
UC Riverside
2019 Publications

Title
Chapter 2 - Data-Driven Energy Efficient Driving Control in Connected 
Vehicle Environment

Permalink
https://escholarship.org/uc/item/33s07282

Authors
Qi, Xuewei
Boriboonsomsin, Kanok
Barth, Matthew J

Publication Date
2019
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33s07282
https://escholarship.org
http://www.cdlib.org/


Chapter 2
Data-Driven Energy Efficient
Driving Control in Connected
Vehicle Environment
Xuewei Qi*,†, Guoyuan Wu†, Kanok Boriboonsomsin† and
Matthew J. Barth*,†
*Department of Electrical and Computer Engineering, University of California, Riverside, CA,

United States, †College of Engineering-Centre for Environmental Research and Technology

(CE-CERT), University of California, Riverside, CA, United States

Chapter Outline
Dat

© 2
2.1 Introduction 13

2.2 Background and State of

the Art 14
a-Driv

019 El
2.2.1 PHEV Modeling 14

2.2.2 Operation Mode and

SOC Profile 14

2.2.3 EMS for PHEVs 15

2.2.4 PHEVs’ SOC Control 16
2.3 Problem Formulation 17
2.3.1 Data-Driven On-Line

EMS Framework

for PHEVs 17

2.3.2 Optimal Power-Split

Control Formulation 19
2.4 Data-Driven Evolutionary

Algorithm (EA) Based

Self-Adaptive On-Line

Optimization 20
2.4.1 Optimality and

Complexity 23

2.4.2 SOC Control Strategies 23

2.4.3 EDA-Based On-Line

EMS Algorithm With

SOC Control 25

2.4.4 Synthesized Trip

Information 27
en Solutions to Transportation Problems. https://doi.org/1

sevier Inc. All rights reserved.
2.4.5 Off-Line Optimization

for Validation 28

2.4.6 Real-Time Performance

Analysis and Parameter

Tuning 28

2.4.7 On-Line Optimization

Performance

Comparison 29

2.4.8 Analysis of Trip

Duration 31

2.4.9 Performance With

Charging Opportunity 33
2.5 Data-Driven Reinforcement

Learning-Based Real-Time EMS 34
2.5.1 Introduction 34

2.5.2 Dynamic Programming 36

2.5.3 Approximate Dynamic

Programming and

Reinforcement Learning 37

2.5.4 Reinforcement

Learning-Based EMS 38

2.5.5 Action and

Environmental States 39

2.5.6 Reward Initialization

(With Optimal Results

From Simulation) 40
0.1016/B978-0-12-817026-7.00002-3

11

https://doi.org/10.1016/B978-0-12-817026-7.00002-3


12 Data-Driven Solutions to Transportation Problems
2.5.7 Q-Value Update and

Action Selection 41

2.5.8 Validation and Testing 42

2.5.9 Model Without Charging

Opportunity (Trip Level) 42
2.5.10 Model With Charging

Opportunity

(Tour Level) 44
2.6 Conclusions 47

References 47
At the heart of Plug-in hybrid electric vehicles (PHEV) technologies, the energy

management system (EMS) whose functionality is to control the power streams

from both the internal combustion engine (ICE) and the battery pack based on

vehicle and engine operating conditions have been studied extensively. In the

past decade, a large variety of EMS implementations have been developed for

HEVs and PHEVs, whose control strategies may be well categorized into two

major classes:

(a) Rule-based strategies rely on a set of simple rules without a priori knowl-

edge of driving conditions. Such strategies make control decisions based on

instant conditions only and are easily implemented, but their solutions are

often far from optimal due to the lack of consideration of variations in trip

characteristics and prevailing traffic conditions.

(b) Optimization-based strategies are aimed at optimizing some predefined

cost function according to the driving conditions and vehicle’s dynamics.

The selected cost function is usually related to the fuel consumption or tail-

pipe emissions.

Based on how the optimization is implemented, such strategies can be further

divided into two groups: (1) off-line optimization which requires a full knowl-

edge of the entire trip to achieve the global optimal solution; and (2) short-term

prediction-based optimization, which takes into account the predicted driving

conditions in the near future and achieves local optimal solutions segment by

segment within an entire trip. However, major drawbacks of these strategies

include heavy dependence on the knowledge of future driving conditions and

high computational costs that are difficult to implement in real-time.

To address the aforementioned issues, we propose two data-driven on-line

energy management strategies for PHEV energy efficient driving control in

connected vehicle environment:

l Data-driven evolutionary algorithm-based self-adaptive EMS, which uti-

lizes the rolling horizon technique to update the prediction of propulsion

load as well as the power-split control. There are two major advantages over

the existing strategies: (a) computationally competitive. There is no need to

initiate a complete process for optimization while the algorithm keeps

evolving and converging to obtain an optimal solution; (b) no a priori

knowledge about the trip duration required.

l Data-driven reinforcement learning-based EMS, which is capable of simul-

taneously controlling and learning the optimal power-split operations in

real-time from the historical driving data. There are three major features:
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(1) this model can be implemented in real-time without any prediction

efforts, since the control decisions are made only upon the current system

state. The control decisions also considered for the entire trip information

by learning the optimal or near-optimal control decisions from historical

driving behavior. Therefore, this model achieves a good balance between

real-time performance and energy saving optimality; (2) the proposedmodel

is a data-driven model which does not need any PHEV model information

once it is well trained, since all the decision variables can be observed and

are not calculated using any vehicle powertrain models (these details are

described in the following sections); and (3) compared to existing

RL-based EMS implementations, the proposed strategy considers charging

opportunities along the way (a key distinguishing feature of PHEVs as com-

pared with HEVs).

The validation over real-world driving data has indicated that the proposed data-

driving EMS strategies are very promising in terms of achieving a good balance

between real-time performance and fuel savings when compared with some

existing strategies, such as binary mode EMS and dynamic programming-based

EMS. In addition, there is no requirement for the (predicted) information on the

entire route.
2.1 INTRODUCTION

Air pollution and climate change impacts associated with the use of fossil fuels

have motivated the electrification of transportation systems. In the realm of

powertrain electrification, groundbreaking changes have been witnessed in

the past decade in terms of research and development of hybrid electric vehicles

(HEVs) and electric vehicles (EVs) [1]. As a combination of HEVs and EVs,

PHEVs can be plugged into the electrical grid to charge their batteries, thus

increasing the use of electricity and achieving even higher overall fuel effi-

ciency, while retaining the ICE that can be called upon when needed [2].

In comparison to conventional HEVs, the EMS in PHEVs are significantly

more complex due to their extended electric-only propulsion (or extended all-

electric range capability) and battery chargeability via external electric power

sources. Numerous efforts have been made in developing a variety of EMS for

PHEVs [3, 4]. From the control perspective, existing EMS can be roughly clas-

sified as rule-based [5] and optimization-based [6]. This is discussed in more

detail in Section 2.2.

In spite of all these efforts, most of the existing PHEV’s EMS have one or

more of the following limitations:

l Lack of adaptability to real-time information, such as traffic and road grade.

This applies to rule-based EMS (either deterministic or using fuzzy logic)

whose parameters or criteria have been pretuned to favor certain conditions

(e.g., specific driving cycles and route elevation profiles) [3]. In addition,

most EMS that are based on global optimization off-line assume that the
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future driving condition is known [2]. Thus far, only a few studies have

focused on the development of on-line EMS for PHEVs [7].

l Dependence on accurate (or predicted) trip information that is usually

unknown in advance. Many of the existing EMS require at a minimum

the trip duration as known or predicted information prior to the trip [8]. Fur-

thermore, it is reported that the performance of EMS is largely dependent on

the time span of the trip [8]. Very few studies analyze the impacts of trip

duration on the performance of EMS for PHEVs.

l Emphasis on a single trip level optimization without considering opportu-

nistic charging between trips. The most critical feature that differentiates

PHEVs from conventional HEVs is that PHEVs’ batteries can be charged

by plugging into an electrical outlet. Most of the existing EMS are designed

to work on a trip-by-trip basis. However, taking into account inter-trip

charging information can significantly improve the fuel economy of

PHEVs [2].
2.2 BACKGROUND AND STATE OF THE ART

2.2.1 PHEV Modeling

Typically, there are three major types of PHEV powertrain architectures:

(a) series, (b) parallel, and (c) power-split (series-parallel). This chapter focuses

on the power-split architecture where the ICE and electric motors can power the

vehicle, either alone or together, while the battery pack may be charged simul-

taneously through the ICE. Different approaches with various levels of com-

plexity have been proposed for modeling PHEV powertrains [9]. However, a

complex PHEV model with a large number of states may not be suitable for

the optimization of PHEV energy control. A simplified but sufficiently detailed

power-split powertrain model has been developed in MATLAB and used in this

chapter. For more details, please refer to [2].
2.2.2 Operation Mode and SOC Profile

During the operation of a PHEV, the state-of-charge (SOC) may vary with time,

depending on how the energy sources work together to provide the propulsion

power at each instant. The SOC profile can serve as an indicator of the “PHEV”

operating modes, i.e., charge sustaining (CS), pure electric vehicle (EV), and

charge depleting (CD) modes [3], as shown in Fig. 2.1.

The CS mode occurs when the SOC is maintained at a certain level (usually

the lower bound of SOC) by jointly using power from both the battery pack

and the ICE. The pure EV mode is when the vehicle is powered by electricity

only. TheCDmode represents the state when the vehicle is operated using power

primarily from the battery pack with supplemental power from the ICE as nec-

essary. In the CD mode, the ICE is turned on if the electric motor is not able to



FIG. 2.1 Basic operation modes for PHEV.
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provide enough propulsion power or the battery pack is being charged (even

when the SOC is much higher than the lower bound) in order to achieve better

fuel economy.

2.2.3 EMS for PHEVs

The goal of the EMS in a PHEV is to satisfy the propulsion power requirements

while maintaining the vehicle’s performance in an optimal way. A variety of

strategies have been proposed and evaluated in many previous studies [4].

A detailed literature review on EMS for PHEVs is provided in this section.

Broadly speaking, the existing EMS for PHEVs can be divided into two major

categories:

(1) Rule-based EMS are fundamental control schemes operating on a set of

predefined rules without prior knowledge of the trip. The control decisions

are made according to the current vehicle states and power demand only.

Such strategies are easily implemented, but the resultant operations may be

far from being optimal due to not considering future traffic conditions.

(2) Optimization-based EMS aim at optimizing a predefined cost function

according to the driving conditions and behaviors. The cost function

may include a variety of vehicle performance metrics, such as fuel con-

sumption and tailpipe emissions.

For rule-based EMS, deterministic and fuzzy control strategies (e.g., binary

control) have been well investigated. For optimization-based EMS, the strate-

gies can be further divided into three subgroups based on how the optimizations

are implemented:

(1) Off-line strategy which requires a full knowledge of the entire trip before-

hand to achieve the global optimal solution;
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(2) Prediction-based strategy or so-called real-time control strategy which

takes into account predicted future driving conditions (in a rolling horizon

manner) and achieves local optimal solutions segment-by-segment. This

group of strategies is quite promising due to the rapid advancement

and massive deployment of sensing and communication technologies

(e.g., GPS) in transportation systems that facilitate the traffic state

prediction; and.

(3) Learning-based strategy which is recently emerging owing to the research

progress in machine learning techniques. In such a data-driven strategy, a

dynamic model is no longer required. Based on massive historical and real-

time information, trip characteristics can be learned and the corresponding

optimal control decisions can be made through advanced data mining

schemes. This strategy fits very well for commute trips.

Fig. 2.2 presents a classification tree of EMS for PHEVs and the typical strat-

egies in each category, based on most existing studies.

In addition to the classification above, Table 2.1 highlights several impor-

tant features which help differentiate the aforementioned strategies. Example

references are also included in Table 2.1.
2.2.4 PHEVs’ SOC Control

For a power-split PHEV, the optimal energy control is, in principle, equivalent to

the optimal SOC control. Most of the existing EMS for PHEVs implicitly inte-

grate SOC into the dynamic model and regard it as a key control variable [25],

while only a few studies have explicitly described their SOC control strategies.

A SOC reference control strategy is proposed in [20] where a supervisory SOC
EMS of  PHEV

Rule-based

Deterministic

Binary control Basic DP

GA

MPC

A-ECMS

LUTs

ANN

RL

Clustering

MNIP

Adaptive

Fuzzy Off-line Learning basedPrediction based

Optimization-based

FIG. 2.2 Basic classification of EMS for PHEV. Note: PMP, Pontraysgin’s minimum principle;

MNIP, mixed nonlinear integer programming; DP, dynamic programming; QP, quadratic program-

ming; RL, reinforcement learning; ANN, artificial neural network; LUTs, look-up-tables; MPC,

model predictive control; AECMS, adaptive equivalent consumption minimization strategy.



TABLE 2.1 Classification of Current Literature

Rule-

Based

Off-Line

Optimization

Prediction-

Based

Learning-

Based

Optimality Local Global Local Local

Real-time Yes No Yes Yes

SOC control No Yes Yes No

Need trip
duration

No Yes Yes Yes

Example
references

[7,10–12] [2, 6, 13–17] [8, 18–23] [9, 18, 19,
24–26]
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planning method is designed to precalculate an optimal SOC reference curve.

The proposed EMS then tries to follow this curve during the trip to achieve

the best fuel economy. Another SOC control strategy is proposed in [8], where

a probabilistic distribution of trip duration is considered.More recently, machine

learning-based SOC control strategies (e.g., [9]) have emerged, where the opti-

mal SOC curves are precalculated using historical data and stored in the form of

look-up tables for real-time implementation. A common drawback for all these

strategies is that accurate trip duration information is required in an either deter-

ministic or probabilistic way. In reality, however, such information is hard to

know ahead of time or may vary significantly due to the uncertainties in traffic

conditions. To ensure the practicality of our proposed EMS for PHEVs, we

employ a self-adaptive SOC control strategy in this chapter that does not require

any information about the trip duration (or length).
2.3 PROBLEM FORMULATION

2.3.1 Data-Driven On-Line EMS Framework for PHEVs

In this chapter, we propose an on-line EMS framework for PHEVs, using the

receding horizon control structure (see Fig. 2.3). The proposed EMS framework

consists of information acquisition (from external sources), prediction, optimi-

zation, and power-split control. With the receding horizon control, the entire

trip is divided into segments or time horizons. As shown in Fig. 2.4, the predic-

tion horizon (N sampling time steps) needs to be longer than the control horizon

(M sampling time steps). Both horizons keep moving forward (in a rolling hori-

zon style) while the system is operating. More specifically, the predictionmodel

is used to predict the power demand at each sampling step (i.e., each second) in

the prediction horizon. Then, the optimal ICE power supply for each second

during the prediction horizon is calculated with this predicted information.



FIG. 2.3 Flow chart of the proposed on-line EMS.

Predicted system states
(power demand)

Computed optimal input
(ICE power supply)

Moving forward

FuturePast

Control horizon
(M sampling time steps)

Prediction horizon (N sampling time steps)

t+1 t+2 t+3 t+4 t+5 t+6 Time (s)

Power (J)

FIG. 2.4 Time horizons of prediction and control.
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In each control horizon, the precalculated optimal control decisions are

inputted into the powertrain control system (e.g., electronic control unit, or

ECU) at the required sampling frequency. In this chapter, we focus on the

on-line energy optimization, assuming that the short-term prediction model

is available (which is one of our future research topics).
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2.3.2 Optimal Power-Split Control Formulation

Mathematically, the optimal (in terms of fuel economy) energy management

for PHEVs can be formulated as a nonlinear constrained optimization problem.

The objective is to minimize the total fuel consumption by ICE along the

entire trip.

min

Z T

0

h ωe, qe, tð Þdt
� �

subject to :

_SOC¼ f SOC, ωMG1, qMG1,ωMG2, qMG2ð Þ
ωe, qeð Þ¼ g ωMG1, qMG1,ωMG2, qMG2ð Þ
SOCmin � SOC� SOCmax

ωmin �ωe �ωmax

qmin � qe � qmax

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(2.1)

where T is the trip duration,ωe, qe are the engine’s angular velocity and engine’s

torque, respectively, h(ωe,Tqe) is ICE fuel consumption model, ωMG1, qMG1 are

the first motor/generator’s angular velocity and torque, respectively, ωMG2,

qMG2 are the second motor/generator’s angular velocity and torque, respec-

tively, and f(SOC,ωMG1,qMG1,ωMG2,qMG2) is the battery power consumption

model. For more details about the model derivations and equations, please refer

to [2].

Such a formulation is quite suitable for traditional mathematical optimiza-

tion methods [13] with high computational complexity. In order to facilitate

on-line optimization, we herein discretize the engine power and reformulate

the optimization problem represented by Eq. (2.1) as follows:

min
XT

k¼1

XN

i¼1
x k, ið ÞPeng

i =ηengi (2.2)

subject to
Xj

k¼1
f Pk�

XN

i¼1
x k, ið ÞPeng

i

� �
�C 8j¼ 1,…,T (2.3)

XN

i¼1
x k, ið Þ¼ 1 8k (2.4)

x k, ið Þ¼ 0, 1f g 8k, i (2.5)

where N is the number of discretized power level for the engine, k is the time
step index, i is the engine power level index, C is the gap of the battery pack’s

SOC between the initial and the minimum, Pi
eng is the ith discretized level for

the engine power and ηi
eng is the associated engine efficiency, and Pk is the driv-

ing power demand at time step k.
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FIG. 2.5 Example solutions of power-split control.

20 Data-Driven Solutions to Transportation Problems
Furthermore, if the change in SOC (ΔSOC) for each possible engine power
level at each time step is pre-calculated given the (predicted) power demand,

then constraint (2.3) can be replaced by

SOCini�SOCmax �
Xj

k¼1
x k, ið ÞΔSOC k, ið Þ� SOCini�SOCmin

8j¼ 1,…,T (2.6)

where SOCini is the initial SOC, and SOCmin and SOCmax are the minimum and
maximum SOC, respectively. Therefore, the problem is turned into a combina-

tory optimization problem whose objective is to select the optimal ICE power

level for each time step given the predicted information in order to achieve the

highest fuel efficiency for the entire trip. Fig. 2.5 gives three example ICE

power output solutions. The solution represented by the blue line (starting from

20 KW) has a lower total ICE power consumption (i.e., 40 units) than the red

line (starting from 10 KW) (i.e., 90 units), while the green line (starting from

0 KW) represents an infeasible solution due to the SOC constraint.
2.4 DATA-DRIVEN EVOLUTIONARY ALGORITHM (EA)
BASED SELF-ADAPTIVE ON-LINE OPTIMIZATION

The motivations for applying EA are:

(1) compared to the traditional derivative or gradient-based optimization

methods, EAs are easier to implement and require less complex mathemat-

ical models;

(2) EAs are very good at solving nonconvex optimization problems where

there are multiple local optima; and

(3) it is very flexible to address multiobjective optimization problems

using EAs.
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Theoretically, in the proposed framework, any EAs can be used to solve the

optimization problem for each prediction horizon described in Fig. 2.4.

A typical EA is a population-based and iterative algorithm that starts searching

for the optimal solution with a random initial population. Then, the initial pop-

ulation undergoes an iterative process that includes multiple operations, such as

fitness evaluation, selection, and reproduction, until certain stopping criteria are

satisfied. The flow chart of an EA is provided in Fig. 2.6.

Among many EAs, the estimation distribution algorithm (EDA) is very

powerful in solving high-dimensional optimization problems and has been

applied successfully to many different engineering domains [27]. In this chap-

ter, we choose EDA as the major EA kernel in the proposed framework due to

the high-dimensionality nature of the PHEV energy management problem. This

selection is justified by experimental results in the following sections.

In the problem representation of EDA, each individual (encoded as a row

vector) of the population defined in the algorithm is a candidate solution.

For the PHEV energy management problem, the size of the individual (vector)

is the number of time steps within the trip segment. The value of the ith element

of the vector is the ICE power level chosen for that time step. In the example

individual in Table 2.2, the ICE power level is 3 (or 3 kW) for the first time step,

0 kW (i.e., only battery pack supplies power) for the second time step, 1 for the

third time step, and so forth.

It is very flexible to define a fitness function for EAs. Since the objective is

to minimize fuel consumption, the fitness function herein can be defined as the

summation of total ICE fuel consumption for the trip segment defined by

Eq. (2.5) and a penalty term

f sð Þ¼Cfuel +P (2.7)

where s is a candidate solution, Cfuel is fuel consumption, and P is the imposed
penalty that is the largest possible amount of energy that can be consumed in

this trip segment. The penalty is introduced to guarantee the feasibility of the

solution, satisfying constraint (2.3), which means that the SOC should always



TABLE 2.2 Representation of One Example Individual

Time 1 s 2 s 3 s 4 s ……………… n � 3 n � 2 n � 1 n

Individual 3 0 1 4 ……………… 1 2 0 5
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fall within the required range at each time step. Then, all the individuals in the

population are evaluated by the fitness function and ranked by their fitness

values in an ascending order since this is a minimization problem. A good eval-

uation and ranking process is crucial in guiding the evolution towards good

solutions until the global optima (or near optima) is located.

Furthermore, EDA assumes that the value of each element in a good indi-

vidual of the population follows a univariate Gaussian distribution. This

assumption has been proven to be effective in many engineering applications

[28], although there could be other options [29]. For each generation, the top

individuals (candidate solutions) with least fuel consumption values are

selected as the parents for producing the next generation by an estimation

and sampling process [30].

The flow chart of the proposed EDA-based on-line EMS is presented in

Fig. 2.7. t0 is the current time, N is the length of the prediction time horizon,
Trip start

Predict power demand
trajectory for [t0= t0+N]

Calculate SOC constraint in
[t0= t0+N]

Control decision solution
[t0= t0+N]

t0= t0+M

Stop?

Trip end

EDA-based optimization

No

Yes

Implement [t0= t0+M] to vehicle

FIG. 2.7 EDA-based on-line energy management system.
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andM is length of the control time horizon. The block highlighted by the dashed

box is the core component of the system, and more details about this block is

given in Section 2.4.
2.4.1 Optimality and Complexity

Evolutionary algorithms (EA) are stochastic search algorithms that do not guar-

antee to find the global optima. Hence, in the proposed on-line EMS, the opti-

mal power control for each trip segment is not guaranteed to be found.

Moreover, EAs are also population-based iterative algorithms that are usually

criticized due to their heavy computational loads [31], especially for real-

time applications. Theoretically, time complexity of EAs is worse than

θ(m2 ∗ log (m)) where m is the size of the problem [32]. However, we apply

the receding horizon control technique in this chapter, where the entire trip

is divided into small segments. Therefore, the computational load can be signif-

icantly reduced since the EA-based optimization is applied only for each small

segment rather than the entire trip. In this sense, the proposed framework can be

implemented in “real-time,” as long as the optimization for the next prediction

horizon can be completed in the current control horizon (see Fig. 2.4). As pre-

viously discussed, the rule-based EMS can run in real-time but the results may

be far from optimal while most of the optimization-based EMS have to operate

off-line. Therefore, the proposed on-line EMS would be a well-balanced solu-

tion between the real-time performance and optimality.
2.4.2 SOC Control Strategies

An appropriate SOC control strategy is critical in achieving the optimal fuel

economy for PHEVs [33]. In the previously presented problem formulation,

the major constraint for SOC is defined by Eq. (2.6), which means that at

any time step, the SOC should be within the predefined range (e.g., between

0.2 and 0.8) to avoid damage to the battery pack. However, this constraint only

may not be enough to accelerate the search for the optimal solution. Hence,

additional constraint(s) on battery use (e.g., reference bound of SOC) should

be introduced to improve the on-line EMS. To investigate the effectiveness

of different SOC control strategies within the proposed framework, two types

of SOC control strategies—reference control and self-adaptive control—are

designed and evaluated in this chapter.

2.4.2.1 SOC Reference Control (Known Trip Duration)

When the trip duration is known, a SOC curve can be pre-calculated and used as

a reference to control the use of battery power along the trip to achieve optimal

fuel consumption. We propose three heuristic SOC references (i.e., lower



FIG. 2.8 SOC reference control bound examples.
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bounds) in this chapter (see Fig. 2.8 for example): (1) concave downward; (2)

straight line; and (3) concave upward. These SOC minimum bounds are gener-

ated based on the given trip duration information by the following equations,

respectively:

l Concave downward control (lower bound 1):

SOCmin
i ¼ SOCinit�SOCmin

� �
T� i∗Mð Þ ∗N +SOCinit (2.8)

l Straight line control (lower bound 2):

SOCmin
i ¼� SOCmin

i �SOCmin
� �

T
� i�1ð Þ �M +Nð Þ+SOCinit (2.9)

l Concave upward control (lower bound 3):
SOCmin
i ¼� SOCend

i�1�SOCmin
� �

T� i∗Mð Þ ∗N +SOCend
i�1 (2.10)

where i is the segment index; SOCi
min is the minimum SOC at the end of ith

segment; and SOCi�1
end is the SOC at the end of last control horizon. It is

self-evident that the concave downward bound (i.e., lower bound 1) is much

more restrictive than a concave upward bound (i.e., lower bound 3) in terms

of battery energy use at the beginning of the trip.

A major drawback for these reference control strategies is that they assume

that the trip duration (i.e., T) is given, or at least can be well estimated before-

hand. As mentioned earlier, this assumption may not hold true for many real-

world applications. Therefore, a new SOC control strategy without relying on

the knowledge of trip duration would be more attractive.



TABLE 2.3 Example Fitness Evaluation by Different Fitness Functions

Indiv.

Index

Fuel

Con.

SOC

Decrease Rfuel Rsoc

Rank by

Eq. (2.7)

Rank by

Eq. (2.11)

1 0.001 0.005(P) 5 35 98 140

2 0.010 0.002 25 14 33 39

3 0.007 0.003 19 23 24 42

4 0.002 0.004(P) 7 32 99 139

…. …… …….. ……. …….. …….
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2.4.2.2 SOC Self-Adaptive Control (Unknown Trip Duration)

In this chapter, we also propose a novel self-adaptive SOC control strategy for

real-time optimal charge-depleting control, where trip duration information is

not required. Unlike those SOC reference control strategies that control the use

of battery by explicit reference curves, the self-adaptive control strategy con-

trols the battery power utilization implicitly by adopting a new fitness function

in place of the one in Eq. (2.7):

f sð Þ¼Rfuel +Rsoc +P
0 (2.11)

where Rfuel and Rsoc are the ranks (in an ascending order) of ICE fuel consump-
tion and SOC decrease, respectively, of an individual candidate solution s
in the current population; and P0is the added penalty when the individual s vio-
lates the constraints given in Eq. (2.6). The penalty value is selected to be greater

than the population size in order to guarantee that an infeasible solution always

has a lower rank (i.e., larger fitness value) than a feasible solution in the ascend-

ing order by fitness value. Compared to the fitness function adopted for SOC ref-

erence control (see Eq. (2.7)), this new fitness function tries to achieve a good

balance between two conflicting objectives: least fuel consumption and least

SOC decrease. For a better understanding of the differences between these

two fitness functions, Table 2.3 provides an example of fitness evaluation of

the same population. In this case, the population size is 100. As we can see in

the table, Individual 2, who has a better balance between fuel consumption,

and SOC decrease, is more favorable than Individual 3 in the ranking by

Eq. (2.11) than that by Eq. (2.7).
2.4.3 EDA-Based On-Line EMS Algorithm With SOC Control

Details of the proposed EDA-based on-line EMS algorithm with SOC control

are summarized in Algorithm 1. This algorithm is implemented on each
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prediction horizon (N time steps) within the framework presented in Fig. 2.8

(see the box with dashed line).

Algorithm 1: EDA-based on-line EMS with SOC control

1: Initialize a random output solution Ibest(N time steps)

2: Pcurrent <¼ Generate initial population randomly

3: While iteration_number �Max_iterations, do

4: For each individual s in Pcurrent
5: Calculate fuel consume Cfuel using Eq. (2.1).

6: Calculate SOC decrease using Eq. (2.5)

7: Obtain the rank index of s: Rfuel

8: Obtain the rank index of s: Rsoc

9: If SOC reference control is adopted

10. Calculate the lower bound using Eqs. (2.8)–(2.10)

11: If individual s violates Eq. (2.6)

12: P ¼ P0;//largest fuel consumption in N steps

13: Else

14: P ¼ 0;

15: End If

16: Calculate the fitness value for s using Eq. (2.7)

17: Else If SOC self-adaptive control is adopted

18: If individual s violates Eq. (2.6)

19: P 0¼S

20: Else

21: P 0¼0;

22: End If

23: Calculate the fitness value for s using Eq. (2.11)

24: End If

25: End For

26: Rank Pcurrent in ascending order based on fitness

27: Ptop <¼ Select top α% individuals from Pcurrent
28: E < ¼ Estimate a new distribution from Ptop
29: Pnew <¼ Sample N individuals from built model E

30: Evaluate each individual in Pnew using line 5–14

31: Mix Pcurrent and Pnew to form 2N individuals

32: Rank 2N individuals in ascending order by fitness

33: Pcurrent<¼ Select top N individuals

34: Update Ibest if a better one is identified.

35: Iteration_number ++

36: End While

37: Output Ibest

In the following section, we compare the performance of the proposed self-

adaptive SOC control with other SOC control strategies. For convenience, we

list the abbreviations of all the involved strategies in Table 2.4.



TABLE 2.4 Abbreviations of Different SOC Control Strategies

Compared in This Chapter

SOC Control Strategies Abbreviations

Binary control B-I

Basic SOC control B-A

Concave downward C-D

Straight line S-L

Concave upward C-U

Self-adaptive SOC control S-A
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2.4.4 Synthesized Trip Information

To validate the proposed EMS for PHEVs, we use real-world data collected on

January 17, 2012, along I-210 between I-605 and Day Creek Blvd in San Ber-

nardino, California, as a case study (see Fig. 2.9). Please refer to [2] for more

detailed description of data collection and specifications of the power-split

PHEV model if interested.

Based on the collected traffic data along with road grade information,

second-by-second vehicle velocity trajectory and power demand have been syn-

thesized as described in [2]. As pointed out earlier, it is impractical to have a

priori knowledge of the exact vehicle velocity trajectory. In this chapter, we

focus on the development of the optimal power-split control, assuming perfect
FIG. 2.9 Example trip along I-210 in southern California used for evaluation.
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prediction of vehicle velocity trajectory. Research on improving the prediction

of vehicle velocity trajectory in real-time is part of our future work.
2.4.5 Off-Line Optimization for Validation

To justify the selection of EDA as the kernel of the proposed framework, we

first test EDA on the full-trip off-line optimization. The results are compared

with those obtained from two other popular EA: genetic algorithm (GA) and

particle swarm optimization (PSO). The fitness (i.e., total ICE energy consump-

tion) of EDA-based off-line optimization obtains better fuel economy

(0.346 gal) than the other two (0.364 gal for GA and 0.377 for PSO, respec-

tively), at the same computational expense (i.e., same population size and same

number of iterations) [30]. In addition, the result fromEDA ismuch closer to the

global optimum (0.345 gal in this case), with the difference being <1%.
2.4.6 Real-Time Performance Analysis and Parameter Tuning

As aforementioned, a necessary condition for on-line implementation of the

proposed EMS is that the optimization for the next prediction horizon has to

be finished within the current control horizon (see Fig. 2.4). In our study, for

example, the optimization for a prediction horizon of 50 s can be completed

within 1.1 s (with Intel Core i7, 3.4 GHz, RAM 4G, and 64bit-Matlab 2012).

In addition, one of our previous works [30] has shown that the lengths of pre-

diction horizon and control horizon may significantly affect the algorithm per-

formance. The best combination of these two parameters is found to be N ¼ 250

and M ¼ 10 in this case.

Unlike the conventional MPC, whose optimization has to be implemented

along each prediction horizon, our proposed EA-based online EMS (see

Fig. 2.7) can take advantage of the optimal results from previous prediction

horizons, which avoids a new optimization starting from scratch and therefore

saves a lot of computational overheads. As can be seen in Fig. 2.10, part of the

optimal decisions from previous prediction optimization horizon are adopted as

the seed for initial population of current prediction horizon optimization. For

example, when the control horizon is 3 s and prediction/optimization horizon
Prediction
horizon t :

Prediction
horizon (t+1) :

Population initialization for prediction horizon (t+1)

Optimal decision for prediction horizon t

Ut(1)

Ut+1(1) Ut+1(N-4) Ut+1(N-3) Ut+1(N-2) Ut+1(N-1) Ut+1(N)

Ut(2) Ut(3) Ut(N-1) Ut(N)Ut(4) ...

...

Seeded initialization Random initializationUt(k) is the control decision
at k th second of  t th prediction horizon.

FIG. 2.10 Population initialization from the second prediction horizon (i.e., t�2).
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is N, only 3 control decisions need to be randomly initialized and optimized in

the second prediction/optimization horizon. This allows the optimization or

search to be much more efficient compared to the same process over entire pre-

diction horizon. To validate further this computational performance, we

designed an EA-based MPC (EAMPC) that activates a complete new optimiza-

tion for each prediction/optimization horizon, and compared it with our pro-

posed model. The computation time track in Fig. 2.11 shows that for a 50-s

prediction horizon, the conventional MPC takes around 1.1 s for each optimi-

zation horizon, but our proposed model can take <0.1 s to finish the optimiza-

tion from the second prediction horizon.
2.4.7 On-Line Optimization Performance Comparison

To evaluate fully the performance of the proposed on-line EMS strategies, we

compare them to the conventional binary control (implementable in real-time)

strategy as well as the off-line global optimal control strategy (with the use of

dynamic programming (DP) [11]). The comparisons are carried out on both the

single trip scenario and multiple trips scenario.

When tested on a single (westbound) trip, the fuel consumption and SOC

profiles by different strategies are illustrated in Fig. 2.12. It is shown that the

proposed S-A algorithm achieves the lowest fuel consumption (0.3515 gal)

which is only 1.56% worse than that of global optima obtained by the off-line

optimization (0.3460 gal). These results can be explained by the shape of the

resultant SOC profiles. For instance, SOC decreases very quickly in the B-I

strategy, and reaches the lower bound (i.e., 0.2) at around 1200 s because the

use of battery power is always prioritized whenever available. Therefore,

ICE has to supply most of the demanded power after 1200 s. This is very similar

to the cases of the B-A and C-U strategies where the battery power is also con-

sumed aggressively at the beginning of the trip with very loose constraints. On

the other hand, the S-L and C-D strategies perform better since their battery
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power is used more cautiously along the trip. These findings are consistent with

the conclusions of many other studies [8, 33] in that a smoother distribution of

battery power usage along the trip would result in higher fuel efficiency.

In order to understand the statistical significance of the different EMS strat-

egies, we test them on 30 randomly selected trip profile data extracted from the

same road segment on 12 different days. The results are also compared to the

binary control and D-P strategies. For the purpose of comparison, we set the fuel

consumption obtained by the binary control strategy as the baseline and calcu-

late the percentage of fuel savings achieved by the other EMS strategies. As we

can see in Fig. 2.13, the D-P strategy achieves the best fuel savings with an aver-

age of 19.4% and the least variance simply because it is an off-line optimization

strategy. The proposed S-A strategy achieves an average of 10.7% fuel savings,

which is higher than all other on-line strategies and consistent with the result of
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TABLE 2.5 Comparisons With Existing Models

EMS Model Year STPa Trip Distance FEIb Consider Charging

This work 2016 Yes Unknown 10.7% Yes

EAMPC 2016 Yes Unknown 7.9% Yes

MPC [21] 2014 Yes Known 8.5% No

MPC [20] 2015 Yes Known 6.7% No

A-ECMS [21] 2014 Yes Known 10.2% No

A-ECMS [18] 2015 Yes Known 7.6% No

DP [22] 2015 Yes Known 5.8% No

SDPc [23] 2011 Yes Known 7.7% No

aShort-term prediction.
bFuel economy improvement comparing to binary control.
cStochastic dynamic programming.
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the single trip test. An interesting observation is that the S-L strategy has better

average fuel savings (i.e., 9.3%) than the C-D and C-U strategies, which is not

consistent with the test result of the single trip test. A possible reason is that the

C-D strategy performs better on some trips in which the power demand is higher

in later stages of the trip, but the C-U strategy performs better on the trips in

which the power demand is higher in earlier stages. On the other hand, the

S-L strategy balances the SOC control between these two types of trip pattern,

and therefore has better average performance.

For further validation, the proposed S-A strategy with the best performance

is compared with other existing PHEV EMS strategies that employ short-term

prediction. Although these strategies were proposed to handle powertrain

models with different fidelity as well as different data set for validation, they

all used the binary control strategy as a benchmark (the same as used in this

chapter). This provides us with a chance to compare all models in a relatively

fair manner. The comparison results are listed in Table 2.5, which proves that

our model achieves the largest improvement of fuel efficiency (with regard to

the binary control strategy) but requires less trip information.
2.4.8 Analysis of Trip Duration

In this section, we analyze and compare the effectiveness of the proposed

on-line EMS for longer trips. These longer trips are constructed by concatenat-

ing multiple trip profiles, and the results are shown in Fig. 2.14. As can be
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observed, the B-I strategy has the best fuel economy when the trip duration is

shorter than 1500 s. For these short trips, the PHEV can mostly rely on battery

energy. However, as the trip duration becomes longer, especially when longer

than 2500 s, the S-A strategy outperforms all the others.

To explain this finding further, the resultant fuel consumption and the cor-

responding SOC profiles for the longest trip (5000 s) are provided in Fig. 2.15.

According to the figure, the S-A strategy has the lowest fuel consumption and

its SOC profile is a combination of the CD mode (defined in Fig. 2.1) before

2000 s and the CS mode after 2000 s. This contradicts with most of the existing

studies, which report that an optimal fuel economy for the trip can be achieved

by operating solely in the CD mode [8]. Here, we present evidence that it is not

always the case, and that the CD + CS operation can result in optimal fuel
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efficiency for long trips. Furthermore, this finding also implies the potential for

the proposed S-A strategy to adapt to different trip durations.
2.4.9 Performance With Charging Opportunity

Considering the plug-in capability of PHEVs, we evaluate the performance of

the proposed strategies at the tour level. More specifically, we consider the com-

mute trips of the case study as a tour and assume that there is a charging oppor-

tunity (to a full charge) between the end of the westbound trip and the beginning

of the eastbound trip. We then compare the different SOC control strategies

under the following two scenarios:

(1) Scenario I: The proposed EMS with a priori knowledge of the charging

opportunity;

(2) Scenario II: The proposed EMS without a priori knowledge of the charging

opportunity. In this case, a conservative strategy is applied by assuming

that there is no charging station available in between the trips.

The results are illustrated in Fig. 2.16. They show that the knowledge of the

charging opportunity information has great influence on the resultant SOC pro-

files for the deterministic SOC reference control strategies but no influence on

the SOC self-adaptive control strategy. Table 2.6 presents the increased fuel

consumption due to the lack of knowledge of the charging opportunity prior

to the tour. As shown in the table, the C-D, S-L, and C-U strategies all have

13% or more increase in fuel consumption if the charging opportunity informa-

tion is unknown, while the B-I and S-A strategies are not affected because the

trip duration is not considered in their decision-making process. These findings

further emphasize the advantage of the proposed SOC self-adaptive control

strategy in terms of robustness to the level of knowledge about charging

availability.
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2.5 DATA-DRIVEN REINFORCEMENT LEARNING-BASED
REAL-TIME EMS

2.5.1 Introduction

As mentioned in the previous section, the EMS is at the heart of PHEV fuel

economy, whose functionality is to control the power streams from both the

ICE and the battery pack, based on vehicle and engine operating conditions.

In the past decade, a large variety of EMS implementations have been devel-

oped for PHEVs, whose control strategies may be well categorized into two

major classes, as shown in Fig. 2.17:



TABLE 2.6 Increased Fuel Consumption

Control Strategy Known (gal) Unknown (gal)

Increased Fuel

Consumption (%)

B-I 0.9748 0.9748 00.0

B-A 0.7109 0.7543 06.1

C-D 0.6729 0.8439 25.1

S-L 0.6809 0.7853 15.0

C-U 0.7066 0.8034 13.0

S-A 0.6681 0.6681 00.0

EMS of  PHEV

Rule-based Optimization-based

Deterministic Fuzzy Off-line

Learning-based

Prediction based

FIG. 2.17 Taxonomy of current EMS.
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(a) Rule-based strategies rely on a set of simple rules without a priori knowl-

edge of driving conditions. Such strategies make control decisions based on

instant conditions only and are easily implemented, but their solutions are

often far from being optimal due to the lack of consideration of variations in

trip characteristics and prevailing traffic conditions; and.

(b) Optimization-based strategies are aimed at optimizing some predefined

cost function according to the driving conditions and vehicle’s dynamics.

The selected cost function is usually related to the fuel consumption or tailpipe

emissions. Based on how the optimization is implemented, such strategies can

be further divided into two groups: (1) off-line optimization which requires a

full knowledge of the entire trip to achieve the global optimal solution; and

(2) short-term prediction-based optimization which takes into account the pre-

dicted driving conditions in the near future and achieves local optimal solutions

segment by segment within an entire trip. However, major drawbacks of these

strategies include heavy dependence on the a priori knowledge of future driving

conditions and high computational costs that are difficult to implement in

real time.

As discussed above, there is a trade-off between the real-time performance

and optimality in the energy management for PHEVs. More specifically,
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rule-based methods can be easily implemented in real-time but are far from

being optimal, while optimization-based methods are able to achieve optimal

solutions but are difficult to implement in real-time. To achieve a good balance

in between, reinforcement learning (RL) has recently attracted researchers’

attention. Liu et al. proposed the first and only existing RL-based EMS for

PHEVs, which outperforms the rule-based controller with respect to the defined

reward function but is worse in terms of fuel consumption without considering

charging opportunity in the model.

In this chapter, a novel model-free RL-based real-time EMS of PHEVs is

proposed and evaluated, which is capable of simultaneously controlling and

learning the optimal power-split operations in real time. The proposed model

is theoretically derived from DP formulations and compared to DP in the com-

putational complexity perspective. Three major features distinguish it from

existing methods:

(1) The proposed model can be implemented in real-time without any predic-

tion efforts, since the control decisions are made only upon the current sys-

tem state. The control decisions also considered for the entire trip

information by learning the optimal or near-optimal control decisions from

historical driving behavior. Therefore, it achieves a good balance between

real-time performance and energy saving optimality.

(2) The proposed model is a data-driven model that does not need any PHEV

model information once it is well trained, since all the decision variables

can be observed and are not calculated using any vehicle powertrain

models (these details are described in the following sections).\

(3) Compared to existing RL-based EMS implementations, the proposed strat-

egy considers charging opportunities along the way (a key distinguishing

feature of PHEVs as compared with HEVs). This proposed method repre-

sents a new class of models that could be a good supplement to the current

methodology taxonomy as shown in Fig. 2.17.

2.5.2 Dynamic Programming

The above optimization problem can be solved by DP, since it satisfies Bell-

man’s Principle of Optimality. Let s E S be the state vector of the system,

and a EA the decision variable. The optimization problem can be converted into

the following single equation given the initial state s0 and the decisions at for
each time step t.

min
atEA

E
XT�1

t¼0

βtg st, st+ 1ð Þj s0 ¼ s

( )
(2.12)

where β is a discount factor and β E (0,1). It can be solved by recursively
calculating:
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J stð Þ¼ min
atEA

E
XT�1

t¼0

g st, st+ 1ð Þ+ βJ st+ 1ð Þj st ¼ s

( )
, for t¼ T�1,T�2,…,0:

(2.13)

where T is the time duration, g(.) is a one-step cost function, and J(s) is the true

value function associated with states. Eq. (2.13) is also often referred to as Bell-

man’s equation. In the case of PHEV energy management, st can be defined as a
combination of vehicle states, such as the current SOC level and the remaining

time to the destination, which is discussed in the following sections. at can be

defined as the ICE power supply at each time step.

It is well known that the high computational cost of Eq. (2.13) is always the

barrier that impedes its real-world application, although it is a very simple and

descriptive definition. It could be computationally intractable even for a small-

scale problem (in terms of state space and time span). The major reason is that

the algorithm has to loop over the entire state space to evaluate the optimal deci-

sion for every single step. Another obvious drawback in the real-world appli-

cation of DP is that it requires the availability of the full information of the

optimization problem. In our case, it means the power demand along the entire

trip should be known prior to the trip, which is always impossible in practice.
2.5.3 Approximate Dynamic Programming
and Reinforcement Learning

To address the above issues, approximate dynamic programming (ADP) has

been proposed (Eq. 2.13 ). The major contribution of ADP is that it significantly

reduces the state space by introducing an approximate value function Ĵ st, ptð Þ
where pt is a parameter vector. By replacing this approximate value function,

Eq. (2.13) can be reformulated as

Ĵ stð Þ¼ min
atEA

E
XT�1

t¼0

g st, st+ 1ð Þ+ βĴ st+ 1, ptð Þ
( )

, for t¼ 0,1,…,T�1 (2.14)

Now the optimal decision can be calculated at each time step t by
at ¼ arg min
atEA

E
XT�1

t¼0

g st, st + 1ð Þ+ βĴ st + 1, ptð Þ
( )

, (2.15)

The calculation of Eq. (2.15) now only relies on the current system state st,

which substantially reduces the computational requirement of Eq. (2.13) to

polynomial time in terms of the number of the state variables, rather than being

exponential to the size of state space. In addition, the value iteration that solves

the DP problem becomes forward into time, rather than being backward in

Eq. (2.13). In the case of PHEV energy management, this is actually a bonus
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since the predicted state (e.g., power demand) at the end of the time horizon is

much less reliable compared to that at the beginning of the time horizon.

In principle, the value approximate function can be learned by tuning and

updating the parameter vector pt upon the addition of each observation on state
transitions. RL is an effective tool for this purpose. The specific learning tech-

nique employed in this chapter is temporal-difference learning (TD-Learning),

which was originally proposed by Sutton to approximate the long-term future

cost as a function of current states. The details about the implementation of the

algorithm are presented in the following sections.
2.5.4 Reinforcement Learning-Based EMS

In this chapter, a TD-learning strategy is adopted for the RL problem. An action-

value function: Q (s, a) is defined as the expected total reward for the future

receipt starting from that state. This function is to estimate “how good” it is

to perform a given action in a given state in terms of the expected return. More

specifically, we define Qπ(s,a) as the value of taking action a in state s under a

control policy π (i.e., a map that maps the optimal action to a system state),

which is also the expected return starting from s, taking the action a, and there-
after following policy π:

Qπ s, að Þ¼Eπ

X∞
k¼1

γk∗r st+ k, at+ kð Þ
( �����st ¼ s,at ¼ ag (2.16)

where st is the state at time step t; γ is a discount factor in (0, 1) to guarantee the

convergence; r(st+k,at+k) is the immediate reward based on the state s and action
a at a given time step (t + k). The ultimate goal of RL is to identify the optimal

control policy that maximizes the above action-value function for all the state-

action pairs.

Comparing to the formulations defined by Eqs. (2.13) and (2.14), the policy

π is the ultimate decision for each time step along the entire time horizon. The

reward function r(st+k,at+k) here is g(.) in Eq. (2.13). The action-value function
(i.e.,Q(s, a)) is actually an instantiation of the approximate value function Ĵ stð Þ.
Thus, it is not difficult to understand that the DP formulas are the basis for a RL

problem.

Conceptually, a RL system consists of two basic components: a learning

agent and an environment. The learning agent interacts continuously with the

environment in the following manner: at each time step, the learning agent

receives an observation on the environment state. The learning agent then

chooses an action that is subsequently input to the environment. The environ-

ment then moves to a new state due to the action, and the reward associated with

the transition is calculated and fed back to the learning agent. Along with each

state transition, the agent receives an immediate reward and these rewards are

used to form a control policy that maps the current state to the best control action
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FIG. 2.18 Graphical illustration of reinforcement learning system.
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upon that state. At each time step, the agent makes the decision based on its

control policy. Ultimately, the optimal policy can guide the learning agent to

take the best series of actions in order to maximize the cumulated reward over

time that can be learned after sufficient training. Fig. 2.18 gives a graphical

illustration of the learning system. The definition of the environmental states,

actions, and reward are provided as follows.
2.5.5 Action and Environmental States

In this chapter, we define the discretized ICE power supply level (i.e., Pi
eng) as

the only action the learning agent can take. The environment states include any

other system parameters that could influence the decision of engine power sup-

ply. Herein we define a 5-dimensional state space for the environment, includ-

ing the vehicle velocity (vveh), road grade (groad), percentage of remaining time

to destination (ttogo), the battery pack’s SOC (bsoc), and the available charging

gain (cg) of the selected charging station:

S¼ s¼ vveh, groad, ttogo, bsoc, cg
	 
T j vvehEVveh, groadEGroad, ttogoETtogo,

n
bsocEBsoc, ccECgg

where Vveh is the set of discretized vehicle speed level, Groad is the set of dis-
cretized road grade levels, and Pbrk is the discretized level of power collected

from regenerative braking (note: this power is negative compared to power

demand). The minimum and maximum value of vehicle velocity, road grade,

and regenerative braking power can be estimated from the historical data of

commuting trips, which will be elaborated in the following section. Bsoc is

the set of battery SOC levels between the lower bound (e.g., 20%) and upper

bound (e.g., 80%); Ttogo is the percentage (10%–90%) of remaining time out

of the entire trip duration, which is calculated based on the remaining distance
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to destination. Cg is the set of discretized charging gain (e.g., 30%, 60%) of the

selected charger. This charging gain represents the availability of the charger,

which may be a function of the charging time and charging rate, and is assumed

to be known beforehand. It is noteworthy that all the states can be measured and

updated in real time as the vehicle is running. Fig. 2.19 shows all the real-time

environmental states.
2.5.6 Reward Initialization (With Optimal Results From
Simulation)

The definition of reward is dependent upon the control objective, which is to

minimize the fuel cost while satisfying the power demand requirement. Hence,

we define the reciprocal of the resultant ICE power consumption at each time

step as the immediate reward. A penalty term is also included to penalize the

situation where the SOC is beyond the predefined SOC boundaries. The imme-

diate reward is calculated by the following equations:

rass, ¼

1

PICE

if PICE 6¼ 0 and 0:2� SOC� 0:8

1

PICE +P
if PICE 6¼ 0 and SOC� 0:2or SOC� 0:8ð Þ

2

MinPICE

if PICE ¼ 0 and 0:2� SOC� 0:8

1

2∗P
if PICE ¼ 0 and SOC� 0:2 or SOC� 0:8ð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

(2.17)

where rss,
a is the immediate reward when state changes from s to s, by taking
action a, PICE is the ICE power supply, P is the penalty value and is set as

the maximum power supply from ICE in this chapter, andMin_PICE is the min-

imum nonzero value of ICE power supply. This definition guarantees that the

minimum ICE power supply (action) which satisfies the power demand as well

as SOC constraints can have the largest numerical reward. A good initialization

of reward is also critical for the quick convergence of the proposed algorithm. In
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this case, the optimal or near-optimal results of typical trips obtained from sim-

ulation are used as the initial seeds. These optimal or near-optimal results are

deemed as the control decisions made by “good drivers” from historical driving.

In order to obtain a large number of such good results for algorithm training, an

EA is adopted for the off-line full-trip optimization, since EA can provide mul-

tiple solutions for one single run. These solutions are of different quality, which

may well represent different levels of driving proficiency in a real-world

situation.
2.5.7 Q-Value Update and Action Selection

In the algorithm, aQ value, denoted byQ (s, a), is associated with each possible
state-action pair (s, a). Hence there is a Q table which is updated during the

learning process and can be interpreted as the optimal control policy that the

learning agent is trying to learn. At each time step, the action is selected upon

this table after it is updated. The details of the algorithmic process are given in

the following pseudo code:

Algorithm: RL based PHEV EMS algorithm

Inputs: Initialization 6-D Q (s, a) table; discount factor γ ¼ 0.5; learning rate

α ¼ 0.5; exploration probability ε E (0,1); vehicle power demand profile Pd (N

time steps)

Outputs: Q (s, a) array; control decisions Pd (T time steps)

1: Initialize Q (s, a) arbitrarily

2: For each time step t ¼ 1: T

3: Observe current st (vveh, groad, ttogo, bsoc, Cg)

4: Choose action at for the current state st:

5: temp ¼ random (0,1);

6: if temp <¼ε
7: at ¼ arg maxaEA Q st , að Þf g
8: else

9: at¼ randomly choose an action;

10: end

11: Take action at, observe next state st+1 (Pt+1, SOCt+1)

12: if SOCt+1<0.2

13: Switch into charging-sustaining mode;

14: Give big penalty to rt according to Eq. (2.10)

15: else

16: Calculate reward rt according to Eq. (2.10)

17: end

18: Update Q (st, at) with following value:

19: Q(st, at) + α rt + γ∗maxat +1 Q st +1, at +1ð Þf g�Q st , atð Þf g
20: end
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2.5.8 Validation and Testing

The proposed model is then evaluated with real-world data in two different sce-

narios: one without charging opportunities and the other with charging

opportunities.

To obtain a series of real trip data (second-by-second velocity trajectories),

we apply the trajectory synthesis technique proposed in our previous work to the

inductive loops detector (ILD) data archived in the California Freeway Perfor-

mance Measurement System (PeMS).

The trajectory synthesis is a two-step process: (1) estimating average veloc-

ity by applying 2-dimensional interpolation method to real-world traffic data

(e.g., volumes and occupancy) collected from ILDs; and (2) generating random

velocity disturbance based on representative driving cycles from the MOVES

(MOtor Vehicle Emission Simulator) database. Real traffic data were collected

at the I-210 freeway segment between I-605 and Day Creek Blvd in southern

California, starting at 8:00 a.m. in the morning (westbound) and returning at

4:00 p.m. in the afternoon every weekday during the period between January

9, 2012 and January 17, 2012. Twelve trips (including eastbound and west-

bound) were generated in total. The road grade information was also synchro-

nized with the trip data to estimate the second-by-second power demands. For

more detailed information on the trajectory synthesis and power demand profile

generation, please refer to [15].
2.5.9 Model Without Charging Opportunity (Trip Level)

To validate the proposed strategy, the model without considering charging

opportunity is first trained and tested with trips where there is no charging

opportunity within the trip. Data for multiple westbound trips described in

[15] are used for training. Although it has been proven that Q-learning is guar-

anteed to converge mathematically, an experimental analysis of convergence is

conducted in this chapter. In the experiment, the trip data for the first 6 days are

concatenated one by one to form a single training cycle. The proposed model is

trained with repeated training cycles. At the end of each training cycle, the

trained model is tested with the 7th day trip, and the fuel consumption is

recorded in Fig. 2.20. In addition, the training with or without good initialization

using simulated optimal or near-optimal solution are also compared. As we can

see in the figure, there is a clear convergence in fuel consumption for both cases.

However, the initialization with simulated optimal or near-optimal solutions

help achieve a faster convergence.

As previously described, the selected state space is 5-dimensional and the

action space has 1 dimension. Therefore the Q (s, a) table is 6-dimensional.

Fig. 2.21 shows the 4-D slice diagram of the learned Q (s, a) table in which dif-
ferent color grids represent different numerical reward values (e.g., darker color

means lower values) and three slices on the (ICE power supply, power demand)
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FIG. 2.21 4-D slice diagram of the learned Q table.
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space are given at three different SOC levels: 1, 6, and 12 (i.e., 20%, 50%, and

80%). Please note that the road grade and vehicle speed are implicitly aggre-

gated into power demand. The dimension of remaining time is not indicated

in the figure. As can be observed in each slice, when the power demand is

not so high (e.g., below level 5), action level 1 or 2 is usually the most appro-

priate because the least ICE power is consumed. When the power demand

becomes higher, the range of the feasible action levels gets wider also. In such

cases, lower levels of ICE power supply may not be enough to satisfy the power

demand and the resultant SOC level could be lower than 0.2, resulting in a pen-

alty defined in Eq. (2.17). It is also noted that when SOC level is high, it is less

likely that the higher ICE power supply level would be chosen to satisfy the

same power demand. This is because when the vehicle battery SOC is high,

the ICE power is not likely to be used aggressively.
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As discussed in the previous sections, an exploration-exploitation strategy is

adopted for the action selection process to avoid premature convergence. The

action with the biggest Q value has a probability of 1 � ε to be selected. Hence
the value of εmay significantly affect the performance of the proposed method.

To evaluate such impacts, a sensitively analysis of ε is carried out and illustrated
in Fig. 2.8. It can be observed that both the fuel consumption and the resultant

SOC curves are very close to those of the binary mode control if the value of ε is
small. A possible explanation is that a small ε value indicates a large probability
to select the most aggressive action with the biggest Q value (or the lowest

levels of ICE power supply). Therefore, the battery power is consumed drasti-

cally as it is with the binary mode control. However, if the value of ε is too large
(e.g., >0.8), the battery power is utilized too conservatively where the final

SOC is far away from the lower bound, resulting in much greater fuel consump-

tion. It is found that the best value of ε in this chapter is around 0.7, which

ensures the SOC curve is quite close to the global optimal solution obtained

by the off-line DP strategy. With this best ε value, the fuel consumption is

0.3559 gal, which is 11.9% less than that of the binary mode control and only

2.86% more than that of DP strategy as shown in Fig. 2.8. This also implies that

an adaptive strategy for determining exploration rate along the trip could be use-

ful. Fig. 2.9A shows a linearly decreasing control of ε along the trip. A smaller ε
is preferred at the later stage of the trip because SOC is low and the battery

power should be consumed more conservatively. With this adaptive strategy

for ε, the proposed mode could also achieve a good solution with 0.3570 gal

of fuel consumption, which is 11.7% less than the binary control shown in

Fig. 2.22.
2.5.10 Model With Charging Opportunity (Tour Level)

The most distinctive characteristics of PHEVs from HEVs is that PHEV can be

externally charged whenever a charging opportunity is available. To evaluate

further the impacts due to charging availability, we include this information
FIG. 2.22 Fuel consumption in gallon (bracketed values) and SOC curves by different exploration

probabilities.
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in the proposedmodel as a decision variable. For simplicity, the charging oppor-

tunity is quantified by the gain in the battery’s SOC, which may be a function of

available charging time and charging rate. Data for a typical tour are constructed

by combining a round trip between the origin and destination. We assume there

is a charger in the working place (west-most point in the map) and the available

charging gain has only two levels: 30%–60%. In this case, a corresponding

adaptive strategy of ε is also used as shown in Fig. 2.23B. The rationale behind
this adaptive strategy is that battery power should be used less conservatively

(i.e., higher ε value) after charging, and/or when Cg is higher.

The obtained optimal results are shown in Figs. 2.24 and 2.25. As we can see

in both figures, the resultant SOC curves are much closer to the global optimal

solutions obtained by DP than the binary control. To obtain a statistical signif-

icance of the performance, the proposed model is tested with 30 different trips
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FIG. 2.24 Optimal results when available charging gain is 0.3 (Cg ¼ 0.3).
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by randomly combining two trips and a charging station is assumed in between

with a random Cg (randomly choose from 30% to 60%). By taking the binary

control as baseline, the reduced fuel consumption is given in Fig. 2.26. As we

can see in the figure, RL model achieves an average of 7.9% fuel savings. It

seems that havingmore information results in lower fuel savings, which is coun-

terintuitive. The reason is that the inclusion of additional information or state

variable to the model exponentially increases the search space of the problem,

which thereby increases the difficulty of learning the optimal solution. In addi-

tion, more uncertainty is introduced to the learning process due to the errors

within the added information, which degrades the quality of the best solution

the model can achieve.
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2.6 CONCLUSIONS

In this chapter, two different data-driven on-line EMS for PHEVs, (i.e., EA

based EMS and RL based EMS) are presented with both system architecture

and real-world validation.

For the EA-based EMS, the proposed framework applies the self-adaptive

strategy to the control of the vehicle’s SOC in a rolling horizon manner for

the purpose of real-time implementation. The control of the vehicle’s SOC is

formulated as a combinatory optimization problem that can be efficiently

solved by the EDA. The proposed EMS is evaluated comprehensively using

a number of trip profiles extracted from real-world traffic data. The results show

that the self-adaptive control strategy used in the proposed system statistically

outperforms the conventional binary control strategy with an average of 10.7%

fuel savings. The sensitivity analysis reveals that the optimal prediction horizon

window of the proposed EMS is 250 s, which requires 5.8 s of computation time

in our study case. This amount of time is much less than the optimal control

horizon window of 10 s, which confirms the feasibility of real-time implemen-

tation. Another important advantage of the proposed EMS is that, unlike other

existing systems, it does not require a priori knowledge about the trip duration.

This allows the proposed system to be robust against real-world uncertainties,

such as unexpected traffic congestion that increases the trip duration signifi-

cantly, and changes in intertrip charging availability.

For RL-based EMS, it is capable of simultaneously controlling and learning

the optimal power-split operation. The proposed EMS model is tested with trip

data (i.e., multiple speed profiles) synthesized from real-world traffic measure-

ments. Numerical analyses show that a near-optimal solution can be obtained in

real-time when the model is well trained with historical driving cycles. For the

study cases, the proposed EMS model can achieve better fuel economy than

the binary mode strategy by about 12%–8% at the trip level and tour level (with

charging opportunity), respectively. The possible topics for future work are: (1)

propose a self-adaptive tuning strategy for exploration-exploitation (ε); (2) test
the proposed model with more real-world trip data which could include other

environmental states, such as the position of charging stations; and (3) conduct

a robustness analysis to evaluate the performance of the proposed EMS model

when there is error present in the measurement of environment states.
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