UCLA

UCLA Previously Published Works

Title

Photoelectron Storage at the WO3/TiO2 Interface: Modeling in Ambient Conditions from First-Principles Calculations

Permalink

https://escholarship.org/uc/item/33t6s1zr

Journal

ACS Catalysis, 13(15)

ISSN

2155-5435

Authors

Li, Yichen Cheng, Dongfang Wei, Ziyang et al.

Publication Date

2023-08-04

DOI

10.1021/acscatal.3c01756

Supplemental Material

https://escholarship.org/uc/item/33t6s1zr#supplemental

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, available at https://creativecommons.org/licenses/by-nc-nd/4.0/

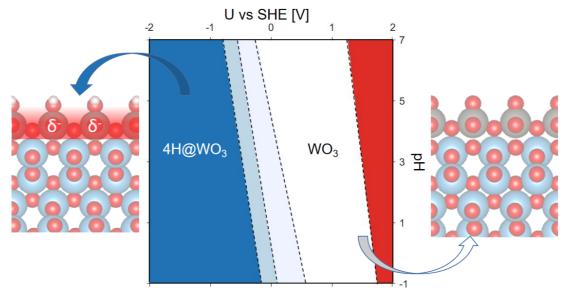
Peer reviewed

Photo-electron storage at the WO_3/TiO_2 interface: modeling in ambient conditions from first-principle calculations

Yichen Li[†], Dongfang Cheng[‡], Ziyang Wei[‡], Philippe Sautet^{†‡}*

* Corresponding Author

email: sautet@ucla.edu


[†] Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States

[‡] Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United states

Abstract

Using first-principle calculations, we showed that monoclinic WO₃(001) preferentially forms a reconstructed monolayer on the anatase TiO₂(001) surface. We thoroughly examined the structure of WO₃/TiO₂ surface under ambient conditions, i.e. in equilibrium with gas-phase O₂/H₂O or H₂/H₂O under a range of pressure and temperature, or in aqueous solution under a range of pH and electrochemical potential. Based on the WO₃/TiO₂ surface structures at different potentials, we proposed the proton-coupled electron transfer (PCET) reaction pathway during charging, and oxygen reduction reaction (ORR) pathways during discharging, which account for its reversible electron storage ability. With electronic structure analysis, we depicted the charge separation effect of WO₃ on TiO₂, and the electron storage effect of WO₃.

Keywords: photocatalysis, titanium dioxide, tungsten trioxide, first principle calculation, electron storage, proton-coupled electron transfer, oxygen reduction reaction

Introduction

Titanium dioxide (TiO_2) is the most widely used catalyst in heterogeneous photocatalysis, though suffering from high charge carrier recombination rate (lifetime ~ 10^{-12} s) and large band gap (~3.2 eV) requiring photons in the UV region $^{1-2}$. To improve the performance, TiO_2 is often hybridized with cocatalysts with narrower band gap 3 . For example, WO₃ is often chosen as a cocatalyst for TiO_2 , for its 2.7 eV band gap and excellent stability. This hybridization assists electron-hole separation and mitigates electron-hole recombination. WO₃ on TiO_2 has already been exploited for the degradation of pollutants and antibiotics $^{4-8}$.

The WO_3 co-catalyst is able to store the electrons provided from photo-generated electron-hole pairs on TiO_2 . While the holes participate in oxidation reactions on the TiO_2 substrate, the electrons can be stored in WO_3 , with the formation of a bronze compound M_xWO_3 (M = H, Li, Na, x \leq 1), and restored when needed to be used in a discharging reaction. This charging-discharging cycle is associated with the electrochromism/photochromism properties of WO_3 . For example, for M=H:

$$WO_3 + (xe^- + xH^+) \rightarrow H_x WO_3$$
 (charging)

$$H_xWO_3 \rightarrow WO_3 + (xe^- + xH^+)$$
 (discharging)

Protons from the solution or ambient water serve as charge compensation. This capability of WO_3 opens up the opportunity of storing photo-generated electrons during daytime, and releasing the stored energy for reactions later, even in dark conditions. This idea was proven practical in anticorrosion 9 and organic pollutant oxidation $^{1, 10-12}$.

Aside from photocatalysis, V_2O_5 - WO_3 / TiO_2 is also an extensively used commercial catalyst in thermocatalysis for selective catalytic reaction (SCR) of NO_x ¹³⁻¹⁴, for its high stability and selectivity ¹⁵. This can efficiently reduce NO_x emission produced by the combustion of fossil fuels

In 1992, Tennakone et al. first found that WO₃/TiO₂ may turn blue under light radiation, and quickly bleach when exposed to oxygen. They credit this electrochromism to WO₃ surface hydroxylation ¹⁶. In 2001, Tatsuma et al. first adopted this energy storage ability of WO₃/TiO₂ in anticorrosion ⁹, and credit the energy storage ability to hydrogen intercalation into WO₃ bulk lattice ¹⁰. In 2009, Sajjad et al. performed thorough studies on WO₃/TiO₂ photocatalytic reactivity, proposing that sol-gel fabricated samples with WO₃ monolayer in epitaxy on TiO₂ are more reactive than calcined ones with a more WO₃ bulk structure ¹⁷. Also in 2009, Zhao et al. successfully used WO₃/TiO₂ to store photo-electrons for heavy metal ion reduction in the dark. They also verified the electron storage in W with electron spin resonance (ESR) measurement ¹⁸. In 2018, Khan et al. did another thorough study more focused on WO₃/TiO₂ charge storage ability, agreeing that the monolayer WO₃ coverage is optimal ¹⁹. In 2019, Zhou et al. decorated a-TiO₂(001) with WO₃ and found enhanced water decontamination efficiency ²⁰. Computational studies about WO₃/TiO₂ photochemistry are relatively scarce, though in 2013, Negreira et al. first proposed a V₂O₅-WO₃ monolayer model on TiO₂(001) for NO_x selective catalytic reaction ²¹. To fill the gap, we first aim at a fundamental understanding from first principle calculations of the surface structure of the WO₃/TiO₂ catalyst under ambient conditions. We have selected various conditions; i.e. in equilibrium with gas-phase O₂/H₂O or H₂/H₂O, or in aqueous-phase solution. In the latter case, based on the surface structures of WO₃/TiO₂ at different potentials, we show that proton adsorption/desorption processes accompany the reversible electronic charge storage, to satisfy charge balance. With electronic structure analysis, we depict the charge separation effect of WO₃ on TiO₂, and confirm that the photo-electron is stored in W 5d states.

Methods

Density functional theory (DFT) calculations are performed using the Vienna ab initio simulation package (VASP) $^{22-24}$. The exchange-correlation energy is calculated using the Perdew-Burke-Ernzerhof (PBE) functional 25 . The projector-augmented wave method is used to describe the core electrons 26 . The one-electron wave functions are developed on a basis set of plane waves with an energy cutoff of 400 eV. The dDsC dispersion correction method is used to account for van der Waals forces $^{27-28}$. Energy differences between steps in SCF cycles are converged to 10^{-6} eV. Atomic positions are relaxed until the forces are less than 0.05 eV/Å $^{-1}$. To correct for the self-interaction error of Ti 3d electrons, a Hubbard-like repulsion term is added using Dudarev's approach (PBE+U) 29 , with $U_{Ti} = U - J = 3.5$ eV, determined using linear response 30 . For better accuracy in the electronic structure analysis and for the charge carrier localization, single-point calculations were performed with the Heyd-Scuseria-Ernzerhof functional (HSE06) 31

using the PBE+U_{Ti} geometry. Photo-generated electrons (holes) are simulated by adding (removing) electrons in the supercell. The surface charging method with the implicit solvation model and the linearized Poisson Boltzmann approach is used to simulate the solvent and electrolyte, when the catalyst is considered to be in an aqueous solution.

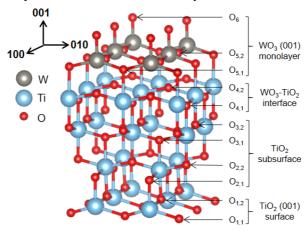


Figure 1. Structure of the supported m-WO₃(001) monolayer on a-TiO₂(001). The a-TiO₂(001) surface is modeled by 4 O-Ti-O trilayers, with a m-WO₃(001) monolayer epitaxed on top.

The monoclinic crystal system is the most stable phase of WO₃ below 600 K, while anatase is also a common and stable phase of TiO₂. Many studies found that the highest electron storage ability ^{18-19, 32} and photocatalytic reactivity ¹⁷ of WO₃/TiO₂ occurs a WO₃ loading corresponding to ~4 % W/T atom ratio, and drops at higher loadings. Considering the surface area of the TiO₂ support (47 m²/g), this 4% W/T atom ratio is equivalent to a monolayer coverage. At optimal loading, X-ray diffraction spectra in many studies do not show any characteristic peak of WO₃, indicating the absence of 3D WO₃ crystals^{17, 33}. High-resolution transmission electron microscopy confirms the absence of WO₃ clusters or nanoparticles ¹⁷⁻¹⁸. All these experiments indicate that WO₃ tends to form an ultrathin layer on TiO₂ at optimal loading. At higher loadings, WO₃ agglomerates into particles.

We choose anatase TiO₂(001) as substrate, because TiO₂(001) usually has very high reactivity and plays a crucial role in anatase nanoparticle reactivity and photocatalytic activity 34-35. The existence of TiO₂(001) in WO₃/TiO₂ has been verified by XRD in WO₃/TiO₂ experiments ^{17-19, 32}. In addition, Raman experiments showed that the percentage of TiO₂(001) facet initially increases upon WO₃ loading, from 6 % on pure TiO₂ to 21.5 % at optimal WO₃ loading. Moreover, a further increase of WO₃ loading results in a simultaneous decrease of the TiO₂(001) percentage and electron storage capacity ¹⁹. Hence, TiO₂(001) plays a major role, in the presence of the WO₃ layer, for electron storage, justifying our choice. m-WO₃(001) has lattice constants, for the p(2×2) supercell, of 2a = 2b = 7.58 Å, while a-TiO₂(001) has lattice constants of a=7.31 Å, b=7.55 Å, and this small lattice mismatch could lead to stronger adhesion between m-WO₃(001) and a-TiO₂(001), with minimal strain in the b direction (Supporting Note 1). Thus, the model formed by m-WO₃(001) layers on a-TiO₂(001) substrate is chosen in this study. In the case of the m-WO₃(001) monolayer model (Figure 1), a p(2×2) 4-layer a-TiO₂(001) slab stands for the substrate, and a p(2×2) m-WO₃(001) monolayer adheres on this substrate ²¹. All layers are relaxed, so that the top surface models the supported WO3 monolayer, while the bottom surface models TiO_2 areas that are not covered by WO₃. The Brillouin zone is sampled using a $3\times3\times1$ k-mesh ³⁶, and detailed tests show that this k-mesh provides converged energies (Supporting Note 9).

Results and discussion

Adhesion structure and number of layers of WO3 on TiO2

The most stable calculated structure for a m-WO₃(001) monolayer on a-TiO₂(001) is shown in Figure 1, and it shows an adhesion surface energy of -1.40 J/m². The definition of adhesion surface energy, and other tested adhesion structures of m-WO₃(001) monolayer on a-TiO₂(001) are listed in Supporting Note 2. Unlike a non-supported m-WO₃(001) surface, which shows 1/2 ML terminal oxygen coverage on surface W atoms (Supporting Figure S2a); the supported WO₃ monolayer has 1 ML terminal oxygen coverage. Each W atom is in a highly distorted octahedral environment, with one O atom of the TiO₂ surface layer included in the distorted octahedron. The strongest bond between the WO₃ monolayer and the TiO₂ surface is between a topmost Ti atom and a O atom from the WO3 layer. Detailed bond distances for this structure are listed in Supporting Table S1. Notably, the WO₃ monolayer is stretched by 3.6% and 0.4% along [100] and [010] direction due to the small lattice mismatch with TiO₂. Additional WO₃ layers can be constructed on top of the WO₃ monolayer, extending the distorted octahedral arrangement, as shown in Supporting Figure S4. However, the additional layers are only bound to the previous one by weak interlayer W-O bonds (distance 2.46 Å). The adhesion surface energies of the second and third WO₃ layer are -0.35 and -0.52 J/m², significantly smaller than adhesion energy of the first WO₃ layer with TiO₂. This indicates that WO₃(001) favors a monolayer epitaxy rather than stacking into multilayers when deposited on TiO₂(001). The findings are supported by numerous experiments. Raman spectra demonstrate that only 2D WO₃ species are present on TiO₂ at low loading, and 3D WO₃ species are not observed until the loading is increased to 8 wt% ³⁷⁻³⁸. Additionally, X-ray diffraction analysis indicates the absence of any WO₃ characteristic peak at 0-6 wt%, indicating monolayer coverage at low WO₃ loading ¹⁷. Further catalytic reactivity measurements reveal that the monolayer coverage of WO₃ on TiO₂ (3-10 wt%) exhibits the highest reactivity towards organic pollutant photocatalytic degradation ⁴. This also underlines the necessity to study the synergistic effect between the m-WO₃(001) monolayer and the a-TiO₂(001) substrate, rather than take the properties of m-WO₃ bulk or non-supported m-WO₃(001) surface to explain the reactivity of WO₃/TiO₂. Furthermore, we observe a thickness dependent electronic polarity in WO₃ multilayers on TiO₂. At monolayer thickness, the WO₃ layer is spin-neutral; but at bilayers thickness or above, electrons transfer from the topmost WO₃ layer O atoms to the interfacial WO₃ layer W atoms, resulting in uncompensated polarity in WO₃ multilayers. This phenomenon for WO₃ bilayers on TiO₂ can be reflected by both the spin-density distribution and the density of state (DOS) in Supporting Figure S7. Electrons transfer from O p states in the topmost WO₃ layer to W d states in the interface WO₃ layer. This causes the unpaired electrons to show spin density in corresponding orbitals. WO₃ trilayers on TiO₂ also show similar properties. Such layer-dependent polarity has also been reported in other supported ultrathin metal oxide (MgO, ZnO) films ³⁹.

WO₃/TiO₂ stability diagram in experimental conditions

The structure of the WO₃ monolayer in Figure 1 is a simple stoichiometric model, and it does not take into account the influence of the reactants in the environment. Indeed, the surface structure of monolayer WO₃/TiO₂ will vary depending on experimental conditions. In gas-phase photodecomposition reactors ⁴⁻⁵, the WO₃/TiO₂ is in equilibrium with H₂O and O₂ pressure at 298

K. In gas-phase NO_x selective catalytic reduction reactors, the WO_3/TiO_2 is in equilibrium with H_2O and H_2 at elevated temperatures around 400-600 K ⁴⁰. To determine the surface structure of WO_3/TiO_2 at realistic experimental conditions, the surface stability for various adsorbates such as O, O_2 , H, OH, H_2O , and O vacancy formation, must be compared. For adsorbates with high likelihood to populate the surface at experimental conditions, such as H and H_2O , coverage effect is also included. Details about adsorption energy calculations are discussed in Supporting Note 3,4,5,6 and 7. The results are summarized into the stability diagrams shown in Figure 2, and the corresponding structures are listed in Figure 3.

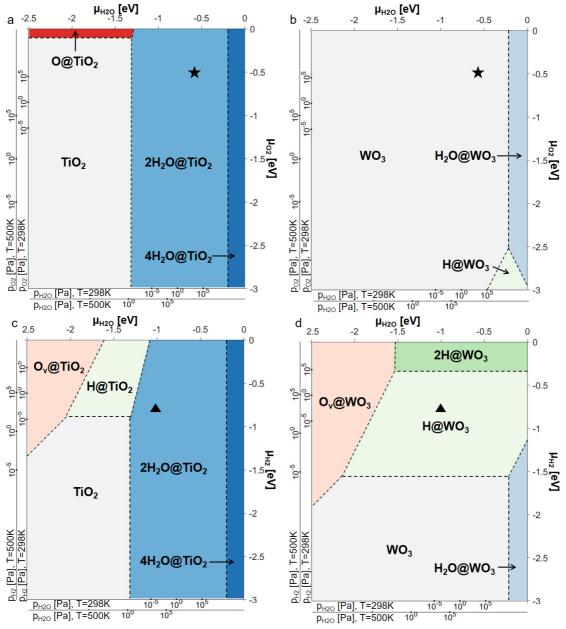


Figure 2. Stability diagrams for the a-TiO₂(001) surface and the supported m-WO₃(001) monolayer on a-TiO₂(001). a) a-TiO₂(001) surface in equilibrium with O₂/H₂O, with O₂/H₂O chemical potentials being used as descriptors (a scale of O₂/H₂O pressure is provided at T = 298 and 500 K). b) Supported WO₃ monolayer on a-TiO₂(001) in equilibrium with O₂/H₂O. c) a-TiO₂(001) surface in equilibrium with H₂/H₂O. d) Supported WO₃ monolayer on a-TiO₂(001) in equilibrium with H₂/H₂O. Corresponding structures are listed in Figure 3. The black stars

correspond to gas-phase reactors at room temperature (p_{O2} = 21 kPa, p_{H2O} = 3.5 kPa ⁴¹, T = 298 K) ⁴⁻⁵, usually used for photocatalytic reactions; the black triangles correspond to gas-phase reactors at elevated temperature (p_{H2} = ~1 kPa, p_{H2O} = ~5 kPa, T = 500 K) ⁴⁰, usually used for NO_x selective catalytic reduction reactions. All amounts of adsorbates correspond to a p(2×2) supercell for the a-TiO₂(001) surface or support.

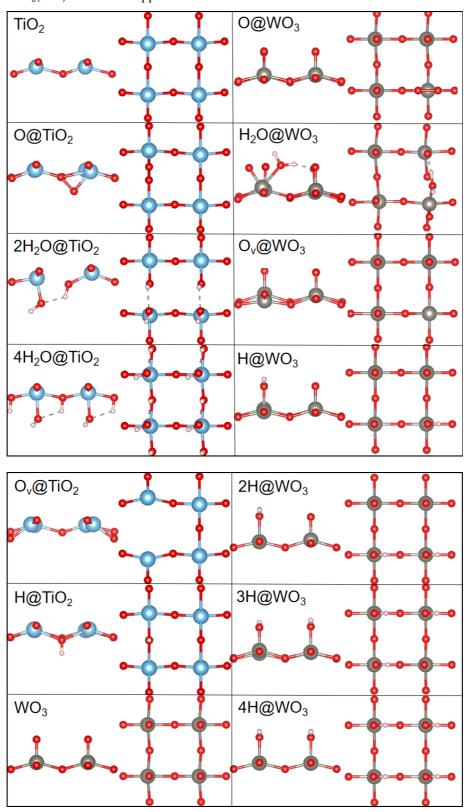


Figure 3. a-TiO₂(001) and supported WO₃ monolayer on the a-TiO₂(001) surface structures with adsorbates, mentioned in the stability diagrams (Figure 2) and Pourbaix diagram (Figure 4). Only the surface layer interacting with the environment is shown. In each panel, the left figure shows the side view and the right figure shows the bottom view (TiO₂ surface) or top view (WO₃ surface). All structures correspond to a p(2×2) supercell for the a-TiO₂(001) surface or support.

According to Figure 2a, when in equilibrium with H_2O and O_2 , a-TiO₂(001) is hydrated into $2H_2O@TiO_2$ (1/2 ML of H_2O , 3.43 H_2O/nm^2) at experimental conditions for photocatalytic reactions ($p_{O2} = 21$ kPa, $p_{H2O} = 3.5$ kPa ⁴¹, T = 298 K) ⁴⁻⁵. The two adsorbed water molecules dissociate into OH and H and disrupt the bonds of bridging oxygens, leading to the reconstruction and stabilization of the a-TiO₂(001) surface. This surface hydration was already proposed by previous studies, though the optimal coverage is under debate ². At water-rich conditions, a-TiO₂(001) could be further hydrated into $4H_2O@TiO_2$ (1 ML of H_2O , 6.85 H_2O/nm^2); while at water-poor conditions, H_2O chemisorption does not occur and a-TiO₂(001) remains bare. At water-poor but oxygen-rich conditions, a-TiO₂(001) could be oxidized into $O@TiO_2$, although exceedingly high O_2 pressure is needed. According to Figure 2b, the supported m-WO₃(001) monolayer is bare at photocatalysis experimental condition. At water-rich conditions, water molecules could be adsorbed on tungsten atoms ($H_2O@WO_3$). At water-rich but oxygen-poor conditions, terminal oxygen of the WO₃ monolayer could be hydrogenated, forming terminal hydroxyl ($H@WO_3$).

According to Figure 2c, when in equilibrium with H_2O and H_2 , a-TiO₂(001) is also hydrated into $2H_2O@TiO_2$ at experimental conditions for NO_x selective catalytic reduction reactions ($p_{H2} = \sim 1 \text{ kPa}$, $p_{H2O} = \sim 5 \text{ kPa}$, T = 500 K) ⁴⁰. The phase shift among bare TiO_2 , $2H_2O@TiO_2$ and $4H_2O@TiO_2$ can also be achieved by manipulating water chemical potential. However, at water-poor but hydrogen-rich conditions, the bridging oxygen of TiO_2 could be hydrogenated and forms hydroxyl ($H@TiO_2$); at even water-poorer condition, this oxygen could be desorbed and form an oxygen vacancy ($O_v@TiO_2$). According to Figure 2d, the supported m-WO₃(001) monolayer is hydrogenated into $H@WO_3$ (1/4 ML, 1.71 H/nm^2) at experimental conditions. The phase shift among bare WO_3 , $H@WO_3$ and $2H@WO_3$ can be achieved by manipulating hydrogen chemical potential. At water-rich but hydrogen-poor conditions, water could be adsorbed ($H_2O@WO_3$). At water-poor but hydrogen-rich conditions, the terminal oxygen of the WO_3 monolayer could be desorbed and form an oxygen vacancy ($O_v@WO_3$).

Photoelectrochemical cell conditions: WO₃/TiO₂ Pourbaix diagram

In photoelectrochemical cells ^{19, 32}, WO₃/TiO₂ is in equilibrium with aqueous solvent at certain electrochemical potential and pH. Since the prominent role of the WO₃/TiO₂ is its charge storage ability, but pure TiO₂ surface itself has no charge storage ability ³², the pure TiO₂ surface at the bottom of the model is ignored, only the surface structures of the supported WO₃ monolayer are considered. Details about this part of calculations are discussed in Supporting Note 8. The results are summarized into the Pourbaix diagrams shown in Figure 4, with corresponding structures listed in Figure 3.

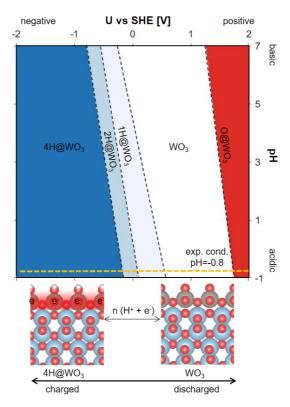


Figure 4. Pourbaix diagram of supported m-WO₃(001) monolayer on a-TiO₂(001), as a function of electrochemical potential U (versus Standard Hydrogen Electrode) and pH. The orange dotted line corresponds to an example experimental condition (pH = -0.8) 32 , used for reversible electron storage. All amounts of adsorbates correspond to a p(2×2) supercell.

According to Figure 4, at experimental conditions (pH = -0.8) 32 , before light radiation, the supported WO₃ monolayer is not charged and is bare. With light radiation, photo-generated electrons in the TiO₂ conduction band provide a negative potential (-0.7 V vs SHE, corresponding to the conduction band minimum of TiO₂) 2 , the bare WO₃ monolayer gradually captures protons and electrons, and finally transits into 4 H@WO₃ (all amounts of adsorbates correspond to a p(2×2) supercell). When light radiation is removed, TiO₂ stops generating photo-electrons, 4 H@WO₃ gradually releases protons and electrons, and finally relaxes back into bare WO₃. An illustration of the proton-electron desorption process is shown in the reaction pathways of Figure 5b, this process can be achieved via either reactions 19 : (i) 4 H@WO₃ reacts with O₂, involving one stored electron and forms 3 H@WO₃+HO₂·. (ii) 4 H@WO₃ reacts with O₂, involving two stored electrons and forms 3 H@WO₃+H₂O₂.

$$(*H^+ + e^-) + O_2 \rightarrow HO_2 \cdot (i)$$

$$(2*H^+ + 2e^-) + O_2 \rightarrow H_2O_2$$
 (ii)

The proton-coupled electron transfer on supported WO₃ monolayer is shown in Figure 5a. According to Figure 4, the transition between $0H@WO_3$ and $1H@WO_3$ happens at U=+0.76 V vs SHE. Here, a solvated proton with explicit water molecules is modeled by the $H^+(H_2O)_4$ cluster. The water cluster configuration was found to help circumvent the unphysical invasion of the implicit solvent into the solvation shell 42 . First, $H^+(H_2O)_4$ approaches the Helmholtz plane near the surface (ΔE =-0.62 eV). Then, the proton binds with the terminal oxygen of WO₃ (ΔE =+0.37

eV, E_a =+0.44eV). Finally, $(H_2O)_4$ returns from the Helmholtz plane to bulk liquid (ΔE =+0.25 eV).

The oxygen reduction reactions utilizing stored proton-electron pair(s) on the supported WO₃ monolayer is shown in Figure 5b. First, O₂ approaches the Helmholtz plane near the surface, and a partial electron transfer occurs from W to O₂ (ΔE =-0.49 eV). Then, O₂^{δ -} binds with *H⁺, along with an electron stored in W, and forms *HO₂· (ΔE =-0.82 eV). There are two possible pathways for the following reactions: (i) *HO₂· may directly desorb from the WO₃ monolayer, and forms HO₂· δ - (ΔE =+0.16 eV), then HO₂· δ - donate the partial electron back to WO₃ when it leaves the Helmholtz plane (ΔE =+0.42 eV); (ii) *HO₂· may further react with another stored proton-electron pair (*H⁺+e⁻) and form *H₂O₂ (ΔE =-1.71 eV), then H₂O₂ desorb from WO₃ monolayer (ΔE =+0.34 eV). Though *HO₂· and *H₂O₂ desorption are endothermic, such processes will be favored from entropic considerations. However, these proton-electron desorption processes are relatively slow, which accounts for the fact that WO₃/TiO₂ is still reactive minutes after the light radiation is removed ³².

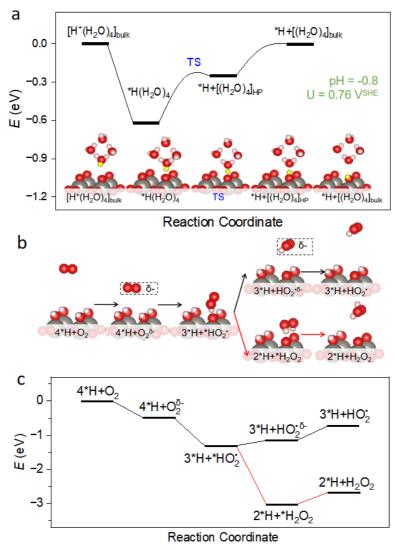
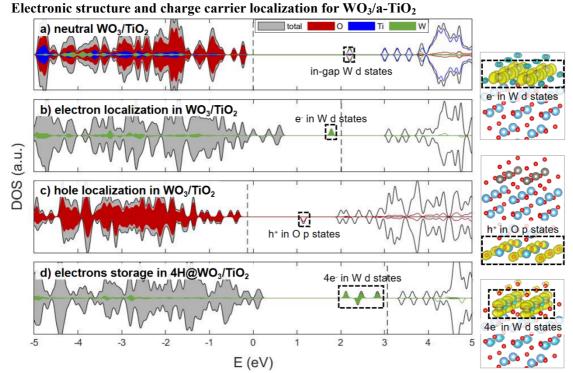



Figure 5. Potential energy diagram of proton-coupled electron transfer and oxygen reduction reactions on the supported m-WO₃ monolayer. (a) Proton-coupled electron transfer. Bare WO₃ captures a proton from H⁺(H₂O)₄ along with a photo-generated electron, and forms 1H@WO₃. [(H₂O)₄]_{HP} and [(H₂O)₄]_{bulk} differentiate water cluster in the Helmholtz plane and bulk liquid. (b) Atomic structures of key intermediates in oxygen reduction reactions. 4H@WO₃ reacts

with O_2 , forming HO_2 or H_2O_2 . $\delta \pm$ indicates a partial electron transfer between the molecule and the surface. Only the supported WO_3 monolayer is shown, and the TiO_2 substrate is hidden. (c) Potential energy diagram of oxygen reduction reactions.

Figure 6. Electronic structure analysis of the m-WO₃ monolayer supported on a-TiO₂(001). Density of states (DOS) of **a)** Neutral WO₃/TiO₂. **b)** One photo-generated electron transferred from TiO₂ to WO₃ and localizes in W d states. **c)** One photo-generated hole localizes in O p states on the bottom a-TiO₂(001) surface. **d)** 4H@WO₃/TiO₂ with 4 protons adsorbed on WO₃ terminal oxygens and 4 electrons stored in W d states. The Fermi level of neutral WO₃/TiO₂ is set as zero. Dashed lines are Fermi levels of each system. Corresponding spin density configurations of localized charge carriers are shown on the right. Only PDOS of charge-carrier storage elements are shown.

The electron-hole pair separation and electron storage mechanism are further depicted by the analysis of the electronic structure, plotting the density of states. The WO₃/TiO₂ valence band mainly consists of O p states, the conduction band mainly consists of Ti d states, and W d orbitals introduce a gap state 0.8 eV below the conduction band (Figure 6a). Upon electron-hole pair generation, the photo-generated electrons tend to migrate to lower energy from the TiO₂ conduction band to the W gap states in the WO₃ monolayer (Figure 6b), where they can either participate in reduction reactions or be stored. Meanwhile, photo-generated holes tend to be trapped in surface O p states at the part of the TiO₂ substrate which is not covered by WO₃, modeled here by the bottom surface of the slab (Figure 6c), where they can participate in oxidation reactions. The charge carrier localization can be characterized by both the electron/hole induced gap states in the DOS and the spin density configurations on the right. This physical separation of electrons and holes hinders electron-hole recombination, which mitigates the charge-carrier recombination in TiO₂, thus increasing the photon absorption efficiency and the catalyst performance ⁹. When WO₃/TiO₂ is fully charged, WO₃/TiO₂ is protonated to 4H@WO₃

(normalized to a p(2×2) supercell) and W d gap states become occupied with four electrons (Figure 6d). The net Bader charge of W in bare WO₃/TiO₂ is +2.79 e, but drops to +2.60 e in 4H@WO₃, in line with a transition of W(VI) to W(V). Note that the change of Bader charge is fractional and does not correspond to a complete electron, as is usually the case. Such electron storage and W valence state transition has been observed by ESR measurements ¹⁸.

Conclusions

Using *ab initio* calculations, we explore the properties of m-WO₃(001) layers on a a-TiO₂(001) surface, including the epitaxy, surface structures in ambient conditions, and the electronic structure. We reveal the reversible charge storage mechanism of WO₃/TiO₂ at the surface.

The supported m-WO₃(001) monolayer is reconstructed and has 1 ML terminal oxygen coverage, doubled from the non-supported m-WO₃(001) surface (1/2 ML). Also, m-WO₃(001) favors monolayer thickness rather than stacking into multilayers on a-TiO₂(001), since WO₃ interlayer adhesion is weak. Plus, m-WO₃(001) multilayers on a-TiO₂(001) possess uncompensated polarity like many other metal-oxide ultrathin-layers.

Both exposed TiO_2 surface and supported WO_3 monolayer are sensitive to the environment. If the experiment is performed in an air-equilibrated gas-phase reactor, a common setup for photocatalytic reactions, the exposed a- $TiO_2(001)$ surface will be hydrated into $2H_2O@TiO_2$, while the supported m- $WO_3(001)$ monolayer remains bare. However, both TiO_2 surface and WO_3 monolayer may have interaction with H_2O/O_2 and transit into other surface phases, when experimental condition (H_2O/O_2 chemical potential) is changed. If the experiment is performed in the gas-phase reactor at raised temperature and reductive condition, a common setup for NO_x selective catalytic reduction reactions, TiO_2 surface will be in the $2H_2O@TiO_2$ phase, while WO_3 monolayer will be hydrogenated into $H@WO_3$. Also, both the TiO_2 surface and the WO_3 monolayer may have interaction with H_2O/H_2 and transit into other phases, when experimental condition (H_2O/H_2 chemical potential) is changed.

If the experiment is performed in acidic aqueous solvent, a common setup for WO₃/TiO₂ reversible charge storage, the WO₃ monolayer will be protonated at different levels (1-4H@WO₃) depending on the applied potential. With light radiation, bare WO₃ monolayer absorbs protons from the solvent along with photo-generated electrons from TiO₂, turning into 4H@WO₃. When radiation is removed, 4H@WO₃ releases the protons and stored electrons, turning back into bare WO₃ monolayer. The product of O₂ reduction with stored electrons may be either HO₂• or H₂O₂, which can participate in reactions in the dark. This reversible proton-electron storage mechanism accounts for the experimental observation that WO₃/TiO₂ remains reactive minutes after the light radiation is removed.

Electronic structure analysis reveals that WO_3 also promotes photon absorption efficiency of TiO_2 by assisting electron-hole pair separation. W induced gap states trap the photo-generated electrons, while TiO_2 O states trap the holes. This mechanism accounts for the experimental observation that WO_3/TiO_2 has higher catalytic efficiency than pure TiO_2 .

Acknowledgments

Funding: The work was supported by the U.S. Defense Threat Reduction Agency under Award Number HDTR1211001612. Computations in this work were performed on the Hoffman2 cluster

at UCLA Institute for Digital Research and Education (IDRE), and the Bridges2 cluster at Extreme Science and Engineering Discovery Environment (XSEDE) supported by National Science Foundation Grant No. ACI-1548562, through allocation TGCHE170060.

Competing interests: The authors declare no competing interests.

Author contributions: P.S. conceptualized and supervised the project. Y.L. performed the calculations with support from D.C., G.Y. and Z.W., Y.L., D.C. and P.S. prepared the draft. **Supporting information:** Free energy calculation methods and results, corresponding geometries, electronic structures, and DFT performance benchmark.

References

- 1. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W., Understanding TiO2 photocatalysis: mechanisms and materials. *Chem Rev* **2014**, *114* (19), 9919-86.
- 2. De Angelis, F.; Di Valentin, C.; Fantacci, S.; Vittadini, A.; Selloni, A., Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. *Chem Rev* **2014**, *114* (19), 9708-53.
- 3. Meng, A.; Zhang, L.; Cheng, B.; Yu, J., Dual Cocatalysts in TiO(2) Photocatalysis. *Adv Mater* **2019**, *31* (30), e1807660.
- 4. Tae Kwon, Y.; Yong Song, K.; In Lee, W.; Jin Choi, G.; Rag Do, Y., Photocatalytic Behavior of WO3-Loaded TiO2 in an Oxidation Reaction. *Journal of Catalysis* **2000**, *191* (1), 192-199.
- 5. Chai, S. Y.; Kim, Y. J.; Lee, W. I., Photocatalytic WO3/TiO2 nanoparticles working under visible light. *Journal of Electroceramics* **2006**, *17* (2-4), 909-912.
- 6. Park, J.; Lim, J.; Park, Y.; Han, D. S.; Shon, H. K.; Hoffmann, M. R.; Park, H., In Situ-Generated Reactive Oxygen Species in Precharged Titania and Tungsten Trioxide Composite Catalyst Membrane Filters: Application to As(III) Oxidation in the Absence of Irradiation. *Environ Sci Technol* **2020**, *54* (15), 9601-9608.
- 7. Lin, C. F.; Wu, C. H.; Onn, Z. N., Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems. *J Hazard Mater* **2008**, *154* (1-3), 1033-9.
- 8. Guo, H.; Jiang, N.; Wang, H.; Lu, N.; Shang, K.; Li, J.; Wu, Y., Degradation of antibiotic chloramphenicol in water by pulsed discharge plasma combined with TiO(2)/WO(3) composites: mechanism and degradation pathway. *J Hazard Mater* **2019**, *371*, 666-676.
- 9. Tatsuma, T.; Saitoh, S.; Ohko, Y.; Fujishima, A., TiO2–WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability. *Chemistry of Materials* **2001**, *13* (9), 2838-2842.
- 10. Tatsuma, T.; Saitoh, S.; Ngaotrakanwiwat, P.; Ohko, Y.; Fujishima, A., Energy Storage of TiO2–WO3 Photocatalysis Systems in the Gas Phase. *Langmuir* **2002**, *18* (21), 7777-7779.
- 11. Ngaotrakanwiwat, P.; Tatsuma, T.; Saitoh, S.; Ohko, Y.; Fujishima, A., Charge–discharge behavior of TiO2–WO3photocatalysis systems with energy storage ability. *Phys. Chem. Chem. Phys.* **2003**, *5* (15), 3234-3237.
- 12. Tatsuma, T.; Takeda, S.; Saitoh, S.; Ohko, Y.; Fujishima, A., Bactericidal effect of an energy storage TiO2–WO3 photocatalyst in dark. *Electrochemistry Communications* **2003**, *5* (9), 793-796.
- 13. Alemany, L. J.; Lietti, L.; Ferlazzo, N.; Forzatti, P.; Busca, G.; Giamello, E.; Bregani, F., Reactivity and Physicochemical Characterization of V2O5-WO3/TiO2 De-NO Catalysts. *Journal of Catalysis* **1995**, *155* (1), 117-130.
- 14. Busca, G.; Lietti, L.; Ramis, G.; Berti, F., Chemical and mechanistic aspects of the selective catalytic reduction of NO by ammonia over oxide catalysts: A review. *Applied Catalysis B: Environmental* **1998**, *18* (1-2), 1-36.
- 15. Lai, J.-K.; Wachs, I. E., A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH3 by Supported V2O5–WO3/TiO2 Catalysts. *ACS Catalysis* **2018**, *8* (7), 6537-6551.
- 16. Tennakone, K.; Ileperuma, O. A.; Bandara, J. M. S.; Kiridena, W. C. B., TiO2and WO3semiconductor particles in contact: photochemical reduction of WO3to the non-stoichiometric blue form. *Semiconductor Science and Technology* **1992**, *7* (3), 423-424.
- 17. Sajjad, A. K. L.; Shamaila, S.; Tian, B.; Chen, F.; Zhang, J., One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity. *Applied Catalysis B: Environmental* **2009**, *91* (1-2), 397-405.

- 18. Zhao, D.; Chen, C.; Yu, C.; Ma, W.; Zhao, J., Photoinduced Electron Storage in WO3/TiO2 Nanohybrid Material in the Presence of Oxygen and Postirradiated Reduction of Heavy Metal Ions. *The Journal of Physical Chemistry C* **2009**, *113* (30), 13160-13165.
- 19. Khan, H.; Rigamonti, M. G.; Patience, G. S.; Boffito, D. C., Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark. *Applied Catalysis B: Environmental* **2018**, *226*, 311-323.
- 20. Zhou, G.; Zhao, T.; Qian, R.; Xia, X.; Dai, S.; Alsaedi, A.; Hayat, T.; Pan, J. H., Decorating (001) dominant anatase TiO2 nanoflakes array with uniform WO3 clusters for enhanced photoelectrochemical water decontamination. *Catalysis Today* **2019**, *335*, 365-371.
- 21. Suarez Negreira, A.; Wilcox, J., Role of WO3 in the Hg Oxidation across the V2O5–WO3–TiO2 SCR Catalyst: A DFT Study. *The Journal of Physical Chemistry C* **2013**, *117* (46), 24397-24406.
- 22. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. *Phys Rev B Condens Matter* **1993**, *47* (1), 558-561.
- 23. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Computational Materials Science* **1996**, *6* (1), 15-50.
- 24. Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys Rev B Condens Matter* **1996**, *54* (16), 11169-11186.
- 25. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys Rev Lett* **1996**, *77* (18), 3865-3868.
- 26. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. *Physical Review B* **1999**, *59* (3), 1758-1775.
- 27. Steinmann, S. N.; Corminboeuf, C., A generalized-gradient approximation exchange hole model for dispersion coefficients. *J Chem Phys* **2011**, *134* (4), 044117.
- 28. Steinmann, S. N.; Corminboeuf, C., Comprehensive Benchmarking of a Density-Dependent Dispersion Correction. *J Chem Theory Comput* **2011**, *7* (11), 3567-3577.
- 29. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. *Physical Review B* **1998**, *57* (3), 1505-1509.
- 30. Cococcioni, M.; de Gironcoli, S., Linear response approach to the calculation of the effective interaction parameters in the LDA+Umethod. *Physical Review B* **2005**, *71* (3).
- 31. Heyd, J.; Scuseria, G. E.; Ernzerhof, M., Hybrid functionals based on a screened Coulomb potential. *The Journal of Chemical Physics* **2003**, *118* (18), 8207-8215.
- 32. Liu, D.; Zi, W.; Sajjad, S. D.; Hsu, C.; Shen, Y.; Wei, M.; Liu, F., Reversible Electron Storage in an All-Vanadium Photoelectrochemical Storage Cell: Synergy between Vanadium Redox and Hybrid Photocatalyst. *ACS Catalysis* **2015**, *5* (4), 2632-2639.
- 33. Shifu, C.; Lei, C.; Shen, G.; Gengyu, C., The preparation of coupled WO3/TiO2 photocatalyst by ball milling. *Powder Technology* **2005**, *160* (3), 198-202.
- 34. Selloni, A., Crystal growth: Anatase shows its reactive side. Nat Mater 2008, 7 (8), 613-5.
- 35. Gong, X. Q.; Selloni, A., Reactivity of anatase TiO(2) nanoparticles: the role of the minority (001) surface. *J Phys Chem B* **2005**, *109* (42), 19560-2.
- 36. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. *Physical Review B* **1976**, *13* (12), 5188-5192.

- 37. Vuurman, M. A.; Wachs, I. E.; Hirt, A. M., Structural determination of supported vanadium pentoxide-tungsten trioxide-titania catalysts by in situ Raman spectroscopy and x-ray photoelectron spectroscopy. *The Journal of Physical Chemistry* **1991**, *95* (24), 9928-9937.
- 38. Hilbrig, F.; Goebel, H. E.; Knoezinger, H.; Schmelz, H.; Lengeler, B., X-ray absorption spectroscopy study of the titania- and alumina-supported tungsten oxide system. *The Journal of Physical Chemistry* **1991**, *95* (18), 6973-6978.
- 39. Goniakowski, J.; Noguera, C.; Giordano, L., Prediction of uncompensated polarity in ultrathin films. *Phys Rev Lett* **2007**, *98* (20), 205701.
- 40. Liu, Z.; Lu, Y.; Yuan, L.; Ma, L.; Zheng, L.; Zhang, J.; Hu, T., Selective catalytic reduction of NOx with H2 over WO3 promoted Pt/TiO2 catalyst. *Applied Catalysis B: Environmental* **2016**, *188*, 189-197.
- 41. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. *The Journal of Physical Chemistry B* **2004**, *108* (46), 17886-17892.
- 42. Cheng, D.; Wei, Z.; Zhang, Z.; Broekmann, P.; Alexandrova, A. N.; Sautet, P., Restructuring and Activation of Cu(111) under Electrocatalytic Reduction Conditions. *Angew Chem Int Ed Engl* **2023**, e202218575.