
UC Davis
UC Davis Previously Published Works

Title
Nitrogen accountancy in space agriculture.

Permalink
https://escholarship.org/uc/item/33m9j6c5

Journal
npj Microgravity, 10(1)

ISSN
2373-8065

Authors
Yates, Kevin
Berliner, Aaron
Makrygiorgos, Georgios
et al.

Publication Date
2024-09-28

DOI
10.1038/s41526-024-00428-x
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33m9j6c5
https://escholarship.org/uc/item/33m9j6c5#author
https://escholarship.org
http://www.cdlib.org/


npj | microgravity Article
Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA

https://doi.org/10.1038/s41526-024-00428-x

Nitrogenaccountancy inspaceagriculture
Check for updates

Kevin Yates 1,2 , Aaron J. Berliner 1,3,4 , Georgios Makrygiorgos1,5, Farrah Kaiyom1,3,
Matthew J. McNulty 1,2, Imran Khan1,2, Paul Kusuma1,6, Claire Kinlaw7, Diogo Miron7, Charles Legg 7,
JamesWilson7, BruceBugbee1,6, AliMesbah1,5, AdamP.Arkin1,3, SomenNandi1,2 &KarenA.McDonald 1,2

Food production and pharmaceutical synthesis are posited as essential biotechnologies for
facilitating human exploration beyond Earth. These technologies not only offer critical green space
and food agency to astronauts but also promise tominimizemass and volume requirements through
scalable, modular agriculture within closed-loop systems, offering an advantage over traditional
bring-along strategies. Despite these benefits, the prevalent model for evaluating such systems
exhibits significant limitations. It lacks comprehensive inventory andmass balance analyses for crop
cultivation and life support, and fails to consider the complexities introduced by cultivating multiple
crop varieties, which is crucial for enhancing food diversity and nutritional value. Here we expand
space agriculture modeling to account for nitrogen dependence across an array of crops and
demonstrate our model with experimental fitting of parameters. By adding nitrogen limitations, an
extendedmodel can account for potential interruptions in feedstock supply. Furthermore, sensitivity
analysis was used to distill key consequential parameters that may be the focus of future
experimental efforts.

The benefits of crop cultivation to support human spaceflight have been
explored since the 1950s1. With the recent emphasis on longer-duration
missions to the Moon and Mars (and interplanetary bases in between),
human life support must maintain crew health under radically different
constraints (e.g. limited availability of emergency resupply)2–6. The con-
tinued development of plants within the space bioprocess engineering
community7 as a source of sustenance8, medicine9, and various other high-
value life support products addresses the challenges of technology research
of the National Aeronautics and Space Administration (NASA) to manage
space resources and expand the human presence beyond Earth10.

Martian agriculture (Fig. 1) has been shown to be a theoretically feasible
alternative to pre-packaged meals, but caloric intake alone does not fully
describe the requirements for astronaut sustainability; pharmaceutical needs
must also bemet1,9,11. Additionally, the space environment imposes a further
risk of compromised food consumables and requires additional reserves of
elemental carbon, nitrogen, and phosphorus12. Although there are some
physicochemicalmeans to recycle a subset of these elements, they are usually
mass and energy intensive13, and they generally require additional down-
streamprocessing14. Given that the demand for consumable foodmass scales
nearly linearly with the increasing mission duration/crew size and that sto-
rage of larger quantities of food necessitates additional costs in refrigeration,
storage, andpower, crop cultivationprovides ameans for cost reduction6,11,15.

A primary advantage of a space bioprocess engineering7 is the inter-
connectivity and recyclability of the components of an integrated
biomanufactory16. To date, crop cultivation has been typically been studied
and characterized in many configurations (Fig. 1a) as an isolated system.
There have been some exceptions fromESA’sMELiSSA (Micro-Ecological
Life Support System Alternative) where crops are integrated into a bio-
manufactory concept and in studies on air revitalization17–19. Corre-
spondingly, the established crop cultivation mathematics of NASA’s
modified energy cascade (MEC) model11,20 are designed to model crop
cultivationbehavior of a single crop type in isolation, focusingonproviding
information relevant to traditional crop cultivation outcomes (e.g. food,
environmental revitalization). This model predicts dry weight (DW) bio-
mass production (the focus of this work) and oxygen production using
photosynthetic photon flux and atmospheric carbon dioxide concentra-
tion; it is also a basis formodeling water transpiration in the crop canopy21.
The MEC model specifies environmental conditions for a crop of interest
and requires that water and nutrients are not growth limiting. The
nomenclature and mathematics of the model presented here are adapted
from their original forms to align more closely with engineering conven-
tions; see the Methods section for details. In the MEC model, the change
over time of the biomass per unit growing area on a DW basis in a single
reactor of some crop i, denoted as m

⌒
B [gDWm−2], is formulated by a
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differential equation as

dm
⌒
B;i

dt
¼ _m

⌒

B;i ¼
�mC

wC;i
_n
⌒

C;i
ð1Þ

¼ 0:0036 � �mC

wC;i
Hi � ηC;i � Ai �Φγ;i � YQ;i

� �
ð2Þ

where _m
⌒

B is areal (“per area”) crop biomass growth rate in [gDWd−1 m−1], t is
time in [dAE] (days after seed emergence), �mC is the molar mass of carbon in
[gC mol�1

C ], wC is the dimensionless carbon mass fraction in plant biomass

[gC g
�1
DW], and _n

⌒

C is thedaily carbongain in [molC d
−1 m−2].The term _n

⌒

C can
be represented as the product of the photoperiod H in [h d−1], the 24-hour
carbon use efficiency ηC in [molC;biomass mol�1

C;fixed], the time and species
dependent dimensionless fraction of photosynthetic photon flux absorbed by
the plant canopy A, incident photosynthetic photon flux22 (PPF) Φγ in
[μmolγm

−2 s−1], and thequantumyieldof the canopyYQ(a functionofΦγand
atmospheric concentration of carbondioxide, cCO2 [ppmorμmolCO2 mol�1

air ])

in [molC;fixed mol�1
γ absorbed]. The total areal biomassm

⌒
T in [gDWm−2] and the

edible areal biomassm
⌒
E in [gDWm−2] for some crop i are calculated by

m
⌒
T;i ¼

Z tM;i

0
_m
⌒

B;i dt ð3Þ

m
⌒
E;i ¼ fE;i

Z tM;i

tE;i

_m
⌒

B;i dt ð4Þ

where tM is the crop-specific timeof harvest ormaturity in [dAE] and fE is the
dimensionless crop-specific fraction of daily carbon gain allocated to edible
biomass after tE, which is the crop-specific time of organ formation onset in
[dAE]. Nine crops of interest have been parameterized for use with theMEC
model. For each, Fig. 2 shows the model’s biomass output (a) over time for
constantΦγ and cCO2, and (b) at harvest time given varyingΦγ and cCO2. A
schematic view of the MEC model for Lactuca sativa (lettuce) is shown in
Figure S1.

Nitrogen productivity model
Nitrogen is an essential plant nutrient central to the synthesis of photo-
synthetic proteins andpigments. The availability of nitrogen in the rootzone
is therefore a decisive factor for plant photosynthetic capacity, growth, and
yield23,24. Modeling the effect of nitrogen on plant growth conditions
becomes of paramount importance within the scope of biologically-driven
mission planning since nitrogen is a limited resource that needs to be
optimally allocated to ensure proper food and pharmaceuticals production
and subsequent safety of the crewmembers25. AMartianmission design is a
non-trivial problem, and since the decision making is partially driven by
models, any uncertainty regarding their predictive capability should be
taken into account. Thus, working toward a validated model that forecasts
the success of crop growth given the availability of nitrogen, as well as a
description of confidence in this prediction, is of great importance to this
goal26.

Atmosphere

Water/Ice

Photovoltaics

ISRU 
Hardware

Habitat

Sunlight

Crops grown in ambient area
Single species 
optimized in 

individual reactor

Multiple species 
optimized in 

individual reactor

Staged growth times
for same species

Multiple species in 
shared reactor

Bean Lettuce Peanut Rice Soybean Sweet
Potato Tomato Potato

Wheat

ba

c d e

Fig. 1 | Mars-based agriculture overview. a Scheme for deploying agriculture sys-
tems on Mars using In Situ Resource Utilization (ISRU) with an expansion of can-
didate crops within habitat11. The expansion of crop systems includes example
groupings of crops and hydroponic reactor logistics. b Breakdown of crop parameters
for nineMEC-modeled space crops: water content fractions and edible (harvest index)

and inedible fractions of biomass on a dry weight (DW) basis11. Values are out of 1.
c Carbon content reference values11 and approximate oxygen and hydrogen fractions
typical in cultivated plants81; “Other" fraction does not correspond numerically to
(d, e) as shown here. d Compiled values for nitrogen and other macronutrient frac-
tions in field-grown plants82,83. eMicronutrient fractions in field-grown plants82,83.
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A theory of nitrogen productivity (NP) was developed by Ågren in
response to the complexity of other nutrient-driven plant growth models;
the theory posits that plant biomass growth is determined by the total
amount of nitrogen in a plant at a given time27. The theory assumes that
for a species in fixed environmental conditions, growth can be described by
the nitrogen productivity parameter, which is the quantity of biomass
produced over a given time step per quantity of nitrogen in the plant, and
that this value is constantduring theplant’smaingrowthphase.NP theory is
applicable when nitrogen is the limiting factor for biomass growth. The
equation which describes growth has the form

dmB

dt
¼ _YN �mN ð5Þ

wheremB is total plant biomass on a dry weight basis in [gDW], t is time in
[d], and mN is total amount of nitrogen in the plant in [gN]. _YN is the
nitrogen productivity, the biomass produced per day per amount of nitro-
gen in the plant in [gDW d�1 g�1

N ]. Rearranging, nitrogen productivity is

defined in quantities which can be experimentally measured:

_YN ¼ 1
mN

dmB

dt
ð6Þ

Ågren assumed that _YN has the form

_YN ¼ a� a0
mB

mN
ð7Þ

where a is a leading term in [gDW d�1 g�1
N ] and a0 is a correction term in

[d−1]. Both are species-specific constants for fixed environmental condi-
tions. Verkroost &Wassen suggested physically meaningful descriptions of
these terms, with a being the product of the dimensionless efficiency of
photosynthetic nitrogen (i.e. biologically active in photosynthesis-involved
enzymes) formation from total plant nitrogen and efficiency of biomass
formation from photosynthetic nitrogen [gDW d�1 g�1

N ] and with a0 as the
degradation rate of photosynthetic nitrogen [d−1]28.

a bTotal Biomass and Crop Growth Rate Edible Biomass at Harvest

Fig. 2 | Modified energy cascade model calculations. aMEC model total crop
biomass per area, m

⌒
T (blue), and crop growth rate per area, _m

⌒

B (orange), for (from
top left) dry bean, lettuce, rice, soybean, tomato, wheat, peanut, sweet potato, and
white potato with parameters Φγ = 500 μmolγm

−2 s−1, cCO2 = 1200 μmolCO2 mol�1
air .

Crop-specific time points [dAE]: tA, canopy closure; tM, harvest/maturity; tE, onset of
organ formation; tQ onset of canopy senescence. bMEC model contours of edible
biomass accumulation, m

⌒
E, for each crop terminating at tM, across Φγ and cCO2.
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The concept of nitrogen use efficiency (NUE) was coupled with NP
theory to build a framework for modeling nitrogen-limited growth which
considers quantities of agricultural interest. The precise definition of NUE
has varied depending upon its intended application, but in general it refers
to a biomass yield given a quantity of exogenous nitrogen provided per
plant, or per area for field grown crops. Here we introduce three model
quantities derived from a general approach to NUE calculations29,30. The
nitrogen productivity is given the form

_YN ¼ ηN � μN � ηu ð8Þ

TheNUE quantity, ηN [gDW g�1
N ], is the biomass (dry weight basis) produced

per average total mass of N in the plant over a time period. The second
quantity, relative nitrogen accumulation rate (RNAR), μN [d−1], is the mean
relativeaccumulation rateofNovera timeperiod.The third,uptake efficiency,
ηu [dimensionlessor (g d−1)/(g d−1)], is the ratioof aplant’s currentuptake rate
of nitrogen to its maximum. It is intended to account for abiotic effects on
uptake such as temperature or pH of nutrient support solution31,32. To our
knowledge, no modeled data for ηu are reported in literature; in this work we
suppose that it is equal to 1. Its presence provides a path forward within the
space agriculture community for directed research. A simple assumption is to
calculate values of ηN and μN from experimental measurements by

ηN ¼ mBðt2Þ �mBðt1Þ
�mNðt2; t1Þ

ð9Þ

μN ¼ lnmNðt2Þ � lnmNðt1Þ
ðt2 � t1Þ

ð10Þ

where t2 and t1 are the time points at the end and beginning of a time step,
typically33 in [d] or [week], and �mN is the mean total N in the plant over a
time step (t2 − t1) in [gN]. The appropriate time step for both equations
depends on harvest interval, the particular crop, and its growth stage.
Finally, given the model output curves shown in Fig. 2, we assume that the
totalmass ofN in the plant,mN, throughout its life cycle can be described by
the three-parameter logistic function, giving

mNðtÞ ¼ α
mN0 � K � ert

ðK �mN0Þ þmN0 � ert
ð11Þ

and finally

dmB

dt
¼ ηN � μN � ηu �mN ð12Þ

wheremN0 is the initial total mass of nitrogen in the plant in [gN], K is the
limiting value ofmN in [gN], r is the governing rate in [d

−1], t is time in [d],
and α is a dimensionless scaling factor.

While our study on nitrogen dynamics in hydroponically grown let-
tuce has broad applicability to general agriculture, it is particularly relevant
to space agriculture due to the unique constraints of long-duration space
missions. In space, resource optimization, closed-loop nutrient manage-
ment, and minimization of physiological stress are critical for maintaining
crew health and mission sustainability. The development of efficient
nitrogen use strategies and the potential utilization of in situ resources, such
as amino acids and peptides found on other astronomical bodies34,35, are
essential for supporting bioregenerative life support systems in space. This
contributes to both terrestrial agricultural advancements and the specialized
needs of space agriculture, addressing the challenges of sustainable food
production in extraterrestrial environments.

Model integration
The simplest strategy for the use of both NP andMECmodels is to use the
MEC model by default and a NP model in the case of nitrogen-limited
growth. A slightly more complex option is to combine eachmodel’s growth
curves such that either can act as a limiting factor. This approach accounts
for changing limitations during the growth period. A flowchart repre-
sentation of a basic algorithm is shown in Fig. 3 alongside example output.

A fully integrated MEC-NPmodel should also include limiting effects
of off-nominal growth environment parameters such as air temperature,
relative humidity, and air circulation on biomass generation. Additionally,
in hydroponic and aeroponic systems, temperature, pH, dissolved oxygen,
and molecular concentrations in the nutrient support solution can affect
biomass growth36,37. It is important to consider that both traditional selec-
tion and breeding as well as genetic engineering have produced crop plants
that can adapt to a range of abiotic stresses38; development of specialized
crop lines would be expected for use in spaceflight39 and certain limiting
effects could be minimized. For comparison withMECmodel, a NPmodel
must account for required growing area and edible fraction of biomass,
which in nitrogen-limited growth conditions may be different than the
MEC reference values.

Results
An experiment was designed to measure the nitrogen content and
biomass accumulation over time in hydroponically grown Lactuca
sativa cv. “Waldmann’s Dark Green”, a looseleaf lettuce reference
cultivar (Fig. S2), in deficient, normal, and excess nitrogen conditions.
Lettuce has served as a useful model for space agriculture11,40,41. A batch

a b

Fig. 3 |HybridMEC-NPmodeling. aAlgorithmbywhich the growth curves of theMEC andNPmodels act as limiting factors in a hybrid growth curve. bExample of hybrid
growth curve, limited first by nitrogen, then by photosynthetic photon flux, atmospheric CO2 concentration, or both.
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strategy was used for the hydroponic systems’ nutrient support solution
(NSS); no nitrogenwas added to the NSS reservoirs after the initial dose.
The initial baseline concentration of nitrate (NO�

3 ) was equal in all N
conditions, while the initial ammonium (NH4

þ) concentration was
varied (see Tables S2 and S3). The nitrogen conditions were as follows:
deficient (1.0 mM nitrate, 1.5 mM ammonium); normal (1.0 mM
nitrate, 6.5 mM ammonium); excess (1.0 mM nitrate, 11.5 mM
ammonium). Themethodology and growth environment are detailed in
the Methods section.

The seed germination percentages were 71%, 81%, and 62% for defi-
cient, normal, and excess N levels, respectively. The particular hydroponic
system used shows an average germination percentage of 85% for lettuce
given normalN. The biomass datawere compared to the output of theMEC
model (Eq. (2)) with inputs of the average values ofΦγ and cCO2 observed in
the hydroponic system (Fig. 4a); see Fig. S6a, b for the growth rate [gDW d−1]
and relative growth rate42 [gDW d�1 g�1

DW].
The excess nitrogen condition resulted in the lowest average biomass at

harvest time (defined as 30–35 dAE), while the normal condition resulted in
the highest. TheMECprediction of biomass wasmost similar to the growth
curve of the normal nitrogen condition over the time period shown. Its

predicted values were similar to the deficient conditionmeasurements until
30 dAE, and its predictions were consistently higher than the measured
biomass in the excess condition.This demonstrates theneed for extensionof
the MEC model to account for nitrogen availability, whether in deficit or
excess.

For all conditions, the average fresh weight percentage of N decreased
over time (Fig. 4b). Toward tM, the average mass fraction of plant N in the
normal condition was smaller than that of the excess condition, yet the
plants in the normal condition achieved greater average biomass, indicating
that excess ammoniummay have induced growth-inhibiting stresses. In the
deficient condition, the average plant N content was lower than in the other
conditions, but the average biomass was higher than the plants in the excess
condition andwas similar to that of the plants in the normal condition up to
30 dAE. This indicates that the plants in deficient conditions may have used
N for growth more efficiently than plants in the other conditions at the
expense of their average biomass at tM. The average nitrogen content across
all conditions over timeon a freshweight basis was 0.36 ± 0.13%, similar to a
reported value of 0.16% for iceberg lettuce measured by the same analytical
method43. In terms of non-normalized mass of N (Fig. S6c), the plants in
normal and excess conditions contained an increasing average mass of

b ca

d e f

g h i

De cient Normal 

Excess 

De cient Normal Excess 

Fig. 4 | Nitrogen Productivity Studies. aMeasured areal biomass and MEC model
curve calculated withΦγ = 225 μmolγm

−2 s−1 and cCO2 = 525 ppm. bMeasured fresh
weight percentage of total nitrogen in plants over time. A single measurement was
performed for each condition at 20 dAE. c Nitrogen productivity calculated from
measured biomass and nitrogen content. Error bars represent propagated error.
a–cTime range highlighted in gray is specified harvest time, tM, plus 5 d

11. Error bars

represent one SD. For each data point, 5 ≤N ≤ 10. d–f Concentration and change in
concentration of nitrogenmeasured in the NSS over time by experimental condition
(deficient, normal, excess). Error bars represent 1 SD. N = 3 for each data point.
g–i Photos of lettuce crops during main growth phase at 35 dAE grown in deficient,
normal, and excess nitrogen conditions, respectively.
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nitrogen through the harvest period, while the plants in the deficient con-
dition initially increased before leveling off around 25 dAE.

Nitrogen productivity ( _YN) was calculated from measured biomass
and nitrogen content data (Fig. 4c). The overall average nitrogen pro-
ductivity under the normal N condition was 1:33 ± 0:79 gDW d�1 g�1

N ;
under the deficient and excess conditions, it was 1.49 ± 0.99 and
1:90 ± 1:32 gDW d�1 g�1

N , respectively. The average of _YN across all condi-
tions was 1:47 ± 0:99 gDW d�1 g�1

N . Empirical values in literature for _YN in
other plants are on the order of 10−1 to 100, though it should be noted that
these mostly describe woody plants27. The value of nitrogen productivity
appears to decrease near the end of themeasured period, indicating that the
assumptions of the NP model may have limitations outside of the main
growth phase.

The molar concentrations of nitrate and ammonium in the NSS
reservoirs, c [mM],weremeasured from2–40d after sowing (dAS, preceding
dAEby 3d). The concentrations and changes in concentrations over time are
shown in Fig. 4d, e, f for each N condition. The concentrations over time
grouped by molecular form of N are shown in Fig. S7, and the relative
changes of the concentrations from the initial values are shown in Fig. S8. In
the deficient N condition, the rate at which both forms of N were depleted
from the NSS did not show any large fluctuations over the course of the
experiment. In the normal and excessNconditions, nitratewas depleted at a
mostly constant rate over the time course, but ammonium depletion
accelerated. The measured increase in ammonium concentration at 38 dAS
in the excess N condition occurred around the time that biomass was
leveling off. This is possibly due to theplants beginning tobolt, atwhich time
they reallocate resources to to transition from vegetative growth to flow-
ering, as a response to the stress in this condition.

By 30 dAS, the plants in the deficient condition had depleted almost all
available nitrogenbutwere still able to produce biomass; vascular plants can
effectively takeupnitrogen evenwhen concentration is relatively low44. In all
conditions, the depletion of nitrogen continued even as a number of plants
were harvested and removed from the system every 5 days (Fig. S9).
Representative photos of plants from each condition at the end of the
harvest period are shown in Fig. 4g–i.

The parameters of the NPmodel (Eqs. (11) and (12)) were fitted to the
MEC curve as a baseline as well as to the experimental curves (Fig. 5a). The
NP parameter values fitted to the MEC growth curve were not constrained
by the experimental data. The fits to the experimental curves were con-
strained by the measured values of mN and measurement-derived calcula-
tions of _YN over time (Fig. 5b, c); the linear approximations of _YN may not
be representative of its behavior prior to the time period of the data. It was
assumed thatα andKdidnot varywith time since they represent scaling and
limiting factors, respectively. The governing rate of N accumulation in the
plant, r, was also assumed to be time-independent. The initial total mass of
nitrogen available,mN0, was assumed to be on the order of 100 mg. RNAR
(μN) and NUE (ηN) were approximated as varying linearly with time and
were fitted by y − intercept (b) and slope (m). The fitted parameters are
shown in Fig. 5e. Planting density and fresh weight water content were used
as described above to compare the NP curves to the MEC curve.

Due to the inclusion of various mechanistic equations to capture the
kinetics of growth, the model was potentially overparameterized, i.e. more
parameters existed than were necessary to fit the available data. To address
this issue and to identify the most important parameters, a sensitivity
analysis was performed to help determine which parameters had the
greatest impact on the model predictions (Fig. 5d). Sensitivity analysis is

Fig. 5 | Lettuce model comparison. a Experimental data (circles) and NPmodel fits
(lines) for lettuce biomass predicted by the MEC model and grown in 3 different
nitrogen conditions. b Fitting ofmN by values of r, K, and α to experimental mass of
N in plant. c Fitting of _YN by functions for ηN and μN to nitrogen productivity
calculated from experimental data. d Sensitivity analysis result based on the ranges

defined by the fitting procedure. The y− axis denotes the variable of interest wile the
x− axis represents the corresponding variable’s index value. e Fitted NP parameter
values forMECbaseline and experimental N conditions. r: governing rate in [d−1];K:
limiting value of mN in [gN]; α: dimensionless scaling factor; ηN: nitrogen use effi-
ciency in [gDW g�1

N ]; μN relative nitrogen accumulation rate in [d−1].
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closely related to uncertainty quantification (UQ) and is a standard tool to
asses the physical impact of the parameterization on the model
predictions45.

Model analysis
This section describes the analysis of the model’s predictive capability to
capture the fundamental effects of nitrogen content on growth. First, ranges
and estimates regarding the model parameters were acquired. As explained
in the Results section, the model parameters were fitted to several experi-
mental variables. It was assumed that the parameters were condition-
dependent. Thus, a different set of parameters was estimated for each N
condition.Overall, themodel adequately captured the experimentalmB and
mN points, while it was able to reproduce the decreasing trend in the
_YN data.

A global sensitivity analysis (GSA) was performed to quantify the
effect of themodel parameters on themodel predictions46. The quantity of
interest (QoI) in this case was the area under the curve of the biomass
concentration over time, a representative variable for the entire dynamic
behavior of the system. It was assumed that each variable followed a
uniform distribution. The lower and upper bounds for each distribution
were determined by examining Fig. 5e. For each parameter, represented as
a row in the table, theminimum andmaximum values across the columns
were identified and used as lower and upper bounds respectively. The
results shown in Fig. 5d illustrate the relative impact of the model varia-
bility on the dynamic behavior of the system. It was observed that the
growth evolution is affected strongly by approximately half of the of
variables. In GSA, it is common to observe an uneven impact of para-
meters on the variability of the QoI47, while this phenomenon is directly
tied with the physical meaning of each parameter. Here, the most influ-
ential parameter seemed to be the rate ofN accumulation, r, whichdirectly
ties to NP theory. However, while rwas highest in the deficient condition,
the resulting biomass was lower than in plants under the normal condi-
tion, suggesting that the effects of off-nominal N reduced total biomass
accumulation, and are accounted for by K.

Subsequently, the dynamic behavior and sensitivity of other crops to
the NP model parameters were analyzed similarly to lettuce. Though
experimental data for theother cropswere not available, some appropriate
parameter values for them were obtained by fitting the NP model to the
predictions of the MEC model. Once the parameters were fitted, it was
assumed that they followed a uniform distribution by perturbing them by
± 10% around their nominal values. This is a common approach when a
prior distribution for parametric uncertainty is not well established45.
From the results shown in Fig. 6, it is evident that theNPmodelwas able to
perfectlyfit theMECmodel predictions. Similar to the results from lettuce
growth, the rate ofN accumulation, r, still appears to play a significant role
in the growth dynamics of most plants, being one of the most influential
parameters inmost crops. Collectively, other parameters that stand out as
affecting growth are ηN and μN. A similar trend was observed in lettuce;
however, the effect of r in lettuce was much more pronounced. A key
general observation is that when nitrogen dynamics are included in the
prediction of growth dynamics, the variation of the corresponding para-
meters of N evolution over time seems to induce most of the variation in
growth, exemplifying the effect of N. It should be noted that the validity of
the GSA for the crops, in the absence of experimental data, is limited to
this particular model structure and distribution of its parameters. The
GSA indices reveal the relative significance of the parameters included in
the model and do not take into consideration other factors that might
affect crop growth unless they are explicitly accounted for in themodel. In
addition, since the GSA relies on sampling techniques from the assumed
distribution (uniform here), a shift in distribution can have an impact on
the sensitivity indices. Nevertheless, the same analysis can be applied to
more comprehensive models that describe more complex growth
dynamics. It is important to recognize that crop growth is influenced by a
multitude of factors, including environmental conditions and other
nutrient availability. Future work should aim to integrate these additional

factors into the models to provide a more holistic understanding of crop
growth dynamics.

Discussion
Plant growth and development depends largely on the available con-
centration of nitrogen in growth conditions, whether in soil or in soil-less
hydroponic systems. Themineral nutrients are absorbed by plant roots and
therefore their availability in the soil or hydroponicmedium is critical for its
absorption to maintain normal physiological processes48. While the batch
strategy for nutrient provision and the environmental growing conditions
provided baseline data for testing the NPmodel, behavior under conditions
expected in a life support environment could be explored by increasing the
CO2 concentration to around 1200 ppm, maintaining constant nutrient
concentrations in the NSS, and periodically replacing the NSS as part of a
semi-continuous process26,49,50.

Nitrogen plays an essential role in the structure of amino acids and N-
bases; therefore its depletion in the growth medium may halt important
physiological processes crucial for plant growth51. In general, a plant in N
stress conditions exhibits symptoms such as stunted growth, yellowing of
the leaves, leaf death, and reduction in chlorophyll production, and there-
fore ultimately contributes heavily to the reduction of overall crop yield52. In
lettuce, nitrogen deficiency stress conditions result in a slower growth rate
and reduction inwater content53.Given the similar responses amongdiverse
crop plants to nitrogen deficiency54, the reduction in lettuce biomass would
be expected. Alternatively, an excess of N availability can also negatively
affect plant growth parameters such as root and shoot biomass48. It is
expected that the experimental growth curves, and thus the NP fitting
parameters, depend on the form of N that is provided in deficient, normal,
and excess concentrations. This is due not only tohow theN is taken up and
used, but also to its effects on theNSS. Relevant to the experiment described
herein, elevated NH4

þ concentration relative to NO3
� reduces the pH of

the NSS and, when taken up by the plant, can inhibit the uptake of other
cations49, demonstrating the importance of the choice of nutrient feed
strategy and of monitoring and control systems. Figure S5 shows the pH
measurements during the course of the experiment; notably, of those which
were out of range, the greatest quantity andmagnitudewere in thenormalN
condition, yet its average biomass was greatest, indicating that the detri-
mental effects on biomass observed in the excess nitrogen conditionmay be
influenced by additional factors55.

As an alternative to conventional soil production, growing lettuce
hydroponically is a popular approach, especially in urban settings, uncul-
tivated lands, and other constrained environments. Lettuce plants grown in
solid substrate andhydroponicallywithin the same environment showedno
significant differences in or shoot weight or morphological features (except
enhanced root growth in hydroponics)56,57, but biomass yield is only one
metric of many used to evaluate a crop production component of a life
support system. For example, the nutritional profile must be considered as
well, as differences in the concentrations of starches, sugars, and other
bioactive compounds have been observed depending on the growth system
as well as the amount and molecular form of N provided56,58,59.

The observations made in our study, conducted in a water-based
hydroponic system, may not be directly applicable to soil- or growing
media-based systems. Soil or non-inert growing media can significantly
impact nitrogen dynamics in the root zone due to factors such as the
microbiome composition and its activity, organic matter decomposition,
and interactions with soil particles. These factors can alter nitrogen avail-
ability and uptake efficiency compared to the relatively controlled envir-
onment of hydroponic systems. Future studies should consider these
differences and investigate nitrogen dynamics in various growing media to
better understand their implications for space agriculture and other
applications.

The trade-off between using traditional fertilizers and In Situ Resource
Utilization (ISRU) for plant growth becomes apparent in such missions.
While fertilizers are a proven method for providing nutrients, their use in
space is limited due to the constraints ofweight, volume, and stability. ISRU,
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on the other hand, offers the potential to harness available resources for
plant growth. However, the implementation of ISRU technologies is still in
its nascent stage and requires further research and development. Organic
nitrogen sources, such as amino acids and peptides, are promising alter-
natives for nitrogen supply in space agriculture as they are prevalent in
biological wastes via loop-closure. These compounds can be collected using
advanced extraction and processing technologies, potentially involving bio-
mining with engineered microbes. Other nitrogen sources, such as nitrates
and ammonia, can be generated through ISRU technologies. Plants can
efficiently take up amino acids and peptides through their roots, offering a
viable pathway to enhance nitrogen use efficiency and reduce reliance on
traditional inorganic fertilizers in space agriculture60,61.

Our study focuses on nitrogen limitations due to their critical role in
plant growth and its availability in theMartian atmosphere, making it a key

factor for space agriculture. However, other nutrients, such as phosphorus,
which is present in a locked P2O5 state on Mars11, could also become lim-
iting. Ourmodeling approach, based on nitrogen dynamics, can be adapted
to study other nutrient limitations by adjusting parameters to account for
specific nutrient dynamics. This adaptability makes our approach trans-
ferable and valuable for comprehensive nutrient management in space
agriculture, ensuring the resilience of agricultural systems for long-duration
space missions.

As for the next steps, the developed model provides a robust fra-
mework that can be extended to other crops. Each crop will have its
specific nitrogen requirements, growth patterns, and responses to var-
ious nitrogen conditions. Comparative studies among different crops
can shed light on their suitability for cultivation in a space environment,
considering their nutrient requirements, growth rate, and yield.

Fig. 6 | MEC and NP Model Projection Comparison. a NP model fits to MEC
growth curves (Φγ = 225 molγm

−2 s−1, cCO2 = 525 ppm) for dry bean, peanut, rice,
soybean, sweet potato, tomato, wheat, white potato. b Sensitivity analysis result

based on the ranges defined by the fitting procedure. The y − axis denotes the
variable of interest wile the x − axis represents the corresponding variable’s
index value.
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Comparing the findings in this work to recent MEC publications, the
model aligns well with the ongoing research trends. The focus on
resource efficiency, especially the efficient use of nutrients, is a common
theme.However, this work extends it by specificallymodeling the impact
of different nitrogen conditions on plant growth, providing a tool for
more nuanced nutrient management.

It is important to underline the appropriate use of the model and
understand its limitations. While the model provides valuable insights
into plant growth under different nitrogen conditions, it is based on the
assumptions made and the data used for calibration. It may not capture
the full complexity of real-world plant growth, particularly under
extreme or unforeseen conditions. Therefore, the model should be used
as an approach and as a tool for guidance, not as an absolute predictor.
In terms of biological relevancy, the parameters used in the model are
grounded in known biological processes. They represent various
aspects of plant growth, such as nitrogen uptake, metabolic rate, and
growth responses to different nitrogen conditions. However, the exact
mechanisms and how they are influenced by various factors can be
complex and might not be entirely captured by the model. Exploration
of growth models62 to develop a more generalized mathematical
description of nitrogen-limited biomass generation will be beneficial.
Assigning physiological meaning to any parameters as well as
extending the model to capture responses to external conditions will be
important milestones in development of a deterministic model.

Modeling a time-varying environment is an important aspect of
accurately modeling plant growth. Environmental factors such as light
intensity, temperature, and carbon dioxide levels can fluctuate over
time and affect plant growth. Future iterations of the model could
incorporate these dynamic elements to provide a more accurate
representation of plant growth under varying conditions. Development
of an optimal growing strategy may include intentional changes as well;
for example, dynamic planting density11 and N concentration in the
NSS based on the crop’s growth stage could increase efficiency or yield.
Finally, the model could be further refined by considering different
stages of the plant life cycle, as mentioned in the work ofWeih29. Plants
exhibit different nutrient requirements and growth patterns during
various stages of their life cycle (e.g., vegetative growth, flowering, and
fruiting). L. sativa is the simplest case among the crops of interest as
only vegetative growth is important for production of edible biomass,
but in other crops, partitioning and accumulation of nitrogen in dif-
ferent organs also exhibit dynamic behavior by growth stage and by
nitrogen availability, so the presence and age of a given organ may
influence total nitrogen content of the plant63,64. Measuring the
response of organ formation and growth in terms of NP and incor-
porating the growth stages into themodel could provide amore detailed
and accurate understanding of plant growth under different nitrogen
conditions.

The experimental methods used to package and process biomass and
extract nitrogen for measurement will lead to differing results65. Plant tissue
showed varying nitrogen content depending on whether it was dried by
heat, vacuum, or freezing prior to assaying66 as well as by the assay
chosen66,67. Non-destructive assaying methods such as near infrared spec-
troscopy could facilitate frequent and localizedmeasurements of nitrogen in
the plants’ aerial portions68. Standardizing the analytical methodology will
improve the utility of the model.

Methods
Nomenclature
Nomenclature reformation considered chemical engineering conventions,
IUPAC69 and IUPAP70 documentation, and intuitive understanding. Vari-
ables and subscripts which refer to quantities are typeset in italic, while
descriptive subscripts are in roman. Diacritics above variables are used to
denote per time ( _&) and per area (&

⌒
). Mnemonically, one might think of

the inverted breve above areal variables as resembling a surface; this was

derived from the idea that a normal breve, ( �&), might signify volumetric
variables as a vessel to be filled.

MEC nomenclature reformation

Variable Description Unit Former
Variable11

a Empirical exponent – n

cCO2 Concentration of
CO2, molar

μmolCO2 mol�1
air [CO2]

fE Fraction of edible
biomass after tE

– XFRT

gatm Atmospheric
aerodynamic
conductance

molwater s
−1 m−2 gA

gsfc Canopy surface
conductance

molwater s
−1 m−2 gC

gsto Canopy stomatal
conductance

molwater s
−1 m−2 gS

hR Relative humidity – RH

_m
⌒

B Biomass per time, areal g d−1 m−2 CGR

m
⌒
E Biomass, areal, edible gm−2 TEB

m
⌒
T Biomass, areal, total g m−2 TCB

�m Mass, molar gmol−1 MW

_n
⌒

Moles per time, areal mol d−1 m−2 DCG,
DOP

_n
⌒

ps;gross Gross canopy
photosynthesis

μmolC s
−1 m−2 PGROSS

_n
⌒

ps;net Net canopy
photosynthesis

μmolC s
−1 m−2 PNET

Patm Total atmospheric
pressure

kPa PATM

p?S Saturated vapor
pressure

kPa VPSAT

TD Temperature,
dark cycle

∘C TDARK

TL Temperature,
light cycle

∘C TLIGHT

tsol Length of local sol h d−1 DPG

_V
⌒

trs
Daily transpiration rate L d−1 m−2 DTR

wC Biomass carbon
fraction

– BCF

YO2 Oxygen production
factor

molO2 mol�1
C OPF

YQ Canopy quantum yield molC;fixed mol�1
γ;absorbed CQY

Δp⋆ Vapor pressure deficit kPa VPD

ηC Carbon use
efficiency, 24 hr

molC;biomass mol�1
C;fixed CUE24
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σN Density, areal, numeric m−2 –

Φγ Photosynthetic
photon flux

μmolγm
−2 s−1 PPF

Φγ,E Photosynthetic photon
flux, effective

μmolγm
−2 s−1 PPFE

Lettuce cultivation
The lettuce plants were grown in a hydroponic rack system within a clean
room operated by Zea Biosciences in which air temperature, relative
humidity, andatmospheric concentrationofCO2were controlled.The grow
rack consisted of 3 independent shelves, each with aNSS reservoir. The pH,
water temperature, total dissolved solids (TDS), dissolved oxygen (DO),
nitrate concentration, and ammonium concentration in the reservoirs were
monitored.The following instrumentswereused toperformmeasurements:
Hanna HI98103 (pH), Hanna HI98129 (pH, TDS, temperature), Milwau-
kee InstrumentsMW600 (DO), andHoribaLAQUAtwinNO3-11 (nitrate).
Ammonium concentration was determined by a spectrophotometric
method adapted from Kempers & Kok71. The photosynthetic photon flux
was set by adjusting the height of the shelves. AHydrofarm LGBQM2 PAR
meter was used tomeasure photosynthetic photon flux until the 4thweekof
growth, at which time the size of the plants was too large for measurements
to be taken.

Controlled environmental set points and the measured ± 1 standard
deviation over the course of the experiment were as follows: photosynthetic
photon flux, Φγ = 225 ± 25 μmolγm

−2 s−1; atmospheric concentration of
carbon dioxide, cCO2 = 525 ± 125 ppm; air temperature, T = 22 ± 2 °C;
relative humidity, hR = 50 ± 10%; NSS pH= 6.0 ± 1.0. The photoperiod, H,
was 16 h d−1. Further details of the growth environment are presented in
Tables S1 and Figs. S3–S5. These values were selected based on
specifications11 and growth system operation andwere assumed not growth
limiting by way of factors such as gas exchange and water transpiration.
Harvestswere performed at 11, 20, 25, 30, 35, 40 and43dAE.Theplantswere
in the process of bolting at 43 dAE; as such, their data were not used. The
planting density, σN, was normalized to 19.2m−2, and the freshweightwater
fraction was assumed to be 0.95, both per their NASA reference values11.

Each shelf was filled to capacity with rockwool (128 pieces), with a
single seed sown in each. Nutrients were added to the reservoirs at 75% of
total concentration on the day of sowing to minimize the risk of non-
solubilized salts and of low DO levels that had been observed in the system
3–4 days after adding the nutrients. In general, lettuce seeds do not need
nutrients to germinate, which can be expected to occur within 3–10 d. At
11 dAE, the 55 largest and visually healthiest plants in eachN conditionwere
transplanted from the rockwool and the remaining 25% of nutrients were
added to each reservoir (Tables S2 and S3). The non-transplanted seedlings
fromthedeficient, normal, and excessNconditionsweighed a total of 0.42 g,
0.42 g, and 0.38 g respectively, below the 20 g minimum required for the
nitrogen assay. Harvested whole plants were weighed then frozen to −
80 °C, followed by measurement of the nitrogen content by the Dumas
method72,73, performed commercially by Medallion Labs (Minneapo-
lis, MN, US).

Nitrogen supply strategy. The decision to set a constant initial nitrate
(NO3

�) concentration while varying initial ammonium (NH4
þ) con-

centration in the nutrient support solution across conditions was based
on several considerations. Nitrate and ammonium are the primary
nitrogen forms plants uptake, with nitrate beingmore readily assimilated
and less physiologically stressful at high concentrations. Previous studies
have shown distinct plant growth responses to these forms due to their
different metabolic pathways, with high ammonium levels often causing
growth inhibition and stress. By setting initial nitrate constant, we
ensured stable nitrogen availability, allowing us to observe the specific
effects of varying ammonium levels. The experimental design aimed to
mimic potential space agriculture scenarios with limited or variable

nitrogen sources, enabling us to identify optimal conditions for nitrogen
use efficiency.

Parameter fitting
For each condition (normal, deficient, excess), experimental measurements
of biomass and plant nitrogen content were made, and nitrogen pro-
ductivity was calculated from them. The variables were experimentally
measured at several instances. Let the i-th time instance in which a noisy
measurement of the variables yexp;i was made be denoted as ti, i = [1,⋯, n].
Note that in general themeasurements canbeobtained for varying instances
per variable; however, here all variables were measured for the same ti. The
L2 norm (Euclidean norm) of the difference between the predicted output of
the NP model ypred,i and the experimental values yexp,i can be expressed as

ypred � yexp

���
���
2

2
¼

Xn
i¼1

ðypred;i � yexp;iÞ2 ð13Þ

Parameter fitting aims to find the set of parameters that minimizes the
difference between model predictions and experimental data. To achieve
this, a least-squares parameter estimation problemwas solved, based on the
square of the Euclidean norm74.

min
p�P

ypred � yexp

���
���
2

2
ð14Þ

where P � Rnp is the set of bounds for the parameter values, with np being
the number of uncertain parameters. Theminimizationproblemwas solved
using the SciPy package in Python, specifically with a global optimiza-
tion algorithm called differential evolution75. This is a derivative-free
method that belongs in the class of evolutionary algorithms.Once a solution
is found by the algorithm, the result is further refined following a few
gradient-based optimization steps using the L-BFGS method76.

Sensitivity analysis
Given a multivariateP distribution for the uncertain parameters p, sen-
sitivity analysis (SA) is a techniqueused to evaluate thedegree towhich the
output of a model (or system) varies in response to variations of the input
parameters, when the latter are drawn from the aforementioned dis-
tribution. SA is concerned with analyzing the statistical properties of the
mapping p→Q(p), whereQ(⋅) is some quantity of interest. In the absence
of prior information about the statistical properties of the parameters, it
was assumed that they followed a uniform distribution, i.e.
P ¼ Uniformðl; uÞ, where l is a vector with the lowest values (lower
bounds) that parameters p can attain, while u is the corresponding vector
of upper bounds. There are twomain categories of SA: (i) local sensitivity
analysis (LSA) that pertains to small perturbations of the uncertain
parameters and hence the corresponding “local" effect on the quantity of
interest, and (ii) global sensitivity analysis (GSA) that evaluates the sen-
sitivity of some quantity of interest over the entire distribution of the
uncertain parameters. The focus was on the latter as it gave a more
complete picture on the effect of uncertainty to the variation of the model
predictions. More specifically, the analysis relied upon Borgonovo
indices77, denoted byS, which are based on the full distribution of some
quantity of interest as opposed to their statistical moments (as done with
Sobol78 indices). GSAmethods generally collect samples in the formD ¼
fp1;Qðp1Þ; . . . ; pn;QðpnÞg and perform a series of computations to yield a
set of indices for each parameter which reflect how strongly they affect the
QoI. As stated earlier, here the QoI Q is the integral of the biomass curve
over time, hence a scalar value.

GSA generally requires a large number of samples to produce reliable
results. Typically, QoIs reflect physical quantities and, hence, are associated
with physical constraints. Uncertainties in model parameters can lead to
non-physical predictions, such as negative biomass concentrations, result-
ing in negative QoI integral values. Those samples should be excluded from
the sensitivity analysis. A data-driven model to classify parameter
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combinations for physically meaningful predictions was used to accelerate
the analysis; this model not only offers insight into the correlation of these
parameters (i.e. emerging parameter patterns that lead to non-negative
predictions), but also reinforces the sampling efficiency for the GSA.
Although GSA typically requires between Oð103Þ and Oð104Þ samples for
yielding reliable results79, the high computational cost of obtaining these
samples is a concern. The approach used aimed to generate fewer samples,
on the order of Oð102Þ, followed by the use of a classifier trained on these
samples to identify trajectories likely to produce physically relevant out-
comes; in this case, the classifier was a neural network80. The procedure is as
follows:
1. Draw N0 samples from the parameters distribution

Uniformðl; uÞ; ½p1; � � � ; pN0
�, and simulate the system to obtain the

corresponding biomass curve integral values ½Q1; � � � ;QN0
�. Only

Nþ
0 ≤N0 samples yield positive integrals.

2. Train a classifierCðpÞ ! ½0; 1� based on all of these data; the classifier
returns the probability that a given parameter combination results in a
physically relevant trajectory.

3. Generate N* combinations of parameters, with N* ≫ N0, and pass
them to the classifier. Keep all samples for which the prediction of the
classifier is higher than some threshold value (probability), typically
CðpiÞ≥ 0:5. The number of kept samples is Nþ

� ≤N�.
4. For those kept samples, run the NP model and obtain new data

½Q1; � � � ;QNþ
�
�. It is expected that the vast majority of the NP model

simulations yield positive integrals.
5. Finally, collect all samples that result in a positive integral from step 4,

as well as the initial Nþ
0 samples along with their responses, and per-

form the Borgonovo GSA.

Data availability
All data can be freely accessed from the Github repository at https://github.
com/kmyates262/nitrogen-productivityand from https://zenodo.org/doi/
10.5281/zenodo.10719547.

Code availability
All code can be freely accessed from the Github repository at https://github.
com/kmyates262/nitrogen-productivityand from https://zenodo.org/doi/
10.5281/zenodo.10719547.
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