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Minimizing the risk of cancer: tissue
architecture and cellular replication limits

Ignacio A. Rodriguez-Brenes1, Dominik Wodarz1,2 and Natalia L. Komarova1,2

1Department of Mathematics, and 2Department of Ecology and Evolution, University of California Irvine,
Irvine, CA, USA

Normal somatic cells are capable of only a limited number of divisions, which

prevents unlimited cell proliferation and the onset of tumours. Cancer cells

find ways to circumvent this obstacle, typically by expressing the enzyme

telomerase and less often by alternative recombination strategies. Given this

fundamental link between cellular replication limits and cancer, it is impor-

tant to understand how a tissue’s architecture affects the replicative capacity

of a cell population. We define this as the average number of remaining div-

isions at equilibrium. The lower the replication capacity, the lower the chances

to escape the replication limit during abnormal growth when a tumour devel-

ops. In this paper, we examine how the replication capacity is influenced by

defining characteristics of cell lineages, such as the number of intermediate

cell compartments, self-renewal capability of cells and division rates. We

describe an optimal tissue architecture that minimizes the replication capacity

of dividing cells and thus the risk of cancer. Interestingly, some of the features

that define an optimal tissue architecture have been documented in a variety

of tissues, suggesting that they may have evolved as a cancer-protecting

strategy in multicellular organisms.
1. Introduction
Human somatic cells can undergo only a limited number of divisions in vitro
[1]. This phenomenon known as replicative senescence or the Hayflick limit

has long been attributed to the progressive shortening of telomeres with age,

which occurs both in vivo and in vitro [2]. Telomeres are specialized non-

coding repetitive sequences of DNA that are highly conserved throughout

evolution and are found at the end of eukaryotic chromosomes [3,4]. There

are several processes that are believed to contribute to telomere shortening

during cell division; these include the incomplete replication of linear

DNA molecules by DNA polymerases [5], active degradation by an unknown

exonuclease [6] and oxidative stress [7].

It has been suggested that replication limits in somatic cells evolved as a

means to reduce the incidence of cancer in multicellular organisms. A trans-

formed cell dividing without control must first evade the constraints imposed

by the replication limit before it can establish a neoplasia of a significant size.

The link between telomeres and cancer is supported by the fact that most colo-

nies of transformed human cells initially proliferate but ultimately cease to

divide and die [8,9]. This extinction coincides with a phase termed telomere

crisis, in which there is an abundance of cells with very short telomeres and

widespread cell death (presumably owing to chromosome instability) [8].

In addition, very significantly, between 85 and 90% of cancer cells express tel-

omerase [10] (an enzyme that extends telomere length) allowing them to

circumvent the limitations imposed by replicative limits.

The role of replication limits in the context of cancer biology has been seen

as a mechanism to curtail the clonal expansion of cells. Conceptually, if an

oncogenic event causes uncontrolled proliferation of a cell and its progeny,

then replication limits place a cap on the maximum size of the cell colony

and on the total number of divisions by transformed cells. According to the

multi-hit theory of carcinogenesis, full progression towards malignancy

requires the accumulation of several mutations in altered cells. Because
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Figure 1. Cell lineage model. Transit cells of j-type cells divide at a rate vj producing two j-type cells with probability pj or two ( j þ 1)-type cells with probability 1 2

pj. Stem cells S divide at a rate r. There are k þ 1 intermediate steps until cells become fully differentiated (D). Once they do they exit the cell cycle and die at a certain
rate d. (Online version in colour.)
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mutations typically occur during cell division, a limit on the

possible number of divisions reduces the probability of

acquiring additional mutations. Hence, the lower the replica-

tion capacity (defined as the number of divisions left) of the

originally transformed cell, the lower the chances of acquir-

ing subsequent mutations that can lead to further cancer

progression. This explains the goal of minimizing the average

replication capacity of a dividing cell. We also note that a

mutation that results in the activation of telomerase could

allow cells to bypass the replicative limit [10], so the prob-

ability of escaping Hayflick’s limit itself also depends on

the replication capacity of the originally transformed cell.

In order to understand how replication limits protect against

cancer, it is essential to understand how a tissue’s architecture

affects the replicative capacity of the cell population. Recently,

cell lineages have been viewed as the fundamental units of

tissue development, maintenance and regeneration [11–13].

At the starting points of lineages, one finds stem cells, character-

ized by their ability to maintain their own numbers through

self-replication [11]. Stem cells give rise to intermediate more

differentiated progenitor cells, which are often capable of at

least some degree of self-replication [12]. The end products of

lineages are the fully differentiated mostly non-dividing cells

associated with mature tissue functions.

In this paper, we explore how different architectural

characteristics of a cell lineage—the number of intermediate

cell compartments, the self-renewal capabilities of cells and

the rates of cell division—impact the replication capacity of

a cell population. In any given system, there are many theor-

etically possible architectures that are able to produce a fixed

physiologically required output of differentiated cells from a

small stem cell pool. Yet, we find that these alternative archi-

tectures may produce radically different results with regards

to the replicative potential of the cell population. In this

study, we find specific features that define an optimal

tissue architecture that minimizes the expected replication

capacity of dividing cells and thus the risk of cancer. Our

work highlights the importance of understanding the precise

architecture of cell lineages by analysing the interconnections

between lineages, replication limits and cancer biology.
2. Lineages and replication limits
Cell lineages follow specific differentiation pathways. The

turnover rate, degree of differentiation and distinct function

of different cells within a lineage can often be associated

with the expression of specific markers [13,14]. These

observations have led to the idea of cell compartments as a

sequence of distinct and distinguishable differentiation

steps. The organization of lineages into cell compartments

is a widely proposed model that has been studied both

biologically and mathematically in many tissues, including
the haematopoietic and neural systems, epidermis, oesopha-

gus and colon crypt [14–18]. The level of differentiation of

cells can change upon cell division [12]. Alternatively, for

certain tissues, it has been proposed that cells can also

change their differentiation level by moving away from the

stem cell niche [19], leading to a continuous differentiation

process. Given our interest in replication limits and their

intrinsic connection to cell division, here we focus on dif-

ferentiation occurring through cell division (alternative

division-independent differentiation mechanisms lie beyond

the scope of this paper).

We begin by introducing a variant of a widely proposed

model of cell dynamics within a cell lineage [20–25]. In this

model (figure 1), the starting point of the lineage is stem

cells S. Downstream from the stem cell population, one

finds a series of intermediate cell types often referred to in

the literature as progenitor cells or transit-amplifying cells

(here named X0, . . . , Xk). If a stem cell divides, then each

daughter cell remains in the stem cell compartment with

probability ps or proceeds to the X0 compartment with

probability 1 2 ps. Similarly, if a cell in compartment j (here-

after called a j-type cell) divides, then each daughter cell

will remain in the j compartment with probability pj or

differentiate into a ( j þ 1)-type cell with probability 1 2 pj.

The end products of the cell lineage are fully differentiated

cells D, which cannot divide any further and die at a certain

rate d. The division rates are r for stem cells and vj for a

j-type cell.

Healthy tissue is highly regulated to ensure homeostasis

with feedback loops playing a fundamental role in this regard

[26,27]. Thus, if one wishes to examine certain dynamic proper-

ties, such as tissue regeneration after an injury, then it is

necessary to impose control mechanisms that guarantee the

stability of the system. In practice, this means that the division

rates (r and vj) and self-renewal probabilities ( ps and pj) may

be functions that take on different values depending on the

state of the system [20–24]. In the case of an injury, the self-

renewal probabilities and division rates might temporarily

increase to ensure a faster recovery [22], leading to an increased

number of divisions per unit of time. Thus, repeated injury and

repair might augment the risk of cancer by increasing the

number of cell divisions. In particular, control must be imposed

on the self-renewal probability of stem cells, because otherwise

in a stochastic setting the fate of the lineage would inevitably

result in extinction or uncontrolled growth. Here, however,

we are concerned only with properties at homeostasis. Hence,

we are interested only in the values of r, ps, vj and pj at equili-

brium, and the precise nature of the control mechanisms is

irrelevant to our analysis.

Next, we consider replication limits in the context of

telomere biology. In vivo telomeres interact with a number

of proteins, allowing them to be recognized by the cell as

being in a protected or ‘capped’ state (for a review, see [4]).
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As telomeres shorten, they lose their ability to form these

capped or protected structures and any further division is

then halted. If a cell happens to exhaust its replication

capacity but nevertheless attempts mitosis, then senescence

or apoptosis would be triggered through the p53 or p16-RB

pathways [28]. Several models for cellular replication limits

have been proposed. These models use a range of approaches

from population dynamics [29–33] to detailed considerations

of the molecular mechanisms affecting telomere function

[34,35]. In this paper, associated with every cell, there is a

number that we call the replication capacity of the cell.

When a non-stem cell divides, the replication capacity of

the daughter cells will be one unit less than the replication

capacity of the parent cell. First, we consider the case where

all stem cells have a fixed replication capacity r that does

not change with time. This setting corresponds to a scenario

in which stem cells express enough telomerase to maintain a

stable telomere length. (Later, we consider the case where the

replication capacity of stem cells diminishes with time.) Here,

r plays the role of Hayflick’s limit and is treated as a par-

ameter. Experimental measurements typically set the value

of r between 50 and 70 divisions [36]. Biologically, r should

be large enough to produce and replenish the necessary

number of cells required to sustain tissue function during

the lifespan of the organism.

We integrate the cell dynamics described above into a

single stochastic agent-based model (see §5). In this agent-

based formulation, we track cells individually. Every cell has

two attributes: a type determined by the compartment it

belongs to and a replication capacity. When an intermediate

cell divides, the replication capacity of the daughter cells will

be one unit less than that of the parent. The same thing

occurs if a stem cell divides into two intermediate cells. The

cell division events and the death of differentiated cells are

decided probabilistically according to the death rate d and

the division rates r and vj. If a cell attempting division has

exhausted its replication capacity, then division is halted,

and the cell is removed from the cell population. If division

occurs in compartment j, then the probability of self-renewal

will be pj. To decide the fate of a stem cell division, we

impose the following simple control mechanism. If the

number of stem cells is larger than the equilibrium number

S, then the stem cell division results in two intermediate

daughter cells, otherwise division results in two daughter

stem cells. At homeostasis, equation (2.1) gives the analogous

model in terms of ordinary differential equations. The precise

correspondence between the agent-based model and this

analytical formulation is discussed in §5.

_S ¼ 0
_X0 ¼ ð2p0 � 1Þv0X0 þ rS
_X1 ¼ ð2p1 � 1Þv1X1 þ 2ð1� p0Þv0X0

..

. ..
.

_Xk ¼ ð2pk � 1ÞvkXk þ 2ð1� pk�1Þvk�1Xk�1
_D ¼ 2ð1� pkÞvkXk � dD:

8>>>>>>><
>>>>>>>:

ð2:1Þ
3. Results and discussion
We are interested in finding an optimal cell lineage archi-

tecture that protects against cancer by minimizing the

replication capacity of dividing cells. Stated in this form, how-

ever, the problem is not sufficiently constrained. In particular,
the target number of differentiated cells D and their death rate

d depend on other biological considerations such as tissue

function and organismic physiology that lie clearly beyond

the scope of the optimization problem. Thus, we consider

the outflow of differentiated cells (dD) as a fundamental

fixed quantity of the system. With this constraint at hand,

we arrive at our first result: a cell lineage architecture con-

cerned only with minimizing the replication capacity of

dividing cells would have a stem cell compartment consisting

of a single cell (proposition 5.1 in §5). Note that a cell lineage

that depends on a single stem cell would be extremely fragile;

thus, in vivo the equilibrium number of stem cells must depend

on other factors (independent of replication limits) that deal

with the robustness of the system. Hence, in broader terms

what this result suggests is that a tissue architecture concerned

with reducing the risk of cancer should have a very small

number of stem cells compared with the total number of

cells in the lineage (in the colon epithelium, for example,

there might be as little as four stem cells per crypt [37,38]).

This result becomes intuitive when we look at the proliferative

potential of stem cells in specific tissues. For example, colon

stem cells are estimated to divide up to 5000 times during a

human lifespan [18]. Thus, the cumulative number of divisions

in clones originating from a transformed colon stem cell is

potentially enormous, suggesting that replication limits are

not an effective mechanism to protect against the accumulation

of mutations in stem cells.

If the stem cell compartment is small, then most of the cell

divisions required for normal tissue function must be carried

out by non-stem cells, where the much smaller replication

limits can protect against the sequential accumulation of

mutations. As we discussed in §1, the effectiveness of this

protection will depend on the replication capacity of the

originally transformed cell as it directly influences the likeli-

hood of acquiring subsequent mutations and of escaping

the Hayflick limit itself. Even though the proliferative poten-

tial of non-stem cells is limited because they are responsible

for the overwhelming majority of cell divisions within a

tissue, it can be shown that statistically the accumulation of

mutations in non-stem cells is possible [38]. Furthermore,

for certain types of cancers, there is evidence that the initiat-

ing mutations originate in progenitors (for a review, see [39]).

Recently, progenitor cell populations have been identified as

targets for tumour initiation in a number of leukaemias

[40–45] and several types of solid cancer, including glioblas-

toma, medulloblastoma, prostate cancer, basal cell carcinoma

and basal-like breast cancer [46–50]. To study how replica-

tion limits and tissue architecture protect against mutations

originating outside the stem cell compartment, we treat the

influx of stem cells (rS) and the outflow of differentiated

cells (dD) as the fundamental fixed quantities of the system,

and ask how the number of intermediate cell compartments

(k þ 1), the self-renewal probabilities ( pj) and the cell division

rates (vj) affect the replication capacity of dividing cells.

We start by describing some of the fundamental features

of the system. As explained above, the flux of cells between

the stem cell and differentiated cell compartments (dD 2 rS)

is fixed. At homeostasis, dD 2 rS equals the number of inter-

mediate cell divisions per unit of time. Thus, if we call

the equilibrium number of j-type cells xj, then we have the

constraint

X
vjxj ¼ dD� rS: ð3:1Þ
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The steady-state number of cells in compartment j is

xj ¼
rS

vjð1� 2pjÞ
Yj�1

i¼0

2ð1� piÞ
1� 2pi

: ð3:2Þ

From equation (3.2), it follows that increasing the self-renewal

probability in a compartment increases the compartment’s

size and the number of divisions per unit of time in that com-

partment (vjxj). Hence, given the constraint found in equation

(3.1), an increase in the self-renewal probability in one of

the compartments must be offset by a change in some other

variable of the system. Figure 2a illustrates this situation

with two alternative architectures. The same target number

of divisions may be reached by a lineage with smaller self-

renewal probabilities and a larger number of compartments

or by a lineage with larger self-renewal probabilities and

fewer compartments.

An increase in the division rate in a compartment produces

a decrease in the compartment’s size (equation (3.2)). If we

multiply the expression for xj in equation (3.2) by vj, then we

find that, at equilibrium, the number of divisions per unit of

time is independent of the division rate. Both these
phenomena are demonstrated in figure 2b. Here, an increase

in the division rate in one of the compartments results in a

reduction in the population size; the number of divisions per

unit of time, however, does not change. There is also another

feature of the system that is apparent from figure 2b. The rela-

tive sizes of the compartments are not necessarily determined

by their positions within the lineage; however, the number of

divisions occurring in the compartments is. Thus, a more dif-

ferentiated compartment produces at least the same number of

divisions than any of its predecessors. (Indeed, it is easy to see

from equation (3.2) that vj2 1xj2 1 � vjxj.)

Let us call aj the expected replication capacity of the

j-compartment at equilibrium, which can be intuitively defined

as the average number of divisions left for a typical cell in the

compartment when the tissue is at homeostasis. There are two

important things to remark: first, aj decreases with differen-

tiation (histograms in figure 2a,b) and second, the architecture

of a lineage affects the distribution of the replication capacity

of the entire population (figure 2). From the point of view of

replication limits, the optimal architecture to protect against

cancer is one that minimizes the expected replication capacity

of a dividing cell. Note that we emphasize the fact that we
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are interested in the properties of dividing cells and not just

cells in general. Given that mutations typically occur during

cell division, we need to take into account that compartments

with a fast division rate carry an increased risk of producing

a transformed cell. Hence, the quantity that we seek to mini-

mize is the expected replication capacity of a dividing cell,

which in mathematical terms equals (Sajvjxj)/(rS 2 dD).

Our next result examines the effect of position within the

cell lineage on the replicative potential. If there is only one

intermediate cell compartment with self-renewal capabilities,

then the distribution of the replication capacity of dividing

cells is independent of where this compartment lies within

the order of the cell lineage (proposition 5.2 in §5). Figure 3a
exemplifies this behaviour in a system with three transit-

amplifying cell compartments. Here, only one compartment

has a non-zero self-renewal probability, and the distribution

of the replication capacity of dividing cells does not change

when the self-renewal compartment is alternatively chosen

to be either the zeroth or second compartment.

Next, we study what happens if we distribute the self-

renewal potential among several compartments. If the

number of compartments is fixed, then the average replica-

tion capacity of dividing cells is minimized when there is

no more than one self-renewing compartment (lemma 5.4

in §5). This is illustrated in figure 3b where we consider a

system with two intermediate cell compartments and plot

the average replication capacity for different values of the
self-renewal probability of the zeroth compartment. In this

instance, where there are only two compartments, the self-

renewal probability of one of them completely determines

the self-renewal probability of the other (see inset). From

figure 3, we note that the average replication capacity is mini-

mized when only one of the compartments has a positive

probability of self-renewal.

Given a fixed target of intermediate cell divisions (dD 2 rS),

there is an upper limit to the number of cell compartments.

Indeed, if there are k þ 1 intermediate compartments, then

the equilibrium number of cell divisions per unit of time is

always greater than or equal to rS(2kþ 1 2 1), from which it

is clear that we cannot choose k arbitrarily large. There may

also be a lower limit to the number of compartments. First,

having only one intermediate cell compartment may lead to

too many cells exhausting their replication capacity, making

it impossible for the compartment to reach the target number

of divisions. For example, in figure 3c, simulations using

the agent-based model show that for a given set of values

dD 2 rS and r it is impossible to produce the target number

of divisions with only one intermediate cell compartment.

Hence, a target flux of cells dD 2 rS and a given maximum

replication capacity r might preclude certain tissue architec-

tures. Second, it is important to note that every fork in the

differentiation pathway of cells adds a new compartment to a

cell lineage. Thus, there may be a minimal theoretical number

of intermediate cell compartments when different types of
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mature cells arise from the same kind of stem cell (such is the

case of the haematopoietic system, discussed in §4).

Finally, to arrive at our core result, we combine the pre-

vious observations with the relation between the self-renewal

probabilities and the number of intermediate cell compart-

ments. We find that the average replication capacity of

dividing cells is minimized by a tissue architecture in which

at most one cell compartment has self-renewal capabilities

and the number of compartments is kept as small as possible.

Moreover, the replication capacity of the cell population is

independent of the position that the self-renewing compart-

ment holds in the hierarchy of the cell lineage (proposition

5.5 in §5). Figure 4a demonstrates these results when there is

only one self-renewing compartment. As the number of inter-

mediate cell compartments increases, so does the average

replication capacity. Also note that not only the average but

also the entire distribution of the replication capacity is

deeply affected by the number of compartments and self-

renewal probabilities (figure 4b). Figure 4c further highlights

these results. Here, two alternative architectures for the same

target of intermediate cell divisions are presented. The optimal

cell lineage that both minimizes the number of intermediate

cell compartments and has only one self-renewing compart-

ment has a significantly lower average replication capacity

than that of the alternative architecture.
Next, we turn our attention to the division rates. If there is

one intermediate compartment with a slower division rate than

all the rest, then it would be optimal as a cancer-preventing

strategy if it were the first (zeroth) compartment. In this case,

the most ‘dangerous cells’ (i.e. those with the largest replication

capacity) would be dividing slower. Indeed, it is reasonable to

assume that if a cell starts behaving erratically and breaks away

from tissue regulation, it would present a greater threat if it

originally comes from a compartment that has a fast division

rate. Assuming that the first compartment has the slowest div-

ision rate, it would then make sense as a cancer-preventing

strategy to have this same compartment be the one with self-

renewal capabilities, as this would increase the number of

cells with a slow division rate.

Hence, an optimal tissue architecture to protect against

cancer is one where the less differentiated cells have a larger

rate of self-renewal and a slower rate of cell division. These

types of cell dynamics have been repeatedly observed in cell

lineages, suggesting that they may have evolved to decrease

the risk of cancer. It is important to note, however, that there

are other biological issues at play (which are not considered

here) which may affect the choice of the cell division rates,

such as the speed of tissue generation after an injury.

Finally, we look at the question of whether adult stem cells

have a truly unlimited replication capacity. While it is widely
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acknowledged that adult stem cells have a greater replication

capacity than more differentiated cell types, experimental

evidence suggests that some adult stem cells experience a

diminishment of their replicative potential during the lifespan

of the host [51,52]. To address this possibility, we consider a

cell lineage model in which the replication capacity of stem

cells decreases with time and explore whether our previous

results hold in this scenario. More precisely, let r(t) be the

time-dependent average replication capacity of the stem cell

population. We assume a decrease in the replication capacity

of the stem cell population that is linear with time. In math-

ematical terms: r(t) ¼ r0 2 et. Similarly, let us call aj(t) the

time-dependent expected replication capacity of the transit

cells in the j-compartment. If the cell population (x0, . . ., xk) is

at equilibrium, then we have

_r ¼ �e
x0 _a0 ¼ ða0 � 1Þ2p0v0x0 þ ðrðtÞ � 1ÞrS� a0v0x0

x1 _a1 ¼ ða1 � 1Þ2p1v1x1 þ ða0 � 1Þ2ð1� p0Þv0x1 � a1v1x1

..

. ..
.

xk _ak ¼ ðak � 1Þ2pkvkxk þ ðak�1 � 1Þ2ð1� pk�1Þvk�1xk � akvkxk:

8>>>>><
>>>>>:

ð3:3Þ

To analyse this system of ordinary differential equations

(see last part of §5), we develop an approximation formula

and compare our results with corresponding implementation

of the agent-based model. We find that the central result

regarding the optimal architecture to minimize the expec-

ted replication capacity of a dividing cell holds when the

replicative capacity of stem cells decreases with time. This

is demonstrated in figure 5: here, we compare the distri-

butions of the replication capacity of two cell lineages with

the same target number of divisions (one with an optimal

and one with a suboptimal architecture). Each distribution

is presented at two different times. In both instances, the

replication capacity of stem cells decreases at the same rate.
4. Conclusion
Several of the features that characterize an optimal tissue archi-

tecture are found in various cell lineages. Consider the

haematopoietic system. At the starting point of this lineage,

there are stem cells that are classified into two categories:

long-term repopulating stem cells and short-term repopulating

stem cells. There are three intermediate cell types: multipotent

progenitor cells, common progenitors and precursor cells. Out

of the intermediate cells, there is self-renewal only in multipo-

tent progenitors, which in the cell lineage appear immediately

downstream from the stem cell population. The end pro-

ducts of the lineages are fully mature differentiated cells that

perform tissue function [12,53]. Thus, in the haematopoietic

system, it appears that self-renewal occurs only in the first

least-differentiated intermediate cell compartment, which is

one of the features that we found reduces the replication

capacity of the non-stem cell population (although there is

some recent ex vivo evidence of self-renewal downstream of pro-

genitors [54]). With regards to the number of intermediate cell

compartments, we note that there is no definite agreement on

the number of stages of differentiation; however, there appear

to be at least two forks in the differentiation pathway. Multi-

potent progenitors give rise to two different types of common

progenitors: common lymphoid progenitors and common

myeloid progenitors. These common progenitors further sub-

divide into two types of precursors, each of which ultimately

gives rise to the mature lymphoid and myeloid cells that

make up blood. The division rates follow an optimal pattern

with division rates increasing with each more differentiated

compartment [14]. In addition, the number of stem cells is

small compared with the total number of blood cells [12].

Neural tissues also exhibit characteristics of an optimal

tissue architecture. In the process of adult neurogenesis, mul-

tipotent neural stem cells give rise to intermediate neuron

progenitors that exhibit some degree of self-renewal. The

neuron progenitors, in turn, give rise to cells that exit the

cell cycle and differentiate into neurons [22,55]. A similar

organization has been observed in the production of glia

cells. Neural stem cells give rise to intermediate glia progeni-

tors, which exhibit some degree of self-renewal and produce

the different types of mature glia cells [55].

In most tissues, however, there is some uncertainty about

the precise hierarchical structure of the cell lineage. For example,

in adult neurogenesis, the number of intermediate cell compart-

ments is alternatively reported as one or two [15,22]. Part of

this uncertainty is explained by a lack of a clear standard to dis-

tinguish between stem cells and progenitor cells. In many

tissues, there is also uncertainty about the self-renewal capa-

bilities of intermediate cells. It is often unclear whether an

experimentally observed transit-amplifying behaviour is pro-

duced by a cell programme that allows for a fixed number of

divisions in progenitor cells, or by some degree of self-renewal.

A cell programme that calls for a fixed number of divisions

would be represented in our framework as a lineage with

numerous intermediate compartments and no self-renewal. By

contrast, through a self-renewal mechanism, the cell’s decision

to differentiate would be independent of the number of pre-

vious divisions and instead be determined by the current state

of the cell’s microenvironment. As we have discussed here,

the two mechanisms may be able to produce the same results

in terms of population sizes. Yet, our model demonstrates that

the precise architecture of a cell lineage has dramatic
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implications for the replication capacity of a cell population, and

thus the risk of cancer. Experiments should be devised to

characterize not only the transit-amplifying behaviour of inter-

mediate cells but also to determine which mechanisms different

systems use. Finally, we note that when interpreting the model’s

results to a specific biological system, it is important that the bio-

logical description of a ‘cell compartment’ agrees with the one

presented here. In particular, within the model’s framework, a

common surface marker cannot be used to define a cell compart-

ment if it is expressed by a heterogeneous group of cells with

inherently different self-renewal capabilities.

In this paper, we have demonstrated that a lineage’s architec-

ture can significantly impact the goal of reducing the replicative

potential of cells. These findings underscore the importance of

fully understanding a lineage’s architecture as well as the precise

mechanisms used to accomplish transit-amplifying behaviour.

The fact that at least some of the features that characterize an

optimal architecture are present in various tissues suggests

that they might have evolved to minimize cancer risk. This how-

ever does not mean that tissues must follow all aspects that

define an optimal architecture. What we have described here is

only one of possibly many evolutionary forces that shape a tis-

sue’s architecture. There could be other forces unrelated to

reducing the risk of cancer, which also play a role in ultimately

determining the architecture of a specific tissue. A better under-

standing of how a tissue’s architecture and replicative limits

impact the likelihood of cancer can provide insights into

cancer biology that may lead to new targets of therapy.
5. Methods
From system (2.1), we find two expressions for the steady-state

number of cells in compartment j (which we will need later):

x̂j ¼
2ð1� p j�1Þv j�1

ð1� 2pjÞvj

� �
x̂ j�1 and x̂j ¼

rS
vj
� 2j

1� 2pj
�
Yj�1

i¼0

1� pi

1� 2pi
:

In compartment j at any given time, there are: vjxj cells

leaving the compartment; 2pjvjxj new j-type cells created through

symmetric divisions; and 2(1 2 pj21)vj21 xj21 cells arriving from

compartment j 2 1. If the system is at equilibrium, then the expected

replication capacity of the cells coming into the compartment must

be the same as the expected replication capacity of the cells leaving

the compartment. Thus, if we call ai the expected replication capacity

of the i-compartment at equilibrium, then we find that

aj � x̂j ¼ ðaj � 1Þ � 2pjvjx̂j þ ða j�1 � 1Þ � 2ð1� p j�1Þv j�1x̂ j�1;

and using the relation previously found between x̂j and x̂ j�1,

we find

aj � vjx̂j ¼ ðaj � 1Þ � 2pjvjx̂j þ ða j�1 � 1Þ � ð1� 2pjÞvjx̂j:

From where we have

aj ¼ �1�
2pj

1� 2pj
þ a j�1 ) aj ¼ r� ð jþ 1Þ �

Xj

i¼0

2pi

1� 2pi
:

Proposition 5.1. If the equilibrium number of stem cells S is not fixed
a cell lineage that minimizes the average replication capacity of a
dividing cell necessarily has S ¼ 1.

Proof (by contradiction). In this case, the system is constrained by

the equation
P

vjxj þ rS ¼ dD, where r, d and D are fixed. Clearly,

S cannot be smaller than 1. Suppose now that there is a cell
lineage that minimizes the average replication capacity of a

dividing cell with S � 2. This lineage is defined by a given

stem cell division rate r and a set of parameters fpj, vjgj¼0, . . .,k.

Let us define an alternative architecture with one more inter-

mediate cell compartment defined by the same stem cell

division rate and a set of parameters f~pj,~vjg j¼0;...;kþ1 that satisfy
~pj ¼ p j�1 and ~vj ¼ v j�1 for j . 0.

If we make ~p0 ¼ 0; ~v0 ¼ 1 and ~S ¼ S=2, then ~x0 ¼ S=2 and
~xj ¼ x j�1 for all j . 0. It follows that this new cell lineage also

satisfies
P

~vj~xj þ r~S ¼ dD. Furthermore, if we respectively call

the average replication capacities of the jth compartments aj

and ~aj, then we find ~a0 ¼ r� 1 and ~aj ¼ a j�1 � 1 for j . 0. The

variable aj refers to a specific compartment (the jth compart-

ment). We are also interested in the variable A, the expected

replication capacity of a dividing cell in the entire population.

We find: the expected replication capacity of a dividing cell

A ¼ ðrrSþ
Pk

0 ajvjxjÞ=dD for the original cell linage and
~A ¼ ðrrS=2þ ðr� 1ÞrS=2þ

Pk
0ðaj � 1ÞvjxjÞ=dD for the new cell

lineage. Clearly, ~A , A which is a contradiction. B

Proposition 5.2. Let v, r, s, d, D and k be fixed and assume there is at
most one compartment j of transit-amplifying cells for which pj . 0.
Then, the value of pj, and the distribution of the replication capacity
of the transit cell population at equilibrium are independent of j.

Proof. Let N ¼
P

xj be the total steady-state number of transit-

amplifying cells. Using the previously derived expression for

xj, we find after simplifying

N ¼ rS
v
�
�1þ 2pj þ ð1� pjÞ2kþ1

1� 2pj
;

which implicitly defines pj as a function of N and k independent

of j.
We want to look at the distribution of the replication capacity

of the entire cell population at equilibrium. To simplify the

notation, we assume rS/v ¼ 1 (the case rS/v = 1 follows

immediately from this). Let x(a) be the number of cells in the

entire population that have replication capacity a at equilibrium,

and xðaÞj the corresponding number of j type cells. Let us assume

that pj ¼ 0 8j = s. Then, for j ¼ 0, . . . , s 2 1, we have

xðaÞj ¼
2j; if a ¼ r� ð jþ 1Þ
0; otherwise.

�

For j ¼ s, we have

xr�ðsþ1Þ�r
s ¼ 2sð2pÞr; if r � 0

0; otherwise.

�

Moreover, it can be shown that j ¼ 1, . . . , k 2 s:

xr�ðkþ1Þ�r
sþj ¼ 2sð1� pÞð2pÞðk�sÞþr�j2j:

First, we will show that xr2(kþ 1) 2 r is independent of s for

r . 0. We have

xr�ðkþ1Þ�r ¼ 2sð2pÞðk�sÞþr þ 2sð1� pÞ
Xk�s

j¼1

ð2pÞðk�sÞþr�j2j:

But then, after simplifying, we obtain

xr�ðkþ1Þ�r ¼ 2kþrpr:

Now, we want to look at the values of xr2(iþ 1) for 0 � i � k 2 1.

If i , s, then clearly x(i)¼ 2i. If i � s, then we can call r ¼ i 2 s and

we find

xr�ðiþ1Þ ¼ xr�ðsþ1Þ�r ¼ 2sð2pÞr þ 2sð1� pÞ
Xr

j¼1

ð2pÞr�j2j ¼ 2rþs ¼ 2i:
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Thus, we find that the distribution of the cell replication

capacity is independent of the choice of the self-renewing

compartment. B

Proposition 5.3. Suppose that all the vj are equal and consider v, r, S,
d and D fixed. If at most one pj . 0, we want to find the pair (p, k) that
minimizes the entire replication capacity of the transit cell population at
equilibrium. Under this condition, the entire replication capacity of the
transit cell population at equilibrium is minimized by choosing p as
large as possible subject to the restriction ak � 1.

Proof. We proved that if at most one pi . 0, then the entire repli-

cation capacity of the transit cell population is independent of the

choice of i. Thus, without loss of generality, we assume i ¼ 0. Let

a ¼ (1 2 p)/(1 2 2p), N be the steady-state number of transit cells

and k the number of compartments, then

N ¼
Xk

j¼0

xj ¼
rS
v
ð2kþ1a� 1Þ:

We also have xk ¼ (rS/v)2ka from where it follows that 2xk ¼

N þ rS/v. On the other hand, dD ¼ 2vxk and we find that N is

completely determined by rS, dD and v:

N ¼ dD� rS
v

:

Now, the entire replication capacity of the j-compartment at

equilibrium is aj ¼ r 2 ( j þ 1) 2 2(a 2 1) for all j. We want to

minimize A ¼
P

ajxj. We have

A ¼ ½r� 2ða� 1Þ�
X

xj �
X
ð jþ 1Þxj:

The first term on the l.h.s. of the previous equation equals

N[r 2 2(a 2 1)]. Given that x0 ¼ (rS/v)(2a 2 1) and xj ¼ (rS/v).

2ja for j . 0, we can decompose the second term (let us call it

B) in the following way:

B ¼
P
ð jþ 1Þxj

¼ rS
v

� �
ða� 1Þ þ rS

v

� �P
ð jþ 1Þ2ja

¼ rS
v

� �
ða� 1Þ þ rS

v

� �
ðk þ 1Þ2kþ2a� ðk þ 2Þ2kþ1aþ a
� �

:

Now, we call c ¼ rS/v and n ¼ k þ 1. Then, using the fact that

2nac¼ N þ c, we find that

B ¼ 2acþ ðN þ cÞn� ðN þ 2cÞ
) A ¼ fNðrþ 2Þ þ ðN þ 2cÞg � fðN þ cÞð2aþ nÞg:

Hence, to minimize A, we should maximize 2a þ n.

Given that nlog(2) þ log(a) ¼ log(N/c þ 1), if we write f(a) ¼

2a 2 log(a)/log(2), then we find that 2a þ n equals

f ðaÞ þ logðN=cþ 1Þ
logð2Þ :

It is easy to prove that the f : [1, 1]! R is a decreasing func-

tion. Hence, to minimize A, we should make a as large as possible,

which is equivalent to choosing p as large as possible given the

restriction ak � 1. B

Lemma 5.4. For any pair (N, k), let fyjg be the sequence defined
by y0 ¼ 1/(1 2 2p), yj ¼ 2j(1 2 p)/(1 2 2p) for 0 , j , k andPk

j¼0 yj ¼ N, and bj be the average replication capacity of the jth com-
partment at equilibrium. Then, for any other sequence fxjg, with
average replication capacities aj that satisfies N ¼

Pk
j¼0 xj, we have

ð1Þ bk � ak and ð2Þ
X

bjyj �
X

ajxj:
Proof. Preliminaries. First, let us write ai ¼ 2(1 2 pi)/(1 2 2pi))
1/(1 2 2pi) ¼ ai 2 1. For j . 0, we then have

xj ¼
1

1� 2pj

Yj�1

i¼0

2ð1� piÞ
1� 2pi

¼ ðaj � 1Þ
Yj�1

i¼0

ai:

Calling bj ¼
Qj

i¼0 ai, we have xj ¼ bj 2 bj21 for j . 0. Thus,

we can write

N ¼
Xk

j¼0

xj ¼ ða0 � 1Þ þ
Xk

j¼1

½bj � b j�1� ¼ bk � 1:

Thus, we have

N þ 1 ¼
Yk

i¼0

ai:

Proof of (1). Note that following the previous definitions

ak ¼ r� ðk þ 1Þ �
Pk

j¼0 ðaj � 2Þ ¼ rþ ðk þ 1Þ �
Pk

j¼0 aj. Thus,

the problem reduces to the maximization of
P

aj subject to the

conditions: (i) N þ 1 ¼
Qk

i¼0 ai , (ii) ai � 2, and (iii) ak � 0. Let us

assume that faig satisfy the conditions stated above. Assume that

at least two of the ai are greater than two. Without loss of generality,

let them bea0 anda1. We can write Nþ 1¼ Pa0a1 and S ¼ sþ (a0þ
a1). We want to maximize a0þ a1 subject to A ¼ (Nþ 1)/P ¼ a0a1.

Which means we want to maximize a0 þ A/a0. It is easy to see that

this function has a unique minimum at a0 ¼
ffiffiffiffi
A
p

and thus the

maximum occurs at the endpoints of its domain which is [2, A/2].

Proof of (2). We will prove this part of the proposition using the

principle of mathematical induction.

Base step
Let k ¼ 2, then N þ 1 ¼ a0a1 and

S¼ða0�1Þðr�1�ða0�2ÞÞþða1�1Þa0ðr�2�ða0�2Þ�ða1�2ÞÞ
) S¼ 2þ3N�ða0þa1Þð1þNÞþNr:

Given this last expression, the problem for minimizing S
reduces to the maximization of a0 þ a1, subject to the conditions

N þ 1 ¼ a0a1 and a1 � 0, r þ 2 2 (a0 þ a1) � 0. From the

symmetry of these equations, it easy to prove that the minimiz-

ation occurs when either a0 or a1 equals 2) either p0 or p1

equals 0.

Induction step
Assume the proposition is true for n ¼ k 2 1. Let (x0, . . . , xk)

be defined by P ¼ ( p0, . . . , pk) and assume that the sequence fxjg
minimizes the replication capacity of the X population subject to

the condition N ¼
P

xj.

Case A: there is a single pj � 0 for j � k. Then, there is nothing

to prove.

Case B: there are at least two pj . 0 for j � k 2 1 (we will

prove this leads to a contradiction).

Let us call Nk�1 ¼
Pk�1

j¼0 xj. Make ~pj ¼ 0 for j . 0 and ~p0 such

that Nk�1 ¼
Pk�1

j¼0 yj. Now by the induction hypothesis

Sk�1 ¼
Pk�1

j¼0 ajxj . ~Sk�1 ¼
Pk�1

j¼0 bjyj. Note that

1þNk ¼ bk ¼ 2ð~pk � 1Þyk and 1þNk ¼ 2ð pk � 1Þxk:

Given that xk ¼ yk, it follows that pk ¼ ~pk and then we have

Sk ¼ Sk�1 þ akxk ¼ Sk�1 þ ak�1 �
2pk

1� 2pk

� 	
yk:
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From part (1), we have bk21 � ak21 and thus it follows that

Sk . ~Sk which means that fxjg does not minimize the entire

replication capacity of the transit cell population ! .

Case C: there is one pj = 0 for j , k 2 1 and pk = 0.

If we prove that A ¼
P

ajxj is invariant under a permutation

pi$ pj. Then, the situation reduces to case B. It is sufficient to

prove that A is invariant under pj$ pjþ1. Note that

xj ¼ ðaj � 1Þb j�1 and aj ¼ rþ ð jþ 1Þ � aj �
Xj�1

i¼0

ai:

After the permutation, x0j ¼ ða jþ1 � 1Þb j�1 and

x0jþ1 ¼ ðaj � 1Þa jþ1b j�1. Then

a0j ¼ rþ ð jþ 1Þ � a jþ1 �
Xj�1

i¼0

ai

and a0jþ1 ¼ rþ ð jþ 2Þ � aj � a jþ1 �
Xj�1

i¼0

ai:

From where ajxj þ a jþ1x jþ1 ¼ a0jx
0
j þ a0jþ1x0jþ1 and it follows

that the permutation A is invariant under this permutation. B

Proposition 5.5. Suppose that all the vj are equal and consider v, r, S,
d and D fixed. Then, to minimize the entire replication capacity of the
transit cell population at equilibrium, make at most one pj . 0 and
choose the pair (pj, k) such that pj is the largest possible subject to
the restriction ak � 0. Furthermore, the value of pj, and the distribution
of the replication capacity of the transit cell population at equilibrium
are independent of j.

Proof. Let k and P ¼ ( p0, . . . , pk) be such that the sequence they

define (x0, . . . , xk) minimizes A ¼
P

ajxj. Subject to the restrictions

imposed by the choice of parameters r, s, v and D. Because of

proposition 5.3, there is at most one j such that pj . 0. Further-

more, because of lemma 5.4, the pair (k, pj) is such that among

all pairs (K, Pj) that fit the parameters pj is maximum subject

to the restriction ak � 1. The last statement of the proposition

follows straight from proposition 5.2. B
5.1. Agent-based model
An agent-based stochastic version of the model is implemented

as an algorithm. At any given time t, the system is described

by a set of cells, each of which has two attributes: a real

number representing its replication capacity and a type. If we

call A ¼ rS þ dD(t) þ
P

vixi(t), then the probability that the

next reaction involves a j-type cell is vixi(t)/A(t), and the prob-

abilities that it involves a differentiated cell or a stem are

Sr/A(t) and dD(t)/A(t), respectively. Once a type of cell is

selected, a random cell among all cells of this particular type

is selected. Then, we proceed in the following way.

— If division occurs in an intermediate cell, then the two off-

spring of the parent cell will have a replication capacity one

unit smaller than that of the parent cell. If division occurs

in a j-type cell, then the probability of self-renewal is pj.

If the cell attempting division has a zero replication capacity,

then division is halted and the cell is removed from the

cell population.

— If division occurs in a stem cell and the current number of

stem cells S(t) is less than the equilibrium value Ŝ, then we

make ps ¼ 1 and if SðtÞ � Ŝ, then we make ps ¼ 0. This is a

simple way of establishing control in the stem cell population.

As we mentioned before, we are interested only in equili-

brium properties of the intermediate cell population system
so any control mechanism on the number of stem cells

will suffice.

— If a differentiated cell is selected, then the only possible event

is cell death.

— The time when the next reaction occurs is exponentially

distributed with mean equal to 1/A(t).

The difference between the ODE model and the agent-based

model lies with the fraction of cells at equilibrium that exhaust

their replication capacity and nevertheless attempt cell division.

In the ODE model, there is no built-in mechanism to prevent

such cells from dividing. In the agent-based model, division is

halted, and the cells are removed from the population. For an

optimal architecture, this fraction f is given by

f ¼ ð2pÞr�ðkþ1Þ

2ð1� pÞ �
1� 2p

2kþ1ð1� pÞ � ð2pÞr�ðkþ1Þ:

Typical experimental measurements for r yield a value of

approximately 50–70 divisions [36] and proposed models for

the number of transit-amplifying cell types in several tissues,

including blood, neurons and hair [12], set the number of inter-

mediate cell compartments (k þ 1) between one and four. These

values for r and k þ 1 produce a very large exponent on the

right-hand side of the previous inequality suggesting a small

value for f. In figure 3a, we show results from the agent-based

model that show very good agreement with the corresponding

analytical model, suggesting that the latter adequately captures

the essential dynamics of the system.

5.2. Decrease in the replication capacity of stem cells
First, assuming that the cell population is at equilibrium, we

derive an approximation formula for aj(t) the expected replication

capacity of the j-type population as a function of time. Under this

condition we have rS¼ x0v0(1 2 2p0) which means that

_a0 ¼ ð2p0 � 1Þv0a0 � 2pvþ v0ð1� 2pÞðr0 � 1Þ þ v0ð2p� 1Þe:

Hence, we can write _a0 ¼ Ka0 þ Bþ Ket, where K and B are

constants. From here, we find

a0 ¼ �
Bþ e

K
� etþ C0ekt;

for some constant C0 and it follows that

a0 ¼ rðtÞ � 1� 2p0

1� 2p0
þOðeð2p0�1Þv0 Þ:

Let us call Kj ¼ (2pj 2 1)vj. We find after simplifying

_a1 ¼ K1a1 þ r� 1� 2p0

1� 2p0
þ e

ð1� 2p0Þv0

� 

þ K1etþOðeK0tÞ;

and we find

a1 ¼ C1eK1t þ ðr� 2Þ � 2p0

1� 2p0
� 2p1

1� 2p1
þ e

ð1� 2p0Þv0

þ e

ð1� 2p1Þv1
� teþ eK1t

ð
e�K1tOðeK0tÞdt:

Note that eK1t
Ð

e�K1tOðeK0tÞdt ¼ OðeK0tÞ and CeK1tþ
OðeK0tÞ ¼ OðemaxfKo;K1gÞ.

From these considerations, it follows that

ajðtÞ ¼ rðtÞ � ð jþ 1Þ �
Xj

i¼0

2pi

1� 2pi
þ
Xj

i¼0

e

ð1� 2piÞvi
þOðemaxfKigÞ:

Finally, note that all the Ki are negative, hence the O(emaxfKig)

in the previous expression goes to zero exponentially fast. We may

thus neglect this term and find a good approximation to aj(t).
Now we would like to address the optimality results pre-

viously derived, this time in the context of a replication
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capacity of stem cells that decreases with time. Consider the case

where all the vj ¼ v are equal. Once again, we assume that the

cell population is at equilibrium and thus the aj(t) are well

approximated by the following formula:

ajðtÞ ¼ rðtÞ � ð jþ 1Þ �
Xj

i¼0

2pi

1� 2pi
þ
Xj

i¼0

e

ð1� 2piÞvi
:

Let us write ai ¼ 2(1 2 pi)/(1 2 2pi) and call

Fð jÞ ¼ ð jþ 1Þ �
Pj

i¼0 ai. If e ¼ 0, then we find after simplifying

that aj ¼ r þ F( j ). If e . 0, then similarly we find aj(t) ¼ r(t) þ
(1 2 e/v)F( j ). Thus, to minimize

P
aj(t)xj, we need to focus

only on minimizing (1 2 e/v)
P

F( j )xj and it follows that the

choice of parameters that minimize S the expected replication

capacity when e ¼ 0 also minimize S(t) when e . 0.
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45. Cozzio A, Passegué E, Ayton PM, Karsunky H, Cleary
ML, Weissman IL. 2003 Similar MLL-associated
leukemias arising from self-renewing stem cells and
short-lived myeloid progenitors. Genes Dev. 17,
3029 – 3035. (doi:10.1101/gad.1143403)

46. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y,
Marumoto T, Singer O, Ellisman MH, Verma IM.
2012 Dedifferentiation of neurons and astrocytes by
oncogenes can induce gliomas in mice. Science 338,
1080 – 1084. (doi:10.1126/science.1226929)

47. Schüller U et al. 2008 Acquisition of granule neuron
precursor identity is a critical determinant of
progenitor cell competence to form shh-induced
medulloblastoma. Cancer Cell 14, 123 – 134.
(doi:10.1016/j.ccr.2008.07.005)

48. Goldstein AS, Huang J, Guo C, Garraway IP, Witte
ON. 2010 Identification of a cell of origin for human
prostate cancer. Science 329, 568 – 571. (doi:10.
1126/science.1189992)

49. Youssef KK, Van Keymeulen A, Lapouge G, Beck B,
Michaux C, Achouri Y, Sotiropoulou PA, Blanpain C.
2010 Identification of the cell lineage at the origin
of basal cell carcinoma. Nat. Cell Biol. 12, 299 – 305.
(doi:10.1038/ncb2031)
50. Lim E et al. 2009 Aberrant luminal progenitors as
the candidate target population for basal tumor
development in BRCA1 mutation carriers. Nat. Med.
15, 907 – 913. (doi:10.1038/nm.2000)

51. Flores I, Benetti R, Blasco MA. 2006 Telomerase
regulation and stem cell behaviour. Curr. Opin. Cell
Biol. 18, 254 – 260. (doi:10.1016/j.ceb.2006.03.003)

52. Flores I, Canela A, Vera E, Tejera A, Cotsarelis G,
Blasco MA. 2008 The longest telomeres: a general
signature of adult stem cell compartments. Genes
Dev. 22, 654 – 667. (doi:10.1101/gad.451008)

53. Lobo NA, Shimono Y, Qian D, Clarke MF. 2007 The
biology of cancer stem cells. Annu. Rev. Cell Dev.
Biol. 23, 675 – 699. (doi:10.1146/annurev.cellbio.22.
010305.104154)

54. England SJ, McGrath KE, Frame JM, Palis J. 2011
Immature erythroblasts with extensive ex vivo self-
renewal capacity emerge from the early mammalian
fetus. Blood 117, 2708 – 2717. (doi:10.1182/blood-
2010-07-299743)

55. Sanai N, Alvarez-Buylla A, Berger MS. 2005 Neural
stem cells and the origin of gliomas.
N. Engl. J. Med. 353, 811 – 822. (doi:10.1056/
NEJMra043666)

http://dx.doi.org/10.1038/nature09781
http://dx.doi.org/10.1182/blood-2008-10-182071
http://dx.doi.org/10.1038/nature04980
http://dx.doi.org/10.1016/j.ccr.2010.12.012
http://dx.doi.org/10.1016/j.ccr.2010.12.012
http://dx.doi.org/10.1038/leu.2009.63
http://dx.doi.org/10.1038/leu.2009.63
http://dx.doi.org/10.1016/j.ccr.2004.10.015
http://dx.doi.org/10.1101/gad.1143403
http://dx.doi.org/10.1126/science.1226929
http://dx.doi.org/10.1016/j.ccr.2008.07.005
http://dx.doi.org/10.1126/science.1189992
http://dx.doi.org/10.1126/science.1189992
http://dx.doi.org/10.1038/ncb2031
http://dx.doi.org/10.1038/nm.2000
http://dx.doi.org/10.1016/j.ceb.2006.03.003
http://dx.doi.org/10.1101/gad.451008
http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104154
http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104154
http://dx.doi.org/10.1182/blood-2010-07-299743
http://dx.doi.org/10.1182/blood-2010-07-299743
http://dx.doi.org/10.1056/NEJMra043666
http://dx.doi.org/10.1056/NEJMra043666

	Minimizing the risk of cancer: tissue architecture and cellular replication limits
	Introduction
	Lineages and replication limits
	Results and discussion
	Conclusion
	Methods
	Agent-based model
	Decrease in the replication capacity of stem cells

	References




