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Abstract

Large-eddy simulations of an observed single-layer Arctic mixed-phase cloud are analyzed to 

study the value of forward modeling of profiling millimeter-wave cloud radar Doppler spectral 

width for model evaluation. Individual broadening terms and their uncertainties are quantified for 

the observed spectral width and compared to modeled broadening terms. Modeled turbulent 

broadening is narrower than the observed values when the turbulent kinetic energy dissipation rate 

from the subgrid-scale model is used in the forward model. The total dissipation rates, estimated 

with the subgrid-scale dissipation rates and the numerical dissipation rates, agree much better with 

both the retrieved dissipation rates and those inferred from the power spectra of the simulated 

vertical air velocity. The comparison of the microphysical broadening provides another evaluative 

measure of the ice properties in the simulation. To accurately retrieve dissipation rates as well as 

each broadening term from the observations, we suggest a few modifications to previously 

presented techniques. First, we show that the inertial subrange spectra filtered with the radar 

sampling volume is a better underlying model than the unfiltered −5/3 law for the retrieval of the 

dissipation rate from the power spectra of the mean Doppler velocity. Second, we demonstrate that 

it is important to filter out turbulence and remove the layer-mean reflectivity-weighted mean fall 

speed from the observed mean Doppler velocity to avoid overestimation of shear broadening. 

Finally, we provide a method to quantify the uncertainty in the retrieved dissipation rates, which 

eventually propagates to the uncertainty in the microphysical broadening.
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1. Introduction

Mixed-phase clouds are ubiquitous in the Arctic boundary layer [Curry et al., 1996; Intrieri 

et al., 2002; Shupe et al., 2006; Shupe, 2011]. They are critical to the shortwave and 

longwave radiative budgets of the Arctic and linked to sea ice and ice sheet melt and Arctic 

air mass formation [Kay et al., 2008; Sedlar et al., 2011; Persson et al., 2017]. The properties 

of Arctic mixed-phase clouds are determined by the complicated interactions between 

various physical processes including turbulence and microphysical processes [Morrison et 

al. 2012]. To improve large-eddy simulations (LES) for these clouds, it is necessary to 

evaluate model performance in capturing both turbulent air motions and microphysical 

characteristics of the hydrometeors, dependent, in part, on model assumptions regarding ice 

particle fall speeds, morphologies, and densities.

The profiling millimeter-wave cloud radar (MMCR) [Moran et al., 1998; Kollias et al., 

2007] has been deployed at the Department of Energy (DOE) Atmospheric Radiation 

Measurement (ARM) Climate Research Facility (CRF) located on the North Slope of Alaska 

(NSA) near Barrow to provide observations of Arctic mixed-phase clouds [Shupe et al., 

2008a; Rambukkange et al., 2011]. A Doppler spectrum reported by these radars can be 

interpreted as the distribution of the scatterers’ reflectivity versus their vertical velocity. The 

radar sampling volume acts as a spatial and temporal filter of the particle motion. If the 

scatterers are “ideal”, that is, move at the same velocity as the air, are uniformly distributed 

in space, and have constant backscattering cross section, the filter characteristics are 

determined by both the configuration of the radar and the horizontal wind speed. (See White 

et al. [1999] for details.) The mean Doppler velocity is then the filtered vertical air velocity 

𝑣a. For these ideal scatterers the squared Doppler spectral width σdyn
2  is the variance of the 

residual vertical air velocity within the radar samplingvolume with contributions from 

turbulent air motions (σt
2) and the gradient of mean air velocity, which we refer to as the 

shear broadening (σs
2) following the convention in the radar meteorologycommunity, as well 

as the projection of the horizontal wind speed in the radial direction due to finite radar beam 

width (σbw
2 ). For Doppler spectral widths estimated for an individual radar volume there may 

be correlations between these mechanisms [Fang and Doviak, 2008; Fang et al., 2011]. 

However, in expectation these correlation terms between mechanisms vanish and

σdyn
2 = σt

2 + σs
2 + σbw

2 . (1)

The subscript “dyn” indicates that in this case the Doppler spectrum is only broadened by 

dynamical factors. For real particles, the mean Doppler velocity 𝑣d is the filtered vertical air 

velocity 𝑣a (defined as positive upwards) minus the reflectivity-weighted mean fall speed of 

the particles 𝑣f, and the squared Doppler spectral width 𝜎2 is the variance of the residual 

vertical air velocity plus microphysical broadening σmp
2 , that is, the variance contributed by 

the distribution of particle reflectivities as a function of particle fall speed [Doviak and 

Zrnić, 1993]:
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vd = v a − vf, (2)

σ2 = σmp
2 + σdyn

2 = σmp
2 + σt

2 + σs
2 + σbw

2 . (3)

The connection between Doppler spectra and atmospheric dynamics and microphysics 

provides the basis for the forward models that predict the Doppler spectra or their moments 

using cloud properties from an LES. Thus, the model performance can be evaluated through 

the comparison between the modeled and observed Doppler spectra and their moments, i.e., 

the reflectivity, the mean Doppler velocity, and the Doppler spectral width. One can also 

retrieve physical quantities from radar observations and compare them with their 

counterparts from numerical simulations. Borque et al. [2016] developed a method to 

partition the observed spectral width into contributions from various mechanisms with a few 

steps. First, retrieve the turbulent kinetic energy dissipation rate, referred to as the 

dissipation rate for short, from the time series of the mean Doppler velocity. Then, calculate 

the turbulent broadening from the retrieved dissipation rates. Third, estimate the shear 

broadening from the observed mean Doppler velocity. Finally, microphysical broadening is 

what remains after removal of these broadening terms as well as the often small beam width 

effect.

The Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) 

model was used to simulate a single-layer, mixed-phase cloud observed on April 8, 2008, 

during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) [McFarquhar et al., 2011] 

at the NSA site [Avramov et al., 2011]. The goal of the simulations was to test model 

assumptions regarding both ice nucleation and ice particle properties. While a few model 

configurations were found to produce simulations in good agreement with in situ 

measurements and the reflectivity and mean Doppler velocity from the MMCR deployed at 

NSA, Avramov et al. [2011] briefly noted that modeled spectral widths (in m s−1) were 

roughly a factor of two narrower than observed.

We are motivated to explore the spectral width because it is a useful quantity for at least two 

reasons. First, the spectral width provides information on both dynamics and microphysics. 

Traditional techniques using Doppler radar moments for the retrieval of atmospheric 

dynamics and microphysics typically prescribe the turbulent contribution to the spectral 

width [e.g., Deng and Mace, 2006]. With the recent work by Borque et al. [2016], spectral 

width’s dynamical and microphysical broadening components were separately retrieved. 

Evaluation of model microphysics with retrieved microphysical broadening terms with 

known uncertainties would facilitate making fewer additional assumptions about the 

observations. Second, interest in higher moments like skewness and kurtosis is growing 

[Kollias et al., 2011a, 2011b; Maahn et al., 2015, 2017; Rémillard et al., 2017]. Assuming 

the dynamical factors broaden the Doppler spectra in a Gaussian manner, the deviations 

between modeled or observed skewness and kurtosis from those expected from a Gaussian 

distribution contain information on the microphysics. In other words, interpretation of 
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skewness and kurtosis of the Doppler spectra requires an accurate estimation of the 

dynamical broadening, and a good representation of the dynamical broadening is required to 

make meaningful comparisons of skewness and kurtosis between modeled Doppler spectra 

and observed ones [Kollias et al., 2011a].

In this study, we extend the evaluation by Avramov et al. [2011] to focus on the Doppler 

spectral width. We decompose the dynamical and microphysical broadening in observed 

Doppler spectral widths following the general steps reported in Borque et al. [2016] but with 

a few modifications. Then, we compare the observed dynamical and microphysical 

broadening separately with those modeled based on DHARMA simulations. We briefly 

introduce the theoretical background for the method in Section 2, introduce the case and 

DHARMA simulation results in Section 3, report our spectral width decomposition method 

as well as the results from each step in Section 4, and discuss turbulent broadening, 

microphysical broadening, and implications of the study in Section 5.

2. Filtering turbulent flow

In this section, we introduce the necessary background for our methods in Sections 3 and 4 

based in part on Chapters 6 and 11 in Pope [2000] and Chapter 10 in Doviak and Zrnić 

[1993]. Elements of our approach include: (1) one-dimensional power spectra of the vertical 

air velocity unfiltered or filtered by radar sampling volume or LES model filter, and (2) the 

residual vertical air velocity variance as a function of the filter characteristics and the 

dissipation rate. In what follows subscript 1 indicates the x-direction or the direction along 

the horizontal mean wind, subscript 2 indicates the y-direction or the horizontal direction 

transverse to the horizontal mean wind, and subscript 3 indicates the z-direction or vertical 

direction.

Consider some stationary flow where the kinetic energy density for vertical air velocity is 

proportional to Φ33(𝜿), one component of the velocity-spectrum tensor, where 𝜿 is the three-

dimensional wavenumber vector. For homogeneous and isotropic turbulent flow, Φ33(𝜿) has 

the form

Φ33(κ) = E(κ)
4πκ2 1 −

κ3
2

κ2 , (4)

with 𝜅 representing the magnitude of 𝜿. For the inertial subrange of the turbulent flow, (𝜅) is 

the Kolmogorov power spectrum

E(κ) = Cϵ2/3κ−5/3, (5)

where 𝐶 is the Kolmogorov constant of 1.5 and 𝜖 is the turbulent kinetic energy dissipation 

rate. The one-dimensional power spectrum of the vertical air velocity versus the 

wavenumber along the direction of the horizontal mean wind is obtained by the following 

integrals of the corresponding velocity-spectrum tensors:
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E33 κ1 = 2∫
−∞

∞∫
−∞

∞
Φ33(κ)dκ2dκ3, (6)

There is a wavenumber range where 𝐸33(𝜅1) follows a −5/3 law:

E33 κ1 = C1′ϵ2/3κ1
−5/3 ≈ 0.65ϵ2/3κ1

−5/3 . (7)

One can also define a one-dimensional power spectrum of the vertical air velocity versus the 

horizontal wavenumber κh = κ1
2 + κ2

2, E33(κh), by taking the integral of Φ33(𝜿) with respect 

to 𝜅ℎ.

If a filter with transfer function G(κ) is applied to the flow, the filtered velocity-spectrum 

tensor for vertical air velocity is

Φ33(κ) = G(κ) 2Φ33(κ), (8)

where we use a tilde to indicate a filtered quantity. The one-dimensional power spectra of 

the filtered vertical air velocity versus 𝜅1 and 𝜅h, denoted E33 κ1  and E33 κh , are similarly 

defined as their unfiltered counterparts, but with Φ33(𝜿) in their integration replaced with 

Φ33(κ). For example,

E33 κ1 = 2∫
−∞

∞∫
−∞

∞
Φ33(κ)dκ2dκ3 = 2∫

−∞

∞∫
−∞

∞
G(κ) 2Φ33(κ)dκ2dκ3 . (9)

The residual vertical air velocity variance is

σr
2 = ∫

−∞

∞∫
−∞

∞∫
−∞

∞
1 − G(κ) 2 Φ33(κ)dκ1dκ2dκ3 . (10)

If the characteristic width of the filter falls in the inertial subrange, and the homogeneous 

and isotropic turbulence dominates the residual vertical air velocity variance, with Eqs. (4) 

and (5), this variance is proportional to 𝜖2/3.

The sampling volume of a vertically pointing Doppler radar filters the air motion both 

spatially and temporally [White et al., 1999]. For the rest of this study, we define the squared 

transfer function for radar sampling volumes at range 𝑧 of a profiling Doppler radar with 

narrow beam width 𝜃, pulse width 𝜏, and dwell time 𝑇 as
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G(κ)
2

= exp − z2θ2

16log(2) + U2(z)T2

12 κ1
2 − z2θ2

16log(2)κ2
2 − (0.35cτ)2κ3

2 . (11)

In this equation 𝑐 is the speed of light and (𝑧) is the speed of the horizontal wind at range 𝑧. 

Both the range weighting function and the advection by the horizontal wind are treated as 

Gaussian patterns. This equation is the same as the one used in the integration in Eq. (2.14) 

in White et al. [1999], except that the impact of the horizontal wind is approximated with a 

Gaussian function as discussed in Section 3c of White et al. [1999].

The spatial and temporal filtering by the profiling Doppler radar sampling volume modifies 

the one-dimensional power spectrum of the vertical air velocity 𝐸33(𝜅1), resulting in the 

filtered power spectrum, or the power spectrum of the filtered vertical air velocity E33 κ1 . 

We define functions 𝐶33(𝜅1) and C33 κ1  so that

E33 κ1 = C33 κ1 ϵ2/3, (12)

E33 κ1 = C33 κ1 ϵ2/3 . (13)

3. Case study observations and DHARMA simulations

A single-layer mixed-phase cloud was observed at the ARM NSA site near Barrow, Alaska, 

on April 8, 2008, during ISDAC. Figure 1 shows an overview of the case based on the 

observations from the MMCR, the best estimate of the liquid water path [Turner et al., 

2007], and the liquid cloud base reported by a ceilometer. DHARMA was used to simulate 

this case [Avramov et al., 2011] with the goal of testing whether good agreement between 

observations and simulations could be achieved if ice nucleation is constrained with 

measured heterogeneous ice nuclei concentrations. DHARMA consists of an LES dynamical 

core [Stevens et al., 2002] with a dynamic Smagorinsky subgrid-scale (SGS) model 

[Kirkpatrick et al., 2006], coupled with a size resolved bin microphysics model [Ackerman 

et al., 1995, 2004; Fridlind et al., 2007] and a two-stream radiative transfer model [Toon et 

al., 1989]. In this study, we focus on two simulations reported by Avramov et al. [2011]. 

Both simulations included dendritic pristine ice and aggregates of dendrites, referred to as 

“dendrites” and “aggregates” hereafter, with one using properties of low-density dendrites 

with stellar arms and their aggregates (LOW) and the other using properties of high-density 

dendrites represented as thin plates and their aggregates (HIGH), intended to bound the wide 

range of dendrite density established from in situ images (see Fig. 4 of Avramov et al. 

[2011]). In DHARMA, the specified ice particle mass, maximum dimension, projected area 

and aspect ratio are used in a physically consistent manner to calculate the ice particle 

properties, such as fall speed (Fig. 2a) and particle reflectivity (Fig. 2b). The primary 

difference in particle fall speeds is that for sizes larger than approximately 100 μm, 
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aggregates in HIGH fall faster than in LOW, whereas ice particles smaller than 

approximately 100 μm fall with the same speeds. The size-dependent particle reflectivity is 

calculated to match the DHARMA ice particle assumptions by Botta et al. [2011] and is the 

same as that used by Avramov et al. [2011].

To investigate the spectral width, we analyze the three-dimensional outputs from both LOW 

and HIGH simulations at 4, 4.5, 5, 5.5, and 6 h from the beginning of the simulation and 

compare them with the observations from 17:00 UTC to 17:30 UTC, April 8, 2008. The 

short period of observations is used because the simulation is initialized with the sounding 

from a radiosonde launched around 17:30 UTC and the observations during this half-hour 

period showed relatively stationary characteristics; conclusions are not sensitive to using 

observations from the half hour prior or later. The Doppler spectra are calculated for every 

model grid box using the forward model described in Appendix A. The rate of kinetic 

energy transfer between resolved and subgrid scales computed with the eddy viscosity from 

the SGS model, hereafter the “SGS dissipation rate”, is used to calculate the turbulent 

broadening in the forward model. The reflectivity, the mean Doppler velocity, and the 

Doppler spectral width are calculated from the modeled Doppler spectra.

We confirm previous evaluation results that the LOW simulation produce the reflectivities in 

very good agreement with the observations but the HIGH simulation underestimate the 

reflectivities (Fig. 3a). Although both simulations produce frequency of occurrence 

histograms of mean Doppler velocities that are similar to the observations (not shown), the 

layer mean values from both LOW and HIGH simulations are slower than the observations 

(Fig. 3b). (The significance of this discrepancy will be discussed later with our analysis of 

the spectral widths.) We also find that both simulations produce typical spectral widths that 

are substantially narrower than those observed (Fig. 3c), as noted but not shown in Avramov 

et al. [2011]. For the bulk of the liquid cloud, the layer-mean of the modeled squared 

spectral widths are around 0.01 m2 s−2 for the LOW simulation and around 0.02 m2 s−2 for 

the HIGH simulation, while those observed are close to 0.05 m2 s−2. When converted to 

spectral width, these valuesare comparable to the numbers reported by Avramov et al. 

[2011], i.e., ~0.1 m s−1 for the modeled spectra and ~0.2 m s−1 for the observations. These 

results hold true for all five time slices from the LOW and HIGH simulations. The mean 

observed liquid water path during the selected time is 40.8 g m−2, while the LOW and HIGH 

simulations produce 34.7 g m−2 and 36.7 g m−2, respectively. (Note that the location of the 

simulated liquid-cloud top in the modeldomain is lower by around 50 m than the highest 

height of observed significant radar return. All profiles for the simulations are shifted up for 

50 m to compensate for this difference.)

Figure 4 shows the normalized frequency of occurrence of the observed (squared) Doppler 

spectral widths and those modeled based on the simulation results at 4 h. The observed 

Doppler spectra become slightly wider away from the liquid-cloud top and then stay 

approximately constant throughout the rest of the liquid-cloud layer. The Doppler spectral 

widths produced from the LOW simulation also widen just below liquid-cloud top, but then 

narrow again down towards the liquid-cloud base. The Doppler spectral widths produced 

from the HIGH simulation exhibit a height dependence more comparable to the 

observations.
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4. Comparison of simulation outputs to observations

In this section, we retrieve the turbulent kinetic energy dissipation rates from the observed 

mean Doppler velocity to evaluate the SGS dissipation rates from DHARMA. Then we 

decompose the observed Doppler spectral widths into individual broadening terms and focus 

our evaluation on the microphysical broadening.

4.1. Dissipation rates and turbulent broadening

We first detrended the observed mean Doppler velocity series for each range gate by 

applying a Gaussian filter with a filter width of 1.5 km, removed the filtered velocity and 

kept only the residual velocity. We then removed the remaining linear trend in the residual 

time series. The autocorrelation of the detrended series was subsequently shown to have the 

expected behavior of a turbulent velocity time series (i.e., the autocorrelation falls to below 

zero as the lag initially increases, then returns to positive values and then oscillates around 

zero). We next calculated the power spectra of the detrended observed mean Doppler 

velocity time series, E33
obs κ1 , from 17:00 UTC to 17:30 UTC at each range gate height. Then 

we smoothed E33
obs κ1  by averaging them over non-overlapping wavenumber ranges with 

similar widths in log scale following Section 7.4.1 in Kaimal and Finnigan [1994], and 

visually examined the smoothed power spectra for inertial subrange behavior. Retrieval of 

the dissipation rates was attempted for heights where the smoothed power spectra showed an 

approximate −5/3 slope. Figure 5a show the smoothed E33
obs κ1  at various heights. One can 

see that the power spectra inthe lower part of the liquid cloud show approximately −5/3 

slopes. The inertial subrange behavior collapses as one moves towards the liquid cloud top, 

possibly because the outer length scale of the homogeneous and isotropic turbulence gets 

smaller so that filtering by the radar sampling volume distorts the −5/3 spectra too much. We 

chose to retrieve the dissipation rate for four heights between 800 m and 1000 m.

For each of these four heights, we numerically calculated 𝐶33(𝜅1) and C33 κ1  for the same 

wavenumber points as E33
obs κ1  assuming the Kolmogorov spectrum. The highest resolvable 

wavenumber is κ0 = π
UΔt , where Δ𝑡 ≈ 3.08 s is the time interval between MMCR profiles and 

𝑈 is the horizontal wind speed obtained by interpolating observed radiosonde wind speeds to 

the heights of the range gate. (Note that the height dependence is dropped in the notation.) 

The spectral power beyond the highest resolvable wavenumber is not lost but aliased back to 

the resolved wavenumber points. The aliased versions of 𝐶33(𝜅1) and C33 κ1 , called C33
a κ1

and C33
a κ1 , are also calculated for the same wavenumber points as E33

obs κ1 . We further 

estimated the integral length scale L from the autocorrelation function of the detrended 

observed mean Doppler velocity time series at each height. Then we computed four 

dissipation rates following
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ϵ =
∑κ1

E33
obs κ1

∑κ1
C33

model κ1

3/2

, 2π
L < κ1 < κ0, (14)

where C33
model κ1  is one of the four possible underlying models 𝐶33(𝜅1), C33 κ1 , C33

a κ1 , and 

C33
a κ1 . We assumed no white noise contribution in E33

obs κ1  to obtain an upper bound on the 

dissipation rates. Note that we are fitting the underlying models for turbulent air motion to 

power spectra obtained from mean Doppler velocities, which are filtered vertical air 

velocities 𝑣a (defined as positive upwards) minus the reflectivity-weighted mean fall speed 

of the particles 𝑣f. Both the variance of 𝑣f and the covariance between 𝑣f and 𝑣a can bias 

E33
obs κ1  relative to the desired power spectra of 𝑣a. We follow Lothon et al. [2005] who 

showed that the variance of 𝑣f is much smaller than that of 𝑣a and the covariance between 𝑣f 

and 𝑣a mostly occurs at larger scales.

Figure 5b shows an example for the range gate at 870.2 m. The retrieved power spectra for 

all four underlying models are shown. The observed spectrum shows deviations from the 

−5/3 behavior that requires filtering by the radar sampling volume to explain. The sum of 

C33 κ1  is the smallest among the four underlying models. Therefore, the retrieved 

dissipation rate assuming C33 κ1  is the largest of the four underlying models. For the four 

heights wherewe applied the retrieval, the dissipation rates based on C33 κ1  are about 

167%~182% of the results based on 𝐶33(𝜅1). We also examined which of the four 

underlying models produces thebest fit to the observed spectra, finding no evidence of 

aliasing present in them. Therefore, we selected the filtered inertial subrange spectra without 

aliasing, i.e., C33 κ1 , for our retrievals.

We quantify the uncertainty in the retrieved dissipation rates following methods similar to 

O’Connor et al. [2010] and Shupe et al. [2012]. With a fixed underlying model, the 

fractional error in the dissipation rate is defined as the sum of two terms, that is,

Δϵ
ϵ = 3

2
Δσi

2

σi
2 + ΔU

U , (15)

where σi
2 is the expected integral of the power between the wavenumber range 

2π
L < κ1 < κ0, Δσi

2 is the error in the estimation of σi
2, and ΔU

U  is the fractional error in the 

horizontal wind speed. To estimate the uncertainty in σi
2, we assume that the ratio between 

the observed powerdensity E33
obs κ1  and the expected power density, denoted with E33

exp κ1 , is 

a random variablefollowing the exponential distribution with a parameter of 1 and 

independent of the ratio at other wavenumbers. This assumed distribution is consistent with 
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that, at each wavenumber point, the variance of the power density is the square of the 

expected power density [Appendix B in Fang et al., 2011; Dias 2017]. This assumption also 

empirically matches the observed spectra. Under this assumption, the integrated power is the 

sum of a number of random variables following a Gamma distribution. We generated 105 

random spectra based on each of the four underlying models at the same wavenumber points 

used to retrieve the dissipation rate. The ratio between the standard deviation of the integral 

of the randomly generated power spectra and the true value vary from about 7.5% to 10.0% 

across the four underlying models. This experiment was repeated a few times and no ratios 

greater than 10% were found. We take 
Δσi

2

σi
2  to be 10%, thereby the term in which it occurs 

contributes to a 15% fractional error in the retrieved dissipation rate. The fractional error in 

the horizontal wind is largely unknown. O’Connor et al. [2010] assume 1~2 m s−1 error and 

Shupe et al. [2012] assume a fractional error of 50%. We assume a fractional error of 15%, 

which is about 1 m s−1 out of the observed horizontal wind speed of 7 m s−1. (A more 

conservative estimation of the uncertainty, say, 2 m s−1, would not change the conclusion.) 

With Eq. (15) we conclude that a reasonable estimate of the fractional error in our retrieved 

dissipation rate is 30%.

Figure 6a shows the retrieved dissipation rates together with the profiles of the SGS 

dissipation rates at five time slices in the LOW and HIGH simulations. The SGS dissipation 

rates are smaller than the retrieved dissipation rates by nearly one order of magnitude. 

Because the turbulent broadening σt
2 is proportional to 𝜖2/3, the turbulent broadening used in 

the forward model is only about 25% of that derived from the retrieved dissipation rates. 

(The solid and dashed red and blue lines without markers in Fig. 6b will be addressed later 

in Section 5.1.)

4.2. Shear broadening

As indicated by Eqs. (A2) and (A3), the shear broadening due to the horizontal and vertical 

shear of the vertical air velocity at a radar gate, σsh
2  and σsv

2 , are proportional to the square of 

horizontal and vertical shear, 𝑘h and 𝑘v. In the recent literature, these two shear terms have 

been estimated from the difference of mean Doppler velocities observed in consecutive 

profiles or adjacent ranges [Shupe et al., 2008b; Fang et al., 2014; Borque et al., 2016]. For 

example, one can estimate the horizontal and vertical shear of the vertical air velocity as

kh(z, t) =
vd(z, t + Δt) − vd(z, t − Δt)

2UΔt (16)

and

kv(z, t) =
vd(z + Δz, t) − vd(z − Δz, t)

2Δz . (17)
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By this definition, the horizontal shear broadening σsh
2  is proportional to (𝑣d(𝑧, 𝑡 + Δ𝑡) − 

𝑣d(𝑧, 𝑡 − Δ𝑡))2. The ensemble mean of this squared velocity difference is exactly the 

definition of the second-order structure function of the velocity for a displacement of 2𝑈Δ𝑡 
or 2Δ𝑧. This quantity is proportional to a weighted integral of the one-dimensional power 

spectra of the mean Doppler velocity. It has a significant contribution from the inertial 

subrange, which is turbulent in nature. In fact, the structure function calculated from the 

measured velocity time series can be used to retrieve the dissipation rate [e.g., Gultepe and 

Starr, 1995; Lothon et al., 2005]. The horizontal shear broadening calculated from the 

horizontal shear estimated with this approach overestimates the shear broadening by double-

counting the contribution of the turbulent air motion associated with the inertial subrange. 

The calculation of vertical shear broadening not only suffers from the same problem but is 

also contaminated by the difference in the layer-mean of the reflectivity-weighted mean fall 

speed from one height to the next.

To minimize contamination of shear broadening estimates by turbulence and particle fall 

speeds, we estimated the horizontal and vertical shear of the vertical air velocity also 

following Eqs. (16) and (17) but with the mean Doppler velocity 𝑣d in the equations replaced 

with a modified velocity. To be specific, we first filtered the mean Doppler velocity time 

series at each height with a one-dimensional Gaussian filter with a characteristic filter width 

equal to the integral length 𝐿 used to retrieve the dissipation rates in Section 4.1. Then we 

removed the mean from the filtered series. Figure 7 exhibits the shear broadenings based on 

the observed and filtered mean Doppler velocity time series. The magnitude of the shear 

broadening is determined by both the magnitudes of the shear and the effective length over 

which the shear is applied (see Eqs. A2 and A3). The vertical shear broadening shown in 

Fig. 7 has greater magnitude than the horizontal shear broadening because the vertical 

dimension of the radar sampling volume is greater than the horizontal dimension along the 

horizontal mean wind. In fact, the magnitudes of the vertical and horizontal shear are 

comparable (not shown). For the same reasons, the common practice of calculating the shear 

broadening in a forward model in the same way is also unreliable. We present this 

subsection as an intermediate step towards quantification of microphysical broadening in the 

observations and no comparison of shear broadening from the model and the observations is 

attempted.

4.3. Microphysical broadening

Microphysical broadening σmp
2  is obtained by removal of turbulence and shear broadening 

from the observed squared spectral width. Note that we ignore the beam width effect σbw
2

because with Eq. (A7) this term is estimated to be less than 2 × 10−4 m2s−2 and much 

smaller than any other broadening terms. Figure 8 shows the observed squared spectral 

width for the liquid cloud layer and its decomposition into turbulent, shear, and 

microphysical broadening components for the layers where the dissipation rates are 

retrieved. The observed microphysical broadening is comparable with that from the HIGH 

simulation, while its lower bound is close to the microphysical broadening from the LOW 

simulation.
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Note that the uncertainty of roughly 37–50% in the microphysical broadening σmp
2

decomposed from the observed squared spectral width corresponds to a 20% fractional error 

in the turbulent broadening, which is carried from the 30% fractional error in the retrieved 

dissipation rates. We assume no uncertainty in the layer-mean of the observed squared 

spectral width because the signal-noise-ratio of the MMCR observations from 17:00 UTC to 

17:30 UTC is high (> 8 dB). The uncertainty in the shear broadening depends on the method 

to estimate it and very weakly on the uncertainty in the horizontal wind speed. We assume 

no uncertainty in the shear broadening.

5. Discussion

With the quantification of the turbulent and shear broadening contributions to the observed 

squared spectral widths, we found that overly narrow modeled spectral widths are primarily 

caused by using the SGS dissipation rate to represent the dissipation rate in both the LOW 

and HIGH simulations and to a lesser degree contributed by the narrow microphysical 

broadening in the LOW simulation. In this section, we examine in more detail the two 

sources of the discrepancy in the Doppler spectral broadening terms.

5.1. Turbulence in the simulations

We first investigate the underestimation of the retrieved dissipation rates calculated by 

DHARMA’s SGS dissipation rates. A Smagorinsky SGS model builds on the assumption 

that the inertial subrange is partially captured in the simulated resolved flow. Ideally, one 

would expect that the power spectra of the resolved flow show a peak corresponding to large 

scale features, transit to a −5/3 slope corresponding to the inertial subrange behavior, then 

roll off at higher wavenumber range where the model is unable to resolve the kinetic energy. 

We examine the power spectra of the resolved vertical air velocity field to search for the 

expected behavior. Figure 9 shows the results in the lower and upper parts of the liquid cloud 

in the LOW and HIGH simulations at 4 h. The black dashed lines in the figures are the 

reference lines showing the expected inertial subrange power spectra assuming an isotropic 

three-dimensional Gaussian filter whose filter widths in three directions equal to that 

assumed in DHARMA formulation, that is, the standard deviations of the Gaussian pattern 

are

σ1 = σ2 = σ3 = (ΔxΔyΔz)1/3
12 ,

where Δ𝑥 = Δ𝑦 = 50 m and Δ𝑧 = 15 m are the grid spacings for LOW and HIGH 

simulations. Arguably there is a narrow wavenumber range showing a −5/3 slope in the 

power spectra in the lower part of the liquid cloud in both the LOW and HIGH simulations. 

Similar to the power spectra of the observed mean Doppler velocities, the power spectra of 

the simulated vertical wind fields in the upper part of the liquid cloud deviate from inertial 

subrange behavior. The power spectra were examined for the other four time slices from 

both the LOW and HIGH simulations and similar behavior was found.
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If an inertial subrange is evident in the power spectra of the resolved flow, one could infer 

the dissipation rate from them. Ideally, the inferred dissipation rate should agree with those 

from the SGS model [Bou-Zeid et al., 2005; Pan and Chamecki, 2016]. Sullivan and Patton 

[2011] showed that, for a high resolution LES of a dry convective boundary layer, the 

velocity spectra demonstrated a continuous −5/3 slope from very close to the peak of the 

power to the highest resolved wavenumber, although only the underlying physics for the 

high wavenumber portion agreed with the inertial subrange. If the same behavior holds for 

our stratus-topped boundary layer, which is essentially a top-down convective boundary 

layer, we might be able to infer the dissipation rates in the DHARMA simulations from the 

power spectra that show evidence of an inertial subrange. The power spectra in Fig. 9a and 

Fig. 9b suggest dissipation rates greater than 10−3.5 m2s−3, approximately two times larger 

than those from the observations, and roughly afactor of 10 larger than those computed using 

the SGS eddy viscosity.

The large discrepancy between the inferred dissipation rates and those from the SGS model 

raises a question: what quantity shall we use in a forward model to represent the turbulence 

in the LES? Note that the power spectra in all panels in Fig. 9 fall off faster at high 

wavenumbers than the reference lines. This can be seen more clearly in Figs. 9e and 9f. 

which show the same power spectra as in Figs. 9a and 9b but flattened by multiplying with 

κh
5/3 to remove the wavenumber dependency. The reduced energy in the high wavenumber 

range is similar to that reported by Heinze et al. [2015], where the authors attributed this 

issue to the numerical limitations of the diffusion scheme as well as the errors associated 

with the time stepping scheme and/or spatial discretization.

It is known that an LES may suffer from both numerical errors and limitations in the SGS 

model [Chow and Moin, 2003]. The effects of numerical errors could be dissipative, that is, 

remove kinetic energy from the resolved flow. We diagnosed the numerical dissipation rate 

(D. Stevens, personal communication) and combined it with the SGS dissipation rate as an 

estimate of the total dissipation rate in the simulations. The profiles of the total dissipation 

rates are much closer to the retrieved dissipation rate profile (Fig. 6b) and more comparable 

to the dissipation rates inferred from the power spectra of DHARMA’s resolved flow. The 

agreement between the total dissipation rate (D) and the difference (D′) between the TKE 

tendency and its individual budget terms, i.e., buoyancy, shear, and transport, in Fig. 10 also 

suggests that the total dissipation rate better represents the TKE dissipation rate in the 

DHARMA simulation evaluated here than the SGS dissipation rate.

Ideally, the impacts of numerical error on the solution to an LES’ governing equations are 

smaller than the terms parameterized with a physically based SGS model. However, this is 

not always the case. The impacts of numerical error depend on not only the specifics of the 

numerical scheme but also on the grid spacing to the filter width ratio [Ghosal 1996; Meyers 

et al., 2007], the choice of which depends on the characteristics of the flow and is limited by 

computational cost considerations. In the simulations we evaluated here, the total (i.e., 

combined SGS and numerical) dissipation rate is about six times the SGS dissipation rate 

within the liquid cloud layer. In contrast to this study, Rémillard et al. [2017] found that the 

turbulent broadening from the MMCR observations agreed well with that modeled based on 
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the SGS dissipation rates reported by DHARMA and another LES model simulating a 

marine stratocumulus case, thus arousing no suspicions. Our diagnosis using DHARMA 

output from that case study (not shown) indicates that the total dissipation rate was about 

three times the SGS dissipation rate and that the dissipation rate inferred from the power 

spectra of the resolved vertical velocity was much closer to the SGS dissipation rate than in 

the case reported here. Thus, the SGS dissipation rate in DHARMA appears to represent a 

variable fraction of the true total rate that is quite strongly case-dependent.

Our evaluation results also warrant future tests of more advanced SGS models, for example, 

the dynamic mixed SGS model by Zang et al. [1993], which have been incorporated in 

DHARMA but not been evaluated here. These SGS models explicitly include the modified 

Leonard component of the SGS stress tensor and aim to reconstruct the stresses that are 

damped due to the presence of a filter that is not sharp in spectral space and hence more 

accurately represent the turbulence dissipation.

Although numerical dissipation dominates energy dissipation in the simulations evaluated 

here, some inertial subrange behavior is seen in the power spectra of the resolved flow, and 

the dissipation rate inferred from the power spectra agrees with those from the observations 

as well as the total dissipation rates in the model. We conclude that the best practice for 

estimating representative dissipation rates in an LES, needed for radar Doppler spectra 

forward modeling, is to infer this rate from the power spectra of the resolved flow or from 

the sum of the SGS dissipation rate and numerical dissipation rate. We note that both 

methods pose a setback for forward modeling studies insofar as power spectra and estimates 

of numerical dissipation offer only domain-mean profiles rather than grid cell values of the 

dissipation rate as used in Rémillard et al. [2017]. This is likely to present a limitation 

especially to use of forward simulation of Doppler spectra within horizontally heterogeneous 

cloud fields such as cumulus.

5.2. Ice particle fall speeds

Microphysical broadening represents the variance of the particle reflectivity versus particle 

fall speed distribution. We interpret the retrieved and modeled microphysical broadening 

together with the reflectivity-weighted mean fall speed. The layer-mean of reflectivity-

weighted mean fall speed can be estimated by taking the layer-mean of the mean Doppler 

velocity with the assumption that the layer-mean of the vertical air velocity is zero [Orr and 

Kropfli, 1999]. Combining the results presented earlier in Fig. 3b and Fig. 8, for both the 

reflectivity-weighted mean fall speed and layer-mean microphysical broadening, the HIGH 

simulation agrees better with the observations than the LOW simulation, suggesting that ice 

particles in the HIGH simulation have a wider spread in fall speed and fall faster on average. 

Note that we reproduced the results in Avramov et al. [2011] that both simulations very well 

reproduce the distribution of mean Doppler velocities (indicating realistic vertical wind 

speeds), but the HIGH simulation could not reproduce the high reflectivities observed by the 

MMCR. All results from evaluations against the MMCR observations, combined with the 

previous finding by Avramov et al. [2011] that the HIGH simulation could not reproduce the 

concentrations of the largest particles observed in situ, provide a more thorough picture of 

different strengths and limitations of the LOW and HIGH simulations. When all ice particles 

Chen et al. Page 14

J Geophys Res Atmos. Author manuscript; available in PMC 2019 July 27.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



are assumed to be at the high-density limit (in HIGH), fast falling ice particles are produced. 

However, the largest ice particles are too heavy to remain lofted; their substantially faster fall 

speed resulted in relatively too few large ice particles (despite comparable numbers of mid-

sized ice particles) and an associated deficit of reflectivity compared with observations. In 

contrast, the slower falling ice particles in the LOW simulation experienced longer growth 

periods in the liquid cloud layer and reached larger sizes at higher concentrations, resulting 

in higher reflectivities. However, these large ice particles fall at similar speeds, resulting in 

narrower microphysical broadening. In fact, with the calculated fall speed from low-density 

aggregate properties reaching a maximum value at ~0.5 m s−1 (Fig. 2a), we note that it is not 

possible for the LOW simulation to produce a reflectivity-weighted mean fall speed 

exceeding 0.5 m s−1 as was observed in the lower parts of the sub-cloud layer (Fig. 3b).

As noted above, Avramov et al. [2011] selected the LOW and HIGH ice properties to bound 

the range of dendrites observed. When taken together with uncertainty in retrieved 

microphysical broadening, our results suggest that the actual mixture of ice particle densities 

may be important to microphysical spectral broadening. It may be the case, for instance, that 

spectral broadening is significantly increased by contributions of high-density ice particles 

whereas reflectivity and concentrations of the largest particles are significantly increased by 

the contributions of low-density ice particles. A high-fidelity reproduction of the observed 

ice particle population requires the correct representation of not only the fall speeds but also 

many other processes, including but not limited to the dynamics as well as the ice nucleation 

processes, which are challenging tasks to accomplish in a physically consistent and rigorous 

manner in models, especially in the absence of quantitative ice property information from 

measurements [e.g., Fridlind et al., 2012]. Our method of retrieving microphysical 

broadening provides an additional means to assess simulation veracity by using the 

additional information provided by radar Doppler spectra.

This method is inevitably affected by the assumptions in the calculation of ice particle 

scattering properties. Ice mass in our specific case is dominated by big dendrites and 

aggregates. Assuming these ice particles fall with their maximum dimension close to the 

horizontal plane, Botta et al. [2011] showed that the reflectivities of the ice particles are 

close to the results assuming Rayleigh scattering when viewed from below while resonance 

effects are more evident in the reflectivity at side incidence. We expect small uncertainty due 

to ice particle scattering properties for our case. For more complicated cases, the sensitivity 

of the results to the scattering calculations may need to be explored.

6. Summary and Conclusions

In this work, we extended previous evaluation of DHARMA simulations of a single-layer, 

mixed-phase cloud observed on April 8, 2008, at the NSA site. Two sets of simulations were 

evaluated, one assuming low density ice particles (LOW) and the other one assuming high 

density ice particles (HIGH), intended to bound the range of dendrite types observed. The 

goal was to extend the previous evaluation to compare Doppler spectral widths with those 

observed by the MMCR. We retrieved the dissipation rates from the MMCR observations, 

decomposed the observed spectral widths into their turbulent, shear, and microphysical 
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broadening terms, and then compared them with broadening terms calculated for the 

simulations with a forward model.

To accurately retrieve dissipation rates as well as each broadening term from the 

observations, a few modifications to previously presented techniques were made. First, we 

showed that the inertial subrange spectra filtered with the radar sampling volume is a better 

underlying model than the unfiltered −5/3 law for the retrieval of the dissipation rate from 

the power spectra of the mean Doppler velocity. Second, we demonstrated that filtering out 

turbulence and removal of the layer-mean reflectivity-weighted mean fall speed from the 

observed mean Doppler velocity is important in avoiding overestimation of the shear 

broadening. We also provided a method to quantify the uncertainty in the retrieved 

dissipation rates, which eventually propagates to the uncertainty in the microphysical 

broadening.

The turbulent broadening σt
2 (with a layer-mean around 0.033 m2 s−2 in the lower part of the 

liquid cloud, corresponding to a width of 0.18 m s−1) accounts for roughly 62–69% of the 

observed squared spectral widths (around 0.051 m2 s−2 or 0.22 m s−1) in our case. It is 

underestimated by both the LOW and HIGH simulations because the LES SGS dissipation 

rates severely underestimate the observed in-cloud dissipation rate in this case by nearly a 

factor of 10. The domain-mean profile of the total dissipation rates, estimated as the SGS 

dissipation rates plus the numerical dissipation rates, are much closer to the dissipation rates 

retrieved from the observations. We examined power spectra of the simulated vertical air 

velocity and found a short inertial subrange in both simulations. The dissipation rates 

inferred from the power spectra of the simulated vertical air velocity are comparable to those 

from the observations and the total dissipation rates (within a factor of two). The dominance 

of the numerical dissipation rates over the SGS dissipation rates in the simulations are also 

consistent with the reduced energy in the high wavenumber range in the model. We show 

that the power spectra of the simulated velocity field can be examined in this stratiform 

cloud case to check the performance of the SGS model in the LES if the numerical 

dissipation rates are not readily diagnosed.

The microphysical broadening σmp
2  (with a layer-mean around 0.016 m2 s−2 in the lower part 

of the liquid cloud, corresponding to a width of 0.13 m s−1) contributes 28–34% of the 

observed squared spectral width in this case study, whereas turbulent broadening contributes 

the majority of the remainder. The HIGH simulation produced microphysical broadening 

comparable with that retrieved from the observations, whereas the LOW simulation 

underestimated the microphysical broadening by an amount greater than the retrieval 

uncertainty of 37–50% (based on σmp
2 , or 17–29% based on 𝜎mp). The HIGH simulation also 

better matchedhorizontally averaged mean Doppler velocity. However, Avramov et al. 

[2011] demonstrated that the faster-falling aggregates in the HIGH simulation are not 

maintained at high enough concentrations compared with radar and in situ observations. We 

therefore posit that a mixture of particle types or possible uncertainty in ice particle 

properties (which are not obtained from observations in a quantitative manner), their fall 

speeds (calculated from the properties), or ice nucleation could be additionally required in 

order to achieve agreement with multiple observational measures. Some of these sources of 
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uncertainty have been emphasized in past studies [e.g., Fridlind et al., 2012]. Our results 

show that a comparison between simulated and observed microphysical broadening can 

provide another such useful evaluative measure of the ice properties in high-resolution 

simulations.
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Appendix.: Forward Model

We constructed a forward model adapted from the framework in Kollias et al. [2011a] 

according to the following few steps. First, a “quiet-air” spectrum is calculated for each 

model grid box by weighting the fall speed by the total hydrometeor backscattering cross 

section for all hydrometeor types/sizes associated with each bin of the particle size 

distribution, in this case including liquid cloud droplets, pristine ice, and aggregates. This 

“quiet-air” spectrum is only broadened by microphysical factors, i.e., hydrometeor fall 

speeds and backscattering cross sections. Then we calculated the turbulent broadening σt
2, 

shear broadening σs
2, and the beamwidth effect σbw

2 . Then, the “quiet-air” spectrum is shifted 

by the resolved vertical air velocity, that is, the simulated w-wind, and convolved with a 

normal distribution following

N 0, σdyn
2 = σt

2 + σs
2 + σbw

2 . (A1)

One spectrum is constructed for one model grid box containing hydrometeors. Finally, noise 

with characteristics consistent with the MMCR is added following Zrnić [1975]. The 

resulting spectrum is then processed in the same way as an observed spectrum. First, the 

noise floor is identified following Hildebrand and Sekhon [1974]. And second, spectra 

containing fewer than four consecutive (positive value) spectral points after the removal of 

the noise floor are discarded.

The turbulent broadening σt
2 is computed following Eq. (10). To be consistent withcommon 

practice, the dissipation rates from the DHARMA SGS model are used to calculate Φ33(κ) 

following Eq. (4). Parameters required for the calculation of G(κ) 2 following Eq. (11) are 

consistent with configurations of the MMCR together with a constant horizontal wind speed 

of 7.1 m s−1 based on the nearly uniform horizontal wind speed measured by aradiosonde 

throughout the liquid cloud layer. The limits of the integral are set to wavelengths from 1000 

m to 1 mm, which may overestimate the turbulent broadening if the actual outer length scale 
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of the inertia subrange is shorter than 1000 m. The overestimation is up to 10% as long as 

the inertial subrange extends to scales greater than around 125 m.

The calculation of the shear broadening σs
2 is similar to Eqs (5.74) ~ (5.76) in Doviak and 

Zrnić [1993] but takes into account the impacts of the horizontal wind speed on the beam 

dimension. To be specific, the shear broadening is the sum of two terms, i.e., the broadening 

by the horizontal and vertical shear of the vertical air velocity:

σsh
2 = z2θ2

16log(2) + U2(z)T2

12 kh
2, (A2)

and

σsv
2 = (0.35cτ)2kv

2 . (A3)

In these equations, the horizontal and vertical shear of the vertical air velocity is calculated 

from the model resolved vertical air velocity field. For example, for a grid box at (𝑥, 𝑦, 𝑧),

kh
2 = w(x + Δx, y, z) − w(x − Δx, y, z)

2Δx
2

+ w(x, y + Δy, z) − w(x, y − Δy, z)
2Δy

2
, (A4)

and

kv
2 = w(x, y, z + Δz) − w(x, y, z − Δz)

2Δz
2
, (A5)

where Δ𝑥 = Δ𝑦 = 50 m and Δ𝑧 = 15 m are the grid spacings for LOW and HIGH 

simulations.

The beamwidth effect is calculated as

σbw
2 = U2(z)θ2

16log(2) . (A6)
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Key Points:

• Model subgrid-scale dissipation rates should be used with caution in 

characterizing turbulence in forward modeling of radar Doppler spectra.

• Microphysical broadening retrieved from observations of Arctic mixed-phase 

clouds provides additional measures for model evaluation.

• Quantification of turbulent and shear broadening and their uncertainties are 

critical for accurate retrieval of the microphysical broadening.
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Figure 1. 
(a) Reflectivity, (b) mean Doppler velocity (with positive values indicating upward motion), 

and (c) Doppler spectral width measured by the MMCR at the DOE ARM CRF on the NSA 

from 17:00 UTC to 18:00 UTC, April 8, 2008. The black solid line in each panel is the cloud 

base height from a ceilometer. Panel (d) shows the time series of liquid water path retrieved 

from a microwave radiometer.
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Figure 2. 
(a) Fall speed versus the maximum dimension of ice particle used in the low density ice 

particle simulation (LOW) and the high density ice particle simulation (HIGH). (b) 

Backscattering cross sections of the hydrometeor particles in the Ka-band versus their 

maximum dimension, which is identical to the diameter for spherical particles. The 

backscattering cross sections of liquid drops are calculated with Rayleigh scattering. The 

backscattering cross sections of ice particles are calculated with the Generalized Multi-

particle Mie (GMM) method.
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Figure 3. 
Observed and modeled layer-mean values of (a) reflectivities, (b) the mean Doppler 

velocities, and (c) squared spectral widths. The red lines represent the modeled layer-means 

of the mean Doppler velocities for five time slices of the LOW simulation, whereas the blue 

lines represent these same layer-means for five time slices of the HIGH simulation. Profiles 

for DHARMA simulations are shifted up for 50 m to compensate for the different location 

of liquid cloud in simulations and observation.
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Figure 4. 
Normalized frequency of occurrence of squared Doppler spectral widths by height for (a) the 

observations, (b) the LOW simulation at 4 h, and (c) the HIGH simulation at 4 h. The 

frequency of occurrence is binned every 0.02 decade and normalized (for the observations) 

by the total number of profiles from 17:00 UTC to 17:30 UTC, April 8, 2008, and (for the 

simulations) by the total number of grid points at each model layer. The black solid line with 

crosses in each panel shows the root mean squared spectral widths with height.
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Figure 5. 
(a) Power spectra of the detrended observed mean Doppler velocities. Colors of lines 

indicate the heights of the radar sampling volumes. Spectra for scales shorter than 1000 m 

(wavenumber of 10−2.2 m−1) are smoothed by averaging over non-overlapping wavenumber 

ranges of 0.1 decade. Spectra for scales longer than 1000 m are smoothed by 8-point moving 

average. Black dashed line is a reference line showing −5/3 slope. (b) Power spectra based 

on four underlying models and corresponding retrieved dissipation rates at 870.2 m. Gray 

smoothed spectrum is the same as the one in (a) for the same height.
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Figure 6. 
Comparison of the dissipation rates retrieved from the observations (black solid line), along 

with their uncertainties (black dashed lines), based on assuming filtered inertial subrange 

spectra without aliasing to (a) those from the subgrid-scale (SGS) model for the five time 

slices from the LOW (red lines with markers) and HIGH (blue lines with markers) 

simulations and to (b) the mean (solid lines), as well as minimum and maximum (dashed 

lines), total dissipation rates from the LOW (red lines) and HIGH (blue lines) simulations. 

Profiles for the DHARMA simulations are shifted up in height by 50 m to compensate for 

the difference in location of the liquid cloud in the simulations and observations.
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Figure 7. 
Layer-mean shear broadening estimated from the observed (black lines) and modified (red 

lines) mean Doppler velocities. The solid and dashed lines are for the horizontal and vertical 

shear broadening terms, respectively.
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Figure 8. 
Profiles of the observed squared spectral widths (black solid line with “+”), observed 

squared spectral widths with shear broadening removed (black solid line with “×”), retrieved 

microphysical broadening (black solid line with “○”) and its uncertainty range (thin black 

dashed lines with “○”). In addition, red lines represent the model microphysical broadening 

at the five time slices of the LOW simulation, whereas the blue lines are from the HIGH 

simulation. Profiles for DHARMA simulations are shifted up by 50 m to compensate for the 

different location of liquid cloud in the simulations and observations.
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Figure 9. 
Power spectra of vertical winds in the lower (first row) and upper (second row) part of the 

liquid cloud in the LOW (left column) and HIGH (right column) simulations. The flow 

fields at 4 h of both simulations were used. Black dashed lines show the theoretical spectra 

for dissipation rates from 10−4.0, 10−3.9, …, to 10−3.0 m2 s−3Colors of lines indicate heights 

ofthe model layers in meter. Also shown are the flattened spectra of the vertical air velocity 

in the lower part of the liquid cloud in the LOW simulation (third row). Black dashed lines 

are theoretical flattened spectra for dissipation rates of 10−3.1 and 10−3.2 m2s−3, respectively, 

given the filter used in DHARMA.

Chen et al. Page 31

J Geophys Res Atmos. Author manuscript; available in PMC 2019 July 27.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 10. 
Turbulent kinetic energy budgets for the LOW and HIGH simulations averaged from 2 h to 4 

h. S represents shear, B buoyancy, T transport, D dissipation, and D′the tendency required to 

balance the TKE tendency in the model and S, B, and T.
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