ∝ 𝑘−4𝑦 (or sin−4𝜃) behavior, whereas in
addition to the 𝑘2𝑦 scattering term, (28) has another scattering
term 𝑘𝑦Ψ∑𝑁+1𝑖=1 𝑈𝑖𝛿(𝑢 − 𝑢𝑖) located at all N+1 interfaces. This

interface term dominates at small 𝑘𝑦 and lead to a 𝜉 ∝ 𝑘2𝑦
(or sin−2𝜃) behavior. The sudden drop of 𝜉 near𝑊𝑐 = 𝐸 for
pseudospin-1 systems can be understood from the diverging
behavior of the scattering terms in (27)when |𝐸−𝑈(𝑢)| < |𝑘𝑦|
in some layers. In this case the waves become evanescent
inside those layers. When𝑊 exceeds the critical value𝑊𝑐 =𝐸, the probability of having evanescent waves goes down
as 𝑊 increases. Meanwhile, the scattering potentials in the
propagating layers are weakened in general, as can be seen
from the scattering terms in (27).Thus, the localization length
goes up with increasing𝑊. However, such a sudden drop of
localization length is smeared out by the additional interface
scattering terms in (28) so that a smooth crossover from the
localization length decreasing behavior to an increasing one
is found for pseudospin-1/2 systems.

Analytical solutions obtained from the surface Green
function (SGF) method [52] show that for pseudospin-1
systems, when 𝑊 > 𝐸, the evanescent waves emerge and
contribute to 𝛾 a sin2𝜃 term, which dominates over the sin4𝜃
term from propagating waves, resulting in the transition
of the 𝜃-dependence shown in Figure 6. For pseudospin-
1/2 systems, both evanescent and propagating waves give a
sin2𝜃 dependence in 𝛾, leading to the same asymptotic 𝜃-
dependence for all𝑊s [52].

The 2D transport properties of pseudospin-1 waves also
have unique features. The scattering of pseudospin-1 waves
from a circularly symmetric potential barrier has been stud-
ied [53, 54]. For the case of 2D PCs, such a potential barrier
can be realized by changing the length scale in a selected
circular domain. Many interesting scattering properties of
pseudospin-1 waves from such a circular potential barrier
have been predicted theoretically, including perfect caustics,
revival resonance, isotropic transport, and superscattering
[53, 54].

6. Conclusions

We have reviewed the realization of pseudospin-1 physics in
classical wave systems using 2D dielectric photonic crystals
possessing Dirac-like dispersions at k=0. The physics of
those systems near the Dirac-like point frequency can be
described by an effective pseudospin-1 Hamiltonian which
has three degrees of freedom, representing the projection
of the real space wave function to monopole and dipole
excitations. A photonic potential which can shift the Dirac-
like cone rigidly can be realized simply by changing the length
scale of the dielectric PCs. Due to the unique Dirac-like
conical dispersion, waves in pseudospin-1 systems interact
with external potentials in unusual ways, leading to many
exotic transport properties. We have also reviewed a number
of unusual pseudospin-1 wave transport phenomena, includ-
ing super Klein tunneling, supercollimation, and uncon-
ventional Anderson localization. Without the requirements
of extremely low temperature and atom manipulation, the
fabrication of photonic systems is much easier than that for
ultracold-atom and electronic systems. With the recent rapid
progress of modern microelectronic technologies, one can
now achieve long enough coherent length to form complex
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junctions, especially in the microwave regime. Also, the
absence of complex interactions between photons facili-
tates the advances of theories and makes the experimental
observations and characterizations much easier. With the
rapid development of the field of pseudospin-1 physics,
there emerge lots of interesting phenomena, such as the
superscattering of pseudospin-1 waves from a circular poten-
tial barrier [54], perfect caustics inside a circular barrier
[53], current enhancement induced by the flat band in
nonequilibrium transport of pseudospin-1 particles [55], and
nonuniversal long-wavelength critical behavior of Anderson
localization [51]. We expect that photonic crystals can be
a good platform to test experimentally these theoretical
predictions of pseudospin-1 physics. The demonstration of
the above features of pseudospin-1 systems may provide us
novel ways in controlling the propagation of pseudospin-1
particles, leading to possible applications in optical circuits
and optical imaging beyond the diffraction limit.
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