
Lawrence Berkeley National Laboratory
Recent Work

Title
NUMERICAL SOLUTION OF HELMHOLTZ'S EQUATION BY IMPLICIT CAPACITANCE MATRIX
METHODS

Permalink
https://escholarship.org/uc/item/33m4c7v8

Author
Proskurowski, Wlodzimierz.

Publication Date
1977-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33m4c7v8
https://escholarship.org
http://www.cdlib.org/

,-
1

u ...,

Submitted to ACM Transactions on
Mathematical Software

/ I

LBL-6402
Preprint C: \

NUMERICAL SOLUTION OF HELMHOLTZ• S EQUATION BY
IMPLICIT CAPACITANCE MATRIX METHODS

Wlodzimierz Proskurowski

February 19 7 7

Prepared for the U. S. Energy Research and
Development Ad ministration uncle r Contract W- 7 40 5 -ENG- 48

For Reference

Not to be taken from this room

["'
to
["'
B
0'

*"' 0
"N . -

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

0 0 ~J J ,j I 8

NUMERICAL SOLUTION OF HELMHOLTZ'S EQUATION

BY IMPLICIT CAPACITANCE MATRIX METHODS*

Wlodzimierz Proskurowski

Lawrence Berkeley Laboratory
University of California

Berkeley, California

February 1977

*This work was done with support from the U.S. Energy Research
and Development Administration

. .

J 7 9

-1-

ABSTRACT

The numerical solution of Helmholtz's equation in an

arbitr~ry bounded plane region is considered. Variants of

the capacitance mitrix method are developed~which greatly

reduce storage requirements. This allows the use of a very

fine mesh with several hundred mesh points in each direction

or the use of a computer with a small core storage .

-2-

1. INTRODUCTION

In recent years special techniques called the capacitance

matrix method have been developed for the numerical solution

of Helmholtz's equation in a general plane-bounded region n,

flu + cu = f in n

where c is a real constant, and either Dirichlet or Neumann

conditions are specified on the boundary an. These methods

make use of fast solvers in regions that allow for the separ-

ation of variables. Operation count, e(n), for such fast

solvers is proportional to n 2log 2n, where n is the number

of mesh points in each direction. For a detailed discussion

of such methods and a history of their development, refer to

Proskurowski and Widlund [8] and Widlund [11].

In this paper we confine ourselves to two dimensional

bound~d regions; for problems in three dimensions see O'Leary

and Widlund [5].

The algorithms previously developed by us have a practi-

cal limitation on the number of mesh points, from memory

considerations. Normally, one generates and stores a dense

capacitance rna trix C of the order of p, where p is the

number of mesh points inside n adjacent to the boundary an.

In this paper we develop an implicit method in which we

avoid generating and storing the matrix·c; see also O'Leary

and Widlund [5]. Moreover, we exploit the fact that only a

few mesh points from the closest vicinity of the boundary
I

..

- .

8·-
. (.)

- 3-

an are involved in the main part of the computation, that is,

the capacitance matrix iterations. Using a solver on a

rectangle, which takes the sparsity of the problem into

account, developed originally by Banegas [1], we design an

algorithm that requires only 32p storage locations for its

main part. Only the last step, computing the final solution,

is limited to memory requirements of a fast solver on a

rectangle, i.e., m·n locations, where m and n are the

number of mesh points in a rectangle in which the region Q

is imbedded. To remove that obstacle we propose a solver
~

that requires only 2nm 2 storage locations at the expense of

some computational effort.

Numerical results from extensive experiments on the

CDC 7600 computer are reported.

•

-4-

2. CAPACITANCE MATRIX METHODS AND POTENTIAL THEORY

In this section we give a brief review of the potential

theoretical approach leading to capacitance matrix methods

as described in Proskurowski and Widland [8]; see also

Widlund [11].

We consider a problem on an arbitrary bounded plane

region n. The region Q is first imbedded in a larger region,

a rectangle, and a uniform mesh is introduced with the same

mesh size in the two coordinate directions. The boundary

conditions on the rectangle can be of arbitrary type as

long as they allow for the use of a fast solver; see Widlund

[10] and Proskurowski and Widlund [8]. The set of mesh

points is decomposed into three disjoint sets: Qh' anh,

and (CQ)h. The set Qh is the set of interior mesh points,

i.e., each of its members has all its immediate neighbors

in the open set Q. The remaining me~h points in n constitute

' anh, the set of irregular mesh points, while the set (CQ)h

contains all the remaining exterior mesh points. The discrete

Laplacian is represented by the five-point formula for all

points in QhU(CQ)h. The data for the exterior points are

extended in an arbitrary way; for the proof that the solution

on nhuanh is independent of the solution an~ data on (CQ)h,

see Section 3 of Proskurowski and Widlund [8]. For the irregular

points we must introduce a formula that also takes the boundary

conditions on an into account. We therefore combine the

·.-

0 u 0

-5-

discrete L~placian with an interpolation formula. The

important problem of scaling these auxiliary equations is

tr~ated in detail in Proskurowski and Widlund [8] and Shieh

[9]. We will denote by A the n 2
x n

2
matrix corresponding

to the difference problem enlarged to a rectangle handling

the given boundary conditions on aQ. The regularly struc-

tured problem for which a fast solver can be used is given

b h
2 2 · · · B t. h d" t L 1 . y t en· x n· matr1x represen 1ng t e 1scre e ap ac1an .

. With~ proper ordering of equations, A and B differ only

in row~ corresponding to the irregular mesh points. For

the Neumann problem we write A=B+UVT, and for the Dirichlet

T problem A=B+UZ , where U, V,and Z have p columns, and p is

the number of irregular mesh points. The matrix U represents

an extension operator, which maps anh onto the whole rec­

tangle~ It retains the values on anh and makes the remaining

values equal to zero. Its transpose, uT, is a trace operator.

Matrices VT and -zT are a compact representation of B-A, from

which the zero rows corresponding to th~ regular mesh points

have been deleted.

In potential theory the solution of the Neumann prob-

lem is given as a sum of a space potential us and a single

layer potential of ~harge distribution at the boundary an~

u(x) = 1\(x) + ~(x).

A discrete analog to (2.1) is

u = Gf + GUp ,

(2. 1)

(2. 2)

-6-

where each of.the p columns of U represents a unit charge

placed at an irregular point, where the discrete-operator G plays

the same role as the integral operator defined by the funda-

mental solution of the continuous problem (see Proskurowski

and Widlund [8]), and pis determined by.solving the capaci-

tance matrix equation

Cp g (2. 3)

where the pxp matrix Cis the capacitance-matrix and p is

a vector of p components. A proper approach for the Diri-

chlet problem is the double-layer potential Y of dipole

density u at the boundary an:

u (x) = us (x) +)V(x)

A discrete analog to (2.4) is

u = Gf + GDu ,

(2.4)

(2. 5)

where D has p columns,· each of them representing a unit

discrete dipole placed at an irregular point, and u is the

solution of

T = -z Gf = g, (2 .. 6)

where u is a vector of p components. Shieh [9] has shown

that the capacitance matrix C is equal to Kh plus a matrix

with a small condition number, where Kh is an approximation

to the correct compact operator of the corresponding Fred~

holm integral equation of the second kind. The conjugate

gradient method converges superlinearly for Fredholm inte-

gral equations of the second kind, as shown by Hayes [41.

Therefore, the conjugate gradient method applied for solving

0 Ur.· . ~
\.f u

- 7-

eqs. (2.3) and (2.6) converges,rapidly;· in practice, it is

independent of the size of the mesh; see also Proskuro~ski

and Widlund [8]. , Jn summary,·the algorithm consists of the

following steps:

1. Generate the capacit~nce·matrix C .

. : : 2. Compute g.

3. Solve (2.3) and (2.6) by the conjugate gradient method .

. 4, Use the fa~t solver 1 to obtain

u .=. G (. f + UP) .or u = G (f + Dl1)

Another option for Step 3 is td factor C and solve (2.3)

and (2.6} by Gaussian elimination. For the details of the

a,lgorithms and ways of fast generation of C, refer-to

Proskurowski and Widlund [8].

The total operation count for that algorithm is pro-

2 2 portional to n log 2n and p .

Some alternatives to this algorithm that make·it pas-

sibl~ to avoid the explicit generation of C will be descri­

bed in the next sections.

3. AN IMPLICIT CAPACITANCE MATRIX METHOD

Methods in which we explicitly generate, store, and

possibly factor the capacitance matrix may become inefficient~

when the mesh is refined. The capacitance matrix is a dense,

pxp matrix, where p is the number of irregular mesh points,

which grows linearly with n, the number ·of mesh points in

each coordinate direction. Foi example, somewhere between

-8-

the values of p equal to 150 and 200 the small core memory

(SCM) for the CDC 7600 computer becomes saturated. The use

of large core memory (LCM) would allow increasing the maxi­

mal values of p by a factor of 2 or slightly more, while for

even larger p one must use a secondary memory device with

a much longer access time. Therefore, we now present a

method in which the capacitance matrix is used only implicitly

without generating and storing it, thus saving p 2 memory

locations at the expense of a small increase in computational

effort~ see also O'Leary and Widlund [5], Widlund [11] and

an early paper of George [3].

We describe the method for the Dirichlet boundary condi-·

tions in which the proper Ansatz of double-layer potential is

used. The Neumann boundary conditions; where the single-layer

Ansatz is used and is a slightly simpler case, can be ~orked

out in a similar way.

We once more write the capacitance matrix equation

C~ = (I + ZTGD) = zTGf = g· .
p

The capacitance matrix C can also be rewritten as

(3.1)

C = (I + ZTGD) = UTAGD , (3.2) p

which form we will subsequently use. Since matrix C is nonsym­

metric and we intend to use the conjugate gradient method for

solving (3.1), we reformulate it in terms of a least squares

(3.3)

Thus each step of the·conjugate gradient method requires the

computation of a matrix-vector product CT(Cx) for any vector

x of length p given on the set of irregular mesh points, i.e.,

- ..!

0

;: 9-

(3. 4)

Let us rewrite (3.4) as 9- sequence of equations.

xl = Dx

:xz = Gx1 or Bx 2 = xl '

x:3 = (UTA)x 2 '
(UTA)Tx3

(3. 5)
x4 =

x5 = Gx 4 or,, Bx 5 = x4 '
T y. = D x 5 ''

Consequent~y, we first set to zero a larg~ n·n array, then gen­

erate.the mesh function Dx by distributing x onto the set of

~iscrete ~ipoles. This step costs 2p multiplicative op~rations.

Then we obtain G(Dx) by using the fast .solver at a cost propor-
. .

tional _to n~lo.g 2~ operations. UT maps a mesh function defined

for all .mesh poi;nt~ into its restriction to i~regular mesh

points. Therefor~, it is enough to apply the operator A to GDx

only on the set ~f closest neighbors of irregular mesh points.

T Acting in this. way we .compute U A(GDx) at the expense of 4p

multiplicative operations. The part corresponding to the trans-

pose of C is performed in a similar fashion. Thus, the vector

CTCx is obtained at a cost of two calls of the fast solver,

2 proportional ton log 2n operations, plus a lower-order term,

proportional to p operations.· In out program· some· ope rat ions

were repeated in order to save memory space.

Summing up·, this method requires n2 +8p memory 'locations

2 2 2 (n +lOp for the Neumann problem) compared with p +n plus a

lower-order term proportional to p for the explicit capacitance

matrix methods, as implemented in Proskurowski and Widlund [8].

-10-

On the other hand, the operation count for the present method
/

is (2k+3)·8(n), where k is the number of the conjugate gradient

iterations and is practically independent of n, the number of

mesh points, and 8(n) is the cost of a fast Helmholtz solver

proportional to n 2log 2n. In comparison, the cost for the ex­

plicit capacitance method with the conjugate gradient option is

equal to 3.5•8(n)+(2k+c)·p 2 operations, where cis a constant

arising from the generation of the capacitance matrix.

An experimental comparison of the computation times for

n=64, p=l32 and a circular region is given in Section 7. It

shows that whenever the capacitance matrix is small enough to

fit into SCM, the explicit capacitance matrix methods are slight­

ly fast~r. On the other hand, the present method does not make

use of the translation invariance of the solution, which is ex­

ploited in our variant of the explicit capacitance matrix method,

and alternative fast solvers m{ght be easily used. A further

development of this method is described in Section 5.

4. A HELMHOLTZ SOLVER THAT TAKES ADVANTAGE OF SPARSITY

Consider the Helmholtz equation (-~+c)u = f on a rectangular

region with a m·n mesh. L~t the ~esh values of f and u be called

sources and targets, respectively. Denote then by s the number

of nonzero sources and by t the number of. targets where the

solution is required. Quite often there exist situ~tion

where either s<<m·n or t<<m·n, or both. One such situ-

-11-

ation occurs while computing the di~crete Green's function

for the generation of the capacitance rna t rix, i.e., the case

with s=l. _A more general discussion of the applications

for the present use is given in Sectioh 5. We riow

desciibe how to make use of the sparsity of sources and/or

targets to save memory space and pos-sibly computational

effort as well. This method was developed by Banegas [1]

and we have been uiing in our experiments a considerably al-

tered ~ariant.of her algorithm. This algorithm was meant

to be compatible with the one using Fast Fourier Transform

(FFT) as described 1n Proskurowski and Widlund [8] . Never­

theless, there is no difficulty in adapting it to alternative

fast Helmholtz solvers, if necessary. We remark also that the

orily restriction on n is ·for it to be even.

First, recall 'the fast Helmholtz solver described

in [8]. The solution there is obtained by applying the FFT

in one coordinate direction, i.e., m times on vectors of
' '

length n, then by solving n very special tridiagonal systems

of equations of order m by the Toeplitz method, and finally

by using an inverse FFT on m vectors of length n. Memory

requirement is here equal to m·n+O(l) and the total operation

count for this solver is 8 (m , n) = 2_ mn 1 o g 7 (!.!.) + 1 5 nni w h c r c c a c h
2 '-' 2 - '

multiplication and each fioating point additioti is taken as

a unit operation. We remark that the operation count always

shows only a part of the actual computational expenses and

is not an exact measure of it.

-12-

Let us now write the Fourier coefficients as inner

products of the data vector f(£) with the eigenvectors

¢(j) of the matrix B representing the discrete Laplacian

(-il+c):

f (j) =
k

n

~ . I:
£=1

wheie j=l, ... , nand k=l, ... ,m.

(4.1)

In addition, the inverse Fourier coefficents can be written

as

= (4. 2)

where£= 1,2, ... ,n and k = 1,2, ... ,m. It is easy to sec that .
for sparse sources and ~argets the number of entries with

double indexes (k,£) is reduced to s and t, respectively.

Consequently, the operation count·for the summation formulas

(4.1) and (4.2) is reduced considerably. Moreover, we may
" : ~

reorder the computation,perfor.ming it separately for each

frequency j. We first compute:the Fourier coefficients for

all nonzero sources fi, i = 1, ... ,sand simultaneously sum

those having the same index k. Then we ,solve the intermediate

tridiagonal matrix problem (with ~j corresponding to each

frequency j) with the previously computed Fourier coefficients

:1s :1. right-hand side. Then finally we compute the .inverse

Fourier coefficients for all targets we need for the solution

ui, 1 = 1, ... ,t, and sum simultaneously those having the same

8

-13-

index k. At this point locations used for the temporary

vaiues of ?(j) can be released ~nd used ior ?(j+l)_

Thus, this' procedure requires 3 (s+t) locations for

sources, targets, and their coordinates plus Z(m+n) locations

for 'storing the Fourier coefficients tempoiaiil~ and also

sines and ~osines. In the actual program we also store

temporarily some indexes in order to avoid the repdti{ion of

computing them. In all, we use

4(s+t)+2(m+n) memory locations.

If the sources and targets coincide,we could perform the

co'mpUfa t ions in place (as we do in the fast 'solver using

(4.3)

m·~ locations),thereby further reducing thes~ requirements

to 4s+2(m+n) locations.

It is evident that for large s and t this procedure,
/

which uses the conventional (i.e., slow) Fourier transform,

• will be ~uch slower than a comparable solver using FFT. Now

we will establish restrictions on s and t for this procedure

to be competitive with a fast Hel~holtz solve~. The oper-
1

ation count is

\j;(n,m,s,t) = 3n· (s+t) + 4mn.

Then \jJ = 8 for

3 s + t 2 mlog 2n/2 + 11 3m.

(4.4)

(4. s)

For example, take m=n and s+t = lOn. This gives the ratio

8(n)/\)J(n) = (~ log 2 ~ + 15)/34 which for n=64 is equal

to 1.1. The corresponding rntio for execution times in

JHllllerical experiments (sec Section 7) is very close to it.

-14-

5. AN IMPLICIT CAPACITANCE MATRIX METHOD USING A
HELMHOLTZ SOLVER THAT EMPLOYS SPARSITY

We recall from Section 3 that the main computational effort

(more than 90%) in an implicit capacitance matrix method

goes for computing vectors y = CTCx = DTG(UTA)T (UTA)GDx

during the conjugate gradient iterations. Moreover, a

dominant part of this com~utation, also over 90%, is spent

on a fast Helmholtz solver. We recall also that while

distributing the discrete dipoles (D) and using Shortley­

Weller stencils (UTA), only the mesh points from a close

neighborhood of the p irregular mesh points are involved in

the computation. The values on the rest of. the mesh points

are set to zero. In (3.5) x1 and x4 are sources (s), and

x 2 and x 5 targets (t) of the separable Helmholtz solver, in

ac~ordance with the notation introduced in Section 4.

A straightforward count for the Dirichlet problem gives

s < 5p for x4 (t < 5p for x 2) and s=3p for x1 (t=3p for x 5).

For the Neumann problem the corresponding values differ for

x1 (s=p) and x 5 (t=p), as we have here a single layer of

charges instead of dipoles.

We can observe that the coordinates of the mesh points

involved in computation are often repeated as we go from

one irregular mesh point to the next. T For example, for U A

0 6

-15-

only the layer of _mesh points inside Q at a dis~~~~e not

larger than 2h from the boundary an is used in ~amputation.

This gives the value s + t < 5p for the Dirichlet problem

and s + t.~ 3p for the Neuman problem. A compari~on with
'>A •

formul~ (4.4) shows that the use of Helmholtz solver with

sp~rsity instead of a fast one should be favorable_here also

in the amount of computatio~al effort.

. ', i ~

When we use a two-dimensional array of entries the sum-
: : ~ .

mation over the same coordinates (here double indexes). comes
. <; . - ? -~ 1. ··' ... ~ ' ;

ift a natural way. On the contrary, while using the_He]mholtz
• \ i ' •. .' ' '· ~ • .: j' • I

solver described in Section 4, we ~ork only with vectors of

values and of coordinates of the entries. That is why we must
,.

construct an algorithm to recognize entries with the same
~ . : .. _; .:

coordinates in an effective way. To perform such a search in
~ ... ~

each conjugate g!adient iteration would be costly. Therefore,

in our computer implementation we preprocess the information

about the irregular mesh points and their neighbors. It is

performed only once at a cost proportional to the execution

of p 2 logical IF statements. This constitutes only a small

part of the total computational effort; less than 2.5% for

meshes n ~ 64. Additional storage for two vectors of an

approximate total length of 5p is required.

We now briefly repeat the implicit capacitance algorithm:

(a)

(b)

(c)'

Compute gl '

Compute us =

and g =

Solve for]..1:

-16-

Gf '

gl- us for x£oQh

CTCJJ = CTg

(d) Compute u = G(f + DJJ).

The capacitance matrix equation for the Dirichlet problem,

in its normal form (c) can be ~olved at the cost of 2k·(l5np +

4mn) operations, where k is the number of conjugate gradient

iterations, while using only 32P memory locations. For the

Neumann problem the corresponding values are 2k-(9np+4mn) and

25p.
' .

Thus, if m=n, the cost of the main part of our Helmholtz

2 solver is proportional ton , asp= O(n). This conjecture

is fairly well confirmed by the experimental data in Table I.

Assume for the moment that we solve only the Laplace

~quation. Then the total memory requirements for the present

algorithm are propo~tional to p. This allows us to use a very

fine mesh or to employ a computer with a small core storage.

In a general case, i.e., when f f 0, we must also compute

the term u
5

denoted as the space potential in Section 2. There

we have both s and t equal to almost m.n, and the sparse Helm­

holtz solver is quite ineffective (the operation count is pro­

portional to m-n 2); hence in most ca~es it cannot be recommended.

0 0 7

-17-

On the other hand a standard fast solver requires m·n memory

16c~ti~ns, i.e., much more tha~·ne~d~d for. the rest of-our
~ : ' ; I; '

algorithm, To resolve the last dif.fi<:p,l:t;y we designed a fast
' • • • ·~· • ' i, i . ' . .

Helmholtz solver that. requires 2nm112 mem,~ry loc~tions, des-

~crib~d 'in Section 6.

In the only process where a ~epetitive use of; a He~m~

holtz ~olver is ne~ded1 (c), both sources and ta~gets ar~

sparse 1 as we have ~lready seen. Therefore, a ~erta~~.increase

... _of computation time in {d_) and partially in (b) ~n order_ to
.~ " . . ' ' ~ '·

save storage (see Section 6) plays a lesser rol~ in the total

computational_ effor~. Moreover, we can easily use large core

memory (LCM) for the two-dimensional array~ needed in (d) and

(b)~ LCM will be here acces~ed infrequently and therefore at

a comparatively low cqst. For CDC_ computers. we can take ad­

yantage of the use of an inexpensive routine, MOVLEV, to mani­

pulate the storage between SCM and LCM. 1

.There are also applications where the solution or its

gradient are required only on anh. In those cases the targets

in (d) are also sparse. In order to retain flexibility we

implemented the Helmholtz solver that empl,oys sparsity .to­

gether with the fast solver that fises FFT. Four different

options were used for sparse and nonsparse sources and targets.

1The CDC
1)
2)

7600 has-~wo types of cores storag~:
SCM contains 65,536 decimal 60-bit words,
LCM consi~t-of 512,000 decimal 60-bit words.

-18-

6. A METHOD OF SOLVING HELMHOLTZ'S EQUATION IN A RECTANGLE
USING 2n3/2 MEMORY LOCATIONS

Standard fast'methods for solving Helmholtz's equation on a

rectangulai region requires n.m + 0(1) memory locations: This

poses a limitation on the size of the mesh if only fast core

memory is to be·used. If for iarge n and m a disk was used

to store the h·m array, then the standard fas~ sol~er requires

frequent manipulation to and from the disk with parts of the

array. Large access time'makes this procedure very expensive.

We now propose a method that somewhat lessens the re-

striction on the mesh at the expense of an increase in the

·number of operations.

Let us· consider an infinite parallel strip with periodic

bou~dary coriditions. Denote by n the number of mesh points

·across the strip and impose free space boundary conditions.

Denote then by m the number of mesh points along the strip.

After the change of basis by the FFT on m lines of length

n and a suitable permutation, we obtain n tridiagonal systems

of equ~tions of order m having~he following special structure

(see Proskurowski and Widlund [8]:

l.l -1

0 -1 A -1
A

"" • X = f (6.1)

0 -1 X

-1

-19-

For IAI>Z we have th~ following explicit formula for the

solution of our problem: ··

A \' 11-li-j I. "f. x. = cr L ~-"
1 . J i,j = 1, ... ,m,

where

(J =

J .

. -1 -1
(ll - ll)

as can be verified by i~sp~iticin.

For I A l·,;z we choose

" X. = -~
1 I

j

(X/2) li-j+ll

and for IXI<2 we choose

I i- j I

xi= -~ I [sinCii-j 1 ~<t>)/sin<t>J
j

. f.
J

A

f.
J

(6.2a)

(6. 2b)

(6.2c)

where X = 2cos¢ (see Proskuro~iki and Widlund (8]. Note that

when 'fx l-+2. the expression in (6. 2c) converges to the one in (6. 2b).

We divide the strip lengthwise into k ~oxes n·m/k and

find the solution x on the (k+l) lines connecting the boxes,

in'accordance with formulas (6.2). then by·taking the In­

verse FFT on those (k+l) lines, we obtain the solution x

on them. We remark that this in itself is a cheap method

of computing the solution to Helmholtz's equation on a

sparse set of lines. Moreover, the summation in (6~2) needs
A

to be taken only for those j for which f. is nonzero, in
J

the case of sparse data f.

Finally, we ~onsider each n·~/k box as a separate problem

with Dirichlet boundary conditions across the strip (the

-20-

~alues of x on (k+l) lines computed within the machine

accuracy) and with periodic conditions on the shorter edges.

By a suitable choice of the value m/k, we can use a standard

fast method for each separate box.

Note that in order to save memory the procedures of corn-
A

puting f by taking FFT on each line and of computing x on

(k+l) lines must be carried out simultaneously in the same

loop for all i = l, ... ,m:

(a) take the FFT: f(i) + ~(i)

(b) for all chosen lines R- = 1, ... ; k+1

add the term £Ci) to x(R,), j=l, ... ,rn,

(c) store x(i), release £Cil.

Note also that the .data f are required twice (from a

function subprograiJl or from a disk):'.· in step (a) above

and while s9lving problems in each individual box. In

both cases values of n consecutive locations of the n·rn

array are used simultaneously, which simplifies the access

from and to a disk. No intermediate results are stored in an

auxiliary memory in contrast to a straightforward extension

of standaid fast solvers to fine meshes.

Storag.e requireme_nts for this algorithm are as follows:
-i m temporary locations for~ , i = 1, ... ,m-1 and cr, and n

locations for f, which all can be released after the first

step performed; n(k+l) locations for the solution x on the

-- 21-

(k+l) chosen lines, and n~m/k locatioris need~d for solving k

problems bn small boxes .. Thus totally we need n.(m/k+k+l)

me~ory locations. The operation count is consequently:

(a) FFT on m lines of l~ngth n: (9/4)·mn1~g 2 (h/2)_+ (11/2)mn,

(b) computing x on (k+l) lines: (k+l)mn,
.. -

(c) inverse FFT on (k+l) lines: (9/4)·(k+1}nl?g 2 (n/2) +

(ll/2) •n (k+1),

(d) sol~ing the Dirichlet problem in k boxes.:

k'(t n f -1 o g 2 2~ + 1 5 I • n) .
Thus the total operation count is

1)i (m , n , k) = mn [* 1 o g 2 C~-) + ~ 1 o g 2 2mk + k +
4
2
3 J __

plu~ a lower-order term. For comparison, the operation count
. -

for the standard fast solver is 8(m,n) = mn(~ 1og 2 I+ 15).

For k = m1 12 the memory requirements are minimal and

e~_ua~ ~o ~C~~l/ 2 + 1). For simplicity, take m = n .. Then

1/2
f~r the optimal choice of k, equal to n , we have the

following increase in computational effort

n 1)J(n)/e(n) nz 2n3/2 32p

28 1.6 216 213 214

210 1.8 220 216 216

2 12 2. 2 224 219 - 218

We tibulated also the memory requirement for the standard

~nd-~ie~ent fa~t solvers, and the ones for the capacitance
. ' ' - -- 2 3/2
matrix iterations, i.e., n , 2n ,and 32p (p = 2n), respec-

tively. The la;t· two values are of the same order of magni­

tude for these meshes.

This solver has not yet been teSted experim~ntally.

-22-

7. NUMERICAL EXPERIMENTS ..
In this section w~ report on results from a series of

numerical experiments that were carried out on the CDC 7600

computer at the Lawrence Berkeley Laboritory. In our experi-

ments we have used programs that are now obtainable from

LBL's computer library [7].

For studying our capacitance matrix methods we have

chosen problems with no discretization error and regions

that are circular.

We will be using the following.notatiori:

variant 1 - the capacitance matrix C is generated and

factored; the capacitance matrix system is solved by

Gaussian eliminations.

variant 2 - C is explicitly generated; ~he linear system

with C is solved by the conjugate gradient method.

variant 3 - an implicit capacitance method; an FFT solver

is used in each conjugate gradient iteration.

variant 4 - an implicit capacitance method; a solver that

employs ~parsity 1s used in each conjugate gradient

iteration.

A comparison of the performance of all four variants is

presented in Table II for a comparatively crude mesh, 64x64

points. Memory requirements for arrays in this case are rough-

ly 24,000 locations for variants 1 and 2, while only 5,000 to

8,000 locations are needed for variants 3 and 4. If the

0 0-. ; ~ iJ' ,··. 1•· g f)
li·''· ~·· ~ ~ 'lit Q 0 'jl •

- 2 3-

capacitance matrix fits. !_into ·'th~ fast memory, the ·vaTiant 2

:,i·s the. fastest one. The only exception is variant· 4 .:for- the

Neumann problem where the number of s6urces and targets is

4uite·1ow. If a re~~titive use of a solver for a given

~geometry is needed (for instance in nonseparable problems -

se~·Concus, Golub, and O'Leary [2], or in eigenvalue problems­

·~se~~ro~kuiowski [6], variant 1 is rec6mmended). Variant 1

-·is also :superior when a very high accuracy of the solution

'i-s required. On the other hand one must keep in mind ,.that
. -6

mo~t -often the discretization error is larger than: l~1Q, .

To obtain the solution with normalized 1 2-norm of tbe error

I icij 2 = l/n 1
/

2 (E sf) 1/~, o_ f 1·10- 3 only six itcratiohs for
i

variants 2; 3 and 4 were needed with a subsequent~sav1ng

in execution time down to 0.&5 f 0.71 sec for all these

., .. :'solvers.

·In Table III we compare the separable solvers (on-·

rectangular regions) we have used; the one using FFT and

the other one with sparse sources and targ~ts. For the·

latter· we confined ourselves to the mesh of powers of 2 only

for-reasons of comparison.· Note also that the number of

sources (s) and targets (t) given here is typical for vari-

ant 4 and corresponds t6 experiments shown in Table I.

Results o£ experiments with refined mesh confirm dur con~

jecture that the execution time for the sparse solver is

-24-

proportional t·o n(s+t) and thtis is essentially of the order

of n 2 for variant 4, while the corresponding growth factor.
2 ..

for variant ·'3 is n log 2n :·

The results. given in Table I shbw that the number of

conjugate gradient iterations remains almost constant when

the mesh is refined. .We can also see clearly _that the exe­

cution time per iteration is proportional to n~ for variant

4 ·=an:d to n 2log 2n for variant 3. , Hence_,, the total computa­

tional-effort beHaves similarly; when-the numbe~ of inner

points grows by·a f~ctor of A;fr the total CPU time grows

. · as · 4 ~ 4 for variant 4 artd 5 ~ 2 for variant 3.

We have·· also run experiments on very fine meshes for

a Laplace equation·using variant 4. The solution was ob­

tained on a sparse set of mesh points close to an. We

report here on one of these experiments with n = 650, p = 1468,
I

s+t ~ 6728, and 212,201 mesh points inside D. The number

of conjugate gradient iterations was<l8 (the t -norm 2 . .

of the error 3~10- 6) and the total execution time was-

157.659 sec on CDC 7600 with.the FTN4 {opt=2) compiler.

Memory space needed for arrays here was ~47~000 locations.

Additionally, we chose a circular·region with a cir-

cular hole in its center .. The diameter of the hole was

1.4 of the diameter of the outer circle. The rate of

0 0 0

-25-

·convergence -of the conjugate gradient iterations was in this

case slower than for plain circles. N~vertheless, the

-influence-of mesh refinement was insignifi~ant; see Table IV.

This seems to support our conviction that such behavior
_,

' :.\.. ..

is fo be expe~~ed for smooth regions, {i.e., without cusps,

slits, etc.) of a diff~rent shape.

. . ~ ·• .

~ ~- . ·, ,. .

ACKNOWEEDGMENTS ~
. ';.

''!would like to thank Olof Widlund for his consistent

support and advice throughout my work,, Alexandra_- Banegas
: £ •

a~d Dianne P. O'Leary fbr making available early versions

of ~heir programs, and Paul Concus for comments on the

manuscript.

-26-

REFERENCES

1. Banegas, A. Fast Poisson Solvers for Problems with
Sparsity. (to be published). ,

2. ~on~us, P., Golub, G.H., and D'Leary, D.P. A· General­
ized Conjugate Gradient Method for the Solution of
.Elliptic Partial Differential Equations. In Pr6c.
Symp. on Sparse Matrix Computation, Sept. 1975. J.R.

; Bunch and D. J. Rose, Eds •. , Academic Press, New Yor.k,
1976.

3. George, J.A. The Use of Direct Methods for the
Solution of the Discrete Poisson Equation on Non-Rec­
tangular Regions. Computer Science Dept. Report 159,
Stanford University, 1970.

4. Hayes, R~M. Iterative Methods of Solving Linear
Problems in.Hilbert Space, Contributions to the Solu­
tion of Systems of Linear Eqns .. and the Determination

·of Eigenvalues. 0. Taussky, Ed. Nat. Bur. St. Appl .
. Nath .. Ser. 39 (1954), 71-103.
•:' .· ·-. -. . .

O'Leary, D.P. and Widlund, 0. ERDA-NYU Report. (to
be published). . .. · ·

5.

6. ·· ·P~c)skurowski, w. On the Numerical Solution of the
Eigenvalue Problem of the Laplace Operator by a . 1•

Capacitance Matrix Method. Lawrence Berkeley Labora­
tory Report 5396 (1976).

7. Proskurowski, W. Lawrence Berkeley Laboratory Computer
Library Writeup (in preparation).

8~ Proskurowski, W. and Widlund, 0. On the Numerical
Solution of Helmholtz's Equation by the Capacitance
Matrix Method. Math. Comp. ~ (1976) 433-468.

9. Shieh, A.
Domains.

Fast Poisson Solver on Nonrectangular
New York U., Ph.D. Thesis, June 1976.

10. Widlund, 0. On the Use of Fast Methods for Separable
Finite Difference Equations for the Solution of
General Elliptic Problems. In Sparse Matrices and
their Applications, D.J. Rose and R.A. Willoughby,
Eds., Plenum Press, New York 1972. .

11. Widlund, 0. Capacitance Matrix Methods for Helm­
holtz's Equation on General Bounded Regions. In
Proceedings from a meeting in Oberwolfach, Lecture
Notes in Mathematics (July 1976), Springer-Verlag
(to be published).

' ~;) .

',
' .

Table I. Influence of mesh refinements on the number of iterations and the execution
time (CDC 7600 with FTN4 (OPT=2) compiler). The region was a circle.

Mesh
\.

Number of
b-oundary· 'points

..

Number of mesh
points inside n

Variant 3
Dirichlet prob~em

64X64 128xl28

132 268

1789 7209

Number of conjugate 12
. gradient iterations

14

£.2-norm of
the error

Total ~xecu~
tion time, sec

Share of separ­
able solvers

Time per
iteration

2.3·10- 6 2.0•10- 6

1.243 6.473

1.155 6.087

0.090 0.432

Variant 4
Dirichlet problem Neumman problem

64x64. 128Xl28 256X256 64X64

' .. -~ ·! ;_;

13-2 268 540 132

0<~-2 ·.·.

. '1789 7209 28913 1789

13 15 16 8 '.

1.0•10- 6 1.0•10- 6 1.3·10-6 1.2·10-6

1.232 5.470 24.158 0.602

1. 095 5.038 .22. 941- 0.536
:--

!'

0.085 0. 3i4' . 1. 2'90 0.061

I

N
-.]

I

0

c

0

~

();}•

c

C.~ .

~c·.

t''Y

Table II. CPU-time on CDC 7600 with FTN4 compiler (OPT=2) for all our solvers. The region
was a-circle, the mesh 64X64. There were 132 boundary mesh points and 1789
mesh points inside ~.

Generation of C

Factorization of C

Total execution time, sec

Number of iterations

£ 2-norm of conjugate
gradient residuals

£ 2-norm of the error

Time per iteration

Time to solve an
additional problem

Variant 1
Dirichlet

0.455a

0.602

1.180a

1.2•10-12

~ ..

0.138

Variant 2
Dirichlet

0.445

0.855

12

0.3•10 -6

0.8·10 -6

0.033.,

0.410

Variant 3
Dirichlet

1. 243

12

0.8·10- 6

2.3~10- 6

0.090

L 243

Variant 4
Dirichlet Neumann

1.14 7 0.602

12 8

1.0·10 -6 0.1·10 -6

3.2•10- 6 1.2·10 -6

0.085 0.061

1.116 0.582

aUsing single~layer Ansatz, one can generate C in 0.165 sec decreasing the total execution
time to 0.905 sec.

~

'.'J:.·

<: ~ : ' • '

·.

' N
00

'

...

..

-29-

T:able·,'JlrfL CPU-time ,on :cnc 7600. with FTN4. compiler (OPT=Z)
T.~.{·;•·:·L : dor solvers on rectangular. regions.

•1_,

Execution Number-of
Mesh time in sec sources

and targets

Solver
using FFT 64 X 64 0.043

128 X 128 0.203

256 X 256 1.235a

. :
0.27b

.(,

. '·

Solver 64 X 64 392
employing ., : ~ '!
sparsity_ 64 X 64 0.385 600

. ·.
128 X 128 0.156 1224

256 X 256 0.622 2472

aComputed while using LCM, which slows down the solver by
25-30%.

bThis result is for the Neumann problem, all the rest for
the Dirichlet problem .

-30-

Table IV. Influence of mesh refinements on the number of
conjugate gradient iterations for a circular
region with a circular hole in its center.

Mesh 16 X 16 32 X 32 64 X 64

Number of
boundary points 44 84 168

Number of mesh
points inside Q 100 412 1680.

.,

Number of conjugate
gradient iterations 16 16 16

~z-norm of conju-
gate gradient re-

1.7•16- 6 1.7·10- 6 -6 siduals 1.6·10
~-.

..

...

u . I ,)

This report was done with support from the United States Energy Re­
search and Development Administration. Any conclusions or opinions
expressed in this report represent solely those of the author(s) and not
necessarily those of The Regents of the University of California, the
Lawrence Berkeley Laboratory or the United States Energy Research and
Development Administration .

''-~

TECHNICAL INFORMATION DIVISION

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94 720

. ... ~ ~

