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Abstract 

Finite Element Analysis of Cyclic Normal and Sliding Contact of Elastic-Plastic Homogeneous 

and Layered Half-Space Media – Effects of Interfacial Properties and Topography on 

Deformation Behavior 

By 

Jialiang Cen 

Doctor of Philosophy in Engineering – Mechanical Engineering 

University of California, Berkeley 

Professor Kyriakos Komvopoulos, Chair 

Fundamental understanding of contact interactions between two surfaces is of paramount 

importance as surface-surface contact phenomena can be found in a wide range of applications, 

such as microelectromechanical systems (MEMS), wire bonding in electronic packaging, total 

joint replacements (TJR), oscillating-slide actuators, bolted and riveted joints, shroud and 

snubber in turbine blades, and components operating in a microgravity environment. As result of 

contact interactions, material loss occurs and can lead to undesirable outcomes. Therefore, the 

primary objective of this dissertation was to develop a finite element method (FEM) based 

framework to investigate the effects of cyclic normal and shear (friction) traction, coefficient of 

friction, and surface topography on material damage, removal rate, and failure mechanisms. 

First, the problem of a rigid flat and a patterned surface pressed against an elastic-plastic 

half-space exhibiting isotropic strain hardening was analyzed using the FEM to elucidate the 

development of plasticity. Simulation results in dimensionless form were obtained and discussed 

to illuminate the effects of geometry, imprint depth, and coefficient of friction on the evolution of 

plasticity. The deformation due to the impression of the patterned surface was largely affected by 

the interaction of the stress and strain fields produced by neighboring protrusions, resulting in a 

three-stage normal force response. Examination of plastic flow of the half-space material into the 

pattern cavities revealed that cavity filing became prominent with increasing protrusion distance 

of the patterned surface and decreasing coefficient of friction. This study introduced a 

computational methodology for fine-tuning key design and process parameters aimed to enhance 

the efficiency of metal imprinting. 

Next, a plane-strain FEM model of a rigid cylinder in reciprocating sliding contact with 

an elastic-plastic half-space exhibiting isotropic strain hardening was introduced to investigate 

plasticity-induced damage leading to material loss in oscillatory sliding contact. By incorporating 

a quasi-static, isothermal damage model based on a ductile material failure criterion into the 

developed FEM model, plasticity-induced cumulative damage was tracked in terms of a 

dimensionless damage parameter. Numerical results yielded insight into the effects of normal 

load and coefficient of friction on material loss due to the accumulation of plasticity with 

oscillation cycles. Specifically, plastic deformation and wear increased with the number of cycles 

and coefficient of friction due to the intensification of plastic shearing. A non-monotonic increase 
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of wear with normal load was observed, which was explained by the distribution of plastic shear 

strain produced under high- and low-load oscillatory sliding conditions and the decrease of the 

fraction of contact area where slip occurred with the increase of the normal load. The developed 

computational methodology for exploring the evolution of plasticity, damage, and material loss 

in reciprocating sliding contacts is an effective tool for assessing the effects of load, friction, and 

material behavior on the mechanical performance of mechanical systems with components 

experiencing oscillatory contact. 

Although most engineering surfaces are nominally smooth, they demonstrate random 

roughness over a wide range of nano/micro-scales. Henceforth, it is imperative to develop 

numerical models of the material removal rate for engineering interfaces undergoing reciprocating 

sliding that take into account the effect of the interface topography. To this end, an elastic-plastic 

contact mechanics analysis of an isotropic strain hardening half-space in oscillatory sliding contact 

with a rigid surface exhibiting multi-scale roughness characterized by fractal geometry was 

performed with the FEM. Cumulative damage was tracked by a dimensionless damage parameter 

and material stiffness degradation was modeled by a degradation parameter depending on fracture 

energy. Aside from the subsurface stress and plastic strain fields, the effects of fractal parameters 

(roughness) on the material removal rate were investigated. Contrary to the classical wear law, 

which predicts a liner dependence of wear rate on normal load, the material removal rate was found 

to exhibit a nonlinear dependence on normal load due to the occurrence of material interlocking 

introduced by the increase of surface conformity and the evolution of material loss. The developed 

model can be used to perform parametric studies of the material loss in mechanical devices 

operating in reciprocating sliding contact mode. 

Delamination is a common failure process in layered materials. Thus, to provide insight 

into this fundamental problem, a contact mechanics analysis of interfacial delamination in elastic 

and elastic-plastic homogeneous and layered half-spaces in sliding contact was performed. A 

surface-based cohesive zone model was implemented in the FEM analysis to model surface 

separation at the interface. Complete delamination was determined by the critical separation 

distance of interfacial node pairs in mixed-mode loading based on a damage initiation criterion, 

exemplified by a quadratic relation of the interfacial normal and shear tractions. Linear stiffness 

degradation was accounted for by a scalar degradation parameter based on the effective separation 

distances corresponding to the critical effective cohesive strength and the fully degraded stiffness, 

defined by a mixed mode loading critical fracture energy criterion. Numerical results of the 

delamination profiles, stress fields, and plastic strain in both the surface layer and underlying half-

space illuminated the effects of indentation depth and sliding distance on interfacial delamination 

for different combinations of elastic-plastic properties, cohesive strength, and layer thickness. The 

introduced model provides a capability for analyzing plasticity-induced cumulative damage in 

multilayered structures. 

  The investigations comprising this dissertation provide fundamental understanding of the 

evolution of stresses, plasticity, material loss, and delamination in contact surfaces subjected to 

normal loading, sliding, and small-amplitude oscillatory contact. The computational models of 

this work can be extended to study material loss (wear) in various applications involving contact 

interfaces, such as MEMS, TJR, and high-efficiency gas turbines. 
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CHAPTER 1 

Introduction 

Contact mechanics is an important branch of solid mechanics dealing with the deformation 

behavior of solid bodies experiencing surface-to-surface interactions under the influence of 

external loads (i.e. friction) and/or internal loads (i.e. gravity). Various contact mechanics 

approaches have been used to analyze and tune design performance for a wide range of 

applications involving mechanical systems with contact elements, including (but not limited to) 

electromechanical relays and sensors, artificial knee and hip implants where the femoral head and 

polymer liner are in direct contact under the applied normal and sliding load, hard-disk drives 

where data storage reliability can be greatly affected by microscopic surface damage due to 

intermittent microscopic contacts at the head-disk interface, high-power gas turbines whose 

efficiency and longevity are affected by fretting wear, such as that due to shroud and snubber 

contact with the turbine blade, and various surface measurement techniques where direct contact 

of a probe is used, such as surface profilometry and atomic force microscopy (AFM).  

Early analysis of contact systems was mainly focused on elastic material behavior. Hertz 

(1882) demonstrated an ellipsoidal distribution of contact pressure resulting in elastic displacement 

and elliptical contact area in two elastic solids. However, the Hertzian contact theory was quite 

limited to perfectly elastic materials and frictionless contact conditions. Intensive efforts to analyze 

stick-slip, friction, and plasticity in various contact problems were encountered during the past 100 

years or so. Small-amplitude reciprocating sliding is called fretting. This process affects the 

performance of many contact-mode mechanical elements, endangering functionality and durability. 

Cattaneo (1938) and Mindlin (1949) pioneered the first contact analyses of elastic bodies subjected 

to both normal and tangential loads and showed a deviation of the deformation from that predicted 

by Hertz theory. Later, stick-slip phenomenon, comprising a circular stick zone surrounded by an 

annulus slip zone in elastic contacts, was investigated by Mindlin and Deresiewcz (1953), and 

fretting maps in which the fretting process was partitioned into stick regime, mixed stick-slip 

regime and gross slip regime were presented by Vingsbo and Söderberg (1988). In addition to 

friction due to adhesion in elastic contacts subjected to light loads, Komvopoulos et al. (1986) 

obtained an analytical expression for plowing friction to account for high normal load and full 

plastic deformation of a rigid sphere sliding over a rigid perfectly plastic half-space. 

The early surface contact studies established the field of contact mechanics and motivated 

the investigation of challenging contact problems. In recent years, the advancement of 

computational capabilities in conjunction with powerful numerical methods, such as the finite 

element method (FEM), impelled the analysis of more complex elastic-plastic contact problems. 

For example, Komvopoulos and Choi (1992) performed an FEM analysis of multi-asperity elastic 

microcontacts, which elucidated the interaction of the stress/strain fields of neighboring asperities, 

and Riccardi and Montanari (2004) used the FEM to analyze the indentation of an elastic-perfectly 

plastic substrate by a rigid flat cylindrical punch and predicted the high stresses and plastic strains 

arising at the contact edge. Failure of materials can occur via different mechanisms, such as 

excessive plasticity leading to the removal of material (wear) and interfacial delamination in 

layered media. The loss of material in the form of wear debris may result from various mechanical 

processes, such as surface scratching (Elwasli et al., 2015) and strong adhesion at the contact 

interface (Zhang and Etsion, 2021). Interfacial delamination may occur even in an initially uniform 
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material after strain hardening of its near surface region due to the applied surface tractions. FEM 

modeling with incorporated a cohesive zone model (CZM) has been used to study interfacial 

delamination in a coated substrate subjected to indentation loading (Liu and Yang 2012) and 

interlaminar/intralaminar delamination in a laminated composite under impact loading (Soroush 

et al., 2018). 

The main objective of this dissertation was to develop a computational framework for 

modeling contact mechanics problems of elastic-plastic half-spaces in contact with nominally 

smooth rigid surfaces or surfaces exhibiting multi-scale roughness (fractal behavior) under the 

effects of normal (indentation) and tangential (friction) loadings. Specifically, plasticity evolution 

leading to damage accrual and eventual material removal and its relationship with other physical 

parameters were elucidated with the incorporation of plasticity-based material damage models. 

Additionally, the implementation of CZM modeling into FEM analysis provided an effective 

computational approach for investigating how delamination commences in elastic and elastic-

plastic materials.  

This dissertation is organized into six chapters as follows.  

Chapter 2 presents a quasi-static plane-strain FEM analysis that sheds light into the 

evolution of plasticity in an elastic-plastic strain-hardening half-space indented by a rigid flat or 

patterned surface. Since the element size was the determining factor for accurate contact pressure 

distribution and normal load at the given vertical displacement, a mesh refinement study was first 

carried out for a rigid flat indenting an elastic half-space. The resulting contact pressure 

distribution is compared against an analytical solution to ensure the adequacy of the mesh. A 

parametric study was conducted for incremental vertical displacements and the resulting stress and 

plastic strain fields in conjunction with the evolution of the normal force for flat and patterned 

surfaces were examined. The effects of geometric factors, such as side wall angle in the flat surface 

and protrusion spacing and cavity filling in the patterned surface, and the coefficient of friction on 

the normal force response and the development of stress and strain fields are interpreted in the 

context of numerical results. Since the high plasticity regions could likely lead to material failure, 

a constitutive model accounting for material damage leading to the removal of material was 

introduced in the FEM model. 

Chapter 3 provides a quasi-static plane-strain FEM analysis that elucidates the evolution 

of plasticity and material removal in an elastic-plastic half-space due to reciprocating sliding 

against a rigid surface. The strain hardening material was used and a plasticity-based ductile 

damage model was incorporated into the constitutive model to simulate the material loss by 

removing the fully damaged element. A dimensionless plastic-strain-based damage parameter was 

used for tracking damage accumulation in the elements. Once this damage parameter reached unity 

in an element, a linear stiffness degradation process was instigated, which was controlled by a 

dimensionless degradation parameter that increased from 0 to 1, at which juncture, the element 

was removed from the finite element mesh. Results are presented to elaborate the effects of normal 

load, oscillation cycles, and coefficient of friction on the penetration depth, development of 

plasticity, removal of material, and plastic and wear areas. The wear area is shown to exhibit a 

nonlinear dependence on normal load, in contrast to Archard’s classic wear law, which is explained 

by considering the evolution of plastic shear strain under low- and high-load oscillation conditions. 
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Chapter 4 encompasses a quasi-static plane-strain FEM analysis of the fretting process for 

the case of an elastic-plastic half-space in contact with a rough rigid surface exhibiting fractal 

behavior. The analysis is based on the same constitutive models for strain hardening, material 

damage, and material degradation used in Chapter 3. Fractal geometry possesses scale-invariant 

properties, such as continuity, non-differentiability, and self-affinity, which are related to the 

intrinsic physical laws that govern the generation of surfaces. Fractal geometry was introduced by 

Mandelbrot (1967) to describe the irregularity and disorder of objects and was later implemented 

in contact mechanics studies to describe the topography of contact surfaces (Majumdar and 

Bhushan, 1990, 1991; Wang and Komvopoulos, 1994a, 1994b, 1995; Komvopoulos, 2020). The 

effects of fractal parameters, applied normal load, and oscillation cycles on the development of 

subsurface stresses and plastic strains are discussed in the light of numerical results obtained in 

dimensionless form. The material removal rate demonstrated a nonlinear dependence on normal 

load, in contradiction with Archard’s classical wear law, attributed to the effects of surface 

conformity and mechanical interlocking of the fractal surface with strain hardened material, 

leading to the decrease of the loss of material. 

Chapter 5 is dedicated to material failure due to interfacial delamination in homogeneous 

and layered elastic-plastic half-spaces exposed to the normal and tangential tractions applied by a 

rigid surface. A surface-based CZM is implemented in a quasi-static FEM analysis to simulate 

nodal separation at the delamination interface when the prescribed fracture energy dependent 

separation condition is satisfied. The effects of indentation depth, sliding distance, and cohesive 

strength between the layer and the half-space on the delamination process are first examined for 

the case of a homogeneous half-space to establish a basis for reference. The effects of material 

property mismatch on the evolution of delamination in an elastic layered half-spaces is examined 

next. It is shown that stress intensification in the surface layer is a key factor in promoting 

interfacial delamination. A nonlinear increase of the delaminated interfacial area with increasing 

layer-to-substrate yield strength ratio is predicted, which is explained by the evolution of the stress 

field in the layer. In addition, a relationship between the layer thickness and interfacial 

delamination area is obtained for various yield strength ratios. 

Chapter 6 includes the conclusions of the dissertation accompanied by a summary of the 

main findings of each chapter and an outline of potential future studies based on the computational 

models developed in this work.  
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CHAPTER 2 

On the mechanics of metal imprinting by nominally flat and patterned rigid surfaces 

2.1. Introduction 

Engraving a surface pattern on a solid body is of particular significance in several 

engineering and biotechnology fields, optoelectronics, haptic technology, arts, and cosmetics. One 

of the most common engraving processes is imprinting, also referred to as stamping when a sheet 

metal is forced into a rigid cavity. In this process, a rigid tool (template) is pressed against a soft 

substrate, causing it to plastically deform and attain a desired surface topology. Recent advances 

in tool patterning methods, such as lithography and chemical etching, have created opportunities 

for imprinting patterns of various length scales on metallic substrates, thereby modifying their 

surface properties and functionality. For example, the optical, friction, and gripping characteristics 

of a metal surface can be altered by stamping surface patterns exhibiting hierarchical architectures. 

It is theorized that exceptional surface properties can be obtained through functional adaptation of 

the surface structure at all length levels of hierarchy. However, multi-level patterning of metal 

surfaces by imprinting requires thorough insight into the effects of key process parameters (e.g., 

pattern geometry and applied pressure) and the deformation behavior of the imprinted material on 

the process efficacy. Accordingly, to accomplish this objective, it is necessary to illuminate the 

basic mechanics of metal imprinting. 

One of the commonly used methods to alter the macroscopic shape of metallic parts is 

metal stamping (Lim et al., 2014). The high utility of this process has motivated numerous 

computational studies, mainly based on the finite element method (FEM), for elucidating the 

intricacies of the metal stamping process. For instance, Wang and Budiansky (1978) used an FEM 

model to analyze sheet metal stamping by arbitrarily shaped punches and found fair agreement 

between numerical and experimental results for hemispherical punch stretching. Oh (1982) 

proposed a rigid-viscoplastic FEM formulation for metal forming analysis, while Chandra (1986) 

introduced an elastic-viscoplastic FEM analysis for problems involving large strains and 

investigated frictional effects at the punch and die interfaces on the process characteristics. Ghosh 

and Kikuchi (1988) presented a thermomechanical FEM analysis of sheet metal forming that uses 

a time-dependent elastic-viscoplastic constitutive law to model the metal flow behavior at elevated 

temperatures. Zimniak and Piela (2000) performed thermomechanical FEM simulations of the cup 

stamping process by a square punch and observed good agreement with experimental findings. 

Kim et al. (2001) proposed a sensitivity and optimization analysis for designing the die shape in 

metal stamping that is based on a Lagrangian formulation and reported excellent agreement with 

sensitivity results obtained with the finite difference method.  

The use of a master surface (template) to controllably modify the microscale topology of a 

metal surface has been proven to be a potent technique in surface engineering (Xia and Lim, 2010). 

However, conversely to macroscale metal stamping, the majority of significant developments in 

micro/nanoscale stamping technologies, particularly imprinting, have been realized with 

polymeric materials. When a polymer is compressed by a hard patterned surface, the imposed 

deformation causes the polymer to gradually flow into the surface cavities and permanently acquire 

the topology imposed by the patterned surface after photo-induced curing (Traub et al., 2016). 

Pourdavoud et al. (2017) employed surface patterning to create nanofeatures on organo-metal 
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halide perovskites for photonic devices. Hirai et al. (2001, 2004) studied the effects of applied 

pressure and height-to-volume cavity ratio on nanoimprint lithography and reported high stress 

concentrations at the cavity corners and an increase of the pressure needed to completely fill the 

cavities with increasing height-to-width cavity ratio. Zhou and Komvopoulos (2005) examined the 

effect of loading rate on polymer imprinting and introduced a mechanistic model that explains the 

viscoplastic flow of a polymer into the pattern cavities. Shiotsu et al. (2014) employed a fracture 

mechanics approach to study the separation of a hard mask from an imprinted polymer surface 

during unloading and observed friction-induced stretching of the polymer in the cavities before the 

instigation of interface cracking at the cavity corners, followed by crack growth along the side wall 

up to the top of the cavity during the detachment of the mask.       

Contrary to polymeric materials, basic understanding of metal imprinting at the microscale 

is relatively sparse and largely empirical. Aizawa et al. (2014) devised a surface patterning method 

for imprinting high aspect ratio microcavities on aluminum with a diamondlike carbon-coated die 

and examined the effects of friction and incremental normal loading on cavity depth. Choi et al. 

(2017) developed an imprinting method for direct metal-to-metal patterning that uses a master 

stamp engraved with square nickel micropillars to form submicron square cavities on 

electrochemically polished pure aluminum at room temperature. Yamamoto and Kuwabara (2008) 

developed a form rolling process for imprinting microgrooves onto metal surfaces and reported 

high pattern transcription quality. La et al. (2020) developed a metal-to-metal micro/nanoscale 

imprinting process that utilizes heat to augment the pattern transcription onto a metal substrate. In 

addition to experimental studies, numerical analyses have also performed to provide insight into 

the mechanics of the imprinting process at small scales. Riccardi and Montanari (2004) used an 

FEM model to analyze the indentation of an elastic-perfectly plastic material by a flat cylindrical 

rigid punch and observed the development of high stresses and plastic strains at the punch edge, a 

rapid stress decay with increasing distance from the contact edge, and the formation of plastic 

shear bands at 45o from the surface plane. These investigators also examined the evolution of the 

plastic zone below the rigid indenter and the formation of a pile-up for a strain hardening material 

and the effect of friction on the normal force. Komvopoulos and Choi (1992) investigated the 

interaction of the stress fields generated in an elastic semi-infinite solid by a rigid surface 

consisting of an array of spherical protrusions and predicted a critical distance below which the 

effect of neighboring deformation becomes significant. In a series of contact mechanics studies of 

elastic-plastic patterned media, Gong and Komvopoulos (2004a, 2004b) examined the effect of 

the pattern geometry (meandered or sinusoidal) on the resulting deformation and stress fields and 

the propensity for crack initiation due to applied mechanical and thermal (friction) surface tractions. 

Xu et al. (2014) used the FEM to study the compression of isotropic hardening aluminum by a flat 

punch and reported the development of high stresses at the contact edge, extending into the 

substrate at 45o from the surface normal.  

The objective of the present study was to provide a comprehensive mechanics analysis of 

metal imprinting and obtain solutions of important process parameters in dimensionless form. 

Using a rigid, flat surface as the control geometry, the effects of surface pattern geometry (i.e., 

shape, size, and spacing of meandered surface protrusions), coefficient of friction, and penetration 

depth on the normal force, energy dissipation, and plastic flow behavior of an elastic-plastic 

substrate material exhibiting isotropic strain hardening were examined in the context of finite 

element simulations. The numerical results presented below illuminate the importance of the 

plastic flow behavior of the deformed material in metal imprinting and pave the way for further 
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extending this modeling work to examine other important effects, such as more complex pattern 

geometries, oscillatory movement at the template/substrate interface, frictional heating, substrate 

temperature, and other stress-stain constitutive laws.   

2.2. Simulation Procedure 

2.2.1. Finite element modeling 

Figure 2.1 shows the quartered FEM model of a substrate (𝑤 × 𝑡 × 𝑙 = 150 × 300 ×
200 μm) and a flat template (𝑎 = 𝑏 = 𝑐 = 50 μm) with vertical (𝜃 = 90o) side walls. Due to 

symmetry, only a quarter of the contact geometry needs to be analyzed. The template edges are 

rounded off to a radius of curvature equal to 5 m to prevent the excessive distortion of adjacent 

substrate elements during the deformation and also because ideally sharp corners are unrealistic. 

The nodes at the bottom boundary of the mesh (𝑧 =  −𝑡) are fully constrained, whereas the nodes 

at the left (𝑦 = 0) and right (𝑦 = 𝑙) boundaries are fixed in the 𝑦-direction. To account for the large 

strain gradients in the vicinity of the contact interface, the mesh adjacent to the template/substrate 

interface is refined with 2-m-size elements. To enhance the computational efficiency, the near-

surface mesh that does not come into contact with the template is refined with 4-m-size elements, 

whereas the bulk of the substrate is meshed with 20-m-size elements. The substrate is discretized 

by 100,700 8-node cubic elements with 109,080 nodes, of which 50% are allocated to the surface 

regions, whereas 5,942 10-node tetrahedral elements with 9,071 nodes are used to mesh the flat 

template.  

 

Figure 2.13 Finite element mesh of a substrate in contact with a flat surface. 

Surface contact is simulated with a finite sliding algorithm that treats the deformable 

substrate and the rigid surface as slave and master surfaces, respectively, and controls the relative 

separation and slip between the interacting surfaces. When a slave node comes into contact 

anywhere along the master surface, it is constrained to slide along that surface by the algorithm, 

which tracks the position of the slave node relative to the master surface during contact 

𝑎 

𝑐 

𝑏 

𝑡 

𝑙 

𝑤 

𝑧 

𝑦 𝑥 
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deformation. The finite sliding algorithm was implemented in the present FEM analysis by means 

of automatically generated contact elements. At each integration point of a contact element, the 

overclosure was adjusted to inhibit that point on the deforming surface to penetrate the rigid 

surface and the relative shear slip was computed afterwards.  

To determine an appropriate mesh refinement, the plane-strain contact problem of a rigid 

flat punch in frictionless normal contact with an elastic half-space discretized by various mesh 

sizes was analyzed and numerical solutions of the contact pressure distribution were compared 

with the analytical solution given by (Johnson, 1985) 

𝑝(𝑦) =
𝑃

𝜋𝑎
[1 − (

𝑦

𝑎
)

2

]
−1/2

   ,                                                              (2.1) 

where 𝑃 is the normal force per unit length in the x-direction and 𝑦 is the distance from the center 

of contact. Figure 2.2 shows a comparison between FEM results of the contact pressure distribution 

at 𝑥 = 0 for refined meshes adjacent to the substrate surface with an element size equal to 2 and 4 

m and the analytical solution for 𝑃 = 0.1 N/m and substrate elastic modulus and Poisson’s ratio 

equal to 70 GPa and 0.35, respectively. The good agreement of the variation of the contact pressure 

with the dimensionless distance �̅� = 𝑦/𝑎 obtained with the two FEM meshes and the theoretical 

solution validates the selection of a refined mesh with 2-m-size elements and confirms the 

applicability of the modeling assumptions. 

 

Figure 2.14 Comparison of analytical (Hertz) and FEM solutions of the contact pressure distribution along the plane 

of symmetry (𝑥 = 0) for an elastic substrate compressed by a rigid flat punch. 

Figure 2.3 shows the FEM model of a patterned template b × c × 𝑙 = 50 × 40 × 200 μm 

with protrusion edges rounded off to a radius of curvature equal to 5 m in contact with the same 

substrate as that shown in Fig. 2.1. Because the 𝑥 = 0 plane is a symmetry plane, only half of the 

contact geometry has to be modeled. Because the objective was to analyze the effect of neighboring 

protrusions on the deformation behavior, only a unit cell of the geometry is modeled, i.e., one 

protrusion between two half-width protrusions. The patterned template is meshed with ~20,000 
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10-node tetrahedral elements having 29,598 nodes. Likewise with the flat template/substrate model, 

the pure master-slave option is used to simulate surface contact. Similar to the previous FEM 

model, the nodes at the left (𝑦 = 0) and right (𝑦 = 𝑙) boundaries of the mesh are fixed in the 𝑦-

direction, whereas the nodes at the bottom boundary of the mesh (𝑧 = −𝑡) are fully constrained.  

 

Figure 2.15 Finite element mesh of a substrate in contact with a patterned surface. 

All FEM simulations were performed in displacement-control mode, i.e., the indenting 

rigid template was quasi-statically advanced towards the stationary substrate up to a maximum 

normal displacement 𝑑 =  10 and 15 m for the nominally flat and patterned templates in 

approximately 70 and 120 increments, respectively. Table 2.1 gives the magnitudes of geometric 

parameters and the coefficient of friction 𝜇 at the template/substrate contact interface used in the 

analysis. All of the FEM simulations were performed with the multi-physics code 

ABAQUS/Standard (implicit solver). 

2.2.2. Elastic-plastic material behavior 

The substrate is modelled as an isotropic strain hardening material obeying the following 

constitutive law:  

𝜎 = 𝐸𝜀     (𝜎 < 𝜎𝑌)                                     (2.2a) 

 𝜎 = 𝐾𝜀𝑛   (𝜎 ≥ 𝜎𝑌)                                                          (2.2b) 

where 𝜎 is the true stress, 𝜀 is the true strain, 𝐸 is the elastic modulus, 𝜎𝑌  is the yield strength, 𝐾 

is the strength coefficient, and 𝑛 is the strain hardening exponent. The mechanical properties of 

the substrate given in Table 2.2 are typical of aluminum (Rashad et al., 2015). The strain hardening 

exponent 𝑛 was assumed to be equal to the ultimate strain 𝜀𝑢. Consequently, the strain hardening 

coefficient was computed in terms of the ultimate strength 𝜎𝑢 and corresponding ultimate strain 

𝜀𝑢 by 𝐾 ≈ 𝜎𝑢/𝜀𝑢
𝑛.  
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Yielding is determined by the von Mises yield criterion, given by  

     𝜎eq = (
3

2
𝑆𝑖𝑗𝑆𝑖𝑗)

1/2

= 𝜎𝑌       (3) 

where 𝜎eq is the von Mises equivalent stress and 𝑆𝑖𝑗  are components of the deviatoric stress tensor.  

The evolution of plasticity is traced by the equivalent plastic strain 𝜀eq
𝑝

, given by 

   𝜀eq
𝑝 = ∫ (

2

3
𝑑𝜀𝑖𝑗

𝑝 𝑑𝜀𝑖𝑗
𝑝 )

1/2 

Ω
         (4) 

where Ω  is the strain path used to track the accumulation of plasticity and 𝑑𝜀𝑖𝑗
𝑝

  denotes plastic 

strain increments.  

 
Table 2.1 Geometrical parameters and coefficient of friction used in the FEM simulations. 

Indentation depth of flat surface, 𝑑 10 μm 

Indentation depth of patterned surface, 𝑑 15 μm 

Side wall angle, 𝜃 60°, 75°, 90° 

Protrusion distance, 𝑠 25, 50, 75 μm 

Protrusion width, 𝑎 50 μm 

Protrusion height, ℎ 10 μm 

Coefficient of friction, 𝜇 0.1, 0.5, 0.7 

 

Table 2.2 Mechanical properties of the substrate material. 

 

 

Elastic modulus  𝐸 

(GPa) 

Yield strength 

𝜎𝑌 (MPa) 

Yield strain  𝜀𝑌 Poisson’s ratio          

𝜈 

Ultimate 

strength  

𝜎𝑢 (MPa) 

70 57 0.014 0.35 105 

Ultimate strain   𝜀𝑢 Strain hardening 

coefficient 𝐾 (MPa) 

Strain hardening 

exponent 𝑛 

Fracture strain    

𝜀𝑓 

 

0.115 135 0.115 0.18  
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2.2.3. Dimensionless parameters  

To present general solutions, the input and output parameters of the analysis are normalized 

by appropriate quantities. Thus, the dimensionless von Mises equivalent stress and equivalent 

plastic strain are defined by 𝜎eq = 𝜎eq/𝜎𝑌
′   and 𝜀e̅q

𝑝 = 𝜀eq
𝑝 /εmax

𝑝
 , where 𝜎𝑌

′   is the current yield 

strength (i.e., the stress at the current strain on the strain hardening curve) and  εmax
𝑝

  is the 

maximum plastic strain at the current step. In addition, the dimensionless normal force and elastic, 

plastic, and friction energies are given by �̅� = 𝑃/(𝐴𝑎𝜎𝑌
′ ), �̅�𝑒 = 𝑊𝑒/𝑊, �̅�𝑝 = 𝑊𝑝/𝑊, and �̅�𝑓 =

𝑊𝑓/𝑊, respectively, where 𝐴𝑎  is the apparent contact area and 𝑊 is the total work. Finally, the 

dimensionless normal displacement, protrusion spacing, maximum equivalent plastic strain, and 

fraction of cavity area (volume) filled by the substrate material are defined by �̅� = 𝑑/𝑎  (flat 

surface) or 𝑑/ℎ (patterned surface), �̅� = 𝑠/𝑎, 𝜀e̅q,max
𝑝 =  εeq,max

𝑝 /𝜀𝑓 , and �̅� = 𝐴𝑐
′ /𝐴𝑐, respectively, 

where 𝜀𝑓 is the fracture strain, 𝐴𝑐
′  is the cross-sectional cavity area filled by the deformed substrate 

material, and 𝐴𝑐 is the apparent cross-sectional area of the cavity. 

2.3. Results and discussion 

2.3.1. Imprinting by a flat surface  

Figure 2.4 shows isostress contours of the dimensionless equivalent plastic strain 𝜀e̅q
𝑝  and 

von Mises equivalent stress 𝜎eq before and after full unloading for 𝜃 = 90o, �̅� = 0.25, and 𝜇 =

0.1 . The large plastic strains at the contact edge and especially the corners of the residual 

impression (Fig. 2.4(a)) are due to the high stress concentrations at these regions (Fig. 2.4(b)) that 

produce large stress and strain gradients at the perimeter of the impression. The development of 

high stresses at the contact edge and corners of the impression is consistent with the analytical and 

FEM results shown in Fig. 2.2. High stresses at the contact edge developed with the instigation of 

loading and spread into the substrate at 45o from the surface normal as the load was increased, 

consistent with other studies (Riccardi and Montanari, 2004; Xu et al., 2014), causing severe 

plastic shearing of the substrate material against the edge and side walls of the rigid template. 

When the template was withdrawn, the plastic zone around the impression inhibited the full release 

of the elastic strain energy accumulated in the surrounding elastic zone, resulting in high localized 

residual stresses at the edge and corners of the impression and material pile-up around the 

impression (Fig. 2.4(c)). High residual stresses can significantly affect the mechanical behavior of 

the imprinted material (Xing and Lu, 2004) and degrade the quality of the imprinted surface in 

subsequent material processing (e.g., deburring and planarization). The pile-up geometry is 

controlled by the plastic flow of material around the contact edge and against the side walls of the 

flat template.   
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Figure 2.16 Dimensionless strain and stress results for an elastic-plastic substrate indented by a rigid flat surface 

(𝜃 = 90𝑜, �̅� = 0.25, and 𝜇 = 0.1): (a) equivalent plastic strain 𝜀�̅�𝑞
𝑝

; (b) von Mises equivalent stress 𝜎𝑒𝑞 , and (c) 

residual von Mises equivalent stress 𝜎𝑒𝑞  after full unloading.  

Figure 2.5 shows the variation of the dimensionless normal force �̅� with the dimensionless 

normal displacement �̅� and side wall angle 𝜃 for 𝜇 = 0.1. The force response reveals a two-stage 

deformation behavior influenced by the plastic flow of material adjacent to the template surface 

and the side wall angle. The linear increase of the normal force in the first deformation stage is 

illustrative of the elastic behavior of the deformed substrate. In the second deformation stage, the 

contact force increases gradually with the progression of plasticity in the vicinity of the template 

front. The deformation in this stage is characterized by the flow of material first sideways and then 

upwards, resulting in plastic shearing against the template’s edge and side walls and the formation 

of a pile-up. Thus, the force response in this deformation stage is predominantly controlled by 

plastic flow in the substrate and the template geometry. The latter effect is evidenced from the fact 

that the side wall angle affects the normal force only in the second deformation stage when the 

formation of a pile-up becomes pronounced. The increase of the normal force with decreasing side 

wall angle is attributed to the growth of the contact area due to the interaction of the pile-up 

material with the sloped side wall. The smaller the side wall angle, the larger the increase of the 

contact area due to the pile-up effect and, consequently, the higher the normal force to further 

deform the material. Because this effect was not observed with vertical side walls (𝜃 = 90o), the 

normal force for 𝜃 = 90o is solely due to the plastic flow of the material. 
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Figure 2.17 Dimensionless normal force �̅� versus dimensionless normal displacement �̅� for an elastic-plastic 

substrate indented by a rigid flat surface (𝜃 = 60𝑜, 75𝑜, and 90𝑜  and 𝜇 = 0.1). 

2.3.2. Imprinting by a patterned template surface 

Figure 2.6 shows isostress contours of the dimensionless von Mises equivalent stress 𝜎eq at 

the symmetry plane (𝑥 = 0) of the substrate due to surface imprinting by a patterned rigid template 

versus the dimensionless normal displacement �̅� for 𝜃 = 90o, �̅� = 1.0, and 𝜇 = 0.1. In the early 

stage of imprinting (Fig. 2.6(a)), the deformation below the protrusions of the patterned template 

is similar to that of the flat template (Fig. 2.4(b)), i.e., high stresses are localized at the protrusion 

edge and corners. However, as the imprinting process proceeds, the substrate material begins to 

flow into the cavities between the protrusions and the high stress pockets expand in the 45o 

direction below the contact surface (Fig. 2.6(b)), eventually joining each other to form a high stress 

band below each protrusion (Fig. 2.6(c)). After the patterned template is retracted, high residual 

stresses are produced in the near-surface region of the substrate just below the contact interface 

(Fig. 2.6(d)), in profound difference with the residual stress field generated by the flat template 

(Fig. 2.4(c)).  
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Figure 2.18 Distribution of dimensionless von Mises equivalent stress 𝜎𝑒𝑞  in the plane of symmetry (𝑥 = 0) for an 

elastic-plastic substrate indented by a rigid patterned surface (𝜃 = 90𝑜, �̅� = 1.0, and 𝜇 = 0.1): (a) �̅� = 0.56, (b) �̅� =
1.06, (c) �̅� = 1.50, and (d) �̅� = 0 (fully unloaded). 

Further insight into the deformation induced by the patterned template surface can be 

obtained in the light of the distribution of the dimensionless equivalent plastic strain 𝜀e̅q
𝑝

 at the 

symmetry plane (𝑥 = 0) of the substrate (Fig. 2.7(a)) and the isometric overview of the deformed 

substrate (Fig. 2.7(b)) for 𝜃 = 90o ,  �̅� = 1.50 , �̅� = 1.0 , and 𝜇 = 0.1 . Likewise with the flat 

template, the highest plastic strains are localized at the protrusion corners of the patterned template, 

where excessive plastic shearing occurs as the material is forced into the cavities (Fig. 2.7(b)). The 

foregoing deformation may lead to material transfer at those regions of excessive plastic shearing, 

contaminating the template surface and, consequently, degrading the imprinting quality. Figure 

2.7(c) shows the variation of the dimensionless maximum equivalent plastic strain 𝜀e̅q,max
𝑝

 with 

the dimensionless normal displacement �̅� for flat and patterned template surfaces, 𝜃 = 90o, and 

𝜇 = 0.1. While the slope of the 𝜀e̅q,max
𝑝

 curve of the patterned surface is initially larger than that 

of the flat surface, for a dimensionless normal displacement of the patterned surface �̅� > 1.0, the 

two curves exhibit equal slopes, implying similar deformation behavior. This trend is attributed to 

the progressive filling of the cavities, eventually leading to a patterned surface behavior similar to 

that of the flat surface. However, as shown in Fig. 2.7(a), complete filling of the cavities does not 

occur due to the existing geometric constraints and the plastic flow of the material, consistent with 

the findings of a previous study (Hirai et al., 2001). Nevertheless, it will be shown later that the 

fraction of unfilled cavity volume is small. Therefore, it may be inferred that for relatively large 

normal displacements the deformation behavior of the patterned template approximates that of the 

flat template.  
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Figure 2.19 Distribution of dimensionless equivalent plastic strain 𝜀�̅�𝑞
𝑝

 for �̅� = 1.50 (a) at the plane of symmetry 

(𝑥 = 0) and (b) in isomeric view, and (c) dimensionless maximum equivalent plastic strain 𝜀�̅�𝑞,𝑚𝑎𝑥
𝑝

 versus 

dimensionless normal displacement �̅� for an elastic-plastic substrate indented by a rigid patterned surface (𝜃 = 90𝑜, 

�̅� = 1.0, and 𝜇 = 0.1). 

It is noted that the equivalent plastic strain contours shown in Figs. 2.4(a) and 2.7 reveal 

the development of large plastic strain gradients in the vicinities of the substrate adjacent to the 

corners of the rigid template, which act as stress raiser points. The constitutive laws used in 

conventional plasticity theory, such as that used in the present analysis, do not include size effects. 

In microscale plasticity, however, metallic materials that are nonuniformly deformed into the 

plastic regime may exhibit a strong size effect, whereby the smaller the size the stronger the 
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material response. This has led to the development of various theories of strain gradient plasticity, 

which employ an internal material length scale to account for size effects in microscale plastic 

deformation (Fleck and Hutchinson, 1993; Fleck et al., 1994; Abu Al-Rub and Voyiadjis, 2004; 

Chakravarthy and Curtin, 2011). The present analysis can be extended to include size effects 

encountered at micron and submicron scales in metal imprinting by implementing in the analysis 

a constitutive law in which the yield stress exhibits a dependence on both strain and strain gradient.         

The deformation behavior of the patterned template surface can be further interpreted in 

terms of the energy characteristics of the problem at hand. Figure 2.8 shows the dimensionless 

elastic, plastic, and frictional work �̅�𝑒, �̅�𝑝, and �̅�𝑓, respectively, versus the dimensionless normal 

displacement �̅� for 𝜃 = 90o, �̅� = 1.0 , and 𝜇 = 0.1. As expected, the dominant deformation mode 

during the initial stage of imprinting is elastic. However, a sharp transition from elastic to plastic 

dominated deformation commences at a very small normal displacement (�̅� ≈ 0.02 ), beyond 

which the elastic and plastic works exhibit opposite trends. Thus, the elastic and plastic works 

demonstrate two-stage variation. The initial rapid increase of the plastic work is attributed to the 

accumulation of plasticity at the protrusion edges and corners, whereas the subsequent gradual 

increase is associated with the progressive filling of the cavities. In fact, the slope of the plastic 

work stabilizes at �̅� ≈ 0.8, consistent with the constant slope of 𝜀e̅q,max
𝑝

 for �̅� ≥ 1.0 (Fig. 2.7(c)). 

The extremely low frictional work dissipation is due to the low coefficient of friction (𝜇 = 0.1) 

and indicates the dominance of plasticity in imprinting processes involving low-friction and/or 

well-lubricated template/substrate material systems demonstrating low adhesion (Komvopoulos, 

2012). Another factor contributing to the very low frictional work is that relative slip at the 

template/substrate interface is mostly confined over a very small fraction of the contact area at the 

protrusion edges, partly due to the vertical side walls (𝜃 = 90o ), where localized excessive 

shearing guides the material into the cavities (Figs. 2.7(a) and 2.7(b)).    

 

Figure 2.20 Dimensionless elastic, plastic, and frictional work �̅�𝑒, �̅�𝑝, and �̅�𝑓, respectively, versus dimensionless 

normal displacement �̅� for an elastic-plastic substrate indented by a rigid patterned surface (𝜃 = 90𝑜, �̅� = 1.0, and 

𝜇 = 0.1). 
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Figure 2.9 illustrates the effect of the coefficient of friction on the imprinting behavior of 

a patterned template surface for 𝜃 = 90o and �̅� = 1.0. The force-displacement response shown in 

Fig. 2.9(a) reveals several important trends. First, the normal force is marginally affected by the 

variation of the coefficient of friction. This seemingly counterintuitive effect can be explained by 

considering the effect of friction on the contact intimacy at the template/substrate interface. For a 

given normal displacement, the contact area decreases with the increase of coefficient of friction 

because friction impedes the plastic flow of material and, consequently, filling of the template 

cavities. This is evidenced from the fact that the friction effect becomes notable only in the second 

stage of the imprinting process where the cavities are significantly filled with plastically deformed 

material. Thus, the slightly higher normal force for lower coefficient of friction is attributed to the 

establishment of a relatively larger contact area (due to the effect of cavity filling), requiring a 

higher normal force to further advance the template into the substrate. A second important 

observation is that the force-displacement response demonstrates a profound change in both slope 

and linearity at �̅� ≈ 1.2, implying a marked change in contact geometry, which is attributed to the 

substantial filling of the cavities. Indeed, as shown in Fig. 2.9(b), the cavity area ratio �̅� increases 

above ~0.8 in the dimensionless normal displacement range �̅� ≥ 1.2, with the rate of cavity filling 

and force slope both decreasing in this range. A third observation from Fig. 2.9(b) is that higher 

friction leads to less cavity filling, consistent with the indirect effect of the coefficient of friction 

on the normal force through the contact area discussed earlier. Evidently, as the contact area 

increases with the proliferation of cavity filling, a larger force is needed to push the template into 

the substrate. The gradual saturation of cavity filling is demonstrated by the progressively 

decreasing slope of the cavity area ratio with increasing normal displacement (Fig. 2.9(b)).  
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Figure 2.21 (a) Dimensionless normal force �̅� and (b) cavity area ratio �̅� versus dimensionless normal displacement 

�̅� for an elastic-plastic substrate indented by a rigid patterned surface (𝜃 = 90𝑜, �̅� = 1.0, and 𝜇 = 0.1, 0.4, and 0.7). 

Another important factor of the imprinting process is the lateral distance of the pattern 

protrusions. Figure 2.10 shows isostress contours of the dimensionless von Mises equivalent stress 

𝜎eq  for �̅� = 0.5 − 1.5 , �̅� = 0.5 − 1.5 , 𝜃 = 90o , and 𝜇 = 0.1 . The results reveal stress 

intensification with increasing normal displacement and decreasing protrusion lateral distance due 

to the strengthening interaction of the stress fields of neighboring protrusions. Consequently, the 

highest stresses in the substrate arise for �̅� = 1.5  and �̅� = 0.5  (Fig. 2.10(c)). However, for 

relatively small normal displacement and large protrusion spacing, the neighboring deformation 

effect becomes secondary and the stress field below each protrusion resembles that of a flat punch. 

Since the foregoing situation is observed for �̅� = 0.5 and �̅� = 1.5 (Fig. 2.10(g)), it may be inferred 

that for patterned surfaces with protrusions spaced apart by distances of ≳1.5 times the protrusion 
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width, the stress field below each protrusion is independent of the spatial distribution of the 

protrusions, consistent with the findings of another study (Komvopoulos and Choi, 1992). The 

interaction of the stress fields of neighboring protrusions can be further interpreted by considering 

the plastic flow of material flowing into the cavities. The protrusion distance controls the cavity 

volume and, in turn, the degree of cavity filling by plastically deformed material. Thus, for a small 

protrusion distance (e.g., �̅� = 0.5 ), the small cavity volume leads to premature filling, and the 

stress field remote from the template/substrate contact interface becomes uniform (Fig. 2.10(c)) 

similar to that of the flat surface. 

 

Figure 2.22 Distribution of dimensionless von Mises equivalent stress 𝜎𝑒𝑞  in the plane of symmetry (𝑥 = 0) for an 

elastic-plastic substrate indented by a rigid patterned surface (𝜃 = 90𝑜 and 𝜇 = 0.1): (a) �̅� = 0.5 and �̅� = 0.5, (b) 

�̅� = 1.0 and �̅� = 0.5, (c) �̅� = 1.5 and �̅� = 0.5, (d) �̅� = 0.5 and �̅� = 1.0, (e) �̅� = 1.0 and �̅� = 1.0, (f) �̅� = 1.5 and 

�̅� = 1.0, (g) �̅� = 0.5 and �̅� = 1.5, (h) �̅� = 1.0 and �̅� = 1.5, and (i) �̅� = 1.5 and �̅� = 1.5. 

The variation of the dimensionless normal force �̅�   and cavity area ratio �̅�  with the 

dimensionless normal displacement �̅�, shown in Figs. 2.11(a) and 2.11(b), respectively, provides 

further insight into the protrusion spacing effect on the imprinting process. For a small protrusion 

distance (i.e., �̅� = 0.5), the force-distance response is similar to that of the flat surface (Fig. 2.5), 

suggesting a secondary effect of protrusion spacing on global parameters, such as the normal force. 

However, larger protrusion distances (i.e., �̅� = 1.0 and 1.5) not only increase proportionally the 

normal force but also induce a transition to a rapidly intensifying force at �̅� ≈ 1.0 − 1.2. The sharp 

force increase beyond this critical normal displacement is attributed to the pronounced effect of 

cavity filling, which depends on the protrusion distance. As shown in Fig. 2.11(b), the filling rate 

of the cavities is significantly affected by the protrusion distance. While the filling of smaller 

cavities (�̅� = 0.5) increases moderately with the normal displacement, the larger cavities are filled 

up much faster, approaching saturation for �̅� > 1.5. Thus, the increase of the normal force with 
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the protrusion distance may be associated with the concomitant increase of the real contact area 

and the more prominent strain hardening due to the enhancement of material plastic shearing inside 

the larger cavities.  

 

Figure 2.23 (a) Dimensionless normal force �̅� and (b) cavity area ratio �̅� versus dimensionless normal displacement 

�̅� for an elastic-plastic substrate indented by a rigid patterned surface (𝜃 = 90𝑜, �̅� = 0.5, 1.0, and 1.5, and 𝜇 = 0.1). 

The transcription of the template geometry onto the substrate surface can be discussed in 

the context of the cavity area ratio results shown in Figs. 2.9(b) and 2.11(b). While increasing the 

normal displacement augments the replication of the template geometry on the imprinted surface, 

increasing the coefficient of friction and/or decreasing the protrusion spacing yields an opposite 

effect. This can be explained by considering the effect of friction on the plastic shear resistance of 

material sliding against the template surface and the dependence of cavity volume on protrusion 

distance discussed above. Specifically, higher friction hinders material flow into the cavities, 
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whereas a smaller protrusion distance reduces the free space for upward moving plastic material. 

These results suggest that coating the template surface with a lubricious film that reduces the 

adhesion of the interacting surfaces by increasing material incompatibility (Komvopoulos, 2012) 

or applying heat to enhance the flow ability of the substrate material by lowering its yield strength 

can greatly enhance the imprinting process. 

Figure 2.12 shows the effect of the protrusion lateral distance (or cavity volume) on the 

variation of the dimensionless maximum equivalent plastic strain 𝜀e̅q,max
𝑝  with the dimensionless 

normal displacement �̅� for 𝜃 = 90o and 𝜇 = 0.1. A solution of the flat surface is also shown for 

comparison. The increase of 𝜀e̅q,max
𝑝

  with �̅�  is consistent with the force results shown in Fig. 

2.11(a), that is, for fixed �̅� , 𝜀e̅q,max
𝑝

  increases with �̅� . Moreover, as the normal displacement 

increases, the slopes of the strain curves of the patterned surface approach that of the flat surface, 

consistent with the similar deformation behaviors of patterned and flat surfaces observed at 

relatively large normal displacements. 

 

Figure 2.24 Dimensionless maximum equivalent plastic strain 𝜀�̅�𝑞,𝑚𝑎𝑥
𝑝

 versus dimensionless normal displacement �̅� 

for an elastic-plastic substrate indented by a rigid flat or a rigid patterned surface (𝜃 = 90𝑜, �̅� = 0.5, 1.0, and 1.5, 

and 𝜇 = 0.1). 

In addition to metal imprinting, the present analysis has direct implications in other fields 

where knowledge of the mechanics of a patterned surface compressing a metallic surface is critical 

to the optimization of the material process. An illustrative example of an important application 

area is ultrasonic wire bonding, an indispensable method for manufacturing interconnects in the 

semiconductor industry (Long et al., 2017). In this process, a bonding tool with a patterned surface 

(typically V-shaped or nominally flat with a meandered surface micropattern) is used to grip onto 

a bonding wire of a soft metal like copper or aluminum. The oscillation of the patterned tool against 
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the metal wire under an applied load causes plastic flow of the wire into the tool cavities, 

establishing a strong grip which is critical to subsequent plastic shearing of the wire against the 

substrate to form a strong bond. Therefore, the quality of the bond depends strongly on the normal 

force, oscillation amplitude, and plastic flow of the metal wire into the tool cavities. The numerical 

methodology developed in this study can be easily extended to include oscillation at the 

template/substrate interface, heating due to sliding friction, energy dissipation in the form of plastic 

deformation and substrate heating, or even other types of constitutive stress-strain laws. A 

comprehensive analysis of the foregoing effects should be invaluable to the design of more 

efficient tools for metal imprinting and for optimizing the process via tactical tuning of key 

parameters. The effect of the oscillatory motion of a patterned template on the deformation 

behavior of a metallic substrate will be examined in a forthcoming publication.            

2.4. Conclusions 

The mechanics of metal imprinting by nominally flat and patterned surfaces was examined 

in the light of FEA simulations. A parametric analysis of numerical results in dimensionless form 

was used to elucidate the effects of surface pattern parameters on the mechanical behavior of the 

plastically deformed substrate material. In the case of flat-surface imprinting, high stresses and 

strains develop at the contact edge and corners of the rigid template, where the material exhibits 

excessive shearing and strain hardening. The evolution of the normal force comprises two 

deformation stages: an initial predominantly elastic response characterized by a large slope and a 

steady-state response dominated by plasticity where the normal force increases gradually with the 

progression of deformation. The effect of the side wall angle becomes pronounced with the 

advancement of plasticity, with a smaller side wall angle producing a higher normal force due to 

the development of a larger contact area. Although a similar deformation pattern is observed in the 

case of patterned-surface imprinting during the initial stage of deformation, i.e., high stress and 

strain concentrations at the edges and corners of the pattern protrusions, the deformation behavior 

is significantly affected by the evolution of plasticity that intensifies the interaction of neighboring 

stress/strain fields and increases the plastic flow of material into the cavities. This results in a three-

stage force response, with the first two stages showing similarity with those of the flat surface and 

the third stage characterized by the sharp increase of the normal force caused by cavity filling that 

increases the contact area significantly. The normal force, cavity filling, and intensity of 

stress/strain fields increase with increasing protrusion distance and decreasing coefficient of 

friction. At large normal displacements (i.e., advanced cavity filling), the maximum equivalent 

plastic strain in the material adjacent to the protrusion edges and corners and the subsurface stress 

field in the substrate approach those of flat-surface imprinting. The results of this study provide 

insight into the effects of significant design and material parameters in metal imprinting and 

establish a modeling framework for investigating other important effects, such as oscillation and 

frictional heating at the template/substrate interface, more complex pattern geometries, and other 

constitutive models.   
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CHAPTER 3 

Plasticity-induced damage and material loss in oscillatory contacts 

3.1. Introduction 

Oscillatory sliding contact affects the performance and longevity of a wide range of 

contact-mode electromechanical systems, contributing to frictional energy dissipation and the 

removal of material in the form of fine wear debris. The primitive studies of Cattaneo (1938) and 

Mindlin (1949) illuminated the effect of normal and tangential (shear) traction at the contact 

interface of two elastic bodies on the inception of slip and the deviation of the deformation 

response from that predicted by the classical contact theory of Hertz (1882). Mindlin and 

Deresiewicz (1953) investigated the contact behavior of two identical elastic spheres and reported 

an increase of the tangential force 𝑄  with the lateral displacement under constant load 𝑃  in 

conjunction with the development of a circular stick zone at the center of the contact region 

surrounded by an annulus slip zone. The stick zone shrunk with the increase of the tangential force 

and ultimately vanished when 𝑄 = 𝜇𝑃, where 𝜇 is the coefficient of friction. When the preceding 

slip condition was satisfied, the tangential force remained constant and full slip initiated at the 

contact interface. These early studies provided the incentive to examine the instigation of stick and 

slip under various contact conditions. For instance, Björklund (1997) investigated elastic contact 

of a rough surface with a perfectly flat surface under both normal and tangential loadings and 

observed a dependence of micro-slip at the contact interface on the standard deviation of the 

asperity heights. Jäger (1998) obtained analytical solutions of the tangential traction and 

displacements in an elastic half-space subjected to quasi-static normal and tangential loadings. 

Block and Keer (2008) used the summation of evenly spaced Flamant solutions to analyze periodic 

contact under various interfacial conditions, such as complete stick, partial slip, and frictionless 

sliding. Goryacheva et al. (2012) examined two-dimensional elastic contact between a flat half-

space and a patterned half-space with periodically arranged grooves of variable height and 

identical material properties. It was shown that when the slip condition  =  p (where  and p are 

the nominal shear stress and contact pressure, respectively) was satisfied, the edges of the slip 

zones reached the groove edges, causing a transition from partial slip at the boundaries to global 

slip of the bodies, with the wider grooves augmenting the growth of the slip zone with the increase 

of the tangential load. Klimchuk and Ostryk (2020) investigated the two-dimensional Cattaneo–

Mindlin elastic contact problem of two identical cylindrical bodies and obtained analytical results 

of the stresses inside the bodies and the contact interface and elucidated the effect of friction on 

the distribution of the maximum tangential stress and the development of an adhesive region at the 

contact interface.  

Despite important insight into the mechanics of oscillatory contacts derived from the 

previous studies, analyzing the material removal process in oscillatory contacts requires 

computational methods that account for the effect of various inelastic deformation processes on 

cumulative damage. For instance, Kuno et al. (1989) investigated both analytically and 

experimentally the effect of crack initiation and propagation on fretting fatigue. Fouvry et al. (1996) 

used an elastic Hertzian-Mindlin contact description to quantify damage and observed wear debris 

formation under gross slip conditions. Giannakopoulos and Suresh (1997) used a three-

dimensional finite element model of a sphere in oscillatory contact with a flat surface of the same 

material to study the effects of partial slip, interfacial friction, and externally applied mean stress 
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on the evolution of deformation and damage. Ambrico and Begley (2000) used a plane-strain 

model of a rigid cylinder cyclically loaded onto a flat elastic-plastic substrate to examine the 

progression of plasticity in the substrate during fretting and obtained numerical results that 

illuminate the development of plasticity, shakedown, and ratcheting in the substrate in terms of the 

coefficient of friction and the cyclically applied tangential force. Etsion (2010) argued that the 

assumptions made in the classical Cattaneo-Mindlin problem may not be physical and proposed 

an alternative approach for solving this problem in which the inception of sliding is treated as a 

plastic failure mode. Eriten et al. (2011) used Mindlin’s partial slip response to monotonic and 

cyclic loading and incorporated elastic-plastic preload and preload-dependent friction coefficient 

models to predict the tangential response of the spherical asperity contacts between nominally flat 

surfaces undergoing fretting in terms of geometric and material properties. Song and Komvopoulos 

(2014) used a modified Mindlin theory to model stick-slip at the asperity contacts between a rigid 

fractal surface in oscillatory contact with an elastic-plastic half-space, considering the 

contributions of adhesion and plowing friction mechanisms to the friction force. Chen and Etsion 

(2019) used the finite element method (FEM) to investigate the inception of sliding at the contact 

interface of a coated elastic-plastic sphere strongly adhered to a rigid plane and obtained numerical 

results that explain the effect of the hard coating thickness on the static coefficient of friction. 

Cumulative plasticity is a precursor to the loss of material in oscillatory contacts. Archard 

(1953) introduced the concept of the real area of contact for nominally flat surfaces and proposed 

an empirical law of adhesive wear in which the wear rate varies linearly with the load and is 

independent of the apparent area of contact. Atomistic simulations of wear particle formation at 

the asperity level performed by Aghababei et al. (2017) showed a dependence of the volume of 

wear debris on the asperity junction size, consistent with Archard’s postulated dependence of the 

adhesive wear volume on the real area of contact; however, the former atomistic simulations did 

not reveal a correlation between the volume of wear debris and the applied load. Frérot et al. (2018) 

provided two physics-based interpretations of the wear coefficient used in Archard’s wear equation. 

Dimaki et al. (2020) used the discrete element method to study the effects of adhesion, yield stress, 

and shear strength on the modes of asperity deformation and fracture in adhesive wear. Salib et al. 

(2008) presented a FEM model of an elastic-plastic sphere fully adhered to a rigid flat plate and 

approximated the volume of a wear particle formed at the inception of sliding by assuming particle 

detachment along a slip path of maximum shear strain within the plastic zone; however, large 

discrepancies were found between predicted and experimental values of the wear coefficient. 

Pereira et al. (2017) used a statistical analysis that combines a microscale roughness model with a 

macroscale fretting wear model to explore the evolution of fretting wear. Yue and Abdel Wahab 

(2017) used an energy-based FEM model to obtain estimates of the wear scar and the wear volume 

under conditions of partial slip and gross sliding, constant and variable coefficient of friction, and 

fixed load. Wang et al. (2020) combined FEM modeling with a model reduction method to study 

the role of the slip amplitude, load, and oscillation cycles in fretting wear. Zhang and Etsion (2021) 

incorporated a ductile fracture criterion in a FEM model of an elastic-plastic, full-stick, spherical 

contact subjected to normal and tangential loadings and simulated the removal of material due to 

adhesive wear by eliminating those elements that satisfied the failure criterion, assuming wear 

particle formation due to cracking below the contact interface.  

Damage models have been extensively used in numerical analyses to predict the removal 

of material. For instance, Ben Tkaya et al. (2007) explored the effect of the attack angle on the 

scratch behavior of isotropic and kinematic strain hardening materials and simulated damage 
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initiation at a specified equivalent plastic strain and material removal due to the evolution of 

damage, depending on energy dissipation. Elwasli et al. (2015) incorporated the constitutive model 

of Johnson and Cook (1985) in an FEM model and analyzed the removal of material by scratching. 

Lou et al. (2014) proposed a damage model based on a ductile fracture criterion, which accounts 

for compressive and tensile stress triaxiality states. Mostaani et al. (2015) used FEM simulations 

of the scratching process to evaluate the effectiveness of the previous damage models to capture 

various deformation modes, e.g., plowing, wedge formation, and cutting.  

Motivated by the foregoing studies and other recent efforts to model the removal of 

material in oscillatory contacts, a plane-strain FEM model of a rigid cylinder in reciprocating 

sliding contact with an elastic-plastic, strain hardening half-space was developed to examine the 

loss of material with the progression of plasticity-induced damage. A principal objective was to 

introduce a computational methodology, which can elucidate the effects of load, friction, 

oscillation cycles, and material behavior on the evolution of plasticity resulting in cumulative 

damage and ultimately the loss of material. The non-monotonic wear behavior encountered over a 

wide load range is interpreted in terms of the plastic shear strain distribution and the initiation of 

slip at the contact interface. Numerical results illuminate the effects of the applied load, plastic 

shear strain, and interfacial slip on the removal of material. An important contribution of the 

present study is the development of a computational framework for examining the effects of other 

important parameters (e.g., strain rate, oscillation amplitude, and frictional heating) on the 

evolution of damage leading to the loss of material in mechanical systems with elements operating 

in reciprocating sliding contact mode. 

3.2. Modeling Approach 

3.2.1. Finite element mesh 

The plane-strain problem examined in this study is schematically depicted in Fig. 3.1(a). A 

rigid cylinder of radius 𝑅 is pressed against an elastic-plastic half-space under a normal load P and 

then oscillated in the horizontal direction. The oscillation amplitude and the penetration depth are 

denoted by 𝛿 and 𝑑, respectively. The half-space is discretized by a 60𝑅 × 60𝑅 mesh consisting 

of 79,613 four-node, reduced-integration, quadrilateral elements with a total of 79,936 nodes. To 

accurately capture the large strain gradients in the region where penetration and oscillation of the 

rigid cylinder takes place and to reduce the computation time, the FEM mesh is compartmentalized 

in three segments centered at point O, which is where the cylinder first contacts the half-space 

surface (Fig. 3.1(b)). The 0.4𝑅 × 2𝑅 near-surface region of the mesh is uniformly refined with 

0.004𝑅 size elements, as shown in Fig. 1(b), representing ~63% of the total number of elements. 

Outside of this region, a 1.2𝑅 × 4𝑅 region is meshed with elements of gradually increasing size 

from 0.004𝑅  to 0.4𝑅 . Finally, the outer part of the mesh is uniformly meshed with 0.4𝑅  size 

elements. The displacements of the nodes at the bottom boundary of the mesh are constrained in 

both 𝑥- and 𝑦-directions, whereas the nodes at the left and right boundaries of the mesh are free. 

Preliminary simulations confirmed that the above model dimensions, mesh refinement, and 

boundary conditions do not affect the magnitudes of global parameters (e.g., penetration depth). 

An oscillation cycle comprises four consecutive simulation steps of incrementally increased x-

displacement of the cylinder up to the specified oscillation amplitude, i.e., incremental lateral 

sliding of the cylinder in the distance ranges [0, 𝛿], [𝛿, 0], [0, −𝛿], and [−𝛿, 0]. In each simulation, 
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the number of oscillation cycles 𝑁  was sequentially increased to 10, while the load was fixed 

throughout the simulation. 

 

Figure 3.1 (a) Cross-sectional schematic of a rigid cylinder loaded against a half-space and (b) refined finite element 

mesh at the near-surface region of the half-space.   

Surface contact was simulated with a finite sliding algorithm, which treats the surfaces of 

the deformable half-space and the rigid cylinder as slave and master surfaces, respectively, and 

controls the relative separation and slip between the interacting surfaces. Each slave node 

encountering the master surface is constrained to slide against the master surface, while the 

position of the slave node relative to the master surface is continuously tracked by the algorithm 

during the deformation. The finite sliding algorithm was implemented in the FEM analysis by 

using automatically generated contact elements. At each integration point of a contact element, the 

overclosure was adjusted to prevent a surface point of the deformed half-space to penetrate the 

surface of the rigid cylinder and the relative shear slip was computed afterwards. Coulomb friction 

was modeled by assigning to the contact elements a coefficient of friction, which relates the 

maximum allowable shear stress at the contact interface to the local contact pressure. Table 3.1 

gives the geometric parameters, oscillation amplitude, and coefficient of friction used in the FEM 

simulations. 

3.2.2. Damage and degradation model 

The accumulation of plastic deformation due to the repetitive oscillation of the rigid 

cylinder under the applied load leads to cumulative damage, eventually resulting in the removal of 

a fully damaged element. The evolution of cumulative damage in an isotropic strain hardening 

material is depicted in the effective stress 𝜎 versus equivalent strain 𝜀 ̅plot shown in Fig. 3.2. The 

stress-strain response comprises three characteristic deformation regions, namely elastic, strain 

hardening, and material degradation. Initially the material exhibits a linear elastic behavior up to 

the initial yield strength 𝑌0 (point A), beyond which the increase of stress causes the development 

of plastic deformation. In the absence of plasticity-induced damage leading to material degradation, 

the stress increases monotonically due to strain hardening (dashed curve in Fig. 3.2). However, a 
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different response is encountered when the evolution of plasticity is accompanied by cumulative 

damage, quantified by the dimensionless damage variable 𝜔 (0 ≤ 𝜔 ≤ 1) given by 

𝜔 = ∫
𝑑𝜀̅𝑝

𝜀�̅�
𝑝                                                                          (3.1) 

where 𝜀̅𝑝 is the equivalent plastic strain and 𝜀�̅�
𝑝
 is the equivalent plastic strain at 𝜔 = 1 (point B). 

Material degradation manifests itself in the form of a continuous decrease in yield stress and 

stiffness, controlled by the degradation parameter 𝐷 (0 ≤ 𝐷 ≤ 1 ). Full material degradation 

(failure) is attained when the equivalent plastic strain at failure 𝜀�̅�
𝑝 is reached (point C). A gradual 

material degradation process is modeled to avoid the instantaneous removal of the fully damaged 

elements (𝜔 = 1), which can generate artificial stress waves and dynamic effects.   

 

Figure 3.2 Effective stress 𝜎 ̅versus equivalent strain 𝜀 ̅plot illustrating the evolution of material damage and 

degradation during deformation. 

A failure criterion is needed to model damage accumulation (path AB) and material 

degradation (path BC) of the plastically deformed elements. A common failure criterion for 

materials demonstrating significant ductility is that proposed by Johnson and Cook (1985), which 

for quasi-static, isothermal, strain hardening deformation takes the form,  

𝜀�̅�
𝑝 = 𝐴 + 𝐵 𝑒𝐶𝜂                                                                     (3.2) 

where 𝐴, 𝐵, and 𝐶 are material damage constants and 𝜂 is a triaxiality parameter, given by 𝜂 =
𝜎𝑚/𝜎𝑀  , where 𝜎𝑚  is the hydrostatic stress and 𝜎𝑀  is the von Mises effective stress. Table 3.2 

gives the material properties and the damage constants used in the FEM simulations. The 

mechanical properties given in Table 3.2 are typical of A2024-T351 aluminum alloy, which is 

widely used in aerospace, automotive, machining, and other industrial applications due to its high 

strength, low weight, good machinability, and good fatigue resistance (Asad et al., 2014). 

To ensure a smooth transition from the fully damaged state (point B) to the failure state 

(point C), an approach based on the fracture energy for creating a crack of unit area (Hillerborg et 

al., 1976) was implemented in the analysis. A linear material degradation process (path BC) was 

modeled based on the relation (ABAQUS/CAE, 2020) 
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𝐷 =
𝑙𝑐 𝜀 ̅𝑝

2 𝐺𝑓
𝜎𝑐                                                                        (3.3)  

where 𝑙𝑐 is a characteristic length that depends on the aspect ratio of the element sides, 𝐺𝑓 is the 

fracture energy for creating a crack of unit area, and 𝜎𝑐 is the effective stress at the inception of 

material degradation, i.e., 𝜔 = 1 (point B). The purpose for using 𝑙𝑐 in Eq. (3.3) is to prevent an 

artificial decrease of the energy dissipation due to strain localization induced by the refinement of 

the FEM mesh. For a first-order, plane-strain element, 𝑙𝑐 is set equal to the square root of the area 

of a finite element. Thus, an artificial decrease in energy dissipation was avoided by using an 

element aspect ratio close to unity and setting 𝑙𝑐 equal to the square root of the area of the smallest 

finite elements. The degradation parameter 𝐷 is defined by the relation 𝜎∗ = (1 − 𝐷)𝜎 , where 

𝜎∗ is the reduced effective stress due to the damage. A finite element is removed from the FEM 

model when 𝐷 = 1. The value of 𝐺𝑓 (Table 3.2) used in all simulations corresponds to 2024-T351 

aluminum alloy. 

Table 3.1 Input parameters of the FEM simulations. 

Parameter Magnitude 

Cylinder radius, 𝑅 (mm) 5 

Half-space height (mm) 300 

Half-space width (mm) 300 

Refined mesh height (mm) 2 

Refined mesh width (mm) 10 

Refined mesh size (mm) 0.02 

Oscillation amplitude, 𝛿 (mm) 0.5 

Coefficient of friction, 𝜇 0.1, 0.3, 0.5 
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Table 3.2 Material properties and damage parameters used in the 

FEM simulations. 

Parameter Magnitude 

Density, 𝜌 (kg/m3) 2700(a) 

Initial yield strength, 𝑌0 (MPa) 352(a) 

Elastic modulus, 𝐸 (GPa) 73(a) 

Poisson's ratio, 𝜈 0.33(a) 

Fracture energy, 𝐺𝑓 (N/mm) 20(a) 

Damage parameter, 𝐴 0.13(b) 

Damage parameter, 𝐵 0.13(b) 

Damage parameter, 𝐶 –1.5(b) 

Strain hardening coefficient, 𝐾 (MPa) 440(a) 

Strain hardening exponent, 𝑛 0.42(a) 

                (a)Asad et al. (2014). 
               (b)Johnson and Holmquist (1989). 

3.2.3. Constitutive model 

To model quasi-static, isothermal, isotropic strain hardening material behavior, the half-

space is modelled to follow the constitutive stress-strain law (Johnson and Cook, 1985) 

𝜎 = 𝑌0 + 𝐾𝜀̅𝑛                                                                         (3.4) 

where 𝐾 is the strain hardening coefficient and 𝑛 is the strain hardening exponent.  

  Yielding is determined by the von Mises yield criterion, given by  

𝜎 = (
3

2
𝑆𝑖𝑗𝑆𝑖𝑗)

1/2

=  𝑌                                                            (3.5) 

where 𝑆𝑖𝑗  are components of the deviatoric stress tensor and 𝑌 is the current yield strength.  



29 

 

The evolution of plasticity is described by the equivalent plastic strain 𝜀̅𝑝, computed by 

𝜀̅𝑝 = ∫ (
2

3
𝑑𝜀𝑖𝑗

𝑝 𝑑𝜀𝑖𝑗
𝑝 )

1/2

                                                           (3.6)

 

Ω

 

where Ω is the strain path used to track the accumulation of plasticity and 𝑑𝜀𝑖𝑗
𝑝

 are plastic strain 

increments.  

3.2.4. Finite element simulations  

All of the FEM simulations were performed in displacement-control mode using the multi-

physics code ABAQUS/Explicit (ABAQUS/CAE, 2020). Special attention was given to the 

selection of the time step. A large time step in a quasi-static analysis that uses the explicit solver 

can yield significant dynamic effects, whereas a small time step can greatly increase the 

computation time. A mass scaling factor 𝑘𝑚 was used in this study to reduce the computation time 

by 𝑘𝑚
1/2

 . To ensure that the selected time step preserves the quasi-static condition, the kinetic 

energy must be less than 5% of the internal energy. For the time step ∆𝑡 ≈ 10 ns used in all the 

simulations, the kinetic energy was found to be about 1% to 4% of the internal energy, which is 

within the admissible range. 

3.2.5. Dimensionless parameters 

To obtain generalized solutions, the input and output simulation parameters were 

normalized by appropriate quantities. Specifically, the dimensionless load �̅� is defined by 𝑃/𝑃𝑌0, 

where 𝑃𝑌0 is the load at initial yield expressed by 𝑃𝑌0 = 𝜋𝑅(𝑝0
2/𝐸∗), where 𝑝0 is the maximum 

Hertzian pressure at the inception of yielding given by 𝑝0 = 1.79𝑌0 (Mises yield criterion) and 

𝐸∗ = 𝐸/(1 − 𝜈2), where 𝐸 and 𝜈 are the elastic modulus and Poisson’s ratio, respectively. The 

dimensionless normal displacement (penetration depth) is defined by �̅� = 𝑑/𝑅. The dimensionless 

plastic area is given by �̅�𝑝 = 𝐴𝑝/𝐴𝑖, where 𝐴𝑝 is the plastic area, computed by summing up the 

areas of all the elements with 𝜀̅𝑝 > 0.002 , and 𝐴𝑖  is the contact area established between the 

cylinder and the half-space before the commencement of oscillation, assuming a unit length 

distance in the out-of-plane direction. The dimensionless wear area �̅�𝑤 is obtained by dividing the 

wear area 𝐴𝑤, i.e., the sum of the areas of all the elements removed from the model (𝐷 = 1), by 

the plastic area 𝐴𝑝 computed at the same instant of the simulation. The averaged fraction of the 

contact area in slip mode �̅�𝑠 is calculated before the removal of the fully damaged elements (i.e., 

𝜔 < 1) by dividing the total slip area by the total contact area, assuming a unit length distance in 

the out-of-plane direction, with both areas averaged over the same oscillation cycle. 

3.3. Results and Discussion 

Insight into the progression of damage in an elastic-plastic half-space can be obtained by 

tracking the damage parameter 𝜔 during oscillation. Figure 3.3 shows the evolution of 𝜔 in the 

first 5 oscillation cycles for �̅� = 13 and 𝜇 = 0.3. Forward plastic shearing during the right stroke 

of the first cycle (𝑁 = 1/4) caused damage to the elements adjacent to the contact interface, surface 

sinking, and the formation of a shallow pile-up (Fig. 3.3(a)). Subsequent backward sliding of the 
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cylinder up to the center of oscillation (𝑁 = 1/2) resulted in the lateral expansion of the damage 

zone and additional damage at the right oscillation edge (𝑥 = +𝛿) due to more plastic deformation 

accumulated during the unloading (Fig. 3.3(b)). Backward plastic shearing during the left stroke 

of the first cycle (𝑁 = 3/4) enlarged the damage zone in the lateral direction, increased the material 

pile-up at the left oscillation edge (𝑥 = −𝛿), and produced a pocket of excessive damage adjacent 

to the left oscillation edge (Fig. 3.3(c)), which extended slightly toward the oscillation center (𝑥 =
0) at the end of the first cycle (𝑁 = 1) (Fig. 3.3(d)). The asymmetric damage distribution showing 

more damage at the left oscillation edge is attributed to the larger volume of material plowed during 

backward sliding due to the increase of the penetration depth in the previous stage of forward 

sliding. The second cycle (𝑁 = 2) created a fairly uniform, highly intensified, enlarged damage 

zone extending deeper into the substrate owing to further advancement of the cylinder into the 

half-space (Fig. 3.3(e)). The damage zone continued to expand in the following cycles due to the 

proliferation of plasticity, as shown by the damage contours obtained after 5 cycles (𝑁 =5) (Fig. 

3.3(f)). Repetitive forward and backward plastic shearing resulted in material build-up at both 

oscillation edges, larger pile-ups, and deeper penetration of the cylinder. Moreover, the removal of 

the fully damaged elements ( 𝜔 = 1) adjacent to the contact interface when the degradation 

parameter 𝐷 reached unity also contributed to the increase of the penetration depth. As this process 

perpetuated itself during the oscillation, elements at deeper locations reaching full damage (𝜔 =1) 

were also removed (𝐷 =1), aiding to the enlargement of both the damage zone and the pile-ups 

(Fig. 3.3(f)).  

 

Figure 3.3 Evolution of damage parameter 𝜔 during the (a-c) first oscillation cycle and after the (d) first, (e) second, 

and (f) fifth oscillation cycles. 

Figure 3.4 shows the dimensionless normal displacement (penetration depth) �̅�  as a 

function of oscillation cycles 𝑁 for �̅� = 13 − 79 and 𝜇 = 0.3. As expected, the penetration depth 

increased with the load. Even though some of the simulations did not reach 10 oscillation cycles 

due to convergence problems, the obvious trend is for �̅� to stabilize after a few cycles. This trend 

is more apparent in the high-load cases (�̅� ≥ 33) showing a stable �̅� after ~5 cycles. This behavior 

may be attributed to the greater conformity of the cylinder with the substrate at higher loads that 

intensified plastic shearing and fostered the formation of larger pile-ups.   
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Figure 3.4 Dimensionless penetration depth �̅� versus number of oscillation cycles 𝑁 for �̅� = 13 − 79 and 𝜇 = 0.3. 

  

The effects of the load and the coefficient of friction on the development of plasticity during 

oscillatory contact can be further interpreted in the light of the simulation results of the 

dimensionless plastic area �̅�𝑝 shown in Fig. 3.5 (The fewer oscillation cycles attained in some of 

the simulations are due to convergence problems instigated by the excessive deformation of some 

elements). All of the simulations show a sharp increase of �̅�𝑝 after a few cycles. The results also 

show that the lower the load and the higher the coefficient of friction, the more cycles for �̅�𝑝 to 

stabilize. Conversely to the sharp increase of 𝐴𝑝 with the load (data not shown here for brevity), 

�̅�𝑝 decreased with the increase of the load (Fig. 3.5(a)), indicating the development of more plastic 

deformation during the loading phase than the oscillation phase of the high-load simulations. This 

does not imply that a low load produces a larger plastic area 𝐴𝑝 (for a given number of cycles), 

but a more prominent effect of the shear surface traction due to sliding in the oscillation phase of 

the low-load simulations. For instance, after 10 cycles, the plastic zone for �̅� = 13 increased by a 

factor of ~5 compared to a factor of ~2 for �̅� = 79. Furthermore, the increase of �̅�𝑝 with 𝜇 at a 

given load (Fig. 3.5(b)) demonstrates an increasing contribution of the shear surface traction to 

plasticity with increasing friction. The increase of friction augmented plastic shearing in the 

subsurface, dramatically increasing �̅�𝑝 after a few cycles. For example, for a fixed load (�̅� = 33), 

the plastic zone size in the high-friction simulation (𝜇 = 0.5) increased by a factor of >3.5 after 

only 4 cycles, as opposed to a factor of <3 in the low-friction simulation (𝜇 = 0.1). 
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Figure 3.5 Dimensionless plastic area �̅�𝑝 versus number of cycles 𝑁 for: (a) �̅� = 13 − 79 and 𝜇 = 0.3 and (b) 𝜇 =

0.1 − 0.3 and �̅� = 33. 

Important insight into the development of plasticity with the accumulation of oscillation 

cycles leading to the loss of material was obtained by tracking the dimensionless damage 

parameter 𝜔 during the evolution of damage in the plastically deformed elements. The increase of 

𝜔 can be linked to the progression of damage. When 𝜔 = 1 (𝐷 = 0) in a certain element, it is 

presumed that the element enters the material degradation regime where it undergoes a stiffness 

reduction, resulting in the decrease of its load carrying capacity (Fig. 3.2) and, ultimately, its 

removal from the model when full degradation is reached (𝐷 = 1 ). Figure 3.6(a) shows the 

variation of �̅�𝑤 with the number of oscillation cycles 𝑁 for 𝜇 = 0.3 and �̅� = 13 − 79. All of the 

simulations demonstrate a fairly linear increase of �̅�𝑤 with 𝑁, consistent with the linear variation 

of the wear volume with the sliding distance predicted by Archard’s wear law. Figure 6(b) shows 

the effect of the coefficient of friction 𝜇 on the evolution of �̅�𝑤 for �̅� = 33. The marginal plastic 

shearing in the low-friction simulation (𝜇 = 0.1) did not cause any loss of material. However, the 

increase of the coefficient of friction intensified plastic shearing, yielding a fairly linear increase 

of �̅�𝑤 with 𝑁, much faster in the high-friction simulation (𝜇 = 0.5) than the intermediate-friction 

simulation (𝜇 = 0.3).  
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Figure 3.6 Dimensionless wear area �̅�𝑤 versus number of oscillation cycles 𝑁 for (a) for �̅� = 13 − 79 and 𝜇 = 0.3 

and (b) 𝜇 = 0.1 − 0.3 and �̅� = 33. 

Furthermore, Fig. 3.6(a) shows an increasing trend of the wear area with the load increase 

up to �̅� = 33, which is also consistent with Archard’s wear law. However, an opposite trend is 

shown for higher loads (�̅� ≥ 53). This seemingly counterintuitive behavior can be explained by 

considering iso-strain contour distributions of the plastic shear strain 𝛾𝑥𝑦
𝑝

 representative of low-

load (�̅� = 13) and high-load (�̅� = 79) oscillatory contact, corresponding to the linear increase of 

wear with accumulating cycles and no wear, respectively (Fig. 3.6(a)). For low-load oscillatory 

contact, 𝛾𝑥𝑦
𝑝

  is confined at the oscillation edges after the first cycle, with the left zone of 

𝛾𝑥𝑦
𝑝  demonstrating slightly higher plastic strains (Fig. 3.7(a)), a consequence of the asymmetric 

nature of the shearing process. The second cycle increased the deformation in the two plastic shear 

zones (especially the right zone), enlarged the material pile-ups at the oscillation edges, and 

increased further the penetration of the cylinder into the half-space (Fig. 3.7(c)). A similar, though 

less pronounced, tendency was encountered after the third cycle, with the highest 𝛾𝑥𝑦
𝑝

 arising at the 

contact interface (Fig. 3.7(e)). Thus, in the low-load simulation, the region showing the highest 

propensity for material loss is adjacent to the contact interface, where plastic shearing is more 

prominent. For high-load oscillatory contact, however, the iso-strain contours of 𝛾𝑥𝑦
𝑝   reveal a 

different deformation behavior. Specifically, while plastic shearing is again confined at the 

oscillation edges after the first cycle (Fig. 3.7(b)), the plastic shear zones are located well below 

the contact interface and the strains are smaller than those in the low-load simulation (Fig. 3.7(a)). 

(Note the use of different magnifications in the low- and high-load simulation results shown in Fig. 

3.7 to better reveal the regions of high 𝛾𝑥𝑦
𝑝

 strain.) This difference is attributed to the significantly 

larger volume of material resisting the oscillatory motion of the cylinder for �̅� = 79 than �̅� = 13, 

as evidenced by the results of the penetration depth (Fig. 3.4). Similar to the low-load simulation, 

the penetration depth and the size of the plastic shear zones increased in the second (Fig. 3.7(d) 

and third (Fig. 3.7(f)) cycles of the high-load simulation; however, the maximum 𝛾𝑥𝑦
𝑝

 is located 
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away from the contact interface and its magnitude is less than that in the low-load simulation. As 

a result, less plastic shearing occurred in the high-load simulation due to less slip at the contact 

interface, a consequence of the reduced lateral movement instigated by the larger volume of 

material surrounding the deeper penetrating cylinder. This mitigated the conducive effect of 

friction on plastic shearing, consequently suppressing the build-up of plasticity-induced damage 

and, in turn, weakening the propensity for wear. 

 

Figure 3.7 Contours of plastic shear strain 𝛾𝑥𝑦
𝑝

 after the first (𝑁 = 1), second (𝑁 = 2), and third (𝑁 = 3) oscillation 

cycles for �̅� = 13 (left column), �̅� = 79 (right column), and 𝜇 = 0.3. 

Additional insight into the reduced interfacial slip in high-load oscillatory contacts can be 

obtained by inspecting the effect of the applied load on the amount of slip at the contact interface. 

Figure 3.8 shows the averaged fraction of the contact area in slip mode �̅�𝑠, calculated before the 

instigation of material loss, (i.e., 𝜔 < 1 ), as a function of load �̅�  for 𝜇 = 0.3 . The decreasing 

tendency of �̅�𝑠  with increasing �̅�  confirms the decrease of the interfacial slip with the load 

increase. In particular, �̅�𝑠 is greater than 30% in the low-load range (�̅� < 20) and less than 15% 

in the high-load range (�̅� > 60). The results shown in Fig. 3.8 provide additional support to the 

decreasing intensity of plastic shearing (henceforth, less damage accumulation and lower 

propensity for material loss) with the increase of the applied load.   
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Figure 3.8 Averaged fraction of the contact area in slip mode �̅�𝑠 before the instigation of the removal of fully 

damaged elements versus load �̅� for 𝜇 = 0.3. 

The present analysis provides a mechanistic understanding of the synergistic effects of load 

and friction on plasticity-induced damage leading to the progressive material degradation and, 

ultimately, the loss of material in oscillatory contacts. The quasi-static, isothermal, strain hardening 

constitutive model used in this study can be modified to account for strain rate and temperature 

effects on plasticity-induced damage by implementing the full ductile failure criterion of Johnson 

and Cook (1985) and a multi-scale roughness description by superimposing a fractal surface profile 

to the cylinder’s contour to create a fractal-regular surface (Wang and Komvopoulos, 1994). From 

a fundamental standpoint, this study provides a computational framework for performing 

parametric studies of the mechanical performance of oscillatory contacts operating under various 

loading and friction conditions. 

3.4. Conclusions 

A contact mechanics analysis of the evolution of plasticity in oscillatory contacts was 

performed to examine how the accumulation of plasticity-induced damage and material 

degradation lead to the removal of material. A damage model based on a ductile failure criterion 

was used to simulate the loss of material by removing the fully damaged elements from the model. 

A parametric FEM study was conducted to elucidate the effects of the applied load and coefficient 

of friction on the advancement of plasticity and the loss of material in terms of the representative 

dimensionless parameters. The main findings of the present study can be summarized as following. 

(1) A dimensionless damage parameter 𝜔 was used to track the progression of plasticity-

induced damage that leads to the loss of material in oscillatory contacts for a range of 

load and coefficient of friction. 

(2) The penetration depth increased with the load and the number of oscillation cycles, 

showing a clear trend to stabilize after a few cycles, which was more evident in the 

high-load simulations.  

(3) The dimensionless plastic and wear areas increased with the coefficient of friction due 

to the intensification of plastic shearing, revealing the critical role of friction in the 

development of plasticity, the advancement of damage, and the instigation of material 

loss.  
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(4) The dimensionless wear area increased linearly with the oscillation cycles and the load 

up to a threshold, consistent with Archard’s classical theory of adhesive wear. However, 

an opposite trend was observed with loads above the load threshold, which was 

explained by considering the distribution of the plastic shear strain in the low- and high-

load oscillations and the load dependence of the averaged fraction of contact area in 

slip mode. While the highest plastic shear strains arose adjacent to the contact interface 

in the low-load oscillations, their locations shifted well below the contact interface and 

their magnitudes decreased in the high-load oscillations.  

(5) The averaged fraction of the contact area in slip mode demonstrated an overall tendency 

to decrease with the increase of the load, indicating a significant decrease in interfacial 

slip at high loads, which was attributed to the restricted movement of the cylinder due 

to the larger volume of the surrounding material. Consequently, less plastic shearing 

occurred in the high-load oscillations, resulting in less damage accumulation and loss 

of material.  

The results of this study provide insight into the effects of the load and the coefficient of 

friction on the loss of material in oscillatory contacts due to the accumulation of plasticity. An 

important contribution of this work is the development of a computational methodology for 

performing mechanistic analyses of the effects of other important parameters, such as strain rate, 

temperature, surface roughness, and oscillation amplitude, on the evolution of plasticity-induced 

damage and the loss of material in oscillatory contacts. 
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CHAPTER 4 

A mechanics analysis of plasticity-induced damage leading to material loss at fractal contact 

interfaces undergoing fretting wear 

4.1. Introduction 

Small-amplitude oscillatory sliding (fretting) affects the performance and durability of a 

wide range of contact-mode devices, such as microelectromechanical systems, artificial total joint 

replacements, oscillating-slide actuators, bolted and riveted joints, shrink-fitted couplings, and 

components operating in a microgravity environment. Fretting contact conditions are conducive 

to localized accumulation of plasticity, ultimately leading to the loss of material in the form of fine 

wear debris. Consequently, insight into the evolution of plasticity in oscillatory contacts is critical 

to the effective operation and endurance of many load-bearing components. The majority of the 

investigations focused on fretting wear of materials have been mostly based on experimental 

evidence. For example, Waterhouse (1984) discussed fretting wear of steels under conditions of 

extremely low frequencies and high temperatures and in the presence of aqueous solutions causing 

the removal of material by chemical dissolution. Vingsbo and Söderberg (1988) developed fretting 

maps entailing three regimes – stick (limited surface damage), mixed stick-slip (mild wear with 

possible cracking), and gross slip (severe damage). Experiments by Zhou and Vincent (1995) 

revealed the existence of another fretting regime, between the stick-slip and gross slip regimes, 

where wear of ductile materials comprises particle detachment and fatigue crack nucleation. Li 

and Lu (2013) investigated room-temperature fretting wear of Inconel 600 alloy in dry air and 

found a correlation of damage and wear mechanisms with oscillation amplitude. Specifically, 

partial slip (microslip) was dominant at small amplitudes and surface damage was influenced by 

localized adhesive wear in the stick zone with cracks only forming in the stick-slip region, whereas 

the gross slip zone became dominant with the increase of the oscillation amplitude and oxidation 

and delamination wear were the prevalent mechanisms of material loss. The foregoing studies are 

representative of a vast literature illustrative of the complex nature of the fretting wear process. 

This is mainly due to variations in the contact interface conditions (i.e., stick and slip zones), 

normal and tangential tractions, oscillation amplitude, and environmental conditions. Therefore, 

understanding the development of stresses and plasticity leading to surface damage and, 

consequently, the loss of material in oscillatory contacts is of utmost importance.    

The first mechanics analyses dealing with stick-slip at the contact interface of identical 

elastic bodies, attributed to Cattaneo (1938) and Mindlin (1949), yielded a deformation behavior 

significantly different from that predicted by the classical contact theory of Hertz (1896), which 

neglected the presence of interfacial shear (friction) traction. However, contrary to identical 

materials, as in the Cattaneo-Mindlin problem, deriving analytical solutions for contacting 

dissimilar materials is not straightforward due to coupling of the normal and shear tractions, 

implying that even in the absence of shear traction, a normal traction can cause microslip at the 

contact interface. The solution becomes even more cumbersome when plastic deformation of the 

contact bodies is included in the analysis. Therefore, it is necessary to implement numerical 

approaches to circumvent this problem. Bazrafshan et al. (2018) used the boundary element 

method to examine stick-slip at the contact interface of two bodies with dissimilar properties in 

the presence of adhesion, modeled by a Dugdale approximation of the adhesive energy, and 

confirmed that the evolution of the slip zone over the contact area differed from that predicted by 
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the Cattaneo-Mindlin solution. McColl et al. (2004) incorporated a modified version of the 

classical wear equation introduced by Archard (1953) in a finite element method (FEM) analysis 

of fretting wear and predicted the variation of the contact pressure, relative slip at the contact 

interface, subsurface stresses, and wear profile with the number of fretting cycles for different 

normal loads. Bortoleto et al. (2013) implemented Archard’s linear wear law and adaptive meshing 

to predict the loss of material in dry sliding in a similar FEM analysis; however, the numerical 

approach overestimated the mass loss measured from experiments. Martínez et al. (2012) 

performed an FEM analysis that also used adaptive meshing at the end of each converged 

increment and based on a power-law relationship between the wear volume and the normal load 

derived from fitting wear data, in contrast with Archard’s linear wear law, they obtained solutions 

for the loss of material in reciprocating sliding. Hu et al. (2016) performed an FEM analysis of the 

role of plasticity in fretting wear using fictitious eigenstrains to make mesh adjustments for the 

nodes removed from the slip zone and observed a steady movement of the stick-slip boundary into 

the stick region when the yield strength was locally exceeded, subsequently leading to gross wear 

damage. Elwasli et al. (2015) incorporated the constitutive model developed by Johnson and Cook 

(1985) in an FEM model to analyze the removal of material by the scratch process. Sarkar et al. 

(2019) introduced a localized gradient damage model into an FEM code, which was more effective 

in reducing the range of stress oscillations than the conventional damage model. Zhang et al. (2019) 

used a kinematic hardening constitutive relation in an FEM model to simulate cyclic ratcheting in 

fretting wear leading to the formation of wear debris and reported that the total wear volume was 

a linear function of frictional energy dissipation. Cen and Komvopoulos (2022) developed an FEM 

model to examine the evolution of plasticity-induced damage resulting in the loss of material from 

an isotropic strain hardening half-space in reciprocating sliding contact with a rigid cylinder and 

obtained numerical results illuminating the effects of normal load and friction on the development 

of plasticity, the accrual of damage, and the loss of material with the number of oscillation cycles. 

Although the previous studies provided valuable insight into the evolution of stick-slip at 

contact interfaces and numerical approaches for predicting the loss of material under fretting 

conditions, they cannot be applied to real surfaces exhibiting multi-scale roughness. Most 

engineering surfaces demonstrate similar characteristics at different length scales, a property 

known as self-affinity that is described by fractal geometry (Mandelbrot, 1967). Accordingly, 

significant advances in contact mechanics were encountered since the early analytical studies to 

implement fractal geometry for describing the topography of contacting surfaces (Majumdar and 

Bhushan, 1990, 1991; Wang and Komvopoulos, 1994a, 1994b, 1995; Yan and Komvopoulos, 

1998). For example, Komvopoulos and Yan (1997) used a two-dimensional (2D) scale-

independent fractal description that resembled a real engineering surface to obtain analytical 

solutions for different adhesion force components, such as van der Waals, electrostatic, and 

capillary forces, and to analyze deformation at the asperity level at the contact interface of 

microelectromechanical systems in terms of surface roughness (fractal) parameters, applied 

voltage, and material properties. Song and Komvopoulos (2014) used a modified Mindlin theory 

to model stick-slip at the asperity contacts established between a rigid fractal surface in oscillatory 

contact with an elastic-plastic half-space and included the contributions of adhesion and plowing 

friction mechanisms to the friction force in their theoretical treatment of oscillatory contact 

behavior. Hu et al. (2000) developed an adaptive FEM approach for frictionless elastic contact of 

fractal surfaces and used an iterative procedure to refine the finite element mesh both in the contact 

zone and the interior of the contacting bodies. Sahoo and Ghosh (2007) performed a three-

dimensional (3D) FEM analysis of a rigid plane in contact with an elastic or elastic-plastic fractal 
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surface with varying fractal parameters, and Chatterjee and Sahoo (2014) used a 3D FEM model 

to study the effect of the elastic modulus on the contact pressure, contact area, and surface 

interference for a rigid flat in contact with an elastic-plastic fractal surface. However, only 

numerical solutions for global parameters, such as contact area and vertical displacement versus 

normal load, were reported in the previous two studies.  

The objective of the present analysis was to elucidate the evolution of the subsurface 

stresses and plastic strains responsible for the accumulation of damage, ultimately leading to the 

removal of material in oscillatory contacts. Consequently, to model cumulative damage and 

material degradation, a failure criterion was implemented in the FEM analysis of an elastic-plastic 

half-space exhibiting isotropic strain hardening in reciprocating sliding contact with a rigid, rough 

surface characterized by fractal geometry. An approach based on the fracture energy for creating a 

crack of unit area was used to obtain a smooth transition from fully damaged material to failure. 

Numerical results displaying the variation of subsurface stresses, plasticity, and material removal 

rate with fractal parameters, normal load, and oscillation cycles illuminate the effect of surface 

topography (roughness) and accrual of plasticity-induced damage on the progression of the loss of 

material due to fretting wear. 

4.2. Modeling and Computational Approaches 

4.2.1. Surface Characterization 

Fractal geometry is characterized by the scale-invariant properties of continuity, non-

differentiability, and self-affinity, which are related to intrinsic physical laws that govern the 

generation of surfaces. Fractal geometry was developed by Mandelbrot (1967) to describe the 

irregularity and disorder of objects and was later introduced in the field of contact mechanics to 

characterize the topography of elastic-plastic contact surfaces (Majumdar and Bhushan, 1990, 

1991) and the thermo-electro-mechanical behavior of contact interfaces (Wang and Komvopoulos, 

1994a, 1994b, 1995; Komvopoulos, 2020). A 2D fractal surface 𝑧(𝑥)  can be represented by a 

modified W-M function (Ausloos and Berman, 1985), expressed in modified form as follows (Yan 

and Komvopoulos, 1998): 

𝑧(𝑥) = 𝐿 (
𝐺

𝐿
)

𝐷−1

∑
cos(2𝜋𝛾𝑛𝑥/𝐿)

𝛾(2−𝐷)𝑛

𝑀

𝑛=0

                                             (4.1) 

where 𝐿 is the fractal sample length, 𝐺 is the fractal roughness, 𝐷 is the fractal dimension (1 <
𝐷 < 2), and 𝛾 is a scaling parameter (𝛾 > 1) used for phase randomization, which determines the 

density of frequencies in the surface profile. Surface flatness and frequency distribution density 

considerations have shown that an appropriate choice is 𝛾 = 1.5 (Komvopoulos and Yan, 1997). 

The scaling parameter 𝛾 also exists in the relation that characterizes self-affine fractals, given by 

𝑧(𝛾𝑥) = 𝛾(2−𝐷)𝑧(𝑥) (Berry and Lewis, 1980), indicating that if the lateral length 𝑥 is magnified 

by 𝛾, then the vertical length (height) 𝑧 is magnified by 𝛾(2−𝐷).  Equation (1) exemplifies a 2D 

surface profile by a series of cosine functions with frequencies geometrically increasing from the 

lowest frequency 𝜔𝑙 = 1/𝐿  to the highest frequency 𝜔ℎ = 1/𝐿0 , where 𝐿0  is the smallest 

characteristic length, typically presumed equal to at least 5–6 times the lattice distance for 
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continuum description to hold; thus, in the present study, 𝐿0 was set equal to 5 nm. The parameter 

𝑀 in Eq. (4.1) is the number of frequencies in the surface profile, defined by   

𝑀 = int [
log(𝐿/𝐿0)

log𝛾
]                                                                       (4.2)   

where int[…] denotes the integer part of the number inside the brackets. Both 𝐺  and 𝐷  are 

frequency invariant and can be experimentally determined from a log-log plot of the power spectral 

density (PSD) function of the real surface by a linear fit through the PSD data. The fractal 

parameters 𝐺 and 𝐷 control the amplitude of the wavelengths comprising the surface profile and 

the amplitude ratio of short-to-long wavelength components, respectively. Thus, Eq. (4.1) was used 

to generate random 2D surface profiles by varying the magnitudes of the scale-independent 

parameters 𝐺 and 𝐷 for the sample length range where the surface topography exhibited a fractal 

behavior. To avoid the coincidence of phases at all frequencies at 𝑥 = 0 (Eq. (4.1)), the fractal 

surfaces used in the FEM simulations were generated in the length range of 200 to 2200 nm. 

4.2.2. Finite Element Model 

Figure 4.1 shows schematically a fractal surface in reciprocal sliding contact with a half-space 

under a normal load 𝑃. The oscillation amplitude and the penetration depth are denoted by 𝛿 and 

𝑑, respectively. The fractal surface was generated from Eq. (4.1) using the parameters listed in 

Table 4.1. The half-space is discretized by a 5𝐿 × 5𝐿  mesh consisting of 83,707 four-node, 

reduced-integration, quadrilateral elements with a total of 84,177 nodes. Due to the large stress 

and strain gradients in the region where penetration and reciprocal sliding occurred and to 

minimize the computation cost, the mesh was compartmentalized in four regions. The 0.01𝐿 × 𝐿 

near-surface region I of the mesh was uniformly refined with 0.0005𝐿 size elements, representing 

~48% of the total number of elements. The 0.2𝐿 × 1.5𝐿 region II was meshed with elements of 

gradually increasing size from 0.0005𝐿  to 0.01𝐿 . A 0.4𝐿 × 5𝐿  transitional region III with an 

element size increasing from 0.01𝐿  to 0.05𝐿  was used to interface the foregoing mesh regions 

with a 4.6𝐿 × 5𝐿 bulk region IV consisting of 0.05𝐿 size elements. The node displacements of the 

bottom boundary of the mesh were fully constrained, whereas the nodes at the left and right 

boundaries of the mesh were left unconstrained. An oscillation cycle comprised four consecutive 

simulation steps of incrementally increasing lateral displacement of the fractal surface up to the 

specified oscillation amplitude, i.e., sequential incremental sliding of the fractal surface in the 

ranges [0, 𝛿], [𝛿, 0], [0, −𝛿], and [−𝛿, 0]. In each simulation, the normal load was kept constant, 

the oscillation amplitude 𝛿  was fixed at 0.0025𝐿 , and the number of oscillation cycles 𝑁  was 

consecutively increased to 5. 
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Figure 4.1 Contact model consisting of four regions with different finite element refinements. 

4.2.3. Damage Model 

To simulate the removal of fully damaged material due to the accumulation of plasticity-induced 

damage in the half-space during oscillatory sliding contact with the fractal surface, the cumulative 

damage model depicted in Fig. 4.2 was used in the present analysis. The effective stress 𝜎 versus 

equivalent strain 𝜀 ̅response, shown in Fig. 4.2, comprised three characteristic deformation regions, 

i.e., elastic, strain hardening, and material degradation. The half-space material exhibited linear 

elastic deformation up to the initial yield strength 𝑌0  (point A), followed by elastic-plastic 

deformation for higher stresses. In the absence of material damage, the stress increased 

monotonically due to strain hardening (dashed curve). However, a different response commenced 

when the development of plasticity induced cumulative damage, quantified by a dimensionless 

damage variable 𝜔 (0 ≤ 𝜔 ≤ 1) given by 

𝜔 = ∫
𝑑𝜀̅𝑝

𝜀�̅�
𝑝                                                                        (4.3) 

where 𝜀̅𝑝 is the equivalent plastic strain and 𝜀�̅�
𝑝
 is the equivalent plastic strain at 𝜔 = 1 (point B). 

Material degradation manifested itself in the form of a continuous decrease in yield stress and 

stiffness, controlled by a degradation parameter ζ (0 ≤ ζ ≤ 1 ). Full material degradation 

commenced when the equivalent plastic strain at failure 𝜀�̅�
𝑝  was reached (point C). A gradual 

material degradation process was modeled to circumvent the instantaneous removal of fully 

damaged finite elements (𝜔 = 1), which could generate artificial stress waves and dynamic effects.   
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Figure 4.2. Effective stress 𝜎 versus equivalent strain 𝜀  ̅diagram illustrating the evolution of damage leading to 

material degradation. 

Modeling of damage accumulation (path AB) and material degradation (path BC) in 

plastically deformed finite elements required the implementation of a failure criterion. Therefore, 

the failure criterion proposed by Johnson and Cook (1985) was used in this study, which for quasi-

static, isothermal, strain hardening deformation is given by  

𝜀�̅�
𝑝 = 𝐴 + 𝐵 𝑒𝐶𝜂                                                                         (4.4) 

where 𝐴, 𝐵, and 𝐶 are material damage constants and 𝜂 is a triaxiality parameter, given by 𝜂 =
𝜎𝑚/𝜎𝑀, where 𝜎𝑚 is the hydrostatic stress and 𝜎𝑀 is the von Mises equivalent stress. Table 4.2 

gives the material properties and damage constants assigned to the half-space. The mechanical 

properties given in Table 4.2 are typical of A2024-T351 aluminum alloy, a material widely used 

in aerospace, automotive, machining, and other industrial applications due to its high strength, low 

weight, good machinability, and good fatigue resistance (Asad et al., 2014). 

For a smooth transition from the fully damaged state (point B) to failure (point C), an 

approach based on the fracture energy for creating a crack of unit area (Hillerborg et al., 1976) was 

used in the present analysis. A linear material degradation process (path BC) was modeled using 

the relation (ABAQUS/CAE 2022, Dassault Systèmes Simulia, Providence, RI): 

𝜁 =
𝑙𝑐 𝜀 ̅𝑝

2 𝐺𝑓
𝜎𝑐                                                                     (4.5)  

where 𝑙𝑐 is a characteristic length depending on the aspect ratio of finite element sides, 𝐺𝑓 is the 

fracture energy for creating a crack of unit area, and 𝜎𝑐 is the effective stress at the inception of 

material degradation, i.e., 𝜔 = 1 (point B). To prevent an artificial decrease in energy dissipation 

due to strain localization resulting from mesh refinement, an element aspect ratio close to unity 

was selected and 𝑙𝑐 was set equal to the square root of the area of the smallest finite elements 

(region I, Fig. 4.1), i.e.,  𝑙𝑐 = 0.0005𝐿. The degradation parameter 𝜁 was included in the relation 

𝜎∗ = (1 − 𝜁)𝜎 , where 𝜎∗  is the reduced effective stress due to damage accumulation. A finite 
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element was removed from the FEM model when 𝜁 = 1. The parameter 𝐺𝑓 was determined as the 

area under the true stress-strain curve up to fracture of the A2024-T351 aluminum alloy multiplied 

by the characteristic length 𝑙𝑐. 

Table 4.1 Input parameters of the fractal surface. 

Parameter Magnitude 

Sample length, 𝐿 (nm) 2000 

Scaling parameter, 𝛾 1.5 

Fractal roughness, 𝐺 (nm) (0.5–75) × 10−4 

Fractal dimension, 𝐷 1.3, 1.4, 1.5 

Smallest wavelength, 𝐿0 (nm) 5 

Oscillation amplitude, 𝛿 (nm) 5 

Table 4.2 Material properties and damage parameters used in the 

FEM simulations. 

Parameter Magnitude 

Density, 𝜌 (kg/m3) 2700(a) 

Initial yield strength, 𝑌0 (MPa) 352(a) 

Elastic modulus, 𝐸 (GPa) 73(a) 

Poisson's ratio, 𝜈 0.33(a) 

Strain hardening coefficient, 𝐾 (MPa) 440(a) 

Strain hardening exponent, 𝑛 0.42(a) 

Fracture energy, 𝐺𝑓 (N/mm) 0.084 
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Coefficient of friction, 𝜇 0.1 

Damage parameter, 𝐴 0.13(b) 

Damage parameter, 𝐵 0.13(b) 

Damage parameter, 𝐶 –1.5(b) 

                (a)Asad et al. (2014). 
               (b)Johnson and Holmquist (1989). 

4.2.4. Constitutive Model 

To model quasi-static, isothermal, isotropic strain hardening material behavior, the half-space was 

modeled to follow the stress-strain relation (Johnson and Cook, 1985) 

𝜎 = 𝑌0 + 𝐾𝜀̅𝑛                                                                                   (4.6) 

where 𝑌0  is the initial yield strength, 𝐾  is the strain hardening coefficient, and 𝑛  is the strain 

hardening exponent.  

  Yielding was determined by the von Mises yield criterion, given by  

𝜎 = (
3

2
𝑆𝑖𝑗𝑆𝑖𝑗)

1/2

=  𝑌                                                                      (4.7) 

where 𝑆𝑖𝑗  are components of the deviatoric stress tensor and 𝑌 is the current yield strength.  

The evolution of plasticity was tracked by the equivalent plastic strain 𝜀̅𝑝, computed by 

𝜀̅𝑝 = ∫ (
2

3
𝑑𝜀𝑖𝑗

𝑝 𝑑𝜀𝑖𝑗
𝑝 )

1/2

                                                                        (4.8)

 

Ω

 

where Ω is the strain path used to track the accumulation of plasticity and 𝑑𝜀𝑖𝑗
𝑝

 are plastic strain 

increments.  

4.2.5. Finite Element Simulations 

All the FEM simulations were performed in displacement-control mode using the multi-physics 

code ABAQUS/Explicit (ABAQUS/CAE 2022, Dassault Systèmes Simulia, Providence, RI). 

Special attention was given to the selection of the time step. When using the explicit solver in a 

quasi-static analysis, a large time step can yield significant dynamic effects, whereas a smaller 

time step can greatly increase the computation time. Using a mass scaling factor 𝑘𝑚 can reduce 

the computation time by a factor of 𝑘𝑚
1/2

. To ensure that the selected time step preserved the quasi-

static condition, the kinetic energy should be less than 5% of the internal energy. Consequently, a 



45 

 

time step ∆𝑡 ≈ 0.1 s that yielded a kinetic energy below the admissible range of internal energy 

was used in all simulations. 

4.2.6. Dimensionless Parameters 

To obtain generalized solutions, the input and output simulation parameters were normalized by 

appropriate quantities. Specifically, the dimensionless fractal roughness was defined by �̅� = 𝐺/𝐿, 

the dimensionless load �̅� was given by 𝑃/𝑌0𝐿2, and the normalized equivalent von Mises stress 

was expressed by 𝜎𝑀 = 𝜎𝑀/𝑌0. The material removal (wear) rate was defined by �̅�𝑟 = 𝐴𝑟/𝐿𝑆, 

where 𝐴𝑟 is the total area of removed (fully damaged) finite elements and 𝑆 is the total sliding 

distance traveled by the fractal surface during the simulated oscillation cycles. The plastic work 

𝑊𝑝, frictional work 𝑊𝑓, and elastic work 𝑊𝑒 were normalized by the external work 𝑊𝑒𝑥 to obtain 

the dimensionless parameters �̅�𝑝, �̅�𝑓, and �̅�𝑒, respectively. The normalized maximum penetration 

depth �̅�max was defined by 𝑑max/𝐿, where 𝑑max is the average of all maximum penetration depths 

encountered in each simulation. The normalized wavelength amplitude of a fractal surface �̅�𝑛 was 

obtained as the ratio of the wavelength 𝜆𝑛  to the sample length 𝐿 , given by �̅�𝑛 = (𝐺/𝐿)(𝐷−1)/

 𝛾(2−𝐷)𝑛 (Eq. (4.1)). 

4.3. Results and Discussion 

Figure 4.3 shows results of the normalized von Mises equivalent stress 𝜎𝑀  and the 

equivalent plastic strain 𝜀̅𝑝  for 𝐷 = 1.4 , �̅� = 2.5 × 10−7 , and �̅� = 14.2 × 10−5 , which provide 

insight into the effect of oscillation cycles on the development of subsurface stresses and plasticity. 

Normal loading (𝑁 = 0) produced high stresses immediately below the established microcontacts 

(Fig. 4.3(a)), resulting in highly localized plasticity (Fig. 4.3(b)). Plastic shearing during the first 

oscillation cycle (𝑁 = 1 ) generated material pile-ups, intensified the subsurface stresses (Fig. 

4.3(c)), and enlarged the plastic zones beneath the microcontacts (Fig. 4.3(d)). Moreover, 

oscillatory sliding increased the penetration depth, resulting in more microcontacts. The increase 

of plasticity prompted the accumulation of damage in highly deformed elements, triggering the 

material degradation process (Eq. (4.5)) in the elements with 𝜔 = 1 (Eq. (4.3)), ultimately leading 

to the removal of fully degraded elements (𝜁 = 1). The loss of material after five oscillation cycles 

(𝑁 = 5) increased the number of microcontacts, contributing to the decrease of the concentration 

and magnitude of the high stresses (Fig. 4.3(e)) and the formation of a highly intensified plastic 

zone extending along the contact interface (Fig. 4.3(f)). These results revealed that the proliferation 

of plasticity principally adjacent to the contact interface promoted damage accumulation, causing 

the removal of several near-surface elements, consecutively increasing the surface conformity.    
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Figure 4.3 Normalized von Mises equivalent stress 𝜎𝑀 (left) and equivalent plastic strain 𝜀 ̅𝑝 (right) for 𝐷 = 1.4, �̅� =
2.5 × 10−7, and �̅� = 14.2 × 10−5 obtained after (a,b) normal loading (𝑁 = 0), (c,d) the first oscillation cycle (𝑁 =
1), and (e,f) the fifth oscillation cycle (𝑁 = 5). The 𝜀 ̅𝑝 contours are within the boxed areas shown on the left. 

Simulations with fractal surfaces characterized by different values of the fractal parameters 

were performed to elucidate the effect of surface texture on the subsurface stress field, the 

development of plasticity, and the removal of material adjacent to the contact interface due to 

cumulative damage. Results of the normalized von Mises equivalent stress 𝜎𝑀 and the equivalent 

plastic strain 𝜀̅𝑝  obtained at the end of normal loading (𝑁 = 0 ) for 𝐷 = 1.3, 1.4,  and 1.5 , �̅� =
2.5 × 10−7, and �̅� = 14.2 × 10−5 are contrasted in Fig. 4.4. It is noted that the increase of the 

fractal dimension 𝐷 enhances the dominance of higher frequency components (smaller amplitude 

wavelengths) in the surface topography; therefore, the higher the value of 𝐷  the smoother the 

surface profile. Normal contact of the rougher surface (𝐷 = 1.3) with the half-space produced 

multiple microcontacts clustered in two neighboring regions with highly localized stresses (Fig. 

4.4(a)) and large plastic strains adjacent to the contact interface accompanied by material flow into 

the valleys of the fractal surface formed by the shorter wavelengths (Fig. 4.4(b)). The smoother 

fractal surface ( 𝐷 = 1.4 ) yielded more microcontacts, which produced more localized high 

stresses and increased interaction of the stress fields of neighboring microcontacts (Fig. 4.4(c)), 

leading to lower plastic strains and much smaller plastic zones adjacent to the contact interface 

(Fig. 4.4(d)). The multiple microcontacts formed in the normal contact simulation with the 

smoothest fractal surface (𝐷 = 1.5) generated high stresses primarily at the surface (Fig. 4.4(e)) 

and insignificant plastic deformation within small and spotty near-surface plastic zones (Fig. 

4.4(f)).       
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Figure 4.4 Normalized von Mises equivalent stress 𝜎𝑀 (left) and equivalent plastic strain 𝜀 ̅𝑝 (right) for �̅� =
2.5 × 10−7 and �̅� = 14.2 × 10−5 obtained after normal loading (𝑁 = 0): (a,b) 𝐷 = 1.3, (c,d) 𝐷 = 1.4, and (e,f) 

𝐷 = 1.5. The 𝜀 ̅𝑝 contours are within the boxed areas shown on the left. 

 

Figure 4.5 Normalized von Mises equivalent stress 𝜎𝑀 (left) and equivalent plastic strain 𝜀 ̅𝑝 (right) for �̅� =
2.5 × 10−7 and �̅� = 14.2 × 10−5 obtained after five oscillation cycles (𝑁 = 5): (a,b) 𝐷 = 1.3, (c,d) 𝐷 = 1.4, and 

(e,f) 𝐷 = 1.5. The 𝜀̅𝑝 contours are within the boxed areas shown on the left. 

Intensification of plasticity and material removal became prominent with oscillatory 

sliding as demonstrated by 𝜎𝑀 stress and 𝜀̅𝑝 strain results displayed in Fig. 4.5, which are for the 

same contact interface depicted in Fig. 4.4. Specifically, plastic shearing induced by reciprocal 

sliding enhanced the loss of material, resulting in the establishment of more microcontacts, 

subsequently decreasing the overall stress field due to augmentation of the surface conformity. 

Nevertheless, the rougher fractal surface with 𝐷 = 1.3 still produced higher stresses (Fig. 4.5(a)) 

than the relatively smoother surfaces with 𝐷 = 1.4  (Fig. 4.5(c)) and 𝐷 = 1.5  (Fig. 4.5(e)). 

Conversely to the stresses, the proliferation of surface conformity due to the loss of material was 

accompanied by the evolution of plasticity. The rougher surface (𝐷 = 1.3) produced significantly 

larger plastic zones and plastic strains (Fig. 4.5(b)), resulting in more damage accumulation in the 
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elements at and adjacent to the contact interface, which were eventually removed, compared to the 

smoother surface (𝐷 = 1.4), which produced more but much smaller interconnected plastic zones 

(Fig. 4.5(d)). Oscillatory sliding induced plastic deformation even in the case of the smoothest 

surface (𝐷 = 1.5), which yielded virtually elastic deformation under normal loading (Fig. 4.4(f)), 

although plasticity was confined very close to the contact interface (Fig. 4.5(f)). In addition to the 

effect of the fractal dimension 𝐷 on the intensity and spatial distribution of 𝜀̅𝑝, Figs. 4.5(b), 4.5(d), 

and 4.5(f) also provide a qualitative assessment of the effect of surface texture on the loss of 

material and the density and interaction of asperity microcontacts. Evidently, the removal of 

material and plasticity became less prominent with the increase of the fractal parameter 𝐷 due to 

the formation of more microcontacts that shared the load more uniformly across the contact 

interface.  

 

Figure 4.6 Material removal rate �̅�𝑟versus normal load �̅� for various values of �̅� and (a) 𝐷 = 1.3, (b) 𝐷 = 1.4, and 

(c) 𝐷 = 1.5. 

Further insight into the effect of surface texture on material loss can be obtained in the light 

of the results displayed in Fig. 4.6, showing the material removal rate �̅�𝑟 as a function of normal 

load �̅� for 𝐷 = 1.3, 1.4, and 1.5 and different values of the dimensionless fractal roughness �̅�. The 

nonlinear dependence of �̅�𝑟 on �̅� demonstrated in all simulation cases indicated a divergence from 

the linear load dependence of the material removal rate postulated by the classical wear law 

(Archard, 1953). It is also noted that �̅�𝑟 increased with the increase of �̅� (for fixed 𝐷) and the 

decrease of 𝐷 (for fixed �̅�), implying a decrease in material removal rate with decreasing surface 
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roughness, consistent with the results shown in Figs. 4.4 and 4.5 and the experimental evidence 

reported in the literature.  

 

Figure 4.7 Normalized von Mises equivalent stress 𝜎𝑀 at the end of normal loading for various normal loads �̅�, 𝐷 =
1.4, and �̅� = 2.5 × 10−7. Corresponding magnified stress distributions inside the boxed areas 1 and 2 shown on the 

left are displayed in the middle and right column, respectively. 

Another important finding was the effect of surface roughness on the normal load 

dependence of the material removal rate. As shown in Fig. 4.6, �̅�𝑟  exhibited a bell-shaped 

distribution for relatively smooth fractal surfaces (i.e., high 𝐷  and/or low �̅� ) and a sigmoidal 

distribution for relatively rough fractal surfaces (i.e., low 𝐷  and/or high �̅� ). This trend can be 

explained by considering the effects of normal load and fractal parameters on surface conformity. 

Figure 4.7 shows the normalized von Mises equivalent stress 𝜎𝑀 at the end of normal loading in 

terms of the normal load �̅�  for 𝐷 = 1.4  and �̅� = 2.5 × 10−7 . Figures 4.7(a)–4.7(c) show the 

overall stress distribution, whereas Figs. 4.7(d)–4.7(f) and 4.7(g)–4.7(i) display magnified views 

of corresponding stress distributions close to the contact interface, within the boxed areas 1 and 2, 

respectively, shown in Figs. 4.7(a)–4.7(c). The load increase amplified the near-surface stresses, 

enlarged the real contact area, and augmented the surface conformity by inducing material flow 

into the valleys of the fractal surface (Figs. 4.7(e), 4.7(h), 4.7(f), and 4.7(i)). The progressive 

proliferation of the surface conformity, instigated by the load increase and the loss of material 

during sliding, contributed to mechanical interlocking of the fractal surface with the half-space, 

which strengthened with the accumulation of oscillation cycles, accordingly, reducing the relative 

slip distance at the contact interface. Thus, the bell-shaped distribution of �̅�𝑟  displayed by the 

relatively smooth surfaces (Fig. 4.6) can be attributed to the increase of �̅�𝑟 with �̅� in the low-load 

range. In the high-load range, material plastic flow into the valleys of the fractal surface enhanced 

the surface conformity, resulting in mechanical interlocking, which decreased the relative slip 

distance of the fractal surface during oscillation and, sequentially, the material removal rate. The 

sigmoidal distribution of �̅�𝑟 demonstrated by the relatively rough fractal surfaces (Fig. 4.6) was 

also accredited to the increase of surface conformity due to plastic flow of material into the valleys 

of the fractal surface that resulted in mechanical interlocking. Similar to the trend for the smoother 

fractal surfaces, the increase of �̅�𝑟 with �̅� for the rougher surface in the low-load range was due to 

the deeper penetration of the fractal surface. The intermediate-load range of nearly stable or slowly 
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changing �̅�𝑟 was ascribed to small changes in the relative slip distance due to small variations in 

the saturation of the surface valleys (i.e., the smaller wavelengths of the rough surface) by 

inflowing material. Finally, the increase of �̅�𝑟 in the high-load range was again due to the increase 

of the penetration depth of the fractal surface, attributed to the contribution of the larger 

wavelengths of the rougher surface. However, because the much larger surface valleys of the rough 

fractal surfaces were not fully occupied by plastically flowing material, the effect of the surface 

conformity and associated mechanical interlocking on the relative slip distance during oscillation 

was secondary; therefore, the consequence on the loss of material was not prominent in the high-

load range. 

Additional insight into the effects of normal load and contact interface topography on the 

material removal rate was obtained by considering the variation of the normalized elastic, plastic, 

and frictional work, �̅�𝑒, �̅�𝑝, and �̅�𝑓, respectively, with the normal load and fractal dimension. 

Simulations revealed different trends for �̅�𝑒 and �̅�𝑝 with increasing oscillation cycles and normal 

load for fixed �̅� and 𝐷 =  1.3 and 1.4. For the rougher fractal surface (𝐷 = 1.3), �̅�𝑝 was always 

dominant despite the increase of �̅�𝑒  with the oscillation cycles (Fig. 4.8), consistent with the 

evolution of �̅�𝑟  with the increase of the normal load for �̅� = 2.5 × 10−7  shown in Fig. 4.6(a). 

However, for the smoother fractal surface (𝐷 = 1.4 ), �̅�𝑝  was prevalent in the low-load range, 

whereas �̅�𝑒  became influential in the high-load range (Fig. 4.9). Since the loss of material 

depended on the plastic work, the foregoing results indicated that the decrease of �̅�𝑟 in the high-

load range of the relatively smooth fractal surface, as shown in Fig. 4.6(b) for �̅� = 2.5 × 10−7, 

was due to the diminishment of the relative slip distance at the contact interface, instigated by the 

interlocking of the fractal surface with the half-space. 
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Figure 4.8 Normalized plastic work �̅�𝑝, frictional work �̅�𝑓, and elastic work �̅�𝑒 versus oscillation cycles 𝑁 and 

normal load �̅� for 𝐷 = 1.3 and �̅� = 2.5 × 10−7. The normalized material removal rate �̅�𝑟 computed for the 

maximum cycle number is also shown for each simulation case. 
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Figure 4.9 Normalized plastic work �̅�𝑝, frictional work �̅�𝑓, and elastic work �̅�𝑒 versus oscillation cycles 𝑁 and 

normal load �̅� for 𝐷 = 1.4 and �̅� = 2.5 × 10−7. The normalized material removal rate �̅�𝑟 computed for the 

maximum cycle number is also shown for each simulation case. 

To further elucidate the dependence of surface conformity and interface interlocking on the 

normal load and contact interface topography, results of the normalized maximum penetration 

depth �̅�max for a given normal load �̅� were compared with the range of normalized wavelength 

amplitudes �̅�𝑛 comprising the fractal surfaces. Figure 4.10 shows �̅�max as a function of �̅� for 𝐷 =
1.3, 1.4, and 1.5 and �̅� = 2.5 × 10−7. All simulations demonstrated a similar monotonic increase 

of �̅�max  with �̅�  and a noticeable upsurge of �̅�max  with decreasing D for fixed �̅� . Although the 

penetration depth at several microcontacts was less than �̅�max, the data shown in Fig. 4.10 can be 

used to approximately interpret the effect of fractal dimension and normal load on the surface 

conformity and, in turn, further elucidate the nonlinear variation of the material removal rate (Fig. 

4.6). The normalized wavelength amplitudes �̅�𝑛 corresponding to the fractal surfaces with 𝐷 =
1.3, 1.4, and 1.5 are in the ranges [1.48 × 10–4, 1 × 10–2], [5.95 × 10–5, 2.3 × 10–3], and [2.4 × 10–

5, 5 × 10–4], respectively. Comparing the ranges of �̅�𝑛 with the values of �̅�max shown in Fig. 4.10, 

it can be seen that, for 𝐷 = 1.5 and 1.4, �̅�max exceeded the maximum �̅�𝑛 at �̅� ≈ 2.5 × 10−5 (Fig. 

4.10(c)) and 4.5 × 10−5(Fig. 4.10(b)), respectively, whereas for 𝐷 = 1.3, the maximum �̅�𝑛 was 

just attained at the highest normal load (Fig. 4.10(a)). These results provided further support to the 

assessment that the narrow surface valleys of the smoother fractal surfaces (𝐷 = 1.4 and 1.5 ) 

entailing small wavelengths were prematurely filled with plastically flowing material of the half-

space, which, sequentially, enhanced the surface conformity, promoted surface interlocking, and 

reduced relative slip at the contact interface and, as a result, reduced the material removal rate. 

Alternatively, the effect of material filling of the surface valleys of the rougher fractal surface (𝐷 =
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1.3) possessing a wider range of wavelength amplitudes on surface conformity was considerably 

less pronounced. Consequently, the accumulation of significantly more plastic deformation due to 

less restriction of relative slip at the contact interface yielded higher material removal rates for the 

rougher fractal surface. The foregoing explains the bell-shape and sigmoidal distributions of the 

material removal rate (Fig. 4.6). 

 

 

Figure 4.10 Normalized maximum penetration depth �̅�max averaged over the total accumulated oscillation cycles of 

each simulation versus normal load �̅� for �̅� = 2.5 × 10−7 and (a) 𝐷 = 1.3, (b) 𝐷 = 1.4, and (c) 𝐷 = 1.5. 

The present contact mechanics analysis of oscillatory sliding contact provided insight into 

the role of fractal parameters, normal load, and oscillation cycles in the development of subsurface 

stresses and plastic deformation and the dependence of the material removal (wear) rate on 

plasticity-induced damage accumulation. A novel finding was that the classical wear law (Archard, 

1953), postulating a linear dependence of wear rate on normal load, not only breaks down at the 

atomic scale but also at the continuum level when the contact interface topography exhibits self-

affinity. Another important result of the present analysis was that relative slip at the contact 

interface may diminish under certain conditions, depending on the applied normal load, surface 

topography, and loss of material. The computational mechanics approach developed in this study 

can be modified to include a constitutive law accounting for the effects of strain rate and frictional 

heating (e.g., the complete ductile failure criterion developed by Johnson and Cook (1985)) on 

plasticity-induced damage, leading to the loss of material at sliding surfaces exhibiting multi-scale 

roughness. 
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4.4. Conclusions 

A contact mechanics analysis of the effects of surface topography (fractal) parameters, 

normal load, and oscillation cycles on plasticity-induced damage leading to progressive damage 

and loss of material in oscillatory contacts was performed in this study. A plane-strain FEM model 

of a rigid fractal surface in reciprocating sliding contact with an elastic-plastic, strain hardening 

half-space was used to analyze the removal of material with the development of damage. Based 

on the presented results and discussion, the following main conclusions can be drawn from this 

study. 

(1) For a given set of fractal parameters, the subsurface stresses relaxed with the 

accumulation of oscillation cycles due to the increase of the contact area (surface 

conformity) with the normal load and the removal of material; however, plastic 

deformation extended along the contact interface forming a continuous plastic band.  

(2)  The subsurface stresses and plastic strains intensified with the decrease of fractal 

dimension (i.e., increase of surface roughness) and the accrual of oscillation cycles. 

(3) The material removal rate exhibited a nonlinear dependence on normal load, indicating 

a departure from the classical linear wear law postulated by Archard (1953), even at the 

continuum level when the contact interface topography demonstrates self-affinity.  

(4) The material removal rate increased with the increase of fractal roughness and the 

decrease of fractal dimension, indicating a decreasing trend of wear rate with surface 

smoothening. 

(5) The nonlinear variation of the material removal rate with the normal load and fractal 

parameters was associated with the surface conformity and resulting mechanical 

interlocking of the fractal surface with the half-space surface, which reduced the loss 

of material by limiting relative slip at the contact interface.  

The contribution of this study to the contact mechanics field is the establishment of a 

computational capability for investigating the effects of other important parameters, such as strain 

rate, oscillation amplitude, and frictional heating, on the development of plasticity-induced 

damage leading to the loss of material in mechanical devices operating in reciprocating sliding 

contact mode. 
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CHAPTER 5 

A cohesive-zone-based contact mechanics analysis of delamination in homogeneous and 

layered half-spaces subjected to normal and shear surface tractions 

5.1. Introduction 

Delamination is commonly observed in multilayered structures used in various applications, 

such as semiconductor devices (Kim et al., 2022), electronics packaging (Morris, 2022), plastic 

packaging (Ügdüler et al., 2021), high-performance capacitors (Ko et al., 2010), sliding wear (Suh, 

1973; Voevodin et al., 1996), cutting tools (Cho and Komvopoulos, 1997; Tabakov et al., 2017), 

thermal barrier coatings for turbines (Choi et al., 1999) and automotive engines (Murthy et al., 

1990), and high-temperature materials (Nagarathnam and Komvopoulos, 1993). This phenomenon 

is controlled by an interfacial cohesive strength toughness parameter which, together with the 

mechanical properties of the layer and substrate materials, controls the inception of failure. Low 

interfacial cohesive strength can lead to layer delamination, thereby not serving the desired 

purpose of preserving the integrity of the substrate and close-fitting design tolerances. A layered 

structure may also evolve from an initially uniform structure during fabrication and/or usage. A 

characteristic example is the development of a strain-hardened surface layer on the surface of a 

machined part or a load bearing component. Therefore, even an initially homogeneous structure 

can become a layered structure during fabrication and/or usage. Consequently, basic understanding 

of interfacial delamination prompted by the mismatch of the layer and substrate physical properties 

is critical to the reliability and functionality of structures subjected to thermomechanical loadings. 

Various experimental and computational methods have been used to study interfacial 

delamination in layered structures. Gerberich et al. (1999) identified five sequential stages of 

plasticity and interface fracture due to nanoindentation, resulting in layer decohesion from the 

substrate (delamination). It was reported that activation of dislocations followed by hardening and 

material pile-up around the nanoindenter were the precursors of plasticity-induced delamination 

at the layer/substrate interface. He et al. (2011) designed a test method for measuring the 

delamination toughness of bilayer coatings attached to non-planar components, which was guided 

by beam-theory solutions of the energy release rate and structure compliance. In addition, they 

used the finite element method (FEM) to study the effect of residual stress on the energy release 

rate and determined that the shear-to-normal stress ratio was highly dependent on the layer 

thickness and the modulus ratio of the two layers comprising the bilayer coating. Liu and Yang 

(2012) performed a FEM analysis of interfacial delamination in an indented stiff layer/compliant 

substrate system and obtained numerical results showing that both the delamination zone and the 

maximum nodal separation increased with the indentation depth and the decrease in layer thickness. 

Significant advancements in fundamental understanding of interfacial delamination have 

been achieved by implementing cohesive constitutive laws in FEM analysis. The concept of a 

cohesive zone model (CZM), proposed by Dugdale (1960) and Barenblatt (1962), has been widely 

used to analyze localized damage or plastic flow in the close proximity of crack tips. Subsequently, 

various cohesive zone laws (in the form of interface traction-separation relationships accounting 

for elastic and softening deformation prior to final failure) were integrated in analyses of crack 

initiation and growth and interfacial fracture. Alfano et al. (2009) performed a comparative study 

of various CZMs used to model the instigation of interfacial cracking and delamination. 
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The integration of CZMs in FEM studies provided an effective computational methodology 

for undertaking complex interface problems in layered structures. For instance, Yan and Shang 

(2009) demonstrated the use of different CZMs in FEM simulations of interfacial fracture of 

micrometer-thick films, showing that the cohesive strength and work of separation are the most 

dominant parameters in CZMs. Song and Komvopoulos (2013) used a CZM that obeyed a bilinear 

traction-separation constitutive law to model the layer/substrate interface in a FEM analysis of 

adhesive contact between a rigid sphere and an elastic film attached to an elastic-perfectly plastic 

substrate and obtained numerical solutions that provided insight into the evolution of interfacial 

delamination during a full load-unload cycle. Mróz and Mróz (2015) presented a CZM-based 

analytical study of progressive delamination in bilayer systems subjected to pure shear loading, 

which shed light into the mode of delamination, the effect of material properties on the damage 

process, the critical interface stress, and the fracture energy. Walter et al. (2016) used different 

fracture mechanic methods to study the adhesive strength of a polyimide passivation layer on 

copper-film stacks deposited on a silicon substrate and the dependence of the critical energy release 

rate on the mode of loading and evaluated the delamination data using both analytical models and 

CZM-FEM analysis.  

More recently, Lin et al. (2017) used a combined approach based on molecular dynamics 

(MD) simulations and CZM-FEM analysis to study the interfacial fracture energy and 

delamination in multilayered integrated circuit packaging. Specifically, critical material 

parameters, such as the interfacial fracture energy, used in the interfacial cohesive constitutive law 

were derived from the MD simulations and were then input in the FEM model to analyze interfacial 

delamination in the multilayered structure due to indentation loading. Soroush et al. (2018) 

developed an FEM model of interlaminar and intralaminar delamination damage in laminated 

composite plates subjected to impact using a CZM and a progressive damage model. Hassan et al. 

(2019) introduced the interfacial strength and fracture toughness of a steel-steel bilayer sheet 

measured from a peel-off test into a CZM-FEM model to study interfacial delamination in the 

bilayer sheet caused by normal loading and provided experimental evidence showing more 

accurate estimates of delamination damage growth obtained with a liner-exponential traction-

separation softening law than a linear softening law. Long et al. (2019) used a CZM-FEM approach 

to investigate the failure characteristics of bi-material systems in uniaxial tension and observed a 

transition from coating cracking to interface delamination with increasing coating thickness. Liang 

et al. (2021) performed a CZM-FEM analysis of damage and fracture at the interfaces of ceramic 

films and metal substrates under uniaxial tensile loading and reported a dependence of the interface 

strength on both the residual radial force and the axial pressure and a catastrophic failure for thicker 

films. 

Although the foregoing studies (and several others) greatly contributed to the elucidation 

of various challenging problem in interface mechanics, further research is needed to elucidate 

interface delamination in elastic-plastic homogeneous and layered media subjected to normal and 

shear (frictional) surface tractions. Consequently, the purpose of this study was to provide 

additional insight into interfacial delamination in half-spaces subjected to indentation and sliding 

contact loading. To accomplish this objective, a CZM was incorporated in a FEM analysis to 

simulate interface separation when appropriate fracture energy conditions were satisfied. 

Simulation results revealing the evolution of subsurface stresses and plasticity illuminate the 

effects of indentation depth and sliding distance on interfacial delamination in homogeneous and 

layered half-spaces with different elastic-plastic properties, interfacial cohesive strength, and layer 
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thickness. The present study elucidates the important role of elastic-plastic property mismatch at 

the layer/substrate interface of layered half-spaces and provides a modeling framework for 

analyzing interfacial delamination in multilayered structures subjected to quasistatic and dynamic 

contact loadings. 

5.2. Modeling Approach 

5.2.1. Finite Element Model 

Figure 5.1 shows a schematic of the plane-strain contact model of a rigid cylinder with a radius 𝑅 

sliding against a deformable layered half-space examined in this study. The cylinder indents the 

half-space up to a maximum depth 𝑑 and then slides laterally by a total distance 𝑠. The half-space 

comprises a surface layer with a thickness ℎ =  0.1𝑅 and a half-space substrate and is discretized 

by an 8𝑅 ×  8𝑅  FEM mesh consisting of 36,162 four-node, reduced-integration, quadrilateral 

finite elements with a total of 37,658 nodes. The layer/substrate interface comprises pairs of nodes 

initially having the same coordinates. To accurately capture the large stress/strain gradients 

adjacent to the contact interface and the separation at the layer/substrate interface and to reduce 

the computational time, the mesh is compartmentalized in three segments centered at the point O 

of initial contact. The near-surface region of the mesh with dimensions 2ℎ =  0.2𝑅 and 𝑙 =  2.2𝑅 

is uniformly refined with elements having a size 𝑙𝑐 =  0.005𝑅, representing ~ 49% of the total 

number of elements, of which half are layer elements and the other half are substrate elements 

(inset of Fig. 5.1). Outside of this region, the substrate is meshed with elements with size gradually 

increasing from 0.005𝑅 to 0.1𝑅. Finally, the outer part of the mesh is uniformly meshed with 0.1𝑅 

size elements. The nodes at the bottom boundary of the mesh are constrained in both x- and y-

directions, whereas the nodes at the left and right boundaries of the mesh are not constrained. All 

the FEM simulations comprised three sequential phases, i.e., indentation of the half-space by the 

rigid cylinder to a depth d, sliding of the cylinder against the half-space in the x-direction by a 

distance s, and, finally, full unloading of the cylinder.  

Surface contact is simulated with a finite sliding algorithm, which treats the surfaces of the 

deformable half-space and the rigid cylinder as slave and master surfaces, respectively, and 

controls the relative separation and slip between the interacting surfaces. Each slave node coming 

into contact with the master surface is constrained to slide against the master surface, while the 

position of the slave node relative to the master surface is continuously tracked by the algorithm 

during the deformation. The finite sliding algorithm was implemented in the FEM analysis by 

using automatically generated contact elements. At each integration point of a contact element, the 

overclosure is adjusted to prevent a surface point of the deformed layer surface from penetrating 

the surface of the rigid cylinder and the relative shear slip is computed afterwards. Coulomb 

friction is modeled by assigning to the contact elements a coefficient of friction, which relates the 

maximum allowable shear stress at the contact interface to the local contact pressure. All 

simulations were performed in displacement-control mode, using the multi-physics code 

ABAQUS/Standard (implicit solver)(ABAQUS Analysis User’s Guide, 2022) . 
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Figure 5.1 Finite element mesh (top) and refined mesh adjacent to the contact interface (bottom) (The yellow dashed 

line corresponds to the delamination interface and the layer/substrate interface.) 

 

Figure 5.2 The cohesive model of the effective traction 𝜎 versus effective separation 𝛿̅ at the delamination interface. 

5.2.2. Cohesive Zone Model and Interfacial Delamination 

Interfacial delamination under combined normal and tangential loading is modelled with the 

surface-based CZM for mixed-mode loading depicted in Fig. 5.2. The CZM relates the effective 

cohesive interface traction 𝜎 to the effective separation 𝛿̅ at the interface through the following 

linear relation (Camanho et al., 2003): 
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𝜎 = 𝑘𝛿̅ = √𝛿𝑛
2 + 𝛿𝑠

2                                                             (5.1) 

where 𝑘 is the initial stiffness (a penalty parameter not representative of a physical quantity), and 

𝛿𝑛 and 𝛿𝑠 are the relative separation distances in the normal and tangential directions, respectively. 

Ideally, the initial stiffness should be infinite so that it does not affect the overall compliance of 

the model in the OA path; however, a finite stiffness value must be used to avoid numerical errors 

(ABAQUS Analysis User’s Guide, 2022; Turon et al., 2007). Preliminary simulations revealed that 

𝑘 = 106 MPa/mm was a good choice for the present analysis; therefore, this stiffness value was 

used for both the normal and the tangential nodal displacements at the layer/substrate interface. 

When the peak value of the applied traction is reached (point A), the interface stiffness 

begins to degrade according to a damage initiation criterion. Various criteria of damage initiation 

have been proposed, such as the maximum nominal stress and quadratic nominal stress criteria.  A 

comparative study Rocha and Campilho (2018) has shown better agreement between experimental 

and FEM results based on the quadratic nominal stress criterion for damage initiation. According 

to this damage initiation criterion, interfacial delamination is instigated when the following 

traction-based relation is satisfied (Camanho et al., 2003): 

(
⟨𝑡𝑛⟩

𝜎𝑐
)

2

+ (
𝑡𝑠

𝜏𝑐
)

2

= 1                                                              (5.2) 

where 𝑡𝑛 (= 𝑘𝛿𝑛) and 𝑡𝑠 (= 𝑘𝛿𝑠) are the interface tractions in the normal and tangential directions, 

and 𝜎𝑐  and 𝜏𝑐 are the critical cohesive normal and tangential tractions, assumed equal in this study. 

The Macaulay bracket (< >) is used in Eq. (5.2) to indicate that a purely compressive stress state 

does not initiate damage.  

In mixed-mode loading, the critical separation distance 𝛿�̅� (point A) at which Eq. (5.2) is 

satisfied is given by 

𝛿�̅� = (
𝜎𝑐

𝑘
) (

𝜏𝑐

𝑘
) [

1 + 𝛾2

(
𝜏𝑐

𝑘
)

2

+ 𝛾2 (
𝜎𝑐

𝑘
)

2]

1/2

                                      (5.3) 

where g is the ratio of the shear displacement 𝛿𝑠 to the normal displacement 𝛿𝑛 of node pairs, 

which are derived from Eq. (5.2) and the traction-displacement stiffness relations. Equations (5.2) 

and (5.3) are used to determine the initiation of delamination. 

Stiffness degradation is represented by a linear softening behavior (path AC in Fig. 5.2) 

obeying the relation  

𝜎 = 𝜎∗(1 − 𝐷)                                                                                (5.4) 

where 𝜎 is the current effective interface cohesive strength, 𝜎∗ is the effective interface cohesive 

strength in the absence of damage, and D is a scalar degradation parameter, given by 
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𝐷 =
1 − 𝛿�̅�/𝛿̅

1 − 𝛿�̅�/𝛿̅𝑓
,     0 ≤ 𝐷 ≤ 1                                                     (5.5) 

where 𝛿̅𝑓is the effective separation distance corresponding to the fully degraded stiffness (point 

C). 

The area under the traction-separation response (OAC) is equal to the critical fracture 

energy 𝐺𝑐. For a substrate much thicker than the layer, the critical fracture energy in the normal 

and tangential interface directions 𝐺𝑛
𝑐 and 𝐺𝑠

𝑐, respectively, are given by (Krenk, 1992; Freund and 

Suresh, 2004) 

𝐺𝑛
𝑐 =

1

2
(

ℎ

𝐸′
) 𝜎𝑐

2                                                                              (5.6) 

 𝐺𝑠
𝑐 =

1

2
(

ℎ

𝐺
) 𝜏𝑐

2                                                                                (5.7) 

where ℎ is the layer thickness, 𝐸′ is the effective elastic modulus, and 𝐺 is the shear modulus.  

Under mixed-mode loading, the stiffness degradation and 𝛿̅𝑓   depend on the following 

fracture energy-based criterion (Camanho et al., 2003): 

𝐺𝑛

𝐺𝑛
𝑐 +

𝐺𝑠

𝐺𝑠
𝑐 = 1                                                                                   (5.8) 

where 𝐺𝑛  and 𝐺𝑠  are the fracture energies in the normal and shear (lateral) directions of the 

layer/substrate interface given by 

𝐺𝑛 =
𝑘𝛿�̅�𝛿̅𝑓 

2(1 + 𝛾2)
                                                                            (5.9) 

𝐺𝑠 =
𝑘𝛿�̅�𝛿̅𝑓𝛾2

2(1 + 𝛾2)
                                                                           (5.10) 

Substitution of Eqs. (5.9) and (5.10) into Eq. (5.8) yields the following expression for 𝛿̅𝑓, 

𝛿̅𝑓 =
2(1 + 𝛾2)

(
1

𝐺𝑛
𝑐 +

𝛾2

𝐺𝑠
𝑐) 𝑘𝛿�̅� 

                                                                 (5.11) 

Accordingly, Eq. (5.11) is used to determine failure due to delamination. 

FEM simulations that use CZMs often encounter convergence difficulties at the instant of 

node separation at the delamination interface, known to evolve from an elastic snap-back 

instability commencing as soon as the stress reaches the interface cohesive strength. This 

convergence problem can be avoided by introducing a small fictitious viscosity in the CZM that is 
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used to characterize the delamination interface (Gao and Bower, 2004). Consequently, a small 

viscous dissipation parameter equal to 0.001, which resulted in negligibly small energy dissipation, 

is introduced into the CZM to prevent instabilities due to the node separation at the delamination 

interface. 

5.2.3. Constitutive Model 

To model quasistatic, isothermal, isotropic strain hardening material behavior, the half-space is 

modelled to obey the following constitutive law:  

𝜎 = 𝐸𝜀  (𝜎 < 𝑌) ,  𝜎 = 𝐾𝜀𝑛 (𝜎 ≥ 𝑌)         (5.12)                         

where 𝜎 is the true stress, 𝜀 is the true strain, 𝐸 is the elastic modulus, 𝑌 is the yield strength, 𝐾 is 

the strength coefficient, and 𝑛 is the strain hardening exponent (assumed equal to 0.2 in this study).  

Yielding is determined by the von Mises equivalent stress 𝜎𝑒𝑞 yield criterion, given by  

𝜎eq = (
3

2
𝑆𝑖𝑗𝑆𝑖𝑗)

1/2

=  𝑌                                                                   (5.13) 

where 𝑆𝑖𝑗 are components of the deviatoric stress tensor.  

The development of plasticity is traced by the equivalent plastic strain 𝜀eq
p

, calculated by 

𝜀eq
p

= ∫ (
2

3
𝑑𝜀𝑖𝑗

p
𝑑𝜀𝑖𝑗

𝑝 )
1/2

                                                                   (5.14)

 

Ω

 

where 𝛺 is the strain path used to track the accumulation of plasticity and 𝑑𝜀𝑖𝑗
p

 are plastic strain 

increments.  

5.2.4. Dimensionless parameters 

To obtain generalized solutions, both input and output parameters are normalized by appropriate 

quantities. Specifically, the dimensionless indentation depth �̅� , sliding distance �̅� , and layer 

thickness ℎ̅ are defined by 𝑑/𝑅, 𝑠/𝑅, and ℎ/𝑅, respectively. This normalization of the foregoing 

dimensional parameters is appropriate because the cylinder radius represents the relevant length 

scale of the problem. In fact, the ratio 𝑑/𝑅  has been used to represent global deformation in 

numerous contact mechanics studies.  The delamination fraction 𝛼 is defined as the number of 

separated node pairs at the layer/substrate interface divided by the total number of interface node 

pairs. The delamination ratio 𝛽 is given as 𝛼𝑙/𝛼ℎ, where 𝛼𝑙 and 𝛼ℎ are the delamination fractions 

of a layered half-space with different layer properties and a homogeneous half-space with substrate 

properties, respectively. The elastic modulus ratio is defined as the ratio of the elastic modulus of 

the layer 𝐸𝑙 divided by that of the substrate 𝐸𝑠, i.e., �̅� = 𝐸𝑙/𝐸𝑠. Similarly, the yield strength ratio 

is defined as the yield strength of the layer 𝑌𝑙  divided by that of the substrate 𝑌𝑠, i.e., �̅� = 𝑌𝑙/𝑌𝑠. 

Thus, the values of the dimensionless parameters�̅� and �̅� are indicative of the mismatch between 

the layer and substrate mechanical properties.  
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5.3. Results and Discussion 

Interfacial decohesion (delamination) in a homogeneous elastic-plastic half-space is 

discussed first to establish a reference for the effects of normalized parameters, such as sliding 

distance �̅�  and indentation depth �̅� , and the interface cohesive strength 𝜎𝑐  on interfacial 

delamination in a layered elastic-plastic half-space with varying elastic-plastic properties and layer 

thickness. 

5.3.1. Delamination in Homogeneous Half-Spaces 

The dependence of the effective nodal separation 𝛿̅  at the cohesive interface before and after 

unloading on the sliding distance �̅� and indentation depth �̅� for a homogeneous elastic-plastic half-

space can be interpreted considering the results displayed in Fig. 5.3. For a short sliding distance 

(�̅� = 0.1), interfacial delamination is confined within a short distance from the center of indentation 

(𝑥/𝑤 = 0), with unloading inducing a slight increase in effective nodal separation (Fig. 5.3(a)). 

For a fixed indentation depth (�̅� = 0.002), a longer sliding distance (�̅� = 0.3) results in a profound 

increase in both the delamination length and the effective nodal separation, especially after 

unloading (Fig. 5.3(b)). Although the unloading does not affect the delamination length, it 

enhances the effective nodal separation, particularly with the increase of the sliding distance. A 

similar trend is observed with the increase of the indentation depth (�̅� = 0.0025) (or load) for a 

fixed sliding distance (�̅� = 0.1) (Fig. 5.3(c)). 
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Figure 5.3 Effective nodal separation 𝛿̅ profiles at the delamination interface (ℎ̅ = 1) obtained (―) before and (―) 

after unloading versus distance x/w measured from the center of initial contact (x/w = 0) for a homogeneous elastic-

plastic half-space with 𝐸 =  100 GPa, 𝑌 =  200 MPa, and 𝜎𝑐 = 100 MPa: (a) �̅� = 0.1, �̅� = 0.002, (b) �̅� = 0.3, 

�̅� = 0.002, and (c) �̅� = 0.1, 𝑑̅ = 0.0025. 

The dependence of the delamination fraction 𝛼 on the sliding distance 𝑠̅, cohesive strength 

𝜎𝑐 , and indentation depth �̅�  is illustrated in Fig. 5.4. In all cases, the delamination fraction 

increases monotonically with sliding distance. The simulations reveal two different tendencies. 

For a fixed indentation depth (�̅� = 0.002), a profound decrease in the delamination fraction occurs 

with increasing cohesive strength, because more energy is needed to separate the node pairs, 

whereas for a fixed cohesive strength (𝜎𝑐 = 100  MPa), increasing the indentation depth from 

0.002 to 0.0025 increases the delamination fraction significantly, especially with increasing sliding 

distance. For �̅� = 0.3 and 𝜎𝑐 = 100 MPa, for example, increasing the indentation depth by 25% 

fosters interfacial delamination more than twice. It is noted that for a relatively high cohesive 

strength and small indentation depth (or light load), pure indentation loading does not induce 

delamination.  
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Figure 5.4 Delamination fraction 𝛼 after unloading versus sliding distance �̅� for a homogeneous elastic-plastic half-

space with 𝐸 = 100 GPa, 𝑌 = 200 MPa, �̅� = 0.002, 0.0025, and 𝜎𝑐 = 75– 125 MPa. 

The distributions of the equivalent von Mises stress 𝜎𝑒𝑞 in a homogeneous elastic-plastic 

half-space shown in Fig. 5.5 provide further insight into interfacial delamination due to indentation 

loading, sliding, and unloading. Because an indentation depth 𝑑 ̅ = 0.002  does not cause 

delamination for 𝜎𝑐 = 100 MPa (Fig. 5.4), the stress field is characteristic of an indented 

homogeneous half-space (Fig. 5.5(a)). However, sliding by a distance 𝑠 ̅ = 0.3 induces 

delamination at the cohesive interface (Figs. 5.3(b) and 5.4), resulting in localized stress 

discontinuities and stress intensification in the region above the partially delaminated cohesive 

interface (Fig. 5.5(b)). Unloading promotes lateral expansion of the high residual stresses above 

the cohesive interface (Fig. 5.5(c)), attributed to the increase in effective nodal separation in the 

delaminated portion of the cohesive interface upon unloading (Fig. 5.3(b)). 

 

Figure 5.5 Contours of the equivalent von Mises stress 𝜎𝑒𝑞  for a homogeneous elastic-plastic half-space with 𝐸 =

100 GPa, 𝑌 = 200 MPa, and 𝜎𝑐 = 100 MPa at three sequential simulation stages: (a) indentation (�̅� = 0.002), (b) 

sliding (�̅� = 0.3, �̅� = 0.002), and (c) unloading. (The horizontal black line corresponds to the delamination interface.) 
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5.3.2. Delamination in Layered Half-Spaces 

Simulation results for layered elastic half-spaces are presented first to illuminate the effect of the 

elastic modulus mismatch (represented by elastic modulus ratio �̅� ) on the delamination at the 

layer/substrate interface, hereafter referred to as interfacial delamination. Figure 5.6 shows the 

variation of the delamination ratio 𝛽  after unloading with the elastic modulus ratio �̅�  for 𝐸𝑠 =
85 − 200 GPa. The figure reveals two important trends. First, all simulation cases demonstrate a 

monotonic increase in 𝛽 with �̅�, originating from a common point (𝛽 = 1) that corresponds to the 

homogeneous half-space case (�̅� = 1). The tendency for interfacial delamination to intensify with 

increasing elastic modulus mismatch can be attributed to the proliferation of the interfacial stresses 

due to layer stiffening, leading to further nodal separation upon unloading. Second, a nonlinear 

increase in 𝛽  with decreasing 𝐸𝑠  occurs for fixed 𝐸𝑙 . This trend does not imply that a more 

compliant substrate promotes delamination; rather it suggests a more prominent effect of the 

layer’s elastic modulus on interfacial delamination for more compliant substrates. For �̅� = 2.5, for 

instance, the delamination length is about 5.5 and 2 times greater than that corresponding to the 

homogeneous half-space for 𝐸𝑠 = 85 and 200 GPa, respectively.   

 

Figure 5.6 Delamination ratio 𝛽 after unloading versus elastic modulus ratio �̅� for an elastic layered half-space with 

𝐸𝑠 = 85– 200 GPa and 𝜎𝑐 = 100 MPa (ℎ̅ = 0.1, �̅� = 0.002, and �̅� = 0.1). 

The foregoing result can be explained by considering the stresses produced by the sliding 

process in elastic layered half-spaces with different layer and substrate elastic moduli. Figure 5.7 

shows contours of the equivalent von Mises stress 𝜎𝑒𝑞 in an elastic layered half-space produced 

before unloading for various �̅� values and the corresponding delamination fraction 𝛼. For a fixed 

substrate elastic modulus (𝐸𝑠 = 100 GPa), layer stiffening intensifies the stresses in the layer and 

the layer/substrate interface, consequently increasing the delamination fraction (Figs. 5.7(a)–

5.7(c)). In the case of homogeneous half-space (�̅� = 1), high stresses develop below the contact 

interface and interfacial delamination is limited (𝛼 = 0.05) due to minor stress intensification at 

the delamination interface (Fig. 5.7(a)). The tensile and shear stresses arising at interface nodal 

points slightly to the right of the cylinder increase the effective nodal separation locally, causing 

delamination at those node pairs where the decohesion condition (Eq. (5.2)) was satisfied. The 

increase in layer stiffness, significantly fortifies the stresses at the layer/substrate interface, 

consequently increasing the delamination fraction by a factor of about 3 and 4, i.e., 𝛼 = 0.13 and 

0.20 for �̅� = 2 and 3, respectively (Figs. 5.7(b) and 5.7(c)). A similar trend is observed with the 
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decrease of substrate stiffness, characterized by the augmentation of interfacial delamination. 

Specifically, for the most compliant substrate (�̅� = 2), high stresses develop below the contact 

interface and across a small interfacial region, resulting in localized delamination (𝛼 = 0.13) (Fig. 

5.7d). Substrate stiffening promotes the evolution of much higher stresses in the layer and the 

layer/substrate interface, contributing to an increase in delamination fraction with substrate 

stiffness, i.e.,𝛼 = 0.17 and 0.22 for �̅� = 1.33 and 1, respectively (Figs. 5.7(e) and 5.7(f)). 

 

Figure 5.7. Contours of the equivalent von Mises stress 𝜎𝑒𝑞  versus elastic modulus ratio �̅� and delamination fraction 

𝛼 obtained before unloading for an elastic layered half-space with (a)–(c) 𝐸𝑠 = 100 GPa and 𝐸𝑙 = 100, 200, and 

300 GPa (�̅� = 1, 2, and 3, respectively), (d)–(f) 𝐸𝑙  = 200 GPa and 𝐸𝑠 = 100, 150, and 200 GPa (�̅� = 2, 1.33, and 1, 

respectively), and 𝜎𝑐 = 100 MPa (ℎ̅ = 0.1, �̅� = 0.002, and �̅� = 0.1). (The horizontal black line corresponds to the 

delamination interface.) 

Simulation results for elastic-plastic layered media are presented next to reveal the effect 

of plasticity on the evolution of interfacial delamination. Figure 5.8 shows the delamination 

fraction 𝛼 after unloading versus the yield strength ratio �̅�. Although interfacial delamination does 

not occur for 𝑌𝑠 = 50  MPa, all other simulations demonstrate an initial increase in 𝛼  with �̅� 

followed by a decrease beyond a certain �̅� value, depending on the yield strength of the substrate 

𝑌𝑠 . Specifically, the maximum 𝛼  for 𝑌𝑠 = 100, 200  and 300  MPa corresponds to �̅� ≅ 1.3, 0.75 , 

and 0.5, respectively. Moreover, although a higher yield strength of the substrate produces a higher 

delamination fraction in the low range of �̅�, an opposite tendency occurs in the high range of �̅�, 

where the delamination fraction decreases sharply. This trend is also reflected in the results of the 

effective nodal separation presented next. 
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Figure 5.8 Delamination fraction  after unloading versus yield strength ratio �̅� for an elastic-plastic layered half-

space with 𝐸𝑙 = 𝐸𝑠 = 100 GPa (�̅� = 1), 𝑌𝑠 = 50–300 MPa, and 𝜎𝑐 = 100 MPa (ℎ̅ = 0.1, �̅� = 0.0025, and �̅� = 0.3).  

Figure 5.9 shows distributions of the effective nodal separation 𝛿̅  before and after 

unloading for a layered elastic-plastic half-space with �̅� = 0.75  and 1 . Before unloading, 

significantly larger nodal separation distances arise for the relatively lower strength layer (�̅� =
0.75), especially in the interfacial region – 10 < 𝑥/𝑤 < 0, compared to the higher strength layer 

(�̅� = 1.5). A notable amplification of the nodal separation distances originates upon unloading, 

especially for �̅� = 0.75, where much larger nodal separations develop in the interfacial region 0 <
𝑥/𝑤 < 12  and much lower in the region – 10 < 𝑥/𝑤 < 0 , contrary to what is found before 

unloading. This can be attributed to the effect of residual stresses in the layer causing it to conform 

and the nodal separations to adjust accordingly. For �̅� = 1.5 , however, the increase in nodal 

separation upon unloading is much less pronounced than that for �̅� = 0.75 . The difference 

between these two cases can also be quantified in terms of the delamination fraction, i.e., 𝛼 = 0.55 

and 0.62 (�̅� = 0.75) and 𝛼 = 0.27 and 0.27 (�̅� = 1.5) before and after unloading, respectively. 

Despite the increase of the effective nodal separation in Fig. 5.9(b), the delamination fraction does 

not change upon unloading because the delamination criteria (Eqs.  5.2–5.11) are not satisfied in 

this case. This is also the reason for the constancy of the delamination fraction seen in some of the 

unloading simulations presented in following figures. The results shown in Fig. 5.9 illustrate that 

increasing �̅� (or 𝑌𝑙) by a factor of 2 decreases 𝛿m̅ax by a factor of ~3 and the delamination length 

by a factor >2, indicating a profound effect of the yield strength of the layer on interface 

delamination.  
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Figure 5.9 Effective nodal separation 𝛿̅ profiles at the delamination interface (ℎ̅ = 1) obtained (―) before and (―) 

after unloading versus distance x/w measured from the center of initial contact (x/w = 0) for a layered elastic-plastic 

half-space with 𝐸𝑙 = 𝐸𝑠 = 100 GPa (�̅� = 1), 𝐸𝑠 = 200 MPa, (a) 𝑌𝑙  = 150 MPa (�̅� = 0.75), (b) 𝑌𝑙 = 300 MPa (�̅� = 

1.5), and 𝜎𝑐 = 100 MPa (ℎ̅ = 0.1, �̅� = 0.0025, and �̅� = 0.3). 

The results shown in Figs. 5.8 and 5.9 can be interpreted by considering the effect of the 

yield strength ratio �̅� on the subsurface stress and strain fields before and after unloading. Figure 

5.10 shows contours of the von Mises equivalent stress 𝜎𝑒𝑞 in an elastic-plastic layered half-space 

for different values of the yield strength ratio �̅�. For �̅� = 0.25 (Fig. 5.10(a)), two small pockets of 

high stress form before unloading, one adjacent to the contact interface and another in the substrate 

just below the layer/substrate interface. However, the generated interfacial stresses do not satisfy 

the fracture energy criteria to instigate delamination (𝛼 = 0), consistent with the result shown in 

Fig. 5.8. For �̅� = 0.75 (Fig. 5.10(c)), significantly higher stresses occur in the layer, spreading 

laterally and through the layer/substrate interface and causing interfacial delamination (𝛼 = 0.55). 

For �̅� = 1.5 (Fig. 5.10(e)), a larger zone of high stresses develops in the layer; nonetheless, both 

stress spreading within the layer and delamination are less (𝛼 = 0.27) than those for �̅� = 0.75. 

All simulations demonstrate extremely small residual stresses in the substrate just below the 

layer/substrate interface after unloading, suggesting that plastic deformation is confined within the 

layer and at the layer/substrate interface. A comparison of Figs. 5.10(b), 5.10(d), and 5.10(f) 

indicates that, although the increase in �̅� progressively intensifies the residual stresses, the effect 

on the delamination length does not show a specific trend. Specifically, for �̅� = 0.75 (Fig. 5.10(d)), 

the delamination length increases from 0.55 to 0.62 after unloading, whereas for �̅� = 1.5 (Fig. 

5.10(f)), the effect of unloading on the delamination length is negligible.  
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Figure 5.10 Contours of the equivalent von Mises stress 𝜎𝑒𝑞  before (left) and after (right) unloading versus yield 

strength ratio �̅� and delamination fraction 𝛼 for an elastic-plastic layered half-space with 𝐸𝑙 = 𝐸𝑠 = 100 GPa (�̅� = 

1), 𝑌𝑠 = 200 MPa, 𝑌𝑙  =  50, 150, and 300 MPa (�̅� = 0.25, 0.75, and 1.5, respectively), and 𝜎𝑐 = 100 MPa (ℎ̅ = 0.1, 

�̅� = 0.0025, and �̅� = 0.3). (The horizontal black line corresponds to the delamination interface.) 

The contours of the equivalent plastic strain 𝜀eq
p

 shown in Fig. 5.11 provide further insight 

into the previous findings, confirming the strong effect of the yield strength of the layer on 

interfacial delamination. Despite the widespread plastic deformation in the bulk of the layer and 

at the layer/substrate interface for �̅� = 0.25 (Fig. 5.11(a)), the relatively low stresses in the low-

strength layer (Fig. 5.10(a)) do not lead to delamination ( 𝛼 = 0 ). Moreover, while layer 

strengthening ( �̅� = 0.75 ) reduces widespread plasticity in the layer (Fig. 5.11(b)), it also 

intensifies the stresses at the layer/substrate interface (Fig. 5.10(c)), resulting in delamination (𝛼 =
0.55), which is further augmented upon unloading (𝛼 = 0.62) (Fig. 5.11(b)). Interestingly, further 

layer strengthening (�̅� = 1.5) reduces plasticity in the layer significantly, with large plastic strains 

being confined to the upper region of the layer (Fig. 5.11(c)); but although this is accompanied by 

stress intensification (Fig. 5.10(e)), delamination decreases and remains unaffected even after 

unloading (𝛼 = 0.27) (Fig. 5.10(f)). A similar result is encountered by varying the yield strength 

of the substrate while maintaining a high yield strength of the layer (Figs. 5.11(d)–5.11(f)), 

signifying a dominant effect of layer plasticity on interfacial delamination.  
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Figure 5.11 Contours of the equivalent plastic strain 𝜀𝑒𝑞
𝑝

 after unloading versus yield strength ratio �̅� and 

delamination fraction  for an elastic-plastic layered half-space with 𝐸𝑙 = 𝐸𝑠 = 100 GPa (�̅� = 1), (a–c) 𝑌𝑠 = 200 

MPa and 𝑌𝑙 = 50, 150, and 300 MPa (�̅� = 0.25, 0.75, and 1.5, respectively), (d–f) 𝑌𝑙  = 300 MPa and 𝑌𝑠 = 100, 200, 

and 300 MPa (�̅� = 3, 1.5, and 1, respectively), and 𝜎𝑐 = 100 MPa (ℎ̅ = 0.1, �̅� = 0.0025, and �̅� = 0.3). (The horizontal 

black line corresponds to the delamination interface.) 

Figure 5.12 shows the distributions of effective nodal separation 𝛿̅ acquired before and 

after unloading of an elastic-plastic layered half-space for different values of yield strength ratio 

�̅�. These results provide additional supporting proof to the foregoing contention. In all 

simulation cases, unloading enhances surface separation without affecting the delamination 

fraction. The highest yield strength ratio (�̅� = 3) produces the smallest nodal surface separations 

and delamination fraction (𝛼 = 0.19) (Fig. 5.12(a)). Decreasing �̅� instigates larger delamination 

gaps, but only a small increase in delamination fraction, i.e., 𝛼 = 0.27 for both �̅� = 1.5 (Fig. 

5.12(b)) and �̅� = 1 (Fig. 5.12(c)). The results shown in Fig. 5.12 can be further interpreted by 

examining the corresponding stress fields before and after unloading, shown in Fig. 5.13. A 

comparison of the stress fields before or after unloading shows close similarity, though the 

stresses are less spread out in the layer for �̅� = 3 than 𝑌 ̅ = 1.5 and 1, consistent with the 

corresponding delamination fractions and the variation of 𝛼 with �̅� displayed in Fig. 5.8.  
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Figure 5.12 Effective nodal separation 𝛿̅ profiles at the delamination interface (ℎ̅ = 1) obtained (―) before and (―) 

after unloading versus distance x/w measured from the center of initial contact (x/w = 0) for a layered elastic-plastic 

half-space with 𝐸𝑙 = 𝐸𝑠 = 100 GPa (�̅� = 1), 𝑌𝑙  = 300 MPa, (a) 𝑌𝑠 = 100 MPa (�̅� = 3), (b) 𝑌𝑠 = 200 MPa (�̅� = 1.5), 

(c) 𝑌𝑠  = 300 MPa (�̅� = 1), and 𝜎𝑐  = 100 MPa (ℎ̅ = 0.1, �̅� = 0.0025, and �̅� = 0.3). 

 

Figure 5.13 Contours of the equivalent von Mises stress 𝜎𝑒𝑞  before (left) and after (right) unloading versus yield 

strength ratio �̅� and delamination fraction  for an elastic-plastic layered half-space with 𝐸𝑙 = 𝐸𝑠 = 100 GPa (�̅� = 

1), 𝑌𝑠 = 300 MPa, 𝑌𝑠 = 100, 200, and 300 MPa (𝑌 ̅= 3, 1.5, and 1, respectively), and 𝜎𝑐 = 100 MPa (ℎ̅ = 0.1, �̅� = 

0.0025, and �̅� = 0.3). (The horizontal black line corresponds to the delamination interface.) 
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In addition to the elastic-plastic material properties of the layered half-space, the layer 

thickness is another important parameter affecting the stresses arising at the layer/substrate 

interface and, consequently, interfacial delamination. Figure 5.14 shows the delamination fraction 

𝛼 after unloading as a function of layer thickness ℎ̅ for different values of �̅�. All simulation cases 

display a monotonic decrease in 𝛼  with increasing ℎ̅  and �̅� . This trend can be explained by 

considering that a thicker and stronger layer can accommodate much higher stresses compared to 

a thinner and weaker layer, hence significantly lessening the stresses at the layer/substrate interface 

and in the bulk of the substrate. In fact, the material near the interface may not even experience 

plastic deformation in the case of a thicker layer, despite the material property mismatch between 

the layer and the substrate.  

 

Figure 5.14 Delamination fraction 𝛼 after unloading versus delamination layer thickness ℎ̅ for an elastic-plastic 

layered half-space with 𝐸𝑙 = 𝐸𝑠 = 100 GPa (�̅� = 1), 𝑌𝑠 = 200 MPa, 𝑌𝑙  = 100–400 MPa (�̅� = 0.5–2, respectively) and 

𝜎𝑐 = 100 MPa (�̅� = 0.002, �̅� = 0.2). 

5.4. Conclusions 

 A contact mechanics analysis of interfacial delamination in homogeneous and layered 

elastic-plastic half-spaces subjected to normal and shear tractions generated by indentation and 

sliding was performed in this study. A surface-based CZM was implemented in a FEM analysis to 

model nodal separation at the delamination interface (layer/substrate interface for layered half-

spaces) when appropriate fracture energy conditions were satisfied. A parametric study 

demonstrated that increasing the indentation depth and/or sliding distance and decreasing the 

cohesive strength enhances interfacial delamination in homogeneous elastic-plastic half-spaces, 

even more after unloading, the primary reason being the high stresses spreading in the region above 

the delamination interface. An elastic FEM analysis of layered half-spaces showed that increasing 

the elastic modulus of the layer while fixing that of the substrate results in high stress localization, 

whereas the reverse causes more pronounced stress intensification in the bulk of the layer and at 

its interface with the substrate, with both scenarios leading to the enhancement of delamination at 

the layer/substrate interface. Simulations of an elastic-plastic FEM analysis demonstrated a 

significant effect of the yield strength mismatch between the layer and the substrate on the 

delamination process, characterized by a transition from increasing to decreasing delamination 

with the increase of the layer-to-substrate yield strength ratio. This trend is attributed to a change 

from intensifying to lessening subsurface stresses and less plastic deformation in the layer and the 

layer/substrate interface. The effect of layer strengthening on interfacial delamination is more 
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profound than that of substrate stiffening. Moreover, increasing the layer thickness while 

maintaining a high yield strength of the layer effectively suppresses delamination at the 

layer/substrate interface. The results of this study provide insight into the effects of indentation 

depth, sliding distance, and elastic-plastic property mismatch between the layer and substrate of 

layered half-spaces on interfacial delamination. The present analysis can be further extended to 

include a plasticity-induced damage model for studying cumulative damage in strain-hardening 

half-spaces subjected to cyclic dynamic contact loading by a rigid surface exhibiting multiscale 

roughness.  
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CHAPTER 6 

Conclusions 

Computational contact mechanics analyses were performed to study the evolution of 

plasticity and material damage of two contacting bodies under normal and/or tangential loads. 

The results of this thesis provide important insight into the development of stress field, plastic 

strain and material removal under indentation, fretting and sliding mechanics. Surface roughness 

modeling and its effect were also discussed followed by a material failure study of the interfacial 

delamination process. The major findings of this thesis are summarized below. 

First, the evolution of plasticity in an elastic-plastic, strain-hardening half-space indented 

by a rigid single flat or patterned surface was interpreted in the context of quasi-static, plane-

strain FEM simulations. A mesh independence study was conducted, and the computed contact 

pressure distribution was compared against an analytical solution of a single flat surface 

indenting an elastic substrate to ensure the adequacy of the mesh. Numerical results showed the 

development of high stresses and strains in the vicinities of the contact edge and corners of a flat-

surface indenter. While similar stress and strain fields were observed for a patterned-surface 

indenter during the initial stage of indentation, as the indentation depth increased, the 

deformation in the half-space was largely affected by the interaction of neighboring stress and 

strain fields. The normal force response included an initial elastic response and a steady-state 

response wherein the normal force increased gradually as the indentation progressed for both 

flat- and patterned-surface indentation. However, a third stage of the normal force response was 

found in the case of patterned-surface indentation, mainly caused by cavity filling that increased 

the contact area. Geometric factors, such as the side wall angle, exhibited a profound effect on 

plasticity, with small side wall angle producing a higher normal force due to the resulting larger 

contact area. In addition, larger protrusion distance and lower coefficient of friction produced a 

higher normal force, increased cavity filling, and intensified the stress and strain fields. At a large 

normal displacement where cavity filling was significant, the maximum equivalent plastic strain 

in the half-space approached that of flat-surface indentation. 

Next, a quasi-static, plane-strain FEM analysis was performed to examine the evolution 

of plasticity and material removal in an elastic-plastic half-space due to reciprocating sliding 

contact with a rigid cylindrical surface. Strain hardening material behavior and a plasticity-based 

ductile damage model was used to simulate the removal of fully damaged material. A 

dimensionless plastic-strain-based damage parameter was used to track the damage accumulation 

in the finite elements. Once the damage parameter reached unity, a linear stiffness degradation 

process was initiated, which was controlled by a dimensionless degradation parameter that 

increased from 0 to 1, at which instant the element was removed from the finite element mesh. 

The penetration depth increased with the load and the number of oscillation cycles, tending to 

stabilize after a few cycles especially at high loads. A parametric study elucidated the effects of 

normal load and the coefficient of friction on the development of plasticity and the removal of 

material with accumulating oscillation cycles. Specifically, the dimensionless plastic and wear 

areas increased with the coefficient of friction due to the enhancement of plastic shearing, 

revealing a dominant role of friction in plasticity and material loss. However, while the wear area 

initially increased linearly with the oscillation cycles, later it decreased when the load was 

increase above a threshold level, contrary to the classical adhesive wear law proposed by 
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Archard. This trend was explained in terms of the distribution of the plastic shear strain in low- 

and high-load oscillations. Particularly, high plastic shear strains developed adjacent to the 

contact interface in the low-load case, whereas in the high-load case, lower plastic shear strains 

occurred below the interface. The fraction of contact area in slip mode demonstrated a monotonic 

decrease with increasing load, indicating that a high load hindered interfacial slip due to the 

restriction of the rigid cylinder’s movement by the surrounding material, consequently causing 

less plastic shearing under high-load oscillation conditions and, in turn, less material loss. 

Plastic deformation and material loss in an elastic-plastic half-space subjected to fretting 

contact with a random rough (fractal) rigid surface was then investigated in the context of 

numerical results of a quasi-static, plane-strain FEM analysis. Plasticity-induced damage was 

tracked using a plasticity-based dimensionless parameter, while stiffness degradation was 

controlled by a dimensionless degradation parameter. The rough surface was modeled by fractal 

geometry, characterized by the properties of continuity, non-differentiability, and self-affinity. In 

general, both subsurface stresses and plastic strains intensified as the decrease of fractal 

dimension (rougher surface) and the increase of fretting cycles. For fixed fractal parameters, the 

increase of the normal load and the occurrence of material removal lowered the intensity of 

subsurface stresses with increasing number of oscillation cycles and a continuous plastic band 

formed along the contact interface. Rougher surfaces demonstrated higher material removal rate 

exhibiting a nonlinear load dependence, in contrast to the classical wear law of Archard. This 

nonlinear load dependence of the wear rate was attributed to the effects of increasing surface 

conformity and mechanical interlocking of the fractal surface with the half-space with the 

increase of the applied load, which restricted relative slip at the contact interface and, in turn, 

reduced the material loss. 

The problem of subsurface delamination in homogeneous and layered elastic-plastic half-

spaces due to indentation and sliding loading by a rigid cylinder was examined using a quasi-

static FEM analysis. A surface-based cohesive zone model was used to simulate delamination at 

mesh locations where a fracture-energy-based separation condition was satisfied. The effect of 

material property mismatch in layered half-spaces was examined by varying the elastic modulus 

ratio, defined as the layer’s elastic modulus over that of the substrate, and the yield strength ratio, 

obtained as the yield strength of the layer divided by that of the substrate. A larger indentation 

depth, greater sliding distance, and smaller cohesive strength promoted delamination in the 

homogeneous half-space persisting throughout unloading due to high stresses developing in the 

layer above the delamination interface. In the case of elastic behavior, the delamination at the 

layer/substrate interface was enhanced with the increase of the elastic modulus of the layer while 

keeping that of the substrate constant or fixing the layer’s elastic modulus and increasing that of 

the substrate, both intensifying the stresses in the layer. In the case of elastic-plastic behavior, the 

yield strength mismatch demonstrated a significant effect on delamination. Specifically, 

delamination initially increased and then decreased with increasing yields strength ratio. This 

trend was attributed to first intensifying and then lessening of the subsurface stresses and the 

limited plastic deformation in the layer and at the interface. Moreover, delamination at the 

layer/substrate interface was found to decrease with the increase of the layer thickness.  

In summary, the main contribution of this thesis in the field of contact mechanics is the 

establishment of FEM-based modeling approaches for investigating the evolution of plasticity 

and material failure (including plasticity-induced damage, material removal, and subsurface 
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delamination) in terms of the applied normal load and/or a combination of normal and tangential 

loading, the number of oscillation cycles, coefficient of friction, and surface topology 

(roughness). The developed numerical methodology provided detailed insight into complex 

contact problems and the capability for evaluating product designs involving surface contact. The 

constitutive models for strain hardening material and plastic damage can be modified to enable 

modeling for temperature-dependent applications, such as thermomechanical modeling of the 

frictional heating process in mechanical wire bonding and electromechanical relays in battery-

control systems. Furthermore, the plastic damage model used in the current framework can be 

tuned to model specific material behaviors, such as fracture for various triaxiality levels. 
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