
UC Irvine
ICS Technical Reports

Title
A model of time dependent behavior in concurrent software systems

Permalink
https://escholarship.org/uc/item/33p958qj

Author
Lane, Debra S.

Publication Date
1987-11-02
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33p958qj
https://escholarship.org
http://www.cdlib.org/


Notice: This Material 
may be protected 
by Copyright Law 
(Title 17 U.S.C.) 

A Model of Time Dependent Behavior 
~ 

in Concurrent Software System~ 
"' 

Debra S. lane 
~ /' 

Technical Report No. 87-28 

University of Calfornia at Irvine 

Department of Information and Computer Science 

November 2, 1987 



~ 

l; ~ f' ,' ': '1' . 

ABSTRACT 

i 
.'I 

i'", 

A great difficulty in building distributed systems lies in being able to predict 
what the systems behavior will be. A distributed or communicating system is 
defined here to be one in in which the hardware consists of a set of processors 
each with their own memory, connected by some communication medium (there 
is no shared memory), and the software is assumed to be of the CSP (Hoare's 
Communicating Sequential Processes) type. 

In the past few years some theories have been proposed to model features 
of communicating systems. Milner's Calculus of communicating Systems (CCS), 
Winskel's Synchronization Trees (ST), Hennessy's Acceptance Trees (AT), and 
Hoare and Brookes's theory of communicating processes are examples of formal 
models of such systems. All of these models concentrate on modelling observable 
properties of a system. 

Event Dependency Trees (EDT) is a new representation of communicating 
systems that models the time dependent nature of such systems. None of the 
representations mentioned above explicitly represent time but time is precisely the 
factor that introduces so much variability and complexity into such software and 
systems. EDT provides a representation based on trees and a set of operations 
over the EDT trees that can be used to produce a representation of the system 
behavior. The model supplies potentially important information for the design and 
construction of distributed, parallel software systems. 



Introduction 

A Model of Time Dependent Behavior 

in Concurrent Software Systems 

A great difficulty in building distributed systems lies in being able to predict 

what the system behavior will be. A distributed or communicating system is 

defined here to be one in which the hardware consists of a set of processors 

each with their own memory, connected by some communication medium (there 

is no shared memory), and the software is assumed to be of the CSP (Hoare's 

Communicating Sequential Processes) type. The problem is that while it is easy 

to understand how each process behaves in and of itself, it is nearly impossible to 

predict all the ways in which the processes will interact and influence each other's 

execution. It is necessary to understand their interaction in order to determine 

how the system behaves (so that one might convince oneself or others that the 

system performs as intended). 

In the past few years some theories have been proposed to model features 

of communicating systems. Milner's Calculus of Communicating Systems (CCS) 

[MILN80], Winskel's Synchronization Trees (ST) [Wms84], Hennessy's Acceptance 

Trees (AT) [HENN85B], and Hoare and Brooke's theory of communicating processes 

[BRoo84] are examples of formal models of such systems. All of these models 

concentrate on modelling observable properties of a system. 

This paper presents a new representation of communicating systems called 

Event Dependency Trees (EDT) that models the time dependent nature of such 

systems. None of the representations mentioned above explicitly represent time 

but time is precisely the factor that introduces so much variability and complexity 

into such software and systems. Many models in computer science assume that 

1 



2 

events occur instantaneously, but here it is assumed that every event occurs 

with a certain time delay represented explicitly by an event name and a variable 

for the time delay. Communication events are important because that is how 

processes interact. Events preceding the communication events, even if they are 

only executions of sequential pieces of code, are also very important, however, 

because they determine the exact manner in which the communication events will 

occur. 

Besides modelling time explicitly, EDT differs from CCS, ST, and AT in its 

representation of system behavior. Both CCS and ST represent system behavior 

as interleavings of events. The combine tree operation in those models produces 

the set of interleavings. AT represents the system as a state-transition graph. 

The tree combine operation in AT takes two state-transition graphs and produces 

a larger one. In EDT, the system behavior is represented as a partial ordering 

of events. The combine tree operation in EDT produces the partial ordering of 

events in a way that indicates how particular sets of events contend with each 

other to produce the various execution paths. 

EDT show the right amount of information about system behavior, not too 

much as in an interleaving representation, and not too little as in a state-transition 

model. It is possible to identify each execution path by its unique event ordering. 

In interleaving many event orderings produce the same execution path because 

many times it is irrelevant that some event occurred before or after another since 

they don't influence each other's execution. EDT shows exactly those events that 

influence each other's execution and also those that are not related. 

EDT also provides answers to the questions "Why is one execution path 

chosen over another?" or "How is a particular execution path chosen?" The ans'wer 

is that some set of events occurs before a different, contending set of events. CCS, 

ST, and AT all show the possible execution paths but indicate only that they arise 



3 

because of nondeterminism. What is the source of such nondeterminism? There 

are two ways in which nondeterminism arises in such systems: (1) through the use 

of guarded commands, and (2) through the use of the communication constructs. 

EDT models the nondeterminism that arises through the use of communication 

constructs in CSP-type languages. 

This paper tries to provide an intuitive feel for the structure of Event 

Dependency Trees, their operations, and how they model time dependent behavior 

(i.e., their explicit representation of time and depiction of system behavior). 

Event Dependency Trees 

The primary motivation for developing Event Dependency Trees (EDT) is 

to provide a technique for managing the complexity that arises when a piece 

of software is composed of many communicating processes. Since EDT tries to 

capture the manner in which interprocess communication determines the course of 

execution, for the present time the internal structure of processes is ignored. It is 

assumed that a process is only a sequential execution of events; control structures 

are not modelled. 

Notation 

Trees 

Components of a computation are represented as trees in which each arc is 

labelled with an event and an associated time delay. It is assumed that there is no 

time overhead associated with events other than what is shown. For example, the 

label e[t1] means that t1 is the amount of time it takes for event e to occur. All 

trees are composed from the following·( see Figure 1). 

1) Sequence - e[t1] occurs and then f[t2] occurs, i.e., e must complete before 

f can begin. t1 may equal t2. 



4 

g[t'.l] 

f[t2] 

(a) sequence (b) choice 

Figure 1 

Primitive Event Dependency Trees 

2) Choice - if t1 < t2 then event h will occur, if t2 < ti then g is executed, it 

is never the case that t1 = t2, one event or the other will always occur first. 

Events 

There are three types of events: communication, execution, and null. The 

communication events are assumed to be synchronized message exchanges, where 

there is a receiver (or passive participant) and a sender (or active participant). 

Therefore, communication events are further subdivided into three types: (1) a 

receiving communication event, (2) a sending communication event, and (3) a 

synchronized communication event. The null event is graphically represented as a 

tree with only a root node, and this is called the null tree. The following notation 

is used: 

1) e[t] denotes a sending communication event that takes time t. 

2) e[t] denotes a receiving communication event that takes time t. 

3) e[t] denotes a synchronized communication event that takes time t. 

4) e[t] denotes an execution event that takes time t. 

5) To denotes the null tree, which is also the null event. 



5 

These are the only events that can occur in EDTs. Using this model, all portions 

of the computation that take time are accounted for. 

Labelling trees is subject to some restrictions. First, three functions on 

labels are defined. c represents the empty string. Each event has a name, e, a 

time, t, and a type (exec, send, recv, sync, or null). The name of the null tree is c 

or the empty string and the time of the null tree is 0. the functions name, type, 

and time, when applied to an event, return the respective information about that 

event. 

Each arc of a tree contains an event label; the label consists of a name, a type, 

and a time. Event names will be taken from some alphabet of Roman characters. 

Event times will be denoted by the variable t and a subscript, e.g., i1, i2, i33. 

a., f3, 1, 5 will be used as variables that range over a set of event labels or event 

names. Let A be some alphabet. Some additional sets are defined. A is a set of 

labels 3 Va. E A, there is a corresponding /3 E A such that a. and /3 have the same 
...._ 
--,. 

names but type( a.) = exec and type(/3) = send. A, and A are defined analogously. 

Va. E A:l/3 E A 3 name(a.) = name(/3), type(a.) = exec, type(/3) = recv . 
...._ 

Va. E A:l/3 EA 3 name(a.) = name(/3), type(a.) =exec, type(/3) =sync. Thus, 

a E A =? a E A, 'a E A, and ~ E A. Let A = Au Au A u A. 

Usually, a set of trees (sometimes called a forest) will be used to represent 

some processes. Let L be the set oflabels for the forest. Although the time portion 

of the label has been temporarily ignored, it is assumed that each a. E L has an 

associated time, ii where i E NAT. The restrictions on labelling the forest are as 

follows: 

1) L c A. 

2) Va.,/3 E L, if type(a.) = exec then name(a.) -/:. name(/3). In other words, 

the na_!Ile of execution events is unique. 



6 

3) Va.,/3 E L, if type(a.) = recv then name(a.) = name(/3) only if 

type(/3) = send. This says that there is only one receive event with 

any given name, but there could be many send events with the same name. 

4) Va.,/3 E L, if type(a.) = sync then name(a.) = name(/3) only if 

type(/3) = send or type(/3) = sync. For any synchronized event, there 

can be send events with the same name or other synchronized events with 

the same name. 

5) Va.,/3 E L, if type( a.) =send then name(a.) = name(/3) only if for all 

other events type(/3) = send or type(/3) = recv, or for all other events 

type(/3) = send or type(/3) = sync. Send events can have the same 

name as other send events and a receive event, or, other send events and 

synchronized events. 

6) Va.,/3 EL, if time( a.)= ti time(/3) = tj then i-=/= j,i,j EN AT. Each label 

must have a unique time variable. 

There are some further labelling restrictions on any single tree in the 

forest. If a., /3 are labels within a single tree, then name( a.) = name(/3) only if 

type( a.) = type(/3) = sync. The only time labels in a single tree can have the same 

name is if the events with the same name are synchronized events. Synchronized 

events arise only as the result of a binary operation on trees called combine that 

is defined later in this chapter. Thus, if there are no combined trees in a given set 

of trees, then the restrictions for labelling any single tree in the set imply that all 

labels for that tree have distinct names. 

Functions on Trees 

Communication events are important because they denote interaction · 

between processes. The notion of matching communication events, which occurs 

between trees_not within a tree represents this interaction. 



Definition 2.2. Let A be a set of events. Va, j3 E A, a and j3 are matching 

communication events, denoted a ~e/3 if and only if 

i) name(a) = name(/3), 

7 

ii) type( a)= send and type(/3) E {recv,sync} OR type( a) E {recv,sync} and 

type(/3) = send. 

Thus, matching communication events are two events with the same event 

name in which either (i) one is a receiving communication event and one is a 

sending communication event, e.g., c[t2] and c[t1J, or (ii) one is a synchronized 

communication event and one is a sending communication event, e.g., c[t1] and 

Now, given two arbitrary trees, it is necessary to determine whether or not 

they have matching communication events and if they do, to identify them. First, 

it is necessary to be able to talk about the events contained in some tree. Some 

more notation is required. 

Definition 2.3. £ 7 is the set that contains all the event labels in tree T. 

So, for example, £ 7 of Tin Figure 1 equals the set {a[t1], b[t2], c[t3], d[t4]}. 

Next, a function COMM is defined that takes an EDT and maps it to a list 

of the communication events it contains. 

Definition 2.4. Let T be some EDT. COMM( T) = ( a.1, a.2,.;., an) where 

Vi E {1, .. .,n},ai E £ 7 , type(ai) E {send,recv,sync} and there does not exist 

any /3 E (£7 \ {a.1, ... ,an}) 3 iype(/3) E {send,recv,sync}. 

It is now possible to determine if two trees have any matching communication 

events. Some notation is provided to represent that fact. For the following 

definitions, let EVT be a set of ED" . 



8 

Definition 2.5. Let T,µ E EDT, and COMM(T) = (cq, ... , an), COMM(µ)= 

(/31, ... ,/3m)· If 3i E {l, ... ,n} and 3j E {1, ... ,m} 3 a/'~e/3j, then 

COMM(T)§COMM(µ). 

MAT C'H is a function that maps two trees to a list of all their matching 

communication events. 

Definition 2.6. Let T,µ E EDT 3 COMM(T)§COMM(µ). MATC'H(T,µ) = 

(( ai11 ••• , aik), (/3ju ... , /3jk)) where k E {1, ... , min{n, m}} and ait ~e/3it· 

If MATC'H contains more than one pair of matching communication events, then 

if the portion of the multiple pairs in one tree occurs in a chain, then the respective 

portion in the other tree must also occur in a chain. There cannot be branch 

nodes occurring between one portion of the pair in one tree and not in the other. 

The reason is that the resulting tree will contain a deadlock. For further details 

see [LANE87). 

There are two more pieces of information that are needed: the length of the 

path from the root node to some designated event in the tree, and a representation 

indicating which branches to take to arrive at the designated event, beginning at 

the root of the tree. 

Definition 2.7. Let TE EDT, a E Cr. PAT'H(T, a)= n, where n EN AT is the 

length of the path from the root node to a. 

Definition 2.8. Let T E EDT, a E Cr, r the root node, and c the empty string. 

Va, Vs EN AT*, and Vi EN AT, 

i) DEST(a,c)=a, 

ii) DEST(a,si) =the ith child ofDEST(a,s). 

DEST is not defined in some cases (e.g., the third child of a node with only two 

children). 



(a) a{ro) =a 

(b) a( r) =a L::7= 1 ,81r1 

Figure 2 

The Prefix Operation 

Definition 2.9. Let T E EVT, a E Lr, and r the root node. 'R.,OUTE(r, a) = 

s 3 s E N' AT* and 1)£ ST (a, s) = r. 

Operations 

In the beginning of the chapter the meaning of nodes and arcs in Event 

Dependency Trees was described. This section defines operations on trees that 

illustrate how EDTs are constructed. The operations preserve the meaning of 

branches in the trees. 

Prefix 

The prefix operation is a very simple operation. It allows events to be added 

to trees. See Figure 2. 

Definition 2.8. Let a be any event in£, r = 2:7=1 /3iTi be some tree. Then 

i) a ( ro ) = a , 

9 



10 

Combine 

A very important operation is one that combines two trees producing another 

tree. This can be thought of as taking two concurrent processes and showing 

how they interact and affect each other. If the two processes do not exchange 

information (i.e., they don't send messages to each other), then they will not affect 

each other and the corresponding trees that represent them will be denoted as a 

tuple (of trees) called a pseudo tree. Each pseudo tree is actually a forest of trees. 

Two trees will be combined into a single (new) tree when they have matching 

communication events. The tree that contains the sending communication event 

will be referred to as the active tree and the tree that contains the other event in 

the matching communication events pair, the passive tree. 

The combine operation takes two trees that contain at least one pair of 

matching communication events and produces a single tree as follows: 

i) The matching communication events form a single synchronized communi­

cation event. 

ii) If the passive tree contains a receiving event, then a single path from the 

root of the new tree is formed from the paths in each of the two original 

trees that contain the matching communication events. Except for the arc 

labelled by the new synchronized communication event, the arcs on the 

new path are labelled by tuples of events, (a, {3), where a represents the 

event on the active tree, and {3 represents the event on the passive tree. 

iii) If the passive tree contains a synchronized event, then two paths from the 

root of the new tree are formed. One path is the same path in the passive 

tree that contains the synchronized communication event. The other path 

is formed by creating tuples of events. The first element in each tuple is 



11 

taken from the active tree and the second element is taken from the passive 

tree. 

iv) The remaining parts of the two trees are reproduced in the new tree. 

There are four cases that arise when combining two trees that contain 

matching communication events. Each tree is broken into a subtree prefixed 

by an arc. The new tree is defined in terms of event labels and subtrees 

from the original trees. Selective subtrees are again combined. Referring 

now to Figure 3, assume 81 and 82 are the pair of matching communication 

events such that 51 E .Cr, T the active tree, and 82 E .lµ, µ the passive tree .. 

Furthermore, assume that PATH( T, 51) = PATH(µ, 82 ). The final piece of 

information necessary is the location of each event in the matching communication 

events pair in each tree. Let ROUTE(T,81) = ns,n E NAT,s E NAT* and 

ROUTE(µ, 82) = mr, m EN AT, r EN AT*. Now examine Figure 3. 

There are four cases to consider, based on the structure of the trees and the 

location of the matching communication events. The first case shows two trees, 

T and µ that each have a sequence of events leaving the root node. As shown 

the result is a tree with a sequence of events leaving the root node, labelled by 

/, followed by a subtree that is the combination of T1 and µl. Case 2 in Figure 3 

combines one tree that consists of two branches with one that has a single path 

from the root. The result is one of two cas' s: (a) If the matching communication 

event lies down the leftmost branch then the leftmost branch is the combination 

of T's leftmost branch with µ, the rightmost branch is merely copied into the new 

tree; (b) If the matching communication event lies down the rightmost branch, 

then the rightmost branch of T is combined with µ and the leftmost branch is 

copied into the new tree. The third case is similar to the second except that r is 

the tree with the single path from the root and µ is the tree with two branches. 

Finally, the fourth case occurs when both trees have branches from the root. The 



= 

7 
µ 

7 µ 

if a = a[t1J, P = b[(i] then r = ( a[t1], b[t2]) 

i1,2 = M AX(t1, t2) 

(i) n = 1 

(i) m = 1 

(i) n = 1, m = 1 

(iii) n = 1, m = 2 

Figure 3 

(ii) n = 2 

(ii) m = 2 

(ii) n = 2, m = 1 

(iv) n = 2, m = 2 

if a = a[t1], P = a[t2] then 

then r = a[tu] 

Combining Trees With Matching Events: Case 1 

12 



13 

result is one of four cases all of which consist of trees with three branches, one 

branch from each of the original trees that remains unchanged, and one branch 

that is the combination of a path from each of the original trees. 

As trees are combined, two kinds of events appear that are not present in 

an initial set of trees, synchronized communication events and tuples of events. 

Synchronized communication events have already been defined, tuples of events 

appear now for the first time. Some additional notation is needed for manipulating 

tuples of events. 

Definition 2.8. Let a = (a[t1], b[t2]) be a tuple of two events where a.l = a[t1] 

and a.2 = b[t2]. 

In addition, event labels must be merged to form one new event label. Event 

labels are only merged when two trees containing matching communication events 

are combined into one tree. Labels are merged according to the following rules. 

Definition 2.9. Let a and /3 be two event labels and let 5 be the event in the 

matching communication events pair possessed by the passive tree. Furthermore, 

let time( a) = i1 and time(/3) = tz. 

where 

{ 

(a,/3), 

[ O'.' /3] = ( O'.' /3 .1)' 

,, 

if a Td::.ef3 and type( 5) = recv, 

if a Td::.ef3 and type( 5) = sync, 

if O'.~e/3 

name( r) = name( a) 

type( r) = sync 

time(r) = i1,2 = max(t1, t2) 

There are three ways that event labels get merged. If the two labels being 

merged represent a pair of matching communication events, then they form one 

synchronized event. If the two labels being merged do not represent a pair of 

matching communication events, then they will form a tuple of events. The portions 



14 

of the tuple come from different places depending on whether the passive tree 

contains a recv or a sync event type on its portion of the matching communication 

events pair. Figure 3 shows how trees with matching communication events are 

combined when the passive tree contains a recv matching communication event 

type. Figure 4 shows what happens when the matching communication event 

contained by the passive tree is a sync event type. 

Again there are four cases. The difference is that in all cases the passive 

tree is copied into the new tree, positioned at the root. The remaining part of 

the new tree is formed almost exactly as in the previous case where the passive 

tree contained a recv event type. The only difference is when tuples of events 

are formed to label the new arcs, the second portion of the tuple comes from the 

second portion of the tuple in the passive tree. In the previous case, the whole arc 

label was used rather than just a portion. 

A definition is now provided for the combine operation. The definition 

formally states the rules for combining trees that have matching communication 

events, which was given pictorially in Figures 3 and 4. 

Definition 2.10 Let r, µ E £VT 3 COMM(r)§COMM(µ). Then r *mce µ = 

L7=1 O:.iTi *mce 2:}=1 /3jµj equals 

i) [ 0:.1 /31] (Tl * mce µ 1 ) , if n = m = 1, 

ii) .l::~=l rkvb if n > 1, m = 1, ROUT£(r, 81) =ls, l EN AT, s EN AT*, 

Vk = l, rk = [ o:.kf3k]' Vk = Tk *mce µi, 

iii) zzi=l rkvk, if n = 1, m > 1, ROUT£(µ, 82) =ls, l EN AT, s EN AT*, 



(ii) n = 2 

(i) m = 1 (ii) m = 2 

~ ~~ 

(i) n = 1, m = 1 

(iii) n = 1, m = 2 

if a = a[t1J, ,6 = (bi [t2J, h(t3]) 
then r = ( a[t1], b2 [t3]) 

(ii) n = 2, m = 1 

(iv) n = 2, m = 2 

if a = a[t1], f3 = a[t2] then 

ii.2 =Al AX(t1, t2) 

Figure 4 

Combining Trees vVith Matching Communication Events: Case 2 

15 



iv) l:J:!~-l/kVb ifn > 1, m > 1, ROUTE(T,81) =ls, ROUTE(µ,82) 

qx,l,q EN AT,s,x EN AT*, 

Vk = l, ... '(l + q - l),[kVk = j3J·µj,j = 1, ... '(q - 1), 

Vk = (l + q + l + n), ... ,(n + m -1),f'kVk = /3jµj,j = (q + 1), ... ,m. 

16 

Frequently, two trees will not contain matching comm~nication events. The 

next definition indicates the result of combining such trees and all other cases that 

arise. Any tree that is combined with the null tree simply gives back the original 

tree. The combine operation is idempotent, that is, the result of combining any 

tree with itself is that tree ( T * T = T ). Finally, combining two different trees that 

do not contain matching communication events produces a forest of two trees. 

Definition 2.11. Let T, µ E EDT and let To be the null tree. 

T, if µ=TO, 

µ, if T =TO, 

T*µ = r, if T =µ, 

T *mce µ, if T f. µ f. ro, and COMM(T)@COMM(µ) 

(T,µ), if T f. µ f. TO, and COMM( Ti}§COMM( Tj) 

Trees of the form T will be called basic trees, and trees of the form (T, µ) will 

be called pseudo trees. Some more notational conventions are followed. If there 

is a set of many trees that need to be combined then each tree is denoted by 

Ti, i E NAT, rather than by a separate greek variable (µ, v). As trees are combined 

the new trees~_are denoted as Tl,2 if -r1 *mce µ. 



17 

Two definitions of combine operations already exist but more are needed. 

The * operation introduced a new type of tree, the pseudo tree. None of the 

existing definitions indicate how to combine trees if one or more of the trees are 

pseudo trees. The following two definitions show how to combine pseudo trees with 

basic trees, the ** ( doublestar) operation. A triplestar, * * *, operation combines 

pseudo trees with pseudo trees. 'And finally, the circlestar operation,@, is defined 

to operate between any two types of trees, whether they are basic or pseudo trees. 

Definition 2.12. Let To be the null tree, T = { T1, ... , Tn}, a set of basic trees, 

and P = {p1, ... ,pm}, a set of pseudo trees. Vpi = (Ti1 ,Ti2 ) E P and Tj ET, 

Pi**Tj = 

if j = O or COMM(rii)@COMM(rj) and 

COMM( Ti2 :@COMM( Tj) 

if j = 0 or COMM(ri1 )@COMM(rj) and 

COMM( Ti2 "!@COMM( Tj) 

if j-/= 0, COMM(Tii)@COMM(rj) and 

COMM(Ti2"f@COMM(Tj) 

if j-/= O, COMM( Ti1 )@COMM( Tj) and 

COMM( Ti2 :@COMM( Tj) 

Definition 2.12 defines the combination of a pseudo tree with a basic tree. 

The next definition, 2.13 is very similar to 2.12 except that the order of the trees is 

reversed, a basic tree is combined with a pseudo tree. Definition 2.13 is necessary 

since combining trees (or processes) should be commutative [HoAR85] but the 

property cannot be derived from previous definitions. 



18 

Definition 2.13. Let To be the null tree, T = {T1, ... ,Tn}, a set of basic trees, 

and P = {p1, ... , Pm}, a set of pseudo trees. V Pi = (Ti1 , Ti2 ) E P and Tj E T, 

TJ°**Pi = 

if j = 0 OT COMM(Ti1 )@COMM(Tj) and 

COMM( Ti2 )@COMM( Ty') 

if j = 0 OT COMM( Ti1 )@COMM( Ty') and 

COMM( Ti2 }§COMM( Ty') 

if j-/= O, COMM(Tii)§COMM(Tj) and 

COMM( Ti2 }§COMM( Ty') 

if j-/= O, COMM(Tii)@COMM(Ti") and 

COMM( Ti2 )@COMM( Tj) 

The combination of two pseudo trees is now defined. Two pseudo trees are 

combined by taking each component of the second pseudo tree one at a time and 

combining it with the first pseudo tree. A different operation, * rather than **, 
is required depending on the result of combining the first compo:r{ent with the 

first pseudo tree. If the first component of the second pseudo tree has matching 

communication events, with all the components of the first pseudo tree, then the 

result will be a basic tree. Since the second component of the second pseudo 

tree is also a basic tree the * must be used. If they don't all have matching 

communication events, then the result will be a pseudo tree and the ** operation 

will be used to combine the intermediate result with the second component of the 

first pseudo tree. 

Definition 2.14. Let To be the null tree, T = {Ti, ... , Tn}, a set of basic trees, 

and P = {p1, ... , Pm}, a set of pseudo trees. V Pi= (Ti1 , Ti2 ), Pi' = (Tj1 , Tj2 ) E P, 

{ 

(Pi**Tj 1 ) * Ty"z, 

Pi***Pj = 

(P·i**Tj1 )**Ti'z' 

if COMM( Ti1 )§COMM( Ty'i) and. 

COMA1( Ti 2 )§COMM( Tj1 ) 

otherwise 



19 

Finally, the @ operation defines for any two trees, basic or pseudo, how to 

combine them. Note that E1JT is defined differently in Definition 2.15 from the 

previous definitions (where it denoted only a set of basic trees). 

Definition 2.15. Let To be the null tree, T = {T1, ... , Tn}, a set of basic 

trees, and P = {p1, ... , Pm}, a set of pseudo trees. Let EDT = T LJ P and let 

Ti, TJ' E EDT. 

Ti *Tj 

Ti**Tj 

Ti** *Tj 

if 

if 

if 

Ti,Tj ET 

Ti ET and Tj E p or, 

Ti E p and Tj ET 

Ti,Tj E p 

An example is presented that demonstrates the operations defined above. 

The two types of trees (basic and pseudo) and the multiple combine operations 

are necessary for the @ operation to be associative. 

Resource Manager 

A simple resource manager and two user processes comprising a program with 

three concurrent processes will be used to demonstrate how the tree combination 

operation represents event conflicts. The resource manager has three events: 

(1) receive a request for the resource, (2) grant the resource, and (3) receive 

notification to release the resource. Each of the user processes has four events: (1) 

perform some calculation, (2) request the resource, (3) use the resource, and ( 4) 

release the resource. 

The tree in Figure 5 part (a) represents the resource manager process, and 

parts (b) and ( c) the two user processes. As shown in ( d) Tr@Tu1 is a tree with 

a single path. It contains two synchronized communication events, one execution 

event, x[t4], and a tuple of two execution events. The tuple in some sense indicates 

that the events are or could be concurrent. The complete program of three 

processes is represented by the tree in ( e ). The second user process interacts with 



20 

y[ts] 

rq [ts] 

w[t10] 

~ 

rl[tu] 

(a) Tree rr (b) Tree ru1 (c) Tree ru2 

y[ts] 

rq[t1,s] rq[ii,s] 

rl[t3
1
11] 

( d) 7"r,ul = 7~7"ul 

Figure 5 

A Simple Resource Manager 

the resource manager in much the same way as the first user process. The tree 

( Tr@Tul )@ru2 has two branches. The branch taken depends on which of the two 

events, x or y, is quicker. 



21 

(a) Tree 'Tr (b) Tree ru1 ( c) Tree 'Tuz 

[ts] 

rq[t1,5] 

( d) Tree < Tui, Tu2 > ( e) Tree 'Tu1,u2,r 

Figure 6 

Combining Trees in Different Orders 

Now consider combining the trees in a different order, (ru1@Tu2)®Tr· 

= Tul,r * Tu2 

= Tul,r,u2 

Note that Tul ru2 = Trul u2· See Figure 6. , , ' ' 

In the previous example, the EDTs did not represent infinite processes. The 

EDT that represents an infinite process will be infinite. An infinite tree can be 



(a) Tree 'Tr 

(d) 'Tr,ul = 'T~'Tul 

rq[ts] 

(b) Tree 'Tu1 

( e) 'Tr,ul,u2 = ( 'T~'Tu1~'Tu2 

Figure 7 

Representing Infinite Processes 

22 

y[ts] 

w[t10] 

rl[t11] 

( c) Tree 'Tu2 

y[ts] 

( w[t10], e[t2]) 

rl[t3,11] 

represented in two ways: (1) replicating the events that occur over and over again 

using" ... ", or (2) indicating which event occurs next by connecting two nodes ~ith 

a dotted arc. In Figure 7 the resource manager is represented as the combination 

of three infinite processes. 



23 

Summary 

This paper defines a new representation of communicating systems called 

Event Dependency Trees (EDT). In EDT processes are represented as trees where 

the nodes of a tree represent system states and the arcs represent the execution 

of system events. An event is one of three types: (1) execution: represents the 

execution of a sequential piece of code (with no communication constructs), (2) 

communication: represents the execution of a message passing construct, or (3) 

the null event. Communic,~tion events are further subdivided into send, receive, 

and synchronized communication events. In addition, each event has an associated 

time delay, represented by some variable such as t. 

EDT is a formal model of distributed or communicating systems that predicts 

how CSP-type processes will interact. Although it appears that EDT is a model of 

software, assumptions about how the system impacts the execution of the software 

is a crucial aspect of the model, the primary assumption being that events take 

time that could differ from execution to execution. From an EDT model of 

software one can identify each execution path by its unique event ordering. This 

provides some insight as to how one might reason about whether certain events and 

ultimately execution paths can occur. The model supplies potentially important 

information for the design and construction of concurrent software systems. 



24 

REFERENCES 

[BRoo84] BROOKES S.D., HOARE C.A.R., AND RoscoE A.W. A Theory of 
Communicating Sequential Processes. Journal of the A CM :11, 3 (July, 
1984), 560-599. 

[HENN85B) HENNESSY M. Acceptance Trees. CACM 32, 4 (October, 1985), 
896-928. 

[HoAR85) HOARE C.A.R. Communicating Sequential Processes, Prentice-Hall, 
1985. 

[LANE87) LANE, D.S. Representing Communicating Software to Derive System 
Behavior and Deadlock-Free Software. Technical Report No. 87-27. 
University of California, Irvine (October, 1987). 

[MILN80] MILNER R. A Calculus of Communicating Systems, Goos G., and 
Hartmanis J ., Ed., Springer-Verlag, Berlin, 1980. 

[Wrns84] WINSKEL G. Synchronization Trees. Theoretical Computer Science 34 
(1984), 33-82. 




