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ABSTRACT

The humerical solutioh of ﬁelmholtz's equation‘in an
arbitrary bounded plane region is considered. Variants:of
the capacitance matrix method are developed;which greafly
- reduce storage requirements. This allows the use of a‘very
fine mesh with éevéral hundred mesh points in each direction

or the use of a computer with a small core storage.



1. INTRODUCTION

In recent years special techniques called the tapacitance
matrix method héve been developed for the numerical solution
.of Helmholtz's eduation in a general plane-bounded region Q;
Aﬁ-+cu. = f in'Q R
~where ¢ is avreal constant; and either Dirichlet or Neumaﬁn'
conditions afe spécified,on'the boundary 3Q. These methods
make use of fast solvers in regions that allow for the separ-
ation of variables. Operation count, 6(n), for suéh fast
solvers is proportional to n210g2n, where n is the number
of mesh points in each direction. For a detailed discussion
of'such‘methods and a history of their development, refer to
Proskurowski and Widlund [8] and Widlund [11].

In this paper we confine ourselves to two dimengional
bdunded regions; for problems in three dimensions see O'Leary
and Widlund . [5].

The algorithms previously developed by us have a practi-
cal limitation on the number of mesh points, from memory
considerations. Normally, one generateé and stores a dense
capacitance matrix C of the order of p, where 15 is the
number of mesh points inside @ adjacent to the boundary 3Q.
In thié paper we develop an implicit method in which we
avoid generating and storing the matrix C; see also O'Leary
and Widlund {51. Moreover, we exploit the fact that only a.

few mesh points from the closest vicinity of the boundary
-/

®



90 are involvéd in the main part of the computation, that is,
the’capacitance matrix iterations. Using a solver on a |
recténgle; which'takes the sparsity of the problem into
éccount, developgd originally by_Banégas [1], we design an
algdrithm>that requires only 32p storage 1o¢ations for its
main part. Only the last step, computing the final solution,
is limited to memory réquirements of a fast solver on a
::recfangle, i.e., men locations, where m and Ii are the
numﬁef of meshApoints in a fectangle in which the_region'Q
is imbed&ed. vTo remove that obstacle We propose'a solver
that feqﬁires only anl/2 storage 1oéations at the éxpense of
ééme computational effort. |

Numerical results from extensive experiments on the

CDC 7600 computer are reported.
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2. CAPACITANCE MATRIX METHODS AND POTENTIAL THEORY

In this section we give anbrief review of the potential
theoretical approach leading to capacitance matrix methods
aé describéd in Proskurowski and Widland [81; Sée also
Widluhd [117]. | |

We éonsidef a problém On an arbifrary bouﬁded piane
region 9.  The region Q»is first imbedded in a larger region,
a rectangle, and a ﬁniform mesh is intréduced with the same
mesh size in the two coordinate directions. - The boundary |
conditions on the rectaﬁgle.can be of arBitrary type as
1ong as'they allow for the use of a fast soiver; see Widlund
[10] and Proskurowski and.Widlund [8]. The set of mesh
points‘ié décomposed into three disjoint sets: Qh? BQh,
and (CQ)h. The set 2 is the set of interior'mesh'points,
i.e., each of its members has all its immediate ﬁeighbors
in the open set Q. The remaining mesh points in @ constitute
Bﬂh; the‘set of irregular mesh points, whilé the set (CQ)h
contains all the remaining exterior mesh points. The discrete
Laplacian is represented by the five-point formula for all
points in Q,u(CQ),. The data for the exterior poihts are
extended in an arbityary way; for the proof that the solution

on ,U3Q, is independent of the solution and data on (CQ)h,

h

see Section 3 of Proskurowski and Widlund [8]. For the irregular
points we must introduce a formula that also takes the boundary

conditions on 32 into account. We therefore combine the



disorete Laplacian with anTinterpolationofofmula; The
important problem of scaling these auxiliafy.equations is
treated in detail in Proskurowski and Widlund [8] and Shieh
[9]. We will denofe by A the n2><-n2 matrix corresponding’
to the difference problem enlarged to a rectangle handling
the given boundary conditions_on 9, ‘The regularly struc-
tored problem for which a fast solver caﬁ be used is given
byvthe nz X nz'matrix B representing the discfete Laplaciéni
.With a proper ordering of equations, A and B differ only
in rows corresponding to the irregular mesh poinis. For:
the Neumann.probiem we write A=B+UVT, and for.the Dirichlet
pfoblem A=B+UZT, where U, V,and Z have p columns, and p is
the number of irregular mesh points. The matrix U represents
an extension operator, which maps BQh onto fhe whole rec-
tangle. - It retains the values on aﬂh and makes the remaining
values equal to Zefo. Its transpose, UT, is o trace operator.
Matrices VT and —ZT are a compact répresentatibn of B-A, from
Which the zero rows corresponding to the regular mesh points
have been deleted.

in.pofential theory the solution of the Neumann prob-
lem is given as a sum of a space potential ug and a Singie

layer potential of charge distribution at the boundary 3Q:

u) = oy (x) ¢ o). (2.1
_A discrete analog to (2.1) is

u='Gf4_-GUp, ' ' (2.2)



where eaéh of the p columns of U represents a unit charge
placed at an irregular point, where the discrete-operator G plays
the same role aszthe-integralloperator defined by the funda-
mental solution of the continuous problem (see Proskurowskl
and W1d1und [8]), and p is determlned by .solving the capaci-
tance matrix equation |

Cp = (I - VTGU)p - vigs - g (2.3)
where the pxp matrix C is the capacitance -matrix and p is
a Vector of p components. A proper approach for the Diri-
chlet problem is the double-layer potential ¥ of dipole
density u at the boundary 3Q: _

u(x) = u  (x) + wlx) . | (2.4)
A discrete analog to (2.4) is
- u = Gf + GDu , ‘ (2.5)
where D has p columns, each of them representing é unit
discrete dipole placed at an ifregular point, and ]JviS the
solution of

Cp = (I1+2'6D)p = -71Gf = g, (2.6)
where p 1s a vector of'p components. Shieh [9] has shpwn
that the capacitance maérix C is equal to Kh plus a matrix
with a small condition number, where Kh is an approximation
to the correct compact operator of the corresponding Fred-
holm integral equation of the second kind. The conjugate
'gradient method converges superlinearly for Fredholm inte-
gral equations of the second kind, as shown by Hayes [4].

Therefore, the conjugate gradient method applied for solving



‘ éqs. (2.3) and (2.6) converges.rapidly;’ in practice, it is
independent of the size of the mesh; see also Proskurowski.
and Widlund [8). .In summary, the algorithm consists of the

following steps:

1. Generate the capacitance-matrix C.

+,.2.. Compute g.

3.. Solve (2.3) and (2.6) by the conjugate grédient method.
»,4;?_Use‘the fast soiverftb obtain
N Su ;,G(f';Up)' lor. u = G(f+Du) .
Another option for Step 3 is to factor C and solve (2.3)
and (2,6) by‘Gaussian‘elimination; For the details of the
o aigorithms and ways of fast generation of C, refer.to’
Proskurowski aﬁd Widlund {8].
.~ The tqtal operation count for that algorithm.is pfo—
portional- to nzlogzn and p2

Some alternatives to this algorithm that make it pos-
sible to avoid the explicit generation of C will be descri-

bed in the next sections.

3. AN IMPLICIT CAPACITANCE MATRIX METHOD

Methods in which we explicitly generate, store, and
possibly factor the capacitance matrix may'become‘inefficieht‘.
when the mesh is refined. The Capacitance matrix is a dense,
pPXp matrix, where p is the number of irregular meshvpoints,
which grows linearly with n, the number of mesh points ‘in

each coordinate direction. For example, somewhere between
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the values of p equal to 150 and 200 the small céré memory
(SCM) for the CDC 7600 computer becdmes saturated. The use

of large core memory (LCM) would allow increasing the‘ma$i-

- mal values of p by a factor of 2 or slightly'more; while.for
~even larger p one must use a secondary meméry device:with 

a huchrlonger access time. Therefore; we now present a

method 1in Which the capacitance matrix is used only implicitly
without generating and storing it, thus saving'p2 memoryv
locétions at the expense of é'small increase in computafional
effort; see also 0'Leary and Widlund [5], Widlund [11] and

an early paper of.George [3]. '

.We describe the method for the Dirichlet boundary condi--
tions in which the proper Ansatz of double-layer potential is
used. The Neumann boundary conditions, where thevsingle-layer
Ansatz is used and 1is a slightly simpler case, can beVWOrked
out in a similar way.:

We once more write the capacitance matrix eqhatidn
"Cu = (Ip + z2Tgp) = zTef = g . 3 - (3.1)
The capacitance.matrix C can also be rewritten as -

c = (1, + 276Dy = ulacD , ' | (3.2)'
which form we will subsequently use. Sihce matrix-C-is nohsym-
metric and we intend to use the conjugate grédient method for
solving (3.1), we reformulate it in terﬁs of a least squéres
problem | | |

cTew = ¢Tg . . . (3.3)
ThUs.each step of the conjugate gradient'method requires the
computation of a matrix-vector product CT(CX) for any vector

x of length p given on the set of irregular mesh points, i.e.,



pleu'mTwmyenx . | (3.4)

Let us rewrite (3.4) as a sequence of equations.

Xy = Dx ,
Xy = le . ‘orlez = xl_
x. = (UTA)x, ,
3 2
) T T (3.5)
X4 7 (U,A)_x3 , :
T. . : :
y =1D X-S ’ . S i

Conseqpent%y,.we:first set to zero a large n'n array,‘then geﬁ—
erate the mesh function Dx by distributing x onto the set of
disqrete Qipoles. This step costs 2p multiplicative operations.
Then_we_qbtain‘G(Dx) by using the fast ssolver at a_éostvpropor—
tional ;p‘n21ngg operations.' UT maps. a mesh function‘defined_
for all mesh Boipﬁ§ into its restriction to irregular mesh
pointsi‘ Therefore, it is enough to apply the Opefatér A to GDx
only dn the set of closest neighbors of irregular mesh points.
Acting in this,way'we.cbmpute UTA(GDX) at the expense of 4p
multiplicative operations. The part corfespdnding to the trans-
posé of C is performed in a similar fashion. ThUS, the vector
CTCx is obtained at a cost of two calls of the fast solver, |
proportional to n?logzn operations, plus a lower-order term,
proportional to- p operations.. In our program;somé-opérations
were repeated in order to save memory space. |

- Summing up, this method requires n2+8p memory ‘locations

(n2+10p for the Neumann problem)'compared with p2¥n2'p1us a

lower-order term proportionél to p for the explicit capacitance

matrix methods, as implemented in Proskurowski and Widlund [8].
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On the other hand, the»operation count for.the present method
is (2k+3)-e(n), where k is the number of the conjugate gradient
iterations and is practically independent of n, the number of
mesh ﬁoints, and 6(n) is the cost of a faSt Helmholtz éolver

2logzn. In comparison, the cost for the ex-

proportional to n
plicit capacitance method with the conjugate gradient option is
equal to 3.5-6(n)+(2k+c)-p2 6peratidns, where ¢ is a constant
arising from the generation of the capacitance ﬁatrix.

An experimental comparison of the'comﬁutation times for
n=64, p=132 and a circular region is given in Section 7. It
shows that whenever the capacitance matrix is small enough to
- fit into SCM, the éxplicit capacitance.matrix‘methods’are slight-
ly faster. On the other hand,.the preséht method'does not make
use of the translation invariance of the solution, which is ek-
ploitedﬁin our variant of the explicit capacitance matrix method,
and alternative fast solvers’ﬁight b¢ easi1y used. A further

development of this method is described in Section 5.

-4, A HELMHOLTZ SOLVER THAT TAKES ADVANTAGE OF SPARSITY
Consider the Helmholtz équation (-A+c)u = f on a rectangular
region with a m-n mesh. Let the Mésh values of f and u be called
sources and targets,viespeétively. Denote then by s the number
of nonzefo sources and by t the number of targets where the
solution is required. Quite‘often there exist situation

where either s<<m-n or t<<m-n, or both. One such situ-



ation occurs while computing the discréte Green's function
fof fhe generation of the capacitance matrix, i.e., the case
ZWith s=1. A more generalvdiscgssion Qf_fhe applications
for the present use is given in Section 5. We now
déécribe how to make use of the sparsity of sources and/or
targets to save memory space'and possibly computational |
effort as well. This method was developed by Banegas [1]
and we have been using in our experiments a considerably al-
2tered'variant*of.her algorithm. This algorithm was meant
to be compatible with the one using Fast Fourier Transform
(FFT) as described in Proskurowski and Widlund [8). Never-
‘theless, there is no difficulty ih adaptingit to alternative
fast Helmholtz solvers,1f necessary. Wé remark also that the
only réstriction on n is -for it to be even.

First, recall the fast Helmholtz solver described
in [8]. The solution there is obtained by applyingrthe FFT
‘in one coofdinate'direction;i.e., ﬁ times on vectors of’
'1ength’n, then by solving n very special tridiagohal'systems
of equations of order m by the Toeplitz mefhod, and finally
by using an inverse FFT on m vectors of length n. Memory
requirement is here equal to m-n+0(1l) and the total operation
.couht for this solver is ©(m,n)-= %"m1022<%)+15mh, whéfc-each
multiplication and each roating point'additibn is ‘taken as
a unit operatioﬁ. We remark that the operation count’alway§
shows only a part of the actual'compufational expenses and

1s not an exact measure of 1it.
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"Let us now write the Fourier coefficients as inner
products of the data vector f(z) with the eigenvectors
¢(J) of the matrix B representing the discrete Laplacian

(-a+c):

—

$(3) _

B

Y R 3 (25
=1

where j=1,..., n and k=1,...,m.
In addition, the inverse Fourier coefficents can be written

as

uﬁﬂ) ) 2:1 ¢£J)°G£J)x > S (4.2)
| j=1 |

-where £=1,2,...,n and k=1,2,...,m. Tt.is easy to scc that
for sparse sources and targets the number of eﬂtries with

- double indeies (k,2) is reduced to s and t, respectively.
Consequently, the operation count for the-suﬁmation formulas

. (4.1) and (4.2) is reduced considerably, Moreover, we may
reorder the computation,performing it separately for each
frequency j. We first compute the Fourier coefficients for
all nonzero sources fi, i=1,...,s and simultaneously sum
those having the same index k. Then we_solve the intermediate
tridiagonal matrix problem. (with Aj corresponding to each
frequency j) with the previously computed Fourier coefficients
as Q‘right—ﬁandléide. Then finally we compute the invCrse
Fourier coefficients for all targets we nced for the solution

u., i=1,...,t, and sum simultaneously those having the same .
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index k. At this point locations used for the temporary
values ofv%(j) can be released and ﬁsed for %(j+1).

Thus,”this'proceduré requires 3(s+t) locations for
sources, targets, and their coordinates plus 2(m+n) locations
for;storing the Fourier coefficients temporarily and also
sines and cosines. In the actual-prdgram we also store
temporarily some indexes in order to avoid the repétition of
compufing them. In all, we use

| 4(s+t)+2(m+n) memory locations. e | (4.3)
If fhe”sources‘and targets coincide,we could perform the -
computations in plaée (as we do in the fast solver using
m-n 10Cations),thereby further reducing these requirements
to 4s+2(m+n) locations.

It is evident that for large s and t this pfbéédﬁre,
which uses the conventional (i.%.;sioW) Fourier transform,
will be much slower than a comparable solver using FFT. Now
“we will establish restrictions on s and t for this procedure
to be c?mpetitive with a fést Helmholtz solver. The oper-
ation count 1is

Y(n,m,s,t) = 3n-(s+t) + 4mn. _ o (4.4)

Then ¢y =6 for

.3 11 ' o -
s+t = 3 mlogzn/z + - m. _ A (4.5)
For example, take m=n and s+t = 10n. This gives the ratio .

e(n)/W(n)=_(% log, %—+ 15)/34 which for n=64 is equal
to 1.1. The corresponding ratio for execution times in

numerical cxperiments (see Section 7) is very close to it.
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5. AN IMPLICIT CAPACITANCE MATRIX METHOD USING A
HELMHOLTZ SOLVER THAT EMPLOYS SPARSITY

We recall from Section 3 that the main_computationai effort
(more thaﬁ 90%) in an implicit capacitance matrix methbd
goes for éomputing vectors y = CTCx = DTG(UTA)T'(UTA)GDX
during the cpnjugate gradient iterations. 'Moreover, a
dominant part of this computation, also over 90%, is speht
on a fast Helmholtz solver. We recall also that while
distributing the discrete dipoles (D) and_ﬁsing Shortley-
Weller stencils (UTA), only the mesh points from a close
neighborhood of the p irregular mesh points are involved in
the computation. The values on the rest of the mesh points
are set to.iero. In (3.5) xq and x, are SQurces (s), and
X, and X¢ targets (t) of the separable Helmholtz solver, in
'[accordance with the notation introduced ih Section 4.

A stréightfofward count for the Dirichiet problem gives
s <5p for k4 (t <5p for XZ) and s=3p for X (t=3p for xS).
For the Neumann problem‘the corresponding values differ for
Xy (s=p) and xs'(t=p), as we have here a single layer of
charges instead of dipoles.

We can observe fhat the coordinates of the mesh points

involved in computation are often.repéated:as we go from

one irregular mesh point to the next. For example, for UTA



only the layer of.mesh points insideFQ'at‘a distange not
larger than 2h from the boundarylaﬂ is qsed fn computation.
This gives the value s + t < Sp for the D1r1ch1et problem
and s+ t.= 3p for the Neuman problem A'comparleon_w1th
formula (4.4) shows that the use of Helmholtz solyer_with
spar51ty 1nstead of a fast one should be favorable here also
in the amount of computat1onal effort | }
| When we use a two - d1men51onal array of‘entrles the sum-
mat1on over the same coord1nates (here double. 1ndexes) comes
in a natural way. | On the contrary, whlle u51ng the Helmholtz
solver‘deecrlhed 1n.Sect1on4 we work only with vectors of
values and of coordlnates of the entries. That is why we must
con%truct an algorlthm to recogn1ze entries w1th the same.
coordlnates in an effectlve way. To perform such a_§earch in
heaoh con]ugate gradlent 1terat1on would be costly. Therefore,
~ in our computer 1mp1ementat10n we preprocess the 1nformat10n
Jabout the 1rregular mesh p01nts and their nelghbors It is
performed only once at a cost proportlonal to the execution
of p2 log1cal IF statements This const;tutes only a small
part of the total computatlonal effort less than 2. 59 for
meshes n = 64. Add1t1onal storage for two vectore of an

approx1mate total length of Sp is requ1red

We now brlefly repeat the 1mp11c1t capacitance algor1thm
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(a) Compute g »

(b) Compute u, = Gf ,

~and g g1 Ug for xeGQh ;

(éj~ Sdlve_for u: CTCu'= CTg s
(d) Compute u = G(f + Du).
The cépacitance matrix eqdétion for fhe Dirichlét problem,'
in its normal form (c)'can be solved at the ;oSt.of_Zk-(lsnp +
4mn) operations, where k is the number of coﬁjugate gradient
iterations, while using only 32p memofy locations. 'Fof the
Neumann problem the corresponding véiués are 2k-(9np+4mn) and
25p.
Thus, if m=n, the cost of fhe main part of our Helmholtz
solver 1is proportional to hz, as p = 0(n). ‘Thié conjéctﬁre
" is fairly well confirmed by the eXperimenfal data in Table I.
Assume for the moment that we'solvé only the Lablagei
equationb' Then the tctal_memofy requiremeﬁts for the present
algorithm are proportibnal to'p. This allows us to use a very
fine mesh or to employ a computer With a small‘corefstofage}
>In a genefél caée, i.e.,-Wheh £ # 0, we must:also csmphte
the term ug denoted aé the spacerpofential in Section 2.' There
we have bbth s and t equal to almost m.n, and the sparse Helm-
holtz solver is quite ineffective (tﬁe dperatidn Eount.is pro-

. 2 ) . : . i
portional to m.-n“); hence in most cases it cannot be recommended.
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On .the other hand a standard fast solver requires m-n memory
ibcafibns,'i.e., much more‘thah‘neédéﬂifgr:the'rest.of~our
algOrithm,_ To resolve the las§¢diffigy}§yrwe deéigned'a”fast
Helmholtz solver that requires anl/zgmemgryiloggtions, des-
”ﬁcribed;in Section 6.

In the only process where a repetitive use of.a Helm-
holtz solver is needed,_(c),,Both sources and targets are
sparse, as we haveﬁglrgady seen. Therefore, a certaiqﬁinérease
.Awoftqdmpptation.time ing{dj.apd'partially in (b) }n order, to
save sforage (see Section 6) playsla_lesser rolg_in the total
computational effort. Moreover, we can easily use 1arge,;ore
meméry (LCM) for the two—dimensional arrays_needeq in (d) and
(b)) . LCM_will be here accessed infrequently and therefore at
a compérétively low cost. Fpr CDC‘computers.we”gan_take ad -
vantage of the use of an inexpén§ive routine, MOVLEV,:toqmani—
_ pulate the storage between SCM and LCM,1 |

.There are also‘applications where the solution or its
gradient are fequired only on éQh. In those cases thg targ¢ts'
in (d) are also.sparse. In order_to retain flexibility we
implemenfed the Helmholtz solver that .employs sparsity to-

gether with the fast solver that uses FFT. Four different

options were used for sparse and nonsparse sources and targets.

~

lthe cpe 7600 has-two types of cores storage:
1) SCM contains 65,536 decimal 60-bit words,
2) LCM consist-of 512,000 decimal 60-bit words.
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6. - A METHOD OF SOLVING HELMHOLTZ'S EQUATION IN A RECTANGLE
' USING 2n3/2 MEMORY LOCATIONS ‘ '

Standard fast methods for solvihg Helmholtz's equation on a
récﬁangulaf region reqﬁires n.m +’0(1) memoryllocatiogs: This
poses‘allimitation on the size of the mesh if 6nly fast core.
memory is to be used. If for iarge n and m a disk ﬁas used

to store the n-m array, thenﬁthe stahdard fast solver requires'
frequenflmanipuiation tq and from the disk with parts of the
arfay; Large access time makes this prdcedurejvery expensivé, 

We now propose a method that somewhat lessens the fe;b.
‘striction on the mesh at the expense of an increésé in the
"number of operations.

Let us consider an infinite parallel strip with periodic
boundaerCOﬁditions. Denote by n the number of mesh points
‘across the Strip and impose'free-spaée boundary conditions.
Denote theh by m'thevnumber‘of mesh points along the strip.
After the éhange of basis by ‘the FET on m lines éf length
n and é suitable permutation, we obtain n tridiagqnai éystems,
of equations of order m having the following special structure

(see Proskurowski and Widlund [8]:

- cR=f . (6.1)



c

<
L
(%4
<
(s"‘ L
e,

-19-

For |A|>2 we have thé following explicit formula for the

solution of our problem: -
-1i-]

~

£, 4,3 = 1,...m, . (6.2a)

X; =0 Z u
]
where

o= (u - U—l)-l_ ’
as can be verified by inspection.

For [A|=2 we choose

N NGV LR A I 55 NI S (P15
and for |A|<2 we choose
f; = -% [[sin(Ji-j|-¢)/sine] - £, (6.2c)

where A = 2co$¢ (see Proskurowski and Widlund [8]. Note that

when}[xl+2,the expression in (6.2c)converges to the one in (6.2b).
We divide the strip lengthwise into k boxes n-m/k and

find the solution x on the (k+1) lines connecting the boxes,

in'accordaﬁ¢e with formulas (6.2). Then by‘taking.the in-

verse FFT on those (k+1) lines, we obtain the solution x

on themn. .We remark that this in itself is é cheap method

’of computing the solution to Helmholtz's equation oﬁ a

sparse sef.of'lines. Moreover, the summation in (6.2) needs

to bg taken only for those j for which %j is nonzero, in. |

the case df,sparse data f.

Finallf; we consider each n-m/k box as a separate problem

with Dirichlet boundary conditions écross the strip (the
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values of x on (k+1): lines computed withinrthe machine
accuracy) and with periodic.conditions‘on the shorter edges.
By a suitable choice of the value m/k, we can use a standard
fast method for each separate box.

Note that in order to save memory»thé procedures of com-
puting £ by taking FFT on each line and.of computing x on
(k+1) lines must be carried out simulpanéously'in‘the same
loop for all i = 1,...,m: |

(a) take the FFT: f£(1) 5 §(i)

(b) for all chosen iines 2 =1,..;,k+1

add the term %(i) to f(z), j=1,...,m,

(c) store,i(i), release E(i).

Note also that the data f are required_twice (from a
function subprogram or from a disk): in step_(a)vabove
and while solving problems in each individual box. In
both cases values‘of n consecutive 1ocationsvof:the n-m
array are used simultaneously, which simplifies the acéess
from and to a disk. No intermediate results are stored in an
auxiliary memory in contrast to a straightforward extension
of standatd‘fast solvers to fine meshes.

Storage requirements for this algofithm are as follows:
m temporary locations for u'i, i=1,...,m-1 and o, and n
locations for %, which all can be releasedrafter ﬁhe first

step performed; n(k+1) locations for the solution x on the
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(P¥1)'chosen”1ines; and nem/k 1ocations.neede& forreolvingfk
problems on small boxes » Thué totally We’need n:tm/k+k¥l)
_memory 1ocat10ns The operatlon count is- consequently
‘ ;(é)anFT on m 11nes of 1ength n: (9/4)- mnlogz(n/Z) +(11/2)mn

.(b) computlng x on (k+1) ‘lines: (k+1)mn
v: (é) 1nverse-FFT on (k+1) 11nesf (9/4) (k+1)nlog2(n/2) +

©oa1/2)- n (1), |
C(d) jsolV1ng the D1r1ch1et proolem in- k boxes:
| k(%n % log, ﬁ +~15 i . n> |

Thus the total operation count is

| = mnl210e. (0) + 2 m 137
w(m-n,k) = mn[ logz(z) + 21og2 K +k +f§-]_ o
_plus a lower order term.. For comparlson, the operation count
for the standard fast solver is e(m n) = mn(2 log2 % + 15)

1/2

For k =m the memory requlrements are m1n1ma1 ‘and

equal to n(Zml/2 +_l). For 51mp11c1ty; take m = n. Then
: 12 _

_ for the opt1ma1 ch01ce of k, equallto n’*%, we have=the B

f0110w1ng increase in computational effort

n Jem)/em) | nf | % | 32p
28 16 210 1 Q13 Qe

210 1 s | 220 20 le)
_,zl? , 2.2 | 2% LY 218-

We taoulated'also:the'nemory'reqUirement for the Standard
'anoyﬁregent"fastbsolVers, and the ones‘for the.capacitancef
hatriititeration3;>i.ef,nz, /Z,and 32p (p =" 2n), respec-
itive]y§:‘fhe 1a§t'two values are of the_samevordervof magni -
tude-for.these meshes.

- This solver has not yet been»teSted experinentaily. '



-22-

7. NUMERICAL EYPERIMENTS

In this section we' report on results from a.qer10< of
numerlcal experlments that were carrled out on the CDC 7600
computer at the Lawrence Berkeley Laboratory In our experi-
ments we have used programs that are now obtalnable from
LBL's computer library [7] |

For studying our capacitance matrix methods we have
chosen problems w1th no discretizationlerror and regions
that are circular.

We will be using the-foilowing.notation:
variant 1 — the capacitance matrix C is generated and

factored; the capacitance matrix svstem is solved by

Gaussian eliminations.

'variant.z —C is explicitly generated;;the linear system
with C is solved by the conjugate gradient method.
variant 3 — an implicit capacitance nethod; an FFT solver

is used in each conjugate gradient iteration. |
variant 4 — an implicit'capacitance method; a solver that

employs sparsity is used in each conjugate gradient

iteration.

A conparison of the performance of all four variants 1is
presented in Table II for a comparatively'Crude mesh, 64x64
points. Memory requirements for arrays in this case are rough-
ly 24,000 locations for variants 1 and 2, while only 5,000 to

8,000 locations are needed for variants 3 and 4. If the
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capacitance matrix fitsinto‘the fast memory, the-variant 2.
#s the fastest one. ' The only exception is variant 4 .for the

Neumann problem where the number of sources and*targets"is

~quite low. If a repetitiVe use of a solver for a given
..géometry is needed (for instance'in nOnsepéréble problems—é

'ﬂ*SeewConcus,'G01Ub and O'Leary [2], or in elgenvalue problems —

vsee Proskurowsk1 [6], varlant 1 is recommended) Varldnt 1.

"is-also: superlor when a Very hlgh accuracy of the. solutlon'

‘is. required. On ‘the other ‘hand one must keep in. m1nd that

e 6
most -often the.dlscretlzatlon‘error is larger than:l%]@, .

- To obtain the solution with normalized %,-norm of the error

]/2(; 8%11/2’.0f 1-107° only six diterations for
_ i ; : | o |
variants 2, -3 and 4 were needed with a subsequent.saving

in execution time down to 0.65 +;0.71 seC'forvali these.

Tifsolvers.

+In Table III_we compare the separable solvers (on: -

"~ rectangular regions) we have used;ﬂthe,one using‘FFT'and

the other one with sparse sources and‘targets.viFOr the-
latter  we confined ourselves to the mesh of powers of 2 only

for:reasons of comparison.‘Note also that the number of

" sources (s) and targets (t) given here'is typicaltfor vari—

ant 4° and corresponds to experlments shown in. Table T.
Results of experlments w1th re€1ned mesh conflrm our con—’

Jecture that'the executlon tlme'for the sparse solver'ls-
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.proportional to n(s+t) and thus is essentialiy df-the order
of n2 for variant 4, while thé corresponding growth factor.
for variant -3 is nzlogzn;V' . |

R ‘The results given in Table I show that the number of
conjugate gradieht'iterations remains almost constant when
the mesh is refined. We can also see clearly that the exe-
; Cutiohvtime per iteration 'is proportional -to n? for variant

4 “and toinzlogzn-for variaht 3. Heﬁce,;the total computa-
“ tional effort bekhaves similarly; when -the number of inner

‘poinﬁs grows by:a factor of 4.0 the total CPU time grows

~.as 4.4 for variant 4 and 5.2 for variant 3.

‘We have-also run experiments on very fine meshes for
a‘Laplace.equafionfusing variant 4. The solution Waé obF"
tained on a sparse set of mesh ﬁoints_close.to R . - Wé
report here on one of these experiments with n==650, p = 1468,
s+t. = 6728,.ahd 212,201 mésh points-insidédﬂ, Thebnumber' |
of conjdgate gradient iterations was¥18-(the zz—ndrm_‘..
of the error 3:10—6) and -the total execution time was-
'157.659 sec on CDC 7600 with the FTN4 (Opt=2) compiler.
Memory spate needed for arrays here was ~47,000 locations.

Additionally, we chose a circular'fegion with a cir{
culér hole in itS‘center.a The diameter of the hdlé was

1.4 of the diameter of the outer circle. The rate_of'



fconvorgence of the conJugate gradlent 1terat10ns was in th1s
'lasc slower than for plaln c1rc1es Nevertheless, the
nlnfluence of mesh reflnement was: 1n51gn1f1cant see Tahle IV.
ThlS seems to support our conv1ct10n that such behav1or

" is to be-expected for smooth regions,. (1 €., w1th0ut cusps
siits,:etc.)ﬁof a_differéntfshape. o

LI -
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Table I. Influence of mesh reflnements on the number of 1terat10ns and the executlon
time (CDC 7600 with FTN4 (OPT= 2) compller) The region was a circle.

Variant 3

Dirichlet problem

Variant 4 _ _
D1r1ch1et problem Neumman problem

Number of

boundary p01nts'

 Nﬁmber of-mesh

points_inside_@

64x54

132

1789

. Number of cohjugate 12

.gradient iterations

22-norm of
~the error

.. Total execu--
. tion time, secC

Share of separ-
~able solvers

Time per
iteration_

2.3-10

-6

1.243

1.155

0.090

268

7209

14

2.0+10

6.473

0.432

128x128

6

6.087

: 64x64; 128*128 ' 25§%256 o eaxed
‘132 : f‘268-\‘ ._i 546 o g "1?2 f'
1789 7200 '28913  __ | 17 :
e .
151 te 35- R
1.Q?1o'6 i.0-;o‘§ 1i$-;of6 1?2-10*6
l1.;32 | 5.470.'   ;4;}58  '“  o 6}562
1.0957  5&?38  ‘.f22;941< = ‘} A0.536
0.085 '0.52?"'“‘ 1.290  _" - 0.061

0o



Table II. CPU-time on CDC 7600 with FTN4 compiler (OPT=2) for all our solvers. The region
was a circle, the mesh 64x64. There were 132 boundary mesh points and 1789
mesh points inside Q.

Variant 1 Variant 2 Variant 3 Variant 4

Dirichlet Dirichlet Dirichlet =  Dirichlet -Neumann
Generation of C ©0.455%  0.445 - o - | i
Factorization of C - 0.602 - - , .- | : - -
Total execution time, sec  1.1802 0.855 1.243 1.147 0.602
Number of iterations _ - 12 : 12 . 12 8
2,-norm of conjugate -6 , -6 6 ;6
gradient residuals - - . - : 0.3-10 0.8-10 1.0-10 _ 0.1-10
L,-norm of the error  1.2-107!2 0.8.107° 2.3:10°%  3.2.107% 1.2.107°
Time per iteration ST T 0'.033;,7 0.090 - 0.085 - -0.061
Time to solve an - _ : -
additional problem : 0.138 ‘ 0.410 1.243 1.116 0.582

aUsing single-layer Ansati, one can generate C in 0.165 sec decreasing the total execution
time to 0.905 sec. ) o S »

_82-



. tCPU time on -CDC 7600. w1th FTN4 compiler (OPT 2)
-;afor solvers on rectangular reglons

'.Number~of.

Execution
sources

Meshﬂ time in s?c and targets
Solver v : o
using FFT 64 X 64 - 0.043 . -
128 x 128 0.203 o
256 x 256 1.235% .
Solver 64 x 64 0.27° 392
employing o _ : . e
sparsity 64 x 64 0.385 " 600 . . ]
128 x 128 - 0.156 1224
256 x 256 0.622 2472

aComputed while usihg LCM, which slows down the solver by
25-30%. '

bThls result is for the Neumann problem, all.thé rest for

the Dirichlet problem.
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Table IV. Influence of mesh refinements on the number of
conjugate gradient iterations for a circular
region with a circular hele in its center.

Mesh " 7 16 x 16 _ 32 x 32 64 x 64

Number of _ :
boundary points 44 . 84 - 168

Number of mesh -
points inside Q 100 412 1680

Number of conjugate : o
gradient iterations 16 . 16 16

£,-norm of conju-
gate gradient re- 6

siduals 1.7-16°%  1.7.10°% 1.6-107°
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