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ABSTRACT 

The numerical solution of Helmholtz's equation in an 

arbitr~ry bounded plane region is considered. Variants of 

the capacitance mitrix method are developed~which greatly 

reduce storage requirements. This allows the use of a very 

fine mesh with several hundred mesh points in each direction 

or the use of a computer with a small core storage . 
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1. INTRODUCTION 

In recent years special techniques called the capacitance 

matrix method have been developed for the numerical solution 

of Helmholtz's equation in a general plane-bounded region n, 

flu + cu = f in n 

where c is a real constant, and either Dirichlet or Neumann 

conditions are specified on the boundary an. These methods 

make use of fast solvers in regions that allow for the separ-

ation of variables. Operation count, e(n), for such fast 

solvers is proportional to n 2log 2n, where n is the number 

of mesh points in each direction. For a detailed discussion 

of such methods and a history of their development, refer to 

Proskurowski and Widlund [8] and Widlund [11]. 

In this paper we confine ourselves to two dimensional 

bound~d regions; for problems in three dimensions see O'Leary 

and Widlund [5]. 

The algorithms previously developed by us have a practi-

cal limitation on the number of mesh points, from memory 

considerations. Normally, one generates and stores a dense 

capacitance rna trix C of the order of p, where p is the 

number of mesh points inside n adjacent to the boundary an. 

In this paper we develop an implicit method in which we 

avoid generating and storing the matrix·c; see also O'Leary 

and Widlund [5]. Moreover, we exploit the fact that only a 

few mesh points from the closest vicinity of the boundary 
I 

.. 
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an are involved in the main part of the computation, that is, 

the capacitance matrix iterations. Using a solver on a 

rectangle, which takes the sparsity of the problem into 

account, developed originally by Banegas [1], we design an 

algorithm that requires only 32p storage locations for its 

main part. Only the last step, computing the final solution, 

is limited to memory requirements of a fast solver on a 

rectangle, i.e., m·n locations, where m and n are the 

number of mesh points in a rectangle in which the region Q 

is imbedded. To remove that obstacle we propose a solver 
~ 

that requires only 2nm 2 storage locations at the expense of 

some computational effort. 

Numerical results from extensive experiments on the 

CDC 7600 computer are reported. 

• 
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2. CAPACITANCE MATRIX METHODS AND POTENTIAL THEORY 

In this section we give a brief review of the potential 

theoretical approach leading to capacitance matrix methods 

as described in Proskurowski and Widland [8]; see also 

Widlund [11]. 

We consider a problem on an arbitrary bounded plane 

region n. The region Q is first imbedded in a larger region, 

a rectangle, and a uniform mesh is introduced with the same 

mesh size in the two coordinate directions. The boundary 

conditions on the rectangle can be of arbitrary type as 

long as they allow for the use of a fast solver; see Widlund 

[10] and Proskurowski and Widlund [8]. The set of mesh 

points is decomposed into three disjoint sets: Qh' anh, 

and (CQ)h. The set Qh is the set of interior mesh points, 

i.e., each of its members has all its immediate neighbors 

in the open set Q. The remaining me~h points in n constitute 

' anh, the set of irregular mesh points, while the set (CQ)h 

contains all the remaining exterior mesh points. The discrete 

Laplacian is represented by the five-point formula for all 

points in QhU(CQ)h. The data for the exterior points are 

extended in an arbitrary way; for the proof that the solution 

on nhuanh is independent of the solution an~ data on (CQ)h, 

see Section 3 of Proskurowski and Widlund [8]. For the irregular 

points we must introduce a formula that also takes the boundary 

conditions on an into account. We therefore combine the 

·.-
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discrete L~placian with an interpolation formula. The 

important problem of scaling these auxiliary equations is 

tr~ated in detail in Proskurowski and Widlund [8] and Shieh 

[9]. We will denote by A the n 2
x n

2 
matrix corresponding 

to the difference problem enlarged to a rectangle handling 

the given boundary conditions on aQ. The regularly struc-

tured problem for which a fast solver can be used is given 

b h 
2 2 · · · B t. h d" t L 1 . y t en· x n· matr1x represen 1ng t e 1scre e ap ac1an . 

. With~ proper ordering of equations, A and B differ only 

in row~ corresponding to the irregular mesh points. For 

the Neumann problem we write A=B+UVT, and for the Dirichlet 

T problem A=B+UZ , where U, V,and Z have p columns, and p is 

the number of irregular mesh points. The matrix U represents 

an extension operator, which maps anh onto the whole rec­

tangle~ It retains the values on anh and makes the remaining 

values equal to zero. Its transpose, uT, is a trace operator. 

Matrices VT and -zT are a compact representation of B-A, from 

which the zero rows corresponding to th~ regular mesh points 

have been deleted. 

In potential theory the solution of the Neumann prob-

lem is given as a sum of a space potential us and a single 

layer potential of ~harge distribution at the boundary an~ 

u(x) = 1\(x) + ~(x). 

A discrete analog to (2.1) is 

u = Gf + GUp , 

( 2. 1) 

( 2. 2) 
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where each of.the p columns of U represents a unit charge 

placed at an irregular point, where the discrete-operator G plays 

the same role as the integral operator defined by the funda-

mental solution of the continuous problem (see Proskurowski 

and Widlund [8]), and pis determined by.solving the capaci-

tance matrix equation 

Cp g ( 2. 3) 

where the pxp matrix Cis the capacitance-matrix and p is 

a vector of p components. A proper approach for the Diri-

chlet problem is the double-layer potential Y of dipole 

density u at the boundary an: 

u (x) = us (x) + )V(x) 

A discrete analog to (2.4) is 

u = Gf + GDu , 

(2.4) 

( 2. 5) 

where D has p columns,· each of them representing a unit 

discrete dipole placed at an irregular point, and u is the 

solution of 

T = -z Gf = g, ( 2 .. 6) 

where u is a vector of p components. Shieh [9] has shown 

that the capacitance matrix C is equal to Kh plus a matrix 

with a small condition number, where Kh is an approximation 

to the correct compact operator of the corresponding Fred~ 

holm integral equation of the second kind. The conjugate 

gradient method converges superlinearly for Fredholm inte-

gral equations of the second kind, as shown by Hayes [41. 

Therefore, the conjugate gradient method applied for solving 
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eqs. (2.3) and (2.6) converges,rapidly;· in practice, it is 

independent of the size of the mesh; see also Proskuro~ski 

and Widlund [8]. , Jn summary,·the algorithm consists of the 

following steps: 

1. Generate the capacit~nce·matrix C . 

. : : 2. Compute g. 

3. Solve (2.3) and (2.6) by the conjugate gradient method . 

. 4, Use the fa~t solver 1 to obtain 

u .=. G (. f + UP ) .or u = G (f + Dl1) 

Another option for Step 3 is td factor C and solve (2.3) 

and (2.6} by Gaussian elimination. For the details of the 

a,lgorithms and ways of fast generation of C, refer-to 

Proskurowski and Widlund [8]. 

The total operation count for that algorithm is pro-

2 2 portional to n log 2n and p . 

Some alternatives to this algorithm that make·it pas-

sibl~ to avoid the explicit generation of C will be descri­

bed in the next sections. 

3. AN IMPLICIT CAPACITANCE MATRIX METHOD 

Methods in which we explicitly generate, store, and 

possibly factor the capacitance matrix may become inefficient~ 

when the mesh is refined. The capacitance matrix is a dense, 

pxp matrix, where p is the number of irregular mesh points, 

which grows linearly with n, the number ·of mesh points in 

each coordinate direction. Foi example, somewhere between 
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the values of p equal to 150 and 200 the small core memory 

(SCM) for the CDC 7600 computer becomes saturated. The use 

of large core memory (LCM) would allow increasing the maxi­

mal values of p by a factor of 2 or slightly more, while for 

even larger p one must use a secondary memory device with 

a much longer access time. Therefore, we now present a 

method in which the capacitance matrix is used only implicitly 

without generating and storing it, thus saving p 2 memory 

locations at the expense of a small increase in computational 

effort~ see also O'Leary and Widlund [5], Widlund [11] and 

an early paper of George [3]. 

We describe the method for the Dirichlet boundary condi-· 

tions in which the proper Ansatz of double-layer potential is 

used. The Neumann boundary conditions; where the single-layer 

Ansatz is used and is a slightly simpler case, can be ~orked 

out in a similar way. 

We once more write the capacitance matrix equation 

C~ = (I + ZTGD) = zTGf = g· . 
p 

The capacitance matrix C can also be rewritten as 

(3.1) 

C = (I + ZTGD) = UTAGD , (3.2) p 

which form we will subsequently use. Since matrix C is nonsym­

metric and we intend to use the conjugate gradient method for 

solving (3.1), we reformulate it in terms of a least squares 

(3.3) 

Thus each step of the·conjugate gradient method requires the 

computation of a matrix-vector product CT(Cx) for any vector 

x of length p given on the set of irregular mesh points, i.e., 
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( 3. 4) 

Let us rewrite (3.4) as 9- sequence of equations. 

xl = Dx 

:xz = Gx1 or Bx 2 = xl ' 

x:3 = (UTA)x 2 ' 
(UTA)Tx3 

( 3. 5) 
x4 = 

x5 = Gx 4 or,, Bx 5 = x4 ' 
T y. = D x 5 '' 

Consequent~y, we first set to zero a larg~ n·n array, then gen­

erate.the mesh function Dx by distributing x onto the set of 

~iscrete ~ipoles. This step costs 2p multiplicative op~rations. 

Then we obtain G(Dx) by using the fast .solver at a cost propor-
. . 

tional _to n~lo.g 2~ operations. UT maps a mesh function defined 

for all .mesh poi;nt~ into its restriction to i~regular mesh 

points. Therefor~, it is enough to apply the operator A to GDx 

only on the set ~f closest neighbors of irregular mesh points. 

T Acting in this. way we .compute U A(GDx) at the expense of 4p 

multiplicative operations. The part corresponding to the trans-

pose of C is performed in a similar fashion. Thus, the vector 

CTCx is obtained at a cost of two calls of the fast solver, 

2 proportional ton log 2n operations, plus a lower-order term, 

proportional to p operations.· In out program· some· ope rat ions 

were repeated in order to save memory space. 

Summing up·, this method requires n2 +8p memory 'locations 

2 2 2 (n +lOp for the Neumann problem) compared with p +n plus a 

lower-order term proportional to p for the explicit capacitance 

matrix methods, as implemented in Proskurowski and Widlund [8]. 
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On the other hand, the operation count for the present method 
/ 

is (2k+3)·8(n), where k is the number of the conjugate gradient 

iterations and is practically independent of n, the number of 

mesh points, and 8(n) is the cost of a fast Helmholtz solver 

proportional to n 2log 2n. In comparison, the cost for the ex­

plicit capacitance method with the conjugate gradient option is 

equal to 3.5•8(n)+(2k+c)·p 2 operations, where cis a constant 

arising from the generation of the capacitance matrix. 

An experimental comparison of the computation times for 

n=64, p=l32 and a circular region is given in Section 7. It 

shows that whenever the capacitance matrix is small enough to 

fit into SCM, the explicit capacitance matrix methods are slight­

ly fast~r. On the other hand, the present method does not make 

use of the translation invariance of the solution, which is ex­

ploited in our variant of the explicit capacitance matrix method, 

and alternative fast solvers m{ght be easily used. A further 

development of this method is described in Section 5. 

4. A HELMHOLTZ SOLVER THAT TAKES ADVANTAGE OF SPARSITY 

Consider the Helmholtz equation (-~+c)u = f on a rectangular 

region with a m·n mesh. L~t the ~esh values of f and u be called 

sources and targets, respectively. Denote then by s the number 

of nonzero sources and by t the number of. targets where the 

solution is required. Quite often there exist situ~tion 

where either s<<m·n or t<<m·n, or both. One such situ-



-11-

ation occurs while computing the di~crete Green's function 

for the generation of the capacitance rna t rix, i.e., the case 

with s=l. _A more general discussion of the applications 

for the present use is given in Sectioh 5. We riow 

desciibe how to make use of the sparsity of sources and/or 

targets to save memory space and pos-sibly computational 

effort as well. This method was developed by Banegas [1] 

and we have been uiing in our experiments a considerably al-

tered ~ariant.of her algorithm. This algorithm was meant 

to be compatible with the one using Fast Fourier Transform 

(FFT) as described 1n Proskurowski and Widlund [ 8] . Never­

theless, there is no difficulty in adapting it to alternative 

fast Helmholtz solvers, if necessary. We remark also that the 

orily restriction on n is ·for it to be even. 

First, recall 'the fast Helmholtz solver described 

in [8]. The solution there is obtained by applying the FFT 

in one coordinate direction, i.e., m times on vectors of 
' ' 

length n, then by solving n very special tridiagonal systems 

of equations of order m by the Toeplitz method, and finally 

by using an inverse FFT on m vectors of length n. Memory 

requirement is here equal to m·n+O(l) and the total operation 

count for this solver is 8 ( m , n) = 2_ mn 1 o g 7 ( !.!.) + 1 5 nni w h c r c c a c h 
2 '-' 2 - ' 

multiplication and each fioating point additioti is taken as 

a unit operation. We remark that the operation count always 

shows only a part of the actual computational expenses and 

is not an exact measure of it. 
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Let us now write the Fourier coefficients as inner 

products of the data vector f(£) with the eigenvectors 

¢(j) of the matrix B representing the discrete Laplacian 

(-il+c): 

f (j) = 
k 

n 

~ . I: 
£=1 

wheie j=l, ... , nand k=l, ... ,m. 

(4.1) 

In addition, the inverse Fourier coefficents can be written 

as 

= ( 4. 2) 

where£= 1,2, ... ,n and k = 1,2, ... ,m. It is easy to sec that . 
for sparse sources and ~argets the number of entries with 

double indexes (k,£) is reduced to s and t, respectively. 

Consequently, the operation count·for the summation formulas 

(4.1) and (4.2) is reduced considerably. Moreover, we may 
" : ~ 

reorder the computation,perfor.ming it separately for each 

frequency j. We first compute:the Fourier coefficients for 

all nonzero sources fi, i = 1, ... ,sand simultaneously sum 

those having the same index k. Then we ,solve the intermediate 

tridiagonal matrix problem (with ~j corresponding to each 

frequency j) with the previously computed Fourier coefficients 

:1s :1. right-hand side. Then finally we compute the .inverse 

Fourier coefficients for all targets we need for the solution 

ui, 1 = 1, ... ,t, and sum simultaneously those having the same 
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index k. At this point locations used for the temporary 

vaiues of ?(j) can be released ~nd used ior ?(j+l)_ 

Thus, this' procedure requires 3 (s+t) locations for 

sources, targets, and their coordinates plus Z(m+n) locations 

for 'storing the Fourier coefficients tempoiaiil~ and also 

sines and ~osines. In the actual program we also store 

temporarily some indexes in order to avoid the repdti{ion of 

computing them. In all, we use 

4(s+t)+2(m+n) memory locations. 

If the sources and targets coincide,we could perform the 

co'mpUfa t ions in place (as we do in the fast 'solver using 

(4.3) 

m·~ locations),thereby further reducing thes~ requirements 

to 4s+2(m+n) locations. 

It is evident that for large s and t this procedure, 
/ 

which uses the conventional (i.e., slow) Fourier transform, 

• will be ~uch slower than a comparable solver using FFT. Now 

we will establish restrictions on s and t for this procedure 

to be competitive with a fast Hel~holtz solve~. The oper-
1 

ation count is 

\j;(n,m,s,t) = 3n· (s+t) + 4mn. 

Then \jJ = 8 for 

3 s + t 2 mlog 2n/2 + 11 3m. 

(4.4) 

( 4. s) 

For example, take m=n and s+t = lOn. This gives the ratio 

8(n)/\)J(n) = (~ log 2 ~ + 15)/34 which for n=64 is equal 

to 1.1. The corresponding rntio for execution times in 

JHllllerical experiments (sec Section 7) is very close to it. 
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5. AN IMPLICIT CAPACITANCE MATRIX METHOD USING A 
HELMHOLTZ SOLVER THAT EMPLOYS SPARSITY 

We recall from Section 3 that the main computational effort 

(more than 90%) in an implicit capacitance matrix method 

goes for computing vectors y = CTCx = DTG(UTA)T (UTA)GDx 

during the conjugate gradient iterations. Moreover, a 

dominant part of this com~utation, also over 90%, is spent 

on a fast Helmholtz solver. We recall also that while 

distributing the discrete dipoles (D) and using Shortley­

Weller stencils (UTA), only the mesh points from a close 

neighborhood of the p irregular mesh points are involved in 

the computation. The values on the rest of. the mesh points 

are set to zero. In (3.5) x1 and x4 are sources (s), and 

x 2 and x 5 targets (t) of the separable Helmholtz solver, in 

ac~ordance with the notation introduced in Section 4. 

A straightforward count for the Dirichlet problem gives 

s < 5p for x4 (t < 5p for x 2) and s=3p for x1 (t=3p for x 5). 

For the Neumann problem the corresponding values differ for 

x1 (s=p) and x 5 (t=p), as we have here a single layer of 

charges instead of dipoles. 

We can observe that the coordinates of the mesh points 

involved in computation are often repeated as we go from 

one irregular mesh point to the next. T For example, for U A 
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only the layer of _mesh points inside Q at a dis~~~~e not 

larger than 2h from the boundary an is used in ~amputation. 

This gives the value s + t < 5p for the Dirichlet problem 

and s + t.~ 3p for the Neuman problem. A compari~on with 
'>A • 

formul~ (4.4) shows that the use of Helmholtz solver with 

sp~rsity instead of a fast one should be favorable_here also 

in the amount of computatio~al effort. 

. ', i ~ 

When we use a two-dimensional array of entries the sum-
: : ~ . 

mation over the same coordinates (here double indexes). comes 
. <; . - ? -~ 1. ··' ... ~ ' ; 

ift a natural way. On the contrary, while using the_He]mholtz 
• \ i ' •. .' ' '· ~ • .: j' • I 

solver described in Section 4, we ~ork only with vectors of 

values and of coordinates of the entries. That is why we must 
,. 

construct an algorithm to recognize entries with the same 
~ . : .. _; .: 

coordinates in an effective way. To perform such a search in 
~ ... ~ 

each conjugate g!adient iteration would be costly. Therefore, 

in our computer implementation we preprocess the information 

about the irregular mesh points and their neighbors. It is 

performed only once at a cost proportional to the execution 

of p 2 logical IF statements. This constitutes only a small 

part of the total computational effort; less than 2.5% for 

meshes n ~ 64. Additional storage for two vectors of an 

approximate total length of 5p is required. 

We now briefly repeat the implicit capacitance algorithm: 
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Gf ' 

gl- us for x£oQh 

CTCJJ = CTg 

(d) Compute u = G(f + DJJ). 

The capacitance matrix equation for the Dirichlet problem, 

in its normal form (c) can be ~olved at the cost of 2k·(l5np + 

4mn) operations, where k is the number of conjugate gradient 

iterations, while using only 32P memory locations. For the 

Neumann problem the corresponding values are 2k-(9np+4mn) and 

25p. 
' . 

Thus, if m=n, the cost of the main part of our Helmholtz 

2 solver is proportional ton , asp= O(n). This conjecture 

is fairly well confirmed by the experimental data in Table I. 

Assume for the moment that we solve only the Laplace 

~quation. Then the total memory requirements for the present 

algorithm are propo~tional to p. This allows us to use a very 

fine mesh or to employ a computer with a small core storage. 

In a general case, i.e., when f f 0, we must also compute 

the term u
5 

denoted as the space potential in Section 2. There 

we have both s and t equal to almost m.n, and the sparse Helm­

holtz solver is quite ineffective (the operation count is pro­

portional to m-n 2); hence in most ca~es it cannot be recommended. 
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On the other hand a standard fast solver requires m·n memory 

16c~ti~ns, i.e., much more tha~·ne~d~d for. the rest of-our 
~ : ' ; I; ' 

algorithm, To resolve the last dif.fi<:p,l:t;y we designed a fast 
' • .... • • ·~· • ' i, i . ' . . 

Helmholtz solver that. requires 2nm112 mem,~ry loc~tions, des-

~crib~d 'in Section 6. 

In the only process where a ~epetitive use of; a He~m~ 

holtz ~olver is ne~ded1 (c), both sources and ta~gets ar~ 

sparse 1 as we have ~lready seen. Therefore, a ~erta~~.increase 

... _of computation time in {d_) and partially in (b) ~n order_ to 
.~ " . . ' ' ~ '· 

save storage (see Section 6) plays a lesser rol~ in the total 

computational_ effor~. Moreover, we can easily use large core 

memory (LCM) for the two-dimensional array~ needed in (d) and 

(b)~ LCM will be here acces~ed infrequently and therefore at 

a comparatively low cqst. For CDC_ computers. we can take ad­

yantage of the use of an inexpensive routine, MOVLEV, to mani­

pulate the storage between SCM and LCM. 1 

.There are also applications where the solution or its 

gradient are required only on anh. In those cases the targets 

in (d) are also sparse. In order to retain flexibility we 

implemented the Helmholtz solver that empl,oys sparsity .to­

gether with the fast solver that fises FFT. Four different 

options were used for sparse and nonsparse sources and targets. 

1The CDC 
1) 
2) 

7600 has-~wo types of cores storag~: 
SCM contains 65,536 decimal 60-bit words, 
LCM consi~t-of 512,000 decimal 60-bit words. 
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6. A METHOD OF SOLVING HELMHOLTZ'S EQUATION IN A RECTANGLE 
USING 2n3/2 MEMORY LOCATIONS 

Standard fast'methods for solving Helmholtz's equation on a 

rectangulai region requires n.m + 0(1) memory locations: This 

poses a limitation on the size of the mesh if only fast core 

memory is to be·used. If for iarge n and m a disk was used 

to store the h·m array, then the standard fas~ sol~er requires 

frequent manipulation to and from the disk with parts of the 

array. Large access time'makes this procedure very expensive. 

We now propose a method that somewhat lessens the re-

striction on the mesh at the expense of an increase in the 

·number of operations. 

Let us· consider an infinite parallel strip with periodic 

bou~dary coriditions. Denote by n the number of mesh points 

·across the strip and impose free space boundary conditions. 

Denote then by m the number of mesh points along the strip. 

After the change of basis by the FFT on m lines of length 

n and a suitable permutation, we obtain n tridiagonal systems 

of equ~tions of order m having~he following special structure 

(see Proskurowski and Widlund [8]: 

l.l -1 

0 -1 A -1 
A 

"" • X = f (6.1) 

0 -1 X 

-1 



-19-

For IAI>Z we have th~ following explicit formula for the 

solution of our problem: ·· 

A \' 11-li-j I. "f. x. = cr L ~-" 
1 . J i,j = 1, ... ,m, 

where 

(J = 

J . 

. -1 -1 
(ll - ll ) 

as can be verified by i~sp~iticin. 

For I A l·,;z we choose 

" X. = -~ 
1 I 

j 

(X/2) li-j+ll 

and for IXI<2 we choose 

I i- j I 

xi= -~ I [sinCii-j 1 ~<t>)/sin<t>J 
j 

. f. 
J 

A 

f. 
J 

(6.2a) 

( 6. 2b) 

(6.2c) 

where X = 2cos¢ (see Proskuro~iki and Widlund (8]. Note that 

when 'fx l-+2. the expression in (6. 2c) converges to the one in (6. 2b). 

We divide the strip lengthwise into k ~oxes n·m/k and 

find the solution x on the (k+l) lines connecting the boxes, 

in'accordance with formulas (6.2). then by·taking the In­

verse FFT on those (k+l) lines, we obtain the solution x 

on them. We remark that this in itself is a cheap method 

of computing the solution to Helmholtz's equation on a 

sparse set of lines. Moreover, the summation in (6~2) needs 
A 

to be taken only for those j for which f. is nonzero, in 
J 

the case of sparse data f. 

Finally, we ~onsider each n·~/k box as a separate problem 

with Dirichlet boundary conditions across the strip (the 
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~alues of x on (k+l) lines computed within the machine 

accuracy) and with periodic conditions on the shorter edges. 

By a suitable choice of the value m/k, we can use a standard 

fast method for each separate box. 

Note that in order to save memory the procedures of corn-
A 

puting f by taking FFT on each line and of computing x on 

(k+l) lines must be carried out simultaneously in the same 

loop for all i = l, ... ,m: 

(a) take the FFT: f(i) + ~(i) 

(b) for all chosen lines R- = 1, ... ; k+1 

add the term £Ci) to x(R,), j=l, ... ,rn, 

(c) store x(i), release £Cil. 

Note also that the .data f are required twice (from a 

function subprograiJl or from a disk):'.· in step (a) above 

and while s9lving problems in each individual box. In 

both cases values of n consecutive locations of the n·rn 

array are used simultaneously, which simplifies the access 

from and to a disk. No intermediate results are stored in an 

auxiliary memory in contrast to a straightforward extension 

of standaid fast solvers to fine meshes. 

Storag.e requireme_nts for this algorithm are as follows: 
-i m temporary locations for~ , i = 1, ... ,m-1 and cr, and n 

locations for f, which all can be released after the first 

step performed; n(k+l) locations for the solution x on the 
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(k+l) chosen lines, and n~m/k locatioris need~d for solving k 

problems bn small boxes .. Thus totally we need n.(m/k+k+l) 

me~ory locations. The operation count is consequently: 

(a) FFT on m lines of l~ngth n: (9/4)·mn1~g 2 (h/2)_+ (11/2)mn, 

(b) computing x on (k+l) lines: (k+l)mn, 
.. -

(c) inverse FFT on (k+l) lines: (9/4)·(k+1}nl?g 2 (n/2) + 

(ll/2) •n (k+1), 

(d) sol~ing the Dirichlet problem in k boxes.: 

k'( t n f -1 o g 2 2~ + 1 5 I • n) . 
Thus the total operation count is 

1)i ( m , n , k) = mn [ * 1 o g 2 C~-) + ~ 1 o g 2 2mk + k + 
4
2
3 J __ 

plu~ a lower-order term. For comparison, the operation count 
. -

for the standard fast solver is 8(m,n) = mn( ~ 1og 2 I+ 15). 

For k = m1 12 the memory requirements are minimal and 

e~_ua~ ~o ~C~~l/ 2 + 1). For simplicity, take m = n .. Then 

1/2 
f~r the optimal choice of k, equal to n , we have the 

following increase in computational effort 

n 1)J(n)/e(n) nz 2n3/2 32p 

28 1.6 216 213 214 

210 1.8 220 216 216 

2 12 2. 2 224 219 - 218 

We tibulated also the memory requirement for the standard 

~nd-~ie~ent fa~t solvers, and the ones for the capacitance 
. ' ' - -- 2 3/2 
matrix iterations, i.e., n , 2n ,and 32p (p = 2n), respec-

tively. The la;t· two values are of the same order of magni­

tude for these meshes. 

This solver has not yet been teSted experim~ntally. 
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7. NUMERICAL EXPERIMENTS .. 
In this section w~ report on results from a series of 

numerical experiments that were carried out on the CDC 7600 

computer at the Lawrence Berkeley Laboritory. In our experi-

ments we have used programs that are now obtainable from 

LBL's computer library [7]. 

For studying our capacitance matrix methods we have 

chosen problems with no discretization error and regions 

that are circular. 

We will be using the following.notatiori: 

variant 1 - the capacitance matrix C is generated and 

factored; the capacitance matrix system is solved by 

Gaussian eliminations. 

variant 2 - C is explicitly generated; ~he linear system 

with C is solved by the conjugate gradient method. 

variant 3 - an implicit capacitance method; an FFT solver 

is used in each conjugate gradient iteration. 

variant 4 - an implicit capacitance method; a solver that 

employs ~parsity 1s used in each conjugate gradient 

iteration. 

A comparison of the performance of all four variants is 

presented in Table II for a comparatively crude mesh, 64x64 

points. Memory requirements for arrays in this case are rough-

ly 24,000 locations for variants 1 and 2, while only 5,000 to 

8,000 locations are needed for variants 3 and 4. If the 
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capacitance matrix fits. !_into ·'th~ fast memory, the ·vaTiant 2 

:,i·s the. fastest one. The only exception is variant· 4 .:for- the 

Neumann problem where the number of s6urces and targets is 

4uite·1ow. If a re~~titive use of a solver for a given 

~geometry is needed (for instance in nonseparable problems -

se~·Concus, Golub, and O'Leary [2], or in eigenvalue problems­

·~se~~ro~kuiowski [6], variant 1 is rec6mmended). Variant 1 

-·is also :superior when a very high accuracy of the solution 

'i-s required. On the other hand one must keep in mind ,.that 
. -6 

mo~t -often the discretization error is larger than: l~1Q, . 

To obtain the solution with normalized 1 2-norm of tbe error 

I icij 2 = l/n 1
/

2 (E sf) 1/~, o_ f 1·10- 3 only six itcratiohs for 
i 

variants 2; 3 and 4 were needed with a subsequent~sav1ng 

in execution time down to 0.&5 f 0.71 sec for all these 

., .. :'solvers. 

·In Table III we compare the separable solvers (on-· 

rectangular regions) we have used; the one using FFT and 

the other one with sparse sources and targ~ts. For the· 

latter· we confined ourselves to the mesh of powers of 2 only 

for-reasons of comparison.· Note also that the number of 

sources (s) and targets (t) given here is typical for vari-

ant 4 and corresponds t6 experiments shown in Table I. 

Results o£ experiments with refined mesh confirm dur con~ 

jecture that the execution time for the sparse solver is 
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proportional t·o n(s+t) and thtis is essentially of the order 

of n 2 for variant 4, while the corresponding growth factor. 
2 .. 

for variant ·'3 is n log 2n :· 

The results. given in Table I shbw that the number of 

conjugate gradient iterations remains almost constant when 

the mesh is refined. .We can also see clearly _that the exe­

cution time per iteration is proportional to n~ for variant 

4 ·=an:d to n 2log 2n for variant 3. , Hence_,, the total computa­

tional-effort beHaves similarly; when-the numbe~ of inner 

points grows by·a f~ctor of A;fr the total CPU time grows 

. · as · 4 ~ 4 for variant 4 artd 5 ~ 2 for variant 3. 

We have·· also run experiments on very fine meshes for 

a Laplace equation·using variant 4. The solution was ob­

tained on a sparse set of mesh points close to an. We 

report here on one of these experiments with n = 650, p = 1468, 
I 

s+t ~ 6728, and 212,201 mesh points inside D. The number 

of conjugate gradient iterations was<l8 (the t -norm 2 . . 

of the error 3~10- 6 ) and the total execution time was-

157.659 sec on CDC 7600 with.the FTN4 {opt=2) compiler. 

Memory space needed for arrays here was ~47~000 locations. 

Additionally, we chose a circular·region with a cir-

cular hole in its center .. The diameter of the hole was 

1.4 of the diameter of the outer circle. The rate of 
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·convergence -of the conjugate gradient iterations was in this 

case slower than for plain circles. N~vertheless, the 

-influence-of mesh refinement was insignifi~ant; see Table IV. 

This seems to support our conviction that such behavior 
_, 

' :.\.. .. 

is fo be expe~~ed for smooth regions, {i.e., without cusps, 

slits, etc.) of a diff~rent shape. 

. . ~ ·• . 

~ ~- . ·, ,. . 
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Table I. Influence of mesh refinements on the number of iterations and the execution 
time (CDC 7600 with FTN4 (OPT=2) compiler). The region was a circle. 

Mesh 
\. 

Number of 
b-oundary· 'points 

.. 

Number of mesh 
points inside n 

Variant 3 
Dirichlet prob~em 

64X64 128xl28 

132 268 

1789 7209 

Number of conjugate 12 
. gradient iterations 

14 

£.2-norm of 
the error 

Total ~xecu~ 
tion time, sec 

Share of separ­
able solvers 

Time per 
iteration 

2.3·10- 6 2.0•10- 6 

1.243 6.473 

1.155 6.087 

0.090 0.432 

Variant 4 
Dirichlet problem Neumman problem 

64x64. 128Xl28 256X256 64X64 

' .. -~ ·! ;_; 

13-2 268 540 132 

0<~-2 ·.·. 

. '1789 7209 28913 1789 

13 15 16 8 '. 

1.0•10- 6 1.0•10- 6 1.3·10-6 1.2·10-6 

1.232 5.470 24.158 0.602 

1. 095 5.038 .22. 941- 0.536 
:--

!' 

0.085 0. 3i4' . 1. 2'90 0.061 

I 

N 
-.] 

I 

0 

c 

0 

~ 

();}• 

c 

C.~ . 

~c·. 

t''Y 



Table II. CPU-time on CDC 7600 with FTN4 compiler (OPT=2) for all our solvers. The region 
was a-circle, the mesh 64X64. There were 132 boundary mesh points and 1789 
mesh points inside ~. 

Generation of C 

Factorization of C 

Total execution time, sec 

Number of iterations 

£ 2-norm of conjugate 
gradient residuals 

£ 2-norm of the error 

Time per iteration 

Time to solve an 
additional problem 

Variant 1 
Dirichlet 

0.455a 

0.602 

1.180a 

1.2•10-12 

~ .. 

0.138 

Variant 2 
Dirichlet 

0.445 

0.855 

12 

0.3•10 -6 

0.8·10 -6 

0.033., 

0.410 

Variant 3 
Dirichlet 

1. 243 

12 

0.8·10- 6 

2.3~10- 6 

0.090 

L 243 

Variant 4 
Dirichlet Neumann 

1.14 7 0.602 

12 8 

1.0·10 -6 0.1·10 -6 

3.2•10- 6 1.2·10 -6 

0.085 0.061 

1.116 0.582 

aUsing single~layer Ansatz, one can generate C in 0.165 sec decreasing the total execution 
time to 0.905 sec. 

~ 
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T:able·,'JlrfL CPU-time ,on :cnc 7600. with FTN4. compiler (OPT=Z) 
T.~.{·;•·:·L : dor solvers on rectangular. regions. 

•1_, 

Execution Number-of 
Mesh time in sec sources 

and targets 

Solver 
using FFT 64 X 64 0.043 

128 X 128 0.203 

256 X 256 1.235a 

. : 
0.27b 

.(, 

. '· 

Solver 64 X 64 392 
employing ., : ~ '! 
sparsity_ 64 X 64 0.385 600 

. ·. 
128 X 128 0.156 1224 

256 X 256 0.622 2472 

aComputed while using LCM, which slows down the solver by 
25-30%. 

bThis result is for the Neumann problem, all the rest for 
the Dirichlet problem . 
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Table IV. Influence of mesh refinements on the number of 
conjugate gradient iterations for a circular 
region with a circular hole in its center. 

Mesh 16 X 16 32 X 32 64 X 64 

Number of 
boundary points 44 84 168 

Number of mesh 
points inside Q 100 412 1680. 

., 

Number of conjugate 
gradient iterations 16 16 16 

~z-norm of conju-
gate gradient re-

1.7•16- 6 1.7·10- 6 -6 siduals 1.6·10 
~-. 

.. 
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