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How Bulk Sensitive is Hard X‑ray Photoelectron Spectroscopy:
Accounting for the Cathode−Electrolyte Interface when Addressing
Oxygen Redox
Zachary W. Lebens-Higgins, Hyeseung Chung, Mateusz J. Zuba, Jatinkumar Rana, Yixuan Li,
Nicholas V. Faenza, Nathalie Pereira, Bryan D. McCloskey, Fanny Rodolakis, Wanli Yang,
M. Stanley Whittingham, Glenn G. Amatucci, Ying Shirley Meng, Tien-Lin Lee, and Louis F. J. Piper*

ABSTRACT: Sensitivity to the “bulk” oxygen core orbital makes hard X-ray photoelectron
spectroscopy (HAXPES) an appealing technique for studying oxygen redox candidates.
Various studies have reported an additional O 1s peak (530−531 eV) at high voltages, which
has been considered a direct signature of the bulk oxygen redox process. Here, we find the
emergence of a 530.4 eV O 1s HAXPES peak for three model cathodesLi2MnO3, Li-rich
NMC, and NMC 442that shows no clear link to oxygen redox. Instead, the 530.4 eV peak
for these three systems is attributed to transition metal reduction and electrolyte
decomposition in the near-surface region. Claims of oxygen redox relying on photoelectron
spectroscopy must explicitly account for the surface sensitivity of this technique and the
extent of the cathode degradation layer.

Alkali-rich oxides have gained significant attention as next-
generation battery cathodes in recent years, achieving

reversible capacities beyond 270 mAh/g.1−3 In comparison to
conventional layered oxides (LiMO2), alkali-rich cathodes
deliver excess capacity beyond what is expected from
traditional transition metal (TM) redox couples that is widely
attributed to oxygen redox.3,4 Interest in utilizing oxygen redox
capacity has generated research into a variety of novel 3d, 4d,
and 5d compounds3,5−7 and intercalation structures.7,8 Li- and
Mn-rich Ni/Co/Mn layered oxides (LR-NMC) remain at the
forefront of this field for achieving high performance9,10 and
for investigating the fundamental electrochemistry of alkali-rich
oxides.11−13 Indeed, recent studies focusing on LR-NMC
cathodes have revealed mechanisms that contribute to the
large hysteresis11,13 and voltage decay12 found across anionic
redox compounds.3,6 Direct insight into oxidized oxygen has
primarily relied on two techniques: X-ray photoelectron
spectroscopy (XPS) at the O 1s region14−16 and resonant
inelastic X-ray scattering (RIXS) at the O K-edge.11,17,18

Unlike RIXS which requires a bright variable energy X-ray
synchrotron source, XPS is a common lab-based technique
resulting in its extensive use for studying oxygen redox
candidates.5,15,19−25

Lab-based XPS is inherently surface-sensitive (probing depth
<5 nm) with a large portion of the signal coming from
electrolyte decomposition species at the cathode surface. Hard
X-ray photoelectron spectroscopy (HAXPES) has been used to

overcome this limitation with probing depths >20 nm that
allow for increased sensitivity to the “bulk” oxygen core
orbitals.16,26,27 In these measurements, the emergence of an O
1s peak in the same binding energy window (530−531 eV) as
common peroxides, e.g., Na2O2

28 and Li2O2,
29 has been

considered a signature of oxygen redox. This method has to
this point been seen as a quantitative probe of bulk oxidized
oxygen states for identifying the onset and reversibility of
oxygen redox.
In this study, we focus on HAXPES O 1s measurements to

address this interpretation for three layered oxide cathodes:
Li2MnO3,

30 Li[Li0.144Ni0.136Mn0.544Co0.136]O2 (LR-NMC),31

and LiNi0.4Mn0.4Co0.2O2 (NMC 442).32 All three systems
(Li-rich and conventional) show the emergence of an
additional HAXPES O 1s peak (530.4 eV peak) that is
found to be inconsistent with the expected oxygen redox
contribution. Indeed, a stronger 530.4 eV O 1s peak is
observed for a conventional layered oxide cathode (NMC 442)
than for LR-NMC at high states of charge. When accounting
for the surface sensitivity of HAXPES, our results reveal how a
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combination of electrolyte decomposition species and near-
surface TM-reduction contribute to the evolution of a 530.4
eV peak for oxide cathodes.
For our focus on the O 1s core region, we utilized photon-

dependent XPS at 0.8, 1.5, and 6 keV with electron inelastic
mean free paths (IMFPs) of 0.8, 1.6, and 7.8 nm, respectively,
calculated using the TPP-2 M method33 from the NIST
electron IMFP database.34 The corresponding attenuation
profiles35 (photoelectron signal versus depth) for these three
photon energies are given in Figure 1a. The 0.8 and 1.5 keV

measurements are highly surface-sensitive as over 85% of the
signal originates from the top 3 nm. For 6 keV HAXPES, the
contribution from the top 3 nm is reduced to 30% and the
overall probing depth is ∼23 nm (3× the IMFP), the region in
which 95% of the signal originates from. Yet, these HAXPES
measurements still have a significant contribution from the
cathode−electrolyte interface given that electrolyte decom-
position and TM-reduction/densification is often on the order
of a few nanometers for oxide cathodes.36−40

Beyond considering the attenuation profile, we explicitly
examined the O 1s spectra for manganese and nickel oxide
references (Figure 1b). The lattice oxygen peaks for
commercial MnO (Mn2+), Mn2O3 (Mn3+), and MnO2

(Mn4+) are found at 530.05, 529.8, and 529.35 eV,
respectively, matching with previously reported values.41,42

The MnO reference may be partially oxidized (Figure S1)
resulting in only a small shift of the O 1s peak beyond
Mn2O3.

43 Nickel references consisted of a NiO (Ni2+) epitaxial
film and LiNiO2 electrodes charged to 3.6 V (LiNiO2) and
4.75 V (NiO2). The first charge of LiNiO2 resulted in a charge
capacity of 286 mAh/g, suggesting the material is near full
delithiation (Figure S2). The nickel references were measured
with HAXPES to minimize the contribution of carbonates that
tend to form on lithiated nickel-rich oxides.44,45 The Ni−O
peaks for NiO, LiNiO2, and NiO2 are found at 529.5, 529.0,
and 529.05 eV, respectively. From these reference measure-
ments, we find the lattice O 1s peak shifts to higher binding
energies as a direct result of the reduction of surrounding TMs.
Additional discussion of the fundamental contributions to the
core oribital peak position46,47 is given in supplementary note
1.
Following these insights, we turn to HAXPES character-

ization of Li-rich and conventional layered oxide cathodes.
Electrode preparation and cell testing details are given in the
Supporting Information along with scanning electron micros-
copy images of pristine materials (Figure S3). First, we focus
on Li2MnO3 that displays first charge and discharge capacities
of 336 and 168 mAh/g, respectively (Figure 2a). In our recent
study, this high charge capacity was found to primarily
originate from oxygen loss and side reactions with limited
contribution from reversible oxygen redox.30 Indeed, highly
charged Li2MnO3 displays no RIXS features associated with
the formation of stabilized oxidized oxygen states.30,48

HAXPES measurements were conducted on pristine
Li2MnO3 and three electrodes, beginning of charge (4.55 V),
end of charge (5.00 V), and end of discharge (2.00 V),
prepared with 75% active material, 15% carbon black (CB),
and 10% PVdF binder. The Li 1s and Mn 3p regions for these
samples are given in Figure 2b. The Li 1s peak at 54.3 eV is
associated with lithium in the lattice and increases (decreases)
during charge (discharge). This peak is detectable at 5.00 V,
indicating some lithium remains in the lattice at the end of
charge. In the Mn 3p, there is an increase in the lower binding
energy shoulder at 48 eV between the pristine material and
4.55 V electrode. Ilton et al.43 identified the main Mn 3p peak
for Mn4+, Mn3+, and Mn2+ references at 49.94, 48.79, 47.46 eV,
respectively. Comparison of these values to the Li2MnO3
electrodes indicates that the lower binding energy shoulder is
consistent with the formation of a Mn-reduced surface layer.
During the first cycle, the Mn 3p line shape never fully returns
to the pristine material, indicating a partially reduced Mn
surface region remains throughout the throughout the first
cycle. This conclusion is supported by complementary
HAXPES of the Mn 2p core region (Figure S1). These results
are consistent with previous observations of extensive oxygen
loss30,49 and surface reduction30,39 for Li2MnO3.
Focusing on the O 1s core region, we conducted peak fits for

each of the Li2MnO3 samples (Figure 2c). For pristine
Li2MnO3, the main lattice peak is at 529.35 and there is a
minor peak at ∼530.4 eV. During the first cycle, higher binding
energy features (>531 eV) are found to emerge that are
associated with electrolyte decomposition species including
C=O (531.7 eV) and C−O (533.25 eV) environments from
solvent decomposition.50,51 These species are particularly
prevalent in 1.5 keV measurements (Figure S4).

Figure 1. (a) Relative photoelectron signal versus depth at 0.8, 1.5,
and 6 keV. The gray shaded region highlights the contribution from
the top 3 nm. (b) HAXPES O 1s spectra for manganese (MnO,
Mn2O3, and MnO2) and nickel (NiO, LiNiO2, and NiO2) oxide
references. Manganese and nickel oxides were measured at 1.5 and 6
keV, respectively.
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Of particular interest is the evolution of the 530.4 eV peak at
the same binding energy as assigned to “peroxo-like” oxygen
redox features in other systems.15,16,26 The percentage of this
peak versus the main lattice oxygen peak [O530.4/
(O530.4+O529.35)] is plotted alongside the electrochemistry in
Figure 2a. This peak increases at the start of charge (4.55 V)
and after charging to 5.00 V but shows only a small decrease
after discharge. The limited reversibility, combined with the
extensive near-surface Mn-reduction (Figure 2b) and absence
of oxidized oxygen RIXS features,30,48 suggest the 530.4 eV
peak is not associated with lattice oxygen redox for Li2MnO3.
One possible assignment for this peak is surface Mn-reduction
given its similar binding energy to lattice Mn3+/Mn2+ O 1s
peaks (Figure 1b), concurrent increase with Mn-reduction at

4.55 V, and limited reversibility. There is a continued increase
of the 530.4 eV peak above 4.55 V with no concurrent increase
in Mn-reduction, suggesting that electrolyte decomposition
species may also contribute. This could include O−H
groups28,41 that have been assigned around this binding energy
for other battery materials.52 The formation of hydroxide
species would not be unexpected for Li2MnO3.

53 These results
indicate that a combination of electrolyte decomposition and
TM-reduction account for the evolution of the 530.4 eV peak
for Li2MnO3.
While Li2MnO3 is a clear example of a 530−531 eV peak

that cannot be attributed to oxidized oxygen, Li2MnO3 was
tested with a high cutoff voltage (5.00 V) and undergoes more
extensive oxygen loss/TM-reduction than Li-rich and conven-

Figure 2. (a) First cycle electrochemistry for Li2MnO3 charged (C) to 5.00 V and then discharged (D) to 2.00 V. (b) Li 1s and Mn 3p core regions
and (c) O 1s peak fits at 6 keV of pristine Li2MnO3 and electrodes charged to 4.55 and 5.00 V and discharged to 2.00 V. The gray line in panel c
highlights the 530.4 eV peak. The variation in this peak is compared to the electrochemistry in panel a.

Figure 3. (a) First charge of NMC 442 and LR-NMC to 4.75 V. (b) O 1s measured at 0.8, 1.5, and 6 keV and (c) Li 1s and Mn 3p core regions at
0.8 and 1.5 keV for NMC 442 and LR-NMC 4.75 V electrodes compared to a pristine NMC 442 electrode. For the O 1s, the shading indicates the
additional 530.4 eV peak that is present at high voltages for the LR-NMC and NMC 442. For the Mn 3p, reference Mn−O (Mn2+), Mn2O3
(Mn3+), and MnO2 (Mn4+) spectra relate the Mn-valence to the Mn 3p peak position.
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tional NMC layered oxides.30,49,54 As such, we conducted
additional HAXPES measurements on Li-rich NMC and NMC
442 cathodes. For these systems, minimal additives (CB/
PVdF) were used compared to Li2MnO3 (see the Supporting
Information) that did not compromise the electrochemistry.
This will improve the direct sensitivity of the measurements to
the active material. The electrochemical curves of the first
charge of NMC 442 and LR-NMC to 4.75 V (vs Li-metal) at
10 mA/g and at room temperature (RT) are given in Figure
3a. NMC 442 exhibits a charge capacity of 234 mAh/g that is
attributed to traditional Ni/Co redox couples (gray shading).
The LR-NMC exhibits the typical first charge activation
plateau of oxygen redox cathodes and a higher capacity of 322
mAh/g. Although O K-edge RIXS studies have demonstrated
the emergence of oxidized oxygen states in LiMO2 cathodes at
high degrees of delithiation,55 more prominent RIXS features
are observed for LR-NMC where the capacity is twice what is
expected from traditional TM redox couples alone. Our
previous study conducted on this LR-NMC system displayed
clear O K-edge RIXS features at 4.75 V associated with
oxidized oxygen states.31

Photon-dependent XPS measurements of the O 1s, Li 1s,
and Mn 3p core regions at 0.8, 1.5, and 6 keV of these two
systems are shown in Figure 3b,c. The O 1s region is
normalized to the main O-NMC lattice peak (529.0 to 530
eV). For the pristine electrode, initial O and Li 1s peaks at
531.4 and 56 eV, respectively, in the 0.8 keV measurements are
associated with a thin Li2CO3 layer, a typical contaminant on
oxide cathodes that breaks down during electrochemical
testing.44,45,54 This accounts for the loss of these O 1s/Li 1s
peaks after charging to 4.75 V. The lower-energy Li 1s peak in
the pristine material at 54.2 eV is associated with lattice
lithium.51 This peak is below our detection limit after charge
directly reflecting delithiation of the NMC electrodes.
Compared with Li2MnO3 (Figure S4), the LR-NMC and
NMC 442 electrodes display minimal higher binding energy
C−O/C=O (>531.5 eV) O 1s peaks.50,51 Instead, the main
difference for the electrodes charged to 4.75 V is the formation
of a new peak at 530.4 eV. The NMC 442 4.75 V electrode has
a stronger 530.4 eV peak than the LR-NMC 4.75 V electrode
at all photon energies, including the more bulk-sensitive
HAXPES measurements.

Corresponding O 1s peak fits for the NMC electrodes are
given in Figure S5 and Table S1. For the 6 keV measurements,
the percentage of the 530.4 eV peak relative to the main lattice
oxygen peak is 35% and 17% for the NMC 442 and LR-NMC
4.75 V electrodes, respectively. This is opposite what would be
expected if this new O 1s peak was solely attributed to oxygen
redox. In addition, this peak is partially formed by 4.0 V for
NMC 442 (Figure S5), indicating it is not just a high-voltage
phenomena. Turning to the manganese environment, we find
the Mn 3p shifts to a lower binding energy for the high state of
charge (SOC) NMC electrodes compared to the pristine
electrode. From comparison with the manganese oxide
references, we find that this shift to lower binding energy is
consistent with Mn-reduction at the cathode surface. HAXPES
measurements of the Ni and Mn core regions show additional
evidence of an extended reduced layer forming after charge
(Figure S7)
To further gauge the extent of TM reduction, we conducted

complementary soft X-ray absorption spectroscopy (sXAS)
measurements of the Mn and Ni L3-edges in electron mode
that are well-known to be highly sensitive to the TM oxidation
state in the near-surface region.56,57 For the Mn L3-edge
(Figure 4a), high SOC NMC electrodes are compared to
corresponding pristine powders. The pristine compounds are
nominally Mn4+ with the shading in Figure 4a indicating the
extent of Mn-reduction found at higher SOCs. For the LR-
NMC electrodes, the Mn-reduction increases up to 4.5 V (start
of the high voltage plateau) and shows limited changes along
the plateau. A larger increase in the Mn surface reduction is
found for the NMC 442 system for the 4.75 V electrode
compared to Li-rich NMC. Corresponding fits of the oxidation
state are given in Figure S8. For the Ni L3-edge (Figure 4b),
the NMC electrodes are compared to a NiO (Ni2+) reference
and a LiNiO2 electrode charged to 4.75 V that nominally
matches the Ni4+ line shape.11 The NMC electrodes show a
strong Ni2+ surface component based on the increase in the Ni
L3-edge peak at 853.1 eV relative to the peak at 855.5 eV
(shading in Figure 4b) with the NMC 442 showing more Ni-
reduction than LR-NMC. From these sXAS measurements, we
found that NMC 442 displays more surface TM reduction than
the LR-NMC. This trend matches with the higher O 1s 530.4
eV peak observed for the NMC 442 than for LR-NMC, further

Figure 4. (a) Mn L-edge and (b) Ni L3-edge in total electron yield (TEY) mode for NMC 442 pristine and 4.75 V, and LR-NMC pristine, 4.5 V,
and 4.75 V electrodes. Mn L3-edge spectra for MnO and Mn2O3 and Ni L3-edge spectra for a NiO epitaxial thin film and LiNiO2 4.75 V electrode
(Ni4+) are included for reference. Shadings in panels a and b highlight changes that result from TM-reduction.
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supporting that this O 1s peak forms as a result of surface TM-
reduction during the first charge.
From comparison of three layered oxide cathodes, we

identified how electrolyte decomposition and TM-reduction
can contribute to the evolution of an O 1s peak between 530
and 531 eV. The presence of this peak at 4.0 V for NMC 442 is
consistent with the onset of TM surface reduction around 3.9
V identified indirectly with differential electrochemical mass
spectroscopy (DEMS).58 This onset was found to coincide
with the loss of Li2CO3 identified from CO2 gas release and
post-titration measurements.58 These are just two of the
changes in the cathode−electrolyte interface composition
during the first cycle that have been identified with DEMS
and XPS/HAXPES31,54,58 that need to be accounted for when
addressing bulk redox mechanisms with techniques that are
inherently surface-sensitive.
Our interpretation of the O 1s spectra may account for

previous observations for alkali-rich oxides. For example,
Uchimoto et al.26 reported a strong additional peak in their O
1s HAXPES spectra of LR-NMC before the start of the high-
voltage plateau that persisted after discharge, showing no clear
correlation to the expected oxygen redox capacity. This
HAXPES O 1s evolution is in contrast to bulk-sensitive
STXM and RIXS techniques, where assignments of oxidized
lattice oxygen do correlate with capacity.11,18 Our work
highlights the importance of linking structural and electronic
probes with the electrochemistry in order to establish a
technique as a reliable oxygen redox probe.
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