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Motivated by the expanding interest in applications where online learning and decision mak-

ing by networked agents is a necessity, this dissertation deals with the design of adaptive

networks where agents need to carry out strategic decisions toward different but complemen-

tary objectives under uncertainty and randomness.

Adaptive networks consist of collections of agents with learning abilities that interact with

each other locally in order to solve distributed processing and inference tasks in real-time. In

our first constrained problem, we examine the design and evolution of adaptive networks in

which agents have multiple but complementary objectives. In these scenarios, selfish learning

strategies by individual agents can influence the network dynamics in adverse ways. This

situation is even more challenging in nonstationary environments where the solution to the

multi-objective optimization problem can drift with time due to changes in the statistical

distribution of the data.

We specifically formulate multi-objective optimization problems where agents seek to

minimize their individual costs subject to constraints that are locally coupled. The coupling

arises because the individual costs and the constraints can be dependent on actions by other

agents in the neighborhood. In these types of problems, the Nash equilibrium is a desired

and stable solution since at this location no agent can benefit by unilaterally deviating from

the equilibrium. We therefore focus on developing distributed online strategies that enable

agents to approach the Nash equilibrium. We illustrate an application of the results to a
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stochastic version of the network Cournot competition problem, which arises in a variety

of useful problems such as in modeling economic trading with geographical considerations,

power management over smart grids, and resource allocation protocols.

Using this formulation, we then extend earlier contributions on adaptive networks, which

generally assume that the agents work together for a common global objective or when they

observe data that is generated by a common target model or parameter vector. We relax

this condition and consider a broader scenario where individual agents may only have access

to partial information about the global target vector, i.e., each agent may be sensing only

a subset of the entries of the global target, and the number of these entries can be different

across the agents. We develop cooperative distributed techniques where agents are only

required to share estimates of their common entries and still can benefit from neighboring

agents. Since agents’ interactions are limited to exchanging estimates of select few entries,

communication overhead is significantly reduced.

We also examine the behavior of adaptive networks where information-sharing is subject

to a positive communications cost over the edges linking the agents. In this situation, we

show that if left unattended, the optimal strategy for the agents is to behave in a selfish

manner and not to participate in the sharing of information. We hence develop mechanisms

to help turn selfish agents into cooperative formations. In one method, we design an adaptive

reputation protocol to adjust agents’ reputation in accordance to their past actions, which

can then be used to predict their subsequent actions. In a second method, we allow agents

to decide with whom to cluster and share information. When the communication cost is

small, the proposed mechanisms entice agents to cooperate and thus enhance the overall

social benefit of the network.
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CHAPTER 1

Motivation

1.1 Introduction

Motivated by the expanding interest in applications where online learning and decision mak-

ing by networked agents is a necessity, this dissertation focuses on the design of adaptive

networks where agents need to carry out strategic decisions toward different but complemen-

tary objectives under uncertainty and randomness. Adaptive networks consist of a collection

of agents with learning abilities that interact with each other locally in order to solve dis-

tributed processing and inference tasks in real-time. In most prior works, agents are assumed

to be cooperative and designed to follow certain distributed rules such as the consensus strat-

egy (e.g., [1–9]) or the diffusion strategy (e.g., [10–17]). Most of these earlier studies deal with

scenarios where agents cooperate with their neighbors to achieve a common single objective

that is beneficial to the entire family of agents.

There have been recent works where multi-task scenarios are introduced and studied in

some detail over adaptive networks [18–20]. In these studies, different agents may be inter-

ested in different objectives and most of the available analyses focus on mean-square-error

formulations. This dissertation deals with more general optimization scenarios that involve

various types of constraints such as (a) having agents with different but complementary

objectives; (b) having agents with access to only partial information; and (c) having selfish

agents that seek to reduce their own communication cost at the expense of the social good

for the overall network.

The multiplicity of tasks and the differences in objectives, although related, can give

rise to selfish behavior by agents and lead to individual strategies that can influence the

1



network dynamics in adverse ways. In such scenarios, the Nash equilibrium becomes a

desired and stable solution since at this location no agent can benefit by unilaterally deviating

from the solution. Therefore, one main goal of this work is to develop distributed learning

strategies for agents to gradually and continuously learn the Nash equilibrium under random

environments. This situation is even more challenging in nonstationary environments where

the Nash equilibrium can drift with time due to changes in the statistical distribution of the

data. Consequently, a key challenge in our formulation is that agents need to operate in

response to streaming data and be able to respond to changes in the statistical properties of

the data, the nature of the task, and even the behavior of neighboring agents.

Notation: Throughout the dissertation, we use lowercase letters to denote vectors and

scalars, uppercase letters for matrices, plain letters for deterministic variables, and boldface

letters for random variables. All vectors in our treatment are column vectors, with the

exception of the regression vectors, uk,i. The symbol T denotes transposition, and the

symbol ∗ denotes complex conjugation for scalars and complex-conjugate transposition for

matrices.

1.2 Single-Objective Learning over Networks

In preparation for the treatment of these problems, we first review adaptive networks for

single-task optimization, which consist of N agents cooperatively working to minimize a

global cost function of the following form in a distributed manner:

min
w∈RM

N∑
k=1

Jk(w) , Jglob(w) (1.1)

Here, the symbol w ∈ RM denotes a vector of size M × 1. We denote the minimizer of

Jglob(w) by wo, i.e.,

wo , arg min
w∈RM

Jglob(w) (1.2)

Moreover, each Jk(w) : RM → R denotes the scalar individual cost function at agent k

and is assumed to be twice-differentiable and strongly-convex in w. When the cost functions

2
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Figure 1.1: An example to illustrate the network topology with connected agents.

{Jk(w)} are simultaneously minimized at the common minimizer wo, all agents in the network

will share the same objective of estimating wo.

Various strategies and performance analyses have been put forward for the operation of

such networks under streaming data. For example, in a centralized or batch strategy, the

agents transmit the collected data for processing to a fusion center. One possible centralized

implementation is to employ the gradient-descent strategy:

wi = wi−1 −
µ

N

N∑
k=1

∇wTJk(wi−1), i ≥ 0 (1.3)

where µ > 0 is the step-size and the notation ∇wTJ(a) denotes the gradient vector of the

function J(w) with respect to wT and evaluated at w = a. After processing the collected data,

the fusion center shares the results back with the distributed agents. While this centralized

strategy is powerful, it suffers from some limitations. First, the transmission between agents

and the fusion center can be costly in real-time applications. Second, privacy can be a critical

concern in certain sensitive applications since agents may be reluctant to share their data

with the fusion center. Furthermore, the centralized strategy is vulnerable since the network

stops functioning if the fusion center fails. Network scalability is another critical problem

because we will need a more powerful fusion center to process data for larger size networks.

In comparison, distributed strategies rely on localized interactions among the agents.

Suppose that the agents are connected by a network topology. Let us denote the neighbor-

hood of each agent k by Nk, which includes k itself. We provide an example of a network

3



topology in Fig. 1.1. Two prominent classes of distributed strategies that can be used to

compute local estimates wk,i in a distributed and online manner are consensus strategies [6,7]

and diffusion strategies [10, 11, 14]. In the consensus strategy, each agent uses the following

iteration to estimate wo:

wk,i =
∑
`∈Nk

a`k w`,i−1 − µk∇wTJk(wk,i−1), i ≥ 0 (1.4)

The coefficients {a`k} are required to satisfy:

a`k ≥ 0,
N∑
`=1

a`k = 1, and a`k = 0 if ` /∈ Nk (1.5)

The diffusion strategy, on the other hand, has several variants. In the adapt-then-combine

(ATC) formulation, the agents update their estimates according to the following recursive

construction:

(ATC)


ψk,i = wk,i−1 − µk∇wT

k
Jk(wk,i−1) (1.6)

wk,i =
∑
`∈Nk

a`k ψ`,i (1.7)

In the first step (1.6), an intermediate estimate ψk,i is determined by adjusting the existing

estimate wk,i−1 using local data. The second step (1.7) uses non-negative coefficients {a`k}
to combine the estimates from the neighbors. We can reverse the order of the two steps and

obtain the combine-then-adapt (CTA) formulation:

(CTA)


ψk,i =

∑
`∈Nk

a`k w`,i−1 (1.8)

wk,i = ψk,i − µk∇wT
k
Jk(ψk,i) (1.9)

Compared to the consensus strategy (1.4), the diffusion strategies have been shown to have

superior stability and mean-square performance properties [16,21].

1.3 Multi-Objective Learning over Networks

In formulation (1.1), all agents are interested in optimizing the same aggregate cost. In multi-

objective learning, on the other hand, each agent k is interested in solving an optimization
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Figure 1.2: (a) Single-objective learning over networks. (b) Multi-objective learning over networks.

problem of the form:

min
wk∈Sk(w−k)

Jk(wk;w−k) (1.10)

where we denote the unknown parameter (also called action) of agent k by the vector wk ∈
RMk×1 and collect the action profile of all other neighboring agents into the aggregate vector:

w−k , col{w`; ` ∈ Nk \ {k}} (1.11)

We note from (1.10) that each action wk is required to belong to some feasible set Sk(w−k).
Furthermore, the argument of Jk(·) does not depend solely on wk but also on w−k. Like-

wise, the argument of the feasible set depends on w−k. Therefore, the neighbors’ actions,

represented by w−k, can influence the selection of agent k for its action, wk. In Fig. 1.2, we

compare the optimization targets of single-objective and multi-objective learning over net-

work topologies. Formulation (1.10) arises naturally in the modeling of many applications,

as illustrated by the following examples.

Example 1.1. (Distributed power allocation) In this example, we explain one impor-

tant application for formulation (1.10), of broad interest in many signal processing applica-

tions and communications scenarios; it relates to the problem of distributed power allocation

over wireless networks — see, e.g., [22]. Referring to Fig. 1.3, assume that each agent k repre-

senting a femto-base station decides its transmission power wk. The goal of k is to maximize

the Shannon capacity function (transmission rate) to its macro-user terminal, while guar-

anteeing a minimum level of quality of service for all macro-user terminals in the network.

5
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Figure 1.3: (a) Distributed power allocation with two femto-base stations k and `. (b) The impact

on Shannon capacity of macro-user terminals when transmission power of femto-base station `

increases.

Here we assume each femto-base station provides service to only one macro-user terminal.

The problem can be mathematically formulated as follows:

min
wk∈R

Jk(wk;w−k)

subject to wk ≥ 0, gf (wk, w−k) ≤ 0, f ∈ Nk (1.12)

where the cost function Jk(·) relates to the Shannon capacity, which is determined by the

signal-to-interference and noise ratio (SINR) to the connecting macro-user terminal, and

therefore, also determined by the neighboring agents’ transmission powers w−k. An example

of Jk(·) with regularization would be

Jk(wk;w−k) = − log(1 + SINRk) + |wk|2 (1.13)
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where

SINRk ,
pkkwk∑

`∈Nk\{k}
p`kw` + σ2

k

(1.14)

and the {p`k} denote the channel gains from each femto-base station ` to macro-user terminal

k, and σ2
k is the noise variance at that macro-user terminal. The first term in (1.13) is from

the Shannon channel capacity with additive noise and interference [23] where the negative

sign is because we are considering cost functions instead of payoff functions, and the second

term is used to prevent the transmission power wk from being too large. For example, in

the scenario of Fig. 1.3 we consider two femto-base stations k and `. If the transmission

power of ` increases, e.g., by using a larger w`, the Shannon capacity of k increases since

SINR` becomes large. At the same time, the interference from ` to k also becomes large,

and therefore, SINRk becomes small and the Shannon capacity of k decreases. The coupled

constraints {gf (wk, w−k) ≤ 0} guarantee that the SINR of each macro-user terminal inside

the neighborhood Nk is above a certain threshold η, i.e., for any f ∈ Nk,

SINRf =
pffwf∑

`∈Nk\{f}
p`fw` + σ2

f

≥ η

⇐⇒ gf (wk, w−k) ,
∑

`∈Nk\{f}

p`fw` −
pff
η
wf + σ2

f ≤ 0 (1.15)

�

Example 1.2. (Economic trading in geographical networks) A second example is

economic trading with geographical network topologies where there exist several factories

producing similar products and selling them to some common market place. This problem

is also referred to as the networked Cournot competition problem in the literature [24, 25].

Figure 1.4 shows a simple Cournot network where the circles denote the factories and the

rectangulars denote the common markets. We consider that each factory k has an individual

cost function Jk(wk;w−k), defined as the production cost minus the revenue earned from the

market places. In this case, the action wk is a vector where each entry of wk represents a

quantity of products to be sold at one connected market place. Therefore, each factory k

7
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Figure 1.4: (a) Economic trading with two factories connected to a common market. (b) The

impact on the market price and the gross profits of factories when the production quantity of

factory ` increases.

solves the following optimization problem to find the optimal wk:

min
wk∈RMk

Jk(wk;w−k)

subject to wk(m) ≥ 0, m = 1, . . . ,Mk, r`(wk, w−k) ≤ η, ` ∈Mk (1.16)

where Mk is the set of market places that factory k is connected to. The parameter

r`(wk, w−k) =
∑N

k=1wk(`) is the total quantity of products sold in the market place `.

The individual cost function Jk(·) is given by

Jk(wk;w−k) = c(wk)−
∑
`∈Mk

p(r`(wk, w−k))wk(`) (1.17)
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where c(·) is the production cost function and p(·) is the price function. Therefore, the first

and second terms on the right-hand side of (1.17) represent the total production costs and

the total revenue of factory k, respectively. Note that here we consider uniform production

cost functions and uniform price functions for all factories and market places, which of course

can be easily extended to more complex cases. One example for c(·) and p(·) is provided in

Fig. 1.4 where we assume the production cost function is quadratic and the price function

is linear. We also show the impact on the market price and the gross profits of factories

when the production quantity of factory ` increases. In this situation, the profit of factory `

increases. At the same time, the price in the market decreases since wk +w` becomes large,

which affects the total revenue of factory k and makes its profit decreases. In formulation

(1.16), the constraints enforce nonnegative entries in wk and that for each market place there

is some upper limit capacity η on the total amount of products to sell. �

1.3.1 Generalized Nash Equilibrium

When we consider multi-objective optimization problems of the form (1.10), the concept of

Nash equilibria is a desired and stable solution since at this location no agent can benefit by

unilaterally deviating from the equilibrium.

Definition 1.1. (Nash equilibrium) We say that a global action vector w? , col{w?1, ..., w?N}
is a Nash equilibrium if for each agent k, we have w?k ∈ Sk(w?−k) and

Jk(w
?
k;w

?
−k) ≤ Jk(w

′
k;w

?
−k) (1.18)

for any feasible action w′k ∈ Sk(w?−k). �

Therefore, a Nash equlibrium w? satisfies that

w?k ∈ arg min
wk∈Sk(w?

−k)
Jk(wk;w

?
−k) (1.19)

for each k. In other words, if a global action vector w? is a Nash equlibrium, then the

actions {w?k} simultaneously solve the multi-objective problem for each agent k in (1.10).

Once the network operates at some Nash equilibrium w?, the network becomes stable, which
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is defined as all agents achieving their own minimal cost values given the neighbors’ actions

w?−k, and therefore, have no incentive to deviate from w?k. Problem (1.10) is known as the

generalized Nash equilibrium problem (GNEP) in the literature [26–28] since it generalizes

the traditional Nash equilibrium problem with fixed feasible set Sk instead of general Sk(w−k)
depending on w−k. Throughout this dissertation, we will focus on a significant class of GNEP

where the agents’ actions are required to satisfy shared common constraints. This scenario

arises naturally in many applications, e.g., Examples 1.1 and 1.2, and has more complete

theoretical results than the general GNEP [27]. This specific class of GNEPs is sometimes

referred to jointly convex GNEPs in the literature.

Definition 1.2. (Jointly convex GNEP) Suppose that for each k, the individual cost

function Jk(wk;w−k) is convex in wk and the feasible set Sk(w−k) is closed and convex. We

say that agents are solving a jointly convex GNEP if they have shared common constraints,

i.e., there exists a constraint set S such that for each k we have

Sk(w−k) = {wk : (wk, w
−k) ∈ S} (1.20)

where

w−k , col{w`; ` 6= k} (1.21)

collects all actions in the network except wk. �

Equation (1.20) describes that the actions of agents are subject to a common feasible set S.

For example, let us consider a fully-connected network where each agent is a neighbor of all

other agents. If the feasible set Sk(w−k) for each agent k is defined explicitly by inequalities

{gk,q(wk, w−k) ≤ 0} for q = 1, ..., Q, then the shared constraints mean that for all q, we have

g1,q(w1, w
−1) = g2,q(w2, w

−2) = ... = gN,q(wN , w
−N) = gq(w) (1.22)

where w , col{w1, ..., wN . In this case, the feasible set S is {w : gq(w) ≤ 0, q = 1, ..., Q}.

Let us consider the jointly convex GNEP and assume {Jk(wk;w−k)} for all k are once-

differentiable. We first recall the minimum principle which states a fundamental optimality

condition for convex optimization problems [29].

10



Definition 1.3. (Minimum principle) Consider an optimization problem in the following

form:

min
x∈K

J(x) (1.23)

where J(x) is a convex and differentiable function and K is a convex set. Then, a feasible

point x? ∈ K is an optimal solution if and only if

(xa − x?)T∇xJ(x?) ≥ 0, ∀xa ∈ K (1.24)

�

Then, from (1.19) and by (1.24), the generalized Nash equilibrium w? ∈ S should satisfy

(wak − w?k)T∇wk
Jk(w

?
k;w

?
−k) ≥ 0, ∀wak ∈ Sk(w?−k) (1.25)

If we sum (1.25) over all agents, we get

N∑
k=1

(wak − w?k)T∇wk
Jk(w

?
k;w

?
−k) = (wa − w?)TF (w?) ≥ 0, ∀wa ∈ S (1.26)

where

wa , col{wa1 , ..., waN} (1.27)

F (w) , col{∇w1J1(w1;w−1), ...,∇wN
JN(wN ;w−N)} (1.28)

Equation (1.26) is called a Variational Inequality (VI), which focuses on the problem of

finding the optimal w?. It is shown in [30] that the optimal VI solution w? to (1.26) is a

solution to (1.19), and therefore is a generalized Nash equilibrium to the multi-objective

optimization problem (1.10) with the jointly convex assumption. The reverse direction is

generally not true since if we scale some {Jk(wk;w−k)} in (1.10), the solution set of the

new GNEP does not change but we get a weighted summation in (1.26), which may lead to

different VI solutions. Consequently, not all solutions of (1.10) can be obtained by solving

the variational inequality problem (1.26). These VI solutions are referred to variational

equilibria or normalized equilibria. A variational equilibrium has a special interpretation in

11



terms of Lagrange multipliers of the corresponding KKT conditions of the GNEP (1.10);

that is, it corresponds to the case when the Lagrange multipliers for all agents are the same

— see [31] for more details. Furthermore, one sufficient condition for the existence of the

solutions for the jointly convex GNEP problem is to ensure that the VI solutions in (1.26)

exist, which is guaranteed by the following strongly-monotone condition on F (w): for any

two action vectors w = w◦ and w = w•, we must have [32, pp. 155]

(w◦ − w•)T [F (w◦)− F (w•)] ≥ ν‖w◦ − w•‖2 (1.29)

for some positive constant ν. We note that the solutions of the GNEP are usually non-

unique. However, the solution of the VI problem (1.26) is unique under the coerciveness

property [?, p. 14], which means that for some wref ∈ RM , we have

lim
‖w‖→∞

[
F (w)− F (wref)

]T
(w − wref)

‖w − wref‖ =∞ (1.30)

The coerciveness property is also guaranteed by the strongly-monotone condition (1.29) since

setting w◦ = w and w• = wref we get

lim
‖w‖→∞

[
F (w)− F (wref)

]T
(w − wref)

‖w − wref‖ ≥ lim
‖w‖→∞

ν‖w − wref‖ =∞ (1.31)

As a result, the strongly-monotone condition ensures the existence of the VI solutions (and

thus the generalized Nash equilibria) and the uniqueness of the VI solution. In order to avoid

redundancy, here we neglect the proofs of these results, which can be obtained by similar

arguments to those in Appendix 2.A. We summarize the solutions of jointly convex GNEP

and VI problems in Fig. 1.5.

1.3.2 Pareto Optimality

Another notion of optimality is Pareto optimality, which is useful to compare with the

aforementioned Nash equilibrium concept. For problems in the form (1.10), a global action

vector, say, wo , col{wo1, ..., woN}, is regarded as Pareto optimal if none of the individual

costs of agents can be improved without deteriorating at least one other individual cost.

12
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Figure 1.5: Illustration of the solutions of jointly convex GNEP and VI problems.

Definition 1.4. (Pareto-optimal solution) We say a decision vector wo , col{wo1, ..., woN}
is Pareto-optimal if all {wok} are feasible and there does not exist another w• , col{w•1, ..., w•N}
with feasible {w•k} such that Jk(w

•
k;w

•
−k) ≤ Jk(w

o
k;w

o
−k) for all k = 1, ..., N and J`(w

•
k;w

•
−k) <

J`(w
o
k;w

o
−k) for at least one index ` ∈ {1, ..., N}. �

The Pareto-optimal solutions are also called Pareto-efficient. This is because if an action

vector w is not Pareto-optimal, then there exists w′ 6= w which improves at least one agent’

individual cost without making other agents’ individual costs worse. We note that one useful

technique to determine Pareto-optimal solutions is scalarization [16,33,34]. In this method,

we formulate the following optimization problem with weighted aggregate cost functions:

min
w

Jpar(w) ,
N∑
k=1

akJk(wk;w−k) (1.32)

subject to wk ∈ Sk(w−k), k = 1, . . . , N

where {ak} are positive parameters. Given the {ak}, every minimizer for the above opti-

mization problem corresponds to a Pareto-optimal solution. Note that we can get different

Pareto-optimal solutions by varying the parameters {ak} and resolving problem (1.32). We

remark that as discussed in [33], some limiting Pareto-optimal solutions may not be obtained

by the scalarization technique. Furthermore, a Nash equilibrium w? that solves (1.10) for

all k can be Pareto-optimal if w? is also a solution to (1.32). However, a Nash equilibrium,
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Figure 1.6: (a) Line topology with 3 agents. (b) Nash equilibria set for agents 1 and 2.

which is stable, is not necessarily Pareto-optimal or Pareto-efficient, and similarly, a Pareto-

optimal solution is not necessarily a Nash equilibrium. We will encounter this situation later

in Chapter 4, where we specifically consider discrete action values, and depending on the

parameters in the game setting, the Nash equilibrium may or may not coincide with the

Pareto-optimal solution. Let us consider the following example to illustrate the concepts of

Nash equilibria and Pareto-optimal solutions.

Example 1.3. (Line topology) Suppose we have a three-agent network with a line topol-

ogy as shown in Fig. 1.6a. Agents 1, 2, and 3 seek to solve the following constrained

multi-objective optimization problems:

min
w1

J1(w1) , (w1 − 4)2 subject to w1 + w2 ≤ 3

min
w2

J2(w2, w3) , (w2 + w3)2 subject to w1 + w2 ≤ 3

min
w3

J3(w3) , w2
3

(1.33)

We note that agents 1 and 2 have a common and coupled constraint w1 + w2 ≤ 3, and the

individual cost function of agent 2 depends on the action of agent 3. Furthermore, since

in problem (1.33) the individual cost functions are convex and the constraints are affine,

it satisfies the Slater’s constraint qualification and thus we can utilize the Karush-Kuhn-

Tucker (KKT) conditions [33] to find the Nash equilibria and Pareto-optimal solutions. From
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Def. 1.1 and (1.19), a Nash equilibrium of problem (1.33), denoted by w? , col{w?1, w?2, w?3},
should simultaneously satisfy

w?1 = arg min
w1

(w1 − 4)2 subject to w1 + w?2 ≤ 3 (1.34)

w?2 = arg min
w2

(w2 + w?3)2 subject to w?1 + w2 ≤ 3 (1.35)

w?3 = arg min
w3

w2
3 (1.36)

From (1.36), it is obvious for agent 3 that w?3 = 0 since J3(w3) = w2
3 does not depend on

w1 and w2 and there is no constraint for agent 3. Once we obtain w?3 = 0, we require the

following KKT conditions for agents 1 and 2 to hold:

∇w1(w1 − 4)2|w?
1

+ λ1∇w1(w1 + w?2 − 3)|w?
1

= 0⇐⇒ 2(w?1 − 4) + λ1 = 0 (1.37)

λ1 ≥ 0 (1.38)

λ1(w?1 + w?2 − 3) = 0 (1.39)

w?1 + w?2 − 3 ≤ 0 (1.40)

and

∇w2(w2 + w?3)2|w?
2

+ λ2∇w2(w
?
1 + w2 − 3)|w?

2
= 0 ⇐⇒ 2w?2 + λ2 = 0 (1.41)

λ2 ≥ 0 (1.42)

λ2(w?1 + w?2 − 3) = 0 (1.43)

w?1 + w?2 − 3 ≤ 0 (1.44)

where λ1 and λ2 are Lagrange multipliers. From (1.37)–(1.39), we get

λ1 = 2(4− w?1) ≥ 0 ⇐⇒ w?1 ≤ 4 (1.45)

2(4− w?1)(w?1 + w?2 − 3) = 0 (1.46)

and similarly from (1.41)–(1.43) we have

λ2 = −2w?2 ≥ 0 ⇐⇒ w?2 ≤ 0 (1.47)

2w?2(w?1 + w?2 − 3) = 0 (1.48)
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From the constraint w?1 + w?2 − 3 ≤ 0 in (1.40) and (1.44), we know it can only be either

w?1 + w?2 − 3 < 0 or w?1 + w?2 − 3 = 0. Assume that it is the former case. Then, by

(1.46) and (1.48) it must hold that w?1 = 4 and w?2 = 0, which contradicts the assumption

w?1 + w?2 − 3 < 0. Therefore, we conclude that w?1 + w?2 − 3 = 0 and arrive at

w?1 ≤ 4, w?2 ≤ 0, w?1 + w?2 − 3 = 0 (1.49)

The Nash equilibria w? are the intersection set of points that satisfy the above conditions,

as we illustrate in Fig. 1.6b. One way to describe this set of Nash equilibria is

{(w?1, w?2, w?3) : w?1 + w?2 = 3, w?2 ∈ [−1, 0], w?3 = 0} (1.50)

Now, let us denote the Pareto-optimal solutions of agents 1, 2, and 3 by wo , col{wo1, wo2, wo3}.
Instead of solving the optimization problem (1.33), wo can be obtained by solving the fol-

lowing weighted optimization problem with aggregating the individual costs:

min
w1,w2,w3

Jpar(w1, w2, w3) , aJ1(w1) + bJ2(w2, w3) + cJ3(w3) (1.51)

= a(w1 − 4)2 + b(w2 + w3)2 + cw2
3

subject to w1 + w2 ≤ 3

where a, b, c > 0. The solution wo to problem (1.51) should satisfy the following KKT

conditions:

∇w

(
a(w1 − 4)2 + b(w2 + w3)2 + cw2

3

) ∣∣
wo + λ∇w(w1 + w2 − 3)|wo = 0 (1.52)

λ ≥ 0 (1.53)

λ(wo1 + wo2 − 3) = 0 (1.54)

wo1 + wo2 ≤ 3 (1.55)

where λ is the Lagrange multiplier. From (1.52) we have
2a(wo1 − 4)

2b(wo2 + wo3)

2b(wo2 + wo3) + 2cwo3

+ λ


1

1

0

 = 0⇐⇒


2a(wo1 − 4) + λ = 0

2b(wo2 + wo3) + λ = 0

2b(wo2 + wo3) + 2cwo3 = 0

(1.56)
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The third equation on the right-hand side of (1.17) gives that

wo3 =
−b
b+ c

wo2 (1.57)

which can be used in the second equation to get

2b

(
wo2 −

b

b+ c
wo2

)
+ λ = 0 ⇐⇒ λ = − 2bc

b+ c
wo2 (1.58)

Therefore, the first equation becomes

2a(wo1 − 4) =
2bc

b+ c
wo2 (1.59)

Combining (1.54) and (1.58) we have

wo2(wo1 + wo2 − 3) = 0 (1.60)

Now, using similar arguments, this can only happen when either wo2 = 0 or wo1 +wo2− 3 = 0.

Assume it is the former case wo2 = 0. From (1.59) we get wo1 = 4, which however does not

satisfy the constraint condition in (1.55). Therefore, we conclude that wo1 + wo2 − 3 = 0 or

equivalently, wo1 = 3− wo2. Substituting into (1.59), we then arrive at

2a(−wo2 − 1) =
2bc

b+ c
wo2 ⇐⇒ wo2 =

−ab− ac
ab+ ac+ bc

(1.61)

and thus

wo1 = 3 +
ab+ ac

ab+ ac+ bc
, wo3 =

−b
b+ c

· −ab− ac
ab+ ac+ bc

=
ab

ab+ ac+ bc
(1.62)

Consequently, we obtain the unique Pareto-optimal solution for every set of parameters

(a, b, c) as

(wo1, w
o
2, w

o
3) =

(
3 +

ab+ ac

ab+ ac+ bc
,
−ab− ac
ab+ ac+ bc

,
ab

ab+ ac+ bc

)
(1.63)

Comparing (1.63) with (1.50), we observe that since b > 0 and c > 0, the Pareto-optimal

solutions obtained in (1.63) are not Nash equilibria. This means the Pareto-optimal solutions

in (1.63) are not stable for agents targeting to minimize their own individual costs since, for

example, agent 3 has the tendency to choose w3 = 0 instead of wo3 = ab/(ab + ac + bc) > 0

to obtain a smaller J3(w3). �
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1.4 Organization

Therefore, this dissertation considers multi-objective learning over networks according to the

general formulation of (1.10). From the previous example, we can see that Pareto-optimal

solutions may not be stable in terms of the network dynamics since at these locations,

agents still have incentives to deviate and to choose other actions. In comparison, the Nash

equilibria are stable since no agent has an incentive to unilaterally deviate while Pareto-

optimal solutions ensure efficient action vectors since there is no other action vector that

can improve the cost of an individual agent without worsening the cost of some other agent.

We will first purse stability and focus on solving Nash equilibria in Chapters 2 and 3. In

Chapters 4, we will discuss a situation when Nash equilibria are not Pareto-optimal. In that

case, we will explain how to design additional mechanisms so that the Nash equilibria in

the modified multi-objective problem can approach to the Pareto-optimal solutions so that

agents can arrive at a stable and efficient action vector.

In this dissertation, our main focus is on developing fully-distributed learning to solve the

multi-objective formulation (1.10) where agents are only allowed to interact locally with the

neighbors over the network topology. For the same reasons explained in Sec. 1.2 (scalability,

robustness, privacy considerations), we do not consider centralized strategies, as already

proposed in [35–39], which would require a fusion center collecting data from across the

network. We are particularly interested in stochastic environments where the exact gradient

information∇wT
k
Jk(·) is unavailable and can only be replaced by some approximate ∇̂wT

k
Jk(·).

The organization of this dissertation is as follows:

• Chapter 2: We consider a general formulation of multi-objective optimization prob-

lems over network topologies where agents seek to minimize their individual costs

subject to constraints that are locally coupled. The coupling arises because the indi-

vidual costs and the constraints can be dependent on actions by other agents in the

neighborhood. In these types of problems, the Nash equilibrium is a desired and stable

solution since at this location no agent can benefit by unilaterally deviating from the

equilibrium. We therefore focus on developing distributed online strategies that enable
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agents to approach the Nash equilibrium. We illustrate an application of the results

to a stochastic version of the network Cournot competition problem, which arises in

a variety of useful problems such as in modeling economic trading with geographical

considerations, power management over smart grids, and resource allocation protocols.

• Chapter 3: Using the formulation developed in Chapter 2, we then extend earlier

contributions on adaptive networks, which generally assume that the agents work to-

gether for a common global objective or when they observe data that is generated by

a common target model or parameter vector. We relax this condition and consider

a broader scenario where individual agents may only have access to partial informa-

tion about the global target vector, i.e., each agent may be sensing only a subset

of the entries of the global target, and the number of these entries can be different

across the agents. We develop cooperative distributed techniques where agents are

only required to share estimates of their common entries and still can benefit from

neighboring agents. Since agents’ interactions are limited to exchanging estimates of

select few entries, communication overhead is significantly reduced.

• Chapter 4: In this chapter, we examine the behavior of adaptive networks where

information sharing is subject to a positive communication cost over the edges linking

the agents. In the absence of any incentives to cooperate, we show that the dominant

strategy for all agents is for them not to participate in the sharing of information and

thus Pareto inefficiency arises. We then develop a reputation protocol to summarize

the opponent’s past actions into a reputation score, which can then be used to form a

belief about the opponent’s subsequent actions. It is shown that the proposed reputa-

tion protocol can entice agents to cooperate and enhance the overall social benefit of

the network. We perform a detailed mean-square-error analysis of the evolution of the

network, which is verified by numerical simulations. The work has been successfully

applied to information sharing over cognitive networks, and potential applications in-

clude online learning under communication bandwidth and/or latency constraints, and

over social learning networks when the delivery of opinions involves some costs.
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• Chapter 5: As an alternative to the reputation protocols considered in Chapter 4, we

go beyond interactions among single agents and develop a clustering technique to entice

cooperation by clusters of agents. In this method, agents are allowed to decide with

whom to cluster and share information. The clustering concept is widely studied in the

social sciences and game theory. It enables agents to drive their cooperative behavior

by selecting their partners according to whether they can help them reduce their utility

costs. One challenge is to select utility functions that can drive the clustering operation.

Recent results on the performance of adaptive networks are exploited to great effect

for this purpose. Another challenge is to deal with the intertwinement of the clustering

and learning dynamics. In my design, each agent first evaluates the expected cost of

its possible actions and decides on whether to propose cooperation to the other agent;

if two agents agree on cooperation, they establish a link and become part of the same

larger cluster. After the clusters are formed, agents share and process information over

their sub-networks. We derive the conditions for clusters to unite under various cluster

properties.

20



CHAPTER 2

Stochastic Generalized Nash Equilibrium Problems

This chapter examines a stochastic formulation of multi-objective optimization problems

over network topologies, which is referred to as the stochastic generalized Nash equilib-

rium problem (GNEP) in the literature. In this formulation, agents seek to minimize their

individual costs subject to constraints that are locally coupled in an environment of un-

known statistical distribution. We focus on fully-distributed online learning by agents and

employ penalized individual cost functions to deal with coupled constraints. Three stochas-

tic gradient strategies are developed with constant step-sizes. We allow the agents to use

heterogeneous step-sizes and show that the penalty solution is able to approach the Nash

equilibrium in a stable manner within O(µmax), for small step-size value µmax and sufficiently

large penalty parameters. The operation of the algorithm is illustrated by considering the

network Cournot competition problem.

2.1 Introduction

The generalized Nash equilibrium problem (GNEP) refers to a setting where each agent in

a collection of agents seeks to minimize its own cost function subject to certain constraints

and where both the cost function and the constraints are generally dependent on the actions

selected by the other agents [26–28,40–42]. The GNEP was first formally introduced in [40]

and was called a social equilibrium problem. A special case of GNEPs was considered in

the work [35] where all agents shared common constraints. GNEPs arise naturally in the

modeling of many applications, ranging from market liberalization of electricity [42, 43], to

natural gas [44], telecommunications [45], femto-cell power allocation [22], environmental
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pollution control [46], and cloud computing [47, 48]. Useful overviews on GNEPs appear

in [27,28].

In these types of problems, the Nash equilibrium is a desired and stable solution since

at the Nash equilibrium no agent can benefit by unilaterally deviating from the solution.

However, Nash equilibrium solutions may not exist or may not be unique. For instance, it

was shown in [26, 41] that the solution set of a GNEP can be characterized by solving a

quasi-variational inequality (QVI), and it is rare that explicit results in QVIs can be utilized

in GNEPs. Still, there is one common and important class of GNEPs that can be partially

solved by solving a variational inequality (VI) [27, 29]. In this chapter, we focus on GNEPs

with shared and coupled constraints since the theory of variational inequalities (VI) is more

mature and has more useful results than the theory of quasi-variational inequalities (QVI).

In general, GNEP formulations do not admit closed-form solutions and many algorithms

have been proposed to compute the solutions numerically. For example, GNEPs can be refor-

mulated and solved using Nikaido-Isoda (NI) functions. Minimizing the NI can be achieved

by means of gradient-descent algorithms [36] or relaxtion-based algorithms [37]. Likewise,

using the Karush-Kuhn-Tucker (KKT) conditions, GNEPs can be solved numerically, as

demonstrated in [38]. One can also resort to penalty-based reformulations where the original

cost function is modified by including a penalty term. The purpose of the penalty term is

to assign large penalties to deviations from the constraints. The works in [49, 50] consider

exact penalty functions and focus on updating the penalty parameters incrementally until a

certain stopping rule is satisfied.

In all these prior works [40]– [50], the individual cost functions are assumed to be de-

terministic. This means that, when seeking GNEP solutions, we are able to acquire exactly

the NI functions or the gradient vectors as necessary. However, when the agents are subject

to randomness in the environment, it is customary to define the cost functions in terms

of expectations of certain loss functions. The expectation operations are in relation to the

distribution of the random data, which is rarely known beforehand. This stochastic type of

Nash games arises in many practical applications, e.g., in the transportation model of [51]

and the signal transmission model for wireless networks in [22]. To deal with stochasticity,
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Table 2.1: Comparing with Existing Works for Distributed Stochastic Problems.

Optimization

Target
Constraints

Feasibility

Approach
Step-Sizes

Iterates

Feasibility

Tracking

Ability

Regularized

SA [53]

Monotone

individual cost

Shared and

coupled
Using projection

Heterogeneous

decaying
Feasible No

Penalized

Diffusion [54]

Strongly-convex

aggregate cost
Decoupled

Using

penalty functions

Uniform

constant

Asymptotically

feasible
Yes

This Chapter
Strongly-monotone

individual costs

Shared and

coupled

Using

penalty functions

Heterogeneous

constant

Asymptotically

feasible
Yes

the sample average approximate (SAA) method was proposed in [52] to approximate the

expectation of the individual cost functions. However, in this method, the equilibrium solu-

tions are learned in an off-line manner and the GNEP needs to be re-solved for every given

batch of samples.

In order to attain continuous learning in an online manner, the stochastic approximation

(SA) method is a more suitable approach for differentiable cost functions, where the true

gradient vectors are replaced by approximations. One stochastic implementation along these

lines is considered in [53] albeit with a vanishing step-size parameter. The use of step-

sizes that decay to zero is problematic in scenarios that require continuous adaptation and

learning.

For example, in nonstationary environments, the Nash equilibrium will drift with time

due to changes in the statistical distribution of subsequent changes in the locations of the

minimizers of the cost functions. When the step-size approaches zero, as is the case with

the rules considered in [55–58], adaptation stops and the stochastic gradient algorithm loses

its ability to track the drift. The approach in [59] employs a decaying step-size to track

the evolving minimizer of a non-stationary objective. However, in that work, the optimal

sublinear regret is obtained under the condition that the variation budget VT of the time-

varying loss functions is sublinear with time. This condition implies that the variation in

the loss functions should diminish with time, which is not applicable in the case where the
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minimizer of the cost function drifts continuously. One example that does not satisfy the

variation budget condition is discussed in [54]. In comparison, it is well-known that constant

step-size adaptation in inherently capable of tracking moderate drifts due to nonstationarity

in the data — see, e.g., the analysis in [16,60,61].

We therefore focus in this chapter on online and fully-distributed learning to solve the

stochastic GNEPs where agents are only allowed to interact locally with their neighbors. We

assume that such interactions are confined to neighboring agents over the network topology

and are subject to some coupled constraints shared by all neighbors. That is, in addition

to the stochastic setting, we build one additional topology layer on top of conventional

GNEPs with shared constraints. One example for such stochastic GNEP scenarios linked to

a geometric topology would be the femto-cell power allocation problem considered in [22],

where distributed algorithms are proposed and designed for this specific application. In

this chapter, we study general distributed learning strategies for the solution of GNEPs

by networked agents. Motivated by results from [49, 50, 54, 62], we first resort to penalty

functions to deal with the constraints in stochastic GNEPs. The penalty reformulation

helps avoid the high computational complexity of conventional NI-based approaches or the

requirement of projection steps. Traditionally, penalty methods focus on selecting penalty

parameters [49,50]. However, in order to cope with the stochastic nature of GNEPs, we fix the

penalty parameters at constant but sufficiently large values, in a manner similar to [54, 62],

and study the resulting performance under stochastic environments. We also focus on the

use of constant step-sizes in the stochastic approximation methods to enable continuous

adaptation and learning. When this is done, gradient noise seeps into the operation of the

algorithm. By gradient noise we mean the difference between the true gradient vector and

its approximation. In decaying step-size implementations, this gradient noise component is

annihilated over time by the diminishing step-size parameter at the expense of a deteriorating

tracking performance. In contrast, in the constant step-size implementation, the gradient

noise process is persistently present in the operation of the algorithm. One main challenge

in our analysis is to establish that the stochastic-gradient implementation is able to keep the

influence of gradient noise under check and to deliver an accurate estimation of the Nash
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equilibrium. Arriving at these conclusions for networked agents is one key contribution of

this chapter. In Table 2.1 we list a summary of properties comparing our results to two other

existing works for distributed stochastic problems.

We remark that there exist other techniques in the stochastic optimization literature to

solve problems with the variational inequalities. For example, the works [63–65] consider

a dual-averaging method, which requires the solution of an optimization problem at each

iteration; this formulation would be useful in situations when the optimization problem can

be solved in closed form. References [66, 67] consider stochastic mirror-based approaches,

which assume the gradient noise has bounded variance. It is worth noting that the methods

in these earlier references are not directly applicable to GNEP with shared constraints over

networks, which is one critical contribution in this article.

In the simulations section, we will illustrate the theoretical results and apply the proposed

algorithms to the constrained network Cournot competition problem, which is widely used in

applications such as economic trading with geographical considerations, power management

over smart grids, and resource allocation [25,42,43,68]. We will assume there that factories

and markets are connected in a Cournot network and suffer from some randomness in the

parameters. We will see that the numerical results will match well with our theoretical anal-

ysis. We will also compare our algorithms with two projection-based algorithms from [53]:

the distributed Arrow-Hurwicz method and the iterative Tikhonov regularization method.

Table 2.2 provides a summary of the symbols used in the article for ease of reference.

2.2 Problem Setup

Consider a connected network of N agents indexed by the set N = {1, ..., N}. The neighbor-

hood of each agent k, denoted by Nk, includes agent k and the neighboring agents connected

to k. We denote the action of each agent k by a vector wk ∈ RMk and associate with k an

individual risk function denoted by Jk(·). The argument of Jk(·) does not depend solely on

wk but also on the action vectors of the neighboring agents. We collect the actions of all
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Table 2.2: Summary of Main Symbols and Notation.

Symbol Meaning Equation

Jk(·), Qk(·) Individual cost and loss functions (2.7)

Jp
k (·) Penalized individual cost function (2.27)

pk(·) Aggregated penalty function (2.28)

F (w) Block gradient vector (2.12)

F p(w) Penalized block gradient vector (2.34)

ν Strongly-monotone parameter (2.13)

δ Lipschitz parameter (2.14)

ρ Penalty parameter (2.27)

γk Lipschitz gradient parameter (2.64)

δp Parameter related to γk (2.65)

µmax Maximal step-size (2.66)

t Difference parameter for step-sizes (2.67)

α Gradient noise parameter (2.76)

ν′, ν′′ Weighted strongly-monotone parameters (2.68), (2.69)

agents in the neighborhood Nk into the block vector:

wk = col{w`; ` ∈ Nk} ∈ RMk

(2.1)

and the actions of all agents in the network N into:

w = col{w1, . . . , wN} ∈ RM (2.2)

where

Mk ,
∑
`∈Nk

M`, M ,
N∑
`=1

M` (2.3)

For convenience, we also introduce the notation

w−k , col{w`; ` ∈ Nk \ {k}} (2.4)

to collect the actions of all other agents in Nk, with the exception of agent k. Using this

notation, we shall sometimes write Jk(wk;w−k) instead of Jk(w
k) in order to make the
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dependence on wk explicit. We consider that the action of each agent k should satisfy a set

of local constraints:

hk,u(w
k) = 0, u = 1, . . . , Uk, (2.5)

gk,q(w
k) ≤ 0, q = 1, . . . , Lk (2.6)

The local constraint functions {hk,u(wk), gk,q(wk)} at agent k are assumed to be differentiable

and known to agent k. We also assume that the equality constraint functions {hk,u(wk)}
are affine and the inequality functions {gk,q(wk)} are convex in wk. We further assume that

the constraints are shared by the neighbors, i.e., if the argument of any hk,u(w
k) or gk,q(w

k)

at node k contains the action of some neighbor ` ∈ Nk, then agent ` is subject to the same

constraint function, i.e., it will hold that h`,u′(w
`) = hk,u(w

k) or g`,q′(w
`) = gk,q(w

k) for some

u′ and q′. Figure 2.1 illustrates this setting for a network topology with 5 agents. An example

of shared constraints is g1,1(w1) = g2,1(w2) = g3,1(w3) ≤ 0, which is shared by the connected

agents 1, 2 and 3. We note that while there is no direct link between agents 2 and 4, the

actions for these agents are coupled through the intermediate agent 3. Therefore, in general,

the actions of agents are affected explicitly by the neighbors and also implicitly by other

agents in the network. This scenario is common in applications [27, 29, 35, 50]. Each agent

k then seeks an optimal action vector that solves the following constrained optimization

problem [52,53,69]:

min
wk∈RMk

Jk(w
k) , Exk

Qk(w
k;xk)

subject to hk,u(w
k) = 0, u = 1, . . . , Uk

gk,q(w
k) ≤ 0, q = 1, . . . , Lk (2.7)

where Jk(w
k) is assumed to be differentiable and strongly-convex in wk, Qk(·) is a scalar-

valued loss function for agent k, and the expectation is taken over the distribution of the

random data xk. For example, if we consider power allocation in wireless heterogeneous net-

works, the individual cost function Jk(w
k) for each femto-base station k can represent the

Shannon capacity function with channel uncertainty. Moreover, one constraint of gk,q(w
k)

shared by neighboring femto-base stations can be used to guarantee that the average signal-
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to-interference and noise ratio (SINR) at macro-user terminals is above a certain thresh-

old [22]. Problem (2.7) is known as the stochastic generalized Nash equilibrium problem

(GNEP). For convenience, we collect all distinct individual constraints across all agents into

a global set denoted by

S , {w;hu(w) = 0, gq(w) ≤ 0, 1 ≤ u ≤ U, 1 ≤ q ≤ L} (2.8)

by removing the repeated shared constraints. We assume that S is nonempty, which means

that at least one solution w exists that satisfies the constraints in S and implies that the

GNEP in (2.7) is feasible for each agent. Let us denote the feasible set of (2.7) by

Sk(w−k) , {wk;hk,u(wk) = 0, gk,q(w
k) ≤ 0, 1 ≤ u ≤ Uk, 1 ≤ q ≤ Lk} (2.9)

Without loss of generality, we assume that the input (domain) of Sk(w−k) satisfies all con-

straints in S that are independent of wk. Therefore, any wk ∈ Sk(w−k) shall satisfy the

remaining constraints in S that are related to wk, i.e., for each agent k we have

Sk(w−k) = Sk(w−k) = {wk; (wk, w
−k) ∈ S} (2.10)

where

w−k , col{w`; ` ∈ N \ {k}} (2.11)

since the actions of the agents who are not neighbors of agent k will not appear in any

argument of the constraint functions hk,u(w
k) and gk,q(w

k). The conclusion in (2.10) shows

that the scenario considered in this chapter satisfies the condition of GNEP with general

shared common constraints [27].

Our objective now is to derive distributed learning strategies by which agents can adap-

tively learn to solve (2.7) using local observations of the actions of neighboring agents.

In preparation for our development, we collect the individual gradient vectors of {Jk(wk)}
with respect to each wT

k into

F (w) , col{∇wT
1
J1(w1), ...,∇wT

N
JN(wN)} (2.12)

and assume that this block column vector satisfies the following properties.
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Agent Neighborhood Individual Cost Constraints

1 N1 = {1, 2, 3, 5} J1(w1) = ‖w1 + w5‖2 g1,1(w1) = ‖w1‖2 + ‖w2 + w3‖2 − 2 ≤ 0

2 N2 = {1, 2, 3} J2(w2) = ‖w2‖2
g2,1(w2) = ‖w1‖2 + ‖w2 + w3‖2 − 2 ≤ 0

g2,2(w2) = ‖w2 − w3‖2 − 5 ≤ 0

3 N3 = {1, 2, 3, 4} J3(w3) = ‖w3‖2 · ‖w4‖2
g3,1(w3) = ‖w1‖2 + ‖w2 + w3‖2 − 2 ≤ 0

g3,2(w3) = ‖w2 − w3‖2 − 5 ≤ 0

4 N4 = {3, 4, 5} J4(w4) = ‖w3‖+ ‖w4‖2 h4,1(w4) = 1TM4
w4 + 1TM5

w5 − 1 = 0

5 N5 = {1, 4, 5} J5(w5) = ‖w1‖ · ‖w5‖2 h5,1(w5) = 1TM4
w4 + 1TM5

w5 − 1 = 0

2

1

3
4

5

Figure 2.1: Illustration of the shared constraints over a network topology where 1 denotes the

vector with all one entries.

Assumption 2.1. (ν-Strongly Monotone) For any two action profiles w = w◦ and w =

w•, it holds that

(w◦ − w•)T [F (w◦)− F (w•)] ≥ ν‖w◦ − w•‖2 (2.13)

for some positive constant ν. �

Assumption 2.2. (δ-Lipschitz Continuous) The block column vector F (w) is assumed

to be Lipschitz continuous, i.e.,

‖F (w◦)− F (w•)‖ ≤ δ‖w◦ − w•‖ (2.14)

for some positive constant δ. �
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If we consider two action vectors wa and wb defined as:

wa , col{w1, ..., w
◦
k, ..., wN} (2.15)

wb , col{w1, ..., w
•
k, ..., wN} (2.16)

for some k, then using (2.13) we get

(wa − wb)T[F (wa)− F (wb)] = (w◦k − w•k)T
[
∇wT

k
Jk(w

◦
k;w−k)−∇wT

k
Jk(w

•
k;w−k)

]
≥ ν‖w◦k − w•k‖2 (2.17)

Therefore, Assumption 2.1 implies that each individual cost function Jk(w
k) is strongly

convex in wk. Moreover, it holds that δ ≥ ν since from the Cauchy-Schwarz inequality we

have

ν‖w◦ − w•‖2 ≤ (w◦ − w•)T[F (w◦)− F (w•)]

≤ ‖w◦ − w•‖ · ‖F (w◦)− F (w•)‖

≤ δ‖w◦ − w•‖2 (2.18)

Example 2.1. (Quadratic Risks) One useful example of a loss function is the quadratic

loss, which can be expressed in the following form with the entries of xk split into xk ,

{Bk, bk, εk}:

Qk(w
k;xk) = wkTBkw

k + bTkw
k + εk

=
∑
s∈Nk

∑
`∈Nk

wT
sB

k
s`w` +

∑
`∈Nk

bTk`w` + εk (2.19)

where Bk is a random symmetric matrix of size Mk ×Mk, bk is a random vector of size

1×Mk, and εk is a random scalar variable with mean εk. In (2.19), we partitioned Bk and

bk, respectively, into block matrices {Bk
s` ∈ RMs×M`} and block vectors {bk` ∈ RM`×1} in

conformity with the block structure of wk. The random data {Bk, bk, εk} are assumed to

be independent of each other. Note that under (2.19), the gradient vector of Jk(w
k) with

respect to wT
k is the Mk × 1 vector given by

∇wT
k
Jk(w

k) =
∑
`∈Nk

2Bk
k`w` + bkk (2.20)
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where we introduced the means Bk
k` = EBk

k` and bkk = Ebkk. Collecting these individual

gradient vectors we get

F (w) = Bw + b (2.21)

where

B ,


2B1

11 · · · 2B1
1N

...
. . .

...

2BN
N1 · · · 2BN

NN

 ∈ RM×M , b ,


b11

...

bNN

 ∈ RM×1 (2.22)

Note that Assumption 2.1 will hold if there exists a positive constant ν such that for any

M × 1 vector a we have

aT (B − νI) a ≥ 0 ⇐⇒ aTBa ≥ ν‖a‖2 (2.23)

Since B is not necessarily symmetric, we know from [70, p. 259] that (2.23) holds if, and

only if, the symmetric part of B satisfies:

1

2
(B +BT) ≥ νI (2.24)

It follows from this condition that the largest singular value of B, denoted by σmax, should

be greater than or equal to ν since

σmax = ‖B‖ ≥
∥∥∥∥1

2
(B +BT)

∥∥∥∥ ≥ ν (2.25)

From (2.21), it is easy to verify that Assumption 2.2 always holds for the quadratic loss

function since

‖F (w◦)− F (w•)‖ = ‖B(w◦ − w•)‖ ≤ σmax‖w◦ − w•‖ (2.26)

�

2.3 Stochastic Penalty-Based Learning

2.3.1 Penalty Approximation for Coupled Constraints

Solving the constrained optimization problem (2.7) is generally demanding and may not

admit a closed-form solution. In this chapter, we resort to a penalty-based approach to
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replace the original problem by an unconstrained optimization problem and then show that

the solution to the penalized problem tends asymptotically with the penalty parameter to

the desired solution to (2.7). Even more importantly, we will show that the penalty-based

approach enables the agents to employ adaptive learning strategies, which instantaneously

approximate the unknown random individual cost functions and endow the agents with the

ability to track variations in the location of the Nash equilibrium due to changes that may

occur in the constraint conditions or cost measures.

The main motivation for penalty methods is to assign a large penalty weight when-

ever constraints are violated and a smaller or zero weight when the constraints are satis-

fied [26,54,61,71]. More specifically, problem (2.7) is replaced by the following unconstrained

formulation:

min
wk∈RMk

Jk(w
k) + ρpk(w

k) , Jpk (wk) = Jpk (wk;w−k) (2.27)

where ρ ≥ 0 is a penalty parameter, pk(w
k) denotes the penalty function for agent k and

is assumed to be of the following aggregate form, with one penalty factor applied to each

constraint:

pk(w
k) =

Uk∑
u=1

θEP

(
hk,u(w

k)
)

+

Lk∑
q=1

θIP

(
gk,q(w

k)
)

(2.28)

where θEP(x) and θIP(x) are convex functions. The equality penalty factor θEP(x) returns

zero value if the constraint is satisfied, i.e., when hk,u(w
k) = 0, and introduces a large positive

penalty if the constraint is violated, i.e., when hk,u(w
k) 6= 0. For example, a continuous and

differentiable choice for the equality penalty is the quadratic function:

θEP(x) = x2 (2.29)

Since hk,u(w
k) is affine, a convex choice of θEP(·) ensures the convexity of the function

composition θEP

(
hk,u(w

k)
)
. Similarly, the inequality penalty function θIP(x) returns zero

value if gk,q(w
k) ≤ 0, and introduces a large positive penalty if gk,q(w

k) > 0. In the penalty

method studied in [50], we get an exact Nash equilibrium solution to (2.7) as long as ρ is

sufficiently large and we use the `1 penalty function [72]:

θeIP(x) = max{0, x} (2.30)
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However, using this penalty function makes the objective function in (2.27) non-differentiable,

which limits the use of gradient-based adaptation rules [73]. To avoid this difficulty, we can

employ the following half-quadratic penalty function [71], which is continuous, convex, non-

decreasing, and once-differentiable:

θIP(x) ,


0, x ≤ 0

x2/2, x ≥ 0

(2.31)

Other choices for θIP(x) are of course possible, e.g., γ-norm [49], exponential and shifted

logarithmic functions [74,75], linear-quadratic functions [62], and others in [15,54]. We note

that a convex and nondecreasing choice of θIP(·) results in a convex composite function

θIP

(
gk,q(w

k)
)

since gk,q(w
k) is convex. Consequently, the penalty function pk(w

k) defined in

(2.28) is convex in wk.

The penalized cost Jpk (wk) is strongly-convex in wk since Jk(w
k) is strongly-convex in

wk, as seen in (2.17), and pk(w
k) is convex in wk, and therefore in wk. An action profile

w? = col{w?1, ..., w?N} that minimizes simultaneously all penalized costs {Jpk (wk)} is called

a Nash equilibrium for the penalized formulation (2.27), i.e., for each agent k, the Nash

equilibrium w? satisfies

Jpk (w?k;w
?
−k) ≤ Jpk (wk;w

?
−k), ∀wk ∈ RMk (2.32)

The following theorem ensures the existence and uniqueness of the Nash equilibrium.

Theorem 2.1. (Existence and Uniqueness): Under Assumption 2.1 and for any convex

choice of θEP(x) and any convex and nondecreasing choice of θIP(x), there exists a unique

Nash equilibrium w? for problem (2.27), and it satisfies

F p(w?) , F (w?) + ρ∇wTp(w?) = 0 (2.33)

where

F p(w) , col{∇wT
1
Jp1 (w1), ...,∇wT

N
JpN(wN)} (2.34)

∇wTp(w) , col{∇wT
1
p1(w1), ...,∇wT

N
pN(wN)} (2.35)
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Proof. See Appendix 2.A.

Now, for any ρ, let us denote the unique Nash equilibrium to the penalized optimization

problem (2.27) by

w?(ρ) , col{w?1(ρ), ..., w?N(ρ)} (2.36)

where

w?k(ρ) = arg min
wk∈RMk

Jpk (wk;w
?
−k(ρ))

= arg min
wk∈RMk

Jk(wk;w
?
−k(ρ)) + ρpk(wk;w

?
−k(ρ)) (2.37)

For convenience, we introduce the notation:

w?k(∞) , lim
ρ→∞

w?k(ρ) (2.38)

w?−k(∞) , col{w?` (∞); ` ∈ Nk \ {k}} (2.39)

From the results in [54, p. 3930] and [71, Theorem 9.2.2], we know that given any w−k and

as ρ goes to infinity, we have

inf
wk∈Sk(w−k)

Jk(wk;w−k) = lim
ρ→∞

inf
wk∈RMk

Jpk (wk;w−k) (2.40)

and

Jk(w
o
k;w−k) = inf

wk∈Sk(w−k)
Jk(wk;w−k) (2.41)

where wok ∈ Sk(w−k) is feasible for optimization problem (2.7) and satisfies

wok , lim
ρ→∞

arg min
wk∈RMk

Jpk (wk;w−k) (2.42)

Therefore, if we are given w?−k(∞), we get

Jk(w
?
k(∞);w?−k(∞)) = inf

wk∈Sk(w?
−k(∞))

Jk(wk;w
?
−k(∞))

= lim
ρ→∞

inf
wk∈RMk

Jpk (wk;w
?
−k(∞))

= Jpk (w?k(∞);w?−k(∞)) (2.43)
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It then follows that w?(∞) , col{w?1(∞), ..., w?N(∞)} is an asymptotic Nash equilibrium of

GNEP in (2.7) as ρ goes to infinity. Furthermore, for each agent k the value of the original

cost Jk coincides with the value of the penalized cost Jpk at w?(∞). Consequently, the Nash

equilibrium for the penalized problem (2.27) can be made arbitrarily close to the set of

Nash equilibria (if not unique) by choosing ρ large enough. Comparing with the variational

equilibrium concept discussed in [30], the main difference here is that instead of solving an

exact GNE directly, we introduce the differentiable penalty function p(·) to get an asymptotic

solution, which is more practical computationally under stochastic environments as we will

see in later sections.

2.3.2 Stochastic Learning Dynamics

The unknown statistical distribution of the data makes it impossible to solve the penalized

optimization problem (2.27) analytically. As a result, a closed form solution to problem

(2.27) is not generally possible. If this were possible, then the agents could learn w? given

knowledge of the other agents’ actions; this solution method would lead to the best response

dynamics [76]. Since this approach is rarely applicable, agents can instead appeal to learning

strategies where they gradually approach the desired w? through successive inference from

streaming data. For example, one well-known gradient-descent solution to update the agents’

actions at discrete-time instants i is to employ the following localized rule [77–79]:

wk,i = wk,i−1 − µk∇wT
k
Jpk (wki−1)

= wk,i−1 − µk
(
∇wT

k
Jk(w

k
i−1) + ρ∇wT

k
pk(w

k
i−1)
)

(2.44)

where µk is the step-size for agent k. Alternatively, motivated by the arguments from [54],

one can implement (2.44) incrementally by using a two-step learning strategy to improve

the individual costs and the penalty costs separately. For example, agent k can use an

Adapt-then-Penalize (ATP) diffusion learning strategy to update first the iterate along the

negative gradient direction of the individual cost Jk(·) and then apply the correction along
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the gradient of the penalty term:

(ATP)

ψk,i = wk,i−1 − µk∇wT
k
Jk(w

k
i−1) (2.45)

wk,i = ψk,i − µkρ∇wT
k
pk(ψ

k
i ) (2.46)

where ψk,i ∈ RMk is an intermediate action of agent k and, similar to wki , the notation ψki

collects the iterates ψ`,i from across the neighborhood of agent k. Agents can also switch the

order of these two steps and use a Penalize-then-Adapt (PTA) diffusion learning strategy:

(PTA)

ψk,i = wk,i−1 − µkρ∇wT
k
pk(w

k
i−1) (2.47)

wk,i = ψk,i − µk∇wT
k
Jk(ψ

k
i ) (2.48)

We note that in the gradient-based learning strategies of (2.44), (2.45)–(2.46), and (2.47)–

(2.48), agents are assumed to be able to observe or acquire the intermediate actions taken

by neighboring agents and then synchronously update their actions1. Furthermore, when

implementing these strategies, each agent k requires knowledge of its own gradient quantities

∇wT
k
Jk(w

k) and ∇wT
k
pk(w

k). When the exact statistics of the data xk are unavailable, we

need to resort to instantaneous realizations {xk,i} of these random variables at each time i

and estimate the gradient vectors by employing constructions based on the loss functions,

i.e.,

∇̂wT
k
Jk(w

k) , ∇wT
k
Qk(w

k;xk,i) (2.49)

Using these estimates, we arrive at the following stochastic gradient implementation:

wk,i = wk,i−1 − µk∇wT
k
Qk(w

k
i−1;xk,i)− µρ∇wT

k
pk(w

k
i−1) (2.50)

and the corresponding ATP and PTA diffusion versions: diffusion

ATP

 ψk,i = wk,i−1 − µk∇wT
k
Qk(w

k
i−1;xk,i) (2.51)

wk,i = ψk,i − µkρ∇wT
k
pk(ψ

k
i ) (2.52)

and  diffusion

PTA

 ψk,i = wk,i−1 − µkρ∇wT
k
pk(w

k
i−1) (2.53)

wk,i = ψk,i − µk∇wT
k
Qk(ψ

k
i ;xk,i) (2.54)

1We remark that asynchronous adaptation and learning is also possible, see [20, 80] and the references
therein. We focus here on synchronous operation.
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Observe that we are denoting the weight iterates in boldface since they are now random

quantities due to the randomness of ∇̂wT
k
Jk(w

k) resulting from the use of realizations xk,i.

Note also that instead of diminishing step-sizes, we are considering constant step-sizes {µk}
in order to endow the algorithms with a tracking mechanism that enables them to track

variations in the statistical distribution of the data over time. If the step-sizes are uniform,

i.e., µk = µ for all k, we will show later in Sec. 2.4 that the diffusion ATP and PTA

strategies are more stable than the stochastic gradient (2.50). Furthermore, we will observe

in the simulations of Sec. 2.5.2 that the diffusion ATP and PTA strategies exhibit better

mean-square error performance than the stochastic gradient (2.50).

Example 2.2. (Multitask diffusion adaptation) The formulations of multitask diffu-

sion adaptation in [18–20] can also be regarded as a special case of the GNEP formulation

for quadratic cost functions. In multitask scenarios, there exist clusters in the network with

agents in the same cluster interested in the same objective or task (such as estimating a com-

mon vector). Cooperation is still warranted among agents and clusters because the multiple

tasks can have some similarities. We can reformulate the multitask problem as an GNEP as

follows:

min
wk

Jk(w
k)

subject to wk = w`, ` ∈ Nk ∩ Ck (2.55)

where Ck denotes the cluster that agent k belongs to. Note that the constraints are only on

the neighboring agents belonging to cloud Ck since they have the same estimation target.

Following [18–20], we consider a regularized mean-square-error risk of the form:

Jk(w
k) , E|dk(i)− uk,iwk|2 +

∑
`∈Nk\Ck

ηk`‖wk − w`‖2 (2.56)

where the scalar dk(i) ∈ R and the regression vector uk,i ∈ R1×M are the observation data,

and {ηk` ≥ 0} are regularization parameters. Note that the regularization terms include

only the neighboring agents in different clusters from Ck. Let us rewrite the constraints as

{wk(m)−w`(m) = 0} for ` ∈ Nk ∩ Ck and m = 1, ...,M , and then use the quadratic penalty
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function (2.29) to get

pk(w
k) =

∑
`∈Nk∩Ck

M∑
m=1

(wk(m)− w`(m))2 (2.57)

with the gradient vector

∇wT
k
pk(w

k) =
∑

`∈Nk∩Ck

2(wk − w`) (2.58)

Using the diffusion ATP strategy in (2.51)–(2.52), we then arrive at the multitask ATC

algorithm derived in [18–20]:

 multitask

ATC




ψk,i = wk,i−1 + µku
T
k,i[dk(i)− uk,iwk,i−1]

+
∑

`∈Nk\C(k)

ηk`(w`,i−1 −wk,i−1) (2.59)

wk,i =
∑

`∈Nk∩Ck

a`kψ`,i (2.60)

where

akk , 1−
∑

`∈Nk∩Ck

2µkρ, a`k , 2µkρ, for ` 6= k (2.61)

We note that for the case Ck = Nk, the multitask ATC algorithm (2.59)–(2.60) becomes a

standard diffusion strategy [11, 12, 14–17, 81–83]. The consensus strategies [1, 2, 4, 6, 7] can

also be derived by considering the stochastic gradient descent rule (2.50) and using similar

arguments. �

2.4 Performance Analysis

We now examine the convergence and stability properties of the distributed stochastic algo-

rithms (2.51)–(2.52) and (2.53)–(2.54). In particular, we examine how close their limiting

point gets to the unique equilibrium point, w?. To continue, we introduce the following

condition on the penalty function. This condition is not restrictive since the choice of the

penalty function is under the designer’s control.
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Condition 2.1. (Lipschitz gradients) Consider two arbitrary block vectors w◦ and w•

collecting all actions from all agents:

w◦ , col{w◦1, ..., w◦N}, w• , col{w•1, ..., w•N} (2.62)

We denote the corresponding action vectors in Nk by

wk◦ , col{w◦` ; ` ∈ Nk}, wk• , col{w•` ; ` ∈ Nk} (2.63)

For each individual agent k, we assume that the gradient vector ∇wT
k
pk(·) satisfies:∥∥∥∇wT

k
pk(w

k
◦)−∇wT

k
pk(w

k
•)
∥∥∥ ≤ γk

∥∥wk◦ − wk•∥∥ (2.64)

where γk is a positive constant. �

Note that pk(w
k) is not required to be twice-differentiable, which is weaker than the

assumption used in [54]. Then, we have the following theorem.

Lemma 2.1. (Lipschitz continuity) Under Condition 2.1 and Assumption 2.2, the pe-

nalized block gradient vector F p(w) is (δ+ρδp)-Lipschitz continuous, i.e., for any w◦ and w•

we have

‖F p(w◦)− F p(w•)‖ ≤ (δ + ρδp)‖w◦ − w•‖ (2.65)

where δp ,
(∑N

k=1 γ
2
k

)1/2

.

Proof. See Appendix 2.B.

In order to characterize the heterogeneous step-sizes, let us denote the maximal and

minimal step-sizes, respectively, over the network by

µmax , max
1≤k≤N

{µk} (2.66)

µmin , min
1≤k≤N

{µk} , (1− t)µmax (2.67)

for some parameter 0 ≤ t < 1. A small value of t indicates that the step-sizes {µk} are

clustered together. To continue, we establish the following lemma.
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Lemma 2.2. (Weighted strong monotonicity) The penalized block gradient vector F p(w)

satisfies, for any two action profiles w◦ and w•,

(w◦ − w•)TU [F p(w◦)− F p(w•)] ≥ µmaxν
′‖w◦ − w•‖2 (2.68)

where U , diag{µ1IM1 , ..., µNIMN
} is a diagonal matrix with step-sizes in the diagonal po-

sitions and ν ′ , ν − t(δ + ρδp). Similarly, the block gradient vector F (w) and the penalty

gradient vector ∇wTp(w) satisfy, respectively,

(w◦ − w•)TU [F (w◦)− F (w•)] ≥ µmaxν
′′‖w◦ − w•‖2 (2.69)

(w◦ − w•)TU [∇wTp(w◦)−∇wTp(w•)] ≥ −tµmaxδp‖w◦ − w•‖2 (2.70)

where ν ′′ , ν − tδ.

Proof. See Appendix 2.C.

Note that for uniform step-sizes we have t = 0 and thus ν ′ = ν ′′ = 0. Furthermore, ν ′ and

ν ′′ are not necessarily positive unless t is small enough. We further introduce the gradient

noise vector

sk,i(w
k) = ∇wT

k
Qk(w

k;xk,i)−∇wT
k
Jk(w

k) (2.71)

and define the network vectors

si(w) , col{sk,i(w1), . . . , sN,i(w
N)} (2.72)

Qi(w) , col
{
∇wT

1
Q1(w1;x1,i), . . . ,∇wT

N
QN(wN ;xN,i)

}
(2.73)

where we simplified the notation sk,i(w
k), si(w) and Qi(w) by dropping {xk,i} from their

arguments. Then, it holds that

si(w) = Qi(w)− F (w) (2.74)

Note that given the action profile w, the randomness of sk,i, si and Qi comes from the

random data {xk,i}, and therefore we denote them in boldface. We denote by F i−1 the

collection of iterates {wk,i−1} at all agents k = 1, ..., N and up to time i− 1.
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Assumption 2.3. (Gradient noise) It is assumed that the first and second-order condi-

tional moments of the gradient noise process satisfy:

E[si(wi−1)|F i−1] = 0 (2.75)

E
[
‖si(wi−1)‖2|F i−1

]
≤ α‖wi−1‖2 + β (2.76)

for some nonnegative constants α and β. �

It can be verified that conditions (2.75)–(2.76) are automatically satisfied for impor-

tant cases of interest. For example, consider the case of quadratic losses in (2.19). Some

straightforward algebra shows in this case that, using stationary realizations {Bi, bi} for the

quantities {B, b} in (2.21), we get the approximate block gradient vector as

Qi(wi−1) = Biwi−1 + bi (2.77)

so that

si(wi−1) , −B̃iwi−1 − b̃i (2.78)

where B̃i , B −Bi and b̃i , b − bi. Note that EB̃i = 0 and Eb̃i = 0 from the fact that

B = EBi and b = Ebi. From the independence of Bi, bi, and wi−1, Assumption 2.3 can be

seen to be satisfied since

E[si(wi−1)|F i−1] = −E[B̃i] ·wi−1 − Eb̃i = 0 (2.79)

E
[
‖si(wi−1)‖2|F i−1

]
≤ λmax

(
E[B̃T

i B̃i]
)
‖wi−1‖2 + E‖b̃i‖2 (2.80)

with α = λmax(E[B̃T
i B̃i]) and β = E‖b̃i‖2.

2.4.1 Stochastic Gradient Dynamics

We consider first the stochastic-gradient implementation (2.50). We can describe the evolu-

tion of the dynamics of the algorithm in terms of the aggregate quantitieswi , col{w1,i, ...,wN,i}
by writing:

wi = wi−1 − UQi(wi−1)− ρU∇wTp(wi−1) (2.81)
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Subtracting w? from both sides of (2.81), introducing the error vector w̃i , w? − wi and

using (2.33) we find that

w̃i = w̃i−1 + UF p(wi−1) + Usi(wi−1) (2.82)

The following theorem now establishes that the network error is mean-square stable for

sufficiently small step-sizes {µk} and variation parameter t.

Theorem 2.2. (Mean-square-error stability) For the stochastic gradient implementa-

tion (2.50), if the step-sizes {µk} satisfy

0 < µmax <
2ν ′

(δ + ρδp)2 + 2α
, t <

ν

δ + ρδp
(2.83)

then it holds that

lim
i→∞

supE‖w̃i‖2 = O(µmax) (2.84)

Proof. See Appendix 2.D.

2.4.2 Diffusion ATP and PTA Strategies

Let us consider next the deterministic ATP and PTA strategies (2.45)–(2.46) and (2.47)–

(2.48), respectively, without gradient noise. Later, we re-incorporate the gradient noise and

adjust the conclusions. Thus, note that in the noiseless case we can aggregate the recursions

across all agents into the following unified description:

φi = wi−1 − c1ρU∇wTp(wi−1) (2.85)

ψi = φi − UF (φi) (2.86)

wi = ψi − c2ρU∇wTp(ψi) (2.87)

for some constants (c1, c2). By setting (c1, c2) = (0, 1) we recover the ATP recursions (2.45)–

(2.46) while for (c1, c2) = (1, 0) we obtain the PTA recursions from (2.47)–(2.48). We thus

note that the constants (c1, c2) satisfy the properties:

c2
1 = c1, c2

2 = c2, c1 · c2 = 0, c1 + c2 = 1 (2.88)

The following result establishes that recursions (2.85)–(2.87) converge to a unique fixed point.
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Theorem 2.3. (Unique fixed point) The mapping from wi−1 to wi in (2.85)–(2.87) con-

verges to a unique fixed point, denoted by ψ∞, for small step-sizes and for sufficiently large

penalty parameters that satisfy:

0 < µmax < µo, t <
ν

δ + ρδp
, ρ >

δ

δp
(2.89)

where

µo , min

 2ν ′

δ2 + ρ2δ2
p − 4tν ′′ρδp

,
ν ′ +

t(ρ2δ2p−δ2)

ρδp

δ2

 (2.90)

Proof. See Appendix 2.E.

We note that if the step-sizes are uniform, i.e., µk = µ and t = 0, the step-size condition

in (2.89) simplifies to

0 < µ <
2ν

δ2 + ρ2δ2
p

(2.91)

since

ρ >
δ

δp
⇐⇒ ρ2δ2

p > δ2 ⇐⇒ ν

δ2
>

2ν

δ2 + ρ2δ2
p

(2.92)

From Theorem 2.3 we know that there exists a unique fixed point for recursion (2.85)–(2.87),

which means that we can write

φ∞ = w∞ − c1ρU∇wTp(w∞) (2.93)

ψ∞ = φ∞ − UF (φ∞) (2.94)

w∞ = ψ∞ − c2ρU∇wTp(ψ∞) (2.95)

where we are denoting the network fixed-point vectors by w∞, ψ∞ and φ∞. Similarly, we can

express the diffusion (stochastic) versions of the ATP and PTA strategies in (2.51)–(2.52)

and (2.53)–(2.54) in the form:

φi = wi−1 − c1ρU∇wTp(wi−1) (2.96)

ψi = φi − UQi(φi) (2.97)

wi = ψi − c2ρU∇wTp(ψi) (2.98)
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Let w̃∞i , w∞ −wi denote the fixed-point error resulting from (2.96)–(2.98).The following

theorem shows that the variance of this error is bounded.

Theorem 2.4. (Bounded MSE) For the stochastic recursion (2.96)–(2.98), if the step-

sizes {µk} and the penalty parameter ρ satisfy

0 < µmax < µ′o, t <
ν

δ + ρδp
, ρ >

√
δ2 + 2α

δp
(2.99)

where

µ′o , min

{
2ν ′

δ2 + 2α + ρ2δ2
p − 4tν ′′ρδp

,
ν ′ +

t(ρ2δ2p−(δ2+2α))

ρδp

δ2 + 2α

}
(2.100)

then it holds that for sufficiently small step-sizes

lim
i→∞

supE‖w̃∞i ‖2 = O(µmax) (2.101)

Proof. See Appendix 2.F.

It is easy to verify that if the step-sizes are uniform, the step-size condition in (2.99)

becomes

0 < µ <
2ν

δ2 + 2α + ρ2δ2
p

(2.102)

We note from α ≥ 0 that µ′o ≤ µo, which means that condition (2.99) for the stochastic recur-

sion implies condition (2.89) for the deterministic recursion. Therefore, any µmax satisfying

(2.99) ensures the existence of the fixed point w∞. However, the fixed point w∞ is generally

different from the desired Nash equilibrium w?. In the following theorem, we examine the

bias w̃ , w? − w∞. We show that for small µmax, the norm of the bias is asymptotically

upper bounded by O(µmax).

Theorem 2.5. (Small bias) For sufficiently small step-sizes {µk} satisfying the following

conditions:

0 < µmax < µo, t <
ν

δ + ρδp
, ρ >

δ

δp
(2.103)
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it holds that

lim
µmax→0

sup
‖w? − w∞‖

µmax

≤ cρ (2.104)

where c is a constant independent of µmax. Therefore, for sufficiently small µmax we can write

lim
i→∞

supE‖w? −wi‖2 ≤ 2 lim
i→∞

supE‖w∞ −wi‖2 + 2‖w? − w∞‖2

= O(µmax) +O(µ2
maxρ

2) (2.105)

Proof. See Appendix 2.G.

In Figure 2.2, we illustrate the relation between wi, w
?, and w∞ in steady-state for

sufficiently small step-sizes. We note that wi, w
?, and w∞ asymptotically approach to the

Nash equilibrium set of the original GNEP (2.7) as ρ → ∞ and µmax → 0. We note that

condition (2.99) implies conditions (2.89) and (2.103). That is, as long as the step-sizes {µk}
and the penalty parameter ρ satisfy (2.99), the diffusion ATP and PTA learning strategies

have fixed points, bounded MSE, and small bias. Furthermore, comparing (2.102) with (2.83)

we observe that by using uniform step-sizes, the diffusion ATP and PTA learning strategies

are more stable than the stochastic gradient dynamic strategy (2.50) since they are allowed

to use a larger step-size, which would assist with faster convergence performance. We will

observe this in the simulations later. For the special case in Example 2, this conclusion

conforms with the results in [21] that the diffusion strategies are more stable than the

consensus strategy.

2.5 Case Study and Simulations

2.5.1 Stochastic Network Cournot Competition

In this section, we consider the stochastic network Cournot competition problem [24,25,42,

43, 84] with shared constraints. We assume that the environment is stochastically dynamic

in the following manner. Suppose that we have a network with N factories, regarded as the

agents discussed in this chapter, and L markets connected to the factories. Each factory k

45



Figure 2.2: Illustration of the relations between wi, w
?, and w∞ in steady-state for sufficiently

small step-sizes. The notation O(µmax) and O(µ2
maxρ

2) in the drawing represent the squared dis-

tances E‖w∞ −wi‖2 and ‖w? − w∞‖, respectively.

needs to determine a continuous-valued and nonnegative quantity of products to be produced

and delivered to each connected market, which is defined as the action of factory k denoted

by wk = [wk(1), ..., wk(Mk)]
T where we assumed Mk markets are connected to factory k. For

each factory k, there exists a random quadratic production cost function to generate
∑Mk

n=1

wk(n) amount of products, i.e., the production cost function for each factory is given by

Ck(wk) = (xk + vx,k)

(
Mk∑
m=1

wk(m)

)2

(2.106)

for some parameter xk > 0 and random disturbance vx,k with zero mean. Furthermore, the

price of products sold in each market ` is assumed to follow a linear function:

P`(r(`)) = q` − (y` + vy,`)r(`) (2.107)

where q` > 0 and y` > 0 are the pricing parameters, the random disturbance vy,` is zero-mean,

and r(`) is the total amount of products delivered to market ` by all connected factories,

i.e.,

r(`) =
N∑

k=1,wk(u)@`

wk(u) (2.108)
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where we write wk(u) @ ` to represent that wk(u) is the quantity that factory k delivers to

market `. Note that in order to be consistent with the notation in (2.7), the index u in wk(u)

can be different from the index ` denoted for markets. Consequently, each factory k has an

individual cost function as follows:

Jk(w
k) = E

(
Ck(wk)−

L∑
`=1,u@`

wk(u) · P`(r(`))
)

= xk

(
Mk∑
m=1

wk(m)

)2

−
L∑

`=1,wk(u)@`

wk(u) (q` − y` · r(`)) (2.109)

Note that the loss functions in the individual cost functions can be rewritten in the quadratic

form (2.19). Now, let us show that {Jk(wk)} in the network Cournot competition are strongly

monotone. For each u @ ` we have the components in ∇wT
k
Jk(w

k) as

∂Jk(w
k)

∂wk(u)
= 2xk

Mk∑
m=1

wk(m)− q` + y` [wk(u) + r(`)] (2.110)

If we collect these components into the long block vector F (w), we get the form in (2.21)

where the (m,n)−th entry in each block of matrix B is given by

Bk
kk(m,n) =


xk + y`, if m = n s.t. wk(m) @ `

xk, if m 6= n

(2.111)

Bk
kq(m,n) =


y`, if wk(m) @ ` and wq(n) @ `

0, otherwise

, k 6= q (2.112)

It is easy to check that matrix B can be expressed as

B = XXT + Y1Y
T

1 + Y2Y
T

2 (2.113)

where X is an M ×M diagonal matrix with diagonal entries {√y`ku} for wk(u) @ `ku, Y1 is

a M ×N block diagonal matrix with N ×N blocks in which the (k, k)−th diagonal block is

Y1,kk =
[√

2xk, ...,
√

2xk
]T

of size Mk× 1, and Y2 is a M ×L block matrix with N ×L blocks

in which the (k, `)−th block is a vector of size Mk × 1 and defined as

Y2,k`(m) =


√
y`, if wk(m) @ `

0, otherwise

(2.114)
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Figure 2.3: An example to illustrate the network Cournot competition and the equivalent network

topology.

Therefore, we find that B has the following property for any M × 1 vector a:

aTBa = aTXXTa+ ‖Y T
1 a‖2 + ‖Y T

2 a‖2 ≥ xmin · ‖a‖2 (2.115)

where xmin , min1≤`≤L x`. Consequently, the network Cournot competition with individual

cost functions in (2.109) satisfies the strongly monotone property (2.13).

Example 2.3. (Cournot network with 3 agents) An illustrative example with N = 3

factories and L = 3 markets is provided in Fig. 2.3. Following the notations for the quantities

at each link, we have the individual cost functions for the factories as

J1(w1) = x1 [w1(1) + w1(2)]2 − w1(1) · (q1 − y1 · w1(1))

− w1(2) · (q2 − y2 · [w1(2) + w3(2)])

J2(w2) = x2[w2(1)]2 − w2(1) · (q2 − y2 · [w1(2) + w3(2)])

J3(w3) = x3 [w3(1) + w3(2)]2

− w3(1) · (q2 − y2 · [w1(2) + w3(2)])

− w3(2) · (q3 − y3 · [w2(1) + w3(1)])
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Therefore, we get

∂J1(w1)

∂w1(1)
= 2x1 [w1(1) + w1(2)]− q1 + 2y1w1(1)

∂J1(w1)

∂w1(2)
= 2x1 [w1(1) + w1(2)]− q3 + 2y3w1(2) + y3w3(2)

∂J2(w2)

∂w2(1)
= 2x2w2(1)− q2 + 2y2w2(1) + y2w3(1)

∂J3(w3)

∂w3(1)
= 2x3 [w3(1) + w3(2)]− q2 + 2y2w3(1) + y2w2(1)

∂J3(w3)

∂w3(2)
= 2x3 [w3(1) + w3(2)]− q3 + 2y3w3(2) + y3w1(2)

It can be then verified that matrix B is given by

B =



2x1 + 2y1 2x1 0 0 0

2x1 2x1 + 2y3 0 0 y3

0 0 2x2 + 2y2 y2 0

0 0 y2 2x3 + 2y2 2x3

0 y3 0 2x3 2x3 + 2y3


= XXT + Y1Y

T
1 + Y2Y

T
2 (2.116)

where

X = diag{√y1,
√
y3,
√
y2,
√
y2,
√
y3} (2.117)

Y1 =


√

2x1

√
2x1 0 0 0

0 0
√

2x2 0 0

0 0 0
√

2x3

√
2x3


T

(2.118)

Y2 =


√
y1 0 0 0 0

0 0
√
y2
√
y2 0

0
√
y3 0 0

√
y3


T

(2.119)

�
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2.5.2 Numerical Results

In the simulations, we consider a network with N = 20 factories and L = 7 markets which

are connected as shown in Fig. 2.4. For each individual cost function Jk(w
k), we set xk = 4,

q` = 12, and y` = 4 for all k and ` in (2.109). For the stochastic setting, the realizations

of random noises vx,k and vy,` for all k and ` are generated at each time instant i, and are

assumed to be temporally and spatially independent. We further assume that both vx,k and

vy,` are uniformly distributed between [−4, 4]. The step-sizes are assumed to be uniform,

i.e., µk = µ for all k.

The action wk of each factory k needs to be determined under the following constraints.

The quantity of products delivered to each market has to be nonnegative and each market

` has an upper limit capacity h` of products, i.e., for m = 1, ...,Mk and ` = 1, ..., L,

wk(m) ≥ 0, r(`) =
N∑

k=1,wk(u)@`

wk(u) ≤ h` (2.120)

where h` is set to be 1 in the experiments. Furthermore, we apply the quadratic penalty

function in (2.31) to each constraint in the algorithms. We remark that the proposed penalty

methods give only asymptotically feasible solutions, which could be improved by imposing

harsher penalty or considering stricter constraints than (2.120). However, we rely on (2.120)

in the simulations to examine the numerical performance regardless of solution feasibility.

We first set the penalty parameter ρ to 200 and vary the step-size µ for the stochastic

gradient dynamic (2.50), ATP strategy (2.51)-(2.52), and PTA strategy (2.53)-(2.54). In

Fig. 2.5, we study the mean-square-deviation (MSD) performance, defined as E‖w∞−wi‖2,

for each algorithm toward its fixed point. Note that for the stochastic gradient case we have

w∞ = w?. We can see that with a smaller step-size µ, the three algorithms exhibit smaller

steady-state MSD values while converging slower, and their differences vanish with smaller µ

as well. It is worthwhile to note though that the diffusion ATP and PTA strategies generally

outperform the stochastic gradient dynamic. Furthermore, the ATP and PTA strategies

allow larger ranges of step-sizes, as we can see that for µ = 0.0065 these two strategies

converge while the stochastic gradient dynamic does not. In Fig. 2.6, we observe that for
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Figure 2.4: Network structure used for the simulations of the network Cournot competition.

sufficiently small step-sizes, the steady-state MSD values of diffusion ATP and PTA decrease

linearly with respect to µ, as we expect from (2.101). The bias between the fixed points w∞

and the Nash equilibrium w? is shown in Fig. 2.7. We can see that the bias ‖w? − w∞‖ is

linear with respect to the step-size µ and the slope becomes steep when ρ increases, which

verifies the result in (2.104). Comparing diffusion ATP and PTA strategies using sufficiently

small step-sizes, we find that diffusion ATP exhibits smaller steady-state MSD values than

diffusion PTA; on the other hand, diffusion PTA shows smaller bias values than diffusion

ATP. This result would depend on the structure of the individual costs and the shared

constraints, and the selection of the penalty functions θIP and θEP. However, as the step-size

decreases, the difference between diffusion ATP and PTA strategies becomes small in terms

of the steady-state MSD and bias.

For comparisons, we simulate two related projection-based stochastic algorithms dis-

cussed in [53], i.e., the distributed Arrow-Hurwicz method and the iterative Tikhonov regu-

larization. Both algorithms use a decaying and uniform step-size µi = (1000 + i)−0.841. The

distributed Arrow-Hurwicz method consists of the following two steps:
wk,i = ΠR+

[
wk,i−1 − µi

(
∇̂wT

k
Jk(wk,i−1)

∑L
`=1 λ`,i−1(ri(`)− h`)

)]
λ`,i = ΠR+ [λ`,i−1 + µi(ri(`)− h`)]

(2.121)

where ri(`) denotes the random realization for r(`) at time i. On the other hand, the iterative
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Tikhonov regularization follows these two steps:
wk,i = ΠR+

[
wk,i−1 − µi

(
εiwk,i−1 + ∇̂wT

k
Jk(wk,i−1)

∑L
`=1 λ`,i−1(ri(`)− h`)

)]
λ`,i = ΠR+ [λ`,i−1 + µi(ri(`)− h`)− µiεiλ`,i−1]

(2.122)

where εi = (1000 + i)−0.1 is the regularization parameter which also vanishes with time i.

We note that these two algorithms rely on the additional use of L Lagrange multiplier(s)

to deal with the shared constraints, which require some additional “bridge nodes” for im-

plementation. Furthermore, the projection step incurs additional computation complexity.

These two problems do not appear in our penalty-based algorithms proposed in this chapter.

In Fig. 2.8, we simulate the MSD learning curves for these algorithms. In order to make a

fair comparison, we set the step-size µ = 0.003 for the penalty-based strategies such that

all algorithms have the same initial value of the step-sizes. The penalty parameter ρ is set

to 200. We observe that the stochastic gradient dynamic, ATP, and PTA strategies con-

verge much faster than the distributed Arrow-Hurwicz method and the iterative Tikhonov

regularization. Furthermore, the distributed Arrow-Hurwicz and the iterative Tikhonov

regularization methods have larger steady-state MSD values than the three penalty-based

algorithms, while their MSD values can slowly and continuously improve at the expense of

loss of tracking capability since the step-size goes to zero asymptotically.

2.6 Concluding Remarks

This chapter focuses on GNEPs with shared constraints over network topologies in stochastic

environments. We develop three fully-distributed online learning strategies which asymptot-

ically approach the set of generalized Nash equilibrium for small constant step-sizes and

sufficiently large penalty parameters. An interesting future work would be to explore how

the converging point of our algorithms in the set of GNE(s) relate to the variational equi-

librium obtained by KKT conditions with identical Lagrange multipliers [85, 86]. Another

possibility for future work is to explore the use of sub-gradient methods would be useful

for sub-differentiable penalty functions and/or individual cost functions [7, 63, 87]. Asyn-

chronous adaptation learning [20,80] is also a useful extension so that agents do not need to
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execute the update of actions simultaneously.

55



APPENDICES

2.A Proof of Theorem 2.1

We introduce the aggregate penalty function

p(w) ,
U∑
u=1

θEP(hu(w)) +
L∑
q=1

θIP(gq(w)) (2.123)

and note that

∇wT
k
p(w) =

U∑
u=1

∇hu(w)θEP(hu(w)) · ∇wT
k
hu(w) +

L∑
q=1

∇gq(w)θIP(gq(w)) · ∇wT
k
gq(w) (2.124)

and

∇wT
k
pk(w

k) =

Uk∑
u=1

∇hk,u(wk)θEP(hk,u(w
k)) · ∇wT

k
hk,u(w

k)

+

Lk∑
q=1

∇gk,q(wk)θIP(gk,q(w
k)) · ∇wT

k
gk,q(w

k) (2.125)

Recall that, as defined in (2.8), the global constraint functions {hu(w)} and {gq(w)} are

distinctly collected and include all {hk,u(wk)} and {gk,q(wk)} in the network. Therefore, if

a global constraint function hu(w) or gq(w) relates to some action wk, agent k is subject

to the same constraint function, say, hk,u′(w
k) = hu(w) or gk,q′(w

k) = gq(w). That is, we

can find one-to-one mapping from every nonzero ∇wT
k
hu(w) or ∇wT

k
gq(w) in (2.124) to some

∇wT
k
hk,u′(w

k) or ∇wT
k
gk,q′(w

k) in (2.125), which means that we have

∇wT
k
pk(w

k) = ∇wT
k
p(w) (2.126)

so that

∇wT p(w) = col{∇wT
1
p1(w1), ...,∇wT

N
pN(wN)} (2.127)

From (2.21) and (2.33) we can write

F p(w) , col{∇wT
1
Jp1 (w1), ...,∇wT

N
JpN(wN)}

= F (w) + ρ∇wTp(w) (2.128)
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Since the sum of convex functions is also convex, we know that p(w) is convex and, therefore,

for any wa and wb:

(wa − wb)T[∇wTp(wa)−∇wTp(wb)] ≥ 0 (2.129)

Using (2.13) we get

(wa − wb)T[F p(wa)− F p(wb)]

= (wa − wb)T[F (wa)− F (wb) +∇wTp(wa)−∇wTp(wb)]

≥ ν‖wa − wb‖2 (2.130)

It follows that the penalized mapping F p : RM → RM is strongly monotone. In order to

examine the existence of a Nash equilibrium, we need to show that the strong monotonicity

of F p(w) satisfies the coerciveness property [88, p. 14], i.e., for some wref ∈ RM ,

lim
‖w‖→∞

[
F p(w)− F p(wref)

]T
(w − wref)

‖w − wref‖ =∞ (2.131)

Using (2.130) and setting wa = w and wb = wref we get

lim
‖w‖→∞

[
F p(w)− F p(wref)

]T
(w − wref)

‖w − wref‖ ≥ lim
‖w‖→∞

ν‖w − wref‖ =∞ (2.132)

which shows that F p(w) satisfies the coerciveness property in (2.131) with wref. We then

conclude the existence of solutions to problem (2.27).

The uniqueness of the Nash equilibrium is also guaranteed by the strong monotonicity

following [32, Theorem 2.3.3]. Since Jpk (wk;w−k) is convex and differentiable in wk, from the

optimality criterion [33] we know that the Nash equilibrium satisfies

(w′k − w?k)T∇wk
Jpk (w?k;w

?
−k) ≥ 0 (2.133)

for all feasible w′k. Summing up these conditions over all agents we get

N∑
k=1

(w′k − w?k)T∇wk
Jpk (w?k;w

?
−k) = (w′ − w?)TF p(w?) ≥ 0 (2.134)

Let us first assume the existence of two distinct solutions, w? 6= w† ∈ RM . Then, for any

w′ ∈ RM they will satisfy

(w′ − w?)TF p(w?) ≥ 0, (w′ − w†)TF p(w†) ≥ 0 (2.135)
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Setting w′ = w† in the first inequality and w′ = w? in the second inequality we get

(w† − w?)TF p(w?) ≥ 0, (w? − w†)TF p(w†) ≥ 0 (2.136)

By adding these two inequalities, we arrive at

(w† − w?)T[F p(w†)− F p(w?)] ≤ 0 (2.137)

which contradicts the strong monotonicity of F p(w). We thus conclude that the Nash equi-

librium is unique.

Now, from the optimality criterion [33] and given w?−k, we note that w?k is optimal if, and

only if,

∇wk
Jpk (w?k;w

?
−k) = 0 (2.138)

Collecting these conditions for all agents we obtain

F p(w?) = F (w?) + ρ∇wTp(w?) = 0 (2.139)

2.B Proof of Lemma 2.1

Using Condition 2.1, we have

‖∇wTp(w◦)−∇wTp(w•)‖2 =
N∑
k=1

∥∥∥∇wT
k
pk(w

k
◦)−∇wT

k
pk(w

k
•)
∥∥∥2

≤
N∑
k=1

γ2
k‖wk◦ − wk•‖2

≤ δ2
p‖w◦ − w•‖2 (2.140)

where we used the fact that ‖wk◦ − wk•‖2 ≤ ‖w◦ − w•‖2. Then, it follows that

‖F p(w◦)− F p(w•)‖ ≤ ‖F (w◦)− F (w•)‖+ ρ‖∇wTp(w◦)−∇wTp(w•)‖

≤ (δ + ρδp)‖w◦ − w•‖ (2.141)

as claimed.
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2.C Proof of Lemma 2.2

We first note that

(w◦ − w•)TU [F p(w◦)− F p(w•)]

=
N∑
k=1

µk(w
◦
k − w•k)T

[
∇wT

k
Jpk (wk◦)−∇wT

k
Jpk (wk•)

]
= µmax

N∑
k=1

(w◦k − w•k)T
[
∇wT

k
Jpk (wk◦)−∇wT

k
Jpk (wk•)

]
−

N∑
k=1

(µmax − µk)(w◦k − w•k)T
[
∇wT

k
Jpk (wk◦)−∇wT

k
Jpk (wk•)

]
(2.142)

Using the Cauchy-Schwartz inequality we get

N∑
k=1

(µmax − µk)(w◦k − w•k)T
[
∇wT

k
Jpk (wk◦)−∇wT

k
Jpk (wk•)

]
≤ (µmax − µmin)

N∑
k=1

(w◦k − w•k)T
[
∇wT

k
Jpk (wk◦)−∇wT

k
Jpk (wk•)

]
≤ tµmax

N∑
k=1

‖w◦k − w•k‖ ·
∥∥∥∇wT

k
Jpk (wk◦)−∇wT

k
Jpk (wk•)

∥∥∥
(a)

≤ tµmax

(
N∑
k=1

‖w◦k − w•k‖2

) 1
2

×
(

N∑
k=1

∥∥∥∇wT
k
Jpk (wk◦)−∇wT

k
Jpk (wk•)

∥∥∥2
) 1

2

= tµmax‖w◦ − w•‖ · ‖F p(w◦)− F p(w•)‖ (2.143)

where (a) is obtained from Hölder’s inequality [89]. By (2.143) we have

(w◦ − w•)TU [F p(w◦)− F p(w•)]

≥ µmax(w◦ − w•)T[F p(w◦)− F p(w•)]− tµmax‖w◦ − w•‖ · ‖F p(w◦)− F p(w•)‖

≥ µmaxν‖w◦ − w•‖2 − tµmax(δ + ρδp)‖w◦ − w•‖2

= µmax[ν − t(δ + ρδp)] · ‖w◦ − w•‖2 (2.144)
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where we used the strong monotonicity property (2.130) and the Lipschitz continuous prop-

erty (2.141). Similarly, we can express

(w◦−w•)TU [F (w◦)− F (w•)]

≥ µmax(w◦ − w•)T[F (w◦)− F (w•)]− tµmax‖w◦ − w•‖ · ‖F (w◦)− F (w•)‖

≥ µmax(ν − tδ)‖w◦ − w•‖2 (2.145)

and

(w◦−w•)TU [∇wTp(w◦)−∇wTp(w•)]

≥ µmax(w◦ − w•)T[∇wTp(w◦)−∇wTp(w•)]

− tµmax‖w◦ − w•‖ · ‖∇wTp(w◦)−∇wTp(w•)‖

≥ −tµmaxδp‖w◦ − w•‖2 (2.146)

where we used Assumptions 2.1 and 2.2, the convexity property (2.129), and the Lipschitz

continuous property (2.140).

2.D Proof of Theorem 2.2

We first note that assumption (2.76) can be rewritten as

E
[
‖si(wi−1)‖2|F i−1

]
≤ α‖wi−1 − w? + w?‖2 + β

≤ 2α‖w̃i−1‖2 + β′ (2.147)

where we used ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 and introduced β′ , β + 2α‖w?‖2. Then, using

properties (2.75), (2.76), (2.65), (2.68), and the fact that F p(w?) = 0, we can express the

mean-square error E‖w̃i‖2 from (2.82) as

E‖w̃i‖2 = E‖w̃i−1‖2 − 2 E
[
w̃T
i−1U(F p(w?)− F p(wi−1))

]
+ E‖F p(w?)− F p(wi−1)‖2

U2 + E‖si(wi−1)‖2
U2

≤ E‖w̃i−1‖2 − 2 E
[
w̃T
i−1U(F p(w?)− F p(wi−1))

]
+ µ2

maxE‖F p(w?)− F p(wi−1)‖2 + µ2
maxE‖si(wi−1)‖2

≤
(
1− 2µmaxν

′ + µ2
max[(δ + ρδp)

2 + 2α]
)
E‖w̃i−1‖2 + µ2

maxβ (2.148)
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Note that from δ ≥ ν in (2.18) we have

1− 2µmaxν
′ + µ2

max[(δ + ρδp)
2 + 2α]

= 1− 2µmax[ν − t(δ + ρδp)] + µ2
max[(δ + ρδp)

2 + 2α]

= (1− µmaxν)2 + µ2
max((δ + ρδp)

2 + 2α− ν2) + 2µmaxt(δ + ρδp) ≥ 0 (2.149)

Therefore, the mean-square error is stable asymptotically, as i→∞, when the step-size µmax

satisfies

|1− 2µmaxν
′ + µ2

max[(δ + ρδp)
2 + 2α]| < 1

⇐⇒ − 1 < 1− 2µmaxν
′ + µ2

max[(δ + ρδp)
2 + 2α] < 1

⇐⇒ 0 < µmax <
2ν ′

(δ + ρδp)2 + 2α
(2.150)

when ν ′ is positive, i.e.,

ν ′ = ν − t(δ + ρδp) > 0 ⇐⇒ t <
ν

δ + ρδp
(2.151)

This leads to the conditions in (2.83), and the resulting mean-squared error is upper bounded

by

lim
i→∞

supE‖w̃i‖2 ≤ µmaxβ

2ν ′ − µmax[(δ + ρδp)2 + 2α]
= O(µmax) (2.152)

2.E Proof of Theorem 2.3

Let us consider two unequal vectors w◦i−1 and w•i−1 with corresponding vectors {φ◦i , ψ◦i , w◦i }
and {φ•i , ψ•i , w•i } in implementation (2.85)–(2.87). The squared Euclidean distance between

φ◦i and φ•i is given by

‖φ◦i − φ•i ‖2 = ‖(w◦i−1 − w•i−1)− c1ρU [∇wTp(w◦i−1)−∇wTp(w•i−1)]‖2

≤ ‖w◦i−1 − w•i−1‖2 + c2
1µ

2
maxρ

2‖∇wTp(w◦i−1)−∇wTp(w•i−1)‖2

− 2c1ρ(w◦i−1 − w•i−1)TU [∇wTp(w◦i−1)−∇wTp(w•i−1)]

≤ (1 + 2c1tµmaxρδp + c1µ
2
maxρ

2δ2
p)‖w◦i−1 − w•i−1‖2 (2.153)
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where we used the properties (2.140), (2.70), and c2
1 = c1 from (2.88). Using similar argu-

ments we have

‖w◦i − w•i ‖2 ≤ (1 + 2c2tµmaxρδp + c2µ
2
maxρ

2δ2
p)‖ψ◦i − ψ•i ‖2 (2.154)

For ψ◦i and ψ•i , we can write

‖ψ◦i − ψ•i ‖2 = ‖(φ◦i − φ•i )− U(F (φ◦i )− F (φ•i ))‖2

≤ ‖φ◦i − φ•i ‖2 − 2(φ◦i − φ•i )TU(F (φ◦i )− F (φ•i )) + µ2
max‖F (φ◦i )− F (φ•i )‖2

≤ (1− 2µmaxν
′′ + µ2

maxδ
2)‖φ◦i − φ•i ‖2 (2.155)

where we used (2.69) and Assumption 2.2. Combining (2.153), (2.154), and (2.155) we get

‖w◦i − w•i ‖2 ≤ (1 + 2c1tµmaxρδp + c1µ
2
maxρ

2δ2
p)(1 + 2c2tµmaxρδp + c2µ

2
maxρ

2δ2
p)

× (1− 2µmaxν
′′ + µ2

maxδ
2)‖w◦i−1 − w•i−1‖2

= (1 + 2tµmaxρδp + µ2
maxρ

2δ2
p)(1− 2µmaxν

′′ + µ2
maxδ

2)‖w◦i−1 − w•i−1‖2 (2.156)

The mapping wi−1 7→ wi is a contraction if

|(1 + 2tµmaxρδp + µ2
maxρ

2δ2
p)(1− 2µmaxν

′′ + µ2
maxδ

2)| < 1

⇐⇒ − 1 < (1 + 2tµmaxρδp + µ2
maxρ

2δ2
p)(1− 2µmaxν

′′ + µ2
maxδ

2) < 1 (2.157)

We note that

1− 2µmaxν
′′ + µ2

maxδ
2 = (1− µmaxν)2 + µ2

max(δ2 − ν2) + 2µmaxtδ ≥ 0 (2.158)

Therefore, the inequality on the left-hand side of (2.157) always holds. Expanding the

product of the two terms and using ν ′ = ν ′′− tρδp we get for the inequality on the right-hand

side of (2.157) that we must have

1− a1 < 1⇐⇒ a1 > 0 (2.159)

where

a1 , 2µmaxν
′ − µ2

max(δ2 + ρ2δ2
p − 4tν ′′ρδp) + µ3

max(ρ2δ2
pν
′′ − tρδpδ2)− µ4

maxρ
2δ2
pδ

2 (2.160)
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Therefore, if we can guarantee

ν ′ > 0 (2.161)

δ2 + ρ2δ2
p − 4tν ′′ρδp > 0 (2.162)

µ3
max(ρ2δ2

pν
′′ − tρδpδ2) > µ4

maxρ
2δ2
pδ

2 (2.163)

then the condition a1 > 0 is satisfied if

2µmaxν
′ − µ2

max(δ2 + ρ2δ2
p − 4tν ′′ρδp) > 0 (2.164)

which means

µmax <
2ν ′

δ2 + ρ2δ2
p − 4tν ′′ρδp

(2.165)

Let us examine conditions (2.161)–(2.163). From (2.151) we know that the condition of a

positive ν ′ holds if

t <
ν

δ + ρδp
(2.166)

For the second condition (2.162), we now show that if ρ is sufficiently large such that

ρ > δ/δp ⇐⇒ ρδp > δ (2.167)

then

f(t) , δ2 + ρ2δ2
p − 4tν ′′ρδp

= 4t2δρδp − 4tνρδp + δ2 + ρ2δ2
p > δ2 > 0 (2.168)

where we used ν ′′ = ν − tδ. Note that f(t) is a quadratic function of t and has a minimum

at to = ν/(2δ). Therefore, it is required that

f(to) = δ2 + ρ2δ2
p −

ν2

δ
ρδp > δ2 ⇐⇒ ρδp >

ν2

δ
(2.169)

Under condition (2.167) and from the fact δ ≥ ν, we get

δρδp > δ2 ≥ ν2 =⇒ ρδp >
ν2

δ
(2.170)
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which ensures f(t) > δ2 > 0 for any t. For the third condition (2.163), we first note that we

need the left-hand side of (2.163) to be positive, which requires

ρ2δ2
pν
′′ − tρδpδ2 > 0 ⇐⇒ ρδpν

′ + t(ρ2δ2
p − δ2) > 0 (2.171)

where we used ν ′′ = ν ′+ tρδp. By (2.167) and (2.161) we know that (2.171) holds. Then, we

have

ρ2δ2
pν
′′ − tρδpδ2 > µmaxρ

2δ2
pδ

2 ⇐⇒ ρδpν
′ + t(ρ2δ2

p − δ2) > µmaxρδpδ
2

⇐⇒ µmax <
ν ′ +

t(ρ2δ2p−δ2)

ρδp

δ2
(2.172)

Therefore, we arrive at the following sufficient conditions for the convergence of (2.85)–(2.87):

0 < µmax < µo, t <
ν

δ + ρδp
, ρ >

δ

δp
(2.173)

where

µo , min

 2ν ′

δ2 + ρ2δ2
p − 4tν ′′ρδp

,
ν ′ +

t(ρ2δ2p−δ2)

ρδp

δ2

 (2.174)

2.F Proof of Theorem 2.4

Subtracting (2.96)–(2.98) from (2.93)–(2.95) we get

φ̃∞i = w̃∞i−1 − c1ρU [∇wTp(w∞)−∇wTp(wi−1)] (2.175)

ψ̃∞i = φ̃∞i − U [F (φ∞)− F (φi)] + Usi(φi) (2.176)

w̃∞i = ψ̃∞i − c2ρU [∇wTp(ψ∞)−∇wTp(ψi)] (2.177)

where φ̃∞i , φ∞ − φi, ψ̃∞i , ψ∞ −ψi, and w̃∞i , w∞ −wi. From (2.175) we have

E‖φ̃∞i ‖2 ≤ E‖w̃∞i−1‖2 + c2
1µ

2
maxρ

2E‖∇wTp(w∞)−∇wTp(wi−1)‖2

− 2c1ρE
[
w̃∞T
i−1U [∇wTp(w∞)−∇wTp(wi−1)]

]
≤ (1 + 2c1tµmaxρδp + c1µ

2
maxρ

2δ2
p)E‖w̃∞i−1‖2 (2.178)
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and, similarly, from (2.177) we obtain

E‖w̃∞i ‖2 ≤ (1 + 2c2tµmaxρδp + c2µ
2
maxρ

2δ2
p)E‖ψ̃∞i ‖2 (2.179)

Similar to (2.147), we can rewrite assumption (2.76) as

E
[
‖si(wi−1)‖2|F i−1

]
≤ 2α‖w̃∞i−1‖2 + β′′ (2.180)

for β′′ , β + 2α‖w∞‖2. Then, from (2.176) we obtain:

E‖ψ̃∞i ‖2 ≤ E‖φ̃∞i ‖2 + µ2
maxE‖F (φ∞)− F (φi)‖2

+ µ2
maxE‖s(φi)‖2 − 2E

[
φ̃∞T
i U [F (φ∞)− F (φi)]

]
≤
(
1− 2µmaxν

′′ + µ2
max(δ2 + 2α)

)
E‖φ̃∞i ‖2 + µ2

maxβ
′′ (2.181)

Therefore, we can combine (2.178)–(2.181) to get

E‖w̃∞i ‖2 ≤ (1 + 2c1tµmaxρδp + c1µ
2
maxρ

2δ2
p)(1 + 2c2tµmaxρδp + c2µ

2
maxρ

2δ2
p)

×
(
1− 2µmaxν

′′ + µ2
max(δ2 + 2α)

)
E‖w̃∞i−1‖2

+ µ2
max(1 + 2c2tµmaxρδp + c2µ

2
maxρ

2δ2
p)β

′′

= (1 + 2tµmaxρδp + µ2
maxρ

2δ2
p)
(
1− 2µmaxν

′′ + µ2
max(δ2 + 2α)

)
× E‖w̃∞i−1‖2 + µ2

max(1 + 2c2tµmaxρδp + c2µ
2
maxρ

2δ2
p)β

′′ (2.182)

We expand the product of the two terms as

(1 + 2tµmaxρδp + µ2
maxρ

2δ2
p)(1− 2µmaxν

′′ + µ2
max(δ2 + 2α)) , 1− a2 (2.183)

where

a2 , 2µmaxν
′ − µ2

max(δ2 + 2α + ρ2δ2
p − 4tν ′′ρδp)

+ µ3
max(ρ2δ2

pν
′′ − tρδp(δ2 + 2α))− µ4

maxρ
2δ2
p(δ

2 + 2α) (2.184)

Then, the mean-square error E‖w̃∞i ‖2 converges asymptotically as i→∞ if we have |1−a2| <
1, which requires a2 > 0 since from (2.158) we know 1−a2 ≥ 0. Following a similar argument
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to the one presented in Appendix 2.E, we obtain that the following conditions ensure the

convergence of E‖w̃∞i ‖2:

ν ′ > 0 (2.185)

δ2 + 2α + ρ2δ2
p − 4tν ′′ρδp > 0 (2.186)

µ3
max(ρ2δ2

pν
′′ − tρδp(δ2 + 2α)) > µ4

maxρ
2δ2
p(δ

2 + 2α) (2.187)

2µmaxν
′ − µ2

max(δ2 + 2α + ρ2δ2
p − 4tν ′′ρδp) > 0 (2.188)

The first two yield the same results in (2.166) and (2.167), i.e.,

t <
ν

δ + ρδp
, ρ >

δ

δp
(2.189)

For the third condition we need to ensure

ρ2δ2
pν
′′ − tρδp(δ2 + 2α) > 0 ⇐⇒ ρδpν

′ + t(ρ2δ2
p − (δ2 + 2α)) > 0 (2.190)

A stricter condition on ρ is therefore required:

ρ >

√
δ2 + 2α

δp
(2.191)

We then get

ρδpν
′′ − t(δ2 + 2α) > µmaxρδp(δ

2 + 2α) ⇐⇒ µmax <
ν ′ +

t(ρ2δ2p−(δ2+2α))

ρδp

δ2 + 2α
(2.192)

Combining the last condition (2.188), we get the step-size condition as

0 < µmax < µ′o (2.193)

where

µ′o , min

{
2ν ′

δ2 + 2α + ρ2δ2
p − 4tν ′′ρδp

,
ν ′ +

t(ρ2δ2p−(δ2+2α))

ρδp

δ2 + 2α

}
(2.194)

Therefore, under conditions (2.189), (2.191), and (2.193), the recursion (2.182) is stable and

the resulting mean-square error is upper bounded by

lim
i→∞

supE‖w̃∞i ‖2 ≤ µ2
max(1 + 2c2tµmaxρδp + c2µ

2
maxρ

2δ2
p)β

′′

a2

=
µmax(1 + 2c2tµmaxρδp + c2µ

2
maxρ

2δ2
p)β

′′

2ν ′ −O(µmax)

= O(µmax) (2.195)

for sufficiently small step-sizes.
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2.G Proof of Theorem 2.5

We recall from (2.33) that the Nash equilibrium w? satisfies the relation:

w? = w? − U [F (w?) + ρ∇wTp(w?)]

= w? − UF (w?)− c1ρU∇wTp(w?)− c2ρU∇wTp(w?)

= φ? − UF (w?)− c2ρU∇wTp(w?)

= ψ? − c2ρU∇wTp(w?) (2.196)

where we introduced two auxiliary variables φ? and ψ?:

φ? = w? − c1ρU∇wTp(w?) (2.197)

ψ? = φ? − UF (w?) (2.198)

If we further introduce the error vectors φ̃ , φ? − φ∞, ψ̃ , ψ? − ψ∞, and w̃ , w? − w∞,

then using (2.196)–(2.198) we have

φ̃ = w̃ − c1ρU [∇wTp(w?)−∇wTp(w∞)] (2.199)

ψ̃ = φ̃− U [F (w?)− F (φ∞)] (2.200)

w̃ = ψ̃ − c2ρU [∇wTp(w?)−∇wTp(ψ∞)] (2.201)

From (2.199), the squared norm of φ̃ satisfies

‖φ̃‖2 ≤ ‖w̃‖2 − 2c1ρw̃
TU [∇wTp(w?)−∇wTp(w∞)]

+ c1µ
2
maxρ

2‖∇wTp(w?)−∇wTp(w∞)‖2

≤ Y1‖w̃‖2 (2.202)

where we used (2.140) and (2.70) and introduced

Y1 , 1 + 2c1tµmaxρδp + c1µ
2
maxρ

2δ2
p (2.203)

From (2.200), the squared norm of ψ̃ satisfies

‖ψ̃‖2 = ‖φ̃‖2 − 2φ̃TU [F (w?)− F (φ∞)] + ‖U [F (w?)− F (φ∞)]‖2 (2.204)
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We note that

−2φ̃TU [F (w?)− F (φ∞)] = −2φ̃TU [F (φ?)− F (φ∞)]− 2φ̃TU [F (w?)− F (φ?)]

(a)

≤ −2µmaxν
′′‖φ̃‖2 + 2µmax‖F (w?)− F (φ?)‖ · ‖φ̃‖

(b)

≤ −2µmaxν
′′‖φ̃‖2 + 2c1µ

2
maxδ‖F (w?)‖ · ‖φ̃‖ (2.205)

where step (a) is from (2.69) and Hölder’s inequality and step (b) is due to

‖F (w?)− F (φ?)‖ ≤ δ‖w? − φ?‖ ≤ c1µmaxδ‖F (w?)‖ (2.206)

since from (2.197) and (2.33) we have

‖w? − φ?‖ = ‖c1ρU∇wTp(w?)‖ ≤ c1µmax‖F (w?)‖ (2.207)

We further note that

‖U [F (w?)− F (φ∞)]‖2 ≤ µ2
maxδ

2‖w? − φ∞‖2

≤ µ2
maxδ

2‖φ̃‖2 + 2c1µ
3
maxδ

2‖F (w?)‖ · ‖φ̃‖

+ c1µ
4
maxδ

2‖F (w?)‖2 (2.208)

where we used the fact w? − φ∞ = φ? − φ∞ + w? − φ? and

‖w? − φ∞‖2 = ‖φ̃‖2 + 2φ̃T(w? − φ?) + ‖w? − φ?‖2

≤ ‖φ̃‖2 + 2‖w? − φ?‖ · ‖φ̃‖+ c1µ
2
max‖F (w?)‖2

≤ ‖φ̃‖2 + 2c1µmax‖F (w?)‖ · ‖φ̃‖+ c1µ
2
max‖F (w?)‖2 (2.209)

Using (2.205) and (2.208) we get

‖ψ̃‖2 ≤ X‖φ̃‖2 + 2c1µ
2
max(1 + µmaxδ)δ‖F (w?)‖ · ‖φ̃‖+ c1µ

4
maxδ

2‖F (w?)‖2 (2.210)

where we introduced

X , 1− 2µmaxν
′′ + µ2

maxδ
2 ≥ 0 (2.211)
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Note that X is always nonnegative by (2.158). Similarly, from (2.201) we have

‖w̃‖2 ≤ ‖ψ̃‖2 + c2µ
2
maxρ

2‖∇wTp(w?)−∇wTp(ψ∞)‖2

− 2c2ρψ̃
TU [∇wTp(w?)−∇wTp(ψ∞)]

≤ ‖ψ̃‖2 + c2µ
2
maxρ

2δ2
p‖w? − ψ∞‖2 − 2c2ρψ̃

TU [∇wTp(w?)−∇wTp(ψ?)]

+ 2c2tµmaxρδp‖ψ̃‖2 (2.212)

where we rewrote

∇wTp(w?)−∇wTp(w∞) = ∇wTp(w?)−∇wTp(ψ?) +∇wTp(ψ?)−∇wTp(w∞) (2.213)

and used (2.140) and (2.70). By (2.196) we know that

‖w? − ψ?‖ = ‖c2ρU∇wTp(w?)‖

≤ c2µmax‖ρ∇wTp(w?)‖

= c2µmax‖F (w?)‖ (2.214)

Then, it follows that

‖w? − ψ∞‖2 = ‖ψ̃‖2 + 2ψ̃T(w? − ψ?) + ‖w? − ψ?‖2

≤ ‖ψ̃‖2 + 2‖w? − ψ?‖ · ‖ψ̃‖+ c2µ
2
max‖F (w?)‖2

≤ ‖ψ̃‖2 + 2c2µmax‖F (w?)‖ · ‖ψ̃‖+ c2µ
2
max‖F (w?)‖2 (2.215)

Furthermore, we can use the Cauchy-Schwartz inequality and the Lipschitz-continuous as-

sumption again to write

−2c2ρψ̃
TU [∇wTp(w?)−∇wTp(ψ?)] ≤ 2c2ρµmax‖∇wTp(w?)−∇wTp(ψ?)‖ · ‖ψ̃‖

≤ 2c2µmaxρδp‖w? − ψ?‖ · ‖ψ̃‖

≤ 2c2µ
2
maxρδp‖F (w?)‖ · ‖ψ̃‖ (2.216)

where the last inequality is by (2.214). Substituting (2.215) and (2.216) into (2.212), we get

‖w̃‖2 ≤ Y2‖ψ̃‖2 + 2c2µ
2
max(1 + µmaxρδp)ρδp‖F (w?)‖ · ‖ψ̃‖+ c2µ

4
maxρ

2δ2
p‖F (w?)‖2 (2.217)
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where we introduced

Y2 , 1 + 2c2tµmaxρδp + c2µ
2
maxρ

2δ2
p (2.218)

To continue, we note the following properties:

Y1Y2 = 1 + 2tµmaxρδp + µ2
maxρ

2δ2
p , Y (2.219)

c1Y2 = c1, c2Y1 = c2Y (2.220)

c1Y1 = c1Y , c2Y2 = c2Y (2.221)

c2‖ψ̃‖2 = c2X‖w̃‖2 ⇐⇒ c2‖ψ̃‖ = c2

√
X‖w̃‖ (2.222)

by recalling c1 · c2 = 1 and c1 + c2 = 1 in (2.88). Combining (2.202), (2.210) and (2.217) we

obtain

‖w̃‖2 ≤ Y1Y2X‖w̃‖2 + 2c1µ
2
max(1 + µmaxδ)δ‖F (w?)‖

√
Y1 · ‖w̃‖

+ 2c2µ
2
max(1 + µmaxρδp)ρδp‖F (w?)‖

√
Y2 · ‖w̃‖

+ c1µ
4
maxδ

2‖F (w?)‖2 + c2µ
4
maxρ

2δ2
p‖F (w?)‖2

= YX‖w̃‖2 + 2µ2
max‖F (w?)‖

√
YZ · ‖w̃‖+ µ4

max(c1δ
2 + c2ρ

2δ2
p) · ‖F (w?)‖2 (2.223)

where

Z , c1(1 + µmaxδ)δ + c2(1 + µmaxρδp)ρδp (2.224)

Noting 1− YX = a1 as defined in (2.160), we can rewrite (2.223) as

a1‖w̃‖2 − 2b‖w̃‖ ≤ η (2.225)

where

b , 2µ2
max‖F (w?)‖

√
YZ ≥ 0 (2.226)

η , µ4
max(c1δ

2 + c2ρ
2δ2
p) · ‖F (w?)‖2 ≥ 0 (2.227)

From Appendix 2.E, we know that a1 > 0 if

0 < µmax < µo, t <
ν

δ + ρδp
, ρ >

δ

δp
(2.228)
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Under these conditions we can rewrite (2.225) as(
‖w̃‖ − b

a1

)2

≤ η

a1

+
b2

a2
1

⇐⇒ b

a1

−
√

η

a1

+
b2

a2
1

≤ ‖w̃‖ ≤ b

a1

+

√
η

a1

+
b2

a2
1

(2.229)

Noting that

b

a1

−
√

η

a1

+
b2

a2
1

=
b

a1

−
√
b2 + a1η

a1

≤ 0 (2.230)

we get

0 ≤ ‖w̃‖ ≤ b

a1

+

√
η

a1

+
b2

a2
1

(2.231)

Our goal is to study the bias performance for sufficiently small step-sizes, which can be

examined from

lim
µmax→0

sup
‖w̃‖
µmax

≤ lim
µmax→0

b

a1µmax

+ lim
µmax→0

√
η

a1µ2
max

+
b2

a2
1µ

2
max

(2.232)

From (2.226) and (2.160) we have

lim
µmax→0

b

a1µmax

= lim
µmax→0

2‖F (w?)‖
√
YZ

2ν ′ − µmax(δ2 + ρ2δ2
p − 4tν ′′ρδp) +O(µ2

max)

= d1(c1δ + c2ρδp) (2.233)

where we used the fact lim
µmax→0

Y = 1 and introduced

d1 , ‖F (w?)‖/ν ′ (2.234)

From the definition (2.227) we get

lim
µmax→0

η

a1µ2
max

= lim
µmax→0

µmax(c1δ
2 + c2ρ

2δ2
p) · ‖F (w?)‖2

2ν ′ − µmax(δ2 + ρ2δ2
p − 4tν ′′ρδp) +O(µ2

max)

= 0 (2.235)

Consequently, we have

lim
µmax→0

sup
‖w̃‖
µmax

≤ 2d1(c1δ + c2ρδp) < 2d1ρδp (2.236)

where we used the condition ρ > δ/δp and the fact c1 + c2 = 1.
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CHAPTER 3

Learning by Networked Agents under Partial

Information

Using the formulation developed in Chapter 2, we extend earlier contributions on adaptive

networks, which generally assume that the agents work together for a common global objec-

tive or when they observe data that is generated by a common target model or parameter

vector. In this chapter, this condition is relaxed since in many scenarios of interest, agents

may only have access to partial information about an unknown model or target vector.

Each agent may be sensing only a subset of the entries of a global target vector, and the

number of these entries can be different across the agents. If each of the agents were to

solve an inference task independently of the other agents, then they would not benefit from

neighboring agents that may be sensing similar entries. This chapter develops cooperative

distributed techniques that enable agents to cooperate even when their interactions are lim-

ited to exchanging estimates of select few entries. In the proposed strategies, agents are only

required to share estimates of their common entries, which results in a significant reduction

in communication overhead. Simulations show that the proposed approach improves both

the performance of individual agents and the entire network through cooperation.

3.1 Introduction

In most prior works of adaptive networks, agents are assumed to have a common minimizer

and cooperate to estimate it by using effective distributed strategies such as the consensus

strategy (e.g., [1–4, 6–9]) or the diffusion strategy (e.g., [12, 15–17]). When the agents do

not share a minimizer, it was shown in [15,16,81,82] that the network converges to a Pareto
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optimal solution. When it is desired instead that agents, or clusters of agents within the

network, should converge to their respective models, rather than the Pareto solution, then

multi-task diffusion strategies become useful and can be used to attain this objective [18,20].

In these earlier contributions, it is generally assumed that the target vector for each agent

has the same size and, moreover, that the agents sense data that is affected by all entries of

their target vectors. In this chapter, we relax these conditions and consider a broader scenario

where individual agents sense only a subset of the entries of the global target vector, and

where different agents can sense subsets of different sizes. This formulation allows us to

model the important situation in which agents may only have access to partial information

about an unknown model or target vector. If each of the agents were to solve an inference

task independently of the other agents, then they would not benefit from cooperation with

neighboring agents that may be sensing common entries. This chapter develops cooperative

distributed techniques that enable agents to cooperate even when their interactions are

limited to exchanging estimates of select few entries. To attain this objective, we allow for

some entries of the global target vector to be observable by more than one agent so that

cooperation across the network is justified.

Our approach will be based on formulating a constrained optimization problem for re-

covering partial entries of the global target vector. However, rather than solve this problem

directly, we will introduce a penalized version using a quadratic term to penalize the violation

of the constraints. We will then develop a diffusion learning solution to solve the optimiza-

tion problem in a distributed manner by relying on two incremental steps. In the adaptation

step, agents descend along the negative direction of the gradients of their costs. And in the

penalty step, they descend along the negative direction of the gradients of their penalties.

When the exact gradient information is unavailable, the observed data is used to compute

instantaneous approximations for the gradient vectors. In the penalty step, agents will only

share the common entries of their estimates with neighbors to reduce the communication

costs. The order of executing the two incremental steps results in the Adapt-then-Penalize

(ATP) or Penalize-then-Adapt (PTA) diffusion strategies.

We remark that this chapter considers a more general scenario than the partial diffusion
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formulation proposed in [90]. There, all agents sense data driven by the same target vector,

cooperate to estimate this target vector, and exchange only part of their entries. In our

formulation, each agent will be sensing data driven by different local target vectors and

these can be of different sizes. In this way, agents are able to cooperate even if their target

vectors are only partially common. We then show that sufficiently small step-sizes ensure

mean and mean-square stability. We illustrate the results by means of computer simulations.

3.2 Problem Formulation

At each time instant i ≥ 0, each agent k is assumed to have access to a scalar measurement

dk(i) ∈ R and a regression vector uk,i ∈ R1×Mk with covariance matrix Ru,k = EuT
k,iuk,i > 0.

The regressors {uk,i} are assumed to have zero mean and to be temporally white and spatially

independent. The data {dk(i),uk,i} are assumed to be related via the linear regression model:

dk(i) = uk,iw
o
k + vk(i) (3.1)

where wok ∈ RMk×1 is the target vector to be estimated by agent k. The variable vk(i) ∈ R

is a zero-mean white-noise process with variance Ev2
k(i) = σ2

v,k and assumed to be spatially

independent. We further assume that the random processes uk,i and v`(j) are spatially and

temporally independent for any k, `, i, and j. We assume that each entry of wok is determined

by a grand target vector wo ∈ RM×1, i.e., the relation between wok and wo can be described

by

wok = Dkw
o (3.2)

where Dk is a matrix of size Mk ×M and defined as

Dk(s,m) =


1, if wok(s)← wo(m)

0, otherwise

(3.3)

The notation x← y denotes that the value of y is assigned to x. We are therefore considering

a distributed inference problem where each agent has partial information about a grand

target vector, i.e., the data at each agent is influenced by only some entries of wo. Observe
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that the size Mk of the vector wok is allowed to change with the node index, k, so that some

agents may be influenced by more entries than other agents.

Now, given a network topology, two neighboring agents {k, `} may share one or more

common target entries, e.g., there can exist some index m ∈ {1, . . . ,M} such that

wok(s)← wo(m), wo` (s
′)← wo(m), ` ∈ Nk \ {k} (3.4)

where Nk is the neighborhood of agent k. We are therefore motivated to consider the

following constrained optimization problem for each agent k:

min
wk

Jk(wk) ,
1

2
E|dk(i)− uk,iwk|2

subject to wk(s) = w`(s
′), ` ∈ Nk \ {k},

s ∈ {1, . . . ,Mk}, s′ ∈ {1, . . . ,M`} (3.5)

The indices s and s′ in (3.5) refer only to the common entries in wok and wo` . We provide an

example in Fig. 3.1 to illustrate the setting defined in (3.5). For example, agents #1 and

#2 share the common target entry wo(2); it is the leading element in the target vector for

agent #2 and the trailing element in the target vector for agent #1. Observe that agents

can share target entries even if they are not neighbors, as is the case with agents #1 and

#3; they both share entry wo(1). However, the constraints for the common target entries

can only exist between neighboring agents. For convenience and for later use, we collect the

constraints for each agent k into a constraint set Sk:

Sk ,

(`, s, s′)

∣∣∣∣∣ wk(s) = w`(s
′), ` ∈ Nk \ {k}

s ∈ {1, . . . ,Mk}, s′ ∈ {1, . . . ,M`}

 (3.6)

3.3 Penalty-Based Learning

One way to solve problem (3.5) is to reformulate it using penalty functions. Specifically,

instead of solving (3.5), we consider the penalized version:

min
wk

Jpk (wk) ,
1

2
E|dk(i)− uk,iwk|2 + pk(w

k) (3.7)
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2
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Figure 3.1: An example to illustrate distributed inference under partial information exchange.

where the notation wk , col{w`; ` ∈ Nk} aggregates all unknowns in the neighborhood Nk
and pk(w

k) is a quadratic penalty function used to penalize agent k when any constraint

wk(s) = w`(s
′) is violated, i.e.,

pk(w
k) ,

∑
(`,s,s′)∈Sk

ρk(`, s, s
′) · [wk(s)− w`(s′)]2 (3.8)

where ρk(`, s, s
′) is a positive penalty parameter used to control the punishment level of

violating the constraint wk(s) = w`(s
′). Other choices for the penalty function are possible.

It is sufficient for our purposes in this article to illustrate the main construction and results

using (3.8).

3.3.1 Entry-Wise Diffusion Implementation

Following the approach from [54], the optimization problem (3.7) can be solved in two

incremental steps: we first adapt with respect to Jk(wk) and then adapt with respect to

pk(w
k). For this purpose, we start by noting that the gradient vector of Jk(wk) with respect

to wk is given by

∇wT
k
Jk(wk) = Ru,kwk − rdu,k (3.9)

where rdu,k = Edk(i)uT
k,i. When the gradient of Jk(wk) is unavailable, we can approximate

it by using the instantaneous approximations rdu,k ≈ dk(i)uT
k,i and Ru,k ≈ uT

k,iuk,i:

∇̂wT
k
Jk(wk) = uT

k,i[uk,iwk − dk(i)] (3.10)
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By doing so, we arrive at the adapt-then-penalize (ATP) diffusion strategy:

(ATP)

ψk,i = wk,i−1 + µku
T
k,i[dk(i)− uk,iwk,i−1] (3.11)

wk,i = ψk,i − µk∇wT
k
pk(ψ

k
i ) (3.12)

where ψk
i , col{ψ`,i; ` ∈ Nk}. By differentiating the penalty function pk(ψ

k
i ) with respect

to wk, it can be verified that step (3.12) can be rewritten as

wk,i =
∑
`∈Nk

AT
`kψ`,i (3.13)

where A`k is the M` ×Mk matrix with entries defined by

A`k(s
′, s) =


2µkρk(`, s, s

′), if (`, s, s′) ∈ Sk

0, otherwise

(3.14)

for k 6= `, and

Akk = diag

{
1−

∑
(`,1,s′)∈Sk

2µkρk(`, 1, s
′), · · · , 1−

∑
(`,Mk,s′)∈Sk

2µkρk(`,Mk, s
′)

}
(3.15)

From (3.14) and (3.15), we get that for any s:

Akk(s, s) +
∑
∀`,∀s′

(`,s,s′)∈Sk

A`k(s
′, s) = 1 (3.16)

which can be collected for all s into a compact expression:[
AT

1k · · · AT
Nk

]
1Mk

= 1Mk
(3.17)

where 1Mk
denotes the vector of size Mk × 1 with all one entries. Observe that the matrix

A`k defines the combination weights between agent k and the common entries with agent

` from its neighborhood; we assume the step-sizes {µk} are sufficiently small such that the

diagonal entries in {Akk} are nonnegative so that A = [A`k] is a left-stochastic matrix. It

turns out that the particular forms (3.14) and (3.15) are not critical. It is sufficient to select

an arbitrary left-stochastic matrix A as long as the zero-structure of its block components

{A`k} and property (3.17) are satisfied. We can also switch the order of the incremental
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steps in (3.11)–(3.12) and arrive at the penalize-then-adapt (PTA) diffusion strategy:

(PTA)


ψk,i =

∑
`∈Nk

AT
`kw`,i−1 (3.18)

wk,i = ψk,i + µku
T
k,i[dk(i)− uk,iψk,i] (3.19)

We remark that in the penalty steps (3.13) and (3.18), agents are only required to exchange

a subset of the entries of their iterates with their neighboring agents, namely, those entries

that define the constraints. This property reduces communication overhead, compared with

traditional diffusion ATC and CTA algorithms in [16]. The ATP and PTA formulations

(3.11)–(3.13) and (3.18)–(3.19) define a useful class of distributed strategies that include

other important cases as special instances. For example, if for each agent k we set Dk = IM

in (3.2) and extend the constraint set Sk to cover all possible entries s and s′, we will arrive at

the group diffusion LMS algorithm proposed in [91] for agents to assign different combination

weights to different entries. If we further set A`k = a`kI, we will get the traditional diffusion

LMS algorithms from [16].

3.4 Performance Analysis

We consider the ATP diffusion strategy (3.11)–(3.13). We can rewrite the adaptation step

in (3.11) as

ψk,i = wk,i−1 + µku
T
k,iuk,i(w

o
k −wk,i−1) + µku

T
k,ivk(i) (3.20)

where we used the linear model (3.1). Collecting the iterates {ψk,i} and {wk,i} from the

across the network at time i into the aggregate vectors ψi = col{ψ1,i, . . . ,ψN,i} and wi =

col{w1,i, . . . ,wN,i}, we find that these network vectors evolve according to the dynamics:

ψi = wi−1 +MRi(w
o
? −wi−1) +Msi (3.21)

wi = ATψi (3.22)
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where

M , diag{µ1IM1 , . . . , µNIMN
} (3.23)

Ri , diag{uT
1,iu1,i, . . . ,u

T
N,iuN,i} (3.24)

wo? , col{wo1, . . . , woN} = Dwo (3.25)

D ,


D1

...

DN

 , si ,

uT

1,iv1(i)
...

uT
N,ivN(i)

 , A ,

A11 · · · A1N

...
. . .

...

AN1 · · · ANN

 (3.26)

Similarly, the network recursion for PTA diffusion is given by

ψi = ATwi−1 (3.27)

wi = ψi +MRi(w
o
? −ψi) +Msi (3.28)

We can capture the dynamics of both algorithms in a single unified model by introducing

intermediate iterates φk,i and matrices {A1,A2} and then writing:

φi = AT
1wi−1 (3.29)

ψi = φi +MRi(w
o
? − φi) +Msi (3.30)

wi = AT
2ψi (3.31)

The PTA case corresponds to the choice A1 = A and A2 = I while the ATP case corresponds

to A1 = I and A2 = A. To continue, we note the following useful properties:

A2A1 = A, AT1 = 1 (3.32)

Furthermore, from (3.16) and (3.4) we have

wok(s) =

Akk(s, s) +
∑
∀`,∀s′

(`,s,s′)∈Sk

A`k(s
′, s)

wok(s)
= Akk(s, s)w

o
k(s) +

∑
∀`,∀s′

(`,s,s′)∈Sk

A`k(s
′, s)wo` (s

′) (3.33)
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which means

wok =
∑
`∈Nk

AT
`kw

o
` (3.34)

and, therefore,

wo? = ATwo? (3.35)

Then, it is ready to check

wo? = AT
1w

o
?, wo? = AT

2w
o
? (3.36)

since A1 and A1 can only be I or A. From (3.25) and (3.29) we can write

wo? − φi = AT
1 (wo? −wi−1) (3.37)

and, similarly,

wo? −wi = AT
2 (wo? −ψi) (3.38)

Therefore, we arrive at the network error recursions:

φ̃i = AT
1 w̃i−1 (3.39)

ψ̃i = φ̃i −MRiφ̃i −Msi (3.40)

w̃i = AT
2 ψ̃i (3.41)

where φ̃i , wo? − φi and similarly for the other error vectors. Combining (3.39)–(3.41) we

conclude that the error vector w̃i evolves according to the recursion:

w̃i = Biw̃i−1 − Gsi (3.42)

where

Bi , AT
2 (I −MRi)AT

1 (3.43)

G , AT
2M (3.44)

It was shown in [17] that the traditional ATC and CTA diffusion algorithms have a network

error recursion of the same general form as (3.42), except that now we have one critical
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difference. Expression (3.42) is more general and allows agents to have different sizes for their

target vectors {wok}. Furthermore, the matrices A1 and A2 now reflect refined connections:

two connected agents only share a subset of their entries, which can be a single entry in the

extreme case. Therefore, cooperation between agents is limited to entry-wise exchanges, as

opposed to full vector exchanges in traditional implementations. Following similar arguments

to those in [17], we can derive conditions on the step-size parameters to ensure mean-square

convergence and stability. For any nonnegative symmetric matrix Σ, we let σ = vec(Σ) and

use the compact notation ‖x‖2
σ to refer to the squared weighted quantity xTΣx.

Theorem 3.1. (Mean-square-error stability) For sufficiently small step step-sizes, i.e.,

for µk < µo for some small enough µo, it holds that

ρ(F) < 1 (3.45)

where ρ(·) is the spectral radius, ⊗ is the Kronecker product operator, and

F , E(BT
i ⊗BT

i ) (3.46)

Condition (3.45) ensures that the estimates are asymptotically unbiased, i.e., Ew̃i → 0, and

moreover, the weighted error variance satisfies the relation:

E‖w̃i‖2
σ = E‖w̃i−1‖2

Fσ +
[
vec
(
YT
)]T

σ (3.47)

where Y , GSGT, and

S , diag{σ2
v,1Ru,1, ..., σ

2
v,1Ru,N} (3.48)

�

Proof. See Appendix 3.A.

The relation (3.47) can also be used to evaluate the steady-state mean-square-error per-

formance. If we assume that condition (3.45) holds such that the network is stable, taking

the limit of (3.47) as i→∞ we get

lim
i→∞

E‖w̃i‖2
σ = lim

i→∞
E‖w̃i−1‖2

Fσ +
[
vec
(
YT
)]T

σ (3.49)
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Therefore, we obtain

lim
i→∞

E‖w̃i‖2
(I−F)σ =

[
vec
(
YT
)]T

σ (3.50)

Note that the matrix Σ with σ = vec(Σ) can be any Hermitian nonnegative-definite matrix.

One useful metric for mean-square-error performance is the mean-square deviation (MSD)

measure, which can be used to assess how far the estimate wk,i of each agent k is from wok.

The MSD of each agent k is defined as follows:

MSDk , lim
i→∞

E‖wok −wk,i‖2 (3.51)

where ‖ · ‖ denotes the Euclidean norm for vectors. The network MSD is defined as the

average MSD across the network, i.e.,

MSD ,
1

N

N∑
k=1

MSDk (3.52)

Now, we note that condition (3.45) implies that the matrix I − F is invertible. Therefore,

by selecting

σ = (I −F)−1 vec
[
(eke

T
k )⊗ IMk

]
(3.53)

where ek denotes the kth column of the identity matrix IN , we arrive at the following

expression for the MSD of agent k:

MSDk =
[
vec(YT)

]T
(I −F)−1 vec

[
(eke

T
k )⊗ IMk

]
(3.54)

Similarly, by selecting

σ = (I −F)−1 vec
[
(eke

T
k )⊗ IMk

]
(3.55)

we obtain the network MSD as

MSD =
1

N

[
vec(YT)

]T
(I −F)−1 vec(IL) (3.56)

where

L =
N∑
k=1

Mk (3.57)
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3.5 Simulation Results

We consider a network with N = 10 agents. Each agent k is estimating a target vector wok,

which is a subvector of the grand target vector wo of size M = 10. For each agent k, we

assume that Ru,k is diagonal and its diagonal entries are determined by a grand diagonal

covariance matrix Ru, i.e.,

Ru,k = DkRuD
T
k (3.58)

Figure 3.2 shows the entries of the grand target vector wo, the diagonal entries of the grand

covariance matrix Ru, and the noise variance {σ2
v,k} at the agents. The network topology

and the relations between {wok} and wo are shown in Fig. 3.3. We set the step-size to

µk = µ = 0.005 and the penalty parameter to ρk(`, s, s
′) = ρ = 30.

In Fig. 3.4, we simulate the learning curves of instantaneous network MSD, which is

defined as

MSDi ,
1

N

N∑
k=1

E‖wok −wk,i‖2 (3.59)

We observe that both diffusion ATP and PTA algorithms exhibit better steady-state MSD

performance than the non-cooperative case without imposing constraints and penalties. To

examine the individual performance, we compare the steady-state individual MSD for each

agent in Fig. 3.5. It is seen that all agents benefit from exchange of information with

neighbors. The difference between diffusion ATP and PTA algorithms is negligible in the

figures.

3.6 Concluding Remarks

In this chapter, we consider a broader scenario where individual agents may only have access

to partial information about the global target vector, i.e., each agent may be sensing only

a subset of the entries of the global target. We develop cooperative distributed techniques

where agents are only required to share estimates of their common entries and still can

benefit from neighboring agents. It is observed in the simulations that all agents benefit
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Figure 3.2: Entries of wo, Ru, and noise variance {σ2
v,k} used in the simulations.
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Figure 3.3: Network topology and target vectors {wok}.

from exchange of information with neighbors. We remark that the traditional diffusion LMS

algorithms can be obtained from our entry-wise diffusion strategies in the case that each

agent has access to the full model and replace its combination matrices to some nonnegative

scalars for the convex combination of neighbors’ estimates.
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Figure 3.5: Steady-state MSD for individual agents.

85



APPENDICES

3.A Proof of Theorem 3.1

Taking expectation of both sides of (3.42), we find that

Ew̃i = B · w̃i−1 − Gsi (3.60)

where

B , EBi = AT
2 (I −MR)AT

1 (3.61)

and

R , ERi = diag{Ru,1, ..., RuN} (3.62)

The necessary and sufficient condition for Ew̃i → 0 as i → ∞ is to select the step-sizes µk

such that the spectral radius of B satisfies

ρ(B) < 1 (3.63)

Therefore, we can conclude that the network mean stability is ensured for sufficiently small

step-sizes {µk} satisfying

µk <
2

λmax(Ru, k)
(3.64)

For the mean-square-error stability, from (3.42) we get the following expression:

E‖w̃i‖2
Σ = E‖Biw̃i−1 − Gsi‖2

Σ

= E
(
w̃T
i−1BT

i ΣBiw̃i−1

)
+ E

(
sTi GΣGsi

)
− E

(
w̃T
i−1BT

i ΣGsi
)
− E

(
sTi GΣBiw̃i−1

)
(3.65)

We note that the last two terms on the right-hand side are zero because the {uk,i,vk(i)} are

independent of each other and the {vk(i)} are zero mean. The first term in (3.65) is given

by

E
(
w̃T
i−1BT

i ΣBiw̃i−1

)
= E

[
w̃T
i−1E

(
BT
i ΣBi

)
w̃i−1

]
= E‖w̃i−1‖2

Σ′ (3.66)
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where we used the fact that {Bi, w̃i−1} are independent of each other and introduced the

nonnegative-definite matrix

Σ′ , EBT
i ΣBi (3.67)

The second term in (3.65) is given by

E
(
sTi GTΣGsi

)
= Tr

(
GTΣGEsisTi

)
= Tr

(
ΣGSGT

)
(3.68)

where

S , diag{σ2
v,1Ru,1, ..., σ

2
v,1Ru,N} (3.69)

We then use the following equalities for arbitrary matrices {U,W,Σ} of compatible dimen-

sions [17]:

vec(UΣW ) = (WT ⊗ U)σ and Tr(ΣW ) =
[
vec(WT)

]T
σ (3.70)

to rewrite (3.65) in the following equivalent form:

E‖w̃i‖2
σ = E‖w̃i−1‖2

Fσ +
[
vec(YT)

]T
σ (3.71)

where F , E
(
BT
i ⊗BT

i

)
. We note that (3.71) is not an actual recursion. To continue, we

follow the arguments pursued in [92] and express the characteristic polynomial of the matrix

F of size L2 × L2 as

p(x) = det(xIL2 −F) = xL
2

+ pL2−1x
L2−1 + ...+ p0 (3.72)

where

L =
N∑
k=1

Mk (3.73)

We have that p(F) = 0 by the Cayley-Hamilton Theorem [93] and, therefore,

FL = −p0 − p1F − · · · − pL2−1FL
2−1 (3.74)
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Using (3.74) we get

E‖w̃i‖2
σ

E‖w̃i‖2
Fσ

E‖w̃i‖2
F2σ

...

E‖w̃i‖2
FL2−1σ


︸ ︷︷ ︸

Wi

=



0 1 0 · · · 0

0 0 1 · · · 0
...

. . .

0 0 0 · · · 1

−p0 −p1 −p2 · · · −pL2−1


︸ ︷︷ ︸

H



E‖w̃i−1‖2
σ

E‖w̃i−1‖2
Fσ

E‖w̃i−1‖2
F2σ

...

E‖w̃i−1‖2
FL2−1σ


︸ ︷︷ ︸

Wi−1

+



yTσ

yTFσ
yTF2σ

...

yTFL2−1σ


︸ ︷︷ ︸

Z

(3.75)

where

y = vec(YT) (3.76)

If the recursion (3.75) is stable, then the relation (3.71) is stable. Now, since the matrix H
is in companion form, its eigenvalues are the roots of p(x) from (3.72) [93] and equal to the

eigenvalues of F . The mean-square stability of the network is guaranteed if, and only if, H
is a stable matrix, which means

ρ(F) < 1 (3.77)

Let us consider sufficiently small step-sizes {µk} such that

0 < µk · ρ(Ru,k)� 1 for all k (3.78)

Then, a reasonable approximate expression for F for sufficiently small step-sizes is

F = E [A1(I −RiM)A2 ⊗A1(I −RiM)A2]

= (A1 ⊗A1)
[
I − (RTM)⊗ I − I ⊗ (RM) +O(M2)

]
(A2 ⊗A2)

≈ BT ⊗ BT (3.79)

where we used the following Kronecker product property for matrices {A,B,C,D} of com-

patible dimensions [92]:

(A⊗B)(C ⊗D) = AC ⊗BD (3.80)
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Therefore, from (3.77) we have

ρ(F) ≈ ρ(BT) · ρ(BT) = [ρ(B)]2 < 1 (3.81)

which means that sufficiently small step-sizes ensure mean-square stability in the relation

(3.71).
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CHAPTER 4

Information-Sharing with Self-Interested Agents

In this chapter, we examine the behavior of multi-agent networks where information-sharing

is subject to a positive communications cost over the edges linking the agents. We consider a

general mean-square-error formulation where all agents are interested in estimating the same

target vector. We first show that, in the absence of any incentives to cooperate, the optimal

strategy for the agents is to behave in a selfish manner with each agent seeking the optimal

solution independently of the other agents. Pareto inefficiency arises as a result of the fact

that agents are not using historical data to predict the behavior of their neighbors and

to know whether they will reciprocate and participate in sharing information. Motivated

by this observation, we develop a reputation protocol to summarize the opponents past

actions into a reputation score, which can then be used to form a belief about the opponents

subsequent actions. The reputation protocol entices agents to cooperate and turns their

optimal strategy into an action-choosing strategy that enhances the overall social benefit

of the network. In particular, we show that when the communications cost becomes large,

the expected social benefit of the proposed protocol outperforms the social benefit that is

obtained by cooperative agents that always share data. We perform a detailed mean-square-

error analysis of the evolution of the network over three domains: far field, near-field, and

middle-field, and show that the network behavior is stable for sufficiently small step-sizes.

The various theoretical results are illustrated by numerical simulations.
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4.1 Introduction

In most prior works of adaptive networks, agents are assumed to be cooperative and designed

to follow certain distributed rules like the consensus strategy or the diffusion strategy dis-

cussed in the previous chapters. These rules generally include a self-learning step to update

the agents’ estimates using their local data, and a social-learning step to fuse and combine

the estimates shared by neighboring agents in order to satisfy the constraints. However,

when agents are selfish, they would not obey the preset rules unless these strategies conform

to their own interests, such as minimizing their own costs. In this chapter, we assume that

the agents can behave selfishly and that they, therefore, have the freedom to decide whether

or not they want to participate in sharing information with their neighbors at every point

in time. Under these conditions, the global social benefit for the network can be degraded

unless a policy is introduced to entice agents to participate in the collaborative process de-

spite their individual interests. In this article, we will address this difficulty in the context

of adaptive networks where agents are continually subjected to streaming data, and where

they can predict in real-time, from their successive interactions, how reliable their neighbors

are and whether they can be trusted to share information based on their past history. This

formulation is different from the useful work in [94], which considered one particular form

of selfish behavior in the context of a game-theoretic formulation. In that work, the focus

is on activating the self-learning and social learning steps simultaneously, and agents simply

decide whether to enter into a sleep mode (to save energy) or to continue acquiring and pro-

cessing data. In the framework considered in our chapter, agents always remain active and

are continually acquiring data; the main question instead is to entice agents to participate

in the collaborative information-sharing process regardless of their self-centered evaluations.

More specifically, we study the behavior of multi-agent networks where information-

sharing is subject to a positive communication cost over the edges linking the agents.

This situation is common in applications, such as information sharing over cognitive net-

works [95], online learning under communication bandwidth and/or latency constraints

[96], [97, Ch. 14], and over social learning networks when the delivery of opinions involves
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some costs such as messaging fees [98–100]. In our network model, each agent is self-interested

and seeks to minimize its own sharing cost and estimation error. Motivated by the practical

scenario studied in [95], we formulate a general mean-square error estimation problem where

all agents are interested in estimating the same target parameter vector. Agents are as-

sumed to be foresighted and to have bounded rationality [101] in the manner defined further

ahead in the article. Then, we show that if left unattended, the dominant strategy for all

agents is for them not to participate in the sharing of information, which leads to networks

operating under an inefficient Pareto condition. This situation arises because agents do not

have enough information to tell beforehand if their paired neighbors will reciprocate their

actions (i.e., if an agent shares data with a second agent, will the second agent reciprocate

and share data back?) This prediction-deficiency problem follows from the fact that agents

are not using historical data to predict other agents’ actions.

One method to deal with this inefficient scenario is to assume that agents adapt to their

opponents’ strategies and improve returns by forming some regret measures. In [102], a

decision maker determines its action using a regret measure to evaluate the utility loss from

the chosen action to the optimal action in the previous stage game. For multi-agent networks,

a regret-based algorithm was proposed in [94] and [103] for agents to update their actions

based on a weighted loss of the utility functions from the previous stage games. However,

these works assume myopic agents and formulate repeated games with fixed utility functions

over each stage game, which is different from the scenario considered in this article where the

benefit of sharing information over adaptive networks continually evolves over time. This

is because, as the estimation accuracy improves and/or the communication cost becomes

expensive, the return to continue cooperating for estimation purposes falls and thus the act

of cooperating with other agents becomes unattractive and inefficient. In this case, the regret

measures computed from the previous stage games may not provide an accurate reference

to the current stage game.

A second useful method to deal with Pareto inefficient and non-cooperative scenarios

is to employ reputation schemes (e.g., [104–107]). In this method, foresighted agents use

reputation scores to assess the willingness of other agents to cooperate; the scores are also
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used to punish non-cooperative behavior. For example, the works [105,106] rely on discrete-

value reputation scores, say, on a scale 1-10, and these scores are regularly updated according

to the agents’ actions. Similar to the regret learning references mentioned before, in our

problem the utilities or cost functions of stage games change over time and evolve based on

agents’ estimates. Conventional reputation designs do not address this time variation within

the payoff of agents, which will be examined more closely in our study. Motivated by these

considerations, in Sec. 4.4, we propose a dynamic/adaptive reputation protocol that is based

on the belief measure of future actions with real-time benefit predictions.

In our formulation, we assume a general random-pairing model similar to [9], where agents

are randomly paired at the beginning of each time interval. This situation could occur, for

example, due to an exogenous matcher or the mobility of the agents. The paired agents are

assumed to follow a diffusion strategy [15–17, 83], which includes an adaptation step and a

consultation step, to iteratively update their estimates. Different from conventional diffusion

strategies, the consultation step here is influenced by the random-pairing environment and

by cooperation uncertainty. The interactions among self-interested agents are formulated as

successive stage games of two players using pure strategies. To motivate agents to coop-

erate with each other, we formulate an adaptive reputation protocol to help agents jointly

assess the instantaneous benefit of depreciating information and the transmission cost of

sharing information. The reputation score helps agents to form a belief of their opponent’s

subsequent actions. Based on this belief, we entice agents to cooperate and turn their best

response strategy into an action choosing strategy that conforms to Pareto efficiency and

enhances the overall social benefit of the network.

In the performance evaluation, we are interested in ensuring the mean-square-error sta-

bility of the network instead of examining equilibria as is common in the game theoretical

literature since our emphasis is on adaptation under successive time-variant stage games.

The performance analysis is challenging due to the adaptive behavior by the agents. For

this reason, we pursue the mean-square-error analysis of the evolution of the network over

three domains: far-field, near-field, and middle-field, and show that the network behavior is

stable for sufficiently small step-sizes. We also show that when information sharing becomes
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costly, the expected social benefit of the proposed reputation protocol outperforms the social

benefit that is obtained by cooperative agents that always share data.

4.2 System Model

4.2.1 Distributed Optimization and Communication Cost

We consider a subset of the modeling in Chapter 3 that in a connected network consisting

of N agents, each agent has access to entire information about the global target vector.

Therefore, when agents act independently of each other, each agent k would seek to estimate

the M ×1 vector wo that minimizes an individual estimation cost function, which is denoted

by Jest
k (w) : CM → R to emphasize this cost function measuring the estimation performance.

We assume each of the costs {Jest
k (w)} is strongly convex for k = 1, 2, . . . , N , and that all

agents have the same objective so that all costs are minimized at the common location

wo ∈ CM×1.

In this chapter, we are interested in scenarios where agents can be motivated to cooperate

among themselves as permitted by the network topology. We associate an extended cost

function with each agent k, and denote it by Jk(w, ak). In this new cost, the scalar ak is

a binary variable that is used to model whether agent k is willing to cooperate and share

information with its neighbors. The value ak = 1 means that agent k is willing to share

information (e.g., its estimate of wo) with its neighbors, while the value ak = 0 means that

agent k is not willing to share information. The reason why agents may or may not share

information is because this decision will generally entail some cost. We consider the scenario

where a positive transmission cost, ck > 0, is required for each act by agent k involving

sharing an estimate with any of its neighbors. By taking ck into consideration, the extended

cost Jk(w, a) that is now associated with agent k will consist of the sum of two components:
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the estimation cost and the communication cost1:

Jk(w, ak) , Jest
k (w) + Jcom

k (ak) (4.1)

where the latter component is modeled as

Jcom
k (ak) , akck (4.2)

We express the communication expense in the form (4.2) because, as described further ahead,

when an agent k decides to share information, it will be sharing the information with one

neighbor at a time; the cost for this communication will be akck. With regards to the

estimation cost, Jest
k (w), this measure can be selected in many ways. One common choice is

the mean-square-error (MSE) cost, which we adopt in this chapter.

At each time instant i ≥ 0, each agent k is assumed to have access to a scalar measurement

dk(i) ∈ C and a 1 × M regression vector uk,i ∈ C1×M with covariance matrix Ru,k ,

Eu∗k,iuk,i > 0. The regressors {uk,i} are assumed to have zero-mean and to be temporally

white and spatially independent, i.e.,

Eu∗k,iu`,j = Ru,kδk`δij (4.3)

in terms of the Kronecker delta function. The data {dk(i),uk,i} are assumed to be related

via the linear regression model:

dk(i) = uk,iw
o + vk(i) (4.4)

where wo is the common target vector to be estimated by the agents. In (4.4), the variable

vk(i) ∈ C is a zero-mean white-noise process with power σ2
v,k that is assumed to be spatially

independent, i.e.,

Ev∗k(i)v`(j) = σ2
v,kδk`δij (4.5)

1We focus on the sum of the estimation cost and the communication cost due to its simplicity and
meaningfulness in applications. Note that a possible generalization is to consider a penalty-based objective
function Jest

k (w) + p(Jcom
k (ak)) for some penalty function p(·).
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We further assume that the random processes uk,i and v`(i) are spatially and temporally

independent for any k, `, i, and j. Models of the form (4.4) are common in many applications,

e.g., channel estimation, model fitting, target tracking, etc (see, e.g., [17]).

Let wk,i−1 denote the estimator for wo that will be available to agent k at time i− 1. We

will describe in the sequel how agents evaluate these estimates. The corresponding a-priori

estimation error is defined by

ea,k(i) , dk(i)− uk,iwk,i−1 (4.6)

and it measures how close the weight estimate matches the measurements {dk(i),uk,i} to

each other. In view of model (4.4), we can also write

ea,k(i) = uk,iw̃k,i−1 + vk(i) (4.7)

in terms of the estimation error vector

w̃k,i−1 , wo −wk,i−1 (4.8)

Motivated by these expressions and model (4.4), the instantaneous MSE cost that is associ-

ated with agent k based on the estimate from time i− 1 is given by

Jest
k (wk,i−1) , E|ea,k(i)|2

= E|dk(i)− uk,iwk,i−1|2

= E‖w̃k,i−1‖2
Ru,k

+ σ2
v,k (4.9)

Note that this MSE cost conforms to the strong convexity of Jest
k as we mentioned before.

Combined with the action by agent k, the extended instantaneous cost at agent k that is

based on the prior estimate, wk,i−1, is then given by:

Jk(wk,i−1, ak) = E|ea,k(i)|2 + akck (4.10)

4.2.2 Random-Pairing Model

We denote by Nk the neighborhood of each agent k, including itself. We consider a random

pairing protocol for agents to share information at the beginning of every iteration cycle. The

96



pairing procedure can be executed either in a centralized or distributed manner. Centralized

pairing schemes can be used when an online server randomly assigns its clients into pairs as

in crowdsourcing applications [105, 106], or when a base-station makes pairing decisions for

its mobile nodes for packet relaying [108]. Distributed paring schemes arise more naturally

in the context of economic and market transactions [109]. In our formulation, we adopt a

distributed pairing structure that takes neighborhoods into account when selecting pairs, as

explained next.

We assume each agent k has bi-directional links to other agents in Nk and that agent

k has a positive probability to be paired with any of its neighbors. Once two agents are

paired, they can decide on whether to share or not their instantaneous estimates for wo. We

therefore model the result of the random-pairing process between each pair of agents k and

` ∈ Nk \ {k} as temporally-independent Bernoulli random processes defined as:

1k`(i) = 1`k(i) =


1, with probability pk` = p`k

0, otherwise

(4.11)

where 1k`(i) = 1 indicates that agents k and ` are paired at time i and 1k`(i) = 0 indicates

that they are not paired. We are setting 1k`(i) = 1`k(i) because these variables represent the

same event: whether agents k and ` are paired, which results in pk` = p`k. For ` /∈ Nk, we

have 1k`(i) = 0 since such pairs will never occur. For convenience, we use 1kk(i) to indicate

the event that agent k is not paired with any agent ` ∈ Nk \ {k} at time i, which happens

with probability pkk. Since each agent will pair itself with at most one agent at a time from

its neighborhood, the following properties are directly obtained from the random-pairing

procedure: ∑
`∈Nk

1k`(i) = 1,
∑
`∈Nk

pk` = 1 (4.12)

1k`(i)1kq(i) = 0, for ` 6= q (4.13)

We assume that the random pairing indicators {1k`(i)} for all k and ` are independent

of the random variables {uk,t} and {vk(t)} for any time i and t. For example, a widely

used setting in the literature is the fully-pairing network, which assumes a fully-connected
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network topology [106, 110], i.e., Nk = N for every agent k, where N denotes the set of all

agents. The size N = |N | is assumed to be even and every agent is uniformly paired with

exactly one agent in the network. Therefore, we have N/2 pairs at each time instant and

the random-pairing probability becomes

pk` =


1

N−1
, for ` 6= k

0, for ` = k

(4.14)

We will not be assuming fully-connected networks or fully-paired protocols and will deal more

generally with networks that can be sparsely connected. Later in Sec. IV we will demonstrate

a simple random-pairing protocol which can be implemented in a fully distributed manner.

4.2.3 Diffusion Strategy

Conventional diffusion strategies assume that the agents are cooperative (or obedient) and

continuously share information with their neighbors as necessary [15,17,83]. With a common

target wo under full information, the ATP strategy (3.11) considered in Chapter 3 becomes

the adapt-then-combine (ATC) version of traditional diffusion adaptation. In this strategy,

each agent k updates its estimate, wk,i, according to the following relations:

ψk,i = wk,i−1 + µu∗k,i[dk(i)− uk,iwk,i−1] (4.15)

wk,i =
∑
`∈Nk

α`kψ`,i (4.16)

where µ > 0 is the step-size parameter of agent k, and the {α`k, ` ∈ Nk} are nonnegative

combination coefficients that add up to one. In implementation (4.15)–(4.16), each agent

k computes an intermediate estimate ψk,i using its local data, and subsequently fuses the

intermediate estimates from its neighbors. For the combination step (4.16), since agent k is

allowed to interact with only one of its neighbors, then we rewrite (4.16) in terms of a single

coefficient 0 ≤ αk ≤ 1 as follows:

wk,i =


αkψk,i + (1− αk)ψ`,i, if 1k`(i) = 1 for some ` 6= k

ψk,i, otherwise

(4.17)
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We can capture both situations in (4.17) in a single equation as follows:

wk,i = αkψk,i + (1− αk)
∑
`∈Nk

1k`(i)ψ`,i (4.18)

In formulation (4.15) and (4.18), it is assumed that once agents k and ` are paired, they

share information according to (4.18).

Let us now incorporate an additional layer into the algorithm in order to model instances

of selfish behavior. When agents behave in a selfish (strategic) manner, even when agents

k and ` are paired, each one of them may still decide (independently) to refuse to share

information with the other agent for selfish reasons (for example, agent k may decide that

this cooperation will cost more than the benefit it will reap for the estimation task). To

capture this behavior, we use the specific notation ak`(i), instead of ak(i), to represent the

action taken by agent k on agent ` at time i, and similarly for a`k(i). Both agents will end

up sharing information with each other only if ak`(i) = a`k(i) = 1, i.e., only when both

agents are in favor of cooperating once they have been paired. We set akk(i) = 1 for every

time i. We can now rewrite the combination step (4.18) more generally as:

wk,i = αkψk,i + (1− αk)
∑
`∈Nk

1k`(i)[a`k(i)ψ`,i + (1− a`k(i))ψk,i] (4.19)

From (4.19), when agent k is not paired with any agent at time i (1kk(i) = 1), we get

wk,i = ψk,i. On the other hand, when agent k is paired with some neighboring agent `,

which means 1k`(i) = 1, we get

wk,i = αkψk,i + (1− αk) [a`k(i)ψ`,i + (1− a`k(i))ψk,i] (4.20)

It is then clear that a`k(i) = 0 results inwk,i = ψk,i, while a`k(i) = 1 results in a combination

of the estimates of agents k and `. In other words, when 1k`(i) = 1:

wk,i =


ψk,i, if a`k(i) = 0

αkψk,i + (1− αk)ψ`,i, if a`k(i) = 1

(4.21)

In the sequel, we assume that agents update and combine their estimates using (4.15) and

(4.19). One important question to address is how the agents determine their actions {ak`(i)}.
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4.3 Agent Interactions

When an arbitrary agent k needs to decide on whether to set its action to ak`(i) = 1 (i.e.,

to cooperate) or ak`(i) = 0 (i.e., not to cooperate), it generally cannot tell beforehand

whether agent ` will reciprocate. In this section, we first show that when self-interested

agents are boundedly rational and incapable of transforming the past actions of neighbors

into a prediction of their future actions, then the dominant strategy for each agent will be to

choose noncooperation. Consequently, the entire network becomes noncooperative. Later,

in Sec. 4.4, we explain how to address this inefficient scenario by proposing a protocol that

will encourage cooperation.

4.3.1 Long-Term Discounted Cost Function

To begin with, let us examine the interaction between a pair of agents, such as k and `,

at some time instant i (1k`(i) = 1). We assume that agents k and ` simultaneously select

their actions ak`(i) and a`k(i) by using some pure strategies (i.e., agents set their action

variables by using data or realizations that are available to them, such as the estimates

{wk,i−1,w`,i−1}, rather than select their actions according to some probability distributions)2.

The criterion for setting ak`(i) by agent k is to optimize agent k’s payoff, which incorporates

both the estimation cost, affected by agent `’s own action a`k(i), and the communication

cost, determined by agent k’s action ak`(i). Therefore, the instantaneous cost incurred by

agent k is a mapping function from the action space (ak`(i),a`k(i)) to a real value. In order to

account for selfish behavior, we need to modify the notation used in (4.1) to incorporate the

actions of both agents k and `. In this way, we need to denote the value of the cost incurred

by agent k at time i, after wk,i−1 is updated to wk,i, more explicitly by Jk(ak`(i),a`k(i)) and

2In our scenario, the discrete action set ak`(i) ∈ {0, 1} will be shown to lead to threshold-based pure
strategies — see Sec. 4.4.2.
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it is given by:

Jk(ak`(i),a`k(i)) =



Jest
k (wk,i = ψk,i), if (0, 0)

Jest
k (wk,i = αkψk,i + (1− αk)ψ`,i), if (0, 1)

Jest
k (wk,i = ψk,i) + ck, if (1, 0)

Jest
k (wk,i = αkψk,i + (1− αk)ψ`,i) + ck, if (1, 1)

(4.22)

For example, the first line on the right-hand side of (4.22) corresponds to the situation in

which none of the agents decides to cooperate. In that case, agent k can only rely on its

intermediate estimate, ψk,i, to improve its estimation accuracy. In comparison, the second

line in (4.22) corresponds to the situation in which agent ` is willing to share its estimate but

not agent k. In this case, agent k is able to perform the second combination step in (4.21)

and enhance its estimation accuracy. In the third line in (4.22), agent ` does not cooperate

while agent k does. In this case, agent k incurs a communication cost, ck. Similarly, for the

last line in (4.22), both agents cooperate. In this case, agent k is able to perform the second

step in (4.21) while incurring a cost ck.

We can write (4.22) more compactly as follows:

Jk(ak`(i),a`k(i)) = Jact
k (a`k(i)) + ak`(i)ck (4.23)

where we introduced

Jact
k (a`k(i)) ,


Jest
k (wk,i = ψk,i), if a`k(i) = 0

Jest
k (wk,i = αkψk,i + (1− αk)ψ`,i), if a`k(i) = 1

(4.24)

The function Jact
k (a`k(i)) helps make explicit the influence of the action by agent ` on the

estimation accuracy that is ultimately attained by agent k.

Now, the random-pairing process occurs repeatedly over time and, moreover, agents may

leave the network. For this reason, rather than rely on the instantaneous cost function

in (4.22), agent k will determine its action at time i by instead minimizing an expected
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Table 4.1: The expected long-term cost functions J1
k,i and J1

`,i.
PPPPPPPPPPPPPP
Agent `

Agent k
ak`(i) = 0 ak`(i) = 1

a`k(i) = 0
E[Jact

` (ak`(i) = 0)|w`,i−1]

E[Jact
k (a`k(i) = 0)|wk,i−1]

E[Jact
` (ak`(i) = 1)|w`,i−1]

E[Jact
k (a`k(i) = 0)|wk,i−1] + ck

a`k(i) = 1
E[Jact

` (ak`(i) = 0)|w`,i−1] + c`

E[Jact
k (a`k(i) = 1)|wk,i−1]

E[Jact
` (ak`(i) = 1)|w`,i−1] + c`

E[Jact
k (a`k(i) = 1)|wk,i−1] + ck

long-term discounted cost function of the form defined by

J∞k,i [ak`(i), a`k(i)|wk,i−1]

,
∞∑
t=i

δt−ik E
[
Jk(ak`(t),a`k(t))

∣∣∣wk,i−1,ak`(i) = ak`(i),a`k(i) = a`k(i)
]

=
∞∑
t=i

δt−ik E
[
Jact
k (a`k(t)) + ak`(t)ck

∣∣∣wk,i−1,ak`(i) = ak`(i),a`k(i) = a`k(i)
]

(4.25)

where δk ∈ (0, 1) is a discount factor to model future network uncertainties and the fore-

sightedness level of agent k. The expectation is taken over all randomness for t ≥ i and is

conditioned on the estimate wk,i−1 when the actions ak`(i) and a`k(i) are selected. Formu-

lation (4.25) is meant to assess the influence of the action selected at time i by agent k on

its cumulative (but discounted) future costs. More specifically, whenever 1k`(i) = 1, agent k

selects its action ak`(i) at time i to minimize the expected long-term discounted cost given

wk,i−1:

min
ak`(i)∈{0,1}

J∞k,i[ak`(i), a`k(i)|wk,i−1] (4.26)

Based on the payoff function in (4.25), we can formally regard the interaction between

agents as consisting of stage games with recurrent random pairing. The stage information-

sharing game for 1k`(i) = 1 is a tuple (N,A,J), where N , {k, `} is the set of players, and

A , Ak×A` is the Cartesian product of binary sets Ak = A` , {1, 0} representing available

actions for agents k and `, respectively. The action profile is a(i) , (ak`(i), a`k(i)) ∈ A.
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Moreover, J = {J∞k,i, J∞`,i} is the set of real-valued long-term costs defined over A → R for

agents k and `, respectively. We remark that since J∞k,i depends on wk,i−1, its value generally

varies from stage to stage. As a result, each agent k faces a dynamic game structure with

repeated interactions in contrast to conventional repeated games as in [111, 112] where the

game structure is fixed over time. Time variation is an essential feature that arises when we

examine selfish behavior over adaptive networks.

Therefore, solving problem (4.26) involves the forecast of future game structures and

future actions chosen by the opponent. These two factors are actually coupled and influ-

ence each other; this fact makes prediction under such conditions rather challenging. To

continue with the analysis, we adopt a common assumption from the literature that agents

have computational constraints. In particular, we assume the agents have bounded ratio-

nality [101, 113, 114]. In our context, this means that the agents have limited capability to

forecast future game structures and are therefore obliged to assume that future parameters

remain unchanged at current values. We will show how this assumption enables each agent

k to evaluate J∞k,i in later discussions.

Assumption 4.1 (Bounded rationality). Every agent k solves the optimization problem

(4.26) under the assumptions:

wk,t = wk,i−1, 1k`(t) = 1k`(i), for t ≥ i (4.27)

�

We note that the above assumption is only made by the agent at time i while solving

problem (4.26); the actual estimates wk,t and pairing choices 1k`(t) will continue to evolve

over time. We further assume that the bounded rationality assumption is common knowledge

to all agents in the network3.

3Common knowledge of p means that each agent knows p, each agent knows that all other agents know
p, each agent knows that all other agents know that all the agents know p, and so on [115].
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4.3.2 Pareto Inefficiency

In this section, we show that if no further measures are taken, then Pareto inefficiency may

occur. Thus, assume that the agents are unable to store the history of their actions and the

actions of their neighbors. Each agent k only has access to its immediate estimate wk,i−1,

which can be interpreted as a state variable at time i−1 for agent k. In this case, each agent

k will need to solve (4.26) under Assumption 4.1. It then follows that agent k will predict

the same action for future time instants:

ak`(t) = ak`(i), for t > i (4.28)

Furthermore, since the bounded rationality condition is common knowledge, agent k knows

that the same future actions are used by agent `, i.e.,

a`k(t) = a`k(i), for t > i (4.29)

Using (4.28) and (4.29), agent k obtains

J∞k,i [ak`(i), a`k(i)|wk,i−1] =
∞∑
t=i

δt−ik E
[
Jk(ak`(i), a`k(i))

∣∣∣wk,i−1

]
=

1

1− δk
· E
[
Jk(ak`(i), a`k(i))

∣∣∣wk,i−1

]
=

1

1− δk
(
E[Jact

k (a`k(i))|wk,i−1] + ak`(i)ck
)

(4.30)

Therefore, the optimization problem (4.26) reduces to the following minimization problem:

min
ak`(i)∈{0,1}

J1
k,i (ak`(i), a`k(i)) (4.31)

where

J1
k,i (ak`(i), a`k(i)) , E[Jact

k (a`k(i))|wk,i−1] + ak`(i)ck (4.32)

is the expected cost of agent k given wk,i−1 — compare with (4.23). Table 4.1 summarizes

the values of J1
k,i and J1

`,i for both agents under their respective actions. From the entries

in the table, we conclude that choosing action ak`(i) = 0 is the dominant strategy for agent

k regardless of the action chosen by agent ` because its cost will be the smallest it can be
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Figure 4.1: Illustration of the behavior of the payoffs in terms of the size of the benefit-cost ratios

(“S” and “NS” refer to the actions “share” and “do not share”, respectively).

in that situation. Likewise, the dominant strategy for agent ` is a`k(i) = 0 regardless of the

action chosen by agent k. Therefore, the action profile (ak`(i), a`k(i)) = (0, 0) is the unique

outcome as a Nash and dominant strategy equilibrium for every stage game.

However, this resulting action profile will be Pareto inefficient for both agents if it can be

verified that the alternative action profile (1, 1), where both agents cooperate, can lead to

improved payoff values for both agents in comparison to the strategy (0, 0). To characterize

when this is possible, let us denote the expected payoff for agent k when agent ` selects

a`k(i) = 0 by

s0
k,i(ak`(i)) , E[Jact

k (a`k(i) = 0)|wk,i−1] + ak`(i)ck (4.33)

Likewise, when a`k(i) = 1, we denote the expected payoff for agent k by

s1
k,i(ak`(i)) , E[Jact

k (a`k(i) = 1)|wk,i−1] + ak`(i)ck (4.34)

The benefit for agent k from agent `’s sharing action, defined as the improvement from
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s0
k,i(ak`(i)) to s1

k,i(ak`(i)), is seen to be independent of ak`(i):

bk(i) , s
0
k,i(ak`(i))− s1

k,i(ak`(i))

= E[Jact
k (a`k(i) = 0)|wk,i−1]− E[Jact

k (a`k(i) = 1)|wk,i−1]

= E
[
Jest
k (wk,i = ψk,i) |wk,i−1

]
− E

[
Jest
k (wk,i = αkψk,i + (1− αk)ψ`,i) |wk,i−1

]
(4.35)

Now, note from definition (4.6) that

E
[
Jest
k (wk,i)|wk,i−1

]
= E

[
|dk(i+ 1)− uk,i+1wk,i|2

∣∣∣wk,i−1

]
(4.36)

so that

E[Jact
k (a`k(i) = 0)|wk,i−1] = E

[
Jest
k (wk,i = ψk,i) |wk,i−1

]
= E

[
|dk(i+ 1)− uk,i+1ψk,i|2

∣∣∣wk,i−1

]
= E

[
|uk,i+1ψ̃k,i + vk(i+ 1)|2

∣∣∣wk,i−1

]
= E

[
‖ψ̃k,i‖2

Ru,k

∣∣∣wk,i−1

]
+ σ2

v,k (4.37)

where ψ̃k,i , wo −ψk,i and, similarly,

E[Jact
k (a`k(i) = 1)|wk,i−1] = E

[
Jest
k (wk,i = αkψk,i + (1− αk)ψ`,i) |wk,i−1

]
= E

[
‖αkψ̃k,i + (1− αk)ψ̃`,i‖2

Ru,k

∣∣∣wk,i−1

]
+ σ2

v,k (4.38)

Then, the benefit bk(i) becomes

bk(i) = E
[
‖ψ̃k,i‖2

Ru,k

∣∣∣wk,i−1

]
− E

[
‖αkψ̃k,i + (1− αk)ψ̃`,i‖2

Ru,k

∣∣∣wk,i−1

]
(4.39)

Note that bk(i) is determined by the variable wk,i−1 and does not depend on the actions

a`k(i) and ak`(i). We will explain how agents assess the information bk(i) to choose actions

further ahead in Sec. IV-C. Now, let us define the benefit-cost ratio as the ratio of the

estimation benefit to the communication cost:

γk(i) ,
bk(i)

ck
(4.40)

106



Then, the action profile (1, 1) in the game defined in Table 4.1 is Pareto superior to the

action profile (0, 0) when both of the following two conditions hold

γk(i) > 1 and γ`(i) > 1 ⇐⇒


ck < bk(i)

c` < b`(i)

(4.41)

On the other hand, the action profile (0, 0) is Pareto superior to the action profile (1, 1) if,

and only if,

γk(i) < 1 and γ`(i) < 1 (4.42)

In Fig. 4.1(a), we illustrate how the values of the payoffs compare to each other when (4.41)

holds for the four possibilities of action profiles. It is seen from this figure that when γk(i) > 1

and γ`(i) > 1, the action profile (S,S), i.e., (1, 1) in (4.32), is Pareto optimal and that the

dominant strategy (NS,NS), i.e., (0, 0) in (4.32), is inefficient and leads to worse performance

(which is a manifestation of the famous prisoner’s dilemma problem [116]). On the other

hand, if γk(i) < 1 and γ`(i) < 1, then we are led to Fig. 4.1(b), where the action profile

(NS,NS) becomes Pareto optimal and superior to (S,S). We remark that (NS,S) and (S,NS)

are also Pareto optimal in both cases but not preferred in this chapter because they are only

beneficial for one single agent.

4.4 Adaptive Reputation Protocol Design

As shown above, when both γk(i) > 1 and γ`(i) > 1, the Pareto optimal strategies for agents

k and ` correspond to cooperation; when both γk(i) < 1 and γ`(i) < 1, the Pareto optimal

strategies for agents k and ` reduce to non-cooperation. Since agents are self-interested and

boundedly rational, we showed earlier that if left without incentives, their dominant strategy

is to avoid sharing information because they cannot tell beforehand if their paired neighbor

will reciprocate. This Pareto inefficiency therefore arises from the fact that agents are not

using historical data to predict other agents’ actions. We now propose a reputation protocol

to summarize the opponent’s past actions into a reputation score. The score will help agents

to form a belief of their opponent’s subsequent actions. Based on this belief, we will be able
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to provide agents with a measure that entices them to cooperate. We will show, for example,

that the best response rule for agents will be to cooperate whenever γk(i) is large and not

to cooperate whenever γk(i) is small, in conformity with the Pareto-efficient design.

4.4.1 Reputation Protocol

Reputation scores have been used before in the literature as a mechanism to encourage

cooperation [106, 117, 118]. Agents that cooperate are rewarded with higher scores; agents

that do not cooperate are penalized with lower scores. For example, eBay uses a cumulative

score mechanism, which simply sums the sellers feedback scores from all previous periods to

provide buyers and sellers with trust evaluation [119]. Likewise, Amazon.com implements a

reputation system by using an average score mechanism that averages the feedback scores

from the previous periods [120]. However, as already explained in [118], cheating can occur

over time in both cumulative and average score mechanisms because past scores carry a large

weight in determining the current reputation. To overcome this problem, and in a manner

similar to exponential weighting in adaptive filter designs [92], an exponentially-weighted

moving average mechanism that gives higher weights to more recent actions is discussed

in [118]. We follow a similar weighting formulation, with the main difference being that the

reputation scores now need to be adapted in response to the evolution of the estimation task

over the network. The construction can be described as follows.

When 1k`(i) = 1, meaning that agent k is paired with agent `, the reputation score

θ`k(i) ∈ [0, 1] that is maintained by agent k for its neighbor ` is updated as:

θ`k(i+ 1) = rkθ`k(i) + (1− rk)a`k(i) (4.43)

where rk ∈ (0, 1) is a smoothing factor for agent k to control the dynamics of the reputation

updates. On the other hand, if 1k`(i) = 0, the reputation score θ`k(i+ 1) remains as θ`k(i).

We can compactly describe the reputation rule as

θ`k(i+ 1) = 1k`(i) [rkθ`k(i) + (1− rk)a`k(i)] + (1− 1k`(i))θ`k(i) (4.44)

Directly applying the above reputation formulation, however, can cause a loss in adapta-

tion ability over the network. For example, the network would become permanently non-
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cooperative when agent ` chooses a`k(i) = 0 for long consecutive iterations. That is because,

in that case, the reputation score θ`k(i) will decay exponentially to zero, which keeps agent

k from choosing ak`(i) = 1 in the future. In order to avoid this situation, we set a lowest

value for the reputation score to a small positive threshold 0 < ε� 1, i.e.,

θ`k(i+ 1) = 1k`(i) ·max{rkθ`k(i) + (1− rk)a`k(i), ε}+ (1− 1k`(i))θ`k(i) (4.45)

and thus θ`k(i) ∈ [ε, 1].

The reputation scores can now be utilized to evaluate the belief by agent k of subsequent

actions by agent `. To explain how this can be done, we argue that agent k would expect

the probability of a`k(t) = 1, i.e., the probability that agent ` is willing to cooperate, to be

an increasing function of both θ`k(t) and θk`(t) for t ≥ i. Specifically, if we denote this belief

probability by B(a`k(t) = 1), then it is expected to satisfy:

∂B(a`k(t) = 1)

∂θ`k(t)
≥ 0,

∂B(a`k(t) = 1)

∂θk`(t)
≥ 0 (4.46)

The first property is motivated by the fact that according to the history of actions, a higher

value for θ`k(t) indicates that agent ` has higher willingness to share estimates. The second

property is motivated by the fact that lower values for θk`(t) mean that agent k has rarely

shared estimates with agent ` in the recent past. Therefore, it can be expected that agent

` will have lower willingness to share information for lower values of θk`(t). Based on this

argument, we suggest a first-order construction for measuring belief with respect to both

θ`k(t) and θk`(t) as follows (other constructions are of course possible; our intent is to keep

the complexity of the solution low while meeting the desired objectives):

B(a`k(t) = 1) = θk`(t) · θ`k(t), t ≥ i (4.47)

which satisfies both properties in (4.46) and where B(a`k(t) = 1) ∈ [ε2, 1]. Therefore, the

reputation protocol implements (4.45) and (4.47) repeatedly. Each agent k will then employ

the reference knowledge Ki , {θk`(i),θ`k(i), B(a`k(i) = 1)} to select its action ak`(i) as

described next.
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4.4.2 Best Response Rule

The belief measure (4.47) provides agent k with additional information about agent `’s

actions. That is, with (4.47), agent k can treat a`k(t) as a random variable with distribution

B(a`k(t) = 1) for t ≥ i. Then, the best response of agent k is obtained by solving the

following optimization problem:

min
ak`(i)∈{0,1}

J∞
′

k,i [ak`(i)|wk,i−1] (4.48)

where J∞
′

k,i [ak`(i)|wk,i−1] is defined by

J∞
′

k,i [ak`(i)|wk,i−1]

=
∞∑
t=i

δt−ik E
[
Jact
k (a`k(t)) + ak`(t)ck

∣∣∣wk,i−1,ak`(i) = ak`(i),Ki

]
= E

[
Jact
k (a`k(i))

∣∣∣wk,i−1,Ki

]
+ ak`(i)ck

+
∞∑

t=i+1

δt−ik E
[
Jact
k (a`k(t)) + ak`(t)ck

∣∣∣wk,i−1,ak`(i) = ak`(i),Ki

]
(4.49)

and involves an additional expectation over the distribution of a`k(t) — compare with (4.25).

Similarly to Assumption 4.1, we assume the bounded rationality of the agents extends to

the reputation scores θ`k(t) for t ≥ i.

Assumption 4.2 (Extended bounded rationality). We extend the assumption of bounded

rationality from (4.27) to also include:

θ`k(t) = θ`k(i), for t ≥ i (4.50)

�

Now, using pure strategies, the best response of agent k is to select the action ak`(i) such

that

ak`(i) =


1, if J∞

′
k,i [ak`(i) = 1|wk,i−1] < J∞

′
k,i [ak`(i) = 0|wk,i−1]

0, otherwise

(4.51)

The following lemma shows how the best response rule depends on the benefit-cost ratio

γk(i) and the communication cost ck:
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Lemma 4.1. With Assumptions 1 and 2, the best response rule fk(·) becomes

ak`(i) =


1, if γk(i) ,

bk(i)
ck

> χk

θ`k(i)

0, otherwise

(4.52)

where

χk ,
1− δkrk
δk(1− rk)

(4.53)

Proof. See Appendix A.

We note that the resulting rule aligns the agents to achieve the Pareto optimal strategy:

to share information when γk(i) is sufficiently large and not to share information when γk(i)

is small.

4.4.3 Benefit Prediction

To compute the benefit-cost ratio γk(i) = bk(i)/ck, the agent still needs to know bk(i) defined

by (4.35), which depends on the quantities E[Jact
k (a`k(i) = 0)|wk,i−1] and E[Jact

k (a`k(i) =

1)|wk,i−1]. It is common in the literature, as in [103, 121], to assume that agents have

complete information about the payoff functions like the ones shown in Table 4.1. However,

in the context of adaptive networks where agents have only access to data realizations and

not to their statistical distributions, the payoffs are unknown and need to be estimated or

predicted. For example, in our case, the convex combination αkψk,i+(1−αk)ψ`,i is unknown

for agent k before agent ` shares ψ`,i with it. We now describe one way by which agent k

can predict bk(i); other ways are possible depending on how much information is available to

the agent. Let us assume a special type of agents, which are called risk-taking [122]: agent

k chooses ak`(i) = 1 as long as the largest achievable benefit, denoted by b̄k(i), exceeds the

threshold:

ak`(i) =


1, if b̄k(i)

ck
> χk

θ`k(i)

0, otherwise

(4.54)
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Using (4.39), the largest achievable benefit b̄k(i) can be found by solving the following

optimization problem:

b̄k(i) , max
ψ̃`,i

bk(i)

= max
ψ̃`,i

{
E
[
‖ψ̃k,i‖2

Ru,k

∣∣∣wk,i−1

]
− E

[
‖αkψ̃k,i + (1− αk)ψ̃`,i‖2

Ru,k

∣∣∣wk,i−1

]}
= E

[
‖ψ̃k,i‖2

Ru,k

∣∣∣wk,i−1

]
(4.55)

since the maximum occurs when

ψ̃`,i = − αk
1− αk

ψ̃k,i (4.56)

Let us express the adaptation step (4.15) in terms of the estimation error as

ψ̃k,i = (I − µu∗k,iuk,i)w̃k,i−1 − µu∗k,ivk(i) (4.57)

To continue, we assume that the step-size µ is sufficiently small. Then,

E
[
‖ψ̃k,i‖2

Ru,k

∣∣∣wk,i−1

]
= E

[
‖(I − µu∗k,iuk,i)w̃k,i−1 − µu∗k,ivk(i)‖2

Ru,k

∣∣∣wk,i−1

]
= E

[
w̃∗k,i−1(I − µu∗k,iuk,i)Ru,k(I − µu∗k,iuk,i)× w̃k,i−1

∣∣∣wk,i−1

]
+ µ2Tr(R2

u,k)σ
2
v,k

= w̃∗k,i−1Ωkw̃k,i−1 +O(µ2) (4.58)

where we are collecting terms that are second-order in the step-size into the factor O(µ2),4

and where we introduced Ωk , Ru,k(I−2µRu,k). We note that for sufficiently small step-sizes:

Ω′k , Ru,k(I − µRu,k)
2 ≈ Ru,k(I − 2µRu,k) = Ωk (4.59)

Therefore, each agent k can approximate b̄k(i) as

b̄k(i) = w̃∗k,i−1Ω′kw̃k,i−1

= w̃∗k,i−1Ru,k(I − µRu,k)
2w̃k,i−1

= ‖(I − µRu,k)w̃k,i−1‖2
Ru,k

(4.60)

4This approximation simplifies the algorithm construction. However, when we study the network perfor-
mance later in (4.74) we shall keep the second-order terms.
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4.4.4 Real-Time Implementation

Expression (4.60) is still not useful for agents because it requires knowledge of both Ru,k and

w̃k,i−1. With regards to Ru,k, we can use the instantaneous approximation Ru,k ≈ u∗k,iuk,i
to get

b̄k(i) ≈ w̃∗k,i−1u
∗
k,iuk,i(I − µu∗k,iuk,i)2w̃k,i−1

= (1− µ‖uk,i‖2)2w̃∗k,i−1u
∗
k,iuk,iw̃k,i−1 (4.61)

With regards to w̃k,i−1, we assume that agents use a moving-average filter as in [123] to

approximate wo iteratively as follows:

ŵo
k,i = (1− ν)ŵo

k,i−1 + νψk,i (4.62)

w̃k,i−1 ≈ ŵo
k,i −wk,i−1 (4.63)

where ν ∈ (0, 1) is a positive forgetting factor close to 0 to give higher weights on recent

results. We summarize the operation of the resulting algorithm in the following listing.

4.5 Stability Analysis and Limiting Behavior

In this section, we study the stability of Algorithm 1 and its limiting performance after

sufficiently long iterations. In order to pursue a mathematically tractable analysis, we assume

that the maximum benefit b̄k(i) is estimated rather accurately by each agent k. That is,

instead of the real-time implementation (4.61)–(4.63), we consider (4.60) that

b̄k(i) = ‖(I − µRu,k)w̃k,i−1‖2
Ru,k

(4.64)

This consideration is motivated by taking the expectation of expression (4.61) given w̃k,i−1:

E
[
(1− µ‖uk,i‖2)2w̃∗k,i−1u

∗
k,iuk,iw̃k,i−1

∣∣∣w̃k,i−1

]
= w̃∗k,i−1

[
Ru,k − 2µE[u∗k,iuk,iu

∗
k,iuk,i] +O(µ2)

]
w̃k,i−1 (4.65)

By subtracting (4.64) from (4.65), we can see that the difference between (4.64) and (4.65)

is at least in the order of µ:

w̃∗k,i−1

[
2µ(R2

u,k − E[u∗k,iuk,iu
∗
k,iuk,i]) +O(µ2)

]
w̃k,i−1 (4.66)
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Algorithm 1 Diffusion Strategy with an Adaptive Reputation Scheme.

Let {wk,−1 = 0} and {θk`(−1) = 1} for all k and `. Define χk ,
1−δkrk
δk(1−rk)

.

loop

Generate {1k`(i)} for all k and `.

% Stage 1 (Adaptation): For each k:

ψk,i = wk,i−1 + µu∗k,i[dk(i)− uk,iwk,i−1]

b̄k(i) ≈ (1− µ‖uk,i‖2)2w̃∗k,i−1u
∗
k,iuk,iw̃k,i−1

ŵo
k,i = (1− ν)ŵo

k,i−1 + νψk,i

w̃k,i−1 ≈ ŵo
k,i −wk,i−1

% Stage 2 (Action Selection): For all k and `,

if 1k`(i) = 1 then

ak`(i) =


1, if b̄k(i)

ck
> χk

θ`k(i)

0, otherwise

else ak`(i) = 0.

end if

% Stage 3 (Reputation Update): For all k and `,

θ`k(i+ 1) =1k`(i) ·max{rkθ`k(i) + (1− rk)a`k(i), ε}

+ (1− 1k`(i))θ`k(i)

% Stage 4 (Combination): For all k,

wk,i = αkψk,i + (1− αk)
∑
`∈Nk

1k`(i) [a`k(i)ψ`,i + (1− a`k(i))ψk,i]

end loop
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Therefore, for small enough µ the expected value of the realization given by (4.61) approaches

the true value (4.64). The performance degradation from the real-time implementation error

will be illustrated by numerical simulations in Sec. 4.6.

Under this condition, and for µ � 1, we shall argue that the operation of each agent is

stable in terms of both the estimation cost and the communication cost. Specifically, for

the estimation cost, we will provide a condition on the step-size to ensure that the mean-

square estimation error of each agent is asymptotically bounded. Using this result, we will

further show that the communication cost for each agent k, and which is denoted by Jcom
k ,

is upper bounded by a constant value that is unrelated to the transmission cost ck. This

result will be in contrast to the case of always cooperative agents where Jcom
k will be seen to

increase proportionally with ck. This is because in our case, the probability of cooperation,

Prob{ak`(i) = 1}, will be shown to be upper bounded by the ratio co/ck for some constant

co independent of ck. It will then follow that when the communication becomes expensive

(large ck), self-interested agents using the adaptive reputation scheme will become unwilling

to cooperate.

4.5.1 Estimation Performance

In conventional stability analysis for diffusion strategies, the combination coefficients are

either assumed to be fixed, as done in [11,14,81,82,124,125], or their expectations conditioned

on the estimates wk,i−1 are assumed to be constant, as in [80]. These conditions are not

applicable to our scenario. When self-interested agents employ the nonlinear threshold-

based action policy (4.54), the ATC diffusion algorithm (4.15) and (4.19) ends up involving

a combination matrix whose entries are dependent on the estimates wk,i−1 (or the errors

w̃k,i−1). This fact introduces a new challenging aspect into the analysis of the distributed

strategy. In the sequel, and in order to facilitate the stability and mean-square analysis

of the learning process, we shall examine the performance of the agents in the network in

three operating regions: the far-field region, the near-field region, and a region in between.

We will show that the evolution of the estimation errors in these operating regions can be
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described by the same network error recursion given further ahead in (4.99). Following this

conclusion, we will then be able to use (4.99) to provide general statements about stability

and performance in the three regions.

To begin with, referring to the listing in Algorithm 1, we start by noting that we write

down the following error recursions for each agent k:

ψ̃k,i = (I − µu∗k,iuk,i)w̃k,i−1 − µu∗k,ivk(i) (4.67)

w̃k,i =
∑
`∈Nk

g`k(i)ψ̃`,i (4.68)

where the combination coefficients {g`k(i), ` ∈ Nk} used in (4.68) are defined as follows and

add up to one:

g`k(i) , (1− αk)1`k(i)a`k(i) ≥ 0 (4.69)

gkk(i) , 1−
∑

`∈Nk\{k}

g`k(i) ≥ 0 (4.70)

Note that, in view of the pairing process, at most two of the coefficients {g`k(i)} in (4.68) are

nonzero in each time instant. The subsequent performance analysis will depend on evaluating

the squared weighted norm of ψ̃k,i in (4.67), which is seen to be:

‖ψ̃k,i‖2
Ru,k

= ‖(I − µu∗k,iuk,i)w̃k,i−1‖2
Ru,k

+ µ2‖vk(i)‖2Tr(u∗k,iuk,iRu,k)

− µw̃∗k,i−1(I − µu∗k,iuk,i)Ru,ku
∗
k,ivk(i)

− µv∗k(i)uk,iRu,k(I − µu∗k,iuk,i)w̃k,i−1 (4.71)

Now, from (4.68) we can use Jensen’s inequality and the convexity of the squared norm to

write

‖w̃k,i‖2
Ru,k
≤
∑
`∈Nk

g`k(i)‖ψ̃`,i‖2
Ru,`

(4.72)

so that, under expectation,

E‖w̃k,i‖2
Ru,k
≤
∑
`∈Nk

E
[
g`k(i)‖ψ̃`,i‖2

Ru,`

]
(4.73)
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We note that g`k(i) is a function of the random variables {1`k(i),a`k(i)}. The random pairing

indicator 1`k(i) is independent of u`,i and v`(i). As for a`k(i), which is determined by b̄`(i)

and θk`(i), we can see from expressions (4.64) and (4.45) that both b̄`(i) and θk`(i) only

depend on the past data prior to time i and therefore are independent of u`,i and v`(i).

Consequently, g`k(i) is independent of u`,i and v`(i), and we get

E
[
g`k(i)‖ψ̃`,i‖2

Ru,`

]
= E

[
g`k(i)

(
‖(I − µu∗`,iu`,i)w̃`,i−1‖2

Ru,`
+ µ2‖v`(i)‖2Tr(u∗`,iu`,iRu,`)

− µw̃∗`,i−1(I − µu∗`,iu`,i)Ru,`u
∗
`,iv`(i)

− µv∗` (i)u`,iRu,`(I − µu∗`,iu`,i)w̃`,i−1

)]
= E

[
g`k(i)‖(I − µu∗`,iu`,i)w̃`,i−1‖2

Ru,`

]
+ µ2Eg`k(i)Tr(R2

u,`)σ
2
v,` (4.74)

Using the fact that u`,i is independent of g`k(i) and w̃`,i−1, we get

E
[
g`k(i)‖(I − µu∗`,iu`,i)w̃`,i−1‖2

Ru,`

]
= E

[
E
[
g`k(i)‖(I − µu∗`,iu`,i)w̃`,i−1‖2

Ru,`

∣∣∣g`k(i), w̃`,i−1

]]
= E

[
g`k(i)w̃

∗
`,i−1Σ`w̃`,i−1

]
(4.75)

where

Σ` , E(I − µu∗`,iu`,i)Ru,`(I − µu∗`,iu`,i)

= Ru,` − 2µR2
u,` + µ2E(u∗`,iu`,iRu,`u

∗
`,iu`,i) (4.76)

If the regression data happens to be circular Gaussian, then a closed-form expression exists

for the last fourth-order moment term in (4.76) in terms of Ru,` [92]. We will not assume

Gaussian data. Instead, we will assume that the fourth-order moment is bounded and that

the network is operating in the slow adaptation regime with a sufficiently small step-size so

that terms that depend on higher-order powers of µ can be ignored in comparison to other

terms. Under this assumption, we replace (4.75) by:

E
[
g`k(i)‖(I − µu∗`,iu`,i)w̃`,i−1‖2

Ru,`

]
= E

[
g`k(i)w̃

∗
`,i−1Ω′`w̃`,i−1

]
= E

[
g`k(i)b̄`(i)

]
(4.77)
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where Ω′` = Ru,`(I − µRu,`)
2 from (4.59) and b̄`(i) = w̃∗`,i−1Ω′`w̃`,i−1 from (4.64). Note that

Σ` − Ω′` = O(µ2) (4.78)

Therefore, expression (4.74) becomes

E
[
g`k(i)‖ψ̃`,i‖2

Ru,`

]
= E

[
g`k(i)b̄`(i)

]
+ µ2Tr(R2

u,`)σ
2
v,`Eg`k(i) (4.79)

To continue, we introduce the following lemma which provides useful bounds for b̄k(i).

Lemma 4.2 (Bounds on b̄k(i)). The values of b̄k(i) defined by (4.64) are lower and upper

bounded by:

ρ2
min‖w̃k,i−1‖2

Ru,k
≤ b̄k(i) ≤ ρ2

max‖w̃k,i−1‖2
Ru,k

(4.80)

where

ρmax , max
1≤k≤N

λmax(I − µRu,k) (4.81)

ρmin , min
1≤k≤N

λmin(I − µRu,k) (4.82)

Proof. We introduce the eigendecomposition of the covariance matrix, Ru,k , UkΛkU
∗
k , where

Uk is a unitary matrix and Λk , diag{λ1,k, ..., λM,k} is a diagonal matrix with positive entries.

Then, Ru,k can be factored as

Ru,k = R
1
2
u,kR

1
2
u,k (4.83)

where

R
1
2
u,k , UkΛ

1
2
kU
∗
k , Λ

1
2
k , diag{

√
λ1,k, ...,

√
λM,k} (4.84)

It is easy to verify that R
1
2
u,k and I − µRu,k are commutable. Using this property, we obtain

the following inequality:

w̃∗k,i−1Ω′kw̃k,i−1 = w̃∗k,i−1(I − µRu,k)R
1
2
u,kR

1
2
u,k(I − µRu,k)w̃k,i−1

= w̃∗k,i−1R
1
2
u,k(I − µRu,k)

2R
1
2
u,kw̃k,i−1

≤ λmax((I − µRu,k)
2)w̃∗k,i−1Ru,kw̃k,i−1

≤ ρ2
max‖w̃k,i−1‖2

Ru,k
(4.85)

We can obtain the lower bound for b̄k(i) by similar arguments.
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Using the upper bound from Lemma 4.2, we have

E
[
g`k(i)b̄`(i)

]
≤ ρ2

maxE
[
g`k(i)‖w̃`,i−1‖2

Ru,`

]
(4.86)

Then, from (4.79) and (4.86) we deduce from (4.73) that

E‖w̃k,i‖2
Ru,k
≤ ρ2

max

∑
`∈Nk

E
[
g`k(i)‖w̃`,i−1‖2

Ru,`

]
+ µ2

∑
`∈Nk

Tr(R2
u,`)σ

2
v,`Eg`k(i) (4.87)

From (4.69)–(4.70), it is ready to check that {Eg`k(i)} are nonnegative and add up to 1.

Therefore, the second term on the right-hand side of (4.87) is a convex combination and has

the following upper bound:

µ2
∑
`∈Nk

Tr(R2
u,`)σ

2
v,`Eg`k(i) ≤ µ2κ (4.88)

where

κ , max
1≤k≤N

Tr(R2
u,k)σ

2
v,k (4.89)

Therefore, we have

E‖w̃k,i‖2
Ru,k
≤ ρ2

max

∑
`∈Nk

E
[
g`k(i)‖w̃`,i−1‖2

Ru,`

]
+ µ2κ (4.90)

Since the combination coefficients {g`k(i)} and the estimation errors {‖w̃k,i−1‖2
Ru,k
} are re-

lated in a nonlinear manner (as revealed by (4.54, (4.64), and (4.69)–(4.70)), the analysis of

Algorithm 1 becomes challenging. To continue, we examine the behavior of the agents in

the three regions of operation mentioned before.

During the initial stage of adaptation, agents are generally away from the target vector

wo and therefore have large estimation errors. We refer to this domain as the far-field region

of operation, and we will characterize it by the condition:

Far-Field: Prob

{
‖w̃k,i−1‖2

Ru,k
>

ckχk
ρ2

minε

}
> φ (4.91)

where χk and ρmin are defined in (4.53) and (4.82), respectively, and the parameter φ is close

to 1 and in the range of 1 ≥ φ � 0. That is, in the far-field regime, the weighted squared

norm of estimation error ‖w̃k,i−1‖2
Ru,k

exceeds a threshold with high probability. We note
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that the far-field condition (4.91) can be more easily achieved when ck is small. We also

note that when the event in (4.91) holds with high-probability, then agent k is enticed to

cooperate since:

‖w̃k,i−1‖2
Ru,k

>
ckχk
ρ2

minε

(a)
=⇒ b̄k(i)θ`k(i) > ckχk

(b)
=⇒ ak`(i) = 1 (4.92)

where step (a) is by (4.80) and the fact θ`k(i) ∈ [ε, 1], and step (b) is by (4.54). Consequently,

in the far-field region it holds with high likelihood that

Prob{ak`(i) = 1} ≈ 1 (4.93)

This approximation explains the phenomenon that with large estimation errors, agents are

willing to cooperate and share estimates. We then say that under the far-field condition

(4.91), the combination coefficients in (4.69)–(4.70) can be expressed as

g`k(i) = (1− αk)1`k(i) (4.94)

gkk(i) = 1−
∑

`∈Nk\{k}

g`k(i) = αk + (1− αk)1kk(i) (4.95)

with expectation values as follows:

g`k , Eg`k(i) = (1− αk)p`k

gkk , Egkk(i) = αk + (1− αk)pkk (4.96)

In this case, expression (4.90) becomes

E‖w̃k,i‖2
Ru,k
≤ ρ2

max

∑
`∈Nk

g`kE‖w̃`,i−1‖2
Ru,`

+ µ2κ (4.97)

where we used the independence between 1`k(i) and ‖w̃`,i−1‖2
Ru,`

. If we stack {‖w̃k,i‖2
Ru,k
}

into a vector X i , col{‖w̃1,i‖2
Ru,1

, ..., ‖w̃N,i‖2
Ru,N
} and collect the combination coefficients

{g`k} into a left-stochastic matrix G, then we obtain the network error recursion as:

EX i � ρ2
maxG

T (EX i−1) + µ2κe (4.98)
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where e ∈ 1N is the vector of all ones and the notation x � y denotes that the components

of vector x are less than or equal to the corresponding components of vector y. Taking the

maximum norm from both sides and using the left-stochastic matrix property ‖GT‖∞ = 1,

we obtain:

max
1≤k≤N

E‖w̃k,i‖2
Ru,k
, ‖EX i‖∞ < ρ2

max‖EX i−1‖∞ + µ2κ (4.99)

Let us consider the long-term scenario i � 1. The far-field regime (4.91) is more likely to

occur when ck is small. Let us now examine the situation in which the communication cost

is expensive (ck � 0). In this case, the agents will operate in a near-field regime, which we

characterize by the condition:

Near-Field: Prob

{
‖w̃k,i−1‖2

Ru,k
<
ckχk
ρ2

max

}
> φ (4.100)

where ρmax is defined in (4.81). We note that

‖w̃k,i−1‖2
Ru,k

<
ckχk
ρ2

max

=⇒ b̄k(i)θ`k(i) < ckχk

=⇒ ak`(i) = 0 (4.101)

In this regime, it then holds with high likelihood that

Prob{ak`(i) = 0} ≈ 1 (4.102)

and the combination coefficients in (4.69)–(4.70) then become:

gkk(i) = 1, g`k(i) = 0 (4.103)

This means that agents will now be operating non-cooperatively since the benefit of sharing

estimates is small relative to the expensive communication cost ck � 0. Using similar

arguments to (4.97)–(4.99), we arrive at the same network recursion (4.99) for this regime.

However, there exists a third possibility that for moderate values of ck, agents operate

at a region that does not belong to neither the far-field nor the near-field regimes. In this

region, agents will be choosing to cooperate or not depending on their local conditions. To

facilitate the presentation, let us introduce the notation IE for an indicator function over
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event E where IE = 1 if event E occurs and IE = 0 otherwise. Then, the action policy (4.54)

can be rewritten as:

ak`(i) = Ib̄k(i)θ`k(i)>ckχk
(4.104)

From Lemma 4.2, we know that b̄k(i) is sandwiched within an interval of width (ρ2
max −

ρ2
min)‖w̃k,i−1‖2

Ru,k
. As the error ‖w̃k,i−1‖2

Ru,k
becomes smaller after sufficient iterations, the

feasible region of b̄k(i) shrinks. Therefore, it is reasonable to assume that b̄k(i) becomes

concentrated around its mean b̄k(i) , Eb̄k(i) for i� 0. It follows that we can approximate

ak`(i) by replacing b̄k(i) by b̄k(i):

ak`(i) ≈ Ib̄k(i)θ`k(i)>ckχk
, as i� 1 (4.105)

To continue, we further assume that after long iterations, which means that repeated interac-

tions between agents have occurred for many times, the reputation scores gradually become

stationary, i.e., we can model {θ`k(i)} as

θ`k(i) = θ`k + n`k(i), as i� 1 (4.106)

where θ`k , Eθ`k(i) and n`k(i) is a random disturbance which is independent and identically

distributed (i.i.d.) over time i and assumed to be independent of all other random variables.

Under this modeling, we can obtain the independence between n`k(i) and w̃`,i−1 and write

that for k 6= `

E
[
g`k(i)‖w̃`,i−1‖2

Ru,`

]
= E

[
(1− αk)1`k(i)a`k(i)‖w̃`,i−1‖2

Ru,`

]
≈ (1− αk)p`kE

[
Ib̄`(i)(θ`k+n`k(i))>ckχk

· ‖w̃`,i−1‖2
Ru,`

]
= g′`kE‖w̃`,i−1‖2

Ru,`
(4.107)

where

g′`k , (1− αk)p`kE
[
Ib̄k(i)(θ`k+n`k(i))>ckχk

]
≥ 0 (4.108)

For ` = k, we can use similar arguments to write

E
[
gkk(i)‖w̃k,i−1‖2

Ru,k

]
= E

[(
1−

∑
`∈Nk\{k}

(1− αk)1`k(i)a`k(i)
)
‖w̃k,i−1‖2

Ru,k

]
≈ g′`kE‖w̃k,i−1‖2

Ru,`
(4.109)
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where

g′kk , 1−
∑

`∈Nk\{k}

g′`k ≥ 0 (4.110)

Therefore, expression (4.90) becomes

E‖w̃k,i‖2
Ru,k
≤ ρ2

max

∑
`∈Nk

g′`kE‖w̃`,i−1‖2
Ru,`

+ µ2κ (4.111)

Following similar arguments to (4.97)–(4.99), we again arrive at the same network recursion

(4.99).

We therefore conclude that after long iterations, the estimation performance can be

approximated by recursion (4.99) for general values of ck. Consequently, sufficiently small

step-sizes that satisfy the following condition guarantees the stability of the network error

‖EX i‖∞:

ρ2
max < 1 ⇐⇒ µ <

2

max
1≤k≤N

λmax(Ru,k)
(4.112)

which leads to

lim sup
i→∞

‖EX i‖∞ ≤
µ2κ

1− ρ2
max

(4.113)

Recalling that we are assuming sufficiently small µ, we have

ρ2
max = max

1≤k≤N
max

1≤m≤M
(1− µλm(Ru,k))

2

≈ max
1≤k≤N

max
1≤m≤M

1− 2µλm(Ru,k)

, 1− 2µβ (4.114)

where

β , min
1≤k≤N

λmin(Ru,k) (4.115)

It is straightforward to verify that the bound on the right-hand side of (4.113) is upper-

bounded by µκ/2β, which is O(µ). Consequently, we conclude that

lim sup
i→∞

E‖w̃k,i‖2
Ru,k

= O(µ) (4.116)

which establishes the mean-square stability of the network under the assumed conditions

and for small step-sizes.
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4.5.2 Expected Individual and Public Cost

In this section we assess the probability that agents will opt for cooperation after sufficient

time has elapsed and the network has become stable. From (4.116), we know that after

sufficient iterations, the MSE cost at each agent k is bounded, say, as

E‖w̃k,i‖2
Ru,k
≤ ηµ, for i� 1 (4.117)

for some constant η. Based on this result, we can upper bound the cooperation rate of every

agent k, defined as the probability that agent k would select ak`(i) = 1 for every pairing

agent `.

Theorem 4.1. (Upper bound on cooperation rate) After sufficient iterations, the cooperation

rate for each agent k is upper bounded by:

Prob{ak`(i) = 1} ≤ min

{
co

ck
, 1

}
, for any ck <∞ (4.118)

where co is independent of ck and defined as

co ,
ηµρ2

max

χmin

, χmin , min
1≤k≤N

χk (4.119)

Proof. From (4.54), the cooperation rate of agent k is bounded by:

Prob{ak`(i) = 1} = Prob
{
b̄k(i)θ`k(i) > ckχk

}
≤ Prob

{
b̄k(i) > ckχk

}
≤ Prob

{
‖w̃k,i−1‖2

Ru,k
>
ckχk
ρ2

max

}
(4.120)

where we used the fact that θk`(i) ≤ 1 and the upper bound on b̄k(i) from (4.80). Since

‖w̃k,i−1‖2
Ru,k

is a nonnegative random variable with E‖w̃k,i−1‖2
Ru,k
≤ ηµ, we can use Markov’s

inequality [126] to write

Prob

{
‖w̃k,i−1‖2

Ru,k
>
ckχk
ρ2

max

}
≤ ηµρ2

max

ckχk
≤ co

ck
(4.121)

Combining (4.120) and (4.121), we obtain that the cooperation rate for i � 1 is upper

bounded by co/ck. Using the fact that Prob{ak`(i) = 1} ≤ 1, we get (4.118).
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Figure 4.2: The feasible region of the probability of cooperation Prob{ak`(i) = 1} for agent k.

As illustrated in Fig. 4.2, the feasible region of Prob{ak`(i) = 1} is the intersection area

of (4.118) and 0 ≤ Prob{ak`(i) = 1} ≤ 1. We note that co has an order of µ. It describes

the fact that when µ is small, the long term estimation errors reduce and agents have less

willingness to cooperate and thus the cooperation rate Prob{ak`(i) = 1} becomes low. Now,

the expected communication cost for each agent k is

EJcom
k =

∑
`∈Nk\{k}

E[1k`(i)ak`(i)]ck =
∑

`∈Nk\{k}

pk` · Prob{ak`(i) = 1}ck (4.122)

where {k} is excluded from the summation since there is no communication cost required

for using own data. From Theorem 4.1, we know that when ck is large, the expected com-

munication cost has an upper bound which is independent of ck, i.e., for ck ≥ co,

EJcom
k ≤

∑
`∈Nk\{k}

pk`
co

ck
ck = (1− pkk)co (4.123)

On the other hand, the expected estimation cost for each agent k for i� 0 is:

EJest
k = E|dk(i)− uk,iwk,i−1|2

= E‖w̃k,i−1‖2
Ru,k

+ σ2
v,k

≤ ηµ+ σ2
v,k (4.124)
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where we use (4.9) and the fact that w̃k,i−1 is independent of {dk(i),uk,i}. It follows that

for i� 1 the expected extended cost at each agent k is bounded by

E [Jk(wk,i−1,ak`(i))] = EJest
k + EJcom

k ≤ ηµ+ σ2
v,k + (1− pkk)co (4.125)

If we now define the public cost as the accumulated expected extended cost over the network:

Jpub ,
N∑
k=1

E [Jk(wk,i−1,ak`(i))] (4.126)

then

Jpub ≤ Nηµ+
N∑
k=1

σ2
v,k + co

N∑
k=1

(1− pkk) (4.127)

which shows that Jpub is uniformly bounded by a constant value independent of ck.

For comparison purposes, let us consider a uniform transmission cost ck = c and consider

the case in (4.18) where the agents are controlled so that they always share estimates with

their paired agents, i.e., ak`(i) = 1 for all k, `, and i whenever 1k`(i) = 1. Then, the random

combination coefficients are the same as (4.94)–(4.95) defined in the far-field since agents

always choose to cooperate. Let us denote the network mean-square-deviation (MSD) of

cooperative agents by

MSDcoop = lim
i→∞

1

N

N∑
k=1

E‖w̃k,i‖2 (4.128)

which has a closed-form expression provided in [80]. Therefore, we can characterize the

performance of cooperative agents by MSDcoop and note that for i� 0, we have

N∑
k=1

E‖w̃k,i‖2
Ru,k
≥ Nβ ·MSDcoop (4.129)

where β is defined in (4.115). Consequently, after sufficient iterations, the expected public

cost for cooperative agents becomes

Jpub
coop =

N∑
k=1

E‖w̃k,i‖2
Ru,k

+ σ2
v,k + c

∑
`∈Nk\{k}

E1k`(i)


≥ Nβ ·MSDcoop +

N∑
k=1

σ2
v,k + c

N∑
k=1

(1− pkk) (4.130)
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Figure 4.3: A network topology with N = 20 agents.

Comparing (4.127) with (4.130), we get Jpub
coop ≥ Jpub whenever

Nβ ·MSDcoop + c
N∑
k=1

(1− pkk) ≥ Nηµ+ co
N∑
k=1

(1− pkk)

⇐⇒ c ≥ co +
N [ηµ− β ·MSDcoop]

N∑
k=1

(1− pkk)
(4.131)

In other words, when the transmission cost c exceeds the above threshold, self-interested

agents using the reputation protocol obtain a lower expected public cost than cooperative

agents running the cooperative ATC strategy.
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Figure 4.5: Entries of wo and Ru used in the simulations.

4.6 Numerical Results

We consider a network with N = 20 agents. The network topology is shown in Fig. 4.3. The

noise variance profile at the agents is shown in Fig. 4.4. In the simulations, we consider that

the transmission cost ck = c is uniform and the matrix Ru,k = Ru is uniform and diagonal.

Figure 4.5 shows the entries of the target vector wo of size M = 10 and the diagonal entries

of Ru. We set the step-size at µ = 0.01 and the combination weight at αk = 0.5 for all k.

The parameters used in the reputation update rule are ε = 0.1 and the initial reputation

scores θk,`(0) = 1 for all agents k and `. The discount factor δk and the smoothing factor rk

128



0 50 100 150 200 250

−4

−3

−2

−1

0

1

2

3

4

Time

Pu
bl

ic
 c

os
t 

 (d
B

)

c = 0.0001

Non−sharing
Cooperative (4.18)
Reputation (4.19), w/o real-time implement. 
Reputation (4.19), w/ real−time implement.

pu
b

J

(a) Small communication cost c = 0.0001.
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Figure 4.6: Learning curve of public cost Jpub for small and large communication costs.
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for all k are set to 0.99 and 0.95, respectively, and the forgetting factor ν is set to 0.01.

In this simulation, we consider a distributed random-pairing mechanism as follows. At

each time instant, each agent independently and uniformly generates a random continuous

value from [0, 1]. Then, the agent holding the smallest value in the network, say agent k,

is paired with the neighboring agent in Nk who has not been paired and holds the smallest

value in Nk \{k}. Then, similar steps are followed by the agent who has not been paired and

holds the second smallest value in the network. The random-pairing procedure continues

until all agents complete these steps.

In Fig. 4.6, we simulate the learning curves of instantaneous public costs for small and

large communication costs. It is seen that in both cases, using the proposed reputation

protocol, the network of self-interested agents reaches the lowest public cost. Therefore, the

network is efficient in terms of public cost. Furthermore, we note that in these two cases,

there is only small difference between the performance of the reputation protocol using

Algorithm 1 and the real-time implementation. To see the general effect of c, in Fig. 4.7

we simulate the public cost in steady-state versus the communication cost c. We observe

that for large and small c, the reputation protocol performs as well as the non-sharing and

the cooperative network, respectively. The only imperfection occurs around the switching

region. Without real-time implementations, the reputation protocol has a small degradation

in the range of c ∈ [10−2, 10−1]. While using real-time implementations (4.61)–(4.63), we

can see that the degradation happens in a wider range of c ∈ [10−4, 10−1]. In Fig. 4.8, we

simulate the network benefit defined as the largest achievable b̄k(i) averaged over all agents

in steady state, i.e.,

bnet , lim
i→∞

1

N

N∑
k=1

E[b̄k(i)] (4.132)

where b̄k(i) follows the real-time implementation in (4.61)–(4.63). We note that the network

benefits, bnet, for the non-sharing and cooperative cases are invariant for different commu-

nication costs since the behavior of agents is independent of c. Moreover, as expected in

the form of (4.61), cooperative networks generally give smaller steady-state estimation errors

and thus result in lower bnet. When the communication cost c increases, self-interested agents
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following the proposed reputation protocol have less willingness to cooperate, and therefore

have larger estimation errors and predict higher values of the benefit b̄k(i) in general.

4.7 Case Study: Distributed Spectrum Sensing

Cooperative spectrum sensing by secondary users (SUs) in a cognitive radio scenario can

help avoid interference with transmissions by the primary user (PU) [127]. Spectrum sens-

ing can be implemented either in a centralized manner [128] or decentralized manner [129]

through coordination among the SUs. The latter approach exploits the spatial diversity of

the SUs more fully and is scalable and robust, while the centralized approach is vulnerable to

failure by the fusion center. The cooperative spectrum sensing problem generally involves a

parameter estimation step. Various distributed strategies exist for the decentralized solution

of estimation problems, most notably the consensus strategy [6,7,130,131] and the diffusion

strategy [10,16,132]. It has been shown in the prior work [21] that diffusion strategies have

superior convergence, stability, and mean-square-error performance. For this reason, we shall

employ diffusion adaptation to estimate the parameters of interest.

In collaborative spectrum sensing, it is not difficult to envision situations where some SUs

may behave in a selfish manner and would participate in the sharing of information with

other SUs only if this activity is beneficial to them. One example of such a scenario is studied

in [133] where the SUs operate with the intention of maximizing their own transmission rates

under the constraint of limited interference to the PUs. Other scenarios are studied in [114,

134, 135] using coalitional game formulations. In this paper, we examine the decentralized

spectrum sensing problem in the presence of selfish SUs. We assume that the sharing of

information among neighboring SUs entails some communication cost. In this way, each SU

becomes interested in minimizing the error in estimating the parameter of interest to enable

enhanced spectrum sensing (this objective favors cooperation) while reducing the cost of

communicating with neighbors (this objective disfavors cooperation). We explained in [95]

that under similar scenarios involving information-sharing games, the dominant strategy for

each user is not to participate in the sharing of information. In order to address this inefficient
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behavior, we embedded a reputation mechanism from [136] into the design of an adaptive

collaborative process and developed a scheme that encourages users to cooperate. We show in

this article how a similar design strategy can be developed for online cooperative spectrum

sensing and leads to enhanced detection performance. In comparison to the framework

in [95], here we to formulate a decentralized detection mechanism to guide the cooperation

step.

4.7.1 System Model

We consider a network with N secondary users (SUs) and one primary user (PU). The

frequency spectrum is divided into M sub-bands and the signal powers over these sub-bands

are collected into a column vector wo with nonnegative entries. The channels between the

PU and the SUs are assumed to be frequency-selective and time-variant as follows. For each

sub-band, and at each time instant i, the channel power gains from the PU to the k−th SU

are represented by a 1×M vector uk,i ∈ R1×M
+ with non-negative entries. We assume that

the channel information uk,i, which is a realization for the random process uk,i at time i, can

be estimated through pilot signals during a training phase [137,138]. During each i-th time

interval, each SU k measures the received power that results from the aggregation of the

signal powers in wo multiplied by the channel power gains in uk,i. We denote the received

power by sk(i). This measurement is generally subject to noise and we write in a manner

similar to [129]:

sk(i) = uk,iw
o + v′k(i) (4.133)

where v′k(i) combines the receiver and measurement noise sources and is assumed to have

mean v̄k and variance σ2
v,k. We assume the random processes uk,i and v′`(j) are spatially and

temporally independent over k, `, i and j. To sense the spectrum, each SU solves a detection

problem of the form:  H0 : wo = 0

H1 : wo = ws
(4.134)
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where ws ∈ RM×1
+ represents the spectrum pattern that results from the presence of the PU.

We assume that wo varies slowly over time. We further assume that v̄k is known by each

SU, so that the data model can be centered as:

dk(i) , sk(i)− v̄k = uk,iw
o + vk(i) (4.135)

where vk(i) = v′k(i)− v̄k represents the centered zero-mean noise process.

We shall adopt a simple collaborative strategy for estimating wo from the streaming data

{dk(i),uk,i}. In the random-pairing model, when SUs k and ` are paired and SU ` agrees

to collaborate with SU k, then SU k will update its estimate of the parameter vector wo

according to the strategy:

ψk,i = wk,i−1 + µuTk,i[dk(i)− uk,iwk,i−1] (4.136)

wk,i = αkψk,i + (1− αk)ψ`,i (4.137)

where µ is a positive step-size factor, which is assumed to be sufficiently small to ensure

mean-square stability. The second step (4.137) uses a coefficient 0 ≤ αk ≤ 1 to combine

the intermediate estimates of SUs k and `. Using results from [16], it can be verified that

a sufficiently small step-size µ ensures asymptotic mean stability of wk,i in (4.136)–(4.137),

i.e.,

Ew̃k,i → 0 as i→∞ (4.138)

in terms of the error vector w̃k,i , wo−wk,i. We could consider incorporating an additional

projection step following (4.137) to ensure that all entries of wk,i are non-negative. However,

such a step generally leads to biased estimates for wo. In this article, we continue with the

unbiased solution that results from (4.136)–(4.137). The simulation results in the last section

illustrate how this construction leads to good performance.

When SUs k and ` are paired together, we assume that they share the noise variances

σ2
v,k and σ2

v,`, and the channel realizations uk,i and u`,i. Using this reference knowledge,

SU ` will decide, according to the procedure described further ahead in (4.52)–(4.34), on

whether to share its information ψ`,i with SU k at time i, and vice-versa. The decision to
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cooperate by either SU is based on each one of them evaluating a certain performance metric,

described in the next section, and which reflects how well cooperation may enhance their

detection accuracy against the communication cost. If SU ` decides not to share estimates,

αk in (4.137) is set to 1. For each SU `, sharing the estimates ψ`,i bears a known positive

transmission cost c.

4.7.2 Performance Metric

4.7.2.1 Detection Performance

Let us denote by EMSEk,i the instantaneous excess-mean-square-error of SU k at time i

conditioned on the known realization uk,i. This quantity is defined as

EMSEk,i , E[|uk,iw̃k,i−1|2|uk,i = uk,i] (4.139)

which we rewrite as:

EMSEk,i = E|uk,iw̃k,i−1|2 ≥ 0 (4.140)

Smaller values for EMSEk,i correspond to enhanced estimation accuracy. The analysis that

follows explains how smaller values for EMSEk,i enhance the detection accuracy as well.

We reconsider the detection problem (4.134) by examining the statistics of the random

variable uk,iwk,i−1, which can be interpreted as an estimate for the received signal power.

For small step-sizes and after sufficient iterations, the iterated wk,i−1 approaches wo with a

small mean-square error. We therefore approximate the mean of uk,iwk,i−1 by

Euk,iwk,i−1 ≈ uk,iw
o (4.141)

Likewise, the variance of uk,iwk,i−1 is approximated by:

Var(uk,iwk,i−1) , E|uk,iwk,i−1 − E(uk,iwk,i−1)|2 ≈ E|uk,iw̃k,i−1|2 = EMSEk,i (4.142)

Thus, after a sufficient number iterations, we can replace the detection problem in (4.134)

by  H0 : E(uk,iwk,i−1) ≈ 0

H1 : E(uk,iwk,i−1) ≈ uk,iw
s

(4.143)
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Now each SU k will decide on H0 or H1 by comparing the statistics uk,iwk,i−1 with a thresh-

old:

uk,iwk,i−1

H0

≶

H1

ηk,i (4.144)

We consider the Neyman-Pearson test in which the threshold ηk,i is chosen to maximize the

detection probability under a constraint on the false-alarm probability, namely,

max
ηk,i

PD
k,i , Pr{uk,iwk,i−1 ≥ ηk,i;H1}

subject to PFA
k,i , Pr{uk,iwk,i−1 ≥ ηk,i;H0} = κ

(4.145)

We note that other than the mean and variance, the statistics of uk,iwk,i−1 are generally

unknown. Therefore, the optimization problem (4.145) cannot be solved explicitly. To

continue, we assume that the probability distribution of uk,iwk,i−1 is symmetric around the

mean under both H0 and H1. With this assumption, we can utilize Chebyshev’s inequality

to ensure that an upper bound on PFA
k,i is smaller than κ. Thus, note that

PFA
k,i = Pr{uk,iwk,i−1 ≥ ηk,i;H0}

=
1

2
Pr{|uk,iwk,i−1| ≥ ηk,i;H0}

≤ EMSEk,i

2η2
k,i

(4.146)

Therefore, in order for (4.146) to be bounded by κ, the threshold should be selected to

satisfy:

ηk,i ≥
√

EMSEk,i

2κ
(4.147)

Likewise, we maximize a lower bound on PD
k,i. Thus, note again that using the assumed

symmetry of the distribution of uk,iwk,i−1, we obtain

Pr{uk,iwk,i−1 ≤ ηk,i;H1} =
1

2
Pr{|uk,iwk,i−1 − uk,iws| ≥ uk,iw

s − ηk,i;H1}

≤ EMSEk,i

2(uk,iws − ηk,i)2
(4.148)
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where we assume uk,iw
s > ηk,i in the second equality. This assumption is reasonable in most

environments when the signal power uk,iw
s is sufficiently large, which means sufficiently high

signal-to-noise ratio (SNR). Then,

PD
k,i = Pr{uk,iwk,i ≥ ηk,i;H1}

= 1− Pr{uk,iwk,i−1 ≤ ηk,i;H1}

≥ 1− EMSEk,i

2(uk,iws − ηk,i)2
(4.149)

Therefore, the optimization problem (4.145) is approximated and replaced by

max
ηk,i

P̄D
k,i , 1− EMSEk,i

2(uk,iws − ηk,i)2

subject to ηk,i ≥
√

EMSEk,i

2κ

(4.150)

Under the assumption ukw
s > ηk,i, the objective function P̄D

k,i is monotonically decreasing

with respect to ηk,i. Thus, the solution to (4.150) occurs at

ηok,i =

√
EMSEk,i

2κ
(4.151)

and the resulting P̄D
k,i is

P̄ o
k,i = 1− EMSEk,i

2

(
uk,iws −

√
EMSEk,i

2κ

)2 (4.152)

It can be verified that P̄ o
k,i increases when EMSEk,i decreases. It then follows that SUs should

be motivated to cooperate in order to enhance the estimation accuracy and the detection

probability. Therefore, given the current state estimate wk,i−1, the expression for Jk,i in

(4.22) is defined as follows:

Jk,i(ak(i),a`(i)|w̃k,i−1) , E[EMSEk,i+1(a`(i)|w̃k,i−1)] + ak(i) · c (4.153)

4.7.3 Simulation Results

In the simulations, we assume there are N = 15 SUs. The locations of the PU and SUs are

shown in Fig. 4.9(a). The PU is initially active at time i = 0, becomes inactive at i = 1000,
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Figure 4.9: (a) Spatial distribution of the PU and SUs. (b) The spectrum pattern ws and the

average of estimates wk,750 over all SUs at i = 750.
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Figure 4.10: The PU is active during i ∈ [0, 1000) and i ≥ 2000.

and becomes active again at i = 2000. We assume that the SUs are randomly paired at each

time instant. The spectrum pattern of ws with ‖ws‖ = 1 is represented by M = 16 samples

and is illustrated in Fig. 4.9(b) along with the estimated wk,i averaged across all SUs after

sufficient iterations. The channel power gain uk,i between the PU and each SU is assumed
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to be a constant path loss gain with a random disturbance:

uk,i = gp,k1+ gk,i (4.154)

where the notation 1M denotes a vector with all its entries equal to one, gp,k = KL ·(rk/r0)−2,

KL = 0.1 is a path-loss parameter, r0 = 1 is a reference distance, and rk is the distance

between the PU and the k-th SU. The disturbance gk,i is a zero-mean Gaussian random vector

with covariance matrix 1.5I. The measurement noise v′k(i) is temporally white and spatially

independent Gaussian distributed with mean v̄k = 0.1 and uniform variance σ2
v,k = σ2

v = −10

(dB). We set the step-size to µ = 0.005, the transmission cost to c = 10−6, the discounted

parameter to δ = 0.99, the minimum reputation ε = 0.1, and the combination coefficients

αk = 1/2 for all SUs when the shared estimates are available. All reputation scores are set

to 1 at time i = 0 and discounted by r = 0.7.

In Fig. 4.10(a), the average EMSE over all SUs is simulated. Without the reputation

scheme, the selfish SUs have no incentive to cooperate and their learning curve attains the

worst EMSE performance. On the other hand, the reputation scheme encourages cooperation

by selfish SUs and leads to better estimation performance. In Fig. 4.10(b), we simulate the

detection performance in terms of the average PD
k,i over all SUs. The threshold is determined

by (4.151). The upper bound probability κ is 0.1.

4.8 Concluding Remarks

In this chapter, we studied the distributed information-sharing network in the presence of self-

interested agents. We showed that without using any historical information to predict future

actions, self-interested agents with bounded rationality become non-cooperative and refuse

to share information. To entice them to cooperate, we developed an adaptive reputation

protocol which turns the best response of self-interested agents into an action-choosing rule.
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APPENDICES

4.A Proof of Lemma 4.1

We can represent the best response rule (4.51) by some mapping function, fk(·), that maps

the available realizations of θ`k(i) and wk,i−1 to ak`(i), i.e.,

ak`(i) = fk(θ`k(i), wk,i−1) (4.155)

We show the form of the resulting fk(·) later in (4.52). For now, we note that construction

(4.51) requires us to find the condition for

J∞
′

k,i [ak`(i) = 1|wk,i−1] < J∞
′

k,i [ak`(i) = 0|wk,i−1] (4.156)

Using (4.49), this condition translates into requiring

J∞
′

k,i [ak`(i) = 1|wk,i−1]− J∞′k,i [ak`(i) = 0|wk,i−1]

= ck +
∞∑

t=i+1

δt−ik 4J1
k (t) +

∞∑
t=i+1

δt−ik 4J2
k (t) < 0 (4.157)

where, for simplicity, we introduced

4J1
k (t) , E

[
ak`(t)ck

∣∣∣wk,i−1,ak`(i) = 1,Ki

]
− E

[
ak`(t)ck

∣∣∣wk,i−1,ak`(i) = 0,Ki

]
(4.158)

4J2
k (t) , E

[
Jact
k (a`k(t))

∣∣∣wk,i−1,ak`(i) = 1,Ki

]
− E

[
Jact
k (a`k(t))

∣∣∣wk,i−1,ak`(i) = 0,Ki

]
(4.159)

Following similar argument to (4.28), we combine Assumptions 4.1 and 4.2 to conclude that

ak`(t) = ak`(i), for t ≥ i (4.160)

so that

4J1
k (t) = ck (4.161)
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Similarly, using the assumption wk,t−1 = wk,i−1 for t ≥ i from (4.27), we have

E
[
Jact
k (a`k(t))

∣∣∣wk,i−1,ak`(i) = j,Ki

]
= E

[
Jact
k (a`k(t) = 1)

∣∣∣wk,t−1,ak`(i) = j,Ki

]
B(a`k(t) = 1)

+ E
[
Jact
k (a`k(t) = 0)

∣∣∣wk,t−1,ak`(i) = j,Ki

]
(1−B(a`k(t) = 1)) (4.162)

for j = 0 or 1. From (4.37) and (4.38), we can write

E
[
Jact
k (a`k(t) = 0)

∣∣∣wk,t−1,ak`(i) = j,Ki

]
= E

[
Jact
k (a`k(t) = 0)

∣∣∣wk,t−1

]
(4.163)

E
[
Jact
k (a`k(t) = 1)

∣∣∣wk,t−1,ak`(i) = j,Ki

]
= E

[
Jact
k (a`k(t) = 1)

∣∣∣wk,t−1

]
(4.164)

since these two conditional expectations depend only onwk,t−1. Therefore, expression (4.162)

becomes:

E
[
Jact
k (a`k(t))

∣∣∣wk,i−1,ak`(i) = j,Ki

]
= B(a`k(t) = 1) ·

(
E
[
Jact
k (a`k(t) = 1)

∣∣∣wk,t−1

]
− E

[
Jact
k (a`k(t) = 0)

∣∣∣wk,t−1

] )
+ E

[
Jact
k (a`k(t) = 0)

∣∣∣wk,t−1

]
= E

[
Jact
k (a`k(t) = 0)

∣∣∣wk,t−1

]
−B(a`k(t) = 1)bk(t) (4.165)

where we used the definition for bk(t) from (4.35). We note that using (4.39) we have

bk(t) = bk(i) due to the assumption wk,t−1 = wk,i−1. As a result, it follows that

E
[
Jact
k (a`k(t))

∣∣∣wk,i−1,ak`(i) = j,Ki

]
= E

[
Jact
k (a`k(t) = 0)

∣∣∣wk,t−1

]
−B(a`k(t) = 1)bk(i) (4.166)

Let us denote by θjk`(t) the value of θk`(t) at time t if ak`(i) = j is selected at time i. We

utilize the assumption θ`k(t) = θ`k(i) to rewrite B(a`k(t) = 1) as

B(a`k(t) = 1) = θjk`(t)θ`k(i) (4.167)

It then follows that

E
[
Jact
k (a`k(t))

∣∣∣wk,i−1,ak`(i) = j,Ki

]
= E

[
Jact
k (a`k(t) = 0)

∣∣∣wk,t−1

]
− θjk`(t)θ`k(i)bk(i) (4.168)
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Therefore, using (4.159) we get

4J2
k (t) = [θ0

k`(t)− θ1
k`(t)]θ`k(i)bk(i) (4.169)

Now, we recall that following Assumption 4.1 and the considered scenario 1k`(i) = 1, we

have 1k`(t) = 1k`(i) = 1 for t ≥ i. As a result, the reputation update in (4.45) can be

approximated by expression (4.43) for sufficiently small ε. Then, under (4.160), the future

reputation scores θ0
k`(t) and θ1

k`(t) are given by:

θ0
k`(t) = θk`(i)r

t−i
k (4.170)

θ1
k`(t) = θk`(i)r

t−i
k + (1− rk)

t−i−1∑
q=0

rqk = θk`(i)r
t−i
k + (1− rt−ik ) (4.171)

Therefore, expression (4.169) becomes

4J2
k (t) = −(1− rt−ik )θ`k(i)bk(i), for t > i (4.172)

Using (4.161) and (4.172), agent k then chooses ak`(i) = 1 if

ck +
∞∑

t=i+1

δt−ik ck −
∞∑

t=i+1

δt−ik (1− rt−ik )θ`k(i)bk(i) < 0

⇐⇒
∞∑
t=i

δt−ik ck <
∞∑

t=i+1

δt−ik (1− rt−ik )θ`k(i)bk(i)

⇐⇒ ck
1− δk

< θ`k(i)bk(i)δk ·
(

1

1− δk
− rk

1− δkrk

)
⇐⇒ γk(i) ,

bk(i)

ck
>

χk
θ`k(i)

(4.173)

where we introduced

χk ,
1− δkrk
δk(1− rk)

(4.174)

The best response rule fk(·) therefore becomes

ak`(i) =


1, if γk(i) ,

bk(i)
ck

> χk

θ`k(i)

0, otherwise

(4.175)
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CHAPTER 5

Cluster Formation with Selfish Agents

As an alternative to the reputation protocols considered in Chapter 4, we go beyond in-

teractions among single agents and develop a clustering technique to entice cooperation by

clusters of agents. We divide the operation of the network into two stages: a cluster for-

mation stage and an information sharing stage. During cluster formation, agents evaluate

a long-term combined cost function and decide on whether to cooperate or not with other

agents. During the subsequent information sharing phase, agents share and process informa-

tion over their sub-networks. Simulations illustrate how the clustering technique enhances

the mean-square-error performance of the agents over noncooperative processing.

5.1 Introduction

We now develop a clustering technique as an alternative to reputation protocols to entice

cooperation by self-interested agents. In this method, agents are allowed to decide with

whom to cluster and share information. The clustering concept is widely studied in the

social sciences and game theory (e.g., [111, 114, 134, 139, 140]). It enables agents to drive

their cooperative behavior by selecting their partners according to whether they can help

them reduce their utility costs. For adaptive networks, the challenge is to select utility

functions that can drive the clustering operation. Recent results on the performance of

adaptive networks [125] can be exploited to great effect for this purpose.

In the formulation studied in this chapter, we divide the operation of the network into two

stages. The first stage is the cluster formation phase and the second stage is the information

sharing and processing phase. During cluster formation, agents meet randomly in pairs
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Figure 5.1: (a) Self-interested agents establish new links to form a larger cluster. (b) Timeline

illustrates two stages of cluster formation and information sharing.

following a random pairing protocol [9], similar to the random-pairing model in (4.11)–(4.13).

Based on some prior reference knowledge about mutual clusters, each agent then evaluates

the expected cost of its possible actions and decides on whether to propose cooperation to

the other agent. If both agents agree on cooperation, then they establish a link and become

part of the same larger cluster. We illustrate cluster formation and the timeline involved

in Fig. 5.1. Once clusters are formed, the agents can then proceed to solve the estimation

task in a distributed manner by cooperating within their sub-networks. We assume there

exist harsh punishments to prevent agents from deviating from the agreement of information

sharing, such as to permanently isolate the deviant agents.
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5.2 Information Sharing Structure

5.2.1 Reference Knowledge and Transmission Cost

Consider a network with N self-interested agents. During the cluster formation stage, pairs

of agents, say, agents k and `, randomly meet and exchange some preliminary knowledge,

denoted by Kk and K`, respectively. Based on Kk and K`, the agents decide on whether

they want to become part of the same cluster. Membership in the same cluster implies

that the agents would agree to cooperate with each other during the information sharing

stage. During this second phase, agents share information denoted by Ik,i and I`,i at time i.

Obviously, the sharing of the information Ik,i with agent ` bears some transmission cost for

agent k, which is denoted by ck` > 0 and assumed to be known by agent k. Likewise, c`k > 0

represents the cost for agent ` when it shares information with agent k. In the subscripts `k,

the first letter represents the source agent and the second letter represents the destination

agent. We set ckk = 0.

5.2.2 Agreement to Cluster

When agent k first meets agent ` during the cluster formation stage, agent k chooses an

action ak` ∈ {0, 1} based on their shared preliminary knowledge Kk and K` (as described

further ahead in Sec. 5.3.) The action ak` = 1 means that agent k proposes to agent ` that

they become part of the same cluster, and the action ak` = 0 means that agent k does not

want to cluster with agent `. Agent `’s action, a`k ∈ {0, 1}, is defined in a similar manner.

The agreement to cluster must be consensual, i.e., both agents need to propose ak` = 1 and

a`k = 1. This situation can be represented by the indicator value defined by:

Ik` = I`k , ak` · a`k (5.1)

Thus, Ik` = 1 means that both agents have agreed to become part of the same cluster so

that agent k will share information Ik,i with agent ` during the information sharing stage,

and vice-versa. On the other hand, Ik` = 0 means that agents k and ` do not wish to cluster.

We set Ikk = 1.
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Figure 5.2: The neighborhood of agent 3 is N3 = {2, 3, 4, 6} and the cluster of agent 3 is

C3 = {1, 2, 3, 4, 5, 6, 7, 8}.

Table 5.1: Cost values for all four combinations of actions by the agents.
HHHH

HHHH
Agent `

Agent k
ak` = 0 ak` = 1

a`k = 0

MSDk(Ck) + βk
∑
q∈Nk

Ikqckq

MSD`(C`) + β`
∑
q∈N`

I`qc`q

MSDk(Ck) + βk
∑
q∈Nk

Ikqckq

MSD`(C`) + β`
∑
q∈N`

I`qc`q

a`k = 1

MSDk(Ck) + βk
∑
q∈Nk

Ikqckq

MSD`(C`) + β`
∑
q∈N`

I`qc`q

MSDk(Ck ∪ C`) + βk
∑
q∈Nk

Ikqckq + βkck`

MSD`(Ck ∪ C`) + β`
∑
q∈N`

I`qc`q + β`c`k

5.2.3 Two-Stage Operations

Consider that each agent k seeks to solve a distributed estimation task, such as estimating

and tracking some parameter vector of interest, which we denote by wo ∈ CM×1. We assume

that agents have access to the data {dk(i),uk,i} related via the linear regression model in

(4.4). We now describe a two-stage operation to facilitate the cluster formation process.

During the cluster formation stage, the cluster dynamics is evolving and, therefore, Ck
is dependent on time during this phase. When two agents k and ` first meet randomly at

some time i, the reference knowledge Kk and K` that they share is assumed to consist of the
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agents that belong to their clusters and their respective noise variances:

Kk ,
{

(q, σ2
v,q)|q ∈ Ck

}
(5.2)

When two agents decide to cluster, then their cluster sets are merged and all agents in these

sets become part of the same larger cluster. As such, whenever two agents meet and they

are not members of the same cluster, then their cluster sets are necessarily disjoint.

During the information sharing stage, agents apply the diffusion strategy (4.15)-(4.16)

and share information to solve the inference task. In this chapter, although unnecessary,

we assume that the combination matrix A is doubly-stochastic, i.e., the entries on each of

its rows and columns add up to one, such as selecting A to be the Laplacian combination

rule [17, 141] or the Metropolis combination rule [8, 141]. Then, we have

AT1 = 1, A1 = 1 (5.3)

In the context of algorithm (4.15)-(4.16), the information Ik,i to be shared by each agent k

is the intermediate estimates ψk,i. As illustrated in Fig. 5.2, it is obvious that agents in Nk
should belong to the cluster of agent k, denoted by Ck, i.e., Nk ⊂ Ck. The cluster of agent

k includes two types of agents: (a) those agents which agent k has decided to cluster with

and, therefore, has direct links to them, and (b) agents which agent k has a path through

other intermediate agents to connect with. In other words, the set Ck represents a connected

sub-network that includes k and its immediate neighborhood in addition to other agents.

Formally, the cluster set Ck is constructed as follows. Representing the connection topology

graphically, we connect two agents k and ` by an edge if Ik` = 1. Then, the cluster Ck is the

maximally connected subnetwork containing agent k. In this way, for any other agent in Ck,
there will exist at least one path connecting agent k to it either directly by an edge, or by

means of a path passing through other intermediate agents.

5.3 Combined Cost for Clustering Agreement

In the cluster formation stage, when two agents k and ` meet randomly, they select their ac-

tions {ak`,a`k} based on their assessment of a long-term expected return as follows. Instead
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of the long-term discounted cost discussed in Sec. 4.3.1, we assume that agents construct

their long-term expected returns based on their steady-state performance in the information

sharing stage. Therefore, each agent k employs a combined cost function that takes into

account the cost of communicating with agent ` and the contribution of agent ` towards

the estimation task (i.e., whether it will help reduce the steady-state mean-square error).

The combined cost function for agent k depends on the actions by both agents and on their

existing clusters:

Jk(ak`,a`k|Ck, C`) ,
MSDk(Ck ∪ C`) + βk

( ∑
q∈Nk∪{`}

Ikqckq

)
, if (ak`,a`k) = (1, 1)

MSDk(Ck) + βk

( ∑
q∈Nk

Ikqckq

)
, otherwise

(5.4)

where βk is a normalization parameter, and MSDk denotes the steady-state mean-square-

deviation (MSD) measure for agent k:

MSDk , lim
i→∞

E‖w̃k,i‖2 (5.5)

in terms of the error vector w̃k,i , wo −wk,i. Moreover, the notation MSDk(Ck) for cluster

Ck is used to denote the MSD value that would be attained by agent k if its cluster is Ck.
In Table 5.1, we summarize the resulting cost values for the agents under their respective

actions.

Let us now explain how the MSD values in (4.22) can be evaluated. Consider an arbitrary

agent k and a cluster set Ck of size K. Under the assumption that the regressors uk,i are

spatially and temporally independent and that the step-size µ is sufficiently small, it holds

that for the doubly-stochastic A, we have the following expression (refer to Equations (89)

and (97) in [125] or Equation (32) in [17]):

MSDk(Ck) ≈
µM

2
· 1

K2

∑
q∈Ck

σ2
v,q (5.6)

Suppose agent k meets agent ` with cluster C` of size L. We note that one of two situations

will occur: Ck = C` or Ck
⋂ C` = ∅. In the trivial case that Ck = C`, we have

MSDk(Ck ∪ C`) = MSDk(Ck) (5.7)
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since agents k and ` have the same cluster. For Ck
⋂ C` = ∅, if agents k and ` fail to reach

agreement, which means Ik` = 0, then we again obtain MSDk(Ck) for (5.6). On the other

hand, if they successfully reach agreement (Ik` = 1), then

MSDk(Ck ∪ C`) ≈
µM

2
· 1

(K + L)2

∑
q∈Ck∪C`

σ2
v,q (5.8)

In this way, the combined cost values in (5.4) are given by:

Jk(ak`,a`k|Ck, C`) =
µM

2
· 1

(K+L)2

∑
q∈Ck∪C`

σ2
v,q + βk

∑
q∈Nk

Ikqckq + βkck`, if (ak`,a`k) = (1, 1)

µM
2
· 1
K2

∑
q∈Ck

σ2
v,q + βk

∑
q∈Nk

Ikqckq, otherwise

(5.9)

Then, agents choose the actions that minimize their combined cost function (5.9). Once

Ikl = 1, agents k and ` start sharing estimates in the information sharing stage. To prevent

agents from deviating from the agreement, we punish the deviant agents in the following

manner: if any agent k violates the agreement to cooperate with agent `, agent ` broadcasts

this misbehavior to its neighbors and from there to their neighbors and agents will stop

sharing estimates with agent k permanently.

We remark that the individual actions of agents could impact the combined cost values

of other agents in the same cluster. However, individual actions do not worsen the marginal

combined costs of other agents in a cluster. To see this, if no larger clustering (no new

agreement) occurs, the combined cost of every agent in a cluster remains the same. If a new

clustering agreement of agents, say, k and `, is made, the MSD costs of other agents reduce

but there is no addition communication cost required by them, and thus their combined

costs reduce.

5.4 Cluster Formation Process

The following lemma characterizes the conditions for cluster formation.

Lemma 5.1. Agents k and ` reach agreement to cluster (Ik` = 1), when the following two
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conditions are met: ∑
q∈Ck

σ2
v,q

K2
−

∑
q∈Ck∪C`

σ2
v,q

(K + L)2
>

2

µM
βkck` (5.10)

and ∑
q∈C`

σ2
v,q

L2
−

∑
q∈Ck∪C`

σ2
v,q

(K + L)2
>

2

µM
β`c`k (5.11)

Proof. From Table 1, we first note that if agent ` selects a`k = 0, then it is indifferent to

agent k selecting ak` = 0 or 1. On the other hand, in the case of a`k = 1, if we have

Jk(ak` = 0,a`k = 1|Ck, C`) > Jk(ak` = 1,a`k = 1|Ck, C`) (5.12)

then agent k should choose ak` = 1 to obtain a lower combined cost. Therefore, condition

(5.12) ensures the best strategy for agent k to be ak` = 1. Using (5.9) we can rewrite (5.12)

as

µM

2


∑
q∈Ck

σ2
v,q

K2

+ βk
∑
q∈Nk

Ikqckq

>
µM

2


∑

q∈Ck∪C`
σ2
v,q

(K + L)2

+ βk
∑
q∈Nk

Ikqckq + βkck` (5.13)

which is equivalent to (5.10). Similarly, we can obtain condition (5.11) to ensure a`k = 1

from agent `’s perspective.

Note that when conditions (5.10) and (5.11) hold, the dominant strategies for agents k

and ` become ak` = 1 and a`k = 1. On the other hand, when either one of conditions (5.10)

or (5.11) fails to hold, agents have no incentive to cluster. In this case, (ak`,a`k) = (1, 1) will

not be chosen, which results in Ik` = 0. We assume agents k and ` select (ak`,a`k) = (0, 0)

if equalities occur in (5.10) and (5.11). From Lemma 1, we know that clusters Ck and C`
unite if both conditions (5.10) and (5.11) hold. Furthermore, we observe that low weighted

transmission costs, βkck` and β`c`k, facilitate the formation of the united cluster. Now, let

us consider networks with uniform βk = β` ≡ β and ck` = c`k ≡ c. If every agent further has

the same noise variance, we obtain the following result.
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Lemma 5.2. If the noise variances across the network are uniform, i.e., σ2
v,q ≡ σ2

v, then the

following condition guarantees the cluster formation Ck ∪ C`:

K + L

σ2
v

2

µM
βc < min

{
L

K
,
K

L

}
(5.14)

Proof. For agent k, it follows from (5.10) that we must have

L

K
>
K + L

σ2
v

2

µM
βc (5.15)

Similarly, for agent ` it follows from (5.11) that we must have

K

L
>
K + L

σ2
v

2

µM
βc (5.16)

Combining both results, we obtain (5.14).

Therefore, if we want to facilitate the formation of larger clusters, Lemma 2 suggests to

maximize the right-hand side of (5.14), which occurs when K = L and the maximum value

becomes equal to one. In other words, larger clustering is more likely to occur for clusters

Ck and C` of equal sizes. Now, let us examine the case in which the clusters Ck and C` have

the same sizes but their agents have heterogeneous noise variances.

Lemma 5.3. If clusters Ck and C` have the same sizes, i.e., K = L, then the following

condition guarantees the cluster formation Ck ∪ C`:

8

µM
βc < min

{
1

K
(3σ̄2

k − σ̄2
` ),

1

L
(3σ̄2

` − σ̄2
k)

}
(5.17)

where

σ̄2
k ,

1

K

∑
q∈Ck

σ2
v,q and σ̄2

` ,
1

L

∑
q∈C`

σ2
v,q (5.18)

are the average noise variances of Ck and C`, respectively.

Proof. For agent k, we conclude from (5.10) that we must have:

3

∑
q∈Ck

σ2
v,q

K
−

∑
q∈C`

σ2
v,q

L
>

8K

µM
βc (5.19)
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Similarly, for agent ` it must hold that

3

∑
q∈C`

σ2
v,q

L
−

∑
q∈Ck

σ2
v,q

K
>

8L

µM
βc (5.20)

Combining both conditions, we obtain (5.17).

Again, the maximum of the term on the right-hand side of (5.17) occurs when

(3L+K)σ̄2
k = (3K + L)σ̄2

L (5.21)

Therefore, for clusters of equal sizes, two clusters with the same (weighted) average noise

variance will be more likely to unite.

5.5 Simulation Results

In our simulations, we consider a network with 20 agents. During the first 10 time instants,

agents are uniformly and randomly paired. Then, agents proceed to cooperate within their

clusters to solve the estimation problem. The length of wo is M = 3 and we randomly

choose its entries and normalize them to satisfy ‖wo‖ = 1. The regressor {uk,i} is zero-mean

and Ru,k is diagonal with entries uniformly generated between [0,1]. The background noise

vk(i) is temporally white and spatially independent Gaussian distributed with zero-mean and

assumed to be uniform with variance σ2
v,k = σ2

v = −6 (dB). We set µ = 0.005, βk = β = 1,

and ck` = c = 5× 10−5 for all agents.

Fig. 5.3(a) shows the topology evolution from i = 1 to 4. We observe that agents gradually

form clusters to maximize their own utilities. The final topology with three disjoint clusters

is shown in Fig. 5.3(b). Cooperating over the resulting sub-networks, agents start to share

estimates and run algorithm (4.15)-(4.16). We simulate the corresponding steady-state MSD

in Fig. 5.4(a) where agents are indexed and grouped according to their clusters. We observe

that through clustering, every agent is able to achieve better estimation performance than

if the agents were to act independently of the other agents by running their own individual

LMS recursions. Fig. 5.4(b) shows the effect of transmission cost to the cluster formation

and thus to the steady-state network MSD.

153



5.6 Concluding Remarks

In this chapter, we allow the agents to select their partners according to whether they can

help them reduce their utility costs. We divided the operation of the network into two stages:

a cluster formation stage and an information sharing stage. During cluster formation, agents

evaluate a long-term combined cost function and decide on whether to cooperate or not with

other agents. During the subsequent information sharing phase, agents share and process

information over their sub-networks. Simulations illustrate that through clustering, every

agent is able to achieve better estimation performance than noncooperative processing.
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Figure 5.3: Cluster formation with c = 5× 10−5 and σ2
v = −6 (dB).
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Figure 5.4: Simulations of steady-state network MSD.
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CHAPTER 6

Future Work

In this dissertation, we focus on stochastic multi-objective optimization problems over net-

work topologies. A key challenge in our formulation is the adaptive nature of the strategies,

both for solving the inference task and for the agents to react to the actions of neighbors. In

these scenarios, agents need to operate in response to streaming data and be able to respond

to changes in the statistical properties of the data, the nature of the task, and even the be-

havior of neighboring agents. Both stability and efficiency, corresponding to Nash equilibria

and Pareto optimal solutions, respectively, is desirable when we study these problems. We

first developed distributed and online learning strategies through a penalty reformulation

and showed that they approach an asymptotic Nash equilibrium. One critical extension

involving cooperation with partial information can still be beneficial to agents. We also ex-

amined the case where Nash equilibria may not be Pareto optimal by associating a positive

cost for information sharing. Such inefficient problems can be dealt with by the proposed

adaptive reputation and cluster formation protocols. In the following, we list several topics

that deserve further examination:

• One interesting future work would be to explore how the converging point (asymptotic

Nash equilibrium) of the developed penalty-based algorithms relates to the variational

equilibrium obtained by KKT conditions with identical Lagrange multipliers. It would

be useful if we could select a target generalized Nash equilibrium in the original GNEP

for our diffusion algorithms to converge to.

• Throughout this dissertation, we assume the individual cost and constraints functions

are differentiable. A possible future work is to relax the differentiability assumption

and explore the use of sub-gradient or proximal-based methods. This relaxation can
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allow us to use non-differentiable penalty functions and thus enlarge the flexibility of

our algorithms.

• Asynchronous adaptation learning is also a practical extension so that agents do not

need to execute the update of actions simultaneously. It would be useful if we can

study the performance degradation due to asynchronous behavior by agents.

• While the partial information learning can be beneficial for agents, the appearance

of communication overhead may destroy the cooperation of agents. Therefore, an

interesting problem will be developing a new mechanism for this general network where

agents might have different or partially common inference targets subject to positive

communication cost.
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