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A B S T R A C T   

Failure of tailings dams can result in significant spill, loss of human lives, and damages to the environment and 
infrastructure. Cyclic loadings such as earthquakes and blasting are among the main threats to the stability of 
tailings dams. Seismic stability analyses of tailings dams are further challenged by the uncertainty and variability 
of tailings properties. In this paper, the influence of input motion characteristics and spatial variability in coal 
tailings (CT) properties on the seismic stability of a typical upstream-construction CT dam is investigated. Among 
the input motion characteristics, peak ground acceleration (PGA), equivalent number of cycles (ENC), and fre
quency content are the focus of this study. First, the applicability of two advanced constitutive plasticity models, 
PM4Sand and PM4Silt, in simulating the cyclic behavior of CT is evaluated and a suitable model is selected. The 
undrained shear strength of CT is modeled as a spatially correlated Gaussian random field. Six input motions — 
one blast and five earthquakes — are selected for the dynamic analyses. The dynamic analyses are conducted in 
co-seismic and then post-seismic stages. The seismic stability of the CT dam with uniform properties (i.e. uniform 
models) is compared to the stochastic models under the selected input motions. Post-seismic analysis was found 
critical for the stochastic models. This study highlights the importance of stochastic modeling and the consid
eration of spatial variability in seismic stability analysis of CT dams.   

1. Introduction 

Coal tailings (CT) are the residue as a result of mine extraction process 
and mostly consist of water, coal fraction, and non-coal materials such as 
sand and silt. CT are commonly characterized as low plasticity silty sand to 
sandy silt and are typically deposited in the form of slurry behind tailings 
dams. Generally, tailings dams have more vulnerability than conventional 
and engineered dams used for water storage, and their annual failure rate 
is 120 times higher than that of water-storage dams (Azam and Li, 2010). 
Tailings dams are constructed by three methods: downstream, centerline, 
and upstream, and the upstream configuration has the least stability (Vick, 
1990; Rico et al., 2008). A recent example of a tailings dam failure was the 
Vale’s Brumadinho iron ore tailings dam in Brazil in 2019, which was the 
11th most serious tailings dam failure in the last decade and resulted in 
over 300 life losses and significant social, economic, and environmental 
impacts (Home, 2019). 

One of the most common causes of tailings dams’ failure is lique
faction (ICOLD, 2001; Plant and Harriman, 2008). Liquefaction of CT 
could lead to different forms of failure such as failure of the dam’s slope 
due to weakened and liquefied underlying layers, overtopping of the 
liquefied material, and increase of lateral pressure on the dikes (ICOLD, 
2001). Engineering procedures and numerical modeling tools can be 
used to better approximate these complex processes and consequently 
assess the seismic stability of CT dams for a variety of demand and ca
pacity scenarios. Various constitutive plasticity models such as UBC
SAND (Beaty and Byrne, 1998), PM4Sand (Boulanger and Ziotopoulou, 
2017), and PM4Silt (Boulanger and Ziotopoulou, 2018) have been 
developed to approximate the response of sand and low plasticity silt in 
earthquake engineering applications. However, the applicability of 
these models to simulate cyclic behavior of CT has not been accurately 
assessed. UBCSAND, a non-linear effective stress plasticity model, was 
proposed by Beaty and Byrne (Beaty and Byrne, 1998) to determine the 
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mechanical response of sand under cyclic loading. UBCSAND has been 
used to simulate the dynamic behavior of sand and low plasticity tailings 
in engineering practices (Castillo et al., 2005; Ferdosi et al., 2015; 
James, 2009; Seid-Karbasi and Byrne, 2004). PM4Sand and PM4Silt are 
plane-strain bounding-surface plasticity models developed by Boulanger 
and Ziotopoulou (Boulanger and Ziotopoulou, 2017; Boulanger and 
Ziotopoulou, 2018). PM4Sand assesses the drained and undrained, and 
cyclic and monotonic mechanical responses of sands and non-plastic 
silts, while PM4Silt assesses those of low plasticity silts and clays. 
Both the PM4Sand and PM4Silt plasticity models are based on the 
framework of the stress-ratio controlled, critical state compatible, 
bounding-surface plasticity model for sand developed by Dafalias and 
Manzari (Dafalias and Manzari, 2004). PM4Sand and PM4Silt have been 
successfully used to simulate both sandy materials (Ziotopoulou and 
Montgomery, 2017; Ziotopoulou and Boulanger, 2016) and alluvial silty 
deposits (Boulanger et al., 2019; Boulanger, 2019; Boulanger and 
Montgomery, 2016). Field and laboratory testing by Salam et al. (Salam 
et al., 2019) showed that the cyclic behavior of CT is complex and 
transitions from sand-like to clay-like, because the composition of CT is a 
mixture of sand and silt. Therefore, both PM4Sand and PM4Silt could be 
potentially used for simulating the cyclic behavior of CT. 

Coal tailings have noticeable heterogeneity and spatial variability. In 
a recent study, Liew et al. (Liew et al., 2020) showed the significant 
heterogeneity in coal tailings properties using in-situ seismic in
vestigations in an active Appalachian coalfield. Such spatial variability 
of slurry’s geotechnical properties is caused by variations of slurry 
discharge locations and extracted coal materials during the service time 
of a tailings impoundment. Therefore, the spatial variability of proper
ties should be considered in the stability analyses, as a model with 
uniform properties may not capture the critical failure modes. For 
example, the failure of the Kingston Tennessee Valley Authority (TVA) 
coal ash impoundment was partially due to the liquefaction of a loose 
layer under the dikes (Plant and Harriman, 2008). This mode of failure 
cannot be estimated unless the stratified medium of tailings is accounted 
for in the stability analysis. 

In this paper, the uncertainty in seismic response of a typical 
upstream-construction CT dam is analyzed considering the variability in 
CT geotechnical properties. A suitable pore pressure plasticity model for 
simulating the cyclic response of CT is selected through single element 
simulations and calibrations against experimental results. A represen
tative number of realizations for the CT section of the dam are generated 
by the Karhunen-Loeve expansion method. It is of interest to evaluate 
how system response and its uncertainty are influenced by input motion 
characteristics such as peak ground acceleration (PGA), equivalent 
number of cycles (ENC) as a proxy for duration, and frequency content. 
Six input motions representing a variety of PGA, ENC, and frequency 
content are selected for the numerical simulations. The seismic perfor
mance of the CT dam is analyzed under co-seismic stage and then post- 
seismic stage to consider the volumetric strains due to reconsolidation 
after each shaking event. Uniform models are also studied and compared 
to the stochastic models to illustrate the necessity of stochastic 
modeling. 

2. Model configuration 

A typical upstream-construction CT dam was generated in the Fast 
Lagrangian Analysis of Continua (FLAC Version 8) commercial platform, 
as shown in Fig. 1. The geometry approximately followed the geometry 
of Mochikochi tailings dam, discussed in Byrne and Seid-Karbasi (Seid- 
Karbasi and Byrne, 2004). As reported by Rico et al. (Plant and Harri
man, 2008), 45% of failed tailings dams had height less than 15 m. 
Accordingly, the generated model was 90 m long and 15 m tall including 
a 3-m thick bedrock and 12-m thick CT behind a 3:1 (H:V) slope formed 
by four dikes, each 3 m high. The model was made long enough such that 
the failure mechanism around the slope is not influenced by the 
boundaries. The meshing was implemented such that the spatial element 
size was small, particularly in the vertical direction, to ensure proper 
wave transmission through the model (Itasca Consulting Group, 2017). 

The dikes and bedrock properties were adopted from studies where 
the cyclic behavior and seismic stability of CT dams were evaluated. The 
bedrock was assumed to be an elastic and homogeneous material with a 
density of 2400 kg/m3, a shear modulus of 860 MPa, and a Poisson’s 
ratio of 0.3 in all simulations. The dikes, which are typically constructed 
with gravelly sand, were modeled using the Mohr-Coulomb elastoplastic 
model. The density, cohesion, and friction angle of the dikes were 
selected to be 1700 kg/m3, 10 kPa, and 35◦, respectively, based on 
previous studies (Byrne and Seid-Karbasi, 2003; Ferdosi et al., 2015; 
Zeng et al., 2008). The shear modulus of the dikes was pressure- 
dependent with Poisson’s ratio of 0.3 and calculated based on the Har
din (Hardin, 1978) equation that was developed for granular materials. 
The default hysteresis model in FLAC2D was used among the built-in 
tangent modulus functions to define the shear modulus reduction 
curves for the dikes (Itasca Consulting Group, 2017). The input pa
rameters for the default hysteresis model were adopted from Zeng et al. 
(Zeng et al., 2008). 

The spatial variability in geotechnical properties of CT is significant 
mainly due to the depositional processes in the field. A uniform model 
for the CT may not accurately represent the system response under 
loading events. In this study, CT were studied as uniform and spatially 
variable materials, respectively. Since CT are composed of sand and low 
plasticity silt and demonstrate cyclic behaviors that could be interpreted 
as either cyclic liquefaction or cyclic mobility, both PM4Sand and 
PM4Silt could be considered in the design and analysis. The applicability 
and calibration of both models for the CT are presented in the next 
section. 

The hydrostatic pore pressure was established through the model, 
and the CT were assumed to be fully saturated and the toe of the bottom 
dike was the drainage zone. The boundaries were extended sufficiently 
far from the failure zone to minimize the influence of boundaries on the 
model response. A free-field boundary condition was assigned to the side 
boundaries and a quiet boundary was considered at the bottom 
boundary in both the horizontal and vertical directions during the dy
namic analyses. The outcrop input motions were applied in a form of 
shear stress time series at the base of the model using the compliant-base 
procedure by Mejia and Dawson (Mejia and Dawson, 2006). A Rayleigh 

Fig. 1. Typical upstream-construction CT dam model generated in FLAC2D.  
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damping of 0.5% at a center frequency of 3 Hz was considered for the CT 
to account for low-strain damping (Boulanger and Montgomery, 2016). 
Only the CT were considered liquefiable and water flow was not 
permitted during the dynamic analyses due to the low permeability of 
CT (Salam et al., 2019). The average permeability of the CT studied by 
Salam et al. (Salam et al., 2019) was 6 × 10− 6 cm/s, which justifies the 
undrained condition assumption under cyclic loading. The first column 
of the zones at the far left boundary was considered non-liquefiable to 
avoid inaccurate free-field boundary calculations, as recommended by 
the FLAC2D manual (Itasca Consulting Group, 2017). 

The seismic performance of the CT dam was evaluated in two stages: 
1) during the cyclic loading (i.e. co-seismic) and 2) after the cyclic 
loading (i.e. post-seismic). Co-seismic analysis included the non-linear 
effective stress analysis during the motion. Post-seismic analysis 
considered the excess pore pressure dissipation and effective stress in
crease after the motion. Accordingly, the dynamic analysis was 
continued after each shake to determine the volumetric strains due to 
reconsolidation. An empirical approach of reducing elastic shear 
modulus was used in PM4Sand and PM4Silt to calculate the volumetric 
strains during the reconsolidation process (Boulanger and Ziotopoulou, 
2017; Boulanger and Ziotopoulou, 2018). 

2.1. PM4Sand and PM4Silt calibration based on CT cyclic response 

Both PM4Sand and PM4Silt models require three primary input pa
rameters. The contraction rate parameter (hpo), which estimates the plastic 
volumetric strain rate, is the first primary input parameter and is required 
in both models. hpo is a soil specific input parameter and should be cali
brated based on the relationship of cyclic stress ratio (CSR) versus the 
number of cycles (N) to reach liquefaction, i.e., the CSR-N curve deter
mined by laboratory testing. Shear modulus coefficient, G0, is the second 
primary input parameter and is required in both models. The elastic shear 
modulus is determined by G0. The remaining primary input parameters, 
relative density (Dr) for PM4Sand, and undrained shear strength at critical 
state under earthquake loading (su,cs,eq) for PM4Silt, are determined by 
either empirical relationships or in-situ and laboratory tests. Undrained 
shear strength ratio (su,cs,eq_Rat), which is su,cs,eq normalized by vertical 
effective stress, is used in this study instead of su,cs,eq. In addition to the 
primary input parameters, there are eighteen and twenty secondary input 
parameters defined in the PM4Sand and PM4Silt models, respectively. 

To evaluate the applicability of PM4Sand and PM4Silt in simulating 
the cyclic behavior of CT, the cyclic response of anthracite CT in cyclic 
direct simple shear (cyclic DSS) tests reported by Salam et al. (Salam 
et al., 2019) was simulated by both models. The CT showed a transi
tional cyclic behavior from clay-like to sand-like in Salam et al. (Salam 
et al., 2019). Accordingly, either cyclic liquefaction or cyclic mobility is 
likely to be observed in CT during cyclic loading. This characteristic is 
due to the composition of CT (i.e. mixture of sand and silt) and plasticity 
index less than or equal to 7 (Salam et al., 2019). Therefore, it is 
necessary to examine the abilities of both PM4Sand and PM4Silt in 
capturing the cyclic behavior of CT. 

Based on the available experimental data, only primary input pa
rameters were used to calibrate the models for the tested CT; the sec
ondary input parameters retained their default values. Thus, the 
experimental CSR-N curve was not closely matched by the model sim
ulations. This approach is in line with the model application in the 
practice, where oftentimes data are only available to calibrate primary 
input parameters. The primary input parameters, Dr, su,cs,eq_Rat, and Go of 
the CT sample in Salam et al. (Salam et al., 2019) were 50%, 0.25, and 
160, respectively. The contraction rate parameter, hpo, was calibrated for 
both models to match the CSR determined using cyclic DSS tests at 15 
cycles. The effective vertical stress in the cyclic DSS tests and the nu
merical calibration was 60 kPa. Using single element simulations, the hpo 
parameter was calibrated for CT to a value of 0.21 and 0.83 in PM4Sand 
and PM4Silt, respectively. The CSR-N curve on log-scale can be 
expressed by a power law of CSR = a× (Nfailure)

− b, where Nfailure is 

defined as number of cycles to reach 5% double amplitude shear strain 
(DAS) in the cyclic DSS tests. The experimental and simulated CSR-N 
curves and the corresponding equations are shown in Fig. 2. The esti
mated b-value in the PM4Sand and PM4Silt simulations was 0.25 and 
0.23, respectively, while the b-value from the cyclic DSS test was 0.17. 
The CSR-N curves in Fig. 2 show that both PM4Sand and PM4Silt per
formed similarly in estimating the liquefaction resistance of the CT. Both 
models approximated higher cyclic resistance at large CSR values 
compared to the cyclic DSS test results. For example, the simulated CT 
reached failure at larger number of cycles at CSR of 0.15 compared to 
the cyclic DSS test result. To further investigate the applicability of 
PM4Sand and PM4Silt in approximating the cyclic response of the CT, 
the shear stress-strain loops, shear strain accumulation, and pore pres
sure ratio from the experiments and the simulations were compared. 

The simulated stress-strain loops by PM4Sand and PM4Silt are 
compared against the cyclic DSS test results and are shown in Fig. 3 (a) 
and (b) for CSR of 0.12. According to Fig. 3 (a) and (b), although the 
initial plastic behavior of CT was not captured by the models, the wide 
shear stress-strain loops that were observed through cyclic loading were 
better approximated by PM4Silt than by PM4Sand. However, both 
models estimated the 5% DAS occurrence at comparable number of 
cycles (i.e. N≈10). Fig. 3 (c) and (d) show the accumulation of shear 
strain with number of cycles approximated by PM4Sand and PM4Silt. 
The soil element simulated by PM4Sand did not accumulate large shear 
strains until the last cycle, where the sample suddenly reached 5% DAS. 
The soil element simulated by PM4Silt experienced progressive accu
mulation of shear strain until failure, similar to the laboratory obser
vation. In addition, the excess pore pressure ratios (ru) estimated by 
PM4Sand and PM4Silt along with the observed ru in the cyclic DSS test 
are shown in Fig. 3 (e) and (f). The difference in estimating excess pore 
pressure ratio by PM4Sand and PM4Silt was small since the final ru was 
approximated as 0.8 ~ 0.9 by both PM4Sand and PM4Silt. The esti
mated ru by PM4Sand was found to approximate the lower bound of ru 
from cyclic DSS test before the last cycle, as shown in Fig. 3 (e). Ac
cording to Fig. 3 (f), the trend of pore pressure ratio with the cycles was 
slightly better approximated by the PM4Silt model. The transitional 
behavior of CT between clay-like and sand-like behavior observed by 
Salam et al. (Salam et al., 2019) was further confirmed by noticing 
insignificant differences between PM4Sand and PM4Silt calibration re
sults. Both models showed limitations in approximating the cyclic 
behavior of the tested sample such as higher resistance at high CSRs and 
the initial elastic behavior under cyclic loading. Overall, PM4Silt 
showed better approximation specifically in terms of strain accumula
tion and cyclic mobility (i.e. softening) of the CT. In addition to the 
calibration results, a shear strength related index (Su,cs,eq_Rat in PM4Silt) 

Fig. 2. Experimental and numerically simulated CSR-N curves for the stud
ied CT. 
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may better represent the behavior and consistency of fine-grained ma
terial such as coal tailings compared to relative density (Dr in PM4Sand). 
Therefore, PM4Silt was selected to model the CT in the seismic stability 
simulations. 

2.2. Random fields generation for CT 

Among the three primary input parameters (su,cs,eq_Rat, Go, and hpo) 
that are required to model the CT using PM4Silt, su,cs,eq_Rat was modeled 

as a spatially correlated Gaussian random field. Random field repre
sentation approach has been adopted in several other geotechnical en
gineering applications [e.g. Boulanger, 2019; Boulanger and 
Montgomery, 2016; Fenton and Griffiths, 2003]. Random fields are 
defined by a probability distribution, including mean and standard de
viation, and auto-correlation functions based on available data. An auto- 
correlation function states the distance in vertical and horizontal di
rections, within which soil properties are correlated. The Karhunen- 
Loeve (K-L) expansion method was adopted to generate and discretize 

Fig. 3. Cyclic responses of CT from cyclic DSS test and simulations at CSR = 0.12.  
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the random fields, as described in Phoon and Ching (Phoon and Ching, 
2014) and Eq. (1): 

R(x, y, θ) ≈ μ+
∑M

i=1

̅̅̅̅
λi

√
Φi(x, y)ξi(θ) (1) 

R(x, y, θ) is the Gaussian random filed, where x and y are the co
ordinates of the points in the space, θ denotes the stochastic character
istic of the random field such that ξi(θ) are uncorrelated standard 
random variables with zero mean and unit standard deviation. λi and M¤i 

are the eigenvalues and eigenfunctions, respectively, of the covariance 
matrix formed by the covariance function (Eq. (2)). M is the truncation 
order of the expansion series and determines the accuracy and 
smoothness of the generated random field. The series was truncated at 
M = 10, where sufficient accuracy and smoothness were achieved for the 
distribution of su,cs,eq_Rat within the random fields. 

The undrained shear strength of tailings and similar soils such as silty 
alluvial soils reported in the literature (e.g. Castro, 2003, Hegazy et al., 
2004, Idriss and Boulanger, 2008, Kalinski and Salehian, 2016, Ladd and 
Foott, 1974, Olson and Stark, 2002, Phoon et al., 1995, Phoon and 
Kulhawy, 1999, Robertson, 2009, Salam et al., 2019, Yu et al., 2019) 
were used to establish the probability distribution for su,cs,eq_Rat. 
Lognormal distribution has been commonly assumed for undrained 
shear strength of fine-grained soils (Fenton and Griffiths, 2005; Wolff 
et al., 1996). Accordingly, a lognormal distribution with mean value (μ) 
of 0.2 and coefficient of variation (COV) of 20% was found the best 
estimate for su,cs,eq_Rat. An exponential autocorrelation function was also 
adopted for the CT properties, as shown in Eq. (2). The correlation be
tween arbitrary points in the random field is defined by the standard 
deviation of the random field (σ) and autocorrelation lengths (lx and ly). 
Due to the limited data concerning the stratification of tailings, the 
horizontal (lx) and vertical (ly) autocorrelation lengths were adopted 
from values reported for alluvial silty soils, which have similar deposi
tion process and composition to CT. Accordingly, the horizontal and 
vertical autocorrelation lengths were assumed to be 15 m and 1.5 m, 
respectively (Ji et al., 2012). 

C[(x1, y1), (x2, y2) ] = σ2exp
(

−
|x1 − x2|

lx
−
|y1 − y2|

ly

)

(2) 

The shear modulus coefficient, Go, was correlated to su,cs,eq_Rat by the 
equation proposed by Dickenson (Dickenson, 1994) with a slight 
adjustment to represent the CT shear modulus, as shown in Eq. (3). The 
main equation was developed for cohesive soils in the San Francisco Bay 
Area with a constant factor equal to 23. However, the constant factor 
was scaled up to 28 to fit the available data for the shear modulus of the 
tested CT by Salam et al. (Salam et al., 2019). 

Gmax = ρ⋅
(

28⋅
(
su,cs,eq Rat⋅σ’

v
)0.475

)2
(3)  

where ρ is total density and σ’
v is vertical effective stress. Keeping hpo 

constant (Boulanger and Montgomery, 2016), the CSR versus number of 
cycles to reach 5% DAS for the CT was simulated for three values of su,cs, 

eq_Rat (i.e. 0.15, 0.2, and 0.25) using PM4Silt. Fig. 4 shows the increasing 
trend in cyclic resistance of CT due to increase in su,cs,eq_Rat. For example, 
the required number of cycles to reach 5% shear strain increased from 
approximately 8 to 25, when su,cs,eq_Rat of CT increased from 0.15 to 0.25. 
Fig. 4 signifies the necessity of sensitivity analysis and stochastic 
modeling for the seismic stability of CT dams. 

In order to stochastically evaluate seismic stability of the model, 66 
realizations for the CT section in the model were selected. The Latin Hy
percube Sampling (LHS) method was adopted to select the representative 
realizations (Betz et al., 2014). Fig. 5 presents four realizations (A, B, C, 
and D) out of the 66 selected realizations. The su,cs,eq_Rat range varies 
among the realizations. For example, the maximum values for su,cs,eq_Rat 
are 0.25, 0.35, 0.5, and 0.3 in Realization A to D, respectively. As shown in 
Fig. 5, the variability of su,cs,eq_Rat forms extremely strong and weak 

pockets within the tailings, which could contribute to co-seismic or post- 
seismic failure of the CT dam. The su,cs,eq_Rat variation through depth and 
horizontal distance is also shown in Fig. 5. The solid line shows the 
average su,cs,eq_Rat, which fluctuates around the set average value (i.e. 0.2) 
in both vertical and horizontal directions. Three uniform models were also 
generated with su,cs,eq_Rat of 0.15 (lower bound), 0.2 (best estimate), and 
0.25 (upper bound). su,cs,eq_Rat = 0.15 was selected to represent a weak CT 
dam; and su,cs,eq_Rat = 0.25 was selected to represent a strong CT dam. 

3. Input motions and analysis approach 

Six input motions were selected to investigate the effect of PGA, ENC 
as a proxy for duration, and frequency content on seismic stability of the 
CT dam. Fig. 6 presents the acceleration time histories and the response 
spectra of the input motions. In order to investigate the effect of PGA, the 
2011 Mineral Virginia Earthquake (Mw = 5.8), a shallow crustal event 
recorded at the Corbin station, was selected. The event was scaled to 
bedrock outcrop PGAs of 0.24 g, 0.37 g, and 0.5 g and referred to as EQ1, 
EQ2, and EQ3, respectively. The bracketed duration (D5-95) of the 
Mineral Virginia Earthquake was approximately 20 s. Accordingly, to 
reduce the simulation cost, only 20 s of the motion, the significant 
duration, was used for the dynamic analysis. Accordingly, the bracketed 
duration (D5-95) of the adopted motion was approximately 6.4 s. The 
response spectra of EQ1, EQ2, and EQ3 in Fig. 6 reflect the 20 s motion. 
A blast motion (provided by Vibra Tech, Inc., Hazleton, PA), as a com
mon cyclic loading around mine sites and tailings dams, was adopted. 
The blast motion (denoted as B1) had a duration of 5 s and was scaled to 
an outcrop PGA of 0.24 g using a scaling factor equal to 4. Accordingly, 
the effect of frequency content and duration could be studied by 
comparing the system response under EQ1 and B1. 

The 1940 El Centro Earthquake (Mw = 6.9) recorded at the El Centro 
Array 9 station and the 1992 Landers Earthquake (Mw = 7.3) recorded at 
the Yermo fire station both with scaled outcrop PGA of 0.24 g were 
selected and are referred to as EQ4 and EQ5, respectively. The scaling 
factors for these motions were 0.75 and 0.96. The bracketed duration of 
EQ4 and EQ5 was 24.3 s, and 18.9 s, respectively. The bracketed du
rations of the selected earthquakes are different, therefore, EQ4 and EQ5 
impose larger number of cycles and more impact on the CT dam, as their 
durations are significantly longer. The effect of duration and frequency 
content could be studied by investigating the system response under 
EQ1, EQ4, and EQ5, which have the same PGA. 

ENC was adopted as a proxy for duration in this study. The ENC of 
each input motion was determined according to the criteria discussed by 
Verma et al. (Verma et al., 2018). Non-linear dynamic analysis was 
performed for the uniform models to determine the peak ground 

Fig. 4. CSR-N curves (PM4Silt simulation results).  
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Fig. 5. su,cs,eq_Rat variation in Realizations A, B, C, and D.  
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acceleration at the ground surface. The maximum acceleration at the 
ground surface from the dynamic analysis was used as an approximate 
estimate of PGA in non-liquefied conditions as the input of the simplified 
triggering correlations by Seed and Idriss (Seed and Idriss, 1971). Fig. 7 
presents the CSR and ENC of the selected input motions. The ENC of the 
input motions of EQ1, EQ2, EQ3 and B1 is approximately 11. The ENC of 
EQ4 and EQ5 is 30 and 38, respectively. The CSR-N curve of the tested 
CT sample is also shown in Fig. 7 as a reference. Since the constitutive 
model was calibrated to capture the cyclic DSS results, this figure im
plies that for all input motions in this study, the soil element is expected 
to liquefy. The dynamic response of the dam is more complex since 
liquefaction at deeper depths could change the propagation of motions 
throughout the soil profile and inevitably change the cyclic shear stress 
that the shallower soil elements are subjected to. The effective-stress 
dynamic 2D analysis that is presented in the next section enables us to 
look into the complex dynamic response of the dam subjected to soil 
liquefaction. As far as the frequency content effect, significant vibration 
and deformations are likely to occur when input motion and system 
response spectra are in tune with each other such that natural periods of 
the input motion are similar to those of the system. 

4. Model results and discussion 

4.1. Representative dynamic responses 

Figs. 8 and 9 show the co-seismic performance of the CT dam in 
terms of excess pore pressure and shear strain contours under the input 
motion EQ2, as an example. Fig. 8 shows the results of the uniform 
model with su,cs,eq_Rat = 0.2, and Fig. 9 shows the results of the stochastic 
model with su,cs,eq_Rat ranging from 0.1 to 0.5. The maximum excess pore 
pressures generated during EQ2 were equal in both the uniform model 
and the stochastic model. However, in the stochastic model larger area 
in the vicinity of the dikes experienced high residual excess pore pres
sure. Generation of excess pore pressure leads to softening and conse
quently large deformation of the CT dam. Accordingly, although the 
shear band and deformation pattern were similar in Figs. 8 and 9, the 
maximum shear strain developed in the stochastic model was larger than 
that of the uniform model. In addition, the residual excess pore pressure 
may result in post-seismic failure, which is a common concern for CT 
dams. Accordingly, the larger area with high residual excess pore 
pressure in the stochastic model implied higher risk of post-seismic 
failure. 

Fig. 10 shows the stress path and shear stress vs. shear strain evo
lutions under EQ2 at two locations selected from the uniform model 
with su,cs,eq_Rat = 0.2 and a stochastic model with su,cs,eq_Rat varying from 
0.1 to 0.3. The su,cs,eq_Rat of the uniform model was equal to 0.2 at both 
Locations 1 and 2, while the su,cs,eq_Rat of Location 1 and Location 2 in the 
stochastic model was 0.175 and 0.25, respectively, as shown in Fig. 10 
(a). The effect of spatial variability on the shear mechanism in such 
complex system depends on the initial conditions such as effective stress, 
static shear stress ratio, and su,cs,eq_Rat in the stochastic model. In addi
tion, the demand shear stress at such locations may significantly vary 
and be influenced by the response of the adjacent region during the 
dynamic loading. Therefore, the behavior and response at these loca
tions are not as simple as a single element soil to interpret. Fig. 10 (b) 
and (c) show the shear stress vs. shear strain evolutions at Locations 1 
and 2 in the stochastic and the uniform models, respectively. The shear 
strain remained positive and increased during the dynamic loading since 
the locations were close to the dikes. Location 1 showed 0.92% and 
0.81% shear strain in the stochastic and the uniform model, respectively, 
as Location 1 had smaller su,cs,eq_Rat, in the stochastic model. Location 2 
showed 0.19% and 0.29% shear strain in the stochastic and the uniform 

Fig. 6. Selected input motions for seismic stability analyses of CT dam.  

Fig. 7. ENC and maximum CSR of the input motions and CSR-N curve of the 
tested CT. 
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model, respectively, as Location 2 had higher su,cs,eq_Rat, in the stochastic 
model. According to Fig. 10 (b) to (e), larger shear strains associated 
with more reduction in the effective stress such as Location 1 in the 
stochastic model experienced approximately 30 kPa decrease in effec
tive stress during the dynamic loading. Location 2 in the stochastic 
model only experienced 13 kPa reduction in effective stress. Location 1 
and Location 2 in the uniform model experienced approximately 25 kPa 
and 23 kPa effective stress decrease, respectively. 

Fig. 10 reveals that spatial variability causes variability in cyclic 
shear response within the system during the dynamic loading. This 

variability affects the shear wave propagation through the system, and it 
results in variability and uncertainty in the seismic stability of the CT 
dam. The significance and extent of these uncertainties are presented 
and discussed in the following sections. 

4.2. Dynamic responses of uniform models 

Fig. 11 presents the co-seismic and post-seismic crest settlements of 
the uniform models under the selected input motions except for B1. The 
CT dam was found to experience small crest settlement under B1 input 

Fig. 8. Co-seismic performance of the CT dam in terms of excess pore pressure and shear strain contours in a uniform model with su,cs,eq_Rat = 0.2 (The unit of excess 
pore pressure is Pa). 

Fig. 9. Co-seismic performance of the CT dam in terms of excess pore pressure and shear strain contours in a stochastic model with su,cs,eq_Rat ranging from 0.1 to 0.5 
(The unit of excess pore pressure is Pa). 
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motion for both the stochastic and the uniform models, because of the 
short duration of the blast loading and the weak acceleration response 
spectra. The B1 input motion resulted in combined co-seismic and post- 
seismic crest settlement less than 0.05 m, which was significantly 
smaller than the crest settlements observed under the earthquake input 
motions. Therefore, the results of the blast input motion were excluded 
from further analyses. 

In this study, complete failure was assumed if the crest settlement 
exceeded 3 m, which is equal to the height of a dike. Therefore, crest 
settlement larger than 3 m is not shown in Fig. 11. In general, the uni
form models with higher su,cs,eq_Rat experienced smaller crest settlement. 
Fig. 11 (a) shows the effect of PGA (by comparing the results from EQ1 
to EQ3) on the crest settlement of the uniform models. The uniform 
model with su,cs,eq_Rat of 0.25 showed the smallest crest settlement with 
post-seismic crest settlement less than 0.01 m. The co-seismic crest 

settlement increased from 0.281 m to 0.663 m when the PGA increased 
from 0.24 g to 0.5 g in the uniform model with su,cs,eq_Rat = 0.25. The 
uniform model with su,cs,eq_Rat = 0.2 experienced co-seismic crest set
tlement of 0.464 m, 0.946 m, 1.07 m under EQ1 to EQ3, respectively. 
The post-seismic crest settlement of the uniform model with su,cs,eq_Rat =

0.2 noticeably increased as PGA increased. The uniform model with su,cs, 

eq_Rat = 0.15 failed under EQ2 and EQ3. The co-seismic and post-seismic 
crest settlements of the uniform model with su,cs,eq_Rat = 0.15 under EQ1 
were 0.75 m and 0.925 m, respectively. 

Fig. 11 (b) shows the effects of ENC and frequency content on crest 
settlement. The increase of ENC from 11 to 38 (by comparing results 
from EQ1, EQ4, and EQ5) increased the crest settlement from 0.281 m to 
1.03 m in the uniform models. The increasing trend in the crest settle
ment could also be due to richer response spectra of EQ4 and EQ5, which 
had higher acceleration in a wider range of periods compared to those of 

Fig. 10. Shear stress versus shear strain evolutions and stress path at two selected locations in CT under EQ2.  
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EQ1. The post-seismic crest settlement of the uniform model with su,cs, 

eq_Rat = 0.25 was less than 0.01 m under EQ4 and EQ5. According to 
Fig. 11, significant additional settlement up to failure was observed for 
the uniform model with su,cs,eq_Rat = 0.2 during post-seismic analysis. 
The crest settlement of the uniform model with su,cs,eq_Rat = 0.2 exceeded 
3 m (i.e. failure) during the post-seismic and co-seismic analysis of EQ4 
and EQ5, respectively. The uniform model with su,cs,eq_Rat = 0.15 showed 
crest settlement beyond 3 m (i.e. failure) during co-seismic analysis 
under EQ4 and EQ5. Overall, the input motions with larger ENC and 
richer response spectra were found to cause larger crest settlement. 

4.3. Significance of post-seismic analysis 

The stochastic modeling revealed how the spatial variability of su,cs, 

eq_Rat within the CT section affects the co-seismic and post-seismic crest 
settlements. Fig. 12 demonstrates the co-seismic and post-seismic crest 
settlements under the input motion EQ2 for the uniform model with su,cs, 

eq_Rat = 0.2, Realizations A, B, C, D, and four other realizations (named E, 
F, G, and H). Fig. 12 shows the crest settlement of the uniform model 
with a solid line; the co-seismic and post-seismic crest settlements were 
0.946 m and 1.306 m, respectively. The results of Realizations A to D are 
shown with dashed lines in Fig. 12. The extent of variability in both co- 
seismic and post-seismic settlements of the CT dam with spatially vari
able su,cs,eq_Rat can be seen in Fig. 12. While Realization B showed 
comparable crest settlement to the uniform model, Realizations A, C, 
and D had significantly different results. Realization C experienced small 
co-seismic and post-seismic crest settlements of 0.588 m and 0.671 m, 

respectively. Realization A showed larger co-seismic crest settlement of 
1.217 m and the CT dam failed during post-seismic analysis. Realization 
D was found to be the most vulnerable, as the failure occurred during co- 
seismic analysis. 

The results of Realizations E to H, shown in dotted lines in Fig. 12, 
were included to demonstrate that the co-seismic performance alone 
may not accurately represent the dynamic deformations after cyclic 
loading. Therefore, post-seismic analysis is necessary in order to 
characterize the overall deformation of the CT dam. This finding is 
consistent with the findings of other studies using numerical simula
tions [e.g. Naesgaard and Byrne, 2007]. Realizations E, F, and G 
exhibited a co-seismic crest settlement of around 0.764 m, but the 
overall crest settlement ranged from 0.842 m to 1.570 m. In another 
example, although Realization H showed similar co-seismic crest set
tlement to that of Realization A, complete failure was not observed and 
the final crest settlement was 2.970 m in Realization H. Considering 
the variability presented in Fig. 12, co-seismic and post-seismic set
tlements of the CT dam are separately discussed under the input mo
tions in Figs. 13 and 14. 

4.4. Co-seismic response of stochastic models 

The variation of the co-seismic crest settlement when CT properties 
are spatially variable is shown in Fig. 13. Fig. 13 includes two subfigures 
to separately present the influences of PGA, ENC and frequency content 
on the variation of the co-seismic crest settlement. The co-seismic crest 
settlements of the uniform models are also shown in Fig. 13. The 
normalized settlement (NS) is defined as the crest settlement divided by 
the dam’s height (12 m). The realizations that resulted in complete 
failure (NS > 25%) are excluded from Fig. 13 to have better resolution 
for the rest of the realizations. Four levels of crest settlements were 
considered in this study to evaluate the performance of the CT dam 
subjected to liquefaction based on NS: stable (NS ≤ 5%), moderate 
damage (5% < NS ≤ 10%), severe damage (10% < NS ≤ 25%), and 
failure (NS > 25%). Fig. 13 also shows the percentages of the re
alizations in each category under each input motion. 

As shown in Fig. 13 (a), the CT dam was found to be stable under EQ1 
for all the realizations. EQ1 caused larger crest settlement (0.447 m on 
average) compared to that of B1 (below 0.050 m). The PGA and ENC of 
EQ1 and B1 were the same. Therefore, this observation could be mainly 
due to the richer acceleration response spectra of EQ1, which showed 
higher acceleration in a wider range of periods compared to B1. The 
majority of the realizations under EQ2 experienced moderate damage. 
EQ2 caused failure in 17% of the realizations and the crest settlements of 
the remaining realizations ranged from 0.588 m to 2.850 m. Approxi
mately half of the realizations showed larger crest settlement than that 

Fig. 11. Co-seismic and post-seismic crest settlements of the uniform models 
(a) PGA effect (b) ENC and frequency content effect. 

Fig. 12. Co-seismic and post-seismic performance of selected models 
under EQ2. 
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of the uniform model with su,cs,eq_Rat = 0.2. The input motion EQ3 
resulted in similar observations but more realizations (i.e. 23%) failed 
due to the higher PGA of this input motion. More than half of the re
alizations experienced larger crest settlement than that of the uniform 
model with su,cs,eq_Rat = 0.2. Overall, increasing the PGA from 0.24 g to 
0.5 g (i.e., from EQ1 to EQ3) increased failure probability. In addition, 
the discrepancy of the stochastic models’ response from the response of 
the uniform model with su,cs,eq_Rat = 0.2 became more significant as PGA 
increased. However, all the stochastic models’ results were enveloped by 
the results of the uniform models with su,cs,eq_Rat = 0.15 and su,cs,eq_Rat =

0.25. 
Fig. 13 (b) shows the effect of ENC and frequency content by 

comparing the results under EQ1, EQ4, and EQ5. EQ4 resulted in 
failure in 36% of the realizations, and the remaining experienced se
vere damage. More than half of the realizations showed crest settle
ment larger than that of the uniform model with su,cs,eq_Rat = 0.2. EQ5, 
which had the largest ENC and magnitude among the input motions, 
caused failure in 69% of the realizations as well as failure in the uni
form models with su,cs,eq_Rat of 0.2 and 0.15. However, 31% of the re
alizations under EQ5 showed NS ≤ 25% and experienced less crest 
settlement compared with EQ4. This could be attributed to the 
magnitude and frequency of the peaks in the acceleration spectra of 
EQ4 and EQ5 and their interaction with the natural frequencies of the 
stochastic models. This observation emphasized the necessity of sto
chastic modeling and frequency content analysis in seismic stability 

evaluation. The stochastic models’ results were enveloped by the 
uniform models with su,cs,eq_Rat of 0.15 and 0.25. 

4.5. Post-seismic response of stochastic models 

Fig. 14 presents the final crest settlements after post-seismic analysis 
for the stochastic and the uniform models. The crest settlement that 
occurred during post-seismic analysis of EQ1 was negligible and less 
than 3% of the co-seismic crest settlement for both the stochastic and 
uniform models. As shown in Fig. 14 (a), the stochastic models showed 
additional settlement and higher probability of failure in post-seismic 
analysis. Under EQ2, approximately 75% of the realizations showed 
larger final crest settlement compared to that of the uniform model with 
su,cs,eq_Rat = 0.2. Under EQ3, the uniform models with su,cs,eq_Rat of 0.2 to 
0.15 and 74% of the realizations failed. 

According to Fig. 14 (b), EQ4 was found to be the most destructive 
input motion among the input motions since 94% of the realizations failed. 
The higher failure rate observed for EQ4 compared to EQ5 after post- 
seismic analysis, despite the smaller ENC and magnitude of EQ4, could 
be attributed to the interplay between the system natural period and input 
motion acceleration spectra. Accordingly, the acceleration spectra of the 
input motion EQ4 were likely in tune with larger number of realizations 
and resulted in higher failure probability. This observation indicated the 
significance of all indices such that only one characteristic (e.g. ENC) may 
not be enough to predict the seismic performance of the CT dam. 

Fig. 13. Summary of co-seismic crest settlement for stochastic models (a) PGA 
effect (b) ENC and frequency content effect. 

Fig. 14. Summary of post-seismic crest settlements for stochastic models (a) 
PGA effect (b) ENC and frequency content effect. 
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4.6. Implications in practice 

The significance of PGA, ENC, and frequency content in the seismic 
performance of the CT dam was assessed by paired t-test. The mean 
responses of the realizations under two input motions are compared in 
the paired t-test. For example, a statistically significant mean differences 
between EQ1 and EQ2, EQ1 and EQ3, EQ2 and EQ3 revealed the sig
nificance of PGA in the seismic performance of the CT dam. Conducting 
paired t-test on appropriate set of data, all the studied input motion 
characteristics (PGA, ENC, and frequency content) were found statisti
cally significant. 

To reveal the significant uncertainty and variation in seismic 
response due to spatial variability in su,cs,eq_Rat, the one-sample t-test was 
adopted. This approach determines whether the average response (i.e. 
crest settlement) obtained from the stochastic models is significantly 
different from the crest settlement from the uniform model with su,cs, 

eq_Rat = 0.2 (i.e. best estimate). This procedure was conducted for each 
earthquake input motion. The one-sample t-test was conducted once for 
co-seismic crest settlements and once for overall settlements (i.e. after 
post-seismic analysis). The one-sample t-test showed that the mean 
response of the stochastic models is statistically significantly different 
from the response of the uniform model with su,cs,eq_Rat = 0.2 (i.e. best 
estimate), for both co-seismic and post-seismic settlements. 

Therefore, the uniform model with best estimate (su,cs,eq_Rat = 0.2) 
cannot properly capture the uncertainty in response caused by hetero
geneity in subsurface condition. Furthermore, although the stochastic 
results were enveloped by the results of the uniform models with the 
lower bound (su,cs,eq_Rat = 0.15) and the upper bound (su,cs,eq_Rat = 0.25) 
properties, the probability of failure could not be estimated. For 
example, Fig. 13 (b) shows that the uniform model with lower bound 
properties (su,cs,eq_Rat = 0.15) failed under EQ4, while the majority of the 
realizations (64%) did not experience failure. Therefore, uniform 
modeling may lead to conservative results. Stochastic modeling can be 
more efficient and used to perform a probabilistic analysis on seismic 
stability of CT dams. 

5. Summary and conclusions 

In this study, seismic stability of a typical upstream-construction CT 
dam was investigated considering the spatial variability in geotechnical 
properties of CT under six cyclic loadings. The cyclic behavior of CT was 
first approximated by PM4Sand and PM4Silt using the primary input 
parameters. PM4Silt was evaluated to better approximate the cyclic 
mobility and the progressive shear strain accumulation in CT under cyclic 
loading. Among the primary input parameters, the undrained shear 
strength ratio (su,cs,eq_Rat) was modeled as a spatially correlated Gaussian 
random field. The effects of variability in CT’s geotechnical properties and 
input motion characteristics (i.e. PGA, ENC, and frequency content) on the 
seismic stability of the CT dam were assessed. Uniform models with three 
different values, lower bound, best estimate, and upper bound for su,cs, 

eq_Rat were also studied under the selected input motions. 
Among the uniform models, only the model with su,cs,eq_Rat = 0.2 (i.e. 

best estimate) showed the necessity of post-seismic analysis, as the 
stability status changed during the post-seismic analysis. Post-seismic 
analysis was found critical for the stochastic models as failure proba
bility significantly increased. The significance of stochastic modeling 
was statistically proved by comparing the results of the stochastic 
models and the uniform model with su,cs,eq_Rat = 0.2 under the input 
motions. The discrepancy between stochastic and uniform modeling was 
intensified under stronger input motions. The majority of stochastic 
models experienced larger settlement than the uniform model with su,cs, 

eq_Rat = 0.2. However, the range of stochastic results was captured by the 
uniform models with lower and upper bound values for su,cs,eq_Rat (i.e. 
0.15 and 0.25). 

This study highlighted the importance of stochastic modeling and the 
consideration of spatial variability in seismic stability analysis of CT 

dams. More investigations for different geometries, seismic demands, 
statistical characteristics of the random fields, and autocorrelation 
lengths are necessary, so that the findings of this study and the effects of 
PGA, ENC, frequency content, and other potential characteristics on the 
seismic response of CT dams can be further confirmed. Further case 
studies and in-situ data collection are needed to achieve improved 
insight into this topic such that the current uncertainties and drawbacks 
in calibration and spatial variability can be addressed. 
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