
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Improving Disk Array Reliability Through Expedited Scrubbing

Permalink
https://escholarship.org/uc/item/33v3v7tw

ISBN
9780769541341

Authors
Pâris, Jehan-François
Schwarz, Thomas
Amer, Ahmed
et al.

Publication Date
2010-07-01

DOI
10.1109/nas.2010.37

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33v3v7tw
https://escholarship.org/uc/item/33v3v7tw#author
https://escholarship.org
http://www.cdlib.org/

Improving Disk Array Reliability Through Expedited Scrubbing

Jehan-François Pâris
Computer Science Dept.
University of Houston
Houston, TX 77204

paris@cs.uh.edu

Thomas Schwarz, S. J.
Depto. de Informática y

Ciencias de la Computación
Universidad Católica del Uruguay

11600 Montevideo, Uruguay
tschwarz@calprov.org

Ahmed Amer
Computer Eng. Dept.

Santa Clara University
Santa Clara, CA 95053

a.amer@acm.org

Darrell D. E. Long1
Computer Science Dept.
University of California
Santa Cruz, CA 95064
darrell@cs.ucsc.edu

Abstract—Disk scrubbing periodically scans the contents of a
disk array to detect the presence of irrecoverable read errors
and reconstitute the contents of the lost blocks using the built-
in redundancy of the disk array. We address the issue of
scheduling scrubbing runs in disk arrays that can tolerate two
disk failures without incurring a data loss, and propose to start
an urgent scrubbing run of the whole array whenever a disk
failure is detected. Used alone or in combination with periodic
scrubbing runs, these expedited runs can improve the mean
time to data loss of disk arrays over a wide range of disk repair
times. As a result, our technique eliminates the need for
frequent scrubbing runs and the need to maintain spare disks
and personnel on site to replace failed disks within a twenty-
four hour interval.

Keywords-irrecoverable read errors; RAID arrays; disk
scrubbing.

I. INTRODUCTION
As today’s disks are much larger than they were five to

ten years ago, the probability of encountering one or more
bad blocks on a given disk is much higher now than it was
then. This situation has now reached a point where
irrecoverable read errors are a major cause of data losses in
disk arrays. For instance, we have ample anecdotal evidence
that more failures of RAID level 5 arrays [5, 11, 16, 21] are
caused by a combination of a single disk failure and
irrecoverable read errors on one or more of the surviving
disks than by the simultaneous failure of two disks [12].1

Two complementary approaches can be used to protect
data against irrecoverable read errors. First, we can mitigate
the effects of these errors by using a more robust disk array
organization. One of the recommended options consists of
switching to disk array organizations, such as RAID level 6
[4, 22] that can tolerate either two simultaneous disk failures
or a single disk failure and bad blocks on one or more of the
remaining disks. A more recent solution consists of adopting
an intradisk parity scheme that introduces an additional level
of redundancy inside each disk [6, 23]. Second, we can
periodically scan the disk contents to detect irrecoverable
read errors and attempt to recover the lost blocks by periodi-
cally “scrubbing” the disk contents [3, 26].

1 Supported in part by the Petascale Data Storage Institute under
Department of Energy Award DE-FC02-06ER25768.

Consider for instance the case of a RAID level 6 array
with eight to twelve disks. The array will probably use disk
scrubbing as an additional precaution against data loss. The
critical decision then is the frequency of the disk scrubbing
runs. While frequent scrubbing will reduce the number of
irrecoverable read errors, they will also accelerate the disk
aging process thus causing additional errors.

We argue that we should consider the timing of the
scrubbing runs as carefully as their frequency. Observe first
that a recently scrubbed disk is error-free and will remain in
that state until new bad blocks manifest themselves. This is
to say that the most effective scrubbing scans are those that
were completed immediately before one of the array disks
fails.

We cannot effectively predict disk failures but we can
predict when a disk failure is likely to result in a data loss. In
the case of a RAID level 6, it would be a second disk failure
occurring while uncorrected irrecoverable read errors are
present on one or more of the remaining disks. Hence the
best way to protect the data against that failure is to run with-
out any delay a scrubbing scan of all the disks in the array.
We call this technique expedited scrubbing as the scrubbing
run has to be performed as quickly as possible to reduce the
window of vulnerability of the array.

Our preliminary results indicate that expedited scrubbing
can significantly increase the mean time to data loss
(MTTDL) of RAID level 6 and alleviate the need for
frequent scrubbing runs. In addition, the technique achieves
good MTTDLs over a wide range of disk repair times thus
alleviating the need for maintaining a local pool of spare
disks and having maintenance personnel on call around the
clock.

The remainder of this paper is organized as follows.
Section II reviews previous work. Section III introduces our
technique while Section IV discusses its performance.
Section V mentions how our solution could be applied to
other fault-tolerant disk array organizations and Section VI
has our conclusions.

II. IRRECOVERABLE READ ERRORS
Irrecoverable read errors are also known as bad blocks or

latent sector errors because the data loss is not detected until
the block is accessed. They are particularly harmful when
they occur during the data reconstruction phase of a RAID
level 5 array that has one failed disk, as they result in a data
loss [12].

Disk drives fail for a number of reasons [1, 8, 17–20].
Some failures result in losing access to a complete disk.
These full disk failures occur often without warning, but are
sometimes preceded by a burst of recoverable or irrecover-
able sector errors.

Other disk failures, known as latent failures, only affect a
single sector or a relatively small number of sectors.
Bairavasundaram and his colleagues from the University of
Wisconsin-Madison found that 3.45% of 1.53 million disks
studied developed latent sector errors over a period of 32
months, though the number of affected sectors tended to be
small [1]. There are numerous mechanisms that can cause
such errors [10]: Many latent sector errors are caused during
writing such as “high-fly writes”, writing on damaged parts
of the media caused by loose hard particles, pits and voids,
or off-track writes. These errors can be discovered by
validating writes shortly after reads. Even after a successful
write, thermal asperities, surface scratches by hard particles,
smears by “soft” particles (such as stainless steel), or corro-
sion can occasion data losses. Remarkably, “bit-rot”, that is,
the degradation of the magnetization pattern in the media, is
currently not a significant cause. These errors are latent, they
are only recognized when trying to read the sector.

The redundant storage organizations used by most multi-
disk storage systems—such as RAID levels 5 and 6—allow
recovery from these latent errors in the absence of any other
disk failures. Frequently, the affected sectors are marked by
the internal disk controller as unusable and their logical
block address is mapped to spare sectors. However, a
system can lose data if it recovers from a complete disk
failure relying on a disk with latent sector errors. Two
possibilities arise to forestall this danger. First, we can use
additional redundancy, either by using a two-or-more failure
resilient redundancy scheme such as RAID Level 6 or by
using additional redundancy in the disk itself (Intra-disk
Redundancy [6, 26]). Second, latent disk errors can be
detected and dealt with before they make recovery from a
complete hard drive failure impossible. This latter approach
is known as disk scrubbing [3, 12, 22, 25]. Media scrubs can
use the SCSI VERIFY command to validate a sector’s integ-
rity using the error control coding embedded in the storage of
sectors on magnetic media. It is possible, though usually not
necessary, to further verify the contents by maintaining and
recalculating a checksum over a number of disk sectors [27],
since the number of instances where a sector failure changes
contents erroneously are extremely rare.

Scrubbing identifies latent sector errors by systematically
checking all sectors for readability. Frequent scrubbing
greatly increases the probability that a disk does not contain
latent sectors, but has a negative impact on performance
(since seeks cannot be preempted). Additionally, by increas-
ing the disk load, it can increase latent sector error and hard
drive failure rates. To further improve its effectiveness,
scrubbing can be supplemented with “read after write” to
eliminate a category of causes for latent errors. Scrubbing
can be deterministic or opportunistic. Deterministic
scrubbing schedules scrubbing operations at fixed intervals
and guarantees a full sweep of the disk within a set period.

In contrast, opportunistic scrubbing uses periods of zero user
utilization to perform its task.

Baker et al. [2] enumerated the multiple threats to data
survivability in disk arrays and presented a window of
vulnerability model (WOV) that takes into account temporal-
ity of faults. They used that model to evaluate the impact of
latent block errors on the MTTDL of mirrored data and
based their estimate of the frequency of latent block errors on
manufacturers’ specification of a 2-14 worst-case irrecover-
able bit rate.

Elerath identified major categories of disk failure modes
and discussed the impact of latent defects [7]. He observed
that read error rates had actually decreased between 2004
and 2007 and reported read-error rates varying between
3.2×10-13 and 8×10-15 errors/byte. In a more recent study [6],
he introduces a formula that provides a good approximation
of the expected number of data losses caused by double disk
failures for an N + 1 RAID array. His model takes into
account latent disk errors that reveal themselves during the
array rebuilding process and assumes that disk failures obey
a Weibull distribution.

III. EXPEDITED SCRUBBING
As we mentioned earlier, recently scrubbed disks are

error-free and remain in that state until new bad blocks mani-
fest themselves. Thus the most efficient time to schedule a
scrubbing run is just before the disk contents are needed.

Many recent disk organizations tolerate two or more disk
failures without data loss in the absence of irrecoverable read
errors. Returning to the case of a RAID level 6 array, we can
see that this organization can tolerate:
a) Two disk failures in the absence of irrecoverable read

errors.
b) One disk failure and an arbitrary number of irrecover-

able read errors, as long as each parity stripe contains at
most one bad block.

c) An arbitrary number of irrecoverable read errors as long
as each parity stripe contains at most two bad blocks.

Given the fairly low percentage of bad blocks in infected
disk drives, we can safely assume that a RAID level 6 array
will nearly always remain operational after having lost a disk
but will lose data if a second disk fails unless all irrecover-
able read errors have been corrected beforehand. To address
that issue, we propose to start an urgent scrubbing scan
whenever we detect a failure of one of the array disks. We
call this technique expedited scrubbing because this
scrubbing must be performed as expeditiously as possible in
order to bring the array into a safer state as quickly as possi-
ble. As we can see, our technique can be used either alone or
in combination with periodic scrubbing.

Expedited scrubbing belongs to the realm of reactive
approaches to fault-tolerance because it takes no action in
the absence of any disk failures. As a result, it consumes no
resources when the array operates correctly and is only
activated when it is most needed.

As most techniques, expedited scrubbing has its limita-
tions. First, it does not apply to RAID level 5 arrays and
other array organizations that can only tolerate a single disk
failure. Second, it assumes that the scrubbing process can be

performed relatively quickly, say, in 24 hours or less, with-
out disturbing the operation of the array. Finally, it does not
perform well in the presence of correlated disk failures.
Consider for instance the case of an overheated disk array
that has just lost a disk. Initiating a scrubbing run at that
moment will result in the production of additional heat and
may precipitate the failure of other disks.

IV. PERFORMANCE ANALYSIS
We will base our study on the observations of

Bairavasundaram et al. because they were collected from a
very large disk population and offer us a better insight into
the effect of bad blocks on disk array reliability.

Consider for instance the case of a RAID level 5 array
with N + 1 disks. We know that the array can reconstitute
missing data as long as each block stripe participating in the
reconstruction process contains only one block that cannot be
read. This is why such arrays can tolerate a single disk fail-
ure but not a double disk failure nor the combination of a
single disk failure with one or more bad blocks on one of the
N remaining disks. Let us now consider what happens when
all the array disks are operational but two of them contain
bad blocks. Thanks to the built-in redundancy of the array,
we will be able to reconstitute all the lost data as long as no
block stripe contains more than one bad block.

Assuming that a fraction f of the blocks of a disk are bad,
the probability of observing more than one bad block in a
single stripe will be

))1()1()1(1(1 NN
b ffNfn −+−−− + ,

where nb is the number of stripes in the array (and thus the
number of blocks on each disk) and N + 1 its number of
disks.

Consider now the case of a RAID array consisting of five
one-terabyte disks with a block size of four kilobytes. The
formula above shows that we would need to observe at least
495 bad blocks on each disk to have a one percent probabil-
ity of having two bad blocks in the same stripe. Given that
Bairavasundaram et al. observed an infection rate of 3.54
percent over 32 months and reported that 80 percent of the
affected disks had less than 50 bad blocks, we can safely
infer that the occurrence of two bad blocks in the same stripe
will be an extremely unlikely event whose probability can be
safely neglected.

A. Fundamental assumptions
Estimating the reliability of a storage system means

estimating the probability R(t) that the system will operate
correctly over the time interval [0, t] given that it operated
correctly at time t = 0. Computing that function requires
solving a system of linear differential equations, a task that
becomes quickly unmanageable as the complexity of the
system grows. A simpler option is to focus on the mean time
to data loss (MTTDL) of the storage system, which is the
approach we will take here.

Our system model consists of an array of disks with inde-
pendent failure modes. When a disk fails, a repair process is
immediately initiated for that disk. Should several disks fail,

00
nλ

μ
10

(n-1)λ

2μ

nλ’μ'

Data
Loss

(n-2)λ

(n-2)(λ+λ’)

20

μ' 01

(n-1)λ'μ'
λ λ

μ

11
(n-1)λ

μ

nλ
02+

(n-1)λ

μ'12+

(n-1)λ' (n-2)λ'

Fig. 1. State-probability transition diagram for a RAID level 6 array
consisting of n disks, all subject to disk failures and irrecoverable read
errors.

the repair process will be performed in parallel on those
disks. We assume that disk failures are independent events
that are exponentially distributed with mean λ. In addition,
we require repairs to be exponentially distributed with mean
μ. Both hypotheses are necessary to represent each system
by a Markov process with a finite number of states.

We assume that each disk is initially in a state where all
its defective blocks have been “mapped out” in a way that
prevents users from accessing them. We further assume that
the appearances of bad blocks on disks are independent
events and are exponentially distributed with mean λ'. This
is to say that we are not modeling the formation of individual
bad blocks but rather the transition from a state where all
defective blocks have been mapped out to a state where the
disk has one or more bad blocks holding data. Once a disk
has one or more bad blocks, it remains in that state until the
missing data are reconstructed and written in one of the spare
sectors of the disk. This recovery could be the result of a
failed read access or a periodic scrubbing of the whole disk.
Combining the effect of these two processes we assume that
disks with bad blocks will return to their original state at a
rate μ' and that these transitions follow an exponential law.

B. A RAID level 6 array using periodic scrubbing
Let us consider the case of a RAID level 6 with n disks

[4, 22] whose contents are periodically scrubbed to detect
and repair irrecoverable read errors. As Fig. 1 shows, the
array can be at any time in one out of eight possible states.

State <00> represents the initial state of the system when
the n disks are operational and all their bad blocks are
mapped out. The first disk failure will bring the array to
state <10>. A second disk failure will bring it to state <20>
and a third disk failure will result in a data loss.

The presence of bad blocks on a single disk will respec-
tively bring the array from state <00> to state <01>, from
state <10> to state <11> and from state <20> to the failed
state. Similarly, the presence of bad blocks on a second disk

would respectively move the array from state <01> to state
<02+> and from state <11> to state <12+>.

The appearance of bad blocks on a third disk will leave
the system in either state <02+> or <12+> as we do not
distinguish between array configurations having bad blocks
on two disks and those having bad blocks on three or more
disks.

From state <01>, the array can:
a) Go to state <10> if the disk that has bad blocks fail;
b) Go to state <11> if any of the n – 1 other disks fail;
c) Go to state <02+> if more disks develop bad blocks;
d) Return to its original state once all bad blocks have

been mapped out.
From state <11>, the array can:

a) Go to state <20> if the disk that has bad blocks fails;
b) Incur a data loss if any of the n – 2 other disks fails;
c) Go to state <12+> if one or more disks develop bad

blocks;
d) Return to its original state once all bad blocks have

been mapped out.
Observe that our model assumes that a disk failure occur-

ring when the array is in state <02+> will always bring that
array into state <12+>. As a result, we neglect the less
frequent case where the array has bad blocks on exactly two
disks and one of them fails, thus bringing the array into state
<11>. This observation does not apply to state <12+> since
the loss of any of its n – 1 operational disks will result in a
data loss.

Replacing the failed disks will bring the array from state
<20> to state <10> and from state <10> to its original state.
In the same way, scrubbing scans will bring the array from
state <02+> to state <00> and from state <12+> to state
<10>.

The Kolmogorov system of differential equations
describing the behavior of the disk array is

).(

)()1()()2))(2(()(
,),()2(

)()())1(()(
),(')1()()1(

)())2()1(()(
)),()((2

)()()()))(1(()(

),()(')1()()()(

,)(')())1(()(

)),()(()()()()(

11

1020
20

11

0212
12

1001

11
11

121120

010010
10

120102
02

110001
01

02011000
00

tp

tpntpn
dt

tdp
tpn

tpntpn
dt

tdp
tpntpn

tpnn
dt

tdp
tptpp

tptpntpn
dt

tdp

tptpntpn
dt

tdp

ptpntpnn
dt

tdp

tptptptpn
dt

tdp

λ

λμλλ

λ

λμμλ

λλ

μμλλ

μμ

λλμλλ

μλμλ

μλμλλ

μμλλ

+−++′+−−=

′−

++′++−−=

−+−

+′++′−+−−=

+′+

++++′+−−=

+−+′+−=

++′+′−+−=

+′++′+−=

++
+

+

++
+

+

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 1 2 3 4 5 6 7 8

Disk repair time (days)

M
TT

D
L

(y
ea

rs
)

No bad blocks
Once a month
Once a quarter
Once a year

Fig 2. Expected MTTDL of a RAID level 6 array consisting of ten disks,
all subject to disk failures and irrecoverable read errors. Each but the top-
most curve corresponds to a specific scrubbing interval.

where pij(t) is the probability that the system is in state <ij>
with the initial conditions p00(0) = 1 and pij(0) = 0 other-
wise. The Laplace transforms of these equations are

).(

,)()1()()2))(2(()(

),()2(

)()())1(()(

),(')1()()1(

)())2()1(()(

)),()(()(2

)()()()))(1(()(

),()(')1()()()(

),()(')())1(()(

)),()(()()()(1)(

*
11

*
10

*
20

*
20

*
11

*
02

*
12

*
12

*
10

*
01

*
11

*
11

*
12

*
11

*
20

*
01

*
00

*
10

*
10

*
12

*
01

*
02

*
02

*
11

*
00

*
01

*
01

*
02

*
01

*
10

*
00

*
00

sp

spnspnssp

spn

spnspnssp

spnspn

spnnssp

spspsp

spspnspnssp

spspnspnssp

spspnspnnssp

spspspspnssp

λ

λμλλ

λ

λμμλ

λλ

μμλλ

μμ

λλμλλ

μλμλ

μλμλλ

μμλλ

+−++′+−−=

′−

++′++−−=

−+−

+′++′−+−−=

+′+

++++′+−−=

+−+′+−=

++′+′−+−=

+′++′+−=−

+++

+

+++

+

Observing that the mean time to data loss (MTTDL) of the
disk array is

∑=
ji

ijpMTTDL
,

*)0(,

we solve the system of Laplace transforms for s = 0 and
compute the MTTDL of the array. The result is a quotient of
two very large polynomials of degree 6 for the numerator
and of degree 7 for the denominator.

When μ' → ∞, that expression simplifies into the tradi-
tional formula for RAID level 6 arrays

3

222

)2)(1(
2)2(3)263(

λ
μλμλ

−−
+−++−

=
nnn

nnnMTTDL .

Fig. 2 displays the MTTDLs achieved by a RAID level 6
array with ten disks for selected values of the scrubbing
interval and repair times that vary between half a day and
seven days. It confirms the results of a previous study that

00
nλ

μ
10

(n-1)λ

2μ

nλ'μ'

Data
Loss

(n-2)λ

(n-2)(λ+λ')

20

μ' 01

(n-1)λ'μ''
λ λ

μ
11

(n-1)λ

μ

nλ
02+

(n-1)λ

μ''12+

(n-1)λ' (n-2)λ

Fig. 3. State-probability transition diagram for a RAID level 6 array
consisting of n disks, all subject to disk failures and irrecoverable read
errors, when we allow expedited scrubbing.

investigated a RAID level 6 array with six disks and
concluded that scheduling scrubbing scans once a month
instead of once a year can increase the MTTDL of the array
from 600 to almost 1,000 percent depending on the disk
repair time [15].

C. Enabling expedited scrubbing
Let us now investigate what impact expedited scrubbing

would have on the MTTDL of the array. We assume now
that we initiate an accelerated scrubbing procedure at a rate
μ'' much higher than the regular scrubbing rate whenever we
detect the loss of a disk. As Fig. 3 shows, the state transition
probability diagram of our array is barely distinguishable
from that of an array undergoing periodic scrubbing. The
sole difference is that the state transitions from states <11>
and <12+> now occur at a rate μ'' that is measured in hours
instead of months.

Using the same techniques as in the previous case, we
compute the MTTDL of a RAID level 6 array with ten disks
that undergo expedited scrubbing each time it detects the loss
of a disk. The result is an even larger quotient of two very
large polynomials of degree 6 for the numerator and of
degree 7 for the denominator.

Fig. 4 displays the MTTDLs achieved by a RAID level 6
array with ten disks for selected values of the scrubbing
interval and repair times assuming that expedited scrubbing
can be done in 24 hours. As we can see, the MTTDL
improvements resulting from expedited scrubbing greatly
vary with the scrubbing interval and the repair times. Emer-
gency disk scrubbing performs best at the longest scrubbing
interval and the longest repair times. Conversely, emergency
disk scrubbing offers much less benefits when the disks are
frequently scrubbed and quickly repaired. This should not
surprise us. First, frequently scrubbed disks are less likely to
contain bad blocks. Second, fast repair times leave less time
for the beneficial effects of expedited scrubbing to manifest
themselves. Overall, one of the major advantages of expe-
dited scrubbing is that it performs well over a wide range of

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0 1 2 3 4 5 6 7 8

Disk repair time (days)

M
TT

D
L

(y
ea

rs
)

Expedited + once a month
Once a month
Expedited + once a quarter
Once a quarter
Expedited+ once a year
Once a year

Fig 4. Expected MTTDL of a RAID level 6 array consisting of ten disks,
assuming that its disks are scrubbed at regular time intervals and scrubbed
within a twenty-four hour interval after a disk failure.

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 1 2 3 4 5 6 7 8

Disk repair time (days)

M
TT

D
L

(y
ea

rs
)

Once a month

Once a quarter

Once a year

Expedited scrubbing takes 6 hours

Expedited scrubbing takes 24 hours

Fig 5. Expected MTTDL of a RAID level 6 array consisting of ten disks,
using either periodic scrubbing or pure expedited scrubbing.

disk repair times. This is a significant advantage because
fast repair times require maintaining a local pool of spare
disks and having staff on call round the clock. Since RAID
level 6 arrays using expedited scrubbing tolerate repair times
of up to one week, if not more, they will be cheaper and
easier to maintain than arrays relying on periodic scrubbing
alone.

D. Relying exclusively on expedited scrubbing
To test the limits of our approach, we considered the

option of relying exclusively on expedited scrubbing, thus
completely eliminating periodic disk scrubbings. This
approach is particularly suited to large archival systems that
experience long periods of idleness during which their disks
remain powered down and need to be powered up to be
scrubbed

Fig. 5 displays the MTTDLs achieved by a RAID level 6
array with ten disks for selected values of the expedited
scrubbing time and the disk repair time. These values are
fairly pessimistic because they were obtained by positing
μ' = 0 in our previous model. In reality, disks have a finite

lifetime and irrecoverable read errors will get automatically
repaired every time we transfer its data to a new disk array.

As we can see, exclusively relying on expedited
scrubbings results in fairly good MTTDLs as long as these
scrubbings can be performed fairly quickly, say, in less than
24 hours after a disk failure. We also notice that pure expe-
dited scrubbing performs quite well over a wide range of
disk repair times.

E. Discussion
In order to be able to use a stochastic model with a finite

number of states, we had to introduce several assumptions
that are not valid for real systems. First, we assumed that
failure occurrences and repair times were exponentially
distributed. This is not true for real disk populations as
failures tend to be distributed according to a Weibull
distribution and repair time distributions have much smaller
coefficients of variation than the exponential distribution.
Second, we assumed constant failure rates λ and λ' over the
lifetime of the array, while actual failure rates tend to
decrease over the first few months of the disk lifetime and
increase again after a few years.

Other simplifying assumptions were the result of a lack
of data. First, the failure rates λ and λ' that we selected were
average rates estimated over very large heterogeneous
populations of disks comprising both enterprise class and
nearline class disks. Second, we did not take into account
the impact of correlated failures on the MTTDL of the array.
This could have been handled by making the two failure
rates λ and λ' functions λ(m) and λ'(m) of the number m of
previous failures. We could not do this due to insufficient
data.

A last issue concerns our choice of MTTDL to represent
the reliability of disk arrays. MTTDLs characterize fairly
well the behavior of disk arrays that would remain in service
until they fail without ever being replaced for any reason
other than a device failure. This is rarely the case as disk
arrays are typically replaced after five to seven years, that is,
well before they experience any failure. MTTDLs do not
take into account this relatively short lifetime, and tend to
overestimate the probability of a data loss over their lifetime.
This effect remains negligible as long as the time to repair an
individual disk is at least one thousand times shorter than its
MTTF [14].

V. APPLICATION TO OTHER FAULT-TOLERANT DISK
ORGANIZATIONS

While we have only considered so far the application of
our technique to RAID level 6 arrays, it applies to all fault-
tolerant disk organizations tolerating two or more disk fail-
ures without data loss. In the case of organizations tolerating
more than two data losses, such as HDD-1 and HDD-2
schemes [24], we may want to adjust the priority level of the
scrubbing tasks to their urgency. As an example, the failure
of a single disk might trigger a low-to-medium priority
scrubbing process that would not affect other disk requests
while a second disk failure would increase the priority of the
scrubbing process as data preservation becomes our para-
mount concern.

VI. CONCLUSION
We have presented a new scrubbing technique for disk

arrays tolerating two or more disk failures. Unlike periodic
scrubbing or opportunistic scrubbing, expedited scrubbing
starts an urgent scrubbing of the whole array whenever a disk
failure is detected. Used alone or in combination with
periodic scrubbing, our technique can improve the mean time
to data loss of disk arrays over a wide range of disk repair
times. As a result, it allows less frequent scrubbing runs and
reduces the need to maintain spare disks and personnel on
site to replace failed disk drives within 24 hours.

VII. REFERENCES
[1] L. Bairavasundaram, G. Goodson, S. Pasupathy, J. Schindler,

“An analysis of latent sector errors in disk drives,” Proc.
ACM SIGMETRICS 2007 International Conference on
Measurement and Modeling of Computer Systems, San Diego,
CA, 2007.

[2] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos, P.
Maniatis, T. J. Giuli, and P. Bungale, “A fresh look at the
reliability of long-term storage,” Proc. First EuroSys Confer-
ence (EuroSys 2006), Leuven, Belgium, Apr. 2006.

[3] J. Belsau, A. Permut, G. Rudeseal: “Disk Scrubbing System,”
US Patent 5,632,012, May 20, 1997.

[4] W. A. Burkhard and J. Menon, “Disk array storage system
reliability,” Proc. 23rd International Symposium on Fault-
Tolerant Computing (FTCS '93), Toulouse, France, pp. 432–
441, June 1993.

[5] P. M. Chen, E. K. Lee, G. A. Gibson, R. Katz, and D.
Patterson, “RAID: High-performance, reliable secondary
storage,” ACM Computing Surveys, 26(2):145–185, June
1994.

[6] A. Dholakia , E. Eleftheriou , X.-Y. Hu , Il. Iliadis , J. Menon,
K.K. Rao, “A new intra-disk redundancy scheme for high-
reliability RAID storage systems in the presence of
unrecoverable errors,” ACM Transactions on Storage, 4(1):1-
42, May 2008.

[7] J. G. Elerath, “Hard disk drives: The good, the bad and the
ugly!” ACM Queue 5(6):28–37, Sept./Oct., 2007.

[8] J. G. Elerath, “A simple equation for estimating the reliability
of an N+1 redundant array of independent disks (RAID),”
Proc. 39th nternational Conference on Dependable Systems
and Networks (DSN 2009), Estoril, Portugal, June 2009.

[9] J. Elerath and S. Shah: “Server class disk drives: How reliable
are they?” Proc. IEEE Annual Reliability and Maintainability
Symposium (RAMS '04), 2004.

[10] J. Elerath and M. Pecht, “Enhanced reliability modeling of
RAID storage systems.” Proc. 37th IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN '07),
Edinburgh, GB, pages 175–184, June 2007.

[11] G. A. Gibson, “Redundant disk arrays: Reliable, parallel
secondary storage,” Ph.D. Thesis, University of California,
Berkeley, 1990.

[12] R. Harris, “Why RAID 5 stops working in 2009,” ZDnet,
http://blogs.zdnet.com/storage/?p=162, July 18, 2007
(Retrieved on March 12, 2010)

[13] H. Kari: “Latent sector faults and reliability of disk arrays”,
Ph.D. thesis, Helsinki University of Technology, Sep. 1997.

[14] J.-F. Pâris, T. J. E. Schwarz, D. D. E. Long and A. Amer,
“When MTTDLs are not good enough: Providing better esti-
mates of disk array reliability,” Proc. 7th International
Information and Telecommunication Technologies

Symposium (I2TS '08), Foz do Iguaçu, PR, Brazil, pp. 140–
145, Dec. 2008.

[15] J.-F. Pâris, A. Amer, D. D. E. Long and T. J. E. Schwarz,
“Evaluating the impact of irrecoverable read errors on disk
array reliability,” Proc. IEEE 15th Pacific Rim International
Symposium on Dependable Computing (PRDC '09),
Shanghai, China, pp. 379–384, Nov. 2009.

[16] D. A. Patterson, G. A. Gibson, and R. H. Katz, “A case for
redundant arrays of inexpensive disks (RAID),” Proc.
SIGMOD 1988 International Conference on Data
Management, Chicago, IL, pp. 109–116, June 1988.

[17] E. Pinheiro, W.-D. Weber and L. A. Barroso, “Failure trends
in a large disk drive population,” Proc. 5th USENIX
Conference on File and Storage Technologies (FAST '07),
San Jose, CA, pp. 17–28, Feb. 2007.

[18] S. Shah and J. Elerath, “Reliability analysis of disk drive
failure mechanisms”, Proc. 2005 IEEE Annual Reliability and
Maintainability Symposium (RAMS '05), Washington, DC,
Jan. 2005.

[19] B. Schroeder and G. A. Gibson, “A large-scale study of
failures in high-performance computing systems,” Proc. 40th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2006), Philadelphia, PA, pp.
249–258 , June 2006.

[20] B. Schroeder and G. A. Gibson, “Disk failures in the real
world: What does an MTTF of 1,000,000 hours mean to
you?” Proc. 5th USENIX Conference on File and Storage
Technologies (FAST '07), San Jose, CA, pp. 1–16, Feb. 2007.

[21] M. Schulze, G. Gibson, R. Katz and D. Patterson, “How
reliable is a RAID?” Proc. Spring COMPCON ‘89 Confer-
ence, San Francisco, CA, pp. 118–123, March 1989.

[22] T. J. E. Schwarz and W. A. Burkhard. “RAID organization
and performance,” Proc. 12th International Conference on
Distributed Computing Systems (ICDCS '92), Yokohama,
Japan, pp. 318–325 June 1992.

[23] T. J. E. Schwarz, Q. Xin, E. L. Miller, D. D. E. Long, A.
Hospodor and S. Ng, “Disk scrubbing in large archival
storage systems,” Proc. 12th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS '04), pp. 409–418,
Oct. 2004.

[24] C.-S. Tau and T.-I Wang, “Efficient parity placement schemes
for tolerating triple disk failures in RAID architectures,” Proc.
17th International Conference on Advanced Information
Networking and Applications (AINA'03), Xi'an, China, March
2003.

[25] E. Thereska, J. Schindler, J. Bucy, B. Salmon, C. Lumb, and
G. Ganger: “A framework for building unobtrusive disk
maintenance applications, Proc. 3rd USENIX Conference on
File and Storage Technologies (FAST '04), San Francisco,
CA, pp. 213–226, Apr. 2004

[26] A. Wildani, T. J. E. Schwarz, E. L. Miller and D. D. E. Long,
“Protecting against rare event failures in archival systems,”
Proc. 17th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS '09), London, GB, Sep. 2009.

[27] Q. Xin, E. Miller, D. Long, S. Brandt, W. Litwin, and T. J. E.
Schwarz, “Selecting reliability mechanism for a large object-
based storage system,” Proc. 20th Symposium on Mass
Storage Systems and Technologies (MSST '03), San Diego,
CA, pp. 146–156, Apr. 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

