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Abstract of the Dissertation

Modeling and Simulation of Thermomechanical Elasto-viscoplastic Material and Ductile

Fracture with the Material Point Method

by

Mengyuan Ding

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Joseph M. Teran, Chair

This dissertation focuses on applications and extensions of the Material Point Method(MPM)

in simulating ductile fracture and thermomechanical material behavior for baking and cook-

ing. We conclude the two major contributions as follows:

First, we present novel techniques for simulating and visualizing ductile fracture with

MPM. We utilize traditional particle-based MPM [SZS95] as well as the Lagrangian en-

ergy formulation of [JSS15] that formulates the deformation gradient and potential energy

through a tetrahedron mesh. We model failure and fracture via elasto-plasticity with dam-

age. Material shows elastic behavior until the deformation exceeds a Rankine or von Mises

yield criterion, at which point irreversible damage starts to occur. We introduce a softening

model that shrinks the yield surface until a damage threshold is reached. Once damaged

the material Lamé coefficients are modified to represent failure. We design visualization

techniques for rendering the boundary of the material and its intersections with evolving

crack surfaces. Our approach uses a simple and efficient element splitting strategy for tetra-

hedron meshes to represent crack surfaces. For traditional particle-based MPM we use an

initial Delaunay tetrahedralization to connect randomly initialized MPM particles and form

a reference mesh. Our visualization technique is a postprocess and can be run separately

after the MPM simulation for efficiency. We demonstrate the strength of our method with

a number of challenging simulations of ductile failure with considerable and persistent self
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contact.

Our second contribution is a Material Point Method for visual simulation of baking

breads, cookies, pancakes and similar materials. We develop a novel thermomechanical model

using mixture theory to resolve interactions between individual water, gas and solid species.

Heat transfer with thermal expansion is used to model thermal variations in material prop-

erties. Water based mass transfer is resolved through the porous mixture. Gas represents

carbon dioxide produced by leavening agents in the baking process, and the solid component

is modeled as a visco-elastoplastic material to represent its varied and complex rheological

properties. Water content in the mixture reduces during the baking process according to

Fick’s Law which contributes to the drying and cracking of crust at the material boundary.

Carbon dioxide gas produced by leavening agents during baking creates internal pressure

that causes rising. The visco-elastoplastic model for the dough is temperature dependent

and is used to model melting and solidification. We discretize the governing equations using

a novel Material Point Method designed to track the solid phase of the mixture.
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I have to thank my fiancé and our three cats for their utmost trust, friendship and love.

They have always kept me company when I work late into the night, and have been one of

the biggest sources of warmth and joy in my life. They are more perfect than I could ever

dream of.

Finally I want to thank my family for their unconditional love and support throughout

my life. I thank my mom for everything she has done for me and for never losing faith in me

even when I do myself; my dad for being my biggest role model and for fostering my interest

and passion in mathematics from the very beginning. I’ve been following in his footsteps all

this time.

This dissertation contains content from previously published work. Chapter 2 from [WDG19]

and Chapter 3 from [DHW19].

xv



Vita

2015 B.S.(Applied Mathematics), University of Science and Technology of China

2015 - 2020 Teaching Assistant, Mathematics Department, UCLA

2017 - 2020 Research Assistant, Mathematics Department, UCLA

2019.6 - 2019.9 Research Scientist Intern, Forma Technologies Inc.

2019.9 - 2019.12 FX-R&D Intern, DreamWorks Animation

2020.2 - 2020.6 Software Developer, Autodesk

Publications

S. Wang, M. Ding, T.F. Gast, L. Zhu, S. Gagniere, C. Jiang, and J.M. Teran. “Simulation

and Visualization of Ductile Fracture with the Material Point Method.” Proceedings of the

ACM on Computer Graphics and Interactive Techniques, 2019

M. Ding, X. Han, S. Wang, T.F. Gast, and J.M. Teran. “A Thermomechanical Material

Point Method for Baking and Cooking.” ACM Transactions on Graphics (TOG), 2019

xvi



CHAPTER 1

Introduction and Theoretical Background

1.1 Continuum Mechanics

In this section we briefly discuss the fundamental continuum assumptions on which we build

our research. The definitions and derivations closely follow [GS08].

1.1.1 Continuum Bodies and Kinematics

We first make a most basic assumption that the material involved can be modeled as a

continuum. This allows us to identify a material body at any fixed instant of time with an

open subset B of Euclidean space E3. Each material particle is identified with a point in B.

The motion of a body with reference configuration B0 is described by a continuous map

φ : B0 × [0,∞) → E3. At any time t, each point X in the reference configuration B0 is

mapped to a point x(t) = φ(X, t) in the current configuration Bt. The continuity assump-

tion further implies the existence of an inverse deformation map φ−1 : Bt → B0 such that

φ−1(φ(X, t), t) = X, φ(φ−1(x, t), t) = x

The material, or Lagrangian, velocity and acceleration of the material particle X are denoted

as

V(X, t) =
∂φ

∂t
(X, t)

A(X, t) =
∂V

∂t
(X, t) =

∂2φ

∂t2
(X, t)

1



The corresponding spatial description, or Eulerian form, of the velocity and acceleration

fields are defined as

v(x, t) = V(φ−1(x, t), t), V(X, t) = v(φ(X, t), t)

a(x, t) = A(φ−1(x, t), t), A(X, t) = a(φ(X, t), t)

We then have the following relation:

A(X, t) =
∂V

∂t
(X, t)

=
∂

∂t
v(φ(X, t), t)

=
∂v

∂t
(φ(X, t), t) +

∂v

∂x
(φ(X, t), t) · ∂φ

∂t
(X, t)

=
∂v

∂t
(φ(X, t), t) +

∂v

∂x
(φ(X, t), t) · v(φ(X, t), t)

⇒ a(x, t) = A(φ−1(x, t), t)

=
∂v

∂t
(x, t) +

∂v

∂x
(x, t) · v(x, t)

:=
D

Dt
v(x, t)

Here we define the material derivative D
Dt

as D∗
Dt

= ∂∗
∂t

+ ∂∗
∂x
· v.

The deformation gradient F(X, t) = ∂φ
∂X

(X, t) = ∂x
∂X

(X, t) quantifies the strain and provides

information on the local behavior of the flow map φ. In particular, we have the following

linear approximation of φ for any X̃ near a given point X:

φ(X̃, t) ≈ ∇Xφ(X, t)(X̃−X) + φ(X, t) = F(X, t)(X̃−X) + x

We denote J(X, t) = det F(X, t).

1.1.2 Balance Laws

Consider a continuum body with reference configuration B0 undergoing a motion φ, and Bt

denotes the configuration at any given time t. The mass density of the body is denoted as

2



ρ(x, t), then for any arbitrary open subset Ωt of Bt the mass and linear momentum in the

region are given by

mass[Ωt] =

∫
Ωt

ρ(x, t)dx (1.1)

momentum[Ωt] =

∫
Ωt

ρ(x, t)v(x, t)dx (1.2)

The material description of the mass density is denoted asR(X, t), with the relation ρ(φ(X, t), t) =

R(X, t) similar as before.

1.1.2.1 Conservation of Mass

The conservation law of mass states that the mass of any open subset of a continuum body

does not change as the body changes place and shape, that is

d

dt
mass[Ωt] = 0, ∀Ωt ⊆ Bt

This implies that mass[Ωt] = mass[Ω0] where Ω0 stands for the corresponding subset in the

reference configuration. We have

mass[Ωt] =

∫
Ωt

ρ(x, t)dx

=

∫
Ω0

ρ(φ(X, t), t) det F(X, t)dX

=

∫
Ω0

R(X, t)J(X, t)dX

On the other hand mass[Ω0] =
∫

Ω0
R(X, 0)dX. By the Localization Theorem we deduce the

conservation of mass equation in Lagrangian form

R(X, 0) = R(X, t)J(X, t), ∀X ∈ B0, t ≥ 0. (1.3)
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Taking the time derivative of both sides and using ∂J
∂t

= J∇x · v(φ−1(X, t)) we get

0 =
∂

∂t
(R(X, t)J(X, t))

=
∂

∂t
ρ(x, t)J(X, t) + ρ(x, t)J(X, t)∇x · v(x, t)

= (
∂ρ

∂t
(x, t) +

∂ρ

∂x
(x, t) · v(x, t))J(φ−1(x, t), t) + ρ(x, t)∇x · v(x, t)J(φ−1(x, t), t)

= (
Dρ

Dt
+ ρ∇x · v)(x, t)J(φ−1(x, t), t)

For any admissible motion we should have J > 0, therefore we arrive at the Eulerian con-

servation of mass equation:

Dρ

Dt
+ ρ∇x · v = 0, ∀x ∈ Bt, t ≥ 0. (1.4)

1.1.2.2 Conservation of Linear Momentum

Similar as before the conservation of linear momentum is stated as

d

dt
momentum[Ωt] =

∫
∂Ωt

t(x, t)ds+

∫
Ωt

ρ(x, t)b(x, t)dx, ∀Ωt ⊆ Bt

where t(x, t) and b(x, t) stands for the traction and body force field respectively. The

traction field is determined by Cauchy stress t = σn where n is the outward unit normal.

Then by Divergence Theorem we have

RHS =

∫
∂Ωt

σnds+

∫
Ωt

ρbdx =

∫
Ωt

(∇x · σ + ρb)dx

Combined with

LHS =
d

dt

∫
Ωt

ρ(x, t)v(x, t)dx =
d

dt

∫
Ω0

R(X, t)V(X, t)J(X, t)dX

=
d

dt

∫
Ω0

R(X, 0)V(X, t)dX

=

∫
Ω0

R(X, 0)
∂

∂t
V(X, t)dX

=

∫
Ωt

ρ(x, t)
∂

∂t
v(x(t), t)dx

=

∫
Ωt

ρ
Dv

Dt
dx
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And again by Localization Theorem we get the Eulerian conservation of linear momentum:

ρ
Dv

Dt
= ∇x · σ + ρb, ∀x ∈ Bt, t ≥ 0. (1.5)

Going back to the integral forms above we have∫
Ω0

R(X, 0)
∂

∂t
V(X, t)dX

=

∫
∂Ωt

σ(x, t)n(x, t)ds+

∫
Ωt

ρ(x, t)b(x, t)dx

=

∫
∂Ω0

J(X, t)σ(φ(X, t), t)F−T (X, t)N(X)dX +

∫
Ω0

J(X, t)R(X, t)b(φ(X, t), t)dX

=

∫
∂Ω0

P(X, t)N(X)dX +

∫
Ω0

R(X, 0)bm(X, t)dX

=

∫
Ω0

(∇X ·P(X, t) +R(X, 0)bm(X, t))dX

where P = JσF−T is the first Piola-Kirchhoff stress, and bm stands for the material de-

scription of the spatial body force field b. Again by Localization Theorem we arrive at the

Lagrangian conservation of linear momentum:

R(X, 0)
∂2φ

∂t2
(X, t) = R(X, 0)

∂V

∂t
(X, t) = ∇X ·P(X, t)+R(X, 0)bm(X, t), ∀X ∈ B0, t ≥ 0.

(1.6)

1.1.2.3 First and Second Laws of Thermodynamics

The Lagrangian form of the laws of Thermodynamics are given below:( [GS08])

- (First Law of Thermodynamics) Energy Balance

Φ̇ = P : Ḟ−∇ ·Q +R0(X)rm(X, t) (1.7)

- (Second Law of Thermodynamics) Clausius-Duhem Inequality

Θη̇m ≥ R0rm −∇ ·Q + Θ−1(∇Θ ·Q) (1.8)

Where the dot symbol stands for the time derivative, Φ is the internal energy density per unit

volume, P is the first Piola-Kirchhoff stress, F is the deformation gradient, Q(X, t) is the
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material heat flux field defined through the Fourier-Stokes heat flux q(x, t) by Q = JF−1q

with J = det(F), R0(X) = R(X, 0) is the material density at rest configuration, rm is body

heating supply, Θ is the absolute temperature, and ηm is the entropy density per unit volume.

The free energy density is defined as

Ψ(X, t) = Φ(X, t)−Θ(X, t)ηm(X, t)

For thermoelastic solids we have the following assumptions:

- The functions Φ, Ψ and ηm can be represented as functions of F and Θ. Furthermore

we have
∂Φ

∂Θ
> 0,

∂ηm
∂Θ

> 0

for any F with det(F) > 0 and Θ > 0.

- The material heat flux vector Q is related to F and Θ by

Q = −K(F,Θ)∇Θ

where K is called the thermal conductivity function, and the gradient is with respect

to X.

These assumptions combined with the two laws yield:

Ψ̇ = Φ̇− Θ̇ηm −Θη̇m

= P : Ḟ + (R0rm −∇ ·Q)− Θ̇ηm −Θη̇m

≤ P : Ḟ + (Θη̇m −Θ−1(∇Θ ·Q))− Θ̇ηm −Θη̇m

= P : Ḟ + Θ−1(∇Θ ·K∇Θ)− Θ̇ηm.

Since Ψ = Ψ(F,Θ) we can write

Ψ̇ =
∂Ψ

∂F
: Ḟ +

∂Ψ

∂Θ
Θ̇.

Then the above equation becomes(
∂Ψ

∂F
−P

)
: Ḟ +

(
ηm +

∂Ψ

∂Θ

)
Θ̇−Θ−1(∇Θ ·K∇Θ) ≤ 0 (1.9)
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Since F, Θ and their derivatives are independent of each other, we must have P = ∂Ψ
∂F

,

ηm = −∂Ψ
∂Θ

, and K is positive semi-definite. Note that the first equation coincides with the

definition of the first Piola-Kirchhoff stress. In this work for simplicity we take q = −κ∇θ,

with a material heat conductivity constant κ > 0. With this formulation of q we have

Q = JF−1q = −κJF−1∇xθ = −κJF−1F−T∇XΘ.

So K = κJF−1F−T satisfies the positive semi-definite constraint.

We define the specific heat at constant volume α as

0 < α =
1

R0(X)

∂Φ

∂Θ
=

1

R0

(
∂Ψ

∂Θ
+ ηm + Θ

∂ηm
∂Θ

)

=
1

R0

Θ
∂ηm
∂Θ

= − 1

R0

Θ
∂2Ψ

∂Θ2
.

Note that then we need ∂2Ψ
∂Θ2 < 0.

In multiplicative plasticity theory the deformation gradient F is separated into the elastic

component FE and the plastic (or viscoplastic) part FP , so we have Ḟ = ḞEFP + FEḞP ,

which yields

ḞE = (Ḟ− FEḞP )(FP )−1

Now we view Ψ as a function of FE and Θ. Following the same steps as before we can derive

a similar inequality as Equation (1.9):(
∂Ψ

∂FE
(FP )−T −P

)
: Ḟ +

(
ηm +

∂Ψ

∂Θ

)
Θ̇

−Θ−1(∇Θ ·K∇Θ)− ∂Ψ

∂FE
(FP )−T (FE)T : ḞP ≤ 0.

Again we get P = ∂Ψ
∂FE

(FP )−T which matches the definition of the first Piola-Kirchhoff

stress, ηm = −∂Ψ
∂Θ

, and K is positive semi-definite. The last term stands for plastic energy

dissipation, and we need:

P(FE)T : ḞP ≥ 0.
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Going back to the energy balance equation, we can rewrite it as

0 = Φ̇− (Ψ̇ + Θ̇ηm + Θη̇m) (1.10)

= (P : Ḟ−∇ ·Q +R0rm)−
(
∂Ψ

∂F
: Ḟ +

∂Ψ

∂Θ
Θ̇ + Θ̇ηm + Θη̇m

)
= (P : Ḟ−∇ ·Q +R0rm)− (P : Ḟ− ηmΘ̇ + Θ̇ηm + Θη̇m)

= −∇ ·Q +R0rm −Θη̇m

= −∇ ·Q +R0rm −Θ

(
∂ηm
∂F

: Ḟ +
∂ηm
∂Θ

Θ̇

)
= ∇ · (K∇Θ) +R0rm + Θ

∂2Ψ

∂F∂Θ
: Ḟ−R0αΘ̇.

We can further derive the Eulerian form of the balance equation using similar methods as

before:

0 =

∫
Ω0

(
∇X · (K∇XΘ) +R0rm(X, t) + Θ

∂2Ψ

∂F∂Θ
: Ḟ−R0αΘ̇

)
dX

=

∫
Ωt

(
∇x · (κ∇xθ(x, t)) + ρ(x, t)r(x, t) + θ(x, t)

1

J

∂2ψ

∂F∂θ
: Ḟ− ραDθ

Dt

)
dx

The equation holds for any region of interest. Therefore by Localization Theorem and also

using
∂F

∂t
(X, t) =

∂

∂t

∂φ(X, t)

∂X
=
∂V(X, t)

∂X
=
∂v(x, t)

∂x

∂x

∂X
= ∇vF,

we get the Eulerian heat equation

ρα
Dθ

Dt
= ∇ · (κ∇θ) + ρr +

1

J
θ
∂2ψ

∂F∂θ
: ∇vF (1.11)

1.2 Material Point Method

The Material Point Method (MPM) views material deformation in both a Lagrangian and

an Eulerian fashion. The material body is represented by a collection of material particles

denoted p, which keeps track of mass mp, velocity vp, position xp and other physical at-

tributes. The governing equations are solved on a background Eulerian grid where all stress

based forces are computed. Therefore we need to transfer the material state to the Eulerian
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configuration to incorporate the effects of material forces; after the solve these effects are

transferred back to the material particles which then get updated in the usual Lagrangian

way.

Here we list the most basic steps in the MPM solver for each time step:

- Particle mass and momentum are transferred to grid nodes through interpolating func-

tions defined over grid nodes i, denoted Ni(x). Typically C1 continuity is required for

the interpolating functions to prevent cell-crossing instability. In this thesis quadratic

B splines are used:

N(x) =


3
4
− |x|2, 0 ≤ |x| < 1

2

1
2
(3

2
− |x|)2, 1

2
≤ |x| < 3

2

0, 3
2
≤ |x|

Denote wip = Ni(xp), the mass and linear momentum transfers are defined as

mi =
∑
p

mpwip

(mv)i =
∑
p

mpvpwip

⇒vi =
(mv)i
mi

=

∑
pmpwip∑

pmpvpwip

Note that these transfers preserve the total mass and linear momentum of all material

particles versus all grid nodes.

- Grid momentum is updated in a variational way from the potential energy in the

system. Chapter 2 discusses the difference in this step between standard particle-

based MPM and the mesh-based Lagrangian approach. Chapter 3 gives more detailed

derivation on the grid solve process.

- The motion of the grid is transferred back to particles to update their velocities and

perform the advection step. Similar to the first step, the interpolating functions are

used during the transfer, while still preserving total mass and linear momentum.
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- When plastic material behavior is expected, we adopt a multiplicative decomposition

of the deformation gradient F = FEFP , where FE is the elastic part and FP stands for

the plastic deformation. The range of admissible elastic response is defined through

a function y of the stress called the yield stress, with y ≤ 0 being the elastic region.

A return mapping procedure is implemented to determine the updated FE and FP so

that FE still represents admissible material dynamics. In later chapters we provide

more details on the choice of yield criteria and return mapping schemes.

Apart from the basic transfer schemes described above, various transfer methods have been

developed for different purposes. In this thesis two schemes are widely used, APIC ([JSS15])

and FLIP ([BR86], [BKR88]). The details of the transfers are given where they are used in

later chapters.
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CHAPTER 2

Simulation and Visualization of Ductile Fracture

2.1 Introduction

Ductile materials behave elastically until a yield stress condition is met, at which point they

start to deform plastically and eventually fail completely. Whether it be the distinctive pat-

terns exhibited while tearing a piece of fruit or twisted metal after a high-velocity impact,

the fracture and failure of ductile materials are ubiquitous and indispensable when creating

visually interesting virtual worlds for computer graphics applications. Indeed, some of the

earliest methods for simulating elasticity in computer graphics included treatment for tearing

and failure of materials [TF88]. O’Brien et al. [OBH02] demonstrated that using the Fi-

nite Element Method (FEM) with continual domain remeshing after fracture events allowed

for a wide range of ductile behaviors and incredibly detailed simulations. Since this pio-

neering approach, many others have used FEM and remeshing to achieve similar behaviors

[MG04, MBF04, WTG09, WRK10]. Particle methods based on Smoothed Particle Hydrody-

namics (SPH) [GBB09, CWX13] and Moving Least Squares (MLS) [PKA05, MKN04] have

also been used with impressive outcome, since their unstructured nature readily allows for

topological change. Procedural approaches have also achieved good results when computa-

tional cost is limited [MHH07, Cho14, JML16].

The Material Point Method (MPM) is another unstructured particle technique that naturally

resolves topological changes and fracture, and also accommodates elastoplastic phenomena

with ease. Furthermore, a key advantage of MPM is that the hybrid Lagrangian/Eulerian

nature of the method readily resolves collisions between fragments of material. These aspects
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Figure 2.1: Fracture montage. Representative scenes from some of our simulations. Top

left: a thin elastic sheet hit by a projectile. Top right: A mannequin walking through

thin sheets. Bottom left: breaking a zucchini. Bottom middle: twisting and breaking four

columns. Bottom right: twisting a cube.
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Figure 2.2: Braided columns. The braid is twisted and tightened until fracture occurs.

make MPM an ideal candidate for simulating fracture and failure of ductile materials. How-

ever, while MPM naturally allows for topological changes, they can be difficult to control.

Particles are connected in the domain when they are in the support of the same Eulerian

grid node interpolating function. Particles that do not interact with the same grid nodes in

this way are decoupled. This is advantageous in that topology change requires no special

treatment; however, fracture is therefore a numerical error that is not influenced by a mate-

rial property but rather by discretization-related parameters like particle sampling density

and Eulerian grid resolution.

Numerical fracture can be addressed by utilizing particle resampling techniques as in [YSB15]

or by using the Lagrangian energy technique of Jiang et al. [JSS15] in which a tetrahedron

mesh is used to compute deformation gradients. This treatment naturally couples meshed

objects with MPM-based materials, and also gives an automated treatment of self-collision

between meshed objects and other materials. However, in either the resampling or La-

grangian energy approaches, an additional model must be provided to allow for fracture.
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Figure 2.3: Braided stiff columns. Here the stiffness of the braid is increased.

A second issue hindering MPM adoption for ductile fracture is largely common to all particle-

based techniques: defining and rendering material boundary surfaces in a visually sharp man-

ner is difficult. While particle-based simulation techniques naturally allow for topological

change, they generally have a more vague notion of material boundaries that complicates the

process of rendering. FEM and mesh-based techniques require more intervention (remesh-

ing) to resolve topological change, however in the process material boundaries are sharp and

well defined. This is important for preserving the surface of objects created by users, and

for transferring textures as the material fails.

The most common techniques for visualizing particle-based simulation data define the bound-

ary of the particle domain as the zero isocontour of a level set function, or as a threshold

value of a density function. This goes back to at least Blinn [Bli82]. Many other authors

have provided improvements on these techniques over the years, including sharper surface

resolution, reduction of noise and temporal coherence of surfaces, resolution of anisotropic

features, and many more [MCG03, ZB05, SSP07, APK07, YT13, ATW13, MCZ07, Mus14].

However, these types of techniques are much more appropriate for fluid simulations, and
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Figure 2.4: Mesh visualization comparison. A cube with 8000 particles is twisted to

fracture in the simulation. We render the result with Houdini particle fluid surface (left)

and our mesh visualization (right).

cannot support initialization from a high-resolution textured input surface mesh without

complicated texture transfer at each frame, etc.

Surface tracking techniques can provide the desired preservation of sharp features and sur-

face details. These techniques have been used with great effect in simulations of fluid

[BB09, DBG14, M09, WTG10, YWT12] and viscoelastic materials [WTG09, DGP17]. These

approaches are extremely powerful, but computationally expensive. However, much of the

implementation and computational overhead is associated with material merging. Much

simpler techniques can be used if only splitting is required. Fracture of ductile materials

typically only involves failure without cohesive merging, so fully-general surface tracking

techniques are not necessary.

Pre-scoring-based surfacing approaches are generally more efficient than surface tracking,

and can be used when merging is not needed. These techniques predefine the maximally

split configuration of the material, and only separation between components can occur. For

example, the virtual node algorithm of Molino et al. [MBF04] is a pre-scoring technique

where each vertex in a tetrahedron mesh represents a portion of the material in the elements

in its one ring. Choi [Cho14] use a pre-scoring approach for visualizing shape-matching-

based ductile fracture where each node is assigned material as a union of elements, gathered
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Figure 2.5: Hydraulic press. The orange is simulated with a meshed hollow sphere filled

with guts made by MPM particles.

via K-means, from a tetrahedron mesh. Chen et al. [CZZ18] assign a single tetrahedron

to each particle by initializing particles at the barycenters of an input tetrahedron mesh.

In these techniques, material separation is introduced when connectivity between adjacent

particle regions is severed. Crack surfaces are then defined as a subset of the boundary of

the maximally split configuration. Generally, pre-scoring techniques suffer from mesh-based

aliasing, since the crack paths must lie on the predefined maximally split configuration.

Fracture surfaces are usually much smoother than they will appear when the sampling bias

in the predefined maximally split configuration is imposed on the visualization.

We provide two options to remove the barriers preventing MPM adoption for ductile fracture

simulation in graphics applications. First, we provide an extension of the mesh based strategy

of Jiang et al. [JSS15] that removes numerical fracture and introduces failure through the

elastoplastic constitutive equations alone. Second, when traditional particle-based MPM

with numerical fracture suffices, we overcome limitations of existing surfacing strategies

with a pre-scoring approach. We note that our surfacing approach is a post-process that

can be implemented on data generated from standard MPM simulations. In summary, our

contributions include:

• An elastoplasticity and damage model for ductile fracture that works easily with ex-

isting MPM code bases.
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• A generalization of the Lagrangian energy approach of Jiang et al. [JSS15] for removing

numerical fracture with ductile materials.

• A novel particle surfacing technique that preserves input surface details like texture

and high-curvature regions, while removing mesh-based aliasing inherent in pre-scoring

surfacing strategies.

2.2 Previous Work

Here we discuss works from the computer graphics and computational physics literature re-

lated to simulation of ductile fracture and visualization of particle-based simulation data.

Following the seminal approach of O’Brien et al. [OBH02], many authors have used FEM

simulation of elastoplasticity with continual domain remeshing for ductile fracture. Müller

et al. [MG04] use warped stiffness with a Rankine condition on the principal stress to de-

fine per-tetrahedron element fracture planes. Pfaff et al. [PNJ14] use an adaptive mesh to

simulate tearing and cracking of thin sheets. Parker and O’Brien [PO09] use the separation

tensor from [OH99] but split along element boundaries rather than cutting elements for the

sake of efficiency. Wicke et al. [WRK10] dynamically remesh tetrahedron meshes to allow

for efficient simulation of behaviors ranging from purely elastic to extremely plastic with

fracture. Other remeshing approaches include [BWH07, WT08, WTG09, BDW13]. Wicke

et al. [WBG07, KMB08] developed interpolating functions for convex polyhedral elements to

allow for easy splitting of elements in fracture simulations. Gissler et al. [GBT07] introduce

a notion of constraint sets for fracture simulation. Koschier et al. [KBT17] use XFEM and

improve the mass matrix treatment by integrating over partially empty enriched elements.

Zhang et al. [ZZS06] use tetrahedron mesh-based FEM with elastoplasticity driven damage,

element splitting (at damage threshold), and molecular dynamics for debris simulation.

Pauly et al. [PKA05] use a mesh-free MLS approach to simulate elastoplastic ductile fracture
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Figure 2.6: Twist and pull. Four identical cubes of different resolution undergoing twisting

and pulling motions. From left to right: 60K, 17K, 8K, 4K particles.

with Heaviside-enriched interpolating functions, as in the XFEM approaches of Belytschko

[BCX03]. They create domain and crack boundary surfaces at render time using the Surfels

approach in [PKK03, WTG04]. Müller et al. [MKN04] use a similar approach. Steineman

et al. [SOG09] use visibility graphs to further improve the modification of MLS interpolat-

ing functions in the presence of splitting and merging defined by explicitly tracked failure

surfaces. Gerszewski et al. [GBB09] also compute the deformation gradient in a weighted

least squares sense.

Other notable ductile fracture techniques include the peridynamics approach of Chen et al.

[CZZ18]. Bußler et al. [BDP17] visualize crack surfaces in peridynamics particle data by

computing Delaunay tetrahedralizations that respect height ridges in the damage field. Choi

[Cho14] uses shape-matching to simulate procedural ductile fracture. Ohta et al. [OKN09]

use an adaptive regular lattice with shape matching-based elasticity to simulate ductile frac-

ture. Jones et al. [JML16] simulate ductile fracture using shape matching.

Various approaches for ductile fracture with MPM exist in the computational physics lit-

erature. Wretborn et al. [WAM17] simulate fracture with MPM by pre-scoring materials

into pieces held together by massless particle constraints. They resolve collisions between

fragments by using the MPM N-body approach of [HZM11]. Nairn et al. [Nai03, GN06]

developed the CRAMP MPM technique for simulating velocity and displacement disconti-
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Figure 2.7: Twist armadillo. An armadillo twisted to fracture.
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Figure 2.8: Projectile. Here we show shooting projectiles at ductile walls with 5.5K (or-

ange), 14K (yellow), 33K (blue), and 77K (red) particles.

nuities on the grid. Other MPM techniques utilize grid node duplication [DLC07], and then

resolve frictional contact on the duplicated Eulerian grid nodes.

Surfacing particle-based simulation data is a long-standing problem. Most approaches define

the boundary of the particle domain as the zero isocontour of a level set function or as a

threshold value of a density function [Bli82, DC98, MCG03, ZB05, APK07, SSP07, Mus14].

Yu and Turk developed an anisotropic approach to more accurately capture sharp features

[YT13]. Bhattacharya et al. [BGB15] fit signed distance functions to particle data by mini-

mizing a biharmonic thin shell energy over a surface constrained between interior and exte-

rior CSG surfaces, and support anisotropic capture of sharp features as in [YT13]. Williams

[Wil08] similarly solves the surfacing problem with a constrained minimization. Shen and

Shah [SS07] address temporal discontinuities by blending adjacent frames. Museth et al.

[MCZ07] incorporate a variety of post-processing techniques including temporal and spatial

anti-aliasing. Adams et al. [APK07] use a semi-Lagrangian contouring method similar to

that proposed by Bargteil et al. [BGO06]. Dagenais et al. [DGP17] improves and extends
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Figure 2.9: Stretch armadillo. An armadillo stretched to fracture.

surface tracking to retain surface details. Mercier et al. [MBT15] develop a post-process

approach for surfacing particle-based fluid simulation data. They create an up-res particle

surface using a generalization of the approach in [Wil08] and then apply a surface-only La-

grangian wave simulation to provide realistic, detailed motion.

Pre-scoring bodies into precomputed pieces is useful for simulation and visualization. Müller

et al. [MCK13] decompose objects into convex pieces and generate fracture patterns of space

using Voronoi diagrams. CSG operations are used to resolve the initial convex decomposi-

tion with the fracture patterns. Su et al. [SSF09] also fracture all of space to generate rigid

body fragment pieces for real time simulation of brittle fracture. Liu et al. [LHL11] also

pre-score the material along Voronoi boundaries to add user control over fracture patterns.

Schvartzman and Otaduy [SO14] use Voronoi-based pre-scoring of fracture boundaries with

rigid body simulation to simulate brittle fracture. Zheng and James [ZJ10] use the strain

energy density to adapt Voronoi fracture regions. Raghavachary [Rag02] defines fragments

in polygon meshes by splitting into Voronoi regions.

Marching cubes [LC87] is often used to create a triangle mesh for an isocontour of a scalar
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function fitted to the particles. Akinci et al. [AIA12] show this can be done efficiently and

in parallel in a narrow band of the isocontour surface. Benber et al. [AAI12] improve this

technique by applying surface decimation and subdivision algorithms. The decimation step

alleviates surface bumpiness very efficiently and reduces the number of triangles in flat re-

gions. Later, the subdivision step ensures that the non-smooth regions are smoothed. This

allows for performance gains since lower resolution marching cubes grids can be used. Zhang

et al. [ZLL] develop an adaptive surfacing approach using octrees and graph cuts. van der

Laan et al. [LGS09] skip the marching cubes based polyhedralization for real-time efficiency

and instead create surfaces based on screen-space depth. Muller et al. [MSD07] and Xiao

et al. [XZY18] also work in screen space for efficiency. Rosenberg and Birdwell [RB08] op-

timized Marching Cubes specifically for surfacing particle surfaces.

2.3 Mathematical Background

2.3.1 Elasto-Plasticity

We use the same multiplicative decomposition as in [KGP16],

F = FEFP (2.1)

to capture the plastic yielding and fracturing. The plastic deformation gradient FP represents

the permanently damaged state of the material; no force is exerted to resist deformations

represented in this part. The elastic deformation gradient FE, on the other hand, measures

the deformation the material is still capable of defying. In the following sessions, we will

describe the elastic potential energy and yield surface, which are defined in terms of FE and

FP , respectively. We will also provide the projection maps and softening rule that constitute

the interaction of these two.
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Figure 2.10: Twist. Twisting cubes with different von Mises yield surfaces. We use τC = E,

(blue), 0.7E (cyan), and 0.5E, for Young’s modulus E. Blue: τC = E. Cyan: τC = 0.7E.

Purple: τC = 0.5E.
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2.3.2 Elastic Constitutive Model

We use the isotropic hyperelastic potential energy density of [KGP16]. This model is

quadratic in elastic Hencky strain εE = 1
2

ln(FE(FE)T ),

ψ(FE) = µε : ε +
λ

2
tr2(ε) = µ

3∑
i=1

ln(σEi )2 +
λ

2

(
3∑
i=1

ln(σEi )

)2

(2.2)

where FE = UEΣE(VE)T is the singular value decomposition of FE and σEi denote the

entries in ΣE. Here µ and λ are the Lamé coefficients which control the amount of resistance

to deformation and volume change. The Cauchy stress is defined in terms of the elastic

potential as

σ =
1

det(F)

∂ψ

∂FE
(FE)T (2.3)

∂ψ

∂FE
= UE(ΣE)−1

(
2µ ln(ΣE) + λ ln(Σ)

)
(VE)T (2.4)

This choice of potential energy is primarily for the sake of simplifying the return mapping

process (see Section 2.8.1), as discussed in [KGP16, JGT17].

2.3.3 Plasticity

Ductile materials behave elastically until a critical stress is reached, at which point deforma-

tion becomes permanent and the material achieves a new local rest state. We express this

notion of critical stress in terms of a yield surface in stress space defined implicitly as y(σ) = 0

using a yield function y. When y(σ) < 0, the critical stress has not been achieved and the

material behaves elastically. When y(σ) = 0, the elastic limit is reached and the plastic

deformation defined via FP becomes non-trivial. Mathematically, we can view the dynamics

of FP as being chosen to satisfy the stress constraint y(σ) = 0 through its dependence on FE.

Although the Cauchy stress σ is more physically intuitive, the Kirchhoff stress τ = det(F)σ

is often more convenient when working with plasticity. It is particularly convenient for defin-

ing the plastic deformation in a manner that is consistent with the second law of thermo-

dynamics and when enforcing the yield condition discretely during time stepping, a process
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Figure 2.11: Return mappings. Left: Rankine yield surface and its return mapping.

Right: von Mises yield surface and its return mapping.

which is typically referred to as the return mapping (see Section 2.8.1 for details). Hence-

forth, we will assume the yield surface is defined in terms of the Kirchhoff stress y(τ ).

2.3.3.1 Yield Surface

We use two different yield surfaces to model different fracture modes. The Rankine yield

surface [And17] is given by

y(τ ) = max
‖u‖=‖v‖=1

uTτv − τC ≤ 0, (2.5)

where τC is a scalar parameter that represents the maximum allowed tensile strength, since

the expression max‖u‖=‖v‖=1 uTτv measures the tensile stress among all directions and cor-

responds to the largest eigenvalue of τ . Constraining the maximal tension in all directions

enables the material to go through mode I yielding, where permanent deformation is induced

in response to local tension.
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The von Mises yield surface given by

y(τ ) = ‖τ − tr(τ )I‖F − τC ≤ 0 (2.6)

provides plastic response to mode II and mode III shearing deformations by constraining the

deviatoric (shear) stress; here ‖A‖F =
√

A : A denotes the Frobenius norm. By combining

the two yield surfaces or using them independently, we can simulate a wide range of fractur-

ing and plastic materials.

In practice, the yield condition y(τ ) ≤ 0 is enforced per time step. In this process, the

trial strain (ε̃E) is mapped from a state whose corresponding stress violates the condition

to one whose corresponding stress is on the boundary of the yield surface (εE,n+1) in a pro-

cess referred to as the return mapping. We illustrate the different yield surfaces and the

associative direction for return mappings in Figure 2.11. We provide detailed derivation in

Section 2.8.1.

2.3.3.2 Softening and Damage

As the material undergoes plastic deformation, we decrease τC to shrink the yield surface

towards the origin. This limits the strength of the material as smaller and smaller stresses

are admissible. For each projection ε̃E → εE,n+1 in the return mapping, we decrease τC by

θ‖ε− proj(ε)‖F , where θ > 0 is a material constant that defines the rate of softening.When

τC reaches zero, we model the material as completely damaged and set the Lamé coefficients

to zero.

2.4 Numerical Method

We use MPM to discretize the governing equations and cover both standard particle-based

MPM as in [SCS94, SSC13] as well as the mesh-based Lagrangian energy techniques used to

prevent numerical fracture [JSS15]. In the Lagrangian energy case, we modify the approach
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of Jiang et al. [JSS15] to include the effects of plasticity and damage.

In MPM, the discrete state consists of a collection of particles that partition the domain

based on initial volumes V 0
p , with time tn positions xnp and with masses mp computed from

the initial mass density as ρ(x0
p, t

0)V 0
p and linear and affine time velocities vnp , Cn

p used for

APIC particle/grid transfers [JSS15]. In the case of traditional particle-based MPM, each

particle additionally stores the elastic portion of the deformation gradient FE,n
p and yield

surface size τCp. In the case of mesh-based MPM, we assume there additionally exists a

tetrahedron mesh connecting the particles xnp . We use e to denote elements in the mesh and

store FE,n
e and τCE per tetrahedron element, rather than per particle. Furthermore, in the

mesh-based case, we must also store the plastic part of the deformation gradient FP,n
e .

During each MPM time step, material states are transferred from particles to grid nodes, on

which the governing equations are solved numerically. The discretization is done differently

in the cases of standard particle-based MPM versus the mesh-based approach. The differ-

ence lies in how the deformation gradient is computed. In the case of standard particle-based

MPM, the deformation gradient is stored per particle and is updated using an updated La-

grangian view. With this assumption the deformation gradient is computed as the product

of the time tn deformation gradient Fn
p and the deformation of the grid (evaluated at the

particle) over the time step F̂n+1
p = (I + ∆t

∑
i v

n+1
i ∇wnip) where ∇wnip = ∂N

∂x
(xnp − xi) is the

derivative of the grid interpolating functions.

In the case of mesh-based elasticity, the deformation gradient is computed using mesh con-

nectivity as in standard FEM [SB12, JSS15] Fn+1
e =

∑
p xn+1

p ∇Ñp(Xe) where Ñp(X) is the

piecewise linear interpolating function associated with particle p evaluated at the tetrahedron
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Figure 2.12: Mesh cutting. 1: Initial simplex mesh (Delaunay or quality mesh generated

for Lagrangian simulation). 2: Particle core partitioning. 3: Identify failed edges (marked

red). 4: The corresponding partially split mesh to the set of failed edges in 3. 5: A different

set of failed edges (marked red). 6: The corresponding split mesh to the set of failed edges

in 5.
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barycenter in the initial configuration of the mesh. We summarize this below as

mn
i =

∑
p

wnipmp (2.7)

vni =
1

mn
i

∑
p

wnipmp(v
n
p + Cn

p (xi − xnp )) (2.8)

vn+1
i = vni +

∆t

mn
i

fi + ∆tg (2.9)

xn+1
p = xnp + ∆t

∑
i

vn+1
i wnip (2.10)

vn+1
p =

∑
i

vn+1
i wnip (2.11)

C̃n+1
p =

12

∆x2(b+ 1)

∑
i

wnipv
n+1
i ⊗ (xi − xnp ) (2.12)

Cn+1
p = (1− ν) C̃n+1

p +
ν

2

(
C̃n+1
p − (C̃n+1

p )T
)

(2.13)

F̃E
e =

(∑
p

xn+1
p ∇Ñp(Xe)

)
(FP,n

e )−1 (2.14)

F̃E
p = (I + ∆t

∑
i

vn+1
i ∇wnip)FE,n

p (2.15)

FE,n+1
q = returnMap(F̃E

q ). (2.16)

Here the particle-to-grid transfers consist of Equations (2.7)-(2.8); the grid-based momen-

tum update step consists of Equations (2.9)-(2.11); and the interpolation from grid to back

particles is implemented with Equations (2.11)-(2.13). We use APIC transfers [JSS15] for

Equations (2.8) and (2.12) as well as RPIC damping of [JGT17] in Equation (2.13) where ν

controls the amount of damping. In Equation (2.9), α = 0 corresponds to a symplectic Euler

update and α = 1 corresponds to backward Euler. Equations (2.14) and (2.15) represent the

deformation gradient update in the cases of mesh-based and standard MPM respectively.

Equation (2.16) projects the elastic state to satisfy the plasticity constraints. The equation

is indexed by q to indicate that it is either e for mesh-based or p for particle-based MPM.

In Equation (2.9), fi is the force on grid node i which is computed as the variation of the

total potential with respect to grid nodes moving as xi + ∆tvn+α
i , where α = 0 corresponds
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to symplectic Euler and α = 1 corresponds to backward Euler time stepping. The value

varies based on the choice of mesh- or particle-based MPM as

fi =


∑

pw
n
ipfp(x

n+α) + ∆tg,

−
∑

p
∂ψ
∂FE

(F̃E
p (x̃n+α))(FE,n

p )T∇wnipV 0
P + ∆tg

(2.17)

respectively, where xn+α ∈ R2nP is the vector consisting of all particle time tn+α positions

xn+α
p according to Equation (2.10). In the case of standard particle MPM, x̃n+α is the vector

of all Eulerian grid node positions, moved according to

xn+α
i =

 xi, α = 0

xi + ∆tvn+1
i , α = 1

(2.18)

In the case of mesh-based MPM, the particle force fp in Equation (2.17) is related to the

variation of the potential as estimated over the tetrahedron mesh, rather than the particles

fp =
∑
e

∂ψ

∂FE
(F̃E

e (xn+α))∇Ñ(Xe) (2.19)

where F̃E
e (xn+α) is given by Equation (2.15).

2.5 Material Surface Definition and Visualization

We provide a novel pre-scoring strategy for visualization of material boundary and crack

surfaces as a post-process for ductile fracture simulations. Our approach can easily be used

for most standalone MPM solvers. Our technique works with either traditional particle-based

MPM, or Lagrangian energy mesh-based MPM [JSS15]. In the case of mesh-based MPM,

we assume the user provides a tetrahedron mesh of quality suitable for FEM simulation

of elasticity. In the case of traditional particle-based MPM, we assume the user provides

interior points that are sampled with a Poisson disc, or similar initial random spacing. We

also assume that the user provides a triangulation of the boundary of the domain from which

the internal particles are sampled. The vertices of the boundary (triangle) mesh and the
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Figure 2.13: Extrapolation. 1. Initial particle core partition. 2. Velocity field defined

on grid. 3. Particle cores positioned and oriented by local rigid body transform. 4. Sewing

connected cells. 5. Final deformed fractured mesh.
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randomly sampled interior particles are treated as MPM particles for simulation. If the

user does not provide a triangle mesh, we can generate one by surfacing the interior particles

using an existing technique like [YT13]. We assume that most users will define the boundary

of the initial domain for ductile materials using a triangle mesh, typically with texture etc.

and our approach is designed to preserve those details throughout the simulation. Once in

possession of the boundary triangle mesh and the interior particles, we create a Delaunay

tetrahedralization connecting the interior and boundary points and preserving triangles on

the original boundary.

2.5.1 Mesh Topology Visualization

With our initialization strategy, in either the traditional particle-based MPM or Lagrangian

energy mesh-based MPM cases, we can assume we have a tetrahedralization of the particles

used in the MPM calculation. The mesh is used to define a particle-wise partition of the

material domain. Each tetrahedron in the mesh is split into four cuboids, one for each of

its particles. To create the particle-wise partitioning, each particle in the MPM calculation

receives a cuboid from each of the tetrahedron elements it belongs to. We note that this is

essentially the same as the per-particle cores of material used in the virtual node approach

of Molino et al. [MBF04]. We adopt this name and refer to the particle’s union of cuboids

as its core of the domain. With this convention, each particle is responsible for updating its

core over the course of the simulation.

The boundary of each particle core initially shares faces with cores of particles that it is

connected to in the tetrahedron mesh. We define material failure on a per-initial-tetrahedron-

mesh-edge basis. That is, common faces on cores of material associated with particles initially

connected in the tetrahedron mesh are treated as identical until material failure occurs. To

define material failure, we label core faces between particles connected along an edge in the

tetrahedron mesh as broken. We use a simple union-find data structure to manage the topo-

logical connectivity and create a hexahedron mesh that respects the failed core faces. To do
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this we start with a mesh that is completely broken into the maximally split configuration

and merge unbroken faces using the union-find data structure. See Figure 2.12 for details.

One could use an element wise splitting strategy where core faces within a damaged element

are broken, but we found that this gave inferior results to this edge-wise criterion.

We manage all topological aspects of the material and crack surface visualization with this

simple strategy. Next we discuss our criteria for deciding when an edge (and its associated

core faces) are broken as well as the geometric aspects of the crack surface evolution.

2.5.2 Topology Evolution

We use a history-based maximal stretching criteria to define broken edges. We define the

maximum relative stretching of an edge for times before a given time t as

ζt = max
s<t

‖φ(X1, t)− φ(X2, t)‖
‖X1 −X2‖

. (2.20)

When this value is larger than a threshold, we consider the cores associated with X1 and X2

as separated from each other and break the edge connecting them. Note that if any edge is

broken at a given time t̂ it will be broken for all times t > t̂.

2.5.3 Mesh Geometry Visualization: Extrapolation

Each particle is responsible for updating the configuration of its core. We do this with a

simple extrapolation strategy. We use a rigid transform local to each particle to extrapolate

the motion of the particle to the rest of its core. For each core vertex ynp associated with a

particle center xnp , we compute the time tn position as

ynp = Rn
p (y0

p − x0
p) + xnp , (2.21)

where Rn
p is the rotation associated with the simulated particle p at time tn. See Figure 2.13

for details.
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1                                    2                                    3                                    4                                  5

Figure 2.14: Crack boundary curve smoothing. From left to right: 1: Identify broken

edges (red dashed line). 2: Identify boundary curve of the crack surface (purple solid line).

3-4: Smooth crack boundary curve while remaining on the original boundary surface: triangle

centers move to average of neighbors, edge centers move to the intersection of its associated

edge and the path joined by its neighbors. 5: Crack boundary curve after one iteration of

smoothing.

We use the MPM grid velocity to update the local rotation matrix on each particle

Zn+1
p =

(
I +

∑
i

ṽni∇ωnip

)
Rn
p , (2.22)

Rn+1
p Sn+1

p = Zn+1
p . (2.23)

where the polar decomposition (Rn+1
p )TRn+1

p = I, Sn+1
p = (Sn+1

p )T is used to enforce orthog-

onality. This creates a rigid core translating and rotating with the particle. However, when

the vertices on the boundary of the core are associated with multiple cores, we take the

average of the extrapolated positions given by each core. This introduces visually realistic

deformation when material is not fully failed, while reverting to translation and rotation in

the event of a fully separated core.

The accuracy of the update in Equation (2.22) is affected by the particle sampling den-

sity. If the grid resolution is too high relative to the particle density, the update can be

noisy. For traditional particle-based MPM this is not an issue, however for Lagrangian en-

ergy MPM we found it advantageous to add traditional MPM particles in each element to

help resolve update in Equation (2.22). These particles are not used to compute forces until
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Figure 2.15: Smoothing comparison. Left: original crack surface (yellow), crack surface

smoothed with 2 iterations (green), crack surface smoothed with 20 iterations (cyan). Right:

we sample extra particles in each quadrilateral/cuboid to help reduce noise.

their parent elements fail. In the event of failure, they function as standard elastic MPM

particles. See Figure 2.15 on the right for details.

2.5.4 Mesh Geometry Visualization: Crack Smoothing

There is considerable flexibility when defining the initial geometry of each particle core. The

geometry of the cuboid is most naturally chosen by setting its vertices as the edge, face

and tetrahedron centers. However, these points may be chosen anywhere in their respective

submanifolds. The only points on the cuboids without flexibility are those corresponding to

MPM particles (tetrahedron mesh vertices). We take advantage of this flexibility to remove
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sampling based biasing in the crack paths. Note that the flexibility is only in the initial

geometry of the cuboids. Once set, they must always evolve according to the per-particle

extrapolation in Section 2.5.3.

A limitation of our pre-scoring visualization approach is that all possible crack paths are

determined from the initial particle partitioning of the domain. This will lead to sampling

bias of the crack surface in general. This tends to make the crack surfaces appear more

jaggy when initial points are randomly sampled; while the structure is imposed on the crack

paths in the case of structured initial points. In order to remove initial sampling bias, we

iteratively smooth the crack surface in the initial configuration. Smoothing the surface tends

to remove sampling bias as is usually visible through regions of locally high curvature. Since

our visualization technique is a post-process, we can assume that we know the topology of

the crack surface at the final time from the condition in Section 2.5.2. We can therefore

smooth the entire surface in the initial configuration, as required.

The first step of our approach involves smoothing the intersection of the initial material

boundary surface and the crack surface. Care must be taken in this step to ensure that the

boundary crack curves remain on the initial boundary during the smoothing process. See

Figure 2.14 for details. Next, we smooth the crack surface interior by assigning each vertex

to the average of its neighbors while the curve processed in the first step remains unchanged.

We do this in a Gauss-Seidel fashion. Our approach quickly removes high-frequency noise

while preserving the general shape of the crack pattern.

2.6 Results

We demonstrate our ductile fracture simulation and surface visualization techniques with

a variety of simulations exhibiting a wide range of representative behaviors. We list our
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Figure 2.16: Voronoi versus Delaunay. Given a point cloud and a boundary surface,

its Voronoi diagram could be ill-posed where interior cell intersects the boundary. If we

take the dual of the Voronoi diagram, its Delaunay triangulation, then we can construct the

degenerated Voronoi region without interior cell contacting the boundary.
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Figure 2.17: Pull comparison. We illustrate our treatment of numerical fracture with

three simulations using the same particles. The red cube and blue cubes are simulated using

traditional particle-based MPM with fine grid resolution (approximately 1 particle per grid

cell) and coarse grid resolution (approximately 6 particles per grid cell) respectively. The

green cube is simulated with our Lagrangian approach and fine grid resolution. Red: particle

MPM with fine grid. Blue: particle MPM with coarse grid, Green: Lagrangian MPM with

fine grid. Lagrangian isn’t affected by numerical fracture.

computational performance and simulation details in Table 3.1. We note that in many of

our examples, remarkably detailed fracture patterns are produced with comparatively low

resolutions. This is advantageous because surfacing limitations often require simulations

with artificially high resolution in many MPM applications. Our results were run on an Intel

Xeon E5-2687W v4 with 48 threads. Time stepping was adaptively chosen according to the

CFL condition, i.e. ∆t was set so no particle travels more than a portion of a grid cell in each

time step. For particle-based MPM, the grid resolution was chosen so that there are initially

approximately six particles per grid cell. For Lagrangian energy MPM, the grid resolution

reflects the tetrahedron mesh resolution, i.e. grid ∆x was chosen roughly the same as the

average edge length of the tetrahedron mesh. In our examples, we used TetWild to generate

the tetrahedron mesh for Lagrangian MPM [HZG18].
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Figure 2.18: Zucchini. We break a zucchini in half and show the sharp crack surface.

2.6.1 Capturing Different Fracture Modes

We test our method with fracture simulations in which excessive tension or shear force is

applied. In Figure 2.17, we simulate the process of pulling on a cube and demonstrate

how Lagrangian MPM prevents numerical fracture caused by excessive deformation. In

Figure 2.6, we twist and pull a cube until the shearing forces cause material failure and the

material becomes disconnected. In Figure 2.7, we pull the 4 limbs of the armadillo until they

break and observe how the fracture introduces momentum to the torso. In Figure 2.10, we

added the von Mises plasticity model to the particles to capture more shear-induced plastic

deformation.

2.6.2 Texturing Objects

Our mesh visualization technique has the advantage that it naturally accommodates textur-

ing based on an input mesh. E.g. all particles from the initial mesh are in the cut mesh and
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Figure 2.19: Mannequin. A mannequin walking through and breaking a ductile thin sheet.
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Figure 2.20: Twist comparison. We compare the same twisting cube simulation with

different particle count and grid size. The sims with smaller grid dx to particle count ratio

experience more fracture than the ones with larger ratio in the same frame.

it is trivial to obtain a consistent vertex ordering based on the initial mesh for simplified

texturing. In Figure 2.18, we simulated a zucchini being broken in half and demonstrated

that its detailed texture is preserved. In Figure 2.19, we textured a ductile thin sheet with

SCA logos broken by the walking mannequin. In Figure 2.5, we textured the ductile sphere

and created convincing details in the fracture scene.
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2.6.3 Relaxed Resolution Requirements

In Figure 2.4, we simulated twisting of a cube with 8,000 particles. We compared two different

renders: conventional particle fluid surface reconstruction and our approach. Our result

captures significantly more detail and does not suffer from reconnection due to proximity.

We also provide similar resolution comparison in Figure 2.6, and Figure 2.8. The rendered

results still look sensible even with comparatively low resolution with our meshing technique.

2.7 Discussion and Limitations

Many existing FEM approaches for simulating ductile materials rely on the creation of a

sufficiently high quality tetrahedron mesh to be used in the simulation. In the case of

traditional particle based MPM, our mesh quality demands are practically non-existent.

Indeed we simply use Delaunay tetrahedralization. In the case of Lagrangian mesh-based

MPM our approach requires a mesh with the same quality constraints as traditional FEM. In

either case, the MPM conception of our approach automatically resolves self-collision allowing

us to simulate ductile fracture with comparably low implementation and computational

complexity. Our approach does have a number of clear limitations. First, crack patterns

are affected by particle sampling density/tetrahedron mesh topology and grid resolution, see

Figure 2.20. Also, choosing appropriate parameters for edge splitting thresholds and crack

surface smoothing iteration counts can vary from example to example.
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Sim Post-process Res

Pull - MPM (Fig. 2.17 red and blue) 0.6 0.5 8K

Pull - Lagrangian (Fig. 2.17 green) 0.6 0.5 8K

Projectile - 77K (Fig. 2.8 red) 2 5 77K

Projectile - 33K (Fig. 2.8 blue) 0.9 2 33K

Projectile - 14K (Fig. 2.8 yellow) 0.4 0.7 14K

Projectile - 5.5K (Fig. 2.8 orange) 0.2 0.3 5.5K

Twist - 60K (Fig. 2.6 blue) 11 5 60K

Twist - 17K (Fig. 2.6 purple) 4 1 17K

Twist - 8K (Fig. 2.6 green) 2 0.4 8K

Twist - 4K (Fig. 2.6 red) 2 0.2 4K

Twist von Mises (Fig. ??) 11 4 60K

Pulling with angle - 60K (Fig. 2.6 blue) 11 5 60K

Pulling with angle - 17K (Fig. 2.6 purple) 8 1 17K

Pulling with angle - 8K (Fig. 2.6 green) 8 0.4 8K

Pulling with angle - 4K (Fig. 2.6 red) 5 0.2 4K

Braiding Columns (see supplementary video) 2 3 50K

Braiding Columns (Fig. 2.2 and Fig. 2.3) 35 16 200K

Crushing Orange (Fig. 2.5) 15 8 130K

Zucchini (Fig. 2.18) 16 13 207K

Stretching Armadillo (Fig. 2.9) 49 27 299K

Tearing Armadillo (Fig. 2.7) 48 26 299K

Mannequin (Fig. 2.19) 50 5 933K

Table 2.1: Our simulations and post-processes were run with 48 threads and 128 GB of

RAM. Simulation and post-process time are measured in averaged seconds per frame, and

resolution is measured by particle count.
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2.8 Appendix

2.8.1 Return Mapping

A trial state of deformation F̃E is computed, assuming no plastic flow from time tn to

tn+1. With this assumption, the plastic deformation does not change over the time step,

so FP,n+1 = FP,n, and FE,n+1 = F̃E. However, if the yield condition is violated when τ is

computed from the trial deformation F̃E, then F̃E must be modified accordingly to satisfy

the constraint. This process is often referred to as the return mapping: F̃E → FE,n+1. There

are infinitely many ways that this can be done. We use associative plastic flow since it is

straightforward with our choice of hyperelastic potential, and guarantees no violation of the

second law of thermodynamics.

Associativity requires that the projection of the stress be done in a direction equal to the

elasticity tensor C = 2µI + λI ⊗ I times the normal to the yield surface ∂y
∂τ

. Here C is a

fourth-order tensor, I the fourth-order identity tensor, and I the second-order identity ten-

sor. This process can be described succinctly in terms of the trial and project elastic Hencky

strain as

ε̃E − εE,n+1 = δ
∂y

∂τ
(C : εE,n+1), (2.24)

where ε̃E = 1
2

ln(F̃E(F̃E)T ) is the trial elastic Hencky strain, εE,n+1 = 1
2

ln(FE,n+1(FE,n+1)T )

is the projected elastic Hencky strain, C : εE,n+1 = τ = λtr(εE,n+1)I + 2µεE,n+1 is the elas-

ticity tensor, and δ > 0 is a Lagrange multiplier chosen so that εE,n+1 is on the yield surface.

Due to our assumption of isotropy, the constraint in Equation (2.24) can be satisfied in

terms of the singular values of the elastic deformation gradient. Furthermore, the singular

vectors of the trial elastic strain do not change in the return mapping:

FE,n+1 = UEΣE,n+1(VE)T , F̃E = UEΣ̃
E

(VE)T . (2.25)
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With this convention, the trial and projected Hencky strains and Kirchhoff stresses satisfy

ε̃E = UE ln Σ̃
E

(UE)T (2.26)

εE,n+1 = UE ln ΣE,n+1(UE)T (2.27)

and

τ̃E = UE(λtr(ln(Σ̃
E

))I + 2µ ln(Σ̃
E

))(UE)T (2.28)

τE,n+1 = UE(λtr(ln(ΣE,n+1))I + 2µ ln(ΣE,n+1))(UE)T , (2.29)

respectively.

The return mapping is completed as an operation on the eigenvalues ε̃E. For simplicity

of notation, we henceforth denote the eigenvalues of ε̃E and τ̃E by ε̂ and τ̂ = λ(1 · ε̂)1 + 2µε̂

respectively, where 1 is the vector of all ones. Furthermore, we refer to the eigenvalues of the

projected εE,n+1 and τE,n+1 as proj(ε̂) and proj(τ̂ ) respectively. The process of satisfying

Equation (2.24) is, in the case of the Rankine yield condition,

• If λ1 · ε̂ + 2µε1 ≤ τC , no projection, proj(ε̂) = ε̂,

• If (2µ+ λ)ε2 + λ(1 · ε̂− ε1) ≤ τC < λ1 · ε̂ + 2µε1, proj(ε̂) = ( τC−λ(1·ε̂−ε1)
2µ+λ

, ε2, ε3),

• If (2µ+3λ)ε3 ≤ τC < (2µ+λ)ε2+λ(1·ε̂−ε1), proj(ε̂) = ( τC−λ(1·ε̂−ε1−ε2)
2µ+2λ

, τC−λ(1·ε̂−ε1−ε2)
2µ+2λ

, ε3),

• If τC < (2µ+ 3λ)ε3, proj(ε̂) = τC
2µ+3λ

1.

In the case of the von Mises yield condition, the projection is

• If |τ̂ − 1 · τ̂1| ≤ τC , no projection, proj(ε̂) = ε̂,

• If |τ̂ −1 · τ̂1| > τC , p = (τ̂ ·1)1
3
, d = τ̂ −p, proj(τ̂ ) = p+ τC

d
|d| , proj(ε̂) = Ĉ−1proj(τ̂ )

where

Ĉ =


2µ+ λ λ λ

λ 2µ+ λ λ

λ λ 2µ+ λ

 . (2.30)
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After the projection has been done, the singular values of the time tn+1 elastic deformation

gradient are computed from ΣE,n+1 = exp(proj(ε̂)), which are used to construct the defor-

mation gradient as in Equation (2.25). Lastly, the time tn+1 plastic deformation gradient is

computed from FP,n+1 = (FE,n+1)−1Fn+1.
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CHAPTER 3

Thermomechanical Simulation of Baking and Cooking

3.1 Introduction

Whether it is bread rising in the oven, cookies oozing with melting chocolate chips, or

a pancake sizzling in a pan, baking and cooking are integral parts of our everyday lives.

It is therefore important and yet challenging to model these phenomena accurately when

creating compelling virtual scenes for computer graphics applications. Surprisingly, given

our everyday familiarity, these processes involve a wide range of complex physical phenom-

ena including heat and mass transfer [NSG14, BT02], viscous and elastic rheology [FF12],

dynamics of porous mixtures [DLH10, SKI13] and many more. We develop a model and

numerical methods that can capture some of the most characteristic visual aspects of the

baking or general cooking process, such as melting, dehydrating, rising, and gelatinization.

Furthermore, our approach allows for realistic simulation of user interactions like breaking

and folding of the materials at various stages in the cooking process.

We propose a porous thermo-viscoelastoplastic mixture model. Melting effects are captured

by a temperature-based change in viscoelastoplastic constitutive laws. During the cooking

process water diffuses through the surface of the material according to Fick’s law. This allows

for effects such as wrinkling and curling of dehydrated fruit, as well as cracking of the top

of baked goods [TS98]. Leavening agents are often a predominant source of rising in baked

goods, and we focus on the effects of chemical leaveners like baking powder and baking soda.

With these agents, carbon dioxide (CO2) is created through a chemical reaction, which then

expands under heat to help the dough to rise [NSG14, ZD06]; this reaction is activated at
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Figure 3.1: Baking montage. Representative scenes from some of our simulations. Top

left: Drying apple slices on a rack. Bottom left: Pouring pancake batter into a pan.

Center: tearing apart a loaf of bread. Top right: baking cookies with different amount

of leavening agent and under different temperatures. Bottom right: baking bread with

different/no slits.

the critical temperature, peaks as temperature rises and finally gets deactivated when it goes

beyond a threshold. Our model keeps track of the CO2 creation process to capture the rising

effect in baking. At the final stage of the baking process, flour gelatinization takes place

and the baked goods become much more elastic and less viscous than the initial dough or

batter [VLT09]. This is achieved in our model with temperature-dependent plasticity. We

demonstrate these abilities with baking, tearing and dehydrating examples.

While dough and batter are mixtures of constituents that include water, leavening agents,

flour, eggs, fat, sugar and others, we model the non-water or non-CO2 agents as a single

phase in a three species mixture model. CO2 from leavening agents and water make up

the other two species in the mixture. We refer to the mixture of non-water and non-CO2

species as the solid phase and model it as viscoelastoplastic with parameters that vary with

temperature. This allows us to address rheological changes induced by cooking that do not

arise from the effects of the leavening agents or water-based mass transfer. It is a simplifica-

tion, but we confidently make it as it reduces the modeling complexity without precluding
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important features like melting and solidification.

We discretize our model with a novel Material Point Method [SCS94] designed to treat

thermomechanical porous mixtures and temperature dependent chemical production of gas

from leavening agents. Our approach is designed to track the solid phase (everything but

the water and CO2) since it is most apparent for visual rendering. Various MPM approaches

have treated porous mixtures of water, gas and solid species [ASB14, BS15, BFL16, GPH18,

TGK17, ZWC09, YAP15, JSV13]. Tampubolon et al. [GPH18, TGK17] use two sets of

material points to track distinct water and sand phases. This allows for detailed visual

resolution of each phase, but it is costly since each phase must be treated with a separate

grid and their interactions are resolved via a stiff interaction term. Our approach is similar

to [ASB14, BFL16, YAP15] in that they use one set of material points and track relative

motion of the other species. However, these works only considered mixtures of soil, water

and air, largely for landslide applications. While there are some similarities in the treatment

of porosity, none have considered thermal effects in the solid species as we do. Also, none

have modeled gas pressures arising from temperature dependent chemical reactions. We

summarize our contributions as

• A thermo-viscoelastoplastic model of dough and batter that approximates mixtures of

non-water or CO2 contents, i.e. ingredients like flour, egg, fat, sugar, etc.

• A three species porous mixture model of the water, CO2 and remaining dough and

batter contents.

• A model for the thermomechanical production of CO2 from leavening agents and its

influence on the viscoelastoplastic rheology of the remaining materials in the solid

phase.

• A novel MPM discretization of three species thermomechanical mixtures of solid, gas

and water including the effects of chemical production of CO2 from leavening agents.
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Figure 3.2: Muffin. The left column depicts baking of a tray of muffins, resulting in a classic

dome shape on top. The right shows a muffin torn open to reveal a fully cooked interior and

melted chocolate chips. Surface meshes of the fractured muffin are generated through the

mesh post-process of [WDG19] and are used for rendering.
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3.2 Previous Work

Many efforts have been made to study one or a few aspects of complicated food processes.

Vanin et al. [VLT09] focus on the formation and distinct texture of bread crust due to signif-

icantly lower water content than the crumb caused by rapid drying on the surface from the

heat of the oven. Guillard et al. [GBG04] model the moisture content evolution in dry biscuit

based on Fick’s second law [Fic55]. De Cindio and Correra [CC95] view a leavened dough

as a visco-elastic homogeneous macrosystem but also a gas-paste microsystem to model the

interactions between the two phases during mixing, leavening and baking. Zhang and Datta

[ZD06] develop a coupled system of solid, liquid water, water vapor and carbon dioxide

phases to model the bread baking process. They model the material as viscoelastic and

track the evolution of temperature, moisture, volume and surface coloration during bread

baking. Yang et al. [YCL17] develop a unified particle framework for simulating various vis-

coelastic soft-matter with phase changes using conservative Cahn-Hilliard advection. They

produce compelling simulations of phase transitions for cooking eggs and melting butter.

Liu et al. [LYC15] use elastoplasticity to simulate porous dehydration of fruits and other

foods with the Finite Element Method (FEM).

Graphics applications have used mixture theory and multi-species simulations to model

porous water, sand and air mixtures [LWG08, GPH18, TGK17]. Many other graphics appli-

cations have made compelling use of multi-species simulations for water, sprays and foams

[NO13, TFK03, LTK08, YLH14], liquids with bubbles [MMS09, TSS07, RJL15] as well as for

mixing of fluids [BWZ10, KPN10, RLY14, HWZ15, YCR15]. Heat transfer and viscoelastic

melting have also been used in many graphics applications to simulate visual effects of phase

change and melting [TPF91, MHT05, KAG05, MKN04, THM04, WRK10, LIG06, ZWQ06,

WLK03, CMI02, MGG10, GBO04, BWH07, GBB09, WT08, BGA17].

The Material Point Method (MPM) [SCS94] has been used in many computer graphics ap-

plications, including snow [SSC13], non-Newtonian fluids and foams [YSB15, RGJ15], heat
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transfer and phase change [SSJ14, GTJ17], elastic and porous materials [JGT17, GHF18,

FBG18], and granular materials [DB16, KGP16, YSC18]. Various MPM approaches have

treated porous mixtures of different liquid, gas and solid species. Bandara et al. [ASB14,

BS15, BFL16] simulate mixtures of air, water and soil for landslide applications. In [BS15],

they use two sets of Lagrangian marker particles for water and soil respectively. Tampubolon

et al. [GPH18, TGK17] use a similar approach. In [ASB14, BFL16], they use a single set of

material points for the soil and track the motion of the water relative to the soil, but they

neglect the water acceleration. Zhang et al. [ZWC09] also neglect the water acceleration

terms. Yerro et al. [YAP15] build on the two-phase porous MPM approach of Jassim et al.

[JSV13] to simulate three species mixtures of air, water and soil. Bandara et al. [BS15] use

Biot’s [Bio41] phenomenological model for their governing equations.

3.3 Governing Equations

We model our materials as a mixture of water, gas and solid constituents and use a multi-

species continuum model to derive the equations of motion from the governing physics

[AC76]. With this assumption we use a different flow map for each constituent to describe

the kinematics of the mixture. Formally, we use φα : B0 × [0, T ]→ R3 to define the motion

of species α where α = w for water, α = s for solid and α = g for gas. Here B0 ⊂ R3

represents the configuration of the material at time t = 0. We refer to points X ∈ B0 as

material points and x ∈ Bα
t = {x ∈ R3|∃X ∈ B0 with x = φα(X, t)} as world-space points

where Bα
t is the time t configuration of species α. Furthermore, we use

Ωα
t =

{
x ∈ R3|∃X ∈ Ω0 with x = φα(X, t)

}
(3.1)

for Ω0 ⊂ B0 to denote subsets of the domains. Note that we do not distinguish between dif-

ferent species in B0 since we assume they are all present in the initial mixture. Furthermore,

we assume that the motion of the gas relative to the solid is negligible, and that therefore

φs = φg (and Bs
t = Bg

t ). We also assume that water may diffuse out of the mixture, but
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Figure 3.3: Cookies. The cookies have a varying amount of leavening agent and are baked

under different temperatures. They are initialized as dough balls (top left). The bottom

left shows the end results. The top row from left to right varies with decreasing amounts

of leavener, and the bottom row from left to right with decreasing oven temperature. The

right column depicts the heat transfer progress in the cookies during baking with color

varying from blue to green then to red with increasing temperature.
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that our mixture will never be completely dry. With this assumption Bs
t ⊂ Bw

t .

The Lagrangian velocity of each constituent is defined as Vα(X, t) = ∂φα

∂t
(X, t) and the

Eulerian (or world-space) velocity is defined as vα(x, t) = Vα(φα−1

(x, t), t) where φα−1

(x, t)

is the inverse flow map of the species α. We use Fα(X, t) = ∂φα

∂X
(X, t) to denote the Jacobian

of the constituent mappings (or deformation gradients) and Jα = det(Fα) to denote their de-

terminants. Intuitively, the deviation of Fα(X, t) from orthogonality indicates how non-rigid

the motion is local to material point X and Jα expresses the local volume gain (Jα > 1) or

loss (Jα < 1). Furthermore, we use φ : B0× [0, T ]→ R3 to denote the flow map of the mix-

ture. It is related to the Eulerian velocity of the mixture v as ∂φ
∂t

(X, t) = v(φ(X, t), t). The

deformation gradient of the mixture and its determinant are denoted as F and J respectively.

The mass and momentum densities of the species are denoted as ρα : Bα
t → R and

ραvα : Bα
t → R respectively. The mass and momentum densities of the mixture are de-

fined as the respective sums ρ =
∑

α ρ
α and ρv =

∑
α ρ

αvα. With this convention, the

velocity of the mixture is defined via mass average v =
∑
α ρ

αvα∑
α ρ

α . We assume that the mass

density of the gas ρg is negligible compared to that of the water and solid and therefore

that v ≈ ρwvw+ρsvs

ρw+ρs
. Furthermore, we assume that the density of water is initially spatially

constant and equal to ρw0 .

Lastly, we use Θ : B0 × [0, T ] → R to refer to the material-space temperature of the

solid and θ : Bt × [0, T ] → R as the world-space temperature. They are related through

θ(φ(X, t), t) = Θ(X, t).

3.3.1 Conservation of Mass and Momentum

Following [AC76], we assume each constituent obeys conservation of mass with respect to

its own motion Dαρα

Dt
+ ρα∇ · vα = 0 where Dαf

Dt
= ∂f

∂t
+ ∂f

∂x
vα is the material derivative with
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Figure 3.4: Lava cake. A lava cake is initialized as a homogeneous batter and baked in a

ramekin, then plated and cut open, the molten center flows out.
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respect to motion α. This can equivalently by expressed as

d

dt

∫
Ωαt

ραdx =

∫
Ωαt

dρα

dt
dx +

∫
∂Ωαt

ραvα · nds(x) = 0 (3.2)

where Ωα
t is an arbitrary subset of Bα

t .

To simplify our numerical approach it is convenient to adopt the convention of [ZP13] and

derive the mass and momentum conservation of the mixture in terms of the motion of the

solid constituent. To derive this, we note that the rate of change of the mass of water in Ωs
t

due to motion of the solid is

d

dt

∫
Ωst

ρwdx =

∫
Ωst

dρw

dt
dx +

∫
∂Ωst

ρwvs · nds(x). (3.3)

Here the time derivative takes into account the change in the set Ωs
t and its effect as the

domain of integration. Consider the case when Ωw
t = Ωs

t at a given time t. In this case

the sets are equal, but may not be so for earlier times t̂ < t, e.g. Ωw
t̂
6= Ωs

t̂
, when we

consider how they evolve under the respective constituent motions via Equation (3.1). We

can subtract Equation (3.2) (in the case of α = w) from Equation (3.3) to yield an expression

of conservation of water mass with respect to motion of the solid

d

dt

∫
Ωst

ρwdx +

∫
∂Ωst

ρw(vw − vs) · nds(x) = 0.

We henceforth use qw = ρw(vw − vs) to denote the density weighted velocity of the water

relative to the solid. Since the set Ωs
t is arbitrary, conservation of mass of the water with

respect to the motion of the solid can be expressed as

Dsρw

Dt
+ ρw∇ · vs +∇ · qw = 0, x ∈ Bs

t . (3.4)

Momentum balance for each constituent can similarly be expressed as

d

dt

∫
Ωαt

ραvαdx =

∫
Ωαt

(fα + pα)dx +

∫
∂Ωαt

tαds(x)

where fα and tα are the external body force and traction on phase α, and the pα term stands

for the transfer of momentum between the constituents. We refer the reader to [AC76] for
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a more detailed derivation and motivation of these balances and the momentum exchanges

between them. We note that

d

dt

∫
Ωαt

ραvαdx =

∫
Ωαt

d

dt
(ραvα)dx +

∫
∂Ωαt

ραvα ⊗ vα · nds(x). (3.5)

As in the case of water mass, the rate of change of water momentum with respect to the

motion of the solid can be expressed as

d

dt

∫
Ωst

ρwvwdx =

∫
Ωst

d

dt
(ρwvw)dx +

∫
∂Ωst

ρwvw ⊗ vs · nds(x). (3.6)

Again as with water mass, by considering coincident sets at time t, Ωs
t = Ωw

t and subtracting

Equation (3.5) (in the case of α = w) from Equation (3.6), we can conclude

d

dt

∫
Ωst

ρwvwdx =
d

dt

∫
Ωwt

ρwvwdx−
∫
∂Ωst

vw ⊗ qw · nds(x).

We can use this equality to express conservation of momentum of the mixture relative to the

motion of the solid constituent as

d

dt

∫
Ωst

ρvdx

=
d

dt

∫
Ωst

(ρsvs + ρwvw)dx

=
d

dt

∫
Ωst

ρsvsdx +
d

dt

∫
Ωwt

ρwvwdx−
∫
∂Ωst

vw ⊗ qw · nds(x)

=

∫
Ωst

(f s + ps)dx +

∫
∂Ωst

tsds(x) +

∫
Ωwt

(fw + pw)dx

+

∫
∂Ωst

twds(x)−
∫
∂Ωst

vw ⊗ qw · nds(x)

=

∫
Ωst

fdx +

∫
∂Ωst

tds(x)−
∫
∂Ωst

vw ⊗ qw · nds(x)

where f = f s+ fw is the total body force on the mixture, and t = ts+tw is the total traction

and the sum of the momentum exchange terms pw + ps = 0 is assumed to be zero [AC76].

Therefore, since the set Ωs
t ⊂ Bs

t is arbitrary, we can conclude that conservation of mass of

the mixture can be expressed with respect to motion of the solid constituent as

Dsρv

Dt
+ ρv∇ · vs = f +∇ · σ −∇ · (vw ⊗ qw) , x ∈ Bs

t . (3.7)

57



Figure 3.5: S’more. The left column depicts a marshmallow roasting on the electric stove.

Coloring is based on temperature. We press the marshmallow between two crackers (right

column) and the melted interior flows out.

Here σ is the Cauchy stress in the mixture and it is related to the total traction of the

mixture as t = σn.

3.3.2 Fick’s Law

We assume that the motion of the liquid phase is restricted to diffusion in the mixture; Fick’s

law [Fic55] states that

qw = −Kwθρw∇s

where Kw > 0 is a material diffusivity constant, and s = V w

V
stands for the saturation level

of the dough, which is in the form of a volume fraction where V is a local volume of the
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mixture and V w is the local volume of water in the mixture. The density of water can be

expressed in terms of this saturation as

ρw =
mw

V
=
mw

V w

V w

V
= ρw0 s. (3.8)

Furthermore, we use qw · n = βwθs for the boundary conditions in Equation (3.4) where βw

is a material constant that represents the rate of water mass loss due to exterior conditions.

3.4 Heat Transfer

Heat flow through the material obeys the first and second law of thermodynamics, in Sec-

tion 1.1.2.3 we derived the general heat balance equation. Combined with our choice of

potential we summarize our heat energy balance equation as

ρα
Dθ

Dt
= ∇ · (κ∇θ)− θcλ∇ · v, x ∈ Bt. (3.9)

Here, α is the specific heat at constant volume which controls the rate at which temperature

will change for a given amount of heating and κ is the thermal conductivity which controls the

speed with which heat will diffuse through the body. cλ controls rate of temperature decrease

resulting from thermal expansion and λ is a Lamé coefficient. Intuitively, since temperature

measures the kinetic energy density at small scales, increases in material volume will tend

to cool the material. The heat flow boundary condition is

q · n = −κ∇θ · n = β(θ − θout), x ∈ ∂Bt

where q is the heat flux, n is the outward normal, θout is the ambient temperature outside of

the material and β controls the rate of temperature change that results from heat transfer

with the ambient space.
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3.5 Constitutive Model

Again following [AC76], the stress in the mixture is a sum of the stresses in the solid, gas

and water constituents

σ = σs + σg + σw.

3.5.1 Solid Stress

We assume that the solid phase is itself a complex mixture of constituents which may include

flour, fat, leavening agent (baking powder, yeast etc.), salt, sugar, gelatin or egg. These as-

sorted ingredients create a mixture material with a wide range of complex, non-Newtonian

rheological behaviors whose properties vary from nearly liquid to nearly solid. Furthermore,

these behaviors vary with temperature. Ideally, we would include each phase in our mixture

model, however to reduce complexity we instead adopt a temperature dependent viscoelasto-

plasticity model for the solid phase. This allows us to efficiently reproduce a wide range of

complex rheological behaviors without the need to track each of the many species.

3.5.2 Elastic Stress

We use a multiplicative decomposition of the deformation in the solid phase Fs = Fs,EFs,P

where Fs,E is the elastic component of the motion that will be penalized by the potential

energy density and Fs,P is the permanent deformation associated with the plasticity. The

stress in the solid phase arises from the potential energy density and thermal expansion as

σs =
τ s,E

Js
− cλJsθ. (3.10)

where τ s,E is the elastic Kirchhoff stress defined in terms of the elastic potential as τ s,E =

∂ψ
∂Fs,E

Fs,E−T . The last term is due to thermal expansion and we refer the reader to [GS08]

for its derivation. We note that the elastic potential will ultimately have temperature de-

pendence from the thermal effects of plasticity (see Section 3.5.3). Our choice of potential

60



is

ψ(Fs,E) =
1

2
λ(tr(ε))2 + µε : ε (3.11)

where ε is the elastic Hencky strain in the solid ε = 1
2

log(Fs,EFs,ET ). Here µ and λ are

the Lamé coefficients and cλ controls the amount of pressure due to thermal expansion

where c is the same parameter that appears in Equation (3.9). Note that the cλ term

gives rise to a temperature varying positive (expansional) pressure. We also note that our

primary motivation for adopting this potential is to simplify discrete plastic integration as

in [KGP16, GGT18]. This simplicity is a consequence of its property τ s,E = Cε where

C = 2µI + λI ⊗ I is the isotropic fourth order elastic stiffness tensor and I is the fourth

order identity tensor.

3.5.3 Viscoplasticity

While the potential energy varies with the elastic portion of the decomposition, the evolution

of the plastic portion is defined in terms of a yield condition that identifies states of stress

consistent with observed material behavior. We represent the yield condition in terms of the

Kirchhoff stress τ = Jσ and a signed distance function f(τ ) where f(τ ) ≤ 0 indicates a

state of physically meaningful stress. We express this evolution of the plastic flow and its

relation to the yield condition in terms of the left Cauchy-Green strain bE = Fs,EFs,ET

DsbE

Dt
=
∂vs

∂x
bE + bE

∂vs

∂x

T

+ Lvsb
E. (3.12)

Here LsvbE is the Lie derivative with respect to the motion of the solid and is defined in

terms of the yield condition. We use an associative flow rule LvbE = −2γ ∂f
∂τ

bE where γ

is the flow rate, and ∂f
∂τ

bE specifies the direction of maximum energy dissipation. For rate

independent plasticity γ is chosen so that the stress satisfies the yield condition f(τ ) ≤ 0. In

the case of viscoplasticity we do not restrict the stress to always satisfy the yield condition;

instead we choose the rate as

γ =
1

η

∂g

∂f
(f(τ ))
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Figure 3.6: Dough pull and twist. We apply the same pull and twist motion to dough

cylinders of varying yield stress and viscosity parameters. The viscosity increases from

bottom to top, and yield stress increases from left to right.

where η = η(θ) is a viscosity penalty parameter, g(f) is a monotonic function for positive f

and zero otherwise. It is chosen to penalize states of stress outside the yield surface without

making adherence to the condition of a hard constraint. We use g(f) = 1
2
f 2 whenever f

is positive, and zero otherwise. Note that there is no plastic flow when the stress is inside

the yield surface since in this case f(τ ) ≤ 0 and therefore γ = 0 since the argument to ∂g
∂f

is non-positive. Lastly, we also note that as η → 0, γ is chosen as in the rate independent

case. We demonstrate the effect of different plasticity parameters with a dough pull and

twist example, see Figure 3.6.

3.5.3.1 Yield Condition

We use a modified temperature and porosity dependent Cam clay yield condition [RB68].

This model is typically used for porous viscoelastoplastic materials and gives rise to a wide

range of behaviors similar to those exhibited by the solid phase mixture for baking materials.

This yield condition is ellipsoidal in principle stress space (Figure 3.7) and is given by

f(τ ) =
9

4 ln2
(

1
np

) (
7
2
np + 1

)p2 + q2 − τy(θ)2 ≤ 0 (3.13)
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Figure 3.7: Yield surface. We visualize the yield surface with different choices of porosity.

The yield surface is an ellipsoidal shape in the upper half-plane. In the limit ng → 0, the

yield conditions becomes equivalent to a von Mises type criterion.

where p = −1
3
tr(τ ) is the mean normal stress, q =

√
3
2
‖τ + pI‖F is the effective stress

(proportional to the magnitude of deviatoric stress) and τy(θ) is the yield stress. np ∈ (0, 1)

is the gas porosity of the solid-gas mixture (see Section 3.5.4). We adopt the model of [HA92]

where the coefficient of p is a monotonic increasing function of np and vise versa. Note that

in the limit np → 0, the yield function becomes f(τ ) = q2 − τ 2
y ≤ 0, which is a von Mises

type yield criterion equivalent to the viscoplastic formulation of [YSB15]. Intuitively, a more

porous solid mixture (np > 0) will have limits on the degree to which it can achieve cohesion.

This cohesion limit is expressed in terms of the tip of the ellipsoid on the negative portion

of the p axis.

3.5.3.2 Temperature Dependence

We model the viscosity parameter η and yield stress τy as piece-wise linear functions of

temperature in order to track the melting and gelatinization of the dough mixture that are

often observed during baking. In the initial stage of heating, the fat in the dough, if present,

would soften and melt, causing the mixture to appear less viscous and more inelastic. Flour

gelatinization takes place later on which increases the elastic strength of the mixture, and
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Figure 3.8: Temperature-dependent plasticity. We plot the change in yield stress (left)

and viscosity (right) with temperature. The marked temperatures θ1, θ2, θ3, θ4 stand for

typical temperature ranges for fridge, room environment, fat melting point, and starch gela-

tinization respectively.

this process cannot be reversed during baking. Based on this intuition we set η to be a non-

negative monotonic non-increasing function of θ, and τy decreasing initially then increasing

with respect to temperature, as shown in Figure 3.8. Furthermore, once the material reaches

the gelatinization temperature, the parameters are fixed. We follow this progression of

plasticity parameters with respect to temperature during baking. The actual values vary

among the different examples for optimal visual effects.

3.5.4 Gas Stress

We model the effect of the leavening agents in the mixture with a chemical reaction that

creates carbon dioxide (CO2). The CO2 then expands under heating to drive the rising of

the mixture during the baking process. We model the chemical reaction with the differential
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equation [ZD06, NSG14]

dng

dt
= αgR0 exp

(
−
(
θ − θr

∆θ

)2
)
.

Here ng stands for the molar count of CO2 per unit volume, αg is a material constant, R0

is initial mass density of the mixture, θr is a reference temperature at which the chemical

reaction reaches its peak rate (Figure 3.12), and ∆θ is another constant scaling parameter.

Note that the chemical reaction rate is maximal when temperature is around θr.

We define the gas porosity of the solid material as np = V g

V s
, where V g stands for a local

representative gas volume, and V s is the total local representative volume of the solid/gas

mixture. We assume that porosity changes as the solid mixture flows plastically as

np = Js,P − 1 + np0

where np0 is the initial gas porosity. Intuitively, as the material is kneaded it will gain volume

plastically, allowing more room for gas. With these conventions, ng

Jsnp
measures the amount

of gas in the pore volume. Therefore, using the ideal gas law to model the pressure of CO2,

the stress in the gas constituent is

σg = −n
gRθ

Jsnp
I (3.14)

where R is the ideal gas constant.

3.5.5 Water Stress

We adopt the saturation-based pressure model of [ZP13] for the stress in the water phase.

As the water leaves a region of the material, the mixture experiences a negative pressure

and will tend to contract inwards as the elastic stress is allowed to compress the mixture in

the absence of liquid. When water enters a region, the material will experience a positive

pressure as the liquid pushes on the mixture. This is modeled with the linear relation

σw = −ĉ(s− s0)I (3.15)
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Figure 3.9: Dehydrating grapes. Grapes are dried at constant temperature. The smooth

exterior (left) wrinkles up due to water loss of the interior flesh(right).

where s0 is the initial saturation.

3.6 Discretization

Our discretization is designed to track the solid constituents. We store xnp = φs(Xp, t
n) to

denote the time tn location of discrete material particle Xp under the solid motion and an

initial representative volume for each particle V s,0
p that partitions the initial domain of the

solid. Additionally, we store the translational vnp = ∂φs

∂t
(Xp, t

n), and affine An
p ≈ ∂vs

∂x
(xnp , t

n)

velocities and elastic/plastic decomposition of the deformation gradient Fs,En
p Fs,Pn

p = Fs,n
p =

∂φs

∂X
(Xp, t

n) of the solid phase. We also store the water mw,n
p and solid ms

p masses. We

note that the solid mass does not change with time since we track the solid motion in a

Lagrangian manner. We also note that the water mass satisfies mw,n
p = ρw(xnp , t

n)V s,n
p where

V s,n
p = Js,np V s,0

p is a representative volume around xnp in the time tn configuration of the solid

and Js,np = det(Fs,n
p ). We store the water saturation snp and the density weighted velocity of

the water relative to the solid qw,np . We also store the temperature θnp and molar count per

volume ngp.
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Figure 3.10: Grape saturation view. We visualize the saturation evolution of the grapes.

The color changes from blue to green then to red with decreasing saturation.
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3.6.1 Time Step

We update the discrete state from time tn to tn+1 by discretizing the governing equations

with MPM. This requires transferring various data from particles to grid using grid based

interpolating functions. We use quadratic B-splines as in [JGT17]. We let Ni(x) denote the

grid based interpolating function associated with grid node xi and wip = Ni(x
n
p ), ∇wip =

∇Ni(x
n
p ) for short. We transfer the mass, velocity, temperature and particle representative

volume to the grid. The momentum is transferred using APIC [JSS15]

ms,n
i =

∑
p

ms
pwip, m

w,n
i =

∑
p

mw,n
p wip (3.16)

vs,ni =
1

ms,n
i

∑
p

ms
pwip

(
vs,np + An

p (xi − xnp )
)

(3.17)

ms,n
i θni =

∑
p

ms,n
p wipθ

n
p (3.18)

V s,n
i =

∑
p

Js,np V s,0
p wip (3.19)

Here mα,n
i are grid masses, vs,ni is grid solid velocity and θni is grid temperature. V s,n

i

is the representative volume of grid node i which we use to update grid saturation (see

Section 3.6.4). We update the grid water mass and temperature from Equations (3.4) and

(3.9) respectively to obtain m̃w,n+1
i and θn+1

i . We provide the details for these updates in

Sections 3.6.4 and 3.6.5 respectively. Once these are updated, we update the particle mass,

saturation, temperature and density weighted velocity of the water relative to the solid from

mw,n+1
p = mw,n

p

(
1 +

∑
i

∆mw,n
i

mw,n
i

wip

)
(3.20)

sn+1
p =

mw,n+1
p

V s,n
p ρw0

(3.21)

θn+1
p = θn+1

p +
∑
i

(
θn+1
i − θni

)
wip (3.22)

qw,n+1
p = −kθn+1

p

∑
i

sn+1
i ∇wipρ

w
0 s

n+1
p (3.23)

Here ∆mw,n
i is from Equation (3.28) and represents the change in the grid water mass and

sn+1
i in Equation (3.23) is the time tn+1 saturation of grid node i and is used to compute
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saturation gradient needed for the update of the density weighted velocity of the water rela-

tive to the solid. The weighting of the transfer in Equation (3.21) is chosen so that the total

change in particle water mass is equal to the total change in grid water mass. Also, the up-

date in Equation (3.22) follows from Equation (3.8) since ρw,n+1
p =

mw,n+1
p

V s,np
, ρw,n+1

p = sn+1
p ρw0

where ρw0 is the initial, spatially constant water mass density.

The last step in our update is to compute the updated grid solid velocity ṽs,n+1
i from the

discrete conservation of momentum which is outlined in Section 3.6.2. We then compute the

updated particle constant vn+1
p and linear An+1

p from ṽs,n+1
i using APIC [JSS15] and the

particle positions as xn+1
p = xn+1

p + ∆tvn+1
p . Lastly, a trial state of elastic stress is computed

assuming no plastic flow over the time step as

Fs,Etr
p =

(
I + ∆t

∑
i

ṽs,n+1
i ∇wip

)
FE,n
p

and then finally projected to FE,sn+1
p according to plastic flow using the details in Sec-

tion 3.6.3.

3.6.2 Grid Momentum Update

We discretize Equation (3.7) in a variational MPM manner to derive the grid momentum and

velocity update. Multiplying Equation (3.7) by an arbitrary function u(x) =
∑

i uiNi(x),

taking an arbitrary ui, using ρv = ρvs+qw and treating the Dsρvs

Dt
term as in Equation (3.26),

we can conclude∫
Bstn

(
ρ̃ṽs + q̃w − ρvs − qw

∆t
+ (ρvs + qw)∇ · vs

)
Nidx =∫

Bstn

fNi − (σ − vw ⊗ qw)∇Nidx +

∫
∂Bstn

(t + βwθsvw)Nids(x)

with the convention that function f̃ is inherited as a function over Bs
tn as

f̃ = f(φs(φs−1

(x, tn), tn+1), tn+1)
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Figure 3.11: Pancake. Batter is poured into the pan (top row) and the pancake is flipped

after the bottom is cooked(bottom row). The coloring is based on temperature.

Figure 3.12: CO2 creation rate. The carbon dioxide creation rate is a bell-shaped curve

with the peak at θr. Bigger ∆θ results in a flatter curve (right).
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for functions f defined over Bs
tn+1 .

Using the particle positions xnp as the quadrature points with weights V s,n
p = Js,np V s,0

p we

conclude

∑
p

ρ̃n+1
p ṽs,n+1

p wipV
s,n
p + q̃w,n+1

p wipV
s,n
p = (3.24)

∑
p

ρnpv
s,n
p wipV

s,n
p + qw,np wipV

s,n
p + ∆t∆(ρvs)i (3.25)

∆(ρvs)i = −
∑
p

(
ρnpv

s,n
p + qw,np

)
wipV

s,n
p

∑
k

vs,nk · ∇wkp

+
∑
p

fnp wip −
(
σn
p − vw,np ⊗ vs,np

)
V s,n
p ∇wip

+
∑

p∈∂Bstn

Spwip

(
tnp + βwθnp s

n
pv

w,n
p

)
where ρ̃n+1

p = ρ̃(xnp , t
n+1), ρnp = ρ(xnp , t

n) = snpρ
w
0 +

msp
V s,np

, and q̃w,n+1
p = q̃w(xnp , t

n+1) is

from Equation (3.23). We note that Equation (3.23) does not have a tilde superscript

because it will be used with particle positions xn+1
p at the end of the time step, whereas

q̃w(xnp , t
n+1) is the same value, but being used with time tn positions xnp . Noting that∑

p ρ
n
pv

s,n
p wipV

s,n
p ≈ mn

i v
s,n
i , we use Equation (3.24) as an update for the solid grid velocity

as

ṽs,n+1
i =

1

m̃n+1
i

(
mn

i v
s,n
i + ∆t∆(ρvs)i +

∑
p

∆qpwipV
s,n
p

)
,

where ∆qp = qw,np − q̃w,n+1
p . We note that m̃n+1

i = m̃w,n+1
i + ms,n

i where m̃w,n+1
i is from

Equation (3.28) and ms,n
i is from Equation (3.16). We note that ms,n

i does not change with

time in this update since we track the motion of the solid constituents in a Lagrangian

manner. Lastly we note that σn
p is a sum of the stresses in Equations (3.10), (3.14) and

(3.15).
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3.6.3 Return Mapping

Plasticity is applied by first assuming all deformation is elastic and getting a trial stress

τ s,Etr = ∂ψ
∂Fs,E

(Fs,Etr
p )(Fs,Etr

p )−T from Equation (3.10). Following [SM93] we can write the

return mapping discretization of Equations (3.12) and (3.13) in the form of a constrained

minimization problem:

τ s,En+1 = argminτ∈E
1

2
(τ s,Etr − τ )TC−1(τ s,Etr − τ )

where E stands for the elastic region bounded by the yield surface with f(τ ) ≤ 0, and C is the

elastic tensor from τ s,E = Cε. For viscoplasticity the hard constraint that the minimization

be over is E is replaced by a penalty term from viscosity and the unconstrained minimization

τ s,En+1 = argmin
1

2
(τ s,Etr − τ )TC−1(τ s,Etr − τ ) +

∆t

η
g(f(τ ))

where ∆t is the time step. To solve the minimization, we take the derivative with respect

to τ and set it equal to zero. The elastic Hencky strain can then be obtained trivially as

εs,En+1
p = C−1τ s,En+1. Then the new deformation gradient can be obtained using Fs,En+1

p =

Us,En+1
p exp

(
Λs,En+1
p

) (
Vs,En+1
p

)T
, where Λs,En+1

p is derived from the eigendecomposition

εs,En+1
p = Us,En+1

p Λs,En+1
p

(
Us,En+1
p

)T
, and Us,En+1

p and Vs,En+1
p are derived from the singular

value decomposition Fs,Etr
p = Us,En+1

p Σs,Etr
p

(
Vs,En+1
p

)T
respectively. This can be solved

efficiently in terms of the eigenvalues of τ s,En+1 and is similar to the methods in [KGP16,

GGT18]. More details of the derivation is given in Section 3.9.1 and we illustrate the return

mapping in the zero porosity case in Figure 3.14.

3.6.4 Water Mass Update

Our discretization is based on the weak form of Equation (3.4). Given an arbitrary function

u : Bs
tn → R we can conclude

0 =

∫
Bstn

Dsρw

Dt
u+ ρw∇ · vsu+ u∇ · qwdx

=

∫
Bstn

Dsρw

Dt
u+ ρw∇ · vsu−∇u · qwdx +

∫
∂Bstn

uβwθsds(x)
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by integrating by parts and using the water flux boundary condition in Section 3.3.2. Fur-

thermore, we note that∫
Bstn

Dsρw

Dt
(x, t)u(x)dx (3.26)

=

∫
Bs0

d

dt
ρw(φs(X, tn), tn)u(φs(X, tn))Js(X, tn)dX

≈
∫
Bs

0

ρw(φs(X, tn+1), tn+1)− ρw(φs(X, tn), tn)

∆t
u(φs(X, tn))Js(X, tn)dX

=

∫
Bstn

ρ̃w(x, tn+1)− ρw(x, tn)

∆t
u(x)dx

where ρ̃w(x, tn+1) = ρw(φs(φs−1

(x, tn), tn+1), tn+1) and φs−1

(x, tn) is the inverse flow map of

the solid constituents. Intuitively, ρ̃(x, tn+1) is the time tn+1 mass density but pulled back

to the time tn spatial configuration of the solid constituents.

Letting u(x) =
∑

j ujNj(x) be defined from interpolation over the grid, we can then conclude

0 =

∫
Bstn

(
Dsρw

Dt
+ ρw∇ · vs

)∑
j

ujNj −
∑
j

uj∇Nj · qwdx

+

∫
∂Bstn

∑
j

ujNjβ
wθsds(x)

≈
∫
Bstn

(
ρ̃w − ρw

∆t
+ ρw∇ · vs

)∑
j

ujNj −
∑
j

uj∇Nj · qwdx

+

∫
∂Bstn

∑
j

ujNjβ
wθsds(x)

If we use the positions xnp as quadrature points with weights V s,n
p for volume integrals and

Ss,np for surface integrals, then we can further approximate as

0 =
1

∆t

∑
p

(ρ̃w,n+1
p − ρw,np )V s,n

p

∑
j

ujwjp+

∑
p

ρw,np V s,n
p ∇ · vs(xnp , tn)

∑
j

ujwjp −
∑
p

V s,n
p qw,np ·

∑
j

uj∇wjp

+
∑

p∈∂Bstn

βwθnp s
n
pS

s,n
p

∑
j

ujwjp
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where ρ̃w,n+1
p = ρ̃(xnp , t

n+1) and ρw,np = ρ(xnp , t
n). Since this must hold for any uj, we choose

uj = δij to conclude

0 =
∑
p

(ρ̃w,n+1
p − ρw,np )

∆t
V s,n
p wip +

∑
p

ρw,np V s,n
p ∇ · vs(xnp , tn)wip

−
∑
p

V s,n
p qw,np · ∇wip +

∑
p∈∂Bstn

βwθnp s
n
pS

s,n
p wip

for each node i. Noting that ρw,np V s,n
p = mw,n

p , we can see that mw,n
i =

∑
p ρ

w,n
p V s,n

p wip from

Equation (3.16). With this observation, we can see that the discrete equations give us the

following update of the grid water mass

m̃w,n+1
i = mw,n

i + ∆mw,n
i (3.27)

∆mw,n
i = −∆t

∑
p

mw,n
p

∑
k

vs,nk · ∇wkpwip

+ ∆t
∑
p

V s,n
p qw,np · ∇wip −∆t

∑
p∈∂Bstn

βwθnp s
n
pS

s,n
p wip (3.28)

where we use ∇·vs(xnp , tn) =
∑

k vs,nk ·∇wkp with vs,nk from Equation (3.17). Here m̃w,n+1
i =∑

p ρ̃
w,n+1
p wipV

s,n
p is the updated grid mass computed from the time tn+1 density and time

tn grid.

We use m̃w,n+1
i to compute time tn+1 grid node saturation from sn+1

i =
m̃w,n+1

i

ρw0 V
s,n
i

where V s,n
i

is the representative volume of the grid node from Equation (3.19). This follows since

m̃w,n+1
i ≈ ρw,n+1

i V s,n
i and ρw,n+1

i = sn+1
i ρw0 where ρw0 is the initial spatially constant mass

density of water.

3.6.5 Heat Transfer Update

The discretization of the heat energy balance equation is similar to that of the water mass

update and [SSJ14]. We start with the Lagrangian form stated as Equation 1.10. For any

test function U(X, 0) : Bs
0 → R, we have∫

Bs0

R0α
∂Θ

∂t
UdX =

∫
Bs0

∇ · (K∇Θ)U + Θ
∂2Ψ

∂F∂Θ
:
dF

dt
UdX (3.29)
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Discretizing the left hand side with respect to time and space in the usual MPM style, and

interpolating U =
∑

j Uj(t)Nj(X), Θ =
∑

i Θi(t)Ni(X) using shape functions Nj(X), we get∫
Bs0

R0α
∂Θ

∂t
UdX =

∫
Bs0

R0α
∑
i

∂Θi

∂t
Ni

∑
j

UjNjdX

≈
∫
Bs0

R(X, tn)Jα
∑
i

Θ̃n+1
i −Θn

i

∆t
Ni

∑
j

UjNjdX

≈
∫
Bstn

ρ(x, tn)α
∑
i

θ̃n+1
i − θni

∆t
Ni

∑
j

ujNjdx

=
1

∆t

∑
i,j

(θ̃n+1
i − θni )uj

∫
Bstn

ραNiNjdx

≈ 1

∆t

∑
j

[
αmn

j θ̃
n+1
j − αmn

j θ
n
j

]
uj

Here θ̃n+1 stands for the time tn+1 temperature but pulled back to the time tn spatial

configuration. In the last step we used the mass lumping strategy. For the right hand side

again using dF
dt

(X, t) = ∇vF and with our choice of constitutive model we have

Θ
∂2Ψ

∂F∂Θ
:
dF

dt
= −Θcλ∇ · v

The right hand side can then be rewritten as∫
Bs0

U∇ · (K∇Θ) + Θ
∂2Ψ

∂F∂Θ
:
dF

dt
UdX

=

∫
∂Bs0

K∇ΘU ·Nds(X)−
∫
Bs0

(K∇Θ · ∇U + cλΘ∇ · vU)dX

=−
∫
∂Bs0

UQ ·Nds(X)−
∫
Bs0

(K∇Θ · ∇U + cλΘ∇ · vU)dX

=−
∫
∂Bstn

uq · nds(x)−
∫
Bstn

(
1

J
KFT∇θ · FT∇u+

1

J
cλθ∇ · vu

)
dx

=−
∫
∂Bstn

uq · nds(x) +

∫
Bstn

((
− 1

J
FKFT∇θ

)
· ∇u− 1

J
cλθ∇ · vu

)
dx

=−
∫
∂Bstn

uq · nds(x) +

∫
Bstn

(
q · ∇u− 1

J
cλθ∇ · vu

)
dx
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Discretizing with respect to space using shape functions we get

−
∫
∂Bstn

uq · nds(x) +

∫
Bstn

q · ∇udx−
∫
Bstn

1

J
cλθ∇ · vudx

=−
∫
∂Bstn

∑
j

uj(t)Nj(x)β(θ − θout)ds(x) +

∫
Bstn

q ·
∑
j

uj∇Njdx−
∫
Bstn

1

J
cλθ∇ · v

∑
j

ujNjdx

≈−
∑
j

uj
∑

p∈∂Bstn

Spβ(θp − θout)wjp +
∑
j

uj
∑
p

Vpqp · ∇wjp −
∑
j

uj
∑
p

1

Jp
Vpcλθp∇ · vpwjp

=−
∑
j

uj
∑

p∈∂Bstn

Spβ(θp − θout)wjp +
∑
j

uj
∑
p

Vp(qp · ∇wjp −
1

Jp
cλθp∇ · vpwjp)

where wjp = Nj(xp), and Sp being the surface area of the local region tracked with particle

p. Therefore the discrete form of the heat equation is given as

1

∆t

∑
j

[
αmn

j θ̃
n+1
j − αmn

j θ
n
j

]
uj

=−
∑
j

uj
∑

p∈∂Bstn

Spβ(θp − θout)wjp +
∑
j

uj
∑
p

Vp(qp · ∇wjp −
1

Jp
cλθp∇ · vpwjp)

Taking uj = δij, we get

1

∆t

[
αms,n

i θ̃n+1
i − αms,n

i θni

]
=
∑

p∈∂Bstn

Spβ(θp − θout)wip +
∑
p

V s,n
p (qp · ∇wip −

1

Js,np
cλθp∇ · vpwip)

Further note that we interpolate qp ≈ −κ∇θp = −
∑

j κjθj∇wjp and ∇ · vp ≈
∑

k vk · ∇wkp,

We can therefore summarize the discrete heat equation as

1

∆t

(
αms,n

i θn+1
i − αms,n

i θni
)

=
∑

p∈∂Bstn

Spβ(θn+γ
p − θout)wip

−
∑
p

V s,n
p

(∑
j

κjθ
n+γ
j ∇wjp · ∇wip +

cλθp
Js,np

∑
k

vs,nk · ∇wkpwip

)
where γ = 0 for forward Euler and γ = 1 for backward Euler. We note that the last term

expresses the effects of thermal expansion, which were not considered in [SSJ14].

3.6.6 Boundary Conditions

We need to treat discrete boundary integrals in various terms in Sections 3.6.2, 3.6.4 and

3.6.5. We define the set of boundary particles p ∈ ∂Bs
tn as follows. First, we define a grid
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Figure 3.13: Dehydrating apple slices. Apple slices with various initial thickness are

dried at constant temperature. The skin wrinkles and the slices buckle up and experience

significant volume loss.

Figure 3.14: Return mapping. The projections of two trial state stresses are illustrated.

With η → 0 (left) the trial stresses are projected onto the yield surface; with η > 0 (right)

the projections have the same directions but only a portion of the distance.
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node xi to be on the boundary if it has a neighboring grid node with zero mass mn
i . Each

boundary grid node then appends the particle closest to it to the set of boundary particles.

We assume that each boundary particle owns a local spherical region, the volume of which

is its representative volume, i.e. we have

V s,n
p =

4π

3
(rs,np )3

where rs,np is the approximated radius of the sphere. The surface area of the particle is then

computed as π(rs,np )2 which can be written in the form

Ss,np ≈ (
9π

16
(V s,n

p )2)1/3

This serves as the quadrature weight at position xnp when needed for the surface integral

approximation in Sections 3.6.2, 3.6.4 and 3.6.5.

3.7 Results

We demonstrate the efficacy of our model with several examples that illustrate the baking and

cooking process of mixtures with various textures, and show our method is able to capture

some of the key visual effects. Runtime performance is listed in Table 3.1. Simulations are

run on an Intel Xeon E5-2687W v4 system with 48 threads and an Intel Xeon X5690 with 12

threads. We report the computation runtime in terms of average seconds per frame. Particle

counts are given for each example. In general, we chose ∆x so that there are approximately

six particles per grid cell in the initial state. ∆t is chosen in an adaptive manner restricted

by a CFL condition that no particles are allowed to travel more than a portion of ∆x in each

time step.

3.7.1 Effect of Water Loss

We demonstrate the effect of the water content evolution with the simple scenario of fruit

dehydration. In Figure 3.13 we simulate the process of drying apple slices on a rack. The

flesh part is visco-elastoplastic with zero porosity and high initial saturation. Fruit skin
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contains much less moisture than the flesh and thus is modelled as a two-dimensional elastic

sheet with zero water content. We use the Lagrangian energy approach of Jiang et al. [JSS15]

to couple the elastic surface. Ambient temperature is set to be constant. The apple skin

wrinkles and the slices twist and buckle out of the plane, matching real life observations.

Figure 3.9 shows drying grapes with a similar setting. Water evaporates through the skin

of the grapes and results in shrinkage. The skin again has a much lower water content and

thus experiences less shrinkage, causing the many wrinkles and folds as it tries to retain its

surface area while losing volume. Figure 3.10 visualizes the saturation change of the grapes,

coloring from blue to green and finally red for decreasing saturation.

3.7.2 Temperature Dependent Plasticity

Figure 3.5 depicts a marshmallow roasting on an electric stove. The marshmallow is modeled

as a homogeneous mixture in its initial state. Our model achieves the visual effect of an initial

volume gain from the thermal expansion followed by a slightly burnt crust with a gooey center

by using temperature dependent plasticity parameters. The coloration of the marshmallow

is also rendered according to temperature. In Figure 3.15 we successfully capture the drastic

difference of the behavior of the marshmallow when pressed between two crackers pre- and

post-roasting, demonstrating our model’s ability to track the significant texture changes of

the mixture during the baking process. Figure 3.4 demonstrates baking of a lava cake in

a ramekin. The initial batter is again a homogeneous mixture, and our model captures its

transition to a cake with fully baked exterior and the characteristic molten center. We also

show pouring liquid pancake batter into a frying pan followed by cooking to get a soft elastic

pancake that can be flipped, see Figure 3.11. In Figure 3.3, we test baking the same cookie

dough with varying oven settings. The three cookies on the bottom row from left to right

are baked under decreasing temperatures. With the temperature being too high, the dough

gets heated up very quickly, so the cookie does not get enough time to spread, and the dough

baked under low temperature has the opposite issue. This comparison matches closely to

real life observations. The temperature is also visualized in the right column. The color
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Figure 3.15: Marshmallow compare. The left column shows a marshmallow being

squeezed down between two crackers, then springs back a little after the pressure is re-

leased, and the top cracker left markings on its surface. After roasting (right column) a

crust forms on the exterior while the inside of the marshmallow is melted.
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varies from blue to green then to red with increasing temperature.

3.7.3 Leavening

The influence of the chemical reaction aspect of our model is best illustrated by baking

cookies with varying amount of leavening agents, as is shown in Figure 3.3. The top row of

the cookies from left to right contains decreasing amount of leaveners and are baked under

the same temperature. Too much leavening agent would produce a very tall cookie, while no

leavener at all yields a flat one. The CO2 creation and the corresponding pressure is the main

contribution to the rising and expansion in our muffin (Figure 3.2), lava cake (Figure 3.4)

and bread (Figure 3.16) examples.

3.7.4 Fracture

Our simulations are particle-based from their MPM conception, but for simulations with frac-

ture, we construct a reference tetrahedron mesh in the initial state for rendering purposes

and adopt the post-processing techniques from [WDG19] to obtain clean and consistent sur-

facing of the fractured material. The reference meshes are generated with TetWild [HZG18].

We demonstrate these effects with tearing examples in Figure 3.2 and Figure 3.17. By mod-

eling the combined effect of water diffusion, temperature change and chemical leavening, our

method is able to achieve visually realistic baking and tearing of a muffin, see Figure 3.2.

Drawing slits on the bread dough helps with the rising during baking as well as the for-

mation of a nice crust. In Figure 3.16 we compare the baking process of bread with and

without scoring the surface beforehand. Notice how the bread cracks in a more controlled

and appealing manner when there are slits on the surface.
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Figure 3.16: Bread. The top left shows raw dough, one is left intact and the other two

have different slits on top. When baked(right) the breads expand in size and the slits open

up. The bread without an initial slit also cracked on the top surface.

Figure 3.17: Tearing bread. We demonstrate tearing of the bread after baking. Surface

meshes are generated through the mesh post-process of [WDG19] and are used for rendering.
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3.8 Discussion and Limitations

We demonstrate that our method is capable of recreating a number of representative baking

and cooking examples. However, our approach has a number of limitations. First, we

simplify the mixture of non-water or gas constituents to be represented by a single phase.

A more principled approach could be taken by including each of the flour, fat, egg, etc

species in a mixture model. This would undoubtedly allow for a wider range of dough

rheological behavior. Also, our kinematic assumption that the gas does not move relative

to the solid mixture precludes diffusion of the gas through the dough. Lastly, due to the

high-complexity of our coupled porous therm-mechanical model, we did not investigate fully

implicit treatment of water diffusion and material stiffness. While we did not experience a

need for excessively small time steps given the low stiffness and diffusion time scales in the

materials considered, baked goods with faster water diffusion rates and material wave speeds

could benefit from a fully implicit discretization.

3.9 Appendix

3.9.1 Viscoplasticity Return Mapping

In this section again we use I to denote the second order identity tensor (identity matrix),

and I the fourth order identity tensor. For simplicity we denote our yield surface as

f(τ ) = M2p2 + q2 −M2p2
0 = 0

where M and p0 are known values. The yield surface is an elliptical shape centered at the

origin, with radius measures p0 and p0M , and so we can treat p0 as a scaling factor on the

size of the region of elastic response. The position of each point on the curve can then be

represented under polar coordinates by its angle α ∈ [0, π] from the positive p-axis, and p0.

In this sense for any point (α, p̄) in the plane, we can think of p̄−p0
p0

as the ”distance” of the
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Simulation Time Machine Element Particle

Bread bake (Fig 3.16) 20 1 3.2M 620K

Bread tear (Fig 3.17) 12 1 3.2M 620K

Cookies (per cookie) (Fig 3.3) 48 1 6.3M 1.2M

Pancake (Fig 3.11) 25 1 N/A 1M

Dough (per dough) (Fig 3.6) 11 1 2.7M 500K

Grape dehydration (Fig 3.9) 100 1 96K (surface) 346K

Muffin (Fig 3.2) 150 2 5.4M 1.2M

Apple dehydration (Fig 3.13) 25 2 76K (surface) 541K

Lava cake (Fig 3.4) 145 2 10.8M 2M

S’more (Fig 3.5) 130 2 N/A 1.1M

Table 3.1: All simulations were run on either Intel Xeon E5-2690 v4 system with 48 threads

(Machine 1) or Intel Xeon X5690 with 12 threads (Machine 2). Simulation time is measured

in average seconds per frame. Element denotes number of tetrahedra in the volumetric

mesh or number of triangles in the surface mesh when applicable. Particle denotes the total

number of MPM particles in the simulation.
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point to the yield surface. More formally, we can define a canonical yield function f̃ as:

f̃(α, p̄) =
p̄

p0

− 1

Intuitively this is a signed distance function of the level set given by the yield surface. We

use this notion as the yield criterion to simplify the computations in return mapping.

The return mapping is given by

τ s,En+1 = argminτ

1

2
(τ s,Etr − τ )TC−1(τ s,Etr − τ ) +

∆t

η
g(f(τ ))

= argminτ (α,p̄)

1

2
(τ s,Etr − τ )TC−1(τ s,Etr − τ ) +

∆t

2η
(
p̄

p0

− 1)2

We can write τ , p, q in terms of α and p̄:

p = p̄ cos(α)

q = p̄M sin(α)

τ = −pI +

√
2

3
q

εdev

||εdev||

where εdev = ε − 1
3
tr(ε)I is the deviatoric part of ε = log(Σ). τ = Cε where C = 2µI +

λI ⊗ I. We write the function to be minimized as E(α, p̄) + ∆t
2η

( p
p0
− 1)2, and let D = C−1,

differentiating the above equation with respect to α and p̄ we get

0 =
∂E

∂α
=
∂E

∂τ
: (
∂τ

∂p

∂p

∂α
+
∂τ

∂q

∂q

∂α
)

= D(τ s,Etr − τ ) : (p̄ sin(α)I +

√
2

3

εdev

||εdev||
p̄M cos(α))

= (εs,Etr −Dτ ) : (p̄ sin(α)I +

√
2

3

εdev

||εdev||
p̄M cos(α))

0 =
∂E

∂p̄
+

∆t

η
(
p̄

p0

− 1)
1

p0

=
∂E

∂τ
: (
∂τ

∂p

∂p

∂p̄
+
∂τ

∂q

∂q

∂p̄
) +

∆t

η
(
p̄

p0

− 1)
1

p0

= (εs,Etr −Dτ ) : (− cos(α)I +M sinα

√
2

3

εdev

||εdev||
) +

∆t

ηp0

(
p̄

p0

− 1)

= (εs,Etr −Dτ ) : (− cos(α)I) +
∆t

ηp0

(
p̄

p0

− 1)
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Straight forward computation yields DI = 1
2µ+3λ

I and Dεdev = 1
2µ
εdev. Note that D = C−1

is symmetric, we move it to the other side of the contraction, The equations above then

becomes

0 = εs,Etr : (p̄ sin(α)I +

√
2

3

εdev

||εdev||
p̄M cos(α))

− τ : (p̄ sin(α)
1

2µ+ 3λ
I + p̄M cos(α)

√
2

3

εdev

2µ||εdev||
)

= p̄ sin(α)tr(εs,Etr) +

√
2

3

p̄M cos(α)ε : εdev

||εdev||

− p̄ sin(α)

2µ+ 3λ
tr(τ )−

√
2

3

p̄M cos(α)τ : εdev

2µ||εdev||

0 = εs,Etr : (− cos(α)I) + τ :
cos(α)

2µ+ 3λ
I +

∆t

ηp0

(
p̄

p0

− 1)

= − cos(α)tr(ε) +
cos(α)

2µ+ 3λ
tr(τ ) +

∆t

ηp0

(
p̄

p0

− 1)

We further have tr(τ ) = −3p = −3p̄ cos(α) and τ : εdev =
√

2
3
q||εdev|| =

√
2
3
p̄M sin(α)||εdev||.

Substitute the τ terms with these expressions and grouping terms with respect to α and p̄

we arrive at

0 = Ap̄ sin(α) +B cos(α) + Cp̄2 sin(α) cos(α) +D sin(α) cos(α)

0 = F cos(α) +Gp̄ cos2(α) +Hp̄

Where A,B,C,D, F,G,H are constant coefficients. Note that we can directly compute p̄

from the second equation, plugging it back into the first equation we get L(α) = 0 for some

function L. We solve for α from this equation using Newton’s method, and the corresponding

p̄ can be directly obtained. The projected stress τ s,En+1 is then computed with the new α

and p̄.
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