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ABSTRACT 
 

Protein kinases at the intersection of cell growth and cell division in 
Saccharomyces cerevisiae 

 
Akshi Atul Jasani 

 
All cells big and small possess the ability to grow.  Despite this, cells in a given 

population have very similar sizes, suggesting that they must possess inherent 

mechanisms that determine how much they grow and when to stop growing.  Growth 

homeostasis is especially important at the time of cell division to ensure that daughter 

cells are the same size as their mother.  Coordination of cell growth with cell division 

is a universal phenomenon in all orders of life; however, the mechanisms that measure 

cell growth have remained elusive.  Moreover, it is not clear what cells “measure” as 

a readout of cell growth.  In the following chapters, I will provide evidence that protein 

kinases measure signaling lipids deposited at sites of growth to gauge the extent of 

cell growth in Saccharomyces cerevisiae and then relay growth-dependent signals to 

relevant cell cycle control proteins to link cell cycle progression to cell growth.  

In chapters 2 and 3, I present evidence that suggests that Gin4 and Hsl1 

kinases are essential for coordination of cell cycle progression with cell growth.  

Inactivation of these kinases causes cells to behave as if they cannot detect that 

growth has occurred, which results in strong growth defects.  Moreover,  the activation 

of Gin4/Hsl1 is dependent on and proportional to growth.  The data further suggest 

that activation of Gin4 by signaling lipids is the basis of measuring cell growth.  

In chapter 4, I focus on the kinase Pkc1 (protein kinase C) and its role as a 

growth sensor for polar bud growth.  Pkc1 is maximally active at G2 and is well-

positioned to detect bud growth.  It is activated by Rho1 and together they interact with 

the phosphatase PP2ACdc55  to link mitotic entry to polar cell growth.   
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CHAPTER 1: OVERVIEW 

Growth for the sake of growth is the ideology of the cancer cell. 
~ Edward Abbey 

 
Growth is a fundamental feature of all living cells.  In its very basic form, cell 

growth can be defined as the accumulation of biomass in the form of an increase in its 

macromolecular content, all of which leads to an increase in its physical size.  Thus, 

cell size is the most direct readout of cell growth.  Perhaps one of the most astonishing 

features of all cells is an ability to maintain size homeostasis within the population.  

Thus, all cells within a given cell type fit within a narrow size distribution.  Not only do 

cells possess the ability to maintain a constant cell size, they also have the ability to 

grow or shrink in response to various external/internal stimuli.  This “cellular plasticity” 

has repercussions not only at the cellular level, but also at the organismal level.  For 

instance, fruit flies fed with a nutrient-restricted diet are visibly smaller than flies fed a 

nutrient-rich diet (Edgar, 2006).   

Cell growth plays a crucial role at the time of cell division.  In general, before a 

cell divides, the cell must ensure that it roughly doubles in size so that the resulting 

daughter cells are born at the same size as the mother, thereby ensuring size 

homogeneity in the cell population.  Normally, the growth phases (G1 and G2) 

interspersed between two mitotic cycles is when cell growth typically happens.  Failure 

to ensure a tight coordination between cell growth and cell division disrupts normal 

functioning of the cell and is a common manifestation in a variety of diseases.  For 

instance, cancer cells typically display size heterogeneity.  In fact, the further the 

cancer has progressed, the more abnormalities that cells display in their nuclear : 

cytoplasmic ratios (Sokoloff, 1922).  
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  How is it that cells regulate their own growth?  What we realize so far is that 

cells must have the ability to somehow “measure” their own growth.  Moreover, they 

are also able to gauge environmental conditions and regulate their size accordingly.  

Another key question is how do cells coordinate their growth with cell cycle 

progression? Through this thesis, I will try to answer some of these questions using 

budding yeast as the model system. 

 

Cell size checkpoints ensure key cell cycle transitions occur only when 

sufficient growth takes place 

 Perhaps the earliest study to lay down the foundations for the concept of “cell 

size control” were performed in Amoeba proteus in 1928 by Hartmann et al.  Hartmann 

periodically performed partial cytoplasmic amputations in amoeba and noticed that the 

amoeba failed to divide even as they resumed growth.  Further, they also reported that 

while repeatedly amputated amoeba failed to divide for months, the un-amputated 

control amoeba underwent 56 successive cell divisions (Hartmann, 1926).  These 

experiment were subsequently validated by Prescott et al. where they also reported 

that such amputated cells displayed a decrease in nuclear volume, a delay in cell 

division accompanied by a reduction in  growth rate (Prescott, 1956).  Further, Prescott 

et al. also observed that amoeba cells that have advanced sufficiently into the cell 

cycle will finish their cell cycle, albeit at a much slower rate, even if growth is perturbed 

by shifting them to non-nutrient conditions.  This seminal work by Hartmann and 

Prescott gave us three critical pieces of information: (i) cells need to grow to a certain 

extent, or achieve a threshold size before they can commit to the cell cycle, leading to 

the idea of a size “checkpoint”, (ii) once the size checkpoint has been passed, cells 
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will finish dividing even if their growth is perturbed, although they will do so at a much 

slower rate, and (iii) nutrient conditions affect the rate of cell division.  Together, these 

findings indicated for the first time that cell growth and cell division are tightly linked.  

In the 1970s, the pioneering works of Paul Nurse and Leland Hartwell 

catapulted the field of cell growth and cell division further.  Hartwell and his associates 

discovered the existence of a growth checkpoint in early G1 that precedes the DNA 

checkpoint in S-phase, which is a rate-limiting step for budding yeast cells to commit 

to a new round of cell division.  They observed that when cells finish cytokinesis, the 

daughter cell produced is much smaller than the mother cell.  In the subsequent G1, 

the daughter cell thus spends a much longer time than the mother cell to reach to a 

similar “critical cell size” before it can fully commit to the cell cycle (Hartwell and Unger, 

1977; Johnston et al., 1977a).  This transition point in G1 referred to as “START” was 

the first experimentally demonstrated size checkpoint.  In agreement with the works of 

Prescott and Hartmann, these studies similarly revealed that cell growth and cell 

division are well-coordinated processes.  Mutants deficient in the cell cycle or cells 

arrested in G1 using the mating pheromone would continue to grow even as the cell 

cycle was halted.  Conversely, interrupting cell growth by nutrient-deprivation caused 

cells to finish the cell cycle with very small daughter cells and arrest in the subsequent 

G1.  Not surprisingly, the START checkpoint is regulated by the G1 cyclins, which 

drive the cells into a cell division cycle, thereby ensuring that the cells have grown 

sufficiently before they commit to cell division (Carter and Sudbery, 1980; Cross, 1988; 

1990; Richardson et al., 1989).  

A similar study in fission yeast revealed another size checkpoint at G2 that is 

dependent on the Wee1 kinase (Nurse, 1975).  Cells where the Wee1 kinase was 
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inactivated divided at half the cell size as wildtype cells.  In the subsequent study, 

Fantes and Nurse demonstrated that cell size rather than the amount of time spent 

growing was the key determinant of this checkpoint  (Fantes and Nurse, 1977).  

Moreover, the threshold size determined by this G2 checkpoint is actively modulated 

by the nutrients in which the cells are growing.  More specifically, cells growing in 

nutrient-rich conditions need to grow more to reach to a higher size threshold 

compared to cells growing in nutrient-poor conditions.  Furthermore, when cells are 

shifted from rich to poor nutrients, their cell cycle is accelerated, presumably due to 

the lowered threshold requirement in poor nutrients.  With successive cell divisions in 

poor nutrients, the cell length at division gradually shrinks until they adopt the lower 

size threshold.  Thus, fission yeast cells have the ability to actively reset their growth 

threshold in response to nutrient availability, a feature that would be useful for cells 

and organisms alike.  

For the longest time, it was thought that the time spent growing in G1 prior to 

bud initiation was the only growth phase in budding yeast that was modulated in 

response to nutrient availability; the timing of growth in the subsequent phases (S, G2 

and mitosis) was independent of the nutrient availability  (Hartwell and Unger, 1977).  

By this assumption, the size of the daughter cell would then solely be dependent on 

growth rate set by the cells in the prevailing nutrient conditions.  However, cells lacking 

all the key regulators of G1 still undergo robust cell size regulation in response to 

nutrient availability suggesting the possibility of growth regulation beyond G1 

(Jorgensen and Tyers, 2004).  Indeed, recent findings from our lab revealed that 

budding yeast cells growing in poor nutrient conditions compensate for the slow growth 

rate by prolonging the duration of mitosis, thereby ensuring their cells don’t divide 
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prematurely in poor nutrients even if their size threshold is effectively reduced (Leitao 

and Kellogg, 2017a).  This is especially important as Leitao found that a mature 

budding yeast cell acquires nearly 60% of its total cell volume during its growth as a 

bud in mitosis. Thus, any perturbations to mitotic bud growth could have severe 

consequences on cell size at maturity.  These findings also suggest that cells must 

possess strong regulatory networks that measure bud growth and relay signals to the 

cell cycle machinery.  It was later found that the phosphatase PP2A with its regulatory 

subunit Rts1 (yeast homolog of the B56 subunit) is the key regulator that influences 

mitotic duration and growth rate in mitosis in response to prevailing nutrient conditions 

(Leitao et al., 2019b).  Cell growth thus seems to be measured at almost every phase 

in the cell cycle and the growth threshold actively established so that cell size in the 

population is homogenous.  

 

Budding yeast display different growth phases throughout the cell cycle 

 Compared to other eukaryotes, the pattern of cell growth in budding yeast is 

quite unique in several ways.  They divide in an asymmetric manner so that completion 

of a cell cycle leads to a large mother cell and a smaller daughter cell (Hartwell and 

Unger, 1977; Johnston et al., 1977a).  Moreover, growth of the plasma membrane is 

a dynamic, integral part of cell growth and is regulated by the Cyclin-dependent kinase 

(Cdk1 in yeast) (McCusker et al., 2007; 2012; Moffat and Andrews, 2004).  After a 

daughter cell is born, it undergoes a brief period of growth across its entire surface 

(isotropic cell growth) in G1 (Mitchison, 1958).  Once sufficient growth has occurred, 

the daughter cell (now a new mother) commits to a round of cell division in late G1, 

wherein, growth of the mother cell stops and all new growth is directed to the formation 
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of a daughter bud (Mitchison, 1958; Tkacz and Lampen, 1972).  From this point, 

growth is restricted solely to the daughter bud, where it initially grows in a polarized 

manner until G2 and growth is directed to the bud tip . At mitotic initiation, Cdk1 again 

signals a switch from polarized to isotropic growth in the daughter bud so that the bud 

continues to grow all across its cell surface throughout mitosis  (Leitao and Kellogg, 

2017a; Lew and Reed, 1993).  Eventually, at completion of mitosis, membrane growth 

is polarized again to the site of cytokinesis, to aid in cell separation.  

 Typically, cells are expected to grow only during interphase and cease growth 

in mitosis.  However, as explained in the previous section, budding yeast cells acquire 

nearly 60% of their total cell volume in mitosis (Leitao and Kellogg, 2017a).  Other cell 

types do exhibit some membrane growth during mitosis but are not accompanied by 

an increase in cell volume.  For instance, the syncytial Drosophila embryos develop 

membrane compartments called metaphase furrows to ensure faithful segregation of 

chromosomes (Lecuit and Wieschaus, 2000).  But so far, understanding how 

mammalian cells grow has been relatively mysterious due to their constantly 

fluctuating cell shapes and membrane dynamicity.  Budding yeast cells thus provide 

an excellent model to understand cell growth and how it influences cell cycle 

progression.  

 

Membrane growth delivers key signaling lipids and proteins to the cell 

membrane   

 The plasma membrane is a highly dynamic organelle of the cell.  The shape 

and surface area of the cell membrane are ultimately determined by the pattern of 

membrane growth and the relative rates of endo- and exo-cytosis.  In fact, the 
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continued functioning of the secretory pathway that delivers vesicles for membrane 

formation is essential for normal ribosome biogenesis - the production of ribosomes; 

to increase the biosynthetic capacity of the cell  (Li et al., 2000; Mizuta and Warner, 

1994).  Thus, plasma membrane growth is an essential driver of growth-related events 

in the cell and must therefore be precisely controlled.  Furthermore, the lipid 

constitution in the inner and outer leaflets  of the membrane is quite different and 

strongly influenced by various cell cycle proteins (Clarke et al., 2017; Roelants et al., 

2015; Yamane-Sando et al., 2014).   

 There is growing evidence that signaling lipids enriched in local clusters at the 

plasma membrane could create niches for specific signaling events (Haupt and Minc, 

2017; Kabeche et al., 2015).  For instance, anionic phospholipids like 

phosphatidylserine (PS) are usually delivered by vesicle trafficking to the outer leaflet 

and eventually flipped to the cytosolic side by flippases (Pomorski et al., 2003).  The 

negatively charged polar head groups of PS help generate locally-charged membrane 

regions, which recruit proteins with polybasic residues, creating a polarized cell (Haupt 

and Minc, 2017).  Although PS is not an abundant phospholipid in the cell, it constitutes 

nearly 25 - 30% of the total phospholipid content in the plasma membrane (van Meer 

et al., 2008).  It is thus plausible that delivery of such signaling lipids to the growing 

plasma membrane can generate “growth signals” that recruit and activate signaling 

proteins, which provide an indirect readout of cell growth and orchestrate timely 

progression through the cell cycle.   

We previously showed that cessation of membrane growth by blocking the 

secretory pathway causes a pre-mitotic checkpoint arrest (Anastasia et al., 2012a).  

Anastasia et al.  provided the first mechanistic link between membrane growth and 
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mitotic entry (Fig. 1).  Briefly, this checkpoint is initiated when the inactive Rho1 

GTPase is delivered to the growing bud tip in secretory vesicles where it gets activated 

by membrane-anchored Rho1 guanine-nucleotide exchange factor (GEFs)  (Abe et 

al., 2003).  Once at the membrane, Rho1 activates protein kinase C (Pkc1), which 

eventually interacts with the PP2A phosphatase, bound to the Cdc55 regulatory 

subunit (B55 homolog in yeast) and accessory Zds1/2 proteins  (Jonasson et al., 2016; 

Kamada et al., 1996; Rossio and Yoshida, 2011a; Rossio et al., 2014; Wicky et al., 

2011).  Together, the PP2ACdc55-Zds1/2 complex activate the phosphatase Cdc25, 

which in turn activates Cdk1 for mitotic entry  (Kumagai and Dunphy, 1991; Pal et al., 

2008).  Thus, gradual activation of Rho1-Pkc1 as vesicles are delivered to the growing 

bud tip provide an indirect readout of the extent of polar bud growth and dictate when 

cells could initiate mitosis.  This pathway will be further studied and discussed in 

greater detail in chapter 4.  
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Figure 1: Inactive Rho1 delivered to the growing bud through vesicle trafficking 
initiates a growth-dependent signaling cascade for mitotic entry. 
The model below summarizes the findings of (Anastasia et al., 2012a). 
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 My work in chapters 2 and 3 implicate the related kinases Gin4 and Hsl1 in a 

similar mechanism, where the Gin4-related kinases could be getting activated in 

response to isotropic membrane growth upon binding to PS at the bud neck and then 

mediating mitotic progression once cells have undergone sufficient growth.  This 

regulation is warranted since the growth rate of cells in mitosis almost quadruples 

compared to interphase and consequently cells acquire nearly 60% of their total 

volume during this time (Leitao and Kellogg, 2017a).  Thus, strong regulatory 

processes must be enforced in this phase.  Further, details are discussed in chapters 

2 and 3.  

 

Control of growth rate and cell size is interlinked and regulated by the 

conserved TORC2 network 

The most obvious physical manifestation of cell growth is the increase in cell 

size.  Emerging evidence from various systems suggest that the size of the cell at any 

given point in the cell cycle is a reflection of its growth rate in the preceding cell cycle 

phase as well as the amount of time spent growing (Cadart et al., 2018a; Ferrezuelo 

et al., 2012; Leitao and Kellogg, 2017a; Leitao et al., 2019b).  Moreover, these 

processes need to be coordinated with other growth processes like the translational 

capacity of the cell so that cells undergo growth in the most efficient way possible 

(Knapp et al., 2019).  External environmental factors such as nutrient availability also 

play a key role in setting the growth rate and size threshold of the cells such that in 

poor nutrients, the size threshold is lower than in rich nutrients, however, in the same 

nutrient conditions, larger cells grow much faster than smaller cells (Fantes and Nurse, 

1977; Johnston et al., 1977b; Prescott, 1956).  Thus, a cell’s growth rate is regulated 
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by nutrient availability, which determines the size of the cell at maturity, which in turn 

will influence the growth rate of the cell.  As a result, cells growing in poor nutrients will 

grow at a slower growth rate and acquire a smaller cell size compared their 

counterparts in rich nutrients.  We found that these processes are coordinated like a 

well-oiled machine, with the conserved TORC2 signaling pathway at the helm, from 

yeast cells to human cells (Gonzalez and Rallis, 2017; Lucena et al., 2017b; Xie and 

Guan, 2011).  Moreover, both Pkc1 and the Gin4-related kinases are upstream of  the 

TORC2  pathway (Alcaide-Gavilán et al., 2018b; Leskoske et al., 2018).  Thus, the 

proteins that sense the extent of cell growth are also well-positioned to influence 

growth rate by modulating TORC2 activity.   

 

Models for cellular growth control  

 While the fact that cells possess intrinsic mechanisms for growth control is 

universally accepted, there are however, differing opinions as to what aspect of growth 

is actually being measured and how.  Since cells come in different shapes and sizes, 

it has been relatively difficult for a single mechanism to be adaptable for all cell types. 

For a long time, the field of growth control favored the “sizer” or the “timer” models.  

The “sizer” model can be exemplified by fission yeast, where cells need to cross 

achieve a critical cell size to gain entry into mitosis (Nurse, 1975; Pan et al., 2014). In 

contrast, in a ”timer” model, cells are expected to grow for a fixed amount of time, so 

that large cells grow more than the smaller cells leading to cells of varying cell sizes 

(Allard et al., 2018a; Banerjee et al., 2017).  Alternatively, a “dilution” model postulates 

that cells could be sensing their own volume by diluting/titrating the concentration of a 
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sensor protein present in a fixed amount, so that eventually when the protein is diluted 

sufficiently, the cell cycle progresses further (Schmoller et al., 2015).  

Recently, the “adder” model has been receiving wide popularity in the field.  

This mechanism relies on the addition of a constant amount of cell growth in each cell 

cycle irrespective of the parent cell sizes.  In this way, large cells grow less, and small 

cells grow more in each successive cell cycle until the sizes of all cells converge to an 

average size over time.  This mechanism has been held widely applicable from 

bacteria to mammalian cells (Amir, 2014; Campos et al., 2014; Jun and Taheri-Araghi, 

2014; Varsano et al., 2017).  Moreover,  the Gin4-based growth sensing model that I 

propose in the later chapters of this thesis could also be used to enforce an adder 

mechanism in yeast cells.  

 

Growth control at the organ and organismal level 

 While the contents of this thesis mostly deal with growth control at the cellular 

level, it is important to understand that growth control also exists at the organ and 

organismal level.  The size of an organ is regulated by a balance in the rates of cell 

growth, cell proliferation and cell death.  Increases in organ size can thus be mediated 

by hypertrophy (increase in cell size) or hyperplasia (increase in cell number by cell 

proliferation).  Even though cellular hypertrophy seems to be the most straightforward 

way to meet the demands of the body compared to undergoing additional rounds of 

cell division, the increased cell size serves the opposite function.  If cells become too 

large, the metabolic demands of the cell would increase and transport of solutes in 

and out of the cell would become inefficient.   It is perhaps for this reason, that various 

disease models exhibit irregular cell sizes.  For instance, it is quite common for patients 
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of myocardial infarction that causes death of the cardiac tissues to have a 

compensatory increase in the size of the remaining cardiac cells in order to cope with 

the demands of the body.  Consequently such patients often suffer from enlarged 

hearts or “ventricular hypertrophy”, which in turn, further increases the risk of 

myocardial infarction in patients (Nepper-Christensen et al., 2017).   Control of cell 

size is thus critical at the organ level, although complicated by various factors.  It is 

possible that a small subset of cells direct cellular proliferation throughout the entire 

organ (“top-down” mechanism).  In other cases, the final size of the organ is 

determined by the local cell-cell signaling (“bottom-up” mechanism) (Hariharan, 2015).  

In either scenario, the challenge is to determine how the behavior of each cell in the 

organ is regulated so that collectively, the organ reaches the correct size.  

 One example of a signaling pathway that is implicated in organ growth 

regulation in mammals is the Hippo pathway.  In vivo activation or inactivation of 

downstream Hippo pathway components caused changes in liver size (Zeng and 

Hong, 2008).   A study found Par-1 (the Gin4 homolog in Drosophila) as a novel 

regulator of the Hippo pathway, where Par-1 overexpression resulted in an increased 

expression of Hippo target genes responsible for an increased cell proliferation (Huang 

et al., 2013).   In a mechanism possibly similar to yeast Gin4, the Par proteins are 

known for establishing cell polarity in Drosophila and C. elegans as well as to facilitate 

asymmetric cell division (Jiang and Harris, 2019; Tabler et al., 2010).  These findings 

suggest that the molecular signals that operate in yeast cells are most likely conserved 

across different species.  
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Concluding remarks 

In all single and multicellular cells, growth control is established at the cellular 

level.  Mechanisms that control cell growth not only ensure that growth scales with 

nutrient availability but also act as gatekeepers that allow cell proliferation only when 

a threshold amount of growth has occurred.  But how exactly do cells measure their 

own growth? And how do they link cell growth to cell division?  The following chapters 

will try to answer some of these questions.  
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CHAPTER 2 (submitted to MBoC) : Growth-dependent activation of 

protein kinases links cell cycle progression to cell growth 

Introduction 

Key cell cycle transitions occur only when sufficient growth has occurred. To 

enforce this linkage, cells must convert growth into a proportional signal that triggers 

cell cycle progression when it reaches a threshold.  The molecular mechanisms by 

which cells generate proportional signals used to measure and limit growth have 

remained deeply mysterious.  

In budding yeast, growth occurs in 3 distinct intervals that are characterized by 

different rates and patterns of growth (Ferrezuelo et al., 2012; Goranov et al., 2009; 

Johnston et al., 1977b; Leitao and Kellogg, 2017b; McCusker et al., 2007).  The first 

interval occurs during G1 phase and is characterized by uniform growth over the cell 

surface.  The second interval is initiated at the end of G1 phase when a new daughter 

cell emerges and undergoes polar growth. The third interval is initiated at entry into 

mitosis and is marked by a switch from polar bud growth to growth that occurs more 

widely over the bud surface.  Bud growth continues throughout mitosis.  The distinct 

size and shape of a yeast cell is ultimately defined by the extent of growth during each 

of these intervals.  

Several observations suggest that maintenance of a specific cell size requires 

tight control over the duration and extent of bud growth (Leitao and Kellogg, 2017b).  

First, little growth occurs during G1 phase.  For example, in cells growing in rich 

nutrients only about 20% of growth occurs during G1 phase.  Rather, most growth 

occurs during mitosis, and the rate of growth in mitosis is approximately 3-fold faster 

than growth during the other intervals.  Therefore, failure to tightly control the duration 
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and extent of bud growth, particularly during mitosis, would have large consequences 

for cell size. 

 Additional evidence that bud growth is tightly controlled comes from analysis 

of the effects of nutrients on cell growth and size.  Shifting cells from rich to poor 

nutrients causes a reduced growth rate, as well as a large reduction in cell size 

(Johnston et al., 1977b; 1979).  This proportional relationship between growth rate and 

cell size appears to hold across all orders of life.  In budding yeast, a shift to poor 

nutrients has little effect on cell size at completion of G1 phase (Bean et al., 2006; 

Leitao and Kellogg, 2017b).  Furthermore, mutant cells that lack all known regulators 

of cell size in G1 phase show robust nutrient modulation of cell size (Jorgensen and 

Tyers, 2004).  In contrast, poor nutrients cause a large decrease in the extent of growth 

in both metaphase and anaphase, which causes daughter cells to complete 

cytokinesis at a substantially reduced size (Hartwell and Unger, 1977; Leitao and 

Kellogg, 2017b).  Furthermore, the duration of growth in mitosis is increased in poor 

nutrients, which suggests that cells compensate for slow bud growth by increasing the 

duration of growth (Leitao and Kellogg, 2017b).  These observations point to the 

existence of mechanisms that measure and modulate both the duration and extent of 

bud growth in mitosis.   

A model in which the extent of bud growth is tightly controlled requires a 

molecular mechanism for measuring growth.  In previous work, we found evidence 

that polar bud growth before mitosis is measured via growth-dependent 

hyperphosphorylation and activation of the protein kinase Pkc1 (Anastasia et al., 

2012b).  The data suggest a model in which vesicles that drive polar growth of the 

plasma membrane carry signaling molecules that drive activation of Pkc1 at the site of 
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membrane growth, thereby generating a signal that is proportional to the extent of 

growth.  Here, we searched for proteins that could play a role in measuring growth 

during mitosis.  A candidate-based approach identified 3 related kinases: Gin4, Hsl1 

and Kcc4.  We refer to these as Gin4-related kinases.  Similar kinases are found in all 

eukaryotes.  Observations reaching back over 30 years have suggested that Gin4-

related kinases play roles in control of cell growth and size (Altman and Kellogg, 

1997a; Barral et al., 1999; Ma et al., 1996; Okuzaki et al., 1997; Young and Fantes, 

1987). For example, loss of Gin4-related kinases in both budding yeast and fission 

yeast causes a prolonged delay in mitotic progression (Altman and Kellogg, 1997a; 

Barral et al., 1999; Ma et al., 1996; Okuzaki et al., 1997; Young and Fantes, 1987).  

Growth continues during the delay, resulting in aberrant growth of large cells.  These 

observations suggest that Gin4-related kinases could play roles in growth control.  

However, a caveat is that previous analysis of Gin4-related kinases utilized gene 

deletions that cause severe phenotypes.  This made it difficult to discern which aspects 

of the phenotype are an immediate and direct consequence of loss of function, versus 

phenotypic effects that are the result of secondary defects accumulated over multiple 

generations.  For example, there is evidence that loss of Gin4-related kinases causes 

defects in positioning the mitotic spindle, which could cause chromosome segregation 

defects and associated mitotic delays that lead to abnormally prolonged growth 

(Fraschini et al., 2006; Gihana et al., 2018; Grava et al., 2006).  In this case, growth 

defects could be a secondary consequence of mitotic spindle defects.  Similarly, 

previous studies have shown that mother cell size strongly influences growth and size 

of the daughter cell, which could mean that gradually accumulating defects in mother 

cell size over multiple generations could cause indirect effects on daughter cell growth 
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and size (Leitao and Kellogg, 2017b; Schmoller et al., 2015).  An additional limitation 

of previous studies is that they hinted that Gin4-related kinases could be involved in 

growth control yet found no evidence that the activity of Gin4-related kinases is 

mechanistically linked to cell growth, which made it difficult to rule out alternative 

models.   

Here, we utilized conditional alleles of the Gin4-related kinases to show that 

defects in control of bud growth are an immediate and direct consequence of 

inactivating Gin4-related kinases.   We further show that Gin4-related kinases control 

the duration and extent of growth during metaphase, and that they do so partly via 

regulation of Cdk1 inhibitory phosphorylation.  Finally, we show that Gin4-related 

kinases generate and/or relay growth-dependent signals that could be used to 

measure bud growth.   

 

Results 

Gin4-related kinases are required for normal control of bud growth during 

mitosis 

Gin4 and Hsl1 are the most important Gin4-related kinases in budding yeast.  

Loss of either kinase alone causes defects in control of bud growth, whereas loss of 

both causes severe defects (Barral et al., 1999; Longtine et al., 2000).  Loss of the 

Gin4 paralog Kcc4 has little effect.  We therefore focused on Gin4 and Hsl1.  To avoid 

the complications associated with long term inactivation of the Gin4-related kinases, 

we created auxin-inducible degron (AID) versions of Gin4 and Hsl1, which allowed us 

to define the immediate effects of inactivation (Nishimura et al., 2009).  A strain 

carrying AID-tagged versions of both GIN4 and HSL1 had no size defects in the 
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absence of auxin (Fig. S1 A).  Addition of auxin before mitosis in synchronized cells 

caused a large reduction in levels of Gin4-AID protein within 30 minutes (Fig. S1 B), 

as well as a delay in mitotic progression (Fig. S1 C).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Characterization of gin4-AID and hsl1-AID alleles. 
(A) Wild type, 2xTIR1 control cells, gin4-AID hsl1-AID 2xTIR1 cells and gin4-AID 
hsl1-AID swe1∆ 2xTIR1 cells were grown overnight at room temperature in YPD and 
cell size distributions were analyzed with a Coulter counter.  (B) Control cells and 
gin4-AID hsl1-AID cells growing in YPD were released from a G1 phase arrest.  After 
release, the gin4-AID hsl1-AID cells were split into two aliquots and 0.5 mM auxin 
was added to one aliquot and an equivalent amount of the solvent for auxin was 
added to the other.  Auxin was also added to the control strain.  Samples were taken 
at the indicated intervals and the behavior of Gin4 was analyzed by western blot.  All 
strains contain 2 copies of the TIR1 gene (2xTIR1).  (C) gin4-AID hsl1-AID 2xTIR1 
cells growing in YPD were released from a G1 phase arrest. After release, the cells 
were split into two aliquots and 0.5 mM auxin was added to one aliquot and an 
equivalent amount of the solvent for auxin was added to the other.  Samples were 
taken at the indicated intervals and the behavior of Clb2 was analyzed by western 
blot.     
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We first tested how conditional inactivation of Gin4 and Hsl1 influences bud 

growth and mitotic progression via live analysis of single cells.  We included a 

fluorescently tagged spindle pole protein to monitor the duration of metaphase and 

anaphase (see Materials and Methods and (Leitao and Kellogg, 2017b)).  The spindle 

poles in wild type and gin4-AID hsl1-AID cells were marked with different fluorescent 

tags, which allowed simultaneous imaging of both strains under identical conditions.   

 We analyzed the effects of gin4-AID or hsl1-AID alone, as well as the combined 

effects of gin4-AID hsl1-AID.  Cells were released from a G1 arrest and auxin was 

added immediately before initiation of bud emergence, which ensured that Gin4 and 

Hsl1 were depleted by the time of mitotic entry.  Bud size and mitotic spindle dynamics 

were then analyzed at 3-minute intervals to determine how loss of Gin4 and Hsl1 

influenced bud growth and the duration of mitosis.  Examples of wild type and gin4-

AID hsl1-AID cells are shown in Fig. 2.1 and Video 1.  Both cells undergo bud 

emergence at nearly the same time, but the wild type cell completes bud growth and 

exits mitosis while the gin4-AID hsl1-AID cell remains delayed in metaphase as the 

bud continues to grow.  The gin4-AID hsl1-AID cell eventually completes mitosis, but 

at a substantially larger bud size than the wild type control cell.  The daughter bud is 

more elongated in the gin4-AID hsl1-AID cell, which indicates a defect in control of 

polar growth. 
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Figure 2.1: Gin4 and Hsl1 are required for normal control of cell growth and 
size in mitosis.  
Control cells and gin4-AID hsl1-AID cells were differentially marked with 
fluorescently-tagged mitotic spindle poles.  Thus, control cells express SPC42-
mRuby2. while the gin4-AID hsl1-AID cells express SPC42-GFP.  Both strains 
include 2 copies of the TIR1 gene.  Cells growing in CSM were arrested with a factor 
and then mixed together before releasing from the arrest.  Auxin was added to 0.5 
mM at 20 minutes after release from arrest, which corresponds to approximately 30 
minutes before bud emergence.  Cells were then imaged at 3-minute intervals by 
confocal microscopy at 27°C.  Bud emergence was used to set the zero timepoint.  
Key mitotic transitions are highlighted for each strain.    
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Quantitative analysis of multiple cells showed that destruction of Gin4 and/or 

Hsl1 caused an increase in the duration of metaphase but had no effect on the duration 

of anaphase (Fig. 2.2 A).  Destruction of Gin4 and Hsl1 also caused an increase in 

bud size at completion of each mitotic interval (Fig. 2.2 B).  The effects of gin4-AID 

and hsl1-AID were not additive (Fig. 2.2, A and B), which was surprising because 

hsl1∆ and gin4∆ have strong additive effects on cell size and shape (Fig. S2 A and 

(Barral et al., 1999)).  This issue is addressed below. 

In wild type cells, bud volume at completion of mitosis is proportional to growth 

rate during mitosis (Leitao and Kellogg, 2017b).  gin4-AID hsl1-AID appeared to cause 

a partial loss of the proportional relationship between growth rate and cell size at 

completion of mitosis (Fig. 2.2 C).  However, gin4-AID hsl1-AID did not cause 

significant effects on the growth rate of the daughter cell (Fig. S2 B). 

 

 

 

 

 

 

 

Figure 2.2: Gin4 and Hsl1 are required for normal control of cell growth and 
size in mitosis.  
Cells of the indicated genotypes were released from a G1 arrest and analyzed by 
confocal microscopy as described for Fig. 3 B.  All strains included 2 copies of the 
TIR1 gene.  (A)  Scatter plots showing the duration of metaphase and anaphase.  (B)  
Scatter plots showing bud size at completion of metaphase and anaphase.  (C)  Plots 
showing cell size at completion of mitosis versus growth rate in mitosis for control cells 
and gin4-AID hsl1-AID cells.  (D) Scatter plots showing the ratio of major axis to minor 
axis of the bud at completion of anaphase.  For panels A,B,D, the mean and standard 
deviation for each strain are shown. 
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Figure S2: Gin4 and Hsl1 control bud growth during mitosis. 
(A) gin4∆, hsl1∆, gin4∆ hsl1∆, and gin4∆ hsl1∆ swe1∆ cells were grown to log phase 
in YPD media at 25˚C and images were obtained using DIC optics.  (B)  A scatter 
plot showing the growth rate of the daughter buds during mitosis for the indicated 
genotypes. The growth rate (fL/min) was determined as the increase in bud volume 
from initiation of metaphase to the completion of anaphase, divided by the total time 
spent in metaphase and anaphase.  
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Inactivation of gin4-AID caused polar bud growth to continue in mitosis, 

whereas inactivation of hsl1-AID did not.  This effect was quantified by measuring axial 

ratios of daughter buds at completion of anaphase (Fig. 2.2 D).   

Previous studies found that gin4∆ and hsl1∆ cause defects in cytokinesis that 

lead to formation of clumps of interconnected cells (Altman and Kellogg, 1997a; Barral 

et al., 1999; Ma et al., 1996; Okuzaki et al., 1997).  Consistent with this, we observed 

that gin4-AID hsl1-AID caused a failure in cell separation in nearly all cells following 

the first cell cycle after addition of auxin (Video 2).  Previous studies also found that 

gin4∆ and hsl1∆ cause defects in spindle positioning (Fraschini et al., 2006; Grava et 

al., 2006; Gihana et al., 2018).  We observed few defects in spindle positioning during 

the first cell division after addition of auxin to gin4-AID hsl1-AID cells.  However, in the 

second cell division many cells showed aberrant movement of the metaphase spindle 

into the daughter cell before anaphase (Video 2).   

 

Gin4-related kinases are required for normal control of mother cell growth 

 In wild type cells, little growth of the mother cell occurs after bud emergence 

(Ferrezuelo et al., 2012; McCusker et al., 2007).  In gin4-AID hsl1-AID cells, however, 

mother cell growth often continued throughout the interval of daughter cell growth.  

Example plots of mother and daughter cell size as a function of time for wild type and 

gin4-AID hsl1-AID cells are shown in Fig. 2.3 A.  Quantitative analysis revealed that 

gin4-AID and hsl1-AID had additive effects upon mother cell growth so that most gin4-

AID hsl1-AID cells underwent abnormal mother cell growth (Fig. 2.3 B).   
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Figure 2.3: Gin4 and Hsl1 are required for normal control of mother cell 
growth. 
Cells of the indicated genotypes were released from a G1 arrest and analyzed by 
confocal microscopy as described for Fig. 3 B.  (A) A representative plot of mother 
and daughter cell size as a function of time.  In each case, the daughter cell is the 
daughter of the mother cell shown in the same plot.  (B) Scatter plots showing the 
net increase in mother cell volume from the time of bud emergence to completion of 
anaphase. The plot shows the mean and standard deviation for each strain. 
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Previous work has shown that large mother cells drive a faster rate of daughter 

cell growth (Leitao and Kellogg, 2017b; Schmoller et al., 2015).  As a result, the 

increased size of mothers in gin4-AID hsl1-AID cells would be expected to drive faster 

growth of daughter cells in subsequent cell divisions, leading to increased defects in 

cell growth and size in subsequent cell divisions.  Thus, the role of Gin4 and Hsl1 in 

control of mother cell growth could help explain why prolonged loss of Gin4 and Hsl1 

causes strong additive effects on cell growth and size.  Defects in spindle positioning 

and cell separation could also cause defects that accumulate over multiple subsequent 

cell divisions.  We found that the effects caused by gin4-AID hsl1-AID increased 

substantially with prolonged incubation in the presence of auxin, consistent with a 

model in which the terminal phenotype caused by gin4∆ hsl1∆ is the result of defects 

that accumulate over multiple cell cycles (Fig. S3).   
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Figure S3: The severity of the gin4-AID hsl1-AID phenotype increases with 
time. 
Control cells and gin4-AID hsl1-AID cells were grown to log phase at  room 
temperature in YPD medium and auxin was added to both strains.  Both strains 
included 2 copies of the TIR1 gene.  DIC images of the cells were taken at the 
indicated times.  Scale bar represents 5 µm. 
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Gin4-related kinases influence the duration of growth in metaphase via 

inhibitory phosphorylation of Cdk1 

 Genetic analysis has shown that Gin4 and Hsl1 are negative regulators of 

Swe1, which is the budding yeast homolog of the Wee1 kinase that phosphorylates 

and inhibits mitotic Cdk1 (Longtine et al., 2000; Ma et al., 1996).  Additional studies 

have shown that Swe1 influences the timing of mitotic entry as well as the duration of 

metaphase (Harvey and Kellogg, 2003; Leitao et al., 2019a; Lianga et al., 2013).  We 

therefore tested whether Gin4 and Hsl1 influence metaphase duration via Swe1.  To 

do this, we analyzed the effects of swe1∆ on bud growth and mitotic duration in gin4-

AID hsl1-AID cells.  This revealed that swe1∆ eliminated the prolonged metaphase 

delay caused by loss of Gin4 and Hsl1 (Fig. 2.2 A).  Furthermore, swe1∆ caused 

daughter buds in gin4-AID hsl1-AID cells to complete metaphase and anaphase at 

sizes smaller than the wild type control cells (Fig. 2.2 B), and it eliminated the bud 

elongation caused by gin4-AID (Fig. 2.2 D).  As reported previously, swe1∆ caused 

reduced growth rate, which is thought to be due to the decreased size of mother cells 

(Fig. S2 B)(Leitao et al., 2019a).   

Several observations demonstrated that Gin4 and Hsl1 do not influence growth 

solely via Swe1.  Previous studies found that swe1∆ cells have a shorter metaphase 

than wild type cells (Leitao et al., 2019a; Lianga et al., 2013).  Here, we found that 

swe1∆ reduced the duration of metaphase in gin4-AID hsl1-AID cells, but it did not 

make the duration of metaphase in these cells shorter than metaphase in wild type 

cells.  In addition, swe1∆ did not fully rescue growth defects caused by gin4∆ hsl1∆ 

(Fig. S2 A).  Finally, swe1∆ did not eliminate inappropriate growth of mother cells in 

gin4-AID hsl1-AID cells (Fig. 2.3 B).  Together, these observations demonstrate that 
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Gin4 and Hsl1 control bud growth during mitosis through Swe1-dependent and Swe1-

independent mechanisms. 

 

Gin4 and Hsl1 are required for full hyperphosphorylation of Swe1 

We next investigated how Gin4 and Hsl1 control Swe1.  In previous work, we 

showed that Swe1 undergoes complex regulation in mitosis (Harvey et al., 2011; 2005; 

Sreenivasan and Kellogg, 1999).  In early mitosis, Cdk1 phosphorylates Swe1 on Cdk1 

consensus sites, which activates Swe1 to bind and inhibit Cdk1.  This form of Swe1, 

which we refer to as partially hyperphosphorylated Swe1, works in a systems-level 

mechanism that maintains a low level of Cdk1 during metaphase.  Further 

phosphorylation events drive full hyperphosphorylation of Swe1, leading to release of 

Cdk1 and inactivation of Swe1.  Swe1 is proteolytically destroyed at the end of mitosis; 

however, mutants that block Swe1 destruction have no effect on mitotic progression, 

so the function of Swe1 destruction remains unknown (Raspelli et al., 2011; Thornton 

and Toczyski, 2003).   

A previous study suggested that hsl1∆ causes defects in phosphorylation of 

Swe1 but did not provide sufficient resolution of differently phosphorylated forms of 

Swe1 to determine which events were affected  (Shulewitz et al., 1999).  Here, we 

found that conditional inactivation of gin4-AID and hsl1-AID before mitosis in 

synchronized cells caused a failure in full hyperphosphorylation of Swe1 (Fig. 2.4).  

Similarly, addition of auxin to asynchronous gin4-AID hsl1-AID cells caused loss of 

fully hyperphosphorylated Swe1 within 30 minutes (Fig. S4).  These data show that 

Gin4 and Hsl1 are required for generation of the fully hyperphosphorylated inactive 
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form of Swe1, consistent with genetic data showing that Gin4-related kinases are 

negative regulators of Swe1.   

 

Figure 2.4: Gin4 and Hsl1 are required for full hyperphosphorylation of Swe1. 
Control cells and gin4-AID hsl1-AID cells growing in YPD were released from a G1 
arrest at 25˚C and 0.5 mM auxin was added to both strains 20 min after release.  
Both strains included 2 copies of the TIR1 gene.  Samples were taken at the 
indicated intervals and the behavior of Swe1 and Clb2 was analyzed by western blot.   
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Figure S4: Swe1 is rapidly dephosphorylated in asynchronous cells upon 
inactivation of Gin4 and Hsl1.  
gin4-AID hsl1-AID 2xTIR1 cells were grown to log phase in YPD and were then split 
into two aliquots. 0.5 mM auxin was added to one aliquot and an equivalent amount 
of the solvent for auxin was added to the other.  Samples were taken at the indicated 
intervals and the behavior of Swe1 was analyzed by western blot.  Anti-Nap1 was 
used as loading control. 
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Hyperphosphorylation of Gin4 and Hsl1 is correlated with the extent of bud 

growth 

We previously found that Gin4 undergoes gradual hyperphosphorylation and 

activation during bud growth, reaching peak activity in late mitosis as growth ends 

(Altman and Kellogg, 1997a).  Thus, gradual phosphorylation and activation of Gin4 

appears to be correlated with gradual bud growth, which suggests that growth-

dependent activation of Gin4 could provide a proportional readout of the extent of bud 

growth.  To begin to test this hypothesis, we first carried out additional experiments to 

determine whether hyperphosphorylation of Gin4 and Hsl1 is proportional to bud 

growth.  To do this, we took advantage of the fact that the durations of both metaphase 

and anaphase are increased when cells are growing slowly on a poor carbon source, 

yet the extent of growth in mitosis is reduced (Leitao and Kellogg, 2017; Leitao et al., 

2019).  In other words, cells in poor carbon spend more time growing in both 

metaphase and anaphase, but complete mitosis at a reduced daughter bud size.  

Therefore, if hyperphosphorylation of Gin4 and Hsl1 is proportional to bud growth, the 

time required to reach full hyperphosphorylation should be increased in cells growing 

in poor carbon.   

 Wildtype cells growing in rich carbon (2% glucose) or poor carbon (2% glycerol, 

2% ethanol) were released from a G1 arrest and phosphorylation of Gin4 and Hsl1 

was assayed by western blot to detect phosphorylation events that cause 

electrophoretic mobility shifts.  The same samples were also probed for the mitotic 

cyclin Clb2 as a marker for mitotic duration. Cells growing in poor carbon showed 

delayed mitotic entry and a prolonged mitosis compared to cells growing in rich carbon, 

as previously described (Fig. 2.5, A and B) (Leitao and Kellogg, 2017b).  Gin4 is 
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present throughout the cell cycle, while Hsl1 is synthesized anew before mitosis and 

destroyed at the end of mitosis (Altman and Kellogg, 1997a; Barral et al., 1999).  In 

both carbon sources, hyperphosphorylation of Gin4 and Hsl1 increased gradually 

during mitosis, with peak phosphorylation occurring near peak Clb2 levels.  In addition, 

the interval during which hyperphosphorylation occurred was prolonged in poor 

carbon, consistent with the hypothesis that hyperphosphorylation of Gin4 and Hsl1 

provides a readout of the extent of bud growth.  Previous studies have shown that the 

increased duration of mitosis in poor carbon under these conditions is not an artifact 

caused by poor synchrony (Leitao and Kellogg, 2017b; Leitao et al., 2019a). 

We also noticed that the maximal extent of phosphorylation of Gin4 and Hsl1 

was reduced in poor carbon (Fig. 2.5, A, B and C).  Thus, cells in poor carbon progress 

through mitosis with less hyperphosphorylation of Gin4 and Hsl1 than cells in rich 

carbon, which suggests that the maximal extent of hyperphosphorylation of Gin4 and 

Hsl1 reached during mitosis is proportional to the growth rate set by the carbon source.  

One interpretation of this observation is that the extent of hyperphosphorylation of Gin4 

and Hsl1 required for mitotic exit is reduced in poor carbon, which allows cells to 

complete mitosis at a smaller bud size.   
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Figure 2.5: Hyperphosphorylation of Gin4 and Hsl1 is proportional to the 
extent of bud growth.  
Wild type cells grown overnight in YPD (A) or YPG/E (B) were arrested with a factor.  
The cells were then released from the arrest at 25˚C and samples were taken at 10 
min intervals. The behavior of Gin4, Hsl1-6XHA and Clb2 was assayed by western 
blot.  (C) A direct comparison of the maximal extent of Gin4 phosphorylation in rich 
or poor carbon was made by comparing samples taken at peak Clb2 expression in 
each condition (90 min in rich carbon and 140 min in poor carbon).  An anti-Nap1 
antibody was used as a loading control. 
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Hyperphosphorylation of Gin4 is dependent upon bud growth  

We next tested whether hyperphosphorylation of Gin4 is dependent upon bud 

growth.  To do this, we used a temperature-sensitive allele of SEC6 (sec6-4) to block 

bud growth.  Sec6 is a component of the exocyst complex, which is required at the 

plasma membrane for docking and fusion of vesicles that drive bud growth.  In 

previous work, we showed that inactivation of Sec6 blocks bud growth and triggers an 

arrest in early mitosis (Anastasia et al., 2012b).  The arrest is enforced by Swe1.  Thus, 

sec6-4 swe1∆ cells fail to undergo bud growth yet enter mitosis and complete 

chromosome segregation before arresting in late mitosis.  We therefore analyzed Gin4 

phosphorylation in sec6-4 swe1∆ cells, which allowed us to distinguish whether effects 

of sec6-4 were a consequence of a failure to undergo bud growth, or a failure in mitotic 

progression.  As controls, we also analyzed Gin4 hyperphosphorylation in wild type 

and swe1∆ cells.   

 Cells were released from a G1 arrest and shifted to the restrictive temperature 

for the sec6-4 allele before bud emergence.  Gin4 phosphorylation was assayed by 

western blot (Fig. 2.6 A).  The same samples were probed for Clb2 as a marker for 

mitotic progression (Fig. 2.6 B).  The sec6-4 swe1∆ cells entered mitosis but arrested 

in late mitosis with high levels of mitotic cyclin, as previously reported (Anastasia et 

al., 2012b).  Hyperphosphorylation of Gin4 failed to occur in the sec6-4 swe1∆ cells 

(Fig. 2.6, A and C).  Direct comparison of the extent of Gin4 hyperphosphorylation in 

mitosis showed a complete loss of Gin4 phosphorylation (Fig. 2.6 C).  Thus, 

hyperphosphorylation of Gin4 is dependent upon membrane trafficking events that 

drive bud growth. 
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Figure 2.6: Hyperphosphorylation of Gin4 is dependent upon bud growth.  
Wild type, swe1∆ and swe1∆ sec6-4 cells were released from a G1 arrest in YPD at 
room temperature and shifted to the restrictive temperature (34˚C) 30 min after 
release from arrest.  Samples were taken at the indicated intervals and the behavior 
of Gin4 (A) and Clb2 (B) was analyzed by western blot.  (C) A direct comparison of 
the extent of Gin4 phosphorylation was made by loading samples from all three 
strains taken at 90 min (wild type), 80 min (swe1∆) and 100 min (sec6-4 swe1∆).  
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Proportional phosphorylation of Gin4 during bud growth requires binding to 

anionic phospholipids 

    We next investigated the mechanisms that drive hyperphosphorylation of Gin4-

related kinases, since these could provide clues to how growth-dependent signals are 

generated and relayed.  Both Gin4 and Hsl1 have well-defined C-terminal kinase 

associated 1 (KA1) domains, which bind phosphatidylserine and other anionic 

phospholipids (Moravcevic et al., 2010). Phosphatidylserine is a low abundance 

phospholipid that is preferentially localized to the growing bud (Ejsing et al., 2009; 

Fairn et al., 2011; Klose et al., 2012), and in vivo analysis suggests that 

phosphatidylserine is the most important effector for KA1 domains (Moravcevic et al., 

2010).  Furthermore, binding of phosphatidylserine to kinases that contain KA1 

domains can promote an open and active conformation of the kinase that could 

potentially drive autophosphorylation or phosphorylation by another kinase (Emptage 

et al., 2017; 2018; Wu et al., 2015).  Together, these observations led us to 

hypothesize that phosphatidylserine delivered to the plasma membrane during bud 

growth could drive hyperphosphorylation of Gin4-related kinases, thereby generating 

a signal that is proportional to the extent of growth.   

 To test the hypothesis, we focused on Gin4.  A version of Gin4 that lacks the 

KA1 domain (gin4-∆KA1) failed to undergo hyperphosphorylation during bud growth 

(Fig. 2.7 A).  Analysis of Clb2 levels in synchronized cells showed that gin4-∆KA1 cells 

exhibited normal timing of mitotic entry and an increased duration of mitosis (Fig. 2.7 

B).  The gin4-∆KA1 cells also showed increased cell size and an elongated bud 

phenotype similar to gin4∆ cells (Fig. 2.7, C and D).  gin4-∆KA1 in an hsl1∆ 

background caused a phenotype similar to gin4∆ hsl1∆ (Fig. 2.7 D).  Finally, Gin4-
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∆KA1-GFP failed to localize to the bud neck normally and was observed primarily in 

the cytoplasm (Fig. 2.7 E), although weak localization to the bud neck could be 

detected in a fraction of cells, indicating that determinants outside the KA1 domain 

contribute to Gin4 localization to the bud neck (arrowheads, Fig. 2.7 E).  

 The KA1 domain could carry out functions required for Gin4 

hyperphosphorylation that are independent of binding to anionic phospholipids.  We 

reasoned that if binding to anionic phospholipids is the sole function of the KA1 

domain, then replacing the KA1 domain with a heterologous phosphatidylserine 

binding domain should restore normal Gin4 activity.  To test this, we replaced the KA1 

domain with the bovine LactC2 domain, which shows no structural similarity to the KA1 

domain (Moravcevic et al., 2010; Shao et al., 2008).  The LactC2 domain was sufficient 

to restore proportional hyperphosphorylation of Gin4 during bud growth in gin4-∆KA1-

LactC2 cells (Fig. 2.7 A).  In addition, gin4-∆KA1-LactC2 cells showed normal mitotic 

timing, as well as normal cell size (Fig. 2.7, B, C and D).  Finally, the LactC2 domain 

restored normal bud neck localization to gin4-∆KA1 (Fig. 2.7 E).  A previous study 

showed that deletion of the KA1 domain of Hsl1 causes reduced localization of Hsl1 

to the bud neck, which can be rescued by addition of the LactC2 domain (Finnigan et 

al., 2016).   

Mutation of three amino acids in the LactC2 domain required for efficient 

binding to phosphatidylserine (gin4-∆KA1-LactC2AAA) (Yeung et al., 2008) caused a 

failure in proportional phosphorylation of Gin4 (Fig. 2.7 A), as well as a phenotype 

similar to gin4∆ and gin4-∆KA1 (Fig. 2.7, B, C and D).  The LactC2AAA domain partially 

restored Gin4 localization to the bud neck, however, the amount of gin4-∆KA1-

LactC2AAA-GFP at the bud neck was reduced relative to GIN4-GFP and gin4-∆KA1-
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LactC2-GFP (Fig. 2.7 E and S5).  These data suggest that the delivery of anionic 

phospholipids to the membrane could drive gradual growth-dependent activation of 

Gin4-related kinases.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.7: Proportional phosphorylation of Gin4 during bud growth requires 
binding to anionic phospholipids. 
Cells of the indicated genotypes were released from a G1 arrest in YPD at 30˚C.  
The behavior of Gin4 (A) and Clb2 (B) was analyzed by western blot.  In each strain, 
Gin4 constructs were marked with a 3xHA tag and detected with anti-HA antibody.  
The signal for gin4-∆KA1 and the LactC2 constructs was weaker, so these blots 
were exposed longer.  Gin4-∆KA1-3xHA was about 16 KDa smaller than the other 
proteins.  (C) Cells of the indicated genotypes were grown in YPD overnight, diluted 
in fresh YPD, and then incubated for 5h at 30˚C. The size distribution for each strain 
was analyzed using a Coulter counter.  (D) Cells of the indicated genotypes were 
grown to log phase in YPD at 25˚C and imaged by DIC optics.  (E) Cellular 
localization of Gin4, Gin4-∆KA1, Gin4-∆KA1-LactC2 and Gin4-∆KA1-LactC2AAA fused 
to GFP at the C-terminus. All four strains were excited by the GFP-laser with 
identical settings at 100x magnification and displayed with the same brightness 
levels to compare relative levels of Gin4 localized to the bud neck. Gin4-∆KA1-GFP 
shows mostly cytoplasmic localization with a small level of bud neck localization 
(white arrowheads). The brightfield images for each field are shown below.  Scale 
bar represents 5 µm. 
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Figure S5: Quantification of Gin4-GFP constructs at the bud neck. 
Cells of the indicated genotypes were analyzed to determine the maximum pixel 
intensity for GFP fluorescence at the bud neck.  The Y-axis on the scatter plot shows 
the maximum pixel intensity in arbitrary units after subtracting background signal.   
 
 

  

*,
1�
�*
)3

JLQ
��¨
.$
��/
DF
W&
��*

)3

JLQ
��¨
.$
��/
DF
W&
�$
$$ �*

)3
�

�����

������

������

������

������

������
0
D[
LP
XP

SL
[H
OL
QW
HQ

VL
W\

�$
�8
��




 S�������



 S�������

Q�V�
S ������

)LJXUH 6�



 

44 

Discussion 

Growth-dependent activation of Gin4-related kinases could link cell cycle 

progression to cell growth 

Our results show that Gin4-related kinases have key properties expected of 

proteins that play roles in measuring cell growth.  For example, we used the first 

conditional alleles of Gin4-related kinases to show that their loss causes inappropriate 

growth during a prolonged metaphase delay.  Thus, cells that lack Gin4-related 

kinases behave as though they fail to properly detect that bud growth has occurred, 

consistent with a model in which they relay growth-dependent signals that report on 

the extent of growth.  We also discovered that gradual hyperphosphorylation of Gin4-

related kinases during bud growth is dependent upon and proportional to bud growth.  

In previous work, we showed that the kinase activity of Gin4 is dependent upon and 

proportional to Gin4 hyperphosphorylation (Altman and Kellogg, 1997a; Mortensen et 

al., 2002).  Together, these observations suggest that the events that drive bud growth 

also drive growth-dependent hyperphosphorylation and activation of Gin4-related 

kinases.  We therefore hypothesize that Gin4-related kinases generate and/or relay 

growth-dependent signals that are used to measure the extent of bud growth.   

Growth-dependent signals could also be used to ensure that growth rate scales 

with cell size.  Previous studies have pointed to close functional relationships between 

Gin4-related kinases and the TORC2 signaling network, a master regulator of cell 

growth that strongly influences growth rate (Alcaide-Gavilán et al., 2018a; Zapata et 

al., 2014).  The Gin4-related kinases promote signaling in the TORC2 network and 

TORC2 signaling appears to scale with cell size during bud growth (Alcaide-Gavilán 

et al., 2018a).  Thus, growth-dependent activation of Gin4-related kinases could drive 
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a gradual increase in TORC2 signaling that drives a gradual increase in growth rate 

as cells increase in size.   

The maximal extent of Gin4 and Hsl1 hyperphosphorylation achieved in mitosis 

is reduced in poor nutrients.   Thus, it appears that cells in poor nutrients require a 

lower threshold of Gin4/Hsl1 activity to progress through mitosis.  We therefore 

hypothesize that reduction in cell size at completion of metaphase in poor nutrients 

(Leitao and Kellogg, 2017b) could be driven by nutrient-dependent signals that reduce 

the threshold activity of Gin4-related kinases required for mitotic progression.   

Additional analysis will be needed to test these hypotheses.  The use of 

biochemical reconstitution to define the molecular mechanisms that drive proportional 

phosphorylation of Gin4-related kinases will be a key step. 

 

Gin4-related kinases influence the duration and extent of bud growth in 

metaphase 

 Previous analysis of the in vivo functions of Gin4-related kinases utilized gene 

deletions.  A caveat of these studies was that gene deletions cause severe phenotypes 

that could be the outcome of cumulative defects gained over multiple generations.  

Therefore, it has not been possible to discern the immediate and direct consequences 

of loss of function of Gin4-related kinases.  Indeed, our analysis of conditional alleles 

strongly suggests that a number of the previously observed phenotypes caused by 

deleting Gin4-related kinases are indirect effects that accumulate over multiple 

generations.  Here, conditional alleles allowed us to rigorously define the functions of 

Gin4-related kinases.  This showed that inactivation of Gin4 and Hsl1 causes aberrant 

growth during a prolonged metaphase delay but has little effect on the duration or 
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extent of growth in anaphase.  In a previous study we found that extensive growth 

occurs during anaphase, and that the duration and extent of growth in anaphase is 

modulated by nutrients, which suggests that anaphase growth is regulated (Leitao and 

Kellogg, 2017b).  Our results suggest that Gin4-related kinases are unlikely to control 

the anaphase growth interval.  Growth in anaphase is also unlikely to be controlled by 

Cdk1-inhibitory phosphorylation (Leitao et al., 2019a).  The mechanisms that control 

the duration and extent of growth in anaphase therefore remain mysterious. 

 

Gin4-related kinases influence the location of growth 

The effects of inactivating Gin4 and Hsl1 on the duration of growth in 

metaphase were not additive, which was surprising because gin4∆ and hsl1∆ show 

strong additive effects on cell size and shape (Barral et al., 1999).  A potential 

explanation came from the discovery that loss of Gin4-related kinases causes 

inappropriate mother cell growth during mitosis.  In this case, the effects were additive.  

Previous work found that large mother cells drive an increased growth rate in daughter 

cells (Leitao and Kellogg, 2017b; Schmoller et al., 2015).  Thus, we hypothesize that 

increased size of mother cells caused by loss of Gin4 and Hsl1 drives an increased 

rate of growth that amplifies aberrant growth in subsequent divisions.  However, other 

factors likely contribute to the additive effects of gin4∆ and hsl1∆.  For example, we 

observed severe spindle positioning defects in the second cell division after 

inactivation of Gin4 and Hsl1, which could cause prolonged mitotic delays that lead to 

further aberrant growth.  Defects in growth control could also be amplified by failures 

in cytokinesis that create chains of conjoined cells in which the signals that control cell 

growth and size are no longer effectively compartmentalized.  
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Our studies also suggest that Gin4 and Hsl1 play different roles in controlling 

polar bud growth.  Destruction of Gin4 caused excessive polar growth in the first cell 

cycle following destruction, whereas destruction of Hsl1 did not.  In normal cells, the 

interval of polar growth is terminated by low level activation of Cdk1 at mitotic entry 

(Lew and Reed, 1993).  However, low level activation of Cdk1 appears to occur 

normally in gin4∆ cells, albeit with a delay (Altman and Kellogg, 1997a).  Moreover, 

the elongated buds and cell separation defects caused by gin4∆ are not fully rescued 

by swe1∆.  Together, these observations suggest that Gin4 influences polar growth at 

least partly via a mechanism that works downstream or independently of Cdk1.  

Previous work suggested that Gin4 binds and regulates Bnr1, a formin protein that 

controls the location of actin cables that deliver vesicles to sites of membrane growth 

(Buttery et al., 2012b).  Bnr1 is localized to the bud neck, and loss of Bnr1 is thought 

to cause inappropriate polar growth because the actin cables that direct isotropic 

growth are lost (Gao and bretscher, 2010; Pruyne et al., 2004a).  Thus, polar growth 

caused by loss of Gin4 could be due at least partly to misregulation of Bnr1.  The 

fission yeast homolog of Gin4 also is also known to execute functions that are 

independent of Wee1 (Breeding et al., 1998).   

 

Gin4-related kinases influence growth in metaphase partly via Cdk1 inhibitory 

phosphorylation 

Early work suggested that Wee1 family members work solely at mitotic entry.  

However, more recent work in both vertebrates and yeast found that Wee1 also 

controls events after mitotic entry (Harvey et al., 2011; Lianga et al., 2013; 

Vassilopoulos et al., 2014; Toledo et al., 2015; Leitao et al., 2019)(Deibler and 
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Kirschner, 2010).  In budding yeast, several studies suggested that the activity of Swe1 

in metaphase could be controlled by the Gin4-related kinases; however, interpretation 

of the results was complicated by use of gene deletions (Altman and Kellogg, 1997a; 

Barral et al., 1999; Carroll et al., 1998; Sreenivasan and Kellogg, 1999; Sreenivasan 

et al., 2003).  Here, conditional inactivation of Gin4 and Hsl1 provided definitive 

evidence that Gin4-related kinases influence the duration of metaphase via Cdk1 

inhibitory phosphorylation.  We also showed that loss of Gin4-related kinases causes 

a failure in full hyperphosphorylation of Swe1. Previous studies suggested that Gin4-

related kinases from fission yeast can directly phosphorylate Wee1; however, there is 

no evidence yet that this is true in budding yeast (Coleman et al., 1993; Kanoh and 

Russell, 1998).   

Careful analysis of the effects of conditional inactivation of Gin4-related 

kinases suggested that they do not influence the duration of metaphase solely via 

Swe1.  Previous studies showed that the duration of metaphase in swe1∆ cells is 

shorter than in wild type cells (Leitao et al., 2019a; Lianga et al., 2013).  Here, we 

found swe1∆ substantially reduced the metaphase delay caused by inactivation of 

Gin4-related kinases, but metaphase was still slightly prolonged relative to wild type 

cells. 

 

Growth-dependent hyperphosphorylation of Gin4 requires binding to anionic 

phospholipids 

We found that growth-dependent hyperphosphorylation of Gin4 and normal 

control of cell growth are both dependent upon the KA1 domain, which binds anionic 

phospholipids.  We further discovered that growth-dependent phosphorylation of Gin4 
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occurs normally when the KA1 domain is replaced by a heterologous LactC2 domain 

that binds phosphatidylserine.  Mutations in the LactC2 domain that reduce binding to 

phosphatidylserine also block growth-dependent phosphorylation of Gin4 and cause 

a failure in control of cell growth. 

Hyperphosphorylation of both Gin4 and Hsl1 is dependent upon their kinase 

activity, which suggests that growth-dependent phosphorylation is due to 

autophosphorylation (Altman and Kellogg, 1997; Barral et al., 1999).  Moreover, 

previous studies have suggested that binding of anionic phospholipids to KA1 domains 

can drive formation of an open, active conformation (Wu et al., 2015; Emptage et al., 

2017; 2018).  Together, these observations suggest that anionic phospholipids 

delivered to the growing bud could generate a growth-dependent signal by binding and 

activating Gin4-related kinases.  In this model, the Gin4-related kinases would be 

direct sensors of a critical event that drives cell growth (i.e. delivery of anionic 

phospholipids to the plasma membrane).   

Alternative models are possible.  For example, binding to anionic phospholipids 

could help bring Gin4-related kinases to the bud neck where they receive growth-

dependent signals from other kinases.  Distinguishing models will require a better 

understanding of the molecular mechanisms that drive growth-dependent 

phosphorylation of Gin4-related kinases.     

The KA1 domain binds preferentially to phosphatidylserine but can also bind 

other anionic phospholipids, such as phosphatidylinositol (Moravcevic et al., 2010; Wu 

et al., 2015).  In contrast, the LactC2 domain appears to bind only to 

phosphatidylserine (Shao et al., 2008).  The fact that the KA1 domain can be 

functionally replaced by the LactC2 domain therefore suggests that binding to 
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phosphatidylserine is sufficient to generate or relay a growth-dependent signal.  

Phosphatidylserine is a low abundance lipid that is preferentially localized to the 

growing bud (Fairn et al., 2011; Moravcevic et al., 2010).  Phosphatidylserine is also 

preferentially localized to sites of membrane growth in fission yeast (Haupt and Minc, 

2017).   

 Cells that completely lack phosphatidylserine can be made by deleting the 

CHO1 gene, which encodes the enzyme that catalyzes the last step in synthesis of 

phosphatidylserine.  However, interpretation of the phenotype caused by loss of 

phosphatidylserine is complicated by several factors.  First, loss of phosphatidylserine 

causes increased synthesis of phosphatidylinositol, an anionic phospholipid that could 

compensate for some functions of phosphatidylserine, including binding to KA1 

domains (Hikiji et al., 1988; Matsuo et al., 2007).  In addition, phosphatidylserine is a 

precursor in one of the major pathways used to synthesize phosphatidylethanolamine 

(Klug and Daum, 2014).  In both budding yeast and fission yeast, cells that lack 

phosphatidylserine are barely viable (Hikiji et al., 1988; Matsuo et al., 2007).  In fission 

yeast, the slow growth caused by loss of phosphatidylserine can be rescued by 

inclusion of ethanolamine in the growth media (Matsuo et al., 2007).  Cells grown 

under these conditions are abnormally large, consistent with the idea that growth-

dependent signals generated by phosphatidylserine are used to determine when 

sufficient growth has occurred (Haupt and Minc, 2017).   
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Growth-dependent signaling suggests a broadly relevant mechanism for control 

of cell growth and size  

Theoretical analysis has shown that cell size control can be achieved by an 

“adder” mechanism, in which a constant increment of growth is added during each cell 

cycle (Campos et al., 2014). In the adder model, cells measure growth, rather than 

size.  Adder behavior has been reported in cells ranging from bacteria to vertebrates, 

yet a mechanistic explanation for how growth could be measured has remained elusive 

(Cadart et al., 2018b; Campos et al., 2014).  Our discovery that growth-dependent 

events drive proportional activation of Gin4-related kinases suggests that they could 

work in an adder mechanism that measures bud growth.  Our results further suggest 

that delivery of signaling lipids to sites of growth could be the critical event that is 

monitored to measure bud growth.  This kind of growth-dependent signaling could be 

broadly relevant, as it would be readily adaptable to cells of diverse size and shape.  

It could also influence cell shape by controlling the extent of growth at specific locations 

on the cell surface.  Further analysis of the mechanisms that drive growth-dependent 

signaling should yield new insights into control of cell growth and size. 
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Materials and Methods 

Yeast strain construction, media, and reagents 

All strains are in the W303 background (leu2-3,112 ura3-1 can1-100 ade2-1 

his3-11,15 trp1-1 GAL+ ssd1-d2).  The additional genetic features of strains are listed 

in Table 1.  Cells were grown in YP medium (1% yeast extract, 2% peptone, 40 mg/liter 

adenine) supplemented with 2% dextrose (YPD), or 2% glycerol and 2% ethanol 

(YPG/E).  For live cell imaging, cells were grown in complete synthetic medium (CSM) 

supplemented with 2% dextrose and 40 mg/ml adenine.  

Gene deletions and C-terminal epitope tagging was performed by standard 

PCR amplification and homologous recombination (Longtine et al., 1998; Janke et al., 

2004; Lee et al., 2013).  gin4-∆KA1-LactC2 constructs integrated at the GIN4 locus 

were created by gene splicing with overlap extension (Horton et al., 1990).  Briefly, 

LactC2 fragments were PCR amplified from the plasmids pKT2100 or pKT1995 

(Takeda et al., 2014) with 40bp of flanking sequence at the 5’ end that was 

homologous to the GIN4 ORF just upstream of the KA1 domain (amino acids 1007-

1142) using oligos Gin4-39 and Gin4-40 (Table 2).  The 3xHA::His3MX6 fragment was 

amplified from pFA6a-3HA-His3MX6 (Longtine et al., 1998b) with 5’ homology to the 

terminal sequence of LactC2 and 3’ homology to the DNA sequence just downstream 

of the Gin4 ORF using primers Gin4-38 and Gin4-41.  The two fragments were then 

gel purified, annealed to each other and elongated for 15 PCR cycles in the absence 

of primers, followed by PCR amplification using primers Gin4-38 and Gin4-39.  The 

resulting fragments were then transformed into wild type cells and correct integrants 

were identified by western blotting with anti-HA antibody.  To create the GFP-tagged 

versions of the gin4-∆KA1-LactC2 constructs, GFP-His3MX6 was amplified from 



 

53 

pFA6a-GFP-His3MX6 (Longtine et al., 1998b) and spliced to LactC2 as described 

above.  

To generate strains with an AID tag on GIN4 and/or HSL1, the HSL1 gene was 

tagged at the C-terminus with an AID tag marked with KanMX6 in a parent strain that 

has two copies of the TIR1 gene.  The KanMX6 marker was then replaced by a TRP1 

marker.  Next, a second AID tag marked with KanMX6 was incorporated at the GIN4 

locus.  The SPC42 gene in all four AID-tagged strains was fused to GFP at the C-

terminus using standard PCR and homologous recombination. The parent strain that 

contains 2xTIR1 was used as the control strain and was modified to express 

endogenous SPC42 fused with yeast-optimized mRuby2 (yomRuby2).   Auxin was 

dissolved in 100% ethanol to make a 50 mM stock solution.  

 

Cell cycle time courses and Western blotting  

Cell cycle time courses were carried out as previously described (Harvey et al., 

2011b).  Briefly, cells were grown to log phase at room temperature overnight in YPD 

or YPG/E to an optical density (OD600) of 0.5 - 0.7.  Cultures were adjusted to the same 

optical density and were then arrested in G1 phase by incubation in the presence of 

0.5 µg/mL a factor at room temperature for 3 hours.  Cells were released from the 

arrest by washing 3 times with fresh YPD or YPG/E.  All time courses were carried out 

at 25˚C unless otherwise noted, and a factor was added back at 70 minutes to prevent 

initiation of a second cell cycle.  For experiments involving auxin-mediated destruction 

of proteins, a single culture synchronized in G1 phase was split into two culture flasks 

and 0.5 mM auxin was added to one flask at 20 minutes after release from the G1 

phase arrest.  An equivalent volume of ethanol was added to the control flask.   
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For western blotting, 1.6 mL sample volumes were collected in screw cap tubes 

and centrifuged at 13,000 rpm for 30 sec.  After discarding the supernatant, 200 µL 

acid washed glass beads were added to the tubes and the samples were frozen in 

liquid nitrogen.  Cells were lysed in 140 µL sample buffer (65 mM Tris HCl, pH-6.8, 3% 

SDS, 10% glycerol, 50 mM sodium fluoride, 100 mM ß-glycerophosphate, 5% ß-

mercaptoethanol, and bromophenol blue) supplemented with 2 mM PMSF 

immediately before use.  For experiments involving immunoblotting for Gin4-AID 

proteins, the sample buffer also included the protease cocktail LPC (1 mg/mL 

leupeptin, 1 mg/mL pepstatin, 1 mg/mL chymostatin dissolved in dimethylsulfoxide; 

used at 1/500 dilution).  Sample buffer was added to cells immediately after they were 

removed from liquid nitrogen and the cells were then lysed in a Mini-beadbeater 16 

(BioSpec) at top speed for 2 min.  After a brief centrifugation, the samples were placed 

in a boiling water bath for 5 min and were then centrifuged again at 13,000 rpm for 3 

min before loading onto SDS-PAGE gels.  SDS PAGE was carried out as previously 

described (Harvey et al., 2011b).  10% polyacrylamide gels with 0.13% bis-acrylamide 

were used for analysis of Gin4, Clb2, and Nap1 (loading control).  9% polyacrylamide 

gels with 0.14% bis-acrylamide were used for Hsl1 and Swe1 blots.  Proteins were 

immobilized onto nitrocellulose membranes using wet transfers for 1h 45 min.  Blots 

were probed with the primary antibody at 1-2 µg/mL at room temperature overnight in 

5% milk in PBST (1x phosphate buffered saline, 250 mM NaCl, 0.1% Tween-20) with 

0.02% sodium azide.  All the primary antibodies used in this study are rabbit polyclonal 

antibodies generated as described previously (Altman and Kellogg, 1997a; Kellogg 

and Murray, 1995; Mortensen et al., 2002; Sreenivasan and Kellogg, 1999).  Primary 

antibodies were detected by an HRP-conjugated donkey anti-rabbit secondary 



 

55 

antibody (GE Healthcare; # NA934V) incubated in PBST for 1h at room temperature.  

Blots were rinsed in PBS before detection via chemiluminescence using ECL reagents 

(Advansta; #K-12045-D50) with a Bio-Rad ChemiDoc imaging system.  

 

Coulter counter analysis 

Cell cultures were grown in 10 mL YPD medium to an OD600 between 0.4 - 0.6.  

Cells were fixed by addition of 1/10 volume of 37% formaldehyde to the culture 

medium followed by incubation at room temperature for 1h.  Cells were then pelleted 

and resuspended in 0.5 mL PBS containing 0.02% sodium azide and 0.1% Tween-20 

and analyzed on the same day.  Cell size was measured using a Coulter counter 

(Channelizer Z2; Beckman Coulter) as previously described (Artiles et al., 2009; 

Jorgensen et al., 2002).  Briefly, 40 μL of fixed cells were diluted in 10 mL diluent 

(Isoton II; Beckman Coulter) and sonicated for 5 pulses of approximately 0.5 second 

each at low power.  The Coulter Counter data shown in the figures represents the 

average of 3 biological replicates that is each the average of 3 technical replicates.   

For Fig. 7 C the strains were grown to log phase overnight at room temperature, 

diluted to OD600 - 0.1 in 5 mL fresh YPD, and then incubated for 4-5 h at 30˚C to 

observe temperature-dependent phenotypes of the mutants.  

 

Microscopy  

For DIC imaging, cells were grown to log phase in YPD and fixed in 3.7% 

formaldehyde for 30 min and then resuspended in PBS with 0.1% Tween-20 and 

0.02% sodium azide.  Images were obtained using a Zeiss-Axioskop 2 Plus 

microscope fitted with a 63x Plan-Apochromat 1.4 n.a. objective and an AxioCam HR 
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camera (Carl Zeiss, Thornwood, NY).  Images were acquired using AxioVision 

software and processed on Fiji (Schindelin et al., 2012).  

For live cell time-lapse imaging, the control strain (DK3510) and AID-tagged 

strains (DK3307, DK3308, DK3327 or DK3330) were grown in CSM overnight to an 

OD600 of 0.1 - 0.2 and then arrested in G1 phase with a factor.  The control and the 

AID-tagged strains were mixed in a 1.6 mL tube and then washed 3X in CSM 

prewarmed to 30˚C to release the cells from the G1 phase arrest.  After resuspending 

the cells in CSM, approximately 200 µL cells were immobilized onto a concanavalin 

A-treated chambered #1.5 Coverglass system (Labtek-II; Nunc™#155409) for 5 min.  

Unbound cells were washed away by repeated washes with CSM.  The cells were then 

incubated in 500 µL CSM at 27˚C for the duration of the imaging.  Auxin was added to 

the cells to a final concentration of 0.5 mM 20 minutes after the first wash used to 

release the cells from the a factor arrest. 

Scanning confocal images were acquired on a Zeiss 880 confocal microscope 

running ZEN Black software using a 63x/1.4 n.a. Plan Apo objective.  The microscope 

was equipped with a heat block stage insert with a closed lid and exterior chamber for 

temperature control.  The microscope was allowed to equilibrate at the set temperature 

of 27˚C for at least 1h to ensure temperature stability prior to imaging.  Definite Focus 

was used to keep the sample in focus during the duration of the experiment.  1 x 2 

tiled z-stack images were acquired every 3 min.   Zoom and frame size were set to 

0.8x magnification to achieve a consistent pixel area of 1024 x 1024 pixels in XY and 

pixel dwell time was 0.5 µs.  Optical sections were taken for a total of 14 z-planes 

every 0.37 μm with frame averaging set to 2, to reduce noise.  488 nm laser power 

was set to 0.2 % and the 561 nm laser power was set to 1% to minimize cell damage.  
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The gain for GFP, RFP and bright field was set to 550, 750 and 325, respectively.  The 

same gain settings were used for each experiment.  GFP signal was acquired on a 

GaAsP detector and collected between 498 nm - 548 nm.  Brightfield images were 

collected simultaneously.  RFP signal was acquired on a GaAsP detector and collected 

between 577 nm - 629 nm. 

Initiation of metaphase is defined as the time at which the spindle poles move 

to a distance of 1-2 uM apart in the mother cell (Leitao and Kellogg, 2017b).  Initiation 

of anaphase is marked by further separation of spindle poles and migration of one 

spindle pole into the daughter cell.  Completion of anaphase correspond to the time 

when the spindle poles reach their maximal distance apart.   

To visualize the localization of Gin4 constructs fused to GFP, cells were grown 

in CSM overnight, fixed in 3.7% formaldehyde for 15 min, and then resuspended in 

500 µL 1x PBST. Images were acquired on a spinning disk confocal microscope with 

a Solamere system running MicroManager* (Edelstein et al., 2014).  The microscope 

was based on a Nikon TE2000 stand and Coherent OBIS lasers.  We used a 100x/1.4 

n.a. Plan Apo objective for Fig. 6 E and a 63x/1.4 Plan Apo objective for data collection 

in Fig. S5.  Pixel sizes were 0.11 µm in X,Y and z-stack spacing was set to 0.5 µm 

with a total of 17 z-slices. GFP was excited at 488 nm and collected through a 

525/50nm band pass filter (Chroma) onto a Hamamatsu ImageEMX2 EMCCD 

camera.  Gain levels were set to 200 to maximize signal without hitting saturation.  

GFP and brightfield images were collected sequentially.  

 

Image analysis  
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All images were analyzed on Fiji (Schindelin et al., 2012).  For visualization of 

GFP-tagged Gin4 constructs, a sum projection of z-slices was used.  Movies for the 

time-lapse were processed as previously described(Leitao and Kellogg, 2017b). The 

bright field images were processed using the “Find Focused Slices” plugin available 

on Fiji to create a stack with the focused slice +/- one slice for each timepoint.  A z-

projection with sum of slices was performed on this stack and then bud volumes were 

determined using the plugin BudJ (Ferrezuelo et al., 2012).  

The timings of cell cycle events were determined as previously reported (Leitao 

and Kellogg, 2017b).  Briefly, bud initiation was manually determined by the 

appearance of a protrusion on the surface of the mother cell.  The initiation of 

metaphase was marked by the appearance of separation of spindle poles to 2-3 

microns apart.  Initiation of anaphase was marked by further separation of the spindle 

poles and segregation of one of the poles into the daughter cell.  We defined 

completion of anaphase as the point at which the spindle poles reached their maximal 

distance apart.   

For a quantitative comparison of the localization of GFP-tagged Gin4 

constructs in Fig. S5, a z-projection with sum of slices was performed on the images 

and an elliptical ROI was drawn around the bud neck. The maximum pixel intensity 

was determined for each cell after subtracting the background pixel intensity.  

 

Statistical analysis  

Data acquired from the image analysis were plotted as scatter dot plots using 

GraphPad Prism.  The scatter plots show the data distribution along with the mean 

and standard deviation for each strain.  For all scatter dot plots, the unpaired t-test was 
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calculated using the Mann-Whitney test for non-Gaussian distributions and the two-

tailed p-values have been mentioned.  

Table 1:  List of strains used in Chapter 2 

Strain Mating 
type 

Genotype Source 

DK 186 a bar1∆ (Altman and 
Kellogg, 
1997a) 

DK 3418 a bar1∆  HSL1-6XHA::His3MX6 This study 

SH 24 a bar1∆  swe1∆::URA3 (Harvey and 
Kellogg, 
2003) 

DK 1600 a bar1∆  swe1∆::His3MX6  sec6-4::KanMX6 (Anastasia et 
al., 2012b) 

DK 3510 a bar1∆  his3::His3MX6+TIR1  
leu2::LEU2+TIR1  
 SPC42-yomRuby2::KanMX6  

This study 

DK 3307 a bar1∆  his3::His3MX6+TIR1  
leu2::LEU2+TIR1   
SPC42-GFP::HphNTI gin4-AID::KanMX6 

This study 

DK 3308 a  bar1∆  his3::His3MX6+TIR1  
leu2::LEU2+TIR1  
 SPC42-GFP::HphNTI hsl1-AID::TRP 

This study 

DK 3327 a bar1∆  his3::His3MX6+TIR1  
leu2::LEU2+TIR1   
SPC42-GFP::HphNTI gin4-AID::KanMX6  
hsl1-AID::TRP1 

This study 

DK 3330 a bar1∆  his3::His3MX6+TIR1  
leu2::LEU2+TIR1   
SPC42-GFP::HphNTI gin4-AID::KanMX6  
hsl1-AID::TRP1  swe1∆::URA3 

This study 

DK 3350 a bar1∆  GIN4-GFP:: His3MX6  SPC42-
yomRuby2::KanMX 

This study 

DK 3790 a bar1∆  gin4-∆KA1-GFP::His3MX6  SPC42-
yomRuby2::KanMX 

This study 

DK 3351 a bar1∆  gin4-∆KA1-LactC2-GFP:: His3MX6  
SPC42-yomRuby2::KanMX 

This study 

DK 3823 a bar1∆  gin4-∆KA1-LactC2AAA-GFP::His3MX6  
SPC42-yomRuby2::KanMX 

This study 
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DK 888 a bar1∆  gin4∆::LEU2 (Mortensen et 
al., 2002) 

HT159 a bar1∆  hsl1∆::His3MX6 This study 

DK3784 a bar1∆  gin4∆::LEU2  hsl1∆::His3MX6 This study 

DK2158 a bar1∆  gin4∆::LEU2  hsl1∆::HphNTI  
swe1∆::URA3   

This study 

DK 373 a bar1∆  GIN4-3xHA::TRP1   This study 

DK 2822 a bar1∆  gin4-∆KA1-3xHA::His3MX6   This study 

DK 3286 a bar1∆  gin4-∆KA1-LactC2-3xHA:: His3MX6   This study 

DK 3295 a bar1∆  gin4-∆KA1-LactC2AAA-3xHA::His3MX6   This study 

DK3621 a bar1∆  GIN4-3xHA::TRP1  hsl1∆::HphNTI This study 

DK3624 a bar1∆  gin4-∆KA1-3xHA::His3MX6  
hsl1∆::HphNTI   

This study 

DK3627 a bar1∆  gin4-∆KA1-LactC2-3xHA:: His3MX6  
hsl1∆::HphNTI   

This study 

DK3630 a  bar1∆  gin4-∆KA1-LactC2AAA-3xHA::His3MX6  
hsl1∆::HphNTI   

This study 

 

Table 2: List of primers used in Chapter 2 

Primer Name Primer sequence (5’ to 3’) 
Gin4-39 TGTGCAAAAAATTAGGGAAAAAAATGCTGGCTCGCAGGCATG

CACTGAACCCCTAGGCCT 
Gin4-40 ACAGCCCAGCAGCTCCACT 
Gin4-41 GCACAACCGTATCACCCTGCGAGTGGAGCTGCTGGGCTGTC

GGATCCCCGGGTTAATTAA 
Gin4-38 AACGAAGGAGACAAAACATGATTGCATTACATTAGCACTAGA

ATTCGAGCTCGTTTAAAC 
 
 

Table 3: List of plasmids used in Chapter 2 

Plasmid Name  Details  Source  
pKT1995 pRS306-GFP-LactC2AAA-URA3 (Takeda et al., 2014) 
pKT2100 pRS306-GFP-LactC2-URA3 (Takeda et al., 2014) 
pAID1 AID-tagging genes at the C-

terminus; Kanamycin resistance 
(Nishimura et al., 2009) 
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pTIR2 Plasmid containing the osTIR1 

under the GPD1 promoter.  After 
PmeI digestion, recombines at 
the HIS3 locus 

(Nishimura et al., 2009) 

 

pTIR4 Plasmid containing the osTIR1 
under the GPD1 promoter.  After 
PmeI digestion, recombines at 
the LEU2 locus 

(Nishimura et al., 2009) 

 

pFA6a-
yomRuby2::KanMx 

Yeast-optimized (yo) mRuby2 (Lee et al., 2013a) 

 

 
Supplementary information:  
 
Video 1:  Time-lapse imaging of 2xTIR1 and gin4-AID hsl1-AID cells.  
The two strains were mixed together prior to imaging as described in Materials and 
methods.  The spindle pole bodies were differentially tagged in the two strains.  The 
cells in top right corner show 2xTIR1 cells with mRuby2-tagged SPC42 and the cells 
in the bottom left corner show gin4-AID hsl1-AID with GFP-tagged SPC42. The gin4-
AID hsl1-AID cells undergo a prolonged metaphase delay with polarized bud growth 
while the 2xTIR1 cells begin the next cell cycle. The cells were imaged using time-
lapse confocal microscopy with image acquisition every 3 min.  The movie was 
converted to AVI format using Fiji and shows the time-lapse at a speed of 5 frames 
per second (fps).  Scale bar represents 5 µm.   
 
Video 2:  gin4-AID hsl1-AID cells show spindle pole and cytokinesis defects. 
A tile showing 2xTIR1 cells with mRuby2-tagged SPC42 and gin4-AID hsl1-AID cells 
with GFP-tagged SPC42 imaged together.  Cells were imaged using time-lapse 
confocal microscopy with image acquisition every 3 min.  The gin4-AID hsl1-AID 
cells exhibit defects in bud separation and results in the formation of cell chains. 
These defects are also accompanied by spindle defects (magenta arrows) in the 
second cell cycle.  The movie was converted to AVI format using Fiji and shows the 
time-lapse at a speed of 5 fps.  
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CHAPTER 3 (unpublished) : Additional experiments related to Chapter 2  

In this chapter I will show additional experiments that explore the role of Gin4 

in regulating cell growth, and the underlying molecular signals that regulate Gin4 

activity.  These experiments were performed in support of or in addition to Chapter 2.  

 

Results 

Gin4 influences the location of cell growth most likely by regulating the formin 

Bnr1 

In chapter 2, I showed that inactivation of the Gin4-related kinases caused a loss 

of cell growth control such that the daughter bud continues to grow in a polar manner 

during mitosis, while the mother cell undergoes inappropriate isotropic growth even 

after bud initiation (Fig. 2.1-2.3).  The continuation of mother cell growth throughout 

the cell cycle was especially surprising since it had not been reported previously, even 

though large cell size was a commonly observed phenotype for cells lacking the Gin4-

related kinases.  Moreover, my data also showed that these effects were regulated by 

the Gin4-related kinases in a Swe1-independent pathway.  So, I sought to explore 

effectors downstream of Gin4 that could help explain this observation.  

There are two formin proteins in budding yeast: Bni1 and Bnr1 that are 

homologous to the mammalian formins (Chesarone et al., 2010).  Formins help 

nucleate actin cables for the delivery of secretory vesicles to the sites of growth. 

(Pruyne et al., 2004b). These actin cables are organized into two kinds of structures 

in yeast: (i) cables formed along the mother-bud axis that drive growth of the daughter 

bud and, (ii) cables that are directed to the bud neck to facilitate the formation of the 

actomyosin ring at cytokinesis (Ozaki-Kuroda et al., 2001; Vallen et al., 2000).  Bni1 is 
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a downstream effector of the Rho GTPase Cdc42 (which establishes the site of bud 

emergence) and also interacts with the polarisome complex to help establish cell 

polarity and bud growth (Evangelista et al., 1997; Sagot et al., 2002).  Inactivation of 

Bni1 causes loss of cell polarity and cells are thus more spherical  (Ozaki-Kuroda et 

al., 2001).  On the other hand, Bnr1 is tethered to the septin proteins at the bud neck, 

and helps organize actin cables that link the mother cell to the bud neck. (Pruyne et 

al., 2004b).  bnr1∆ mutants have no significant defects in bud growth but 

hyperactivation of Bnr1 has been observed to cause the formation of hyperelongated 

buds (Chesarone et al., 2009).   

 Interestingly, Gin4 is essential for the localization and activation of the Bnr1 

protein (Buttery et al., 2012a).  Since my data indicated that inactivation of Gin4 

caused cell growth defects and that formins are essential for proper cell growth, I 

hypothesized that Gin4 inactivation causes inappropriate cell growth through 

misregulation of Bnr1 and/or Bni1.  Here, I utilized the auxin-inducible degron for Gin4.  

Inactivation of Gin4 using 1 mM auxin caused a nearly complete dephosphorylation of 

Bnr1 within 60 mins in asynchronous populations (Fig. 3.1 A).  Although Gin4 

regulation of Bni1 had not been previously reported, the proportion of 

dephosphorylated:phosphorylated Bni1 gradually increased upon Gin4 inactivation 

beginning at 60 mins (Fig 3.1 B). Overall, the data suggest that inactivation of Gin4 

could be most likely causing misappropriate cell growth through Bnr1 and perhaps 

also Bni1, although more experiments will be needed to validate these findings.  
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Figure 3.1: Inactivation of Gin4 affects the formins Bnr1 and Bni1. 
Log phase cultures of gin4-AID cells expressing either 3xHA-tagged Bnr1 (A) or Bni1 
(B) were split into half and treated with either 1 mM auxin or an equivalent volume of 
ethanol.  The cultures were then incubated in a shaking water bath at 25˚C and 
samples were collected at the timepoints indicated.  The harvested samples were 
probed by western blotting using a polyclonal HA antibody.  Nap1 was used as a 
loading control 
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Anchoring Gin4 to the plasma membrane helps restore partial Gin4 function 

 In chapter 2, I showed that the C-terminal KA1 domain of Gin4 is essential for 

binding to anionic phospholipids, which could be generating a growth-dependent 

activation signal that promotes Gin4 hyperphosphorylation, possibly through its 

autophosphorylation.  Alternatively, the KA1 domain could be critical in simply 

localizing Gin4 to the bud neck so that Gin4 can receive growth-dependent signals 

from other kinases.  If the latter case is true, then cells lacking the KA1 domain of Gin4 

could still have normal bud growth and mitotic progression as long as Gin4 can localize 

to the bud neck.  One approach to tether Gin4 to the plasma membrane in the absence 

of the KA1 domain is by substituting the KA1 domain of endogenous GIN4 with the 

CAAX motif (KCAIL) at the C-terminus.  The CAAX motif is a series of amino acids 

(C= Cysteine, A= any aliphatic amino acid, X= L or E , for recognition by the enzyme 

geranylgeranytransferase), which when fused to the C-terminus of any protein, 

promotes its prenylation and consequently helps anchor the prenylated protein to the 

membrane.  This approach has been used to synthetically tether various proteins to 

the membrane (Berchtold and Walther, 2009; Meca et al., 2019; Tang et al., 2014).  

Here, I used KCAIL as the CAAX motif where, addition of the lysine helps improves 

the efficiency of the CAAX motif.  

 In log phase cells, fusing the CAAX box to gin4-∆KA1 partially restored 

phosphorylation of Gin4 (Fig. 3.2 A).  Moreover, gin4-∆KA1-CAAX cells also rescued 

the large size phenotype seen in gin4-∆KA1 cells (Fig. 3.2 B and Fig. 2.7 C).  In 

addition, the gin4-∆KA1-CAAX cells had normal cell morphology (data not shown).   

I also analyzed the cell cycle dynamics of gin4-∆KA1-CAAX  cells during a time 

course.  Gin4-∆KA1-CAAX shows a very subtle phosphorylation shift and smear at 
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135 mins (Fig. 3.2 C; arrowheads) compared to the log phase cells.  Moreover, while 

Clb2 expression began at the same time in both strains, mitotic progression was 

delayed in the gin4-∆KA1-CAAX cells (Fig. 3.2 D) even though Gin4-∆KA1-CAAX 

partially localizes to the bud neck (Fig. 3.2 E; arrowheads). Together, the data suggest 

that while anchoring Gin4 to the plasma membrane is sufficient to restore some 

functions of Gin4 such as normal growth phenotype of the buds, it failed to ensure a 

timely mitotic progression.   
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Figure 3.2: Anchoring Gin4 to the plasma membrane helps restore partial Gin4 
function. 
(A) Wildtype, gin4-∆KA1-3xHA and gin4-∆KA1-KCAIL (labeled as gin4-∆KA1-CAAX)  
cells were grown to log phase and samples were collected to probe for Gin4 by 
western blotting. (B) Wildtype and gin4-∆KA1-KCAIL cells were grown in YPD 
overnight and the cell sizes were measured for the population by Coulter counter. (C 
and D) The same strains were also synchronized in G1 using a-factor and released 
from the G1 arrest.  The cultures were then incubated in a shaking water bath at 22˚C.  
Samples were collected at the indicated timepoints and probed for Gin4 (C) and the 
mitotic marker Clb2 (D). (E) The indicated strains were fixed in formaldehyde and 
immunostained for Gin4 and DAPI. 
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Dephosphorylation of Gin4 at the end of mitosis is dependent on the Cdc14 

phosphatase  

Our lab previously found that Gin4 phosphorylation and its kinase activity peak 

in mitosis, roughly coinciding with the timing of the metaphase-anaphase transition 

(Fig. 2.5 and (Altman and Kellogg, 1997a)).  Gin4 is subsequently dephosphorylated 

and remains so until the next cell cycle.  So far, it is not clear how Gin4 is 

dephosphorylated at the end of mitosis and if the timing of this dephosphorylation 

affects mitotic progression.  

We sought to identify the phosphatase that dephosphorylates Gin4 in late 

mitosis.  In a candidate phosphatase screen, I found that inactivation of the Cdc14 

phosphatase caused rapid hyperphosphorylation of Gin4 within 20 minutes (Fig. 3.3 

A).  Cdc14 seemed a promising candidate since it is the primary phosphatase that 

drives exit from mitosis (Bloom et al., 2011; Visintin et al., 1998).  Inactivation of Cdc14 

caused  a prolonged mitosis and failure to dephosphorylate Gin4 in a timely manner 

(Fig. 3.3 B).  Together, the data confirm that dephosphorylation of Gin4 is dependent 

on Cdc14 phosphatase.  
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Figure 3.3: Dephosphorylation of Gin4 at the end of mitosis is dependent on the 
Cdc14 phosphatase.  
(A) Wildtype and cdc14-1 cells were grown in in YPD overnight and then shifted to the 
restrictive temperature of 34˚C.  Samples were collected at the indicated timepoints  
and probed for Gin4 by western blotting.  (B) Cells of the indicated genotype were 
arrested in G1 using a-factor, released in YPD and then shifted to the restrictive 
temperature 10 minutes after the release from G arrest.  Samples were collected at 
the indicated timepoints and probed for Gin4 and Clb2.  
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I next sought to determine how failure to dephosphorylate Gin4 affects mitotic 

progression.  While there are reports of positive interactions in other models, Gin4 has 

never been shown to directly bind Swe1 in budding yeast (Guzmán-Vendrell et al., 

2015; Opalko et al., 2019).  Despite the lack of physical data, my results from chapter 

2 showed that lack of Gin4-related kinases caused Swe1 to remain in a partially 

phosphorylated state (Fig. 2.4), which corresponds to the hyperactive form of Swe1.  

These data suggest a model in which the gradual increase in Gin4 activity during 

mitosis causes a corresponding increase in Swe1 phosphorylation leading to its 

inactivation, which allows cells to transition from metaphase to anaphase.  Swe1 is 

ultimately degraded by the anaphase promoting complex (APC) (McMillan and Lew, 

1999; Sia et al., 1998). 

I assayed Swe1 phosphorylation during the cell cycle after inactivation of 

Cdc14.  Previous studies demonstrated a direct interaction between Cdc14 and Swe1 

and that Swe1 dephosphorylation is driven by Cdc14 in vitro (Raspelli et al., 2015).  

Here, inactivation of Cdc14 caused Swe1 to undergo a more extensive 

hyperphosphorylation that persisted for the duration of mitosis (Fig. 3.4).  It is likely 

that the failure to degrade Swe1 causes cells to delay in mitosis.  Based on results 

from Fig, 3.3 and 3.4, this could be explained in one of two ways : Cdc14 opposes 

normal hyperphosphorylation of Swe1 by Gin4, so that when Cdc14 is inactivated, 

Gin4 hyperphosphorylate Swe1.  Conversely, inactivation of Gin4 should cause 

premature Swe1 dephosphorylation by Cdc14.  Alternatively, Cdc14 could bind and 

inhibit Gin4 activity, and upon Cdc14 inactivation, Gin4 would become hyperactive 

causing Swe1 hyperphosphorylation.  To test these hypotheses, I analyzed the effect 

of Cdc14 inactivation in gin4∆ mutants.  Swe1 failed to become fully dephosphorylated 
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and persisted in a partially phosphorylated state throughout the cell cycle even as cells 

exited from mitosis (Fig 3.4 A and B).  These data point to the idea that Cdc14 fails to 

interact directly with Swe1 in the absence of Gin4, although more in vitro experiments 

will be needed to corroborate these findings. 
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Figure 3.4 Cdc14-mediated Swe1 dephosphorylation fails to occur in gin4∆ 
mutants. 
Wildtype, cdc14-1 and cdc14-1 gin4∆ cells were arrested in G1, released from the G1 
arrest at 25˚C and then shifted to 34˚C at 45 minutes.  Samples were collected at the 
indicated timepoints and probed for Swe1 (A) and Clb2 (B)  by western blotting.  
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Gin4 (Cdr2) hyperphosphorylation in fission yeast is proportional to cell 

growth  

To test whether the Gin4-based growth sensing model could be applicable to 

other models, I investigated the behavior of Cdr2 (Gin4 homolog) in fission yeast as 

cells go through two successive cell cycles.  Cells expressing endogenous Cdr2 with 

a 3xHA-epitope tag were synchronized through centrifugal elutriation to harvest small 

sized cells and were then incubated at 25˚C in a shaking water bath.  Samples were 

collected every 20 minutes until cells underwent two successive rounds of septation.  

These samples were then probed for Cdr2-3xHA by western blotting and the septation 

index was used to confirm cell synchrony (Fig. 3.5).  Similar to Gin4, Cdr2 undergoes 

gradual hyperphosphorylation, reaching peak phosphorylation at 100 and 240 

minutes, followed  by subsequent dephosphorylation by 120 and 260 minutes 

respectively.  The timing of dephosphorylation coincided with the time at which almost 

50% of the cells exhibit septation, indicating that they have undergone cytokinesis 

(Lucena et al., 2017a).  Together, these data indicate that Cdr2 has the potential to 

act as a growth sensor in fission yeast through a model very similar to the Gin4-related 

kinases.  
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Figure 3.5: Cdr2 hyperphosphorylation in fission yeast is proportional to cell 
growth. 
Fission yeast cells expressing Cdr2-3xHA were grown to log phase overnight in YES 
media and elutriated to harvest small-sized cells.  They were then incubated in a 
shaking water bath at 25˚C and samples were collected for western blotting and 
calcofluor staining every 20 minutes for 5 hours. (A) Samples were probed for Cdr2-
3xHA using a polyclonal HA antibody by western blotting. (B) The percentage of 
septated cells at each timepoint was determined by calcofluor staining. n=200 for each 
timepoint.  
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Discussion 

 In this chapter, I demonstrated that Gin4 inactivation causes complete 

dephosphorylation of the Bnr1 formin within 1 hour of auxin addition, while 

dephosphorylation of Bni1 happens to a lesser extent.  Previous reports have shown 

a direct interaction between Bnr1 and Gin4 and that Gin4 is essential for the 

recruitment of Bnr1 to the bud neck (Buttery et al., 2012a).  Moreover, defects in gin4∆ 

mutants can be rescued by overexpression of Bnr1.  Together, these findings support 

a model where loss of the Gin4-related kinases cause misdirected growth of the 

mother cell through defects in the Bnr1-mediated actin cable network.  

My data further show that the purpose of binding to anionic phospholipids is 

not simply to have Gin4 localized to the bud neck but is also necessary for Gin4 to be 

in prime position to receive lipid signals via their KA1 domains so that they can be 

relayed to mitotic regulators.  The data show that substituting the KA1 domain with the 

CAAX motif partially restored Gin4 localization to the bud neck, which was sufficient 

to restore normal growth of the buds.  This could be most likely attributed to the 

restored assembly of the septin collar and the associated Bnr1 formin that is Gin4-

dependent (Buttery et al., 2012a; Li et al., 2012; Longtine et al., 2000; 1998a).  

Interestingly, the study also showed that cells expressing a Gin4 construct that lacks 

its kinase domain still show normal Bnr1 localization at the bud neck.  Combining these 

findings, the normal cell size distributions for gin4-∆KA1-CAAX cells suggest that Bnr1 

probably binds to the region of Gin4 that links the N-terminal kinase domain to the C-

terminal KA1 domain.  Indeed, studies in the fungi Candida albicans (ca) have found 

that a similar intermediate domain in caGin4 is necessary for assembling the septin 

collar,  which in turn, is essential for the recruitment of Bnr1 in budding yeast  (Au Yong 
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et al., 2016).  Even as the gin4-∆KA1-CAAX cells had normal cell size distributions in 

the cell population, they still displayed a delayed mitotic progression.  These findings 

indicate that gin4-∆KA1-CAAX cells most likely have a reduced growth rate, 

suggesting that the KA1 domain could also be essential in functions independent of 

membrane anchoring.  The Gin4-related kinases have been previously shown to 

control growth rate via the TORC2 signaling as discussed previously in Chapter 2 

(Alcaide-Gavilán et al., 2018a).  Since the CAAX motif only partially restores Gin4 

localization to the bud neck, Gin4 is either not in the correct conformation or Gin4 

localized to the cytoplasm could be misregulating other proteins such as those in the 

TORC2 pathway.  Nonetheless, the data support a model where the KA1 domain of 

Gin4 has two functions that are decoupled in the CAAX constructs: (i) regulating 

growth rate and timing of mitotic progression and, (ii) measuring cell growth most likely 

through its interactions with signaling lipids. 

I then searched for signals that inactivate Gin4 in late mitosis.  We found that 

Gin4 dephosphorylation is dependent on the Cdc14 phosphatase.  Cdc14 and Gin4 

have been demonstrated to directly interact with each other in vitro (Au Yong et al., 

2016; Bloom et al., 2011).  In fact,  a nucleolar-localizing domain was identified in 

caGin4 that associates with Cdc14.  In this study, Gin4 responded to Cdc14 

inactivation rapidly in asynchronous cells.  During the cell cycle, Cdc14 inactivation 

affected both Gin4 and Swe1.  My preliminary findings in this study revealed that  Swe1 

remained partially hyperphosphorylated despite Cdc14 inactivation in gin4∆ mutants.  

This was surprising since Cdc14 has been previously shown to bind to and 

dephosphorylate Swe1 in vitro.  These findings lead to a model where Cdc14 could be 

first driving inactivation of Gin4, diverting Gin4 activity away from Swe1, consequently 
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promoting Cdc14-driven Swe1 dephosphorylation.  Moreover, it could also suggest 

that Swe1 needs to first be hyperphosphorylated in a Gin4-dependent manner, 

followed by  a subsequent inactivation or alternatively, Swe1 activity is modulated by 

the Cdc14-Gin4 complex.  Understanding the interplay between these three proteins 

might be more complicated than previously thought and requires further validation.  In 

either case, the tight regulation of Gin4 and Swe1 by Cdc14 could help ensure that the 

events of mitosis: sufficient bud growth and proper chromosome segregation are 

tightly coordinated before cells can exit from mitosis in a timely manner.  

Finally, I also demonstrated that the fission yeast homolog of Gin4: Cdr2 

undergo gradual hyperphosphorylation during the cell cycle in a manner similar to 

Gin4.  Unlike budding yeast, there is no cell growth during mitosis.  Thus, cells attain 

their full size at the end of G2.  But similar to Gin4, Cdr2 also regulate Wee1 activity 

(Allard et al., 2018b; Guzmán-Vendrell et al., 2015; Opalko et al., 2019)  Cdr2 is thus 

an excellent candidate for functioning as a growth sensor.  In fact, various reports 

already favor a Pom1-Cdr2-Wee1 gradient model as the basis of cell size sensing in 

fission yeast (Bhatia et al., 2014; Martin and Berthelot-Grosjean, 2009; Pan et al., 

2014).  Briefly, Pom1 localized to the cell tips inhibits Cdr2 activity, which is essential 

for inhibiting Wee1 activity. Thus, small sized cells are expected to have high Wee1 

activity that suppresses mitotic entry.  However, as cells grow larger, Pom1 is diffused 

further away from the middle of the cell, creating a concentration gradient that allows 

gradual activation of Cdr2.  Wee1 is subsequently inactivated in short bursts by 

inhibitory Cdr2 phosphorylation that allows mitotic entry.  While there are differing 

opinions in the field about what aspect of cell size (cell length, surface area or volume) 

is the key determinant of the gradient model, the similarities between the Cdr2-based 
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gradient model and our Gin4 model make our currently proposed Gin4 model highly 

promising.  However, unlike the gradient model, our Gin4 model argues that it is cell 

growth rather than cell size that is measured by cells.  
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Materials and Methods 

Yeast strain construction, media, and reagents 

All strains are in the W303 background (leu2-3,112 ura3-1 can1-100 ade2-1 

his3-11,15 trp1-1 GAL+ ssd1-d2).  The additional genetic features of strains are listed 

in Table 4.  Cells were grown in YP medium (1% yeast extract, 2% peptone, 40 mg/liter 

adenine) supplemented with 2% dextrose (YPD), or 2% glycerol and 2% ethanol 

(YPG/E).   

Gene deletions and C-terminal epitope tagging was performed by standard 

PCR amplification and homologous recombination (Longtine et al., 1998; Janke et al., 

2004; Lee et al., 2013).  gin4-∆KA1-CAAX constructs integrated at the GIN4 locus 

were created by gene splicing with overlap extension (Horton et al., 1990).  Briefly, 

primers encoding KCAIL (CAAX box) fragments were PCR amplified with 

approximately 40bp of flanking sequence at the 5’ end that was homologous to the 

GIN4 ORF just upstream of the KA1 domain (amino acids 1007-1142) using oligos 

Gin4-74 (TGTGCAAAAAATTAGGGAAAAAAATGCTGGCTCGCAGGCAAAATGT 

GCTATTTTGTGAGGCGCGCCACTTCTAAA) and Gin4-38 (Table 2) that amplifies 

the 3’UTR of Gin4 immediately after the stop codon, followed by the KanMX6 

resistance cassette.  The resulting fragments were then transformed into wild type 

cells and correct integrants were identified by western blotting with the Gin4 antibody.   

To generate strains with a 3xHA-epitope tag on BNR1/BNI1,  standard PCR 

amplification and homologous recombination was performed in the gin4-AID 2xTIR1 

parent strain.  Auxin was dissolved in 100% ethanol to make a 50 mM stock solution 

and used at a concentration of 1 mM in this chapter.   
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The SH 918 strain (cdc14-1) (SLJ250/DOM143) temperature-sensitive strain 

and its control strain (DOM90) were both obtained from the lab of David Morgan 

(Jaspersen et al., 1998).  The cdc14-1 mutation was identified as G323D by 

sequencing.  

 

Cell cycle time courses and Western blotting  

Cell cycle time courses were carried out as previously described (Harvey et al., 

2011b) and in Chapter 2 of this thesis.  For experiments involving Gin4 degradation 

via auxin addition, cells were grown to log phase to an optical density (OD600) of 0.7 

and the single culture was split into two culture flasks. 1 mM auxin was added to one 

flask and an equivalent volume of ethanol was added to the control flask.  1.6mL 

samples were collected at various times and probed by western blotting.  

In the temperature shift experiments involving Cdc14 inactivation, cells were 

grown to log phase overnight to an OD600 of 0.4-0.5 and shifted to the restrictive 

temperature of 34˚C for log phase experiments.  In cell cycle time courses, cells were 

synchronized in G1 using alpha-factor as previously described in Chapter 2.  After 

release from the G1 arrest, cells were grown at room temperature and shifted to 34˚C 

either at 10 mins or 45 mins post release from G1 arrest.  Samples were then collected 

at the indicated time points.  

Western blotting was performed exactly as described in Chapter 2 of this 

thesis.   For experiments involving analysis of Bnr1-3xHA and Bni1-3xHA, the samples 

were lysed in sample buffer supplemented with the protease cocktail LPC (1 mg/mL 

leupeptin, 1 mg/mL pepstatin, 1 mg/mL chymostatin dissolved in dimethylsulfoxide; 

used at 1/500 dilution).  SDS-PAGE was carried out as previously described (Harvey 
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et al., 2011b) and in Chapter 2 of this thesis.  10% polyacrylamide gels with 0.13% 

bis-acrylamide were used for analysis of Gin4, Clb2, and Nap1 (loading control).  9% 

polyacrylamide gels with 0.14% bis-acrylamide were used for Bnr1, Cdr2-3xHA and 

Swe1 blots.  7.5% polyacrylamide gels with 0.17% bis-acrylamide were used for 

probing Bni-3xHA.  Proteins were transferred via wet transfer onto nitrocellulose 

membranes.  Blots were probed with various rabbit polyclonal primary antibodies at a 

final concentration of 1-2 µg/mL at room temperature overnight in 5% milk in PBST (1x 

phosphate buffered saline, 250 mM NaCl, 0.1% Tween-20) with 0.02% sodium azide.  

Primary antibodies were detected by an HRP-conjugated donkey anti-rabbit 

secondary antibody (GE Healthcare; # NA934V) incubated in PBST for 1h at room 

temperature.  Blots were rinsed in PBS before detection via chemiluminescence using 

ECL reagents (Advansta; #K-12045-D50) with a Bio-Rad ChemiDoc imaging system.  

 

Coulter counter analysis 

 Cell size analysis was performed as previously described in Chapter 2 using a 

Beckman coulter counter.  

 

Immunostaining  

 Cells were fixed in 3.7% formaldehyde for 30 mins and washed in PBST.  The 

cells were then prepared for immunostaining by digesting the cell wall using zymolyase 

prepared in PBST-azide supplemented with 2 mM PMSF+ 5 mM b-mercaptoethanol.  

Cells were digested at 30˚C until about 90% cells lose their shiny appearance under 

the microscope, indicating loss of the cell wall.  Cells were then washed twice and 

resuspended in PBST-azide.  A 15 µL cell suspension was added to printed slides  
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treated with 10 µL if 1 mg/mL poly-L-lysine and allowed to adhere for 5 min.  The cells 

were blocked with PBST supplemented with 4% BSA and incubated in a humid 

chamber for 20 min, followed by incubation with the Gin4 primary antibody for 30 min.  

The unbound primary antibody was removed by 4x5 min washes with PBST + 4% BSA 

and then treated with FITC-labeled rabbit secondary antibody for 30 min in the dark.  

After 4x5 min washes with PBST + 4% BSA, the samples were DAPI-stained for 2 min, 

washed 3x and then mounted in mounting solution (Vectashield).  A coverslip was 

placed on the slide and the edges were sealed.  

 

Microscopy  

The immunostained cells were visualized on a spinning disk confocal 

microscope with a Solamere system running MicroManager* (Edelstein et al., 2014).  

The microscope was based on a Nikon TE2000 stand and Coherent OBIS lasers.  We 

used a 63x/1.4 Plan Apo objective for data collection.  FITC staining was visualized 

using the GFP laser that was excited at 488 nm and collected through a 525/50nm 

band pass filter (Chroma) onto a Hamamatsu ImageEMX2 EMCCD camera.   

 

Synchronization of S. pombe cells by centrifugal elutriation  

The fission yeast cells were synchronized by centrifugal elutriation as 

previously described in (Lucena et al., 2017a).  Briefly, cdr2-HA cells obtained from 

the lab of Kathy Gould were grown overnight to log phase in 3 L of YES media at 30˚C.  

Centrifugal elutriation was performed at 25˚C  using a Beckman J6-MI centrifuge.  After 

the elutriation,  small-sized cells synchronized in G2 were resuspended in fresh YES 

media to an OD of 0.2 at 25˚C and samples were collected every 20 min for western 
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blotting and fixing for septation index.  Cells were assayed for synchrony by measuring 

septation index using calcofluor staining as described in (Lucena et al., 2017a).  

Table 4:  List of strains used in Chapter 3 

Strain Mating 
type 

Genotype Source 

DK 186 a bar1∆ (Altman and 
Kellogg, 
1997a) 

DK 3734 a bar1∆ gin4-∆KA1-KCAIL::KanMX6 This study 

DK 2822 a bar1∆  gin4-∆KA1-3xHA::His3MX6   Chapter 2 of 
this study 

SH 917 a bar1∆  (isogeneic control for SH 918) DOM 90 from 
Morgan lab 

SH 918 a bar1∆ cdc14-1 DOM 143 
(Jaspersen et 
al., 1998) 

DK 3353 a bar1∆ cdc14-1 gin4∆::His3MX6 This study 

DK 4021 a bar1∆  his3::His3MX6+TIR1 
leu2::LEU2+TIR1 gin4-AID::TRP1  BNR1-
3xHA::KanMX6 

This study 

DK 4022 a bar1∆  his3::His3MX6+TIR1 
leu2::LEU2+TIR1 gin4-AID::TRP1  BNI1-
3xHA::KanMX6 

This study 

DK 3839  cdr2-HA::KanR KGY 1628 
from the lab 
of Kathy 
Gould 
(Breeding et 
al., 1998) 

  



 

84 

CHAPTER 4 (unpublished) :  Rho1 and PP2ACdc55-Zds1/2 fine-tune Pkc1 

activity to set a growth-threshold for mitotic entry 

Introduction 

Cell growth in budding yeast is tightly controlled.  From the time of bud 

inception in late G1, cell growth is targeted to the incipient bud in a polarized manner 

so that growth is restricted to the tip of the growing bud.  This continues until cells enter 

mitosis at which point, bud growth is directed across entire surface of the bud in an 

isotropic manner (Lew and Reed, 1993).  The decision to switch from polar to isotropic 

growth is coupled to the timing of mitotic initiation.  The time of mitotic entry in turn, is 

controlled by the Swe1 (budding yeast homolog of Wee1) kinase and Cdc25 

phosphatase by regulating the activation of the mitotic Cdk1-cyclin complex (Gould 

and Nurse, 1989; Kumagai and Dunphy, 1991).  Deletion of SWE1 causes cells to 

enter mitosis prematurely at a smaller bud size, while deletion of CDC25 results in a 

prolonged G2 phase where the bud continues to grow in a polar manner. These 

findings suggested a model in which Swe1 and Cdc25 respond to signals that control 

cell size.  However, the upstream signals that link the activity of Wee1 and Cdc25 to 

cell growth or size have remained unknown, so the model has remained controversial.  

Previous work from our lab identified a link between membrane growth and 

mitotic entry in budding yeast.  We found that disrupting membrane growth with a 

temperature-sensitive allele of the exocyst protein SEC6 (sec6-4) arrests cells at G2 

by a pathway that is Swe1-dependent (Anastasia et al., 2012a; Novick et al., 1996).  

Based on our findings, we proposed a “growth-dependent signaling hypothesis”, 

which predicts that the delivery of secretory vesicles to the growing bud initiates a 

checkpoint signal that is proportional to the extent of membrane growth.  The signal is 
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initiated when inactive Rho1 GTPase is delivered to the growing bud tip through the 

secretory pathway, where, it is activated by Rho1 guanine nucleotide exchange factor 

(GEFs)  (Abe et al., 2003).  Active Rho1 then binds and activates Pkc1 and this 

information is relayed down through a signaling cascade (Qadota et al., 1996).  The 

downstream effector molecules, in turn, “read” the extent of growth to regulate Swe1 

and Cdc25 activity, ultimately leading to mitotic entry.  In this case, Zds1/2  proteins 

receive  activating signals from Rho1-Pkc1 (Anastasia et al., 2012a; Jonasson et al., 

2016; Rossio and Yoshida, 2011a; Rossio et al., 2014; Wicky et al., 2011; Yasutis and 

Kozminski, 2013).  In association with protein phosphatase 2A (PP2A) bound to the 

Cdc55 regulatory subunit, Zds1/2 mediate the interaction between Pkc1 and 

PP2ACdc55, which leads to the phosphorylation of Cdc55 by Pkc1, thereby activating 

PP2A Cdc55 (Thai et al., 2017).  The activated PP2ACdc55-Zds1/2 complex then activates 

Cdc25 and inhibits Swe1 to allow activation of Cdk1, leading to mitotic entry (Harvey 

et al., 2011a; Pal et al., 2008).  The following experiments show further evidence of 

how growth signals regulate Pkc1 activity and the critical proteins that modulate Pkc1 

function.  

 

Results 

The timing of Pkc1 phosphorylation correlates with the duration of polar bud 

growth 

Previous work from our lab demonstrated that Pkc1 gets rapidly 

dephosphorylated in response to an arrest of membrane growth and that 

overexpression of Pkc1 can drive cells through a G2 checkpoint arrest caused due to 

inactivation of bud growth (Anastasia et al., 2012a).  These data indicate that Pkc1 
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phosphorylation and/or its activity could be an indirect readout of membrane growth.  

If this assumption is true, then Pkc1 phosphorylation could correlate to bud growth.   

To test this hypothesis, I grew wildtype cells in rich carbon (2% dextrose) or 

poor carbon (2% glycerol + 2% ethanol) so that they grow at different rates.  These 

cells were synchronized in G1 and then released to assay Pkc1 phosphorylation during 

the cell cycle.  I assayed Pkc1 and the mitotic marker Clb2 by western blotting (Fig. 

4.1).  The blots show that Pkc1 undergoes gradual hyperphosphorylation in rich 

nutrients as seen by the gradual upward shift in Pkc1 bands due to lowered 

electrophoretic mobility.  Moreover, Pkc1 becomes fully hyperphosphorylated 

simultaneously with the peak in Clb2 levels and subsequently dephosphorylated as 

Clb2 level drop.  In poor nutrients, Pkc1 showed a similar trend, albeit, at a rate slower 

than cells growing in rich nutrients.  Together, these data further support the idea that 

the timing of Pkc1 phosphorylation correlates with bud growth.  
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Figure 4.1: The timing of Pkc1 phosphorylation correlates with the duration of 
polar bud growth. 
Cells were grown overnight either in YPD (rich nutrients) or YEP supplemented with 
2% glycerol + 2% ethanol (poor nutrients), arrested in G1 using a-factor and then 
released from the arrest in fresh media at 25˚C.  Samples were collected at the 
indicated timepoints and probed for Pkc1 and Clb2 by western blotting. 
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Pkc1 localizes to the growing bud tip during early polar growth and 

subsequently dissociates 

 Since bud growth is polarized and restricted to the bud tip, I wanted to track 

the localization of Pkc1 during this period of growth.  Previous reports have shown that 

Pkc1 is also localized to the bud tip, however, evidence was lacking due to technical 

limitations in microscopic techniques and overexpression of fluorescently-tagged Pkc1 

that could also cause mislocalization (Andrews and Stark, 2000; Denis and Cyert, 

2005).  Moreover, it is not known if Pkc1 remains localized to the bud tip throughout 

the duration of polar bud growth.  I therefore fluorescently-tagged endogenous PKC1 

with mRuby2, a yeast-optimized red fluorescent protein (RFP) derivative that has been 

shown to have a higher photostability and improved brightness over other RFPs (Lee 

et al., 2013b).  PKC1 was tagged at  the N-terminus, since conventional C-terminal 

tagging of PKC1 interfered with protein function due to the presence of the kinase 

domain at the C-terminus.  As previously reported, Pkc1 does in fact, localize to the 

bud tip (Fig. 4.2), which further supports the notion of Pkc1 being an ideal candidate 

for a growth sensor.  

Next, I monitored the localization of Pkc1 in live cells to determine if Pkc1 is 

localized to the growing bud tip for the entire duration of polar bud growth (Fig. 4.3).  

Pkc1 localizes to the bud site even before the emergence of a visible bud.  However, 

it quickly dissociates from the bud tip even before cells enter mitosis (as seen by the 

separation of separated GFP-tagged spindle pole bodies) and later localizes to the 

bud neck.  Thus, contrary to our prediction, Pkc1 gradually dissociates from the bud 

tip as cells progress through polar bud growth.  One caveat here is that the Pkc1 signal 

appears to be getting photobleached over time and hence, cannot be quantified.  
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Nonetheless, Pkc1 is well-positioned to monitor bud growth.  Further experiments will 

be necessary to validate these observations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Pkc1 localizes to the growing bud tip during early polar growth. 
Cells expressing mRuby2-Pkc1 and Spc42-GFP were grown overnight in complete 
synthetic media (CSM) supplemented with 2% dextrose, arrested in G1 and then 
released from the G1 arrest.  Live cells were imaged and tracked through one cell 
cycle.  The figure shows a yeast cell at the time of bud inception in bright field and 
using the RFP detector channel.  The white arrow indicates Pkc1 localization at the 
incipient bud site.  
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Figure 4.3: Pkc1 localizes to the growing bud tip during early polar growth and 
subsequently dissociates. 
Cells expressing mRuby2-Pkc1 and Spc42-GFP were grown overnight in complete 
synthetic media (CSM) supplemented with 2% dextrose, arrested in G1 and then 
released from the G1 arrest.  Live cells were imaged every 4 min and tracked through 
one cell cycle.  The figure shows the montage of a representative yeast cell from the 
time of bud inception until they reach metaphase.   
 

 

  



 

91 

Pkc1 hyperphosphorylation is likely caused due to another kinase 

Pkc1 is an atypical protein kinase C and the only protein kinase C archetype 

found in budding yeast compared to the numerous PKCs found in vertebrate cells 

(Parker et al., 1998).  Studies in mammalian and yeast cells suggest that Pkc1 typically 

autophosphorylates itself after an initial priming phosphorylation by the kinase PDK 

(Inagaki et al., 1999).  I showed above in Fig. 4.1 that Pkc1 is gradually 

hyperphosphorylated in a manner proportional to polar bud growth.  So, I next tested 

if Pkc1 autophosphorylates itself in response to bud growth.  To test this, we created 

a kinase-dead version of Pkc1 (K853A ), hereafter referred to as Pkc1KD with a point 

mutation that renders it catalytically inactive (Gray et al., 1997).  pkc1∆ cells have 

defects in their cell wall formation and hence, are osmotically unstable and difficult to 

work with (Levin and Bartlett-Heubusch, 1992).  So, we integrated the PKC1KD gene 

tagged with a 3xHA-epitope in wildtype cells at the LEU2 gene locus.  This allowed us 

to selectively observe the behavior of Pkc1KD  during the cell cycle, using the 3xHA 

epitope and compare their behavior to wildtype Pkc1 also tagged with 3xHA that 

served as the isogeneic control.  To our surprise, we noticed that despite being kinase-

dead, Pkc1KD still displayed a similar hyperphosphorylation compared to wildtype 

Pkc1-3xHA (Fig. 4.4).  This indicates that (i) either Pkc1 hyperphosphorylation is 

caused due to another kinase, (ii) or, the endogenous Pkc1 cross-phosphorylates 

Pkc1KD. In either case, further testing needs to be done to verify this observation.  
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Figure 4.4: Pkc1 hyperphosphorylation is likely caused due to another kinase.  
Cells expressing wildtype 3xHA-Pkc1 or 3xHA-Pkc1KD integrated at the LEU2 gene 
locus were arrested in G1 and then tracked through the cell cycle after release from 
the arrest.  Samples were collected at the indicated timepoints and probed by western 
blotting using HA and Clb2 antibodies. 
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Pkc1 exhibits peaks kinase activity when it is partially phosphorylated 

 We saw previously that Pkc1 is gradually hyperphosphorylated during the cell 

cycle with maximal phosphorylation correlated with peak Clb2 levels (Fig. 4.1).  

Changes in the phosphorylation state of Pkc1 without associated changes in protein 

levels might be indicative of a change in its protein activity.  So, I next tested if Pkc1 

activity changed during the cell cycle and if so, determine when its activity peaks.  

Based on our current hypothesis, we would predict that since Pkc1 is upstream of the 

Swe1/Cdc25 checkpoint proteins, Pkc1 should be most active at or around G2-M 

phase transition.   

 To test this theory, I harvested cells at ten-minute intervals from G1-

synchronized cells and immunoprecitated 3xHA epitope-tagged Pkc1 under 

physiological conditions.  I then assayed the activity of immunoprecipitated Pkc1 using 

a generic substrate Histone H1  (Altman and Kellogg, 1997b) in the presence of 

radiolabeled gamma-ATP (gP32-ATP) (Fig. 4.5 A).  Consistent with Fig. 4.4, we 

noticed that while the Pkc1KD controls do not possess kinase activity, they still appear 

to be phosphorylated.  In the case of wildtype Pkc1, we observed that its kinase activity 

gradually increases during the cell cycle with peak activity at 60 mins followed by a 

gradual decline in activity.  Comparing these activity levels to the phosphorylation state 

of Pkc1, we found that Pkc1 is maximally active when it is only partially phosphorylated 

(Fig. 4.5 B). Moreover, the timing of peak activity coincides with the beginning of Clb2 

expression.  Together, these data suggest that Pkc1 activity is indeed the highest at 

the G2-M phase transition.   

We failed to observe Pkc1 autophosphorylation on the autoradiogram (not 

shown), which suggests that either Pkc1 autophosphorylation is not responsible for 
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creating the electrophoretic mobility shifts usually associated with Pkc1 or that it is too 

weak to be detected via autoradiography.   

 

Figure 4.5: Pkc1 exhibits peaks kinase activity when it is partially 
phosphorylated.  
Cells expressing or 3xHA-Pkc1 were arrested in G1 and after release from the arrest, 
samples were collected for immunoprecipitation-kinase assay (A) western blotting (B).  
Untagged wildtype and 3xHA-Pkc1KD cells were used as controls. (A) The samples 
were immunoprecipitated using a polyclonal HA antibody and assayed for kinase 
activity using histone H1 and radiolabeled ATP.  The samples were then run on an 
SDS-PAGE gel and probed for the amount of phosphorylated Histone H1 on an 
autoradiogram (top panel) and immunoprecipitated Pkc1 using monoclonal HA 
antibody (bottom panel).  (B) 1.6mL samples collected simultaneously with the 
samples in (A) were probed by western blotting for HA-tagged Pkc1 (top panel) and 
the mitotic marker Clb2 (bottom panel).  
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Inhibiting binding interactions between Rho1 and Pkc1 affect bud growth and 

delay the timing of mitotic entry  

 I next started looking at effectors that could modulate Pkc1 activity during the 

cell cycle.  For this, we focused on two candidates: (i) Rho1 GTPase and, (ii) anionic 

phospholipids like phosphatidylserine (PS).  Rho1 GTPase has been shown previously 

to interact with and modulate Pkc1 activity by our lab and others (Anastasia et al., 

2012a; Kamada et al., 1996; Schmitz et al., 2002).  Moreover, inactive Rho1 is 

delivered to the growing bud in secretory vesicles. Upon docking at the bud tip, Rho1 

is activated by GEFs, where it further binds and activates Pkc1 (Abe et al., 2003; Kono 

et al., 2012).  We have also previously shown that overexpression of Rho1 can drive 

cells through a mitotic arrest induced by membrane growth inhibition (Anastasia et al., 

2012a).  Together, the data support the idea that gradual activation of the Rho1-Pkc1 

complex could be used as an indirect readout of the extent of membrane growth that 

could be relayed downstream to mitotic checkpoint proteins.  

 To test this theory, I used a PKC1 point mutant (L54S) in the N-terminal HR1 

domain of PKC1 that perturbs binding interactions between Rho1 and Pkc1 (Denis 

and Cyert, 2005; Schmitz et al., 2002).  This point mutation makes cells sensitive to 

higher temperatures (Fig. 4.6 A).  Moreover, daughter buds exhibit growth defects and 

are elongated.  These defects accumulate over cell generations and older mother cells 

display large vacuoles (Fig. 4.6 B ).  
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Figure 4.6: Characterizing the PKC1 (L54S) mutant.  
(A) Serial dilution assays were performed for isogeneic wildtype and Pkc1 (L54S) 
expressing cells, spotted on YPD and incubated at room temperature (RT), 30˚C, 34˚C 
and 37˚C.  Cell growth was imaged after 36 hours.  (B) Cells of the indicated genotype 
were grown overnight at 30˚C, fixed and observed at 63x magnification under bright-
field.  
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I next assessed the effect of this point mutation on Pkc1 phosphorylation and 

cell cycle kinetics.  I performed the time course at 34˚C to enhance the temperature-

sensitive phenotype of the point mutant.  The analysis revealed that while Pkc1 (L54S) 

begins to become phosphorylated at the same time as wildtype Pkc1; however, the 

extent of phosphorylation is greatly reduced (Fig. 4.7 A). Moreover, Pkc1 (L54S) never 

becomes fully hyperphosphorylated as its wildtype counterpart.  Abrogating binding to 

Rho1 also causes an almost 10-20 minute delay in mitotic entry and a prolonged 

mitosis.  This delay is not caused due to defects in bud initiation as seen by the similar 

budding indices for both strains (Fig. 4.7 B ).  These findings suggest that binding of 

Rho1 to Pkc1 is necessary for normal bud growth.  Moreover, in agreement with Fig. 

4.5,  the data further supports the idea that Pkc1 is more active when it is partially 

phosphorylated, causing a delay in mitotic entry and prolonged mitosis.  
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Figure 4.7: Lack of binding to Rho1 causes a failure in Pkc1 
hyperphosphorylation and delays the timing of mitotic entry. 
Cells of the indicated genotype were released from a G1 arrest and samples were 
collected at the indicated timepoints.  (A) The samples were probed for Pkc1 and Clb2 
by western blotting.  (B) A second set of samples were collected for fixing at the same 
time and the percentage of budded cells was calculated for each of the indicated 
timepoints. n= minimum of 200 cells at each timepoint. 
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Phosphatidylserine is necessary for Pkc1 hyperphosphorylation  

 While vertebrate PKCs require additional effectors like diacylglycerol (DAG) 

and Ca2+, phosphatidylserine alone is sufficient to stimulate yeast Pkc1 in vitro to a 

similar level as DAG (Kamada et al., 1996; Nomura and Inoue, 2017; Nomura et al., 

2017).  To test the role of PS on Pkc1 phosphorylation, previous work from our lab 

analyzed cho1∆ mutants, which encode the enzyme that synthesizes PS.  We found 

that Pkc1 fails to become hyperphosphorylated in the cho1∆ mutants (Jesse Clarke, 

PhD thesis, UCSC, 2017).  

Since Rho1 and PS are both effectors of Pkc1, I wanted to test the contributing 

effects of PS and Rho1 on Pkc1.  More specifically, could Rho1 drive Pkc1 

phosphorylation in cells lacking PS?  This would help answer the series of events 

occurring at the bud tip that help measure bud growth.   

Cells were grown in YEP+2% glycerol/ethanol and then induced with galactose 

to activate the GAL1-driven constitutively active Rho1 (Rho1*) in wildtype or cho1∆ log 

phase cells.  As mentioned previously, Pkc1 remains mostly dephosphorylated in 

cho1∆ cells (Fig 4.8 A). Surprisingly, overexpression of Rho1 drove Pkc1 to a partially 

phosphorylated state, which could potentially be the most active form of Pkc1 (Fig. 

4.5).  However, it failed to do so in the cho1∆ cells. In order to determine the 

implications of Rho1 overexpression, I also assayed for Mih1 (budding yeast Cdc25 

homolog) dephosphorylation.  Our previous work showed that Rho1* can drive 

dephosphorylation of Mih1 even in cells undergoing a G2/mitotic arrest (Anastasia et 

al., 2012a).  We saw a similar effect here (Fig. 4.8 B).  Moreover, Rho1 induction also 

drove Mih1 dephosphorylation in cho1∆ cells.  Together, the data suggest that while 
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Rho1* can drive Mih1 dephosphorylation in wildtype and cho1∆ cells, it fails to regulate 

Pkc1 in the absence of PS.  

 

Figure 4.8: Phosphatidylserine is necessary for Pkc1 hyperphosphorylation. 
Cells of the indicated genotype were grown overnight in YEP supplemented with 2% 
glycerol + 2% ethanol.  After collecting the 0 min timepoint, the cells were then 
supplemented with 2% galactose to induce Rho1* overexpression.  Samples were 
collected at 30, 60, 90 and 120 min post galactose addition and probed for Pkc1 (A) 
and Mih1 (B). 
 
 
 
 
A. 

 

B.
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Rho1 drives Pkc1 dephosphorylation in a Cdc55-dependent manner 

A recent study showed that the Zds1/2-PP2ACdc55 complex was an effector of 

Rho1, although a direct interaction between purified Rho1 and Zds1/2 was not 

detected (Jonasson et al., 2016).  Based on our work, it is very likely that Rho1 

interacts with the Zds1/2-PP2ACdc55 complex through Pkc1, especially since Pkc1 has 

already been shown to have strong binding interactions with the Zds1/2-PP2ACdc55 

(Rossio and Yoshida, 2011b; Rossio et al., 2014; Thai et al., 2017; Yasutis and 

Kozminski, 2013).  To understand how Rho1* could drive hyperphosphorylated Pkc1 

to a partially dephosphorylated state (Fig. 4.8 A), I tested if the Rho1-dependent Pkc1 

dephosphorylation happened via PP2ACdc55.   

Log phase cells were induced with galactose to overexpress Rho1* either in 

wildtype cells or cells expressing a temperature-sensitive mutant of CDC55: cdc55-ts.  

The cells were immediately shifted to the restrictive temperature (34˚C) to inactivate 

CDC55 and then assayed for Pkc1 phosphorylation (Fig. 4.9).  Inactivation of Cdc55 

caused Pkc1 to become fully hyperphosphorylated.  As observed in the previous 

Figure 4.8 A, Rho1* overexpression indeed caused the different Pkc1 phosphoforms 

to collapse into the partially phosphorylated form.  However, the same effect was not 

observed when Cdc55 was inactivated, suggesting that Rho1 drives Pkc1 

dephosphorylation  probably through increasing the interaction between Pkc1 and 

PP2ACdc55.  Whether Zds1/2 are essential for this interaction has not been tested yet.  
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Figure 4.9: Rho1 drives Pkc1 dephosphorylation in a Cdc55-dependent manner.  
Cells of the indicated genotype were grown overnight in YEP supplemented with 2% 
glycerol + 2% ethanol.  After collecting the 0 min timepoint, the cultures were 
supplemented with 2% galactose (to stimulate Rho1* overexpression) and 
simultaneously shifted to 34˚C to inactivate Cdc55.  Subsequent samples were 
collected at 30, 60 and 90 min and probed for Pkc1 by western blotting.   
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Discussion 

Pkc1 measures polar bud growth to regulate the time of mitotic entry  

 Budding yeast cells undergo polarized growth directed to the bud tip from the 

time of bud inception to the end of G2 phase.  Until recently, the molecular signals that 

measure and regulate this period of growth and coordinate the timing of mitotic entry 

so as to ensure that cells enter mitosis only when sufficient growth has occurred, have 

remained elusive.  In this chapter, I analyzed the potential role of Pkc1 as a sensor for 

measuring polar bud growth.  Pkc1 is well-positioned at the growing bud tip to receive 

growth signals in the form of activated Rho1 and phosphatidylserine upon delivery of 

secretory vesicles  (Abe et al., 2003; Andrews and Stark, 2000; Kono et al., 2012).  

During the cell cycle, Pkc1 is gradually phosphorylated and the timing of this 

phosphorylation correlates well with the timing of bud growth.  In both rich and poor 

nutrients, Pkc1 reached full hyperphosphorylation, albeit at a slower rate in poor 

nutrients.  This was in stark contrast to the pattern of Gin4/Hsl1 phosphorylation 

observed in chapter 2 (Fig. 2.5).  This can be probably explained by the observation 

that Pkc1 appeared to be maximally active in the partially phosphorylated state rather 

than the fully hyperphosphorylated state. Thus, in poor nutrients, the delayed timing of 

hyperphosphorylation suggested a more hyperactive Pkc1 until cells entered mitosis.  

It also leads to the idea that Pkc1 is inactivated when fully hyperphosphorylated.  

Together, these suggest a model where Pkc1 maintains itself in the hyperactive 

(partially phosphorylated state) form as a means to delay mitotic entry until sufficient 

polar bud growth has occurred.  
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Working model : PS, Rho1 and PP2ACdc55-Zds1/2 regulate Pkc1 activity  

We also sought to determine how Rho1, PS and PP2ACdc55-Zds1/2 affected 

Pkc1 activity.  Here overexpression of hyperactive Rho1 drove Pkc1 to the partially 

phosphorylated state that is dependent on PP2ACdc55.  Rho1 has been previously 

shown to increase Pkc1 activity in vitro (Kamada et al., 1996).  Consistent with our 

model and previous findings, this would suggest that overexpression of Rho1* would 

drive cells into mitosis prematurely.  Indeed, overexpression of  Rho1* can circumvent 

a G2 arrest caused due to inactivation of membrane growth (Anastasia et al., 2012a).  

It was thus not surprising when perturbing interactions between Rho1 and Pkc1 

caused a delay in mitotic entry accompanied by defects in bud growth and large cell 

sizes.  One caveat here is that the Pkc1 (L54S) mutant fails to be localized to the bud 

tip and mis-localizes primarily to the cytoplasm with some Pkc1 still localizing to the 

bud neck (Denis and Cyert, 2005).  The observed growth defects and cell cycle delays 

along with the failure in Pkc1 hyperphosphorylation could then simply be attributed to 

Pkc1 not being in the correct location to orchestrate these events.  This could also 

suggest that Rho1 may be required to keep Pkc1 localized to the membrane, where it 

could receive additional growth signals. 

PS is gradually delivered to the outer membrane leaflet of the bud tip and then 

flipped to the inner membrane by flippases Dnf2/3 (Pomorski et al., 2003).  While 

absence of the flippases had no significant effect on Pkc1 phosphorylation, deletion of 

CHO1 caused a failure in Pkc1 hyperphosphorylation.  Moreover, the cell cycle is 

severely delayed.  Surprisingly, cho1∆ cells overexpressing Rho1* showed no 

changes in Pkc1 phosphorylation but still caused normal Mih1 dephosphorylation as 

expected from Rho1 overexpression, indicating that Rho1 could bypass Pkc1 to drive 
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Mih1 dephosphorylation.  While both Rho1 and PS are essential to increase Pkc1 

activity in vitro, it could also suggest that PS and Rho1 have different roles in regulating 

Pkc1.  It was recently shown that the binding interactions between Rho1 and Pkc1 

were significantly decreased in cho1∆ mutants (Nomura et al., 2017).  Also, 

autophosphorylation of mammalian Pkc bII is necessary for the protein to dissociate 

from the plasma membrane (Feng and Hannun, 1998).  These findings suggest that 

PS could be essential in anchoring Pkc1 to the membrane, either inducing a 

conformational change that drives Pkc1 autophosphorylation or helping Pkc1 to be in 

proximity of other kinases that phosphorylate it (Fig. 4.10).  Pkc1 phosphorylation 

could then promote increased interactions with Rho1 and/or its dissociation from the 

plasma membrane.  Further, the Rho1-Pkc1 complex could then associate with 

PP2ACdc55-Zds1/2, both of which are known to interact with PP2ACdc55-Zds1/2.  

Whether the interaction between Rho1 and PP2ACdc55-Zds1/2 is dependent on the 

presence of Pkc1 has not been determined yet.  In either scenario, binding to 

PP2ACdc55-Zds1/2 could oppose Pkc1 phosphorylation, keeping it hyperactive and 

delaying mitotic entry (Jonasson et al., 2016).  We have previously shown that Pkc1 

phosphorylates both Cdc55, the regulatory subunit of PP2A, and Zds1/2 at multiple 

sites (Thai et al., 2017).  It is very likely that hyperactive Pkc1 eventually 

phosphorylates Cdc55 and Zds1/2, diverting PP2ACdc55-Zds1/2 activity towards 

activation of Mih1.  However, phosphorylation-site mutants in CDC55 had no 

detectable phenotype indicating that the interactions between Pkc1 and PP2ACdc55 are 

more complicated than previously thought.  One caveat here is that the coverage from 

the phosphosite mapping was very limited, so the lack of a detectable phenotype could 
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be attributed to the lack of finding relevant phosphosites.  Nonetheless, we will need 

further experimentations to validate these claims.  

 The model proposed in this chapter is still preliminary and will need 

extensive work.  Pkc1 has known roles in regulating the rates of ribosome biogenesis 

and interacting with the TORC network (Nomura and Inoue, 2015).  Moreover, defects 

in mammalian PKCs are implicated in a variety of cancers 4.  Overall, our data strongly 

support Pkc1 as a growth sensor that measures polar bud growth and orchestrates 

mitotic entry only when buds acquire the right size.   
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Figure 4.10: Proposed model for Pkc1 activation and growth-dependent entry 
into mitosis. 
(1. ) Addition of PS to the inner leaflet of the plasma membrane recruits Pkc1 to the 
membrane and this binding drives gradual phosphorylation of Pkc1. (2.)  Increasing 
Pkc1 phosphorylation might promote its interactions with Rho1 as it gets delivered to 
the membrane, and together, the Rho1-Pkc1 complex dissociate from the membrane. 
(3.) Rho1-Pkc1 now interact with the PP2ACdc55-Zds1/2 complex.  PP2A Cdc55 opposes 
Pkc1 hyperphosphorylation keeping Pkc1 in an active state to delay mitotic entry.  (4.)  
When Pkc1 is sufficiently activated, it phosphorylates Cdc55, diverting PP2ACdc55 
activity away from Pkc1 and directing its activity towards activation of Mih1, which 
helps initiate mitosis.  
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Materials and Methods 

Yeast strain construction, media, and reagents 

All strains are in the W303 background (leu2-3,112 ura3-1 can1-100 ade2-1 

his3-11,15 trp1-1 GAL+ ssd1-d2).  The additional genetic features of strains are listed 

in Table 5.  Cells were grown in YP medium (1% yeast extract, 2% peptone, 40 mg/liter 

adenine) supplemented with 2% dextrose (YPD), or 2% glycerol and 2% ethanol 

(YPG/E).  For live cell imaging, cells were grown in complete synthetic medium (CSM) 

supplemented with 2% dextrose and 40 mg/ml adenine.   

Gene deletions and C-terminal epitope tagging was performed by standard 

PCR amplification and homologous recombination (Longtine et al., 1998; Janke et al., 

2004; Lee et al., 2013).  To generate mRuby2-PKC1 under the control of the 

endogenous PKC1 promoter, DNA fragments encoding the PKC1 promoter, yeast-

optimized mRuby2 ORF and PKC1 ORF were amplified with 50bp overlapping-

flanking DNA sequences, gel-extracted, and column purified, mixed in equal amounts 

and transformed in yeast cells along with a yeast cen-vector YCplac33 (URA3) 

linearized using AflII.  The overlapping sequences ensured that the plasmid is 

assembled at the restriction-digested sites such that the mRuby2 tag is at the N-

terminus of PKC1 ORF immediately after the PKC1 promoter.   The plasmid was then 

extracted from yeast, the newly assembled PKC1 insert digested from the vector 

backbone using the same restriction sites and then ligated to an integrating vector 

YIplac128 (LEU2).  The resulting plasmid was re-transformed into a yeast diploid strain 

expressing only a single copy of PKC1.  The diploids were sporulated to isolated 

haploid yeast cells with the endogenous PKC1 gene deleted and simultaneously 

expressing mRuby2-PKC1 at the LEU2 locus.  A similar approach was used for 
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generating 3xHA-PKC1.  To create the kinase-dead mutant of Pkc1 (K853A), we used 

the Agilent QuikChange II XL Site-Directed Mutagenesis Kit, according to the 

suggested protocol.  

 

Cell cycle time courses and Western blotting  

Cell cycle time courses were carried out as previously described (Harvey et al., 

2011b) and in Chapter 2 of this thesis.  Briefly, cells were grown overnight at room 

temperature in YPD or YPG/E to an optical density (OD600) of 0.5 - 0.7.  The cultures 

were arrested in G1 phase by incubation in the presence of 0.5 µg/mL a-factor at room 

temperature for 3 hours.  Cells were released from the arrest by washing 3 times with 

fresh YPD or YPG/E.  All time courses were carried out at 25˚C unless otherwise 

noted, and a factor was added back at 70 minutes to prevent initiation of a second cell 

cycle. 

For experiments related to galactose-induced overexpression of Rho1*, all 

strains were grown overnight at room temperature in YPG/E at room temperature till 

they reached an OD600 of 0.5-0.6.  The un-induced sample was collected and 

immediately induced with 2% galactose.  The culture flasks were either incubated in a 

shaking water bath at 25˚C or shifted to the restrictive temperature of 34˚C (for cdc55-

4) at the time of galactose addition.  Samples were then collected at various intervals 

as indicated in the experiment. 

Western blotting was performed exactly as described in Chapter 2 of this 

thesis.  SDS-PAGE was carried out as previously described (Harvey et al., 2011b) and 

in Chapter 2 of this thesis.  10% polyacrylamide gels with 0.13% bis-acrylamide were 

used for analysis of Pkc1, Mih1 and Clb2.  Proteins were transferred via wet transfer 
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onto nitrocellulose membranes.  Blots were probed with various rabbit polyclonal 

primary antibodies at a final concentration of 1-2 µg/mL at room temperature overnight 

in 5% milk in PBST (1x phosphate buffered saline, 250 mM NaCl, 0.1% Tween-20) 

with 0.02% sodium azide.  Primary antibodies were detected by an HRP-conjugated 

donkey anti-rabbit secondary antibody (GE Healthcare; # NA934V) incubated in PBST 

for 1h at room temperature.  Blots were rinsed in PBS before detection via 

chemiluminescence using ECL reagents (Advansta; #K-12045-D50) with a Bio-Rad 

ChemiDoc imaging system.  

 

Serial dilution spot assays 

 To characterize the PKC1 (L54S) strain, cells were grown overnight in YPD to 

an OD600 of 0.5.  A series of 10-fold dilutions were prepared, spotted on YPD plates 

and grown at 25˚C, 30˚C, 34˚C and 37˚C.  

 

Microscopy  

For live cell time-lapse imaging of Pkc1, cells were grown in CSM overnight to 

an OD600 of 0.1 - 0.2 and then arrested in G1 phase with a factor.  After an incubation 

period of 3h 30 min, the cells were then washed 3x in CSM prewarmed to 30˚C to 

release the cells from the G1 phase arrest.  After resuspending the cells in CSM, about 

3-4 µL cells were mixed with 10 µL media and gently layered onto CSM-agar pads 

prepared on glass slides (#1.5mm).  A coverslip was placed on the slide and sealed 

with wax to prevent evaporation.  The cells were visualized on a spinning disk confocal 

microscope with a Solamere system running MicroManager* (Edelstein et al., 2014).  

The microscope was based on a Nikon TE2000 stand and Coherent OBIS lasers.  We 
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used a 63x/1.4 Plan Apo objective for data collection.  The spindle poles were 

observed using the GFP laser and mRuby2-Pkc1 was visualized with the RFP 

channel.   

 

IP-kinase assay 

The assay was performed as described previously in (Altman and Kellogg, 1997a).  

Briefly, cells were arrested in G1 with alpha factor as mentioned previously and 50 mL 

samples were collected at each timepoint after release from the G1 arrest.  The cells 

were resuspended in 1 mL media and transferred to a 2 mL wide-bottomed screw cap 

tube.  The cells were pelleted, the supernatant was discarded, and the cell pellet was 

frozen in liquid nitrogen after addition of 500 µL acid-washed glass beads.  Cells were 

lysed in 300 µL lysis buffer (50 mM Tris, pH- 7.6, 1 M NaCl, 1 mM EGTA, 1 mM MgCl2, 

0.25% TritonX-100, 10% glycerol, 50 mM BGP, 50 mM NaF, 2 mM PMSF) in a Biospec 

Multibeater-8 and beaten at top speed for 25 s.  The tubes were incubated on ice for 

5 min, centrifuged for 5 min and 250 µL of the supernatant was transferred to a fresh 

tube.  The process was repeated with 300 µL of fresh buffer and the two supernatants 

were pooled and centrifuged again and transferred again to a fresh tube.   

Anti-HA beads were prepared by binding polyclonal rabbit HA antibody to 

protein A beads (Bio-Rad laboratories) in PBS overnight at 4˚C on a rotator (5 µg 

antibody/10 µL beads per sample).   The beads were washed several times with lysis 

buffer (without PMSF), and 450 µL of each lysate was incubated with 10 µL protein A 

beads in 0.6-ml tubes on a rotator for 1 h at 4˚C.  The beads were washed three times 

in lysis buffer, and two times in kinase buffer (50 mM HEPES, 2 mM MgCl2, 0.1% 

Tween-20, 10% glycerol) with a transfer to fresh tubes after the fifth wash. After the 
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final wash, the bound protein was eluted using 0.5 mg/mL HA-dipeptide resuspended 

in kinase buffer (2x20µL elutions) after incubation at 30˚C for 15 min and 15µL of the 

eluate was collected each time.  For each sample, 20 µL eluate was mixed with 10 µL 

kinase buffer (supplemented with 1 mM DTT, 450 µM ATP, P32-labeled ATP and 1 µg 

Histone H1 substrate).  The kinase reaction was carried out at 30˚C for 20 min with 

intermediate gentle vortexing.  The reaction is stopped by the addition of 10 µL of 4x 

sample buffer and denaturation in a boiling water bath for 5 min.  For autoradiography, 

25 µL of the sample reaction was loaded on a 15% polyacrylamide gel.  The top portion 

of the gel was  used for immunoblotting Pkc1 using monoclonal HA antibody and the 

bottom portion was used for detecting phosphorylated histone H1 on an 

autoradiogram.  
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Table 4:  List of strains used in Chapter 3 

Strain Mating 
type 

Genotype Source 

DK 186 a bar1∆ (Altman and 
Kellogg, 
1997a) 

DK 3134  a bar1∆  pkc1∆::His3MX6  leu2::mRuby2-PKC1 
+LEU2  SPC42-GFP::KanMX6 

This study 

DK3198 a bar1∆ pkc1∆::His3MX6  leu2::3xHA-
PKC1+LEU2 

This study 

DK 3257 a bar1∆ pkc1∆::His3MX6  leu2::3xHA-
pkc1(K853R)+LEU2 

This study 

DK2901 a bar1∆  pkc1::His3MX6  leu2::PKC1+ LEU2 This study. 
The 
integrating 
plasmid was a 
gift from Dr. 
HP Schmitz 
(Schmitz et 
al., 2002) 

DK 2902 a bar1∆  pkc1::His3MX6  leu2:pkc1(L54S)+ 
LEU2 

This study. 
The 
integrating 
plasmid was a 
gift from Dr. 
HP Schmitz 
(Schmitz et 
al., 2002) 

DK 1651 a bar1∆  ura3:: GAL1-rho1(Q68H) (Anastasia et 
al., 2012a) 

DK 3214  a bar1∆  cho1∆::KanMX6 This study 

DK 4023 a bar1∆  cho1∆::KanMX6  ura3:: GAL1-
rho1(Q68H) 

This study 

DK 177 a BAR1 (Altman and 
Kellogg, 
1997a) 

DK 1496 a BAR1  cdc55-4::HIS5 (Harvey et al., 
2011b) 

DK 1755 a BAR1  ura3:: GAL1-rho1(Q68H) This study 

DK1757 a BAR1  ura3:: GAL1-rho1(Q68H)  cdc55-
4::HIS5 

This study 
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