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Physics-Conditioned Generative Adversarial Networks
for State Estimation in Active Power Distribution

Systems with Low Observability
Mohasinina Kamal, Student Member, IEEE, Wenting Li, Member, IEEE,

Deepjyoti Deka, Senior Member, IEEE, and Hamed Mohsenian-Rad, Fellow, IEEE

Abstract— A novel method is proposed to address the issue of
low-observability in Distribution System State Estimation (DSSE).
We first use the historical data at the unobservable locations to
construct and train proper Generative Adversarial Network (GAN)
models to compensate for lack of direct real-time measurements.
We then integrate the trained GAN models, together with the direct
synchronized measurements at the observable locations, into the
formulation of the DSSE problem. In this regard, we simultaneously
take advantage of the forecasting capabilities of the GAN models,
the available real-time synchronized measurements, and the DSSE
formulations based on physical laws in the power system. As a
result, on one hand we conduct a physics-conditioned estimation of
the unknown power injections at the unobservable locations; and
on the other hand, we also achieve a complete DSSE solution for
the understudy low-observable active power distribution system.

Keywords: Distribution system state estimation, low-observability,
physics-conditioned generative adversarial networks, distribution
synchrophasors, active power distribution systems, power injection.

I. INTRODUCTION

A. Background and Motivation

In Distribution System State Estimation (DSSE), the perfor-
mance is directly affected by the availability of measurements
and the extent of observability in the power distribution system,
which depends on the type, number, and location of sensors
[1]. In practice, power distribution feeders often suffer from
low observability; because the number of sensors is often less
than the number of state variables. The installation of smart
meters in recent years has improved observability. However,
their low reporting rates are not sufficient to capture the high
dynamics of power distribution systems, which are caused by
the growing penetration of distributed energy resources (DERs),
the emergence of new types of loads such as electric vehicles,
and the development of demand response programs [2].

Instead, we need to rely on the measurements which have
much higher reporting rates, such as distribution-level phasor
measurement units (D-PMUs) or micro-PMUs [3]. However,
D-PMUs are expensive and require a proper communication
infrastructure to collect the measurements. In this regard, the
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power distribution network still remains under low-observability
conditions due to the use of only a few D-PMUs at each feeder.

Of course, lack of access to the measurements at behind-the-
meter DERs is another factor that further contributes to the
low-observability circumstances. This is due to reasons such as
privacy regulations and/or the lack of proper communication
infrastructure to support the utility’s access to the behind-the-
meter DERs in active power distribution systems.

The common approach to tackle low-observability in DSSE
is to use pseudo-measurements. Pseudo-measurements are often
constructed by using historical data, such as from smart meters
[4]. However, it is often reported that pseudo-measurements are
not accurate to properly address low-observability in DSSE prob-
lems. Inaccurate pseudo-measurements can create ill-conditioned
mathematical optimization in the DSSE problem formulation;
which may prevent it from converging to a reliable solution [5].

B. New Approach and Contributions
In this paper, we address the issue of low-observability

in DSSE problems by taking a different approach. Our new
approach is motivated by the fact that, in practice, while it is
not possible to have direct real-time access to high-resolution
measurements at a subset of the buses in the power distribution
system, it often is doable to have access to the historical data or
the probability distribution of such data at the unobservable buses.
Hence, we propose to start from the available historical data but
through an innovative process we turn them into something close
to what we could obtain through direct real-time measurements
at these unobservable locations.

We first use the historical data at the unobservable locations
to construct and train proper Generative Adversarial Network
(GAN) models to compensate for lack of direct real-time
measurements. We then integrate the trained GAN models,
together with the direct real-time synchronized measurements
at the observable locations, into the formulation of the DSSE
problem. Thus, we simultaneously take advantage of the fore-
casting capabilities of the GAN models, the available real-time
synchronized measurements, and the DSSE formulations based
on physical laws in the power system in the power flow equations.

In this regard, our contributions are two-fold. On one hand we
conduct a physics-conditioned estimation of the unknown power
injections at the unobservable locations, i.e., at the buses where
direct measurements are not available. On the other hand, we
ultimately achieve a complete DSSE solution for the understudy
low-observable active power distribution system.
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C. Literature Review

In [6], a Gaussian mixture model is used to enhance the
statistical modeling of the pseudo-measurements in state esti-
mation for inclusion in a conventional weighted least square
(WLS)-DSSE. In [7], a two-stage data clustering method is used
to construct the pseudo-measurements. In [8], artificial neural
networks are trained to generate pseudo-measurements from
limited measurements. In [9], a deep neural network is trained
to estimate the state variables with limited observations.

While the above methods make pseudo-measurements more
robust against system uncertainties, they process the pseudo-
measurements as is, i.e., they do not condition the characteristics
of the pseudo-measurements to the physics of the underlying
power circuit. Conducting physics-conditioned analysis of the
historical data is the main focus in this paper.

In this regard, our work is more related to the studies such
as in [10], where a new data-driven method is proposed based
on training a deep neural network model to solve the DSSE
problem by adding physical information of the underlying power
distribution feeder, such as the parameters of the distribution
lines to further increase the accuracy. Our approach, on the other
hand, optimizes the output of a GAN model to estimate the
unknown power injection at unobservable loads by utilizing the
available measurements in physical equations. The results are
then used in order to solve the DSSE problem.

Low-observability in the DSSE problem can be addressed
also by using concepts from sparse recovery, e.g., see [11], [12].
While we do not consider the analysis of sparsity in this paper,
our approach can be extended in the future to include sparse
recovery together with the physics-conditioned GAN models.

The rest of this paper is organized as follows. In Section II,
a full description of the system model is presented. Section III
covers the overall methodology in three stages to reach to the
final DSSE results. The case studies are analyzed in Section IV.
The conclusions are discussed in Section V.

II. SYSTEM MODEL

Our system model is based on the popular DistFlow equations
with N buses [13], [14]. Accordingly, we define the state
variables in a power distribution system based on two vectors:

y =
[
y1 y2 . . . yN

]T
, (1)

δ =
[
δ1 δ2 . . . δN

]T
, (2)

where y denotes the vector of the square of the magnitude of
the voltage phasors at all buses, and δ denotes the vector of the
phase angle of the voltage phasors at all buses.

A. Grouping of Buses

We divide the buses in the power distribution feeder into three
categories based on the type of available data:

• Group 1: The buses where we have access to voltage phasor
measurements and power injections by using D-PMUs.

• Group 2: The buses where we do not have access to voltage
phasor measurements, because these buses are not equipped

with D-PMUs, but we do have access to the power injection
measurements at regular meters or at the DERs.

• Group 3: The buses where we have no access to any type
of direct measurements. These are the unobservable buses
in the system. At these buses, we rather only have access
to the historical data for the unknown power injections.

As we will show in Section II-B, the following relationship
holds across the measurements in these three groups of buses:[

∆ym

∆δm

]
= Zm (Sm + Sn) , (3)

where superscript m indicates direct measurements and super-
script n indicates lack of direct measurements. Here, ∆ym is
the vector that is constructed based on the differences between
the entries in vector y at two buses that belong to Group 1,
where the phasor measurements are directly measured. Similarly,
∆δm is the vector that is constructed based on the differences
between the entries in vector δ at two buses that belong to
Group 1. Vector Sm is a properly defined vector of the power
injections at the buses that belong to Group 1 or Group 2. The
power injections in this vector are measured. Vector Sn is a
properly defined vector of the power injections at the buses that
belong to Group 3. The power injections in this vector are not
measured; thus they are not known. Matrix Zm is a modified
version of a properly defined impedance matrix Z to relate the
power injections to the available phasor measurements.

From (3), we can relate the known voltage phasor measure-
ments in Group 1 on the left-hand-side, to the known power
injection measurements in Groups 1 and 2 as well the unknown
power injections in Group 3 on the right-hand-side. Note that,
the unknown voltage phasors at the unobservable buses are
intentionally left out of the formulation in (3). We will use the
expression in (3) to develop our methodology in Section III.

B. Deriving the Circuit Equations

In this section, we explain how to derive the expression in
(3). Our analysis here is inspired by the formulations in [14].
From the linearized DistFlow equations we have [13]:

yi − yj ≈ ri,jPi,j + xi,jQi,j , (4a)
δi − δj ≈ xi,jPi,j − ri,jQi,j , (4b)

where ri,j and xi,j denote the resistance and reactance of the
line segment between nodes i and j, respectively; and Pi,j and
Qi,j denote the active power and the reactive power flowing on
the line that goes from node i to node j, respectively.

1) Line Topology: In a feeder with a line topology, such as
the one shown in Fig. 1(a), we have:

Pi,j =

N∑
k=j

pk, Qi,j =

N∑
k=j

qk, (5)

where pk and qk are the net active power consumption and the
net reactive power consumption at bus k, respectively. Since the
network has a line topology, the nodes are denoted from 1 to
N and they are all located one after another across a line.
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Fig. 1: Two example power distribution network topologies: (a) a line topology
with 9 buses; (b) a radial topology with 12 buses across a main and a lateral.

Suppose buses 1 and 3 belong to Group 1. They provide the
following measurements: ym1 , δm1 , ym3 , δm3 . From (4), we have:

∆ym1,3 = ym1 − ym3

= (y1 − y2) + (y2 − y3)

= (r1,2P1,2 + x1,2Q1,2) + (r2,3P2,3 + x2,3Q2,3) . (6)

From (5), and after reordering the terms in (6), we obtain:

∆ym1,3 =



r1,2
r1,2 + r2,3

...
r1,2 + r2,3

x1,2

x1,2 + x2,3

...
x1,2 + x2,3



T 

p2
p3
...
p9
q2
q3
...
q9


, (7)

where the first vector in the right hand side constitutes the
component of the modified impedance matrix Zm.

Next, suppose for the network in Fig. 1(a) we have:

Group 3 =
{
2, 5, 7

}
,

which means that all the buses with PV units belong to the
set of the unobservable buses in Group 3. Accordingly, we can
decompose the second vector on the right-hand-side in (7) as a
summation of two vectors: a vector in which we replace p2, p5,
and p7 with zero, and another vector in which we replace p1,
p3, p4, p6, p8, and p9 with zero. The former will give us the
corresponding components of Sm, while the latter will give us
the corresponding components of Sn; see the expression in (3).

A similar expression can be obtained for ∆δm1,3 = δm1 − δm3 .
By repeating this analysis for any two consecutive buses in
Group 1, see [14], we can fully obtain the expression in (3).

2) Radial Topology with Laterals: Next, consider a radial
feeder with a lateral, such as the one shown in Fig. 1(b). Since
the lateral starts at bus 4, the formulation for P1,2, P2,3, and P34

remains the same as in (5). In fact, the formulation for P10,11

and P11,12 also remain the same as in (5). However, we need

to update the formulations at the following six cases:

P4,5 =

9∑
k=5

pk, P5,6 =

9∑
k=6

pk, P6,7 =

9∑
k=7

pk, (8)

P7,8 =

9∑
k=8

pk, P8,9 =

9∑
k=9

pk, P4,10 =

12∑
k=10

pk. (9)

From the above, we can start from a formulation similar to
the one in (6) and ultimately obtain a formulation similar to (7)
which can lead to an expression as in (3) for a radial network.

In all cases, the left hand side in (3) would contain the state
variables (square of the magnitude and phase angle) at the
buses with D-PMUs; and the right hand side would contain a
multiplication of a vector of resistances and reactances of the
line segments and a vector of the net active and the net reactive
power consummations at all the buses across the feeder.

C. Low-Observability Conditions

Let N1, N2, and N3 denote the number of buses in Groups 1,
2, and 3, respectively. We have N1 +N2 +N3 = N , where N
is the total number of buses. Our focus in this paper is on the
low-observability circumstances in power distribution feeders.
In particular, we assume that the following inequality holds:

N3 > N1 − 1, (10)

where the left-hand-side indicates the total number of unknowns
in (3) while the right-hand-side indicates the total number of
independent equations. To be exact, we shall express (10) as
2N3 > 2(N1 − 1) due to the analysis being in complex domain;
however, once we divide both sides by two, we can reach (10).

Under the condition in (10), the system of linear equations in
(3) is under-determined, i.e., it has an infinite number of solutions.
This is because we have more unknowns than independent
equations. As a result, one cannot solve the system of linear
equations in (3) to estimate the unknown power injections at the
buses in Group 3. Therefore, more efforts are needed to address
low-observability, as we will explain in the next section.

III. METHODOLOGY

We develop our DSSE method in three stages:

• Stage 1: We use a GAN model to learn and mimic the
characteristics of the power injections at the unobservable
buses in Group 3 based on the available historical data.

• Stage 2: We replace the vector of unknown power injections
Sn in (3) with the corresponding GAN models that we
learned in the first stage. We then solve an optimization
problem based on (3) to best estimate Sn in terms of
the output of the GAN models as well as the direct
measurements from Groups 1 and 2, while maintaining the
physics-based relationships in (3). Here, the optimization
variables are the input of the trained GAN model to provide
us with a direct estimation for the unknown vector Sn.

• Stage 3: Once we obtained Sn in the second stage, we
use it together with the available measurements in Sm and
the measurements in ym and δm to formulate and solve a
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Fig. 2: The three stages in the proposed method and their interactions.

standard DSSE problem in order to estimate all the state
variables in y and δ across the power distribution system.

Next, we explain the details in each of the above stages.
Without loss of generality, we assume that the buses in Group 3
always include all the solar power generation units.

A. Stage 1: Training the GAN Model

The layout of the internal components in Stage 1 in our
proposed method is shown in the top box in Fig. 2. Here we
train the two deep neural networks (DNNs) in the GAN model,
namely the generator G and the discriminator D, to learn a
probability distribution based on the historical data for power
injection at buses in Group 3; and we accordingly generate
new samples from the input noise z based on the probability
distribution that we have learned in the GAN model. Importantly,
the GAN model leverages the power of DNNs to express complex
nonlinear relationships (at the generator) as well as to classify
complex signals (at the discriminator), c.f. [15]. The outcome
of the training process in Stage 1 is the generator model G(z)
for the power injections at the buses in Group 3.

Since we assume that Group 3 includes all the buses with
solar power generation units, the GAN model here essentially
learns the probability distribution for the output of the solar
power generation units based on their historical data. For solar
profile generation, Wasserstein GAN (WGAN) has been used in
[16]. In our approach, we also use WGAN; because its training
process is more stable and less sensitive to model architecture
and choice of hyperparameter configurations [17].

B. Stage 2: Estimating the Unknown Solar Power Injections

Given the trained GAN model from Stage 1, we can now
replace the unknown vector Sn in (3) with the vector of trained
GAN models G(z). Of course, if we change z, then we obtain
a different output from G(z); in other words, the GAN model
still does not provide us with an actual vector Sn, unless we
also obtain the proper z to serve as the input to the GAN model.

We address this issue by formulating and solving a physics-
conditioned optimization problem to find the optimal choice
for z that can best capture the physical relations between the
available direct measurements in Groups 1 and 2 with the power
injections of the solar generation units in Group 3; while taking
into consideration the fact that the probability distribution for
such unknown power injections follow the trained GAN model.

In this regard, we formulate the following optimization
problem to estimate the unknown solar power injections:

minimize
z

∥∥∥∥ [ ∆ym

∆δm

]
− Zm (Sm +G(z))

∥∥∥∥2
2

. (11)

Problem (11) can be solved by using the gradient descent method
[18]. Since the generative model G(·) is differentiable, we
iteratively evaluate the gradient of the objective function in
(11) with respect to z by using the backpropagation method,
applying a second order diminishing step size at each iteration.

Once we obtain ẑ as the solution, we can plug it in the already
trained generator function of the GAN model, to obtain the
estimated power injection profile as G(ẑ) at the solar connected
buses. Once this is done, the network becomes fully observable,
where we know the power injection at each bus, either through
direct measurements or as the estimated generation G(ẑ).

We end this section with a clarifying note. Suppose instead
of solving the problem in (10) as is over z, we attempt to solve
it over G(z). In that case, this optimization would turn into a
failed attempt to solve the under-determined system of equations
in (3). However, by conducting the optimization over z, we take
into account the distribution of the historical data that is learned
by the GAN model to find the unknown power injections at
the buses in Group 3 such that, they fit not only the system of
equations in (3), but also the GAN model that we have trained
by using the historical data. This novel approach resolves the
initial under-determined nature of the system of equations in (3).

C. Stage 3: Obtaining the Final DSSE Results

The process in Stage 1 and Stage 2 makes the power distri-
bution network fully observable. In other words, it eliminates
Group 3 and essentially moves all the buses from Group 3 to
Group 2. Therefore, what is left to do is to complete the DSSE
task by solving the following optimization problem:

minimize
y,δ

∥∥∥∥∥∥∥∥


∆y
∆δ
y
δ

−

 Z (Sm +G(ẑ))
ym

δm


∥∥∥∥∥∥∥∥
2

2

. (12)

We may clarify a few notes about the above formulation.
First, the solution of the optimization problem in (11) serves as
a constant in the optimization problem in (12). In fact, the entire
expression Z(Sm + G(ẑ)) is a constant as far as solving the
problem in (12) is concerned. Second, the impedance matrix Z
in (12) is different from the impedance matrix Zm in (11). While
matrix Zm relates the power injections across the feeder to the
voltage phasor measurements at the buses in Group 1, matrix
Z relates the power injections across the feeder to the voltage
phasors at all the buses in the system. Third, the optimization
variables in (12) include all the voltage phasors in the system, as
represented by the square of their magnitude y and their phase
angles δ. Fourth, the least square optimization problem in (12)
includes the circuit equations on the top, which are expressed in
terms of ∆y and ∆δ, as well as the direct measurements on the
bottom, which are expressed in terms of y and δ in comparison
with ym and δm, respectively. The former formulation is an
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extension of the formulation in (3) to incorporate the voltage
phasors at all buses. For example, while we defined ∆ym1,3 as
the first row in ∆ym, here we define ∆y1,2 as the first row in
∆y. Finally, since the definition of synchrophasors requires a
reference, we take the direct phasor measurements at bus 1 as
the reference, i.e., the phase angles at all buses are calculated in
reference to the phase angle at bus 1. This is a common approach
in state estimation using synchronized phasor measurements [19].

IV. CASE STUDIES

In this section, we present proof-of-concept case studies to
demonstrate and to assess the performance of the proposed
methods. For the cases where we examine the line topology in
Fig. 1(a), we consider the following grouping of the buses:

Group 1 =
{
1, 9

}
,

Group 2 =
{
3, 4, 6, 8

}
,

Group 3 =
{
2, 5, 7

}
.

(13)

As for the cases where we examine the radial topology in Fig.
1(b), we consider the following grouping of the buses:

Group 1 =
{
1, 9, 12

}
,

Group 2 =
{
3, 4, 6, 8, 10

}
,

Group 3 =
{
2, 5, 7, 11

}
.

(14)

Notice that the condition in (10) holds for both (13) and (14).
For the purpose of comparison, we generated 100 different

scenarios with different solar generation profiles and different
background loads, including variable loads at buses 4 and 6 at
both topologies at each scenario. Our goal here is to look at the
overall improvement statistics rather than a single scenario.

For training and simulation we use the synthetic solar
photovoltaic (PV) power plant data from the NREL open-
source resources [20]. The implementation of the GAN model
is programmed by standard open source platforms, see [21].

A. Performance Measures

Given that the proposed methodology has multiple stages, we
use two metrics to evaluate the performance:

• First, we assess the accuracy of the proposed method in
estimating the unknown power injections at the PV units
in each scenario. This would be the output of the physics-
conditioned optimization in (11). To obtain this measure,
we compare the mean square error (MSE) for the daily
profiles of the estimated solar generations with the real solar
measurements of the 100 scenarios. We do this for both
the estimated G(ẑ) and for the ordinary GAN output G(z)
with a random z, to see how much of an improvement we
can get by adding physics-conditioned optimization.

• Second, we assess the accuracy of the ultimate state
estimation results, i.e., the accuracy of the output of the
optimization problem in (12). In this regard, we define mean
absolute error (MAE) in form of the standard total vector
error (TVE) analysis in the field of phasor measurements:

MAE = Mean

{
|
√
ŷ∠δ̂ −√

y∠δ|
|√y∠δ|

}
× 100%, (15)

Fig. 3: Analysis of convergence: the objective value versus the iteration number
in solving problem (11) for: (a) line topology; (b) radial topology.

where ŷ∠δ̂ is the estimated voltage phasor that is obtained
by solving the DSSE optimization problem in (12). Here
the mean is calculated across all the buses in the system.

B. Convergence

An important property in solving the problem in (11) is the
ability for the gradient iterations to converge. This property is
investigated in Figs. 3(a) and (b), for the line topology and
the radial topology, respectively. In both cases, convergence is
achieve within 400 iterations. Here we have used a second order
diminishing step size which removes fluctuations in the objective
value and helps reach convergence faster.

C. Performance in Estimating Unknown Power Injections

Next, we compare the results after convergence with the case
of the ordinary GAN training, i.e., the case where we do not
apply physics-conditioning to the output of the GAN model.
The results are shown in Figs. 4(a) and (b) for the line topology
and the radial topology, respectively. In both cases, the proposed
method has much lower MSE values compared to the one without
physics-conditioning. Overall, on average, our method can reach
up to 28% ∼ 29% less pseudo-measurement error compared to
the ordinary GAN. These results are very promising and confirm
the effectiveness of combining the physics-conditioned GAN
model formulation in the optimization problem in (11).

D. Performance in State Estimation

Finally, we evaluate the performance of the proposed method
in achieving its ultimate goal, i.e., to enhance the accuracy in
the DSSE problem. In this regard, we calculate and compare
the MAE as defined in (15) for the case of using an ordinary
GAN versus our proposed physics-conditioned GAN. Figs. 5
(a) and (b) show the improvements in the final DSSE outcome
in a line topology and in a radial topology, respectively. In this
experiment, we found our method to reduce the MAE on average
by up to 29% ∼ 36%, over using the ordinary GAN model.
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Fig. 4: Comparing the proposed method with the ordinary GAN in estimating
the unknown power injections: (a) line topology; (b) radial topology.

V. CONCLUSIONS

In this work, we showed that we can significantly improve
the outcome of the GAN model training and the DSSE optimiza-
tion in low-observable active power distribution networks by
integrating them into proper physics-conditioned formulations
with respect to the power flow equations. Accordingly, we
can enhance the solution of the DSSE problem under low-
observability conditions by enhancing our estimation of the
power injections at unobservable buses, with assistance from
the limited availability of the direct synchronized real-time
measurements. On average, our method can reduce the error in
pseudo-measurements by 28% ∼ 29%; and the ultimate error in
state estimation by 29% ∼ 36%, over the case without physics-
based conditioning of the trained GAN models.

REFERENCES

[1] A. Abur and A. G. Exposito, Power system state estimation: theory and
implementation. CRC press, 2004.

[2] A. S. Zamzam, X. Fu, and N. D. Sidiropoulos, “Data-driven learning-based
optimization for distribution system state estimation,” IEEE Transactions
on Power Systems, vol. 34, no. 6, pp. 4796–4805, 2019.

[3] H. Mohsenian-Rad, E. Stewart, and E. Cortez, “Distribution synchrophasors:
Pairing big data with analytics to create actionable information,” IEEE
Power and Energy Magazine, vol. 16, no. 3, pp. 26–34, May 2018.

[4] S. Bhela, V. Kekatos, and S. Veeramachaneni, “Enhancing observability in
distribution grids using smart meter data,” IEEE Transactions on Smart
Grid, vol. 9, no. 6, pp. 5953–5961, 2017.

[5] K. A. Clements, “The impact of pseudo-measurements on state estimator
accuracy,” in Proc. of the IEEE PES General Meeting, Detroit, MI, 2011.

[6] R. Singh, B. Pal, and R. Jabr, “Distribution system state estimation
through gaussian mixture model of the load as pseudo-measurement,”
IET generation, transmission & distribution, vol. 4, no. 1, pp. 50–59, 2009.

[7] Y. R. Gahrooei, A. Khodabakhshian, and R.-A. Hooshmand, “A new pseudo
load profile determination approach in low voltage distribution networks,”
IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 463–472, 2017.

Fig. 5: Comparing the proposed method with the ordinary GAN in terms of the
ultimate DSSE results: (a) line topology; (b) radial topology.

[8] E. Manitsas, R. Singh, B. C. Pal, and G. Strbac, “Distribution system
state estimation using an artificial neural network approach for pseudo
measurement modeling,” IEEE Transactions on Power Systems, vol. 27,
no. 4, pp. 1888–1896, 2012.

[9] K. R. Mestav, J. Luengo-Rozas, and L. Tong, “Bayesian state estimation for
unobservable distribution systems via deep learning,” IEEE Transactions
on Power Systems, vol. 34, no. 6, pp. 4910–4920, 2019.

[10] J. Ostrometzky, K. Berestizshevsky, A. Bernstein, and G. Zussman,
“Physics-informed deep neural network method for limited observability
state estimation,” arXiv preprint arXiv:1910.06401, 2019.

[11] S. S. Alam, B. Natarajan, and A. Pahwa, “Distribution grid state estimation
from compressed measurements,” IEEE Transactions on Smart Grid, vol. 5,
no. 4, pp. 1631–1642, 2014.

[12] A. Akrami, S. Asif, and H. Mohsenian-Rad, “Sparse tracking state
estimation for low-observable power distribution systems using D-PMUs,”
IEEE Transactions on Power Systems, accepted, July 2021.

[13] M. E. Baran and F. F. Wu, “Optimal capacitor placement on radial
distribution systems,” IEEE Transactions on power Delivery, vol. 4, no. 1,
pp. 725–734, 1989.

[14] R. Dobbe, D. Arnold, S. Liu, D. Callaway, and C. Tomlin, “Real-time
distribution grid state estimation with limited sensors and load forecasting,”
in 2016 ACM/IEEE 7th International Conference on Cyber-Physical
Systems (ICCPS). IEEE, 2016, pp. 1–10.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[16] Y. Chen, Y. Wang, D. Kirschen, and B. Zhang, “Model-free renewable sce-
nario generation using generative adversarial networks,” IEEE Transactions
on Power Systems, vol. 33, no. 3, pp. 3265–3275, 2018.

[17] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial
networks,” in International conference on machine learning, 2017.

[18] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using
generative models,” in Int. Conference on Machine Learning, 2017.

[19] H. Mohsenian-Rad, Smart Grid Sensors: Principles and Applications.
Cambridge University Press, 2022.

[20] https://www.nrel.gov/grid/solar-power-data.html.
[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style,
high-performance deep learning library,” Advances in neural information
processing systems, vol. 32, pp. 8026–8037, 2019.




