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Abstract—Disk scrubbing periodically scans the contents of a 
disk array to detect the presence of irrecoverable read errors 
and reconstitute the contents of the lost blocks using the built-
in redundancy of the disk array.  We address the issue of 
scheduling scrubbing runs in disk arrays that can tolerate two 
disk failures without incurring a data loss, and propose to start 
an urgent scrubbing run of the whole array whenever a disk 
failure is detected.  Used alone or in combination with periodic 
scrubbing runs, these expedited runs can improve the mean 
time to data loss of disk arrays over a wide range of disk repair 
times.  As a result, our technique eliminates the need for 
frequent scrubbing runs and the need to maintain spare disks 
and personnel on site to replace failed disks within a twenty-
four hour interval. 

Keywords-irrecoverable read errors; RAID arrays; disk 
scrubbing. 

I. INTRODUCTION 
As today’s disks are much larger than they were five to 

ten years ago, the probability of encountering one or more 
bad blocks on a given disk is much higher now than it was 
then.  This situation has now reached a point where 
irrecoverable read errors are a major cause of data losses in 
disk arrays.  For instance, we have ample anecdotal evidence 
that more failures of RAID level 5 arrays [5, 11, 16, 21] are 
caused by a combination of a single disk failure and 
irrecoverable read errors on one or more of the surviving 
disks than by the simultaneous failure of two disks [12].1 

Two complementary approaches can be used to protect 
data against irrecoverable read errors.  First, we can mitigate 
the effects of these errors by using a more robust disk array 
organization.  One of the recommended options consists of 
switching to disk array organizations, such as RAID level 6 
[4, 22] that can tolerate either two simultaneous disk failures 
or a single disk failure and bad blocks on one or more of the 
remaining disks.  A more recent solution consists of adopting 
an intradisk parity scheme that introduces an additional level 
of redundancy inside each disk [6, 23].  Second, we can 
periodically scan the disk contents to detect irrecoverable 
read errors and attempt to recover the lost blocks by periodi-
cally “scrubbing” the disk contents [3, 26]. 

                                                           
1  Supported in part by the Petascale Data Storage Institute under 
Department of Energy Award DE-FC02-06ER25768. 

Consider for instance the case of a RAID level 6 array 
with eight to twelve disks.  The array will probably use disk 
scrubbing as an additional precaution against data loss.   The 
critical decision then is the frequency of the disk scrubbing 
runs.  While frequent scrubbing will reduce the number of 
irrecoverable read errors, they will also accelerate the disk 
aging process thus causing additional errors. 

We argue that we should consider the timing of the 
scrubbing runs as carefully as their frequency.  Observe first 
that a recently scrubbed disk is error-free and will remain in 
that state until new bad blocks manifest themselves.  This is 
to say that the most effective scrubbing scans are those that 
were completed immediately before one of the array disks 
fails. 

We cannot effectively predict disk failures but we can 
predict when a disk failure is likely to result in a data loss.  In 
the case of a RAID level 6, it would be a second disk failure 
occurring while uncorrected irrecoverable read errors are 
present on one or more of the remaining disks.  Hence the 
best way to protect the data against that failure is to run with-
out any delay a scrubbing scan of all the disks in the array.  
We call this technique expedited scrubbing as the scrubbing 
run has to be performed as quickly as possible to reduce the 
window of vulnerability of the array. 

Our preliminary results indicate that expedited scrubbing 
can significantly increase the mean time to data loss 
(MTTDL) of RAID level 6 and alleviate the need for 
frequent scrubbing runs.  In addition, the technique achieves 
good MTTDLs over a wide range of disk repair times thus 
alleviating the need for maintaining a local pool of spare 
disks and having maintenance personnel on call around the 
clock. 

The remainder of this paper is organized as follows.  
Section II reviews previous work.  Section III introduces our 
technique while Section IV discusses its performance.  
Section V mentions how our solution could be applied to 
other fault-tolerant disk array organizations and Section VI 
has our conclusions. 

II. IRRECOVERABLE READ ERRORS 
Irrecoverable read errors are also known as bad blocks or 

latent sector errors because the data loss is not detected until 
the block is accessed.  They are particularly harmful when 
they occur during the data reconstruction phase of a RAID 
level 5 array that has one failed disk, as they result in a data 
loss [12]. 



Disk drives fail for a number of reasons [1, 8, 17–20]. 
Some failures result in losing access to a complete disk.  
These full disk failures occur often without warning, but are 
sometimes preceded by a burst of recoverable or irrecover-
able sector errors. 

Other disk failures, known as latent failures, only affect a 
single sector or a relatively small number of sectors. 
Bairavasundaram and his colleagues from the University of 
Wisconsin-Madison found that 3.45% of 1.53 million disks 
studied developed latent sector errors over a period of 32 
months, though the number of affected sectors tended to be 
small [1].  There are numerous mechanisms that can cause 
such errors [10]: Many latent sector errors are caused during 
writing such as “high-fly writes”, writing on damaged parts 
of the media caused by loose hard particles, pits and voids, 
or off-track writes.  These errors can be discovered by 
validating writes shortly after reads.  Even after a successful 
write, thermal asperities, surface scratches by hard particles, 
smears by “soft” particles (such as stainless steel), or corro-
sion can occasion data losses.  Remarkably, “bit-rot”, that is, 
the degradation of the magnetization pattern in the media, is 
currently not a significant cause. These errors are latent, they 
are only recognized when trying to read the sector. 

The redundant storage organizations used by most multi-
disk storage systems—such as RAID levels 5 and 6—allow 
recovery from these latent errors in the absence of any other 
disk failures.  Frequently, the affected sectors are marked by 
the internal disk controller as unusable and their logical 
block address is mapped to spare sectors.  However, a 
system can lose data if it recovers from a complete disk 
failure relying on a disk with latent sector errors. Two 
possibilities arise to forestall this danger. First, we can use 
additional redundancy, either by using a two-or-more failure 
resilient redundancy scheme such as RAID Level 6 or by 
using additional redundancy in the disk itself (Intra-disk 
Redundancy [6, 26]). Second, latent disk errors can be 
detected and dealt with before they make recovery from a 
complete hard drive failure impossible. This latter approach 
is known as disk scrubbing [3, 12, 22, 25]. Media scrubs can 
use the SCSI VERIFY command to validate a sector’s integ-
rity using the error control coding embedded in the storage of 
sectors on magnetic media. It is possible, though usually not 
necessary, to further verify the contents by maintaining and 
recalculating a checksum over a number of disk sectors [27], 
since the number of instances where a sector failure changes 
contents erroneously are extremely rare. 

Scrubbing identifies latent sector errors by systematically 
checking all sectors for readability. Frequent scrubbing 
greatly increases the probability that a disk does not contain 
latent sectors, but has a negative impact on performance 
(since seeks cannot be preempted). Additionally, by increas-
ing the disk load, it can increase latent sector error and hard 
drive failure rates. To further improve its effectiveness, 
scrubbing can be supplemented with “read after write” to 
eliminate a category of causes for latent errors. Scrubbing 
can be deterministic or opportunistic.  Deterministic 
scrubbing schedules scrubbing operations at fixed intervals 
and guarantees a full sweep of the disk within a set period.  

In contrast, opportunistic scrubbing uses periods of zero user 
utilization to perform its task.   

Baker et al. [2] enumerated the multiple threats to data 
survivability in disk arrays and presented a window of 
vulnerability model (WOV) that takes into account temporal-
ity of faults.  They used that model to evaluate the impact of 
latent block errors on the MTTDL of mirrored data and 
based their estimate of the frequency of latent block errors on 
manufacturers’ specification of a 2-14 worst-case irrecover-
able bit rate. 

Elerath identified major categories of disk failure modes 
and discussed the impact of latent defects [7].  He observed 
that read error rates had actually decreased between 2004 
and 2007 and reported read-error rates varying between 
3.2×10-13 and 8×10-15 errors/byte.  In a more recent study [6], 
he introduces a formula that provides a good approximation 
of the expected number of data losses caused by double disk 
failures for an N + 1 RAID array.  His model takes into 
account latent disk errors that reveal themselves during the 
array rebuilding process and assumes that disk failures obey 
a Weibull distribution. 

III. EXPEDITED SCRUBBING 
As we mentioned earlier, recently scrubbed disks are 

error-free and remain in that state until new bad blocks mani-
fest themselves.  Thus the most efficient time to schedule a 
scrubbing run is just before the disk contents are needed.   

Many recent disk organizations tolerate two or more disk 
failures without data loss in the absence of irrecoverable read 
errors.  Returning to the case of a RAID level 6 array, we can 
see that this organization can tolerate: 
a) Two disk failures in the absence of irrecoverable read 

errors. 
b) One disk failure and an arbitrary number of irrecover-

able read errors, as long as each parity stripe contains at 
most one bad block. 

c) An arbitrary number of irrecoverable read errors as long 
as each parity stripe contains at most two bad blocks. 

Given the fairly low percentage of bad blocks in infected 
disk drives, we can safely assume that a RAID level 6 array 
will nearly always remain operational after having lost a disk 
but will lose data if a second disk fails unless all irrecover-
able read errors have been corrected beforehand.  To address 
that issue, we propose to start an urgent scrubbing scan 
whenever we detect a failure of one of the array disks.  We 
call this technique expedited scrubbing because this 
scrubbing must be performed as expeditiously as possible in 
order to bring the array into a safer state as quickly as possi-
ble.  As we can see, our technique can be used either alone or 
in combination with periodic scrubbing. 

Expedited scrubbing belongs to the realm of reactive 
approaches to fault-tolerance because it takes no action in 
the absence of any disk failures.  As a result, it consumes no 
resources when the array operates correctly and is only 
activated when it is most needed. 

As most techniques, expedited scrubbing has its limita-
tions.  First, it does not apply to RAID level 5 arrays and 
other array organizations that can only tolerate a single disk 
failure.  Second, it assumes that the scrubbing process can be 



performed relatively quickly, say, in 24 hours or less, with-
out disturbing the operation of the array.  Finally, it does not 
perform well in the presence of correlated disk failures.  
Consider for instance the case of an overheated disk array 
that has just lost a disk.  Initiating a scrubbing run at that 
moment will result in the production of additional heat and 
may precipitate the failure of other disks. 

IV. PERFORMANCE ANALYSIS 
We will base our study on the observations of 

Bairavasundaram et al. because they were collected from a 
very large disk population and offer us a better insight into 
the effect of bad blocks on disk array reliability. 

Consider for instance the case of a RAID level 5 array 
with N + 1 disks.  We know that the array can reconstitute 
missing data as long as each block stripe participating in the 
reconstruction process contains only one block that cannot be 
read.  This is why such arrays can tolerate a single disk fail-
ure but not a double disk failure nor the combination of a 
single disk failure with one or more bad blocks on one of the 
N remaining disks.  Let us now consider what happens when 
all the array disks are operational but two of them contain 
bad blocks.  Thanks to the built-in redundancy of the array, 
we will be able to reconstitute all the lost data as long as no 
block stripe contains more than one bad block.   

Assuming that a fraction f of the blocks of a disk are bad, 
the probability of observing more than one bad block in a 
single stripe will be 

))1()1()1(1( 1 NN
b ffNfn −+−−− + , 

where nb is the number of stripes in the array (and thus the 
number of blocks on each disk) and N + 1 its number of 
disks. 

Consider now the case of a RAID array consisting of five 
one-terabyte disks with a block size of four kilobytes.  The 
formula above shows that we would need to observe at least 
495 bad blocks on each disk to have a one percent probabil-
ity of having two bad blocks in the same stripe.  Given that 
Bairavasundaram et al. observed an infection rate of 3.54 
percent over 32 months and reported that 80 percent of the 
affected disks had less than 50 bad blocks, we can safely 
infer that the occurrence of two bad blocks in the same stripe 
will be an extremely unlikely event whose probability can be 
safely neglected. 

A. Fundamental assumptions 
Estimating the reliability of a storage system means 

estimating the probability R(t) that the system will operate 
correctly over the time interval [0, t] given that it operated 
correctly at time t = 0.  Computing that function requires 
solving a system of linear differential equations, a task that 
becomes quickly unmanageable as the complexity of the 
system grows.  A simpler option is to focus on the mean time 
to data loss (MTTDL) of the storage system, which is the 
approach we will take here. 

Our system model consists of an array of disks with inde-
pendent failure modes.  When a disk fails, a repair process is 
immediately initiated for that disk.  Should several disks fail, 
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Fig. 1.  State-probability transition diagram for a RAID level 6 array 
consisting of n disks, all subject to disk failures and irrecoverable read 
errors. 

the repair process will be performed in parallel on those 
disks.  We assume that disk failures are independent events 
that are exponentially distributed with mean λ.  In addition, 
we require repairs to be exponentially distributed with mean 
μ.  Both hypotheses are necessary to represent each system 
by a Markov process with a finite number of states. 

We assume that each disk is initially in a state where all 
its defective blocks have been “mapped out” in a way that 
prevents users from accessing them.  We further assume that 
the appearances of bad blocks on disks are independent 
events and are exponentially distributed with mean λ'.  This 
is to say that we are not modeling the formation of individual 
bad blocks but rather the transition from a state where all 
defective blocks have been mapped out to a state where the 
disk has one or more bad blocks holding data.  Once a disk 
has one or more bad blocks, it remains in that state until the 
missing data are reconstructed and written in one of the spare 
sectors of the disk.  This recovery could be the result of a 
failed read access or a periodic scrubbing of the whole disk.  
Combining the effect of these two processes we assume that 
disks with bad blocks will return to their original state at a 
rate μ' and that these transitions follow an exponential law. 

B. A RAID level 6 array using periodic scrubbing 
Let us consider the case of a RAID level 6 with n disks 

[4, 22] whose contents are periodically scrubbed to detect 
and repair irrecoverable read errors.  As Fig. 1 shows, the 
array can be at any time in one out of eight possible states. 

State <00> represents the initial state of the system when 
the n disks are operational and all their bad blocks are 
mapped out.  The first disk failure will bring the array to 
state <10>.  A second disk failure will bring it to state <20> 
and a third disk failure will result in a data loss.   

The presence of bad blocks on a single disk will respec-
tively bring the array from state <00> to state <01>, from 
state <10> to state <11> and from state <20> to the failed 
state.  Similarly, the presence of bad blocks on a second disk 



would respectively move the array from state <01> to state 
<02+> and from state <11> to state <12+>.   

The appearance of bad blocks on a third disk will leave 
the system in either state <02+> or <12+> as we do not 
distinguish between array configurations having bad blocks 
on two disks and those having bad blocks on three or more 
disks. 

From state <01>, the array can: 
a) Go to  state <10> if the disk that has bad blocks fail; 
b) Go to state <11> if any of the n – 1 other disks fail; 
c) Go to state <02+> if more disks develop bad blocks;  
d) Return to its original state once all bad blocks have 

been mapped out. 
From state <11>, the array can: 

a) Go to state <20> if the disk that has bad blocks fails; 
b) Incur a data loss if any of the n – 2 other disks fails; 
c) Go to state <12+> if one or more disks develop bad 

blocks;  
d) Return to its original state once all bad blocks have 

been mapped out. 
Observe that our model assumes that a disk failure occur-

ring when the array is in state <02+> will always bring that 
array into state <12+>. As a result, we neglect the less 
frequent case where the array has bad blocks on exactly two 
disks and one of them fails, thus bringing the array into state 
<11>.  This observation does not apply to state <12+> since 
the loss of any of its n – 1 operational disks will result in a 
data loss.  

Replacing the failed disks will bring the array from state 
<20> to state <10> and from state <10> to its original state.  
In the same way, scrubbing scans will bring the array from 
state <02+> to state <00> and from state <12+> to state 
<10>. 

The Kolmogorov system of differential equations 
describing the behavior of the disk array is 
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Fig 2.  Expected MTTDL of a RAID level 6 array consisting of ten disks, 
all subject to disk failures and irrecoverable read errors.  Each but the top-
most curve corresponds to a specific scrubbing interval.  

where pij(t) is the probability that the system is in state <ij> 
with the initial conditions p00(0) = 1 and pij(0) = 0 other-
wise.  The Laplace transforms of these equations are  
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Observing that the mean time to data loss (MTTDL) of the 
disk array is 
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we solve the system of Laplace transforms for s = 0 and 
compute the MTTDL of the array. The result is a quotient of 
two very large polynomials of degree 6 for the numerator 
and of degree 7 for the denominator. 

When μ' → ∞, that expression simplifies into the tradi-
tional formula for RAID level 6 arrays 
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Fig. 2 displays the MTTDLs achieved by a RAID level 6 
array with ten disks for selected values of the scrubbing 
interval and repair times that vary between half a day and 
seven days.  It confirms the results of a previous study that 
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Fig. 3.  State-probability transition diagram for a RAID level 6 array 
consisting of n disks, all subject to disk failures and irrecoverable read 
errors, when we allow expedited scrubbing. 

investigated a RAID level 6 array with six disks and 
concluded that scheduling scrubbing scans once a month 
instead of once a year can increase the MTTDL of the array 
from 600 to almost 1,000 percent depending on the disk 
repair time [15]. 

C. Enabling expedited scrubbing 
Let us now investigate what impact expedited scrubbing 

would have on the MTTDL of the array.  We assume now 
that we initiate an accelerated scrubbing procedure at a rate 
μ'' much higher than the regular scrubbing rate whenever we 
detect the loss of a disk.  As Fig. 3 shows, the state transition 
probability diagram of our array is barely distinguishable 
from that of an array undergoing periodic scrubbing.  The 
sole difference is that the state transitions from states <11> 
and <12+> now occur at a rate μ'' that is measured in hours 
instead of months. 

Using the same techniques as in the previous case, we 
compute the MTTDL of a RAID level 6 array with ten disks 
that undergo expedited scrubbing each time it detects the loss 
of a disk. The result is an even larger quotient of two very 
large polynomials of degree 6 for the numerator and of 
degree 7 for the denominator. 

Fig. 4 displays the MTTDLs achieved by a RAID level 6 
array with ten disks for selected values of the scrubbing 
interval and repair times assuming that expedited scrubbing 
can be done in 24 hours.  As we can see, the MTTDL 
improvements resulting from expedited scrubbing greatly 
vary with the scrubbing interval and the repair times. Emer-
gency disk scrubbing performs best at the longest scrubbing 
interval and the longest repair times.  Conversely, emergency 
disk scrubbing offers much less benefits when the disks are 
frequently scrubbed and quickly repaired.  This should not 
surprise us.  First, frequently scrubbed disks are less likely to 
contain bad blocks.  Second, fast repair times leave less time 
for the beneficial effects of expedited scrubbing to manifest 
themselves.   Overall, one of the major advantages of expe-
dited scrubbing is that it performs well over a wide range of  
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Fig 4.  Expected MTTDL of a RAID level 6 array consisting of ten disks, 
assuming that its disks are scrubbed at regular time intervals and scrubbed 
within a twenty-four hour interval after a disk failure. 
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Fig 5.  Expected MTTDL of a RAID level 6 array consisting of ten disks, 
using either periodic scrubbing or pure expedited scrubbing. 

disk repair times.  This is a significant advantage because 
fast repair times require maintaining a local pool of spare 
disks and having staff on call round the clock.  Since RAID 
level 6 arrays using expedited scrubbing tolerate repair times 
of up to one week, if not more, they will be cheaper and 
easier to maintain than arrays relying on periodic scrubbing 
alone. 

D. Relying exclusively on expedited scrubbing 
To test the limits of our approach, we considered the 

option of relying exclusively on expedited scrubbing, thus 
completely eliminating periodic disk scrubbings.  This 
approach is particularly suited to large archival systems that 
experience long periods of idleness during which their disks 
remain powered down and need to be powered up to be 
scrubbed  

Fig. 5 displays the MTTDLs achieved by a RAID level 6 
array with ten disks for selected values of the expedited 
scrubbing time and the disk repair time.  These values are 
fairly pessimistic because they were obtained by positing 
μ' = 0 in our previous model.  In reality, disks have a finite 



lifetime and irrecoverable read errors will get automatically 
repaired every time we transfer its data to a new disk array. 

As we can see, exclusively relying on expedited 
scrubbings results in fairly good MTTDLs as long as these 
scrubbings can be performed fairly quickly, say, in less than 
24 hours after a disk failure.  We also notice that pure expe-
dited scrubbing performs quite well over a wide range of 
disk repair times. 

E. Discussion 
In order to be able to use a stochastic model with a finite 

number of states, we had to introduce several assumptions 
that are not valid for real systems.  First, we assumed that 
failure occurrences and repair times were exponentially 
distributed.  This is not true for real disk populations as 
failures tend to be distributed according to a Weibull 
distribution and repair time distributions have much smaller 
coefficients of variation than the exponential distribution.  
Second, we assumed constant failure rates λ and λ' over the 
lifetime of the array, while actual failure rates tend to 
decrease over the first few months of the disk lifetime and 
increase again after a few years.   

Other simplifying assumptions were the result of a lack 
of data.  First, the failure rates λ and λ' that we selected were 
average rates estimated over very large heterogeneous 
populations of disks comprising both enterprise class and 
nearline class disks.  Second, we did not take into account 
the impact of correlated failures on the MTTDL of the array.  
This could have been handled by making the two failure 
rates λ and λ' functions λ(m) and λ'(m) of the number m of 
previous failures.  We could not do this due to insufficient 
data. 

A last issue concerns our choice of MTTDL to represent 
the reliability of disk arrays.  MTTDLs characterize fairly 
well the behavior of disk arrays that would remain in service 
until they fail without ever being replaced for any reason 
other than a device failure.  This is rarely the case as disk 
arrays are typically replaced after five to seven years, that is, 
well before they experience any failure.  MTTDLs do not 
take into account this relatively short lifetime, and tend to 
overestimate the probability of a data loss over their lifetime.  
This effect remains negligible as long as the time to repair an 
individual disk is at least one thousand times shorter than its 
MTTF [14]. 

V. APPLICATION TO OTHER FAULT-TOLERANT DISK 
ORGANIZATIONS 

While we have only considered so far the application of 
our technique to RAID level 6 arrays, it applies to all fault-
tolerant disk organizations tolerating two or more disk fail-
ures without data loss.  In the case of organizations tolerating 
more than two data losses, such as HDD-1 and HDD-2 
schemes [24], we may want to adjust the priority level of the 
scrubbing tasks to their urgency.  As an example, the failure 
of a single disk might trigger a low-to-medium priority 
scrubbing process that would not affect other disk requests 
while a second disk failure would increase the priority of the 
scrubbing process as data preservation becomes our para-
mount concern. 

VI. CONCLUSION 
We have presented a new scrubbing technique for disk 

arrays tolerating two or more disk failures.  Unlike periodic 
scrubbing or opportunistic scrubbing, expedited scrubbing 
starts an urgent scrubbing of the whole array whenever a disk 
failure is detected.  Used alone or in combination with 
periodic scrubbing, our technique can improve the mean time 
to data loss of disk arrays over a wide range of disk repair 
times.  As a result, it allows less frequent scrubbing runs and 
reduces the need to maintain spare disks and personnel on 
site to replace failed disk drives within 24 hours. 
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