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Abstract

Privacy-preserving forensic attribution is a new ar-

chitectural primitive we propose that allows individual

network packets to be attributed, post-hoc, to the physical

machines from which they were sent. Importantly, while

our architecture allows any network element to verify that

a packet has a valid forensic signature, only a trusted

authority is able to reveal the sender’s identity. In this

way, the privacy of individual senders is protected from

serendipitous use, while criminal actors cannot presume

anonymity. We have developed a prototype implemen-

tation, called Clue, that demonstrates the fundamental

feasibility of this approach while also illustrating the

design challenges and opportunities in integrating this

functionality with the network layer. We hope this work

stimulates further technical investigations in this area, as

well as broader political and sociological discussions on

the criteria for network-based privacy-preserving forensic

attribution and its ability to address the current tensions

between the demand for strong privacy and the push

towards greater, privacy-invasive forensic techniques.

1. Introduction

Research in network security has traditionally focused

on defenses—mechanisms that impede the activities of

an adversary. However, paraphrasing Butler Lampson,

practical security requires a balance between defenses and

deterrence [36]. While defenses may block an adversary’s

current attacks, only an effective deterrent can prevent

the adversary from choosing to attack in the first place.

Creating such a deterrent, however, is usually predicated

on an effective means of attribution—tying an individual

to an action. In the physical world this is achieved by

collecting concrete forensic evidence—DNA, fingerprints,

writing samples, etc.—but there are few equivalents in the

digital domain.

As Peter Steiner’s famous New Yorker cartoon states,

“On the Internet, nobody knows you’re a dog.” Indeed,

functional anonymity is implicit in the Internet’s architec-

ture since the lowest level identifiers, network addresses,

are inherently virtual and insecure. An IP address only

specifies a topological location, not a physical machine,

and is easily forged on demand. Thus, it can be extremely

challenging to attribute an on-line action to a particular

physical origin (let alone to a particular individual).

Unfortunately, without a meaningful risk of being

caught, attackers are free to act repeatedly and with

impunity. It is this circumstance that underlies the asym-

metric nature of the modern computer security arms race.

Attackers are free to improve their methods until they

can break our defenses—leaving defenders forever in the

role of catch-up. Conversely, reducing this expectation

of anonymity even slightly can potentially disincent a

wide range of criminal activity and improve the effective

lifetime of defense mechanisms.

Compelling though this line of thinking may be, there

is a natural tension between the need for attribution and

users’ desire for privacy. While the public generally appre-

ciates that criminal acts should be subject to scrutiny, civil

libertarians are considerably less sanguine about exposing

identifying information as a matter of course. Indeed, a

recently leaked document, allegedly of ITU provenance,

lends credence to libertarians’ fears by motivating the

need for network-level “IP Traceback” capabilities via

a desire to uncover the identity of anonymous political

opponents [30]. This is but one such tension, and it seems

evident that the time is particularly ripe to explore tech-

nical solutions that can balance the enforcement interests

of the state and the privacy interests of individuals.

This paper focuses on achieving this balance by

introducing a new network-layer capability—privacy-

preserving forensic attribution. In particular, we pro-

pose a packet-level cryptographic signature mechanism

that allows properly authorized parties to examine any

packet—even those logged months prior—and unambigu-

ously identify the physical machine that sent it. However,

absent this express authorization, packet signatures do not

expose any identifying information. Finally, we enforce

the correct use of this mechanism by allowing any network

element to verify the validity of the signatures they

receive.

To make progress, this paper purposely walks a line be-

tween “blue-sky” architectural research and “incremental”

pragmatic research. Our goal is principally to demonstrate

“viability” and thus encourage wider consideration of this

problem. To this end, while we have largely ignored

the challenges of deploying a modified Internet proto-

col or developing appropriate high-speed cryptographic

hardware, we have built a prototype system, called Clue,



to explore the practical engineering challenges of build-

ing a privacy-preserving forensic attribution capability.

Indeed, this experience has been critically illuminating.

In addition to exposing the architectural requirements

of our approach, it has also forced us to confront the

real challenges of the underlying cryptographic overheads.

Surprisingly however, we have found that much of this

overhead can be hidden or amortized through careful

protocol design alone. Thus, even our untuned user-level

software prototype adds less than 30 ms of latency to

interactive traffic and achieves a bulk TCP throughput

over 17 Mbps. Moreover, this throughput—significantly

greater than a typical broadband access connection—is

receiver-limited and aggregate server throughput can be

considerably higher.

2. Motivating Scenarios

Forensic attribution would create a fundamentally new

network layer capability and here we describe several use

cases motivating its potential value.

Investigating and prosecuting criminals. Law enforce-

ment officers routinely face the challenge of mapping

between traffic received at some point in the network and

the physical device of origin. Establishing this mapping

would allow investigators to determine if the same device

was used in multiple crimes, if a particular activity was

perpetrated by a known device, and potentially to even

track the location of a targeted device via IP geolocation.

For example, the U.S. Secret Service is actively seeking

methods for determining whether specific Internet packets

originated from devices belonging to known terrorists. In

these cases the terrorists are mobile and anonymously

connect to the Internet from wireless hotspots. A more

concrete example is motivated by the following e-mail

one of us received from a Corporal in the Rhode Island

State Police Department:

We are currently attempting to locate an inter-

national fugitive who is wanted for [a violent

crime]. We have identified a Pocket PC device

attached to the Internet which the [fugitive] is

apparently using. . . .

While we are not in a position to discuss all the details

of this case, one can consider the following model: the

police have a single packet trace known to be from the

fugitive’s device (perhaps a threatening e-mail) and now

seek to identify if other threatening messages are from

the same device—thus identifying the fugitives current IP

address and hence area of operation.

Finally, it is increasingly common to recover computer

equipment when suspects are taken into custody. However,

tying that computer to other on-line actions—especially

beyond a reasonable doubt—can be quite challenging

absent a strong forensic identifier. For example, suppose

an on-line criminal gang communicates with each other

via a chat room monitored by law enforcement. When one

of their members is arrested, his laptop is seized as well.

Prosecutors would like to tie the laptop directly to the

suspect’s messages on the chat room—thereby supporting

a conspiracy charge—but the suspect claims they are mis-

taken (“No, no... ‘mafiaboy’ is someone else, I never typed

those messages”). A strong forensic identifier would allow

a recovered laptop to be directly and unambiguously be

bound to particular messages logged by law enforcement.

Disclaiming traffic. A large fraction of residential wire-

less access points are left “open” for any nearby user

to route packets through. Indeed, many users do so

knowingly, in support of community sharing. As well,

there are a range of new commercial enterprises, such as

FON, whose business model depends on users’ willing-

ness to provide public wireless Internet access via their

own networks. Unfortunately, the anonymity provided by

such open access points also attracts those interested in

committing on-line criminal acts. In effect, open access

points allow criminals to launder their identities and focus

any blame on the innocent access point owner instead.

Indeed, aside from nuisance risk of mistaken identity, the

legal liability associated with providing anonymous transit

service is far from clear.

Even incremental deployment of privacy-preserving

forensic attribution could help in these situations. Namely,

a homeowner wishing to offer open service could con-

figure his or her wireless access point to only route

traffic containing verifiable forensic signatures. Thus, if

an attacker uses the homeowner’s wireless network to

perform criminal activities, their packets will necessarily

contain sufficient evidence to both exculpate the access

point owner and identify the criminal themselves.

Evil twin access points. A growing threat for mobile

wireless users is “evil twin” access points—criminal-

controlled open access points at public locations [34].

When a user connects to an “evil twin” access point, that

access point will typically prompt the user for a name and

credit card number.

However, such behavior could be deterred if the perpe-

trator were at some risk of being identified. In particular,

users could refuse to join wireless access points that did

not attach verifiable forensic marks to their packets—

thus providing an audit trail should the user later suspect

an evil twin attack. With help from law enforcement,

the physical machine perpetrating the attack could be

identified and, further still, their attributability credentials

could be revoked—preventing their participation in future

evil twin attacks.

3. Background

The value of forensic attribution—using technical means

to establish the presence of a person or object at a crime

scene after the fact—has a long history in law enforcement



dating to the late 19th century.1 Lacking an eyewitness to

a crime, forensic methods often become a critical tool in

any investigation.

3.1. The challenge of IP-based attribution

Internet crime poses a unique challenge for forensic at-

tribution. Unlike physical evidence, such as fingerprints

and DNA, digital objects are, prima facie, non-unique.

There are a range of reasons for this. First and foremost,

the Internet architecture places no technical restrictions

on how a host generates packets, and thus every bit a

packet contains, including the “source” IP address, can

be trivially manipulated and is thus potentially suspect.

Indeed, source address spoofing has long posed security

problems such as anonymous port-scanning [22], anony-

mous denial-of-service attacks [41] and TCP connection

hijacking [11]. To mitigate this problem, many routers

now include a source address validation mechanism (e.g.,

reverse path forwarding) to block the transmission of some

kinds of spoofed packets [23]. However, these mecha-

nisms are inconsistently deployed (Beverly and Bauer

recently performed measurements suggesting that at least

25% of Internet address blocks are still spoofable [12])

and, at best, limit the attacker to spoofing addresses within

their own contiguous address prefix (which may contain

many thousands of addresses).2

A more fundamental problem is that IP addresses are

not unique identifiers even when used as intended. An IP

address represents a topological location in the network

for the purpose of routing; it does not specify a physical

endpoint. In fact, it is common for protocols such as

DHCP, NAT and Mobile IP to dynamically change the

mapping between IP address and physical machine as part

of their normal use. While some such mappings can be

logged, it is common that even this data is retained only

for limited periods (sometimes less than a week [44]).

Wireless access poses an even more insidious prob-

lem. Public Wi-Fi hotspots allow attackers to purchase

anonymity on a cash basis, or simply “hijack” the session

of an existing user [56]. Private access points lower this

bar further as many users do not configure any method

of access control.3 Indeed, recent reports have identified

criminal use of open Wi-Fi access points specifically for

the purpose of enhanced anonymity [48].

Finally, in their recent study of SPAM sending, Ra-

machandran and Feamster show that as much as ten

percent of SPAM is sent from transient IP address space

1. Calcutta first systematicly used human fingerprints for criminal
records in 1897, followed by Scotland Yard in Britain in 1901.

2. Luckily, source address spoofing makes it difficult for attackers to
participate in two-way communications and thus is self-limiting in the
threat it presents.

3. In a 2006 survey performed by RSA Security, between 21 and 28
percent of Wi-Fi access points found in the cities of London, New York
and Paris used a default open configuration [49].

that is temporarily advertised and then withdrawn [45]. In

such an instance, an IP address may not even be routable

after an attack is completed, let alone serve as an identifier.

We are hardly the first to make these points. Indeed,

they have been raised repeatedly by forensic profession-

als [29], security researchers [38], and Internet industry

leaders [46] alike. Aucsmith sums the situation up well:

“The Internet provides criminals two of the most coveted

qualities: anonymity and mobility” [6].

3.2. Related work

There has been a wide range of systems designed to detect

and/or block IP source address spoofing [23], [26], [31],

[37], [39] although even in their ideal embodiment none

of these are foolproof. There has also been a long line of

literature focused on tracing spoofed packets back to their

source [47], [52], [53], [57]. These approaches, however,

are motivated by the operational needs posed by denial-

of-service attacks and therefore focus on delivering topo-

logical path information—an even more abstract property

than an IP address.

Finally, while we are unaware of other attempts to pro-

vide network-level forensic attribution to physical hosts,

there are a number of related research projects that make

similar use of cryptographic mechanisms. For instance,

the Clipper chip (and its data-oriented sibling Capstone)

was designed to provide generic end-to-end confidentiality

and integrity while still allowing key recovery for law

enforcement via government escrow [43]. The effort failed

for a number of reasons including the complications of

a U.S.-centric escrow policy for an international Internet

and the negative public image of a “big brother”-like

government entity with arbitrary powers. We discuss some

of these same issues in Section 8 as they relate to our

system. Closer to our own work, are the source authen-

tication systems of Liu et al. (“packet passports” [39])

and Andersen et al. (“Accountable Internet Protocol” [1],

[2]). Like us, both make use of cryptographic identifiers.

However, these systems are focused on ensuring the con-

sistency and topological validity of the IP source address

itself to prevent address spoofing and do not address

either user privacy concerns nor the need for long-term

physical linkage required for forensic attribution. Finally,

Wendlandt et al. describe the use of in-packet public key

signatures for the purpose of authorizing expedited routes

(again for protection against denial-of-service) [55]. While

the problem is quite different, we have mutual interest in

the development of high-speed hardware implementations

of public-key cryptography suitable for router implemen-

tations.

4. Design goals

The design space for providing attribution is large and re-

flects the many different uses that we place on identity and



the broad range of capabilities and limitations imposed by

technology. For example, packet traceback systems, such

as BBN’s SPIE, can attribute an individual packet to a

particular set of routers, but only do so with probabilistic

correctness and over operational time scales (minutes to

hours) [52]. By contrast, we have chosen a point in

the design space focused on the unique requirements of

forensic use:

4.1. Basic requirements

• Physical names. We believe that attribution must

provide a link to a physical object (e.g., the sending

computer). A physical computer can have an asso-

ciated owner and thus permits association via sales

and maintenance records. Moreover, given continu-

ous ownership, a physical computer may be reused

in multiple attacks. Identifying this computer allows

these attacks to be linked even if the physical com-

puter is never recovered. Finally, a physical computer

accretes physical forensic evidence as a side effect

of use. Indeed, much of this paper was written on

a laptop that contains extensive fingerprint evidence

on the screen and, upon examination, a range of hair

and skin samples underneath the keyboard. Were this

laptop to be found, it could be unambiguously linked

to this author via DNA or fingerprint comparisons.

• Per-packet granularity. We believe the best deter-

rence is provided when attribution is universal —

applied equally to every packet. Moreover, by pro-

viding this capability at the network layer, attribution

is transparently provided to all higher layer pro-

tocols and applications. Put another way, there is

an inherent benefit in not tying forensic attribution

to any particular higher-level network construct. We

argue that forensic attribution is most effectively used

when provided as a fundamental building block upon

which arbitrary higher-level protocols, services, and

applications can be built.

• Unimpeachability. While we would be satisfied if a

new attribution capability simply offered investiga-

tive value for those pursuing criminals, it is our

hope that any attribution mechanism be accepted

as sufficiently accurate and trustworthy to provide

evidentiary value in the courtroom as well. Thus, we

argue for the value of strong cryptographic mecha-

nisms that cannot be easily repudiated.

• Indefinite lifetime. In the Internet, as in the real world,

many crimes are not detected until long after they are

committed. Placing unnecessary restrictions on the

time window for forensic discovery will undoubtedly

be exploited by criminals to their advantage. For ex-

ample, even today many on-line criminals are savvy

about the practical investigatory delays imposed by

different bi-lateral Mutual Legal Assistance Treaties

and locate their data accordingly. Thus, we argue that

it should be possible to examine a packet and unam-

biguously attribute its origin long after the packet is

received, a time difference that may be months or

even years.

These requirements bring us to an architecture in which

each packet is self-identifying — that is, tagged with a

unique non-forgeable signature identifying the physical

machine that sent it. While such attribution does not

definitively identify the individual originating a packet,

it is the critical building block for subsequent forensic

analysis, investigation, and correlation as it provides a

beachhead onto the physical scene of the crime. We pre-

suppose that sites with sufficient risk and/or value at stake

will check such signatures, associate them with higher-

level transactions and log them for enough time to cover

their risk. Building such a capability is straightforward

using conventional digital signatures and some form of

public key infrastructure, albeit with some performance

cost.

4.2. Privacy requirements

However, this basic approach would allow anyone receiv-

ing such a packet to attribute its physical origin. While

this violation of privacy may seem minor to some, there

is a history of vigorous opposition to exactly such a capa-

bility. For example, in January of 1999, Intel Corporation

announced that new generations of its popular Pentium

microprocessors would include a new feature: the Proces-

sor Serial Number (PSN). The PSN was a per-processor

unique identifier that was intended as a building block

for future security applications. However, even though

this feature was completely passive, civil libertarians and

consumer rights groups quickly identified potential risks

to privacy stemming from an available globally unique

identifier. Among the specific concerns raised in com-

plaints filed with the Federal Trade Commission were the

general expectation that Internet users have to anonymity,

the chilling effect of privacy loss on a consumer’s use of

the Internet, the potential for a global identifier being used

to cross reference personal information, and the potential

for identity theft by forging the PSN of others [42]. In

April 2000, Intel abandoned plans to include the PSN

in future versions of its microprocessors. Thus, we posit

another critical requirement:

• Privacy. To balance the needs for forensic attribution

with the public’s interest in privacy, packet signatures

must be non-identifying, in a strong sense, to an

unprivileged observer. Moreover, the signatures must

not serve as an identifier (even an opaque one). As

such, distinct packets sent from the same source

must carry different signatures. Roughly speaking,

users should have at least the same expectation of



anonymity that they have in today’s Internet except-

ing authorized investigations.

On its face, a potential solution to this problem is to

digitally sign each packet using a per-source key that is

in turn escrowed with a trusted third party. Indeed, it

was just such an approach that was proposed by the ill-

fated Clipper chip. However, if a single third party is not

widely trusted (which seems likely given past experience),

then the scheme may accommodate multiple third-parties

responsible for different sets of machines, and/or a secret

sharing approach in which multiple third parties must

collaborate to generate the keying material to validate the

origin of a signature (e.g., in the U.S., both the Department

of Justice and the American Civil Liberties Union might

be required to agree that an investigation is warranted).

There is, however, a critical vulnerability in this approach.

Since, by design, a normal observer cannot extract any

information from a packet signature, nothing prevents

an adversary from incorrectly signing their packets (i.e.,

with random signatures). In such a situation, any attempts

at post-hoc authentication will be useless. Thus, to be

practical, our attribution architecture is motivated by one

final requirement:

• Attributability. To enforce the attribution property,

any observer on the network must be empowered to

verify a packet signature. That is, an observer should

be able to prove that a packet could be attributed if

necessary, but the process of performing that proof

should not reveal any information about the physical

originator itself. This requirement has a natural fate-

sharing property since the choice to verify a packet

is made by the recipient with the most future interest

in an attribution capability.

4.3. Non-goals

Equally important as our design goals, are our non-goals

— what we do not hope to accomplish in this paper. For

one, our work is not designed to address the issue of

IP address spoofing. While there is operational value to

preventing spoofing (i.e., to allow easier filtering of DDoS

attacks), in our view the virtual nature of IP addresses

make them inherently ill-suited for forensic purposes.

Second, we wish to be clear that our work in this paper is

strictly limited to attributing the physical machine that sent

a particular packet and not necessarily the complete causal

chain of events leading to that packet being generated.

This distinction is common to most kinds of forensic

investigations (e.g., unraveling offshore shell accounts in

forensic accounting or insider communication in securities

fraud investigations) but can manifest particularly easily

in the Internet context. For example, an attack might

be laundered through one or more intermediate nodes,

either as part of a legitimate anonymizing overlay network

(e.g., Tor) or via proxies installed on compromised hosts.

Previous work has explored how such “stepping-stone”

relations may be inferred in the network [58] and we be-

lieve that a similar approach — attributing each causal link

hop-by-hop — could be employed with our architecture

as well (and with the benefit of unambiguous evidence

of a packet origination). However, we believe that unam-

biguously establishing such causality is not possible at

the network layer alone and will ultimately require both

host support and, inevitably, manual investigation as well.

While we have a vision for how such host services should

be structured, we consider them beyond the scope of this

paper.

5. Architecture

While the previous requirements appear quite challenging

to satisfy, surprisingly there is a well-known cryptographic

tool — the group signature — that neatly unties this

particular Gordian knot. In this section, we briefly review

the properties of group signatures, describe their basic

application to forensic packet attribution, and review the

design issues that result from this architecture.

5.1. Group signatures

Group signatures were first introduced by Chaum and

van Heyst [19] with security properties fully formalized

in papers by Bellare, Micciancio, and Warinschi [8] and

Bellare, Shi, and Zhang [10]. We informally describe

their operation below using the model of [8], as well

as a definitional extension due to Boneh, Boyen, and

Shacham [13].

Informally, a group signature provides the property that

if a member of a group signs a message, anyone can

verify that the signature was indeed created by some group

member, but they cannot determine whom without the

cooperation of a privileged third party known as the group

manager.

More formally, a group signature scheme assumes a

group manager and a group of n unprivileged members,

denoted 1, 2, . . . , n (in this text we assume n is known,

but [10] extends the model to include groups of dynamic

size). The group manager has a secret key msk, each group

member i ∈ {1, . . . , n} has its own secret signing key

sk[i], and there is a single public signature-verification

key pk.

The group manager uses a KeyGen operation to create

pk,msk, sk and distributes these appropriately. Subse-

quently, if a group member i uses its secret key sk[i] to

Sign a message m and get back a signature σ, anyone with

access to the signature-verification key pk can Verify that

(m,σ) is a valid message-signature pair under the secret

key of some group member. The group manager can use

msk to recover the identity i of the signer using the Open

operation.

There are two principle security properties for group

signature schemes: full-anonymity and full-traceability;



these properties imply other properties, including unforge-

ability, exculpability and framing-resistance [8]. A group

signature scheme is CCA-fully-anonymous [8] if a set of

colluding members cannot learn information about the

signers’ identity i, even when the adversaries are allowed

to Open the signatures for all the messages besides the

target message-signature pair. Boneh et al. define a slightly

weaker definition of anonymity, CPA-full-anonymity [13],

in which the adversary is unable to Open the signatures

on other message-signature pairs. Surprisingly the set

of colluding members can actually include i, such as

if i were coerced into cooperating with the adversary.

Similarly, a group signature scheme is fully-traceable [8]

if a set of colluding members cannot create a valid

message-signature pair (m,σ) that the group manager

cannot trace back to one of the colluding parties — i.e.,

either Verify(pk,m, σ) fails, meaning that the signature is

invalid, or Open(msk,m, σ) returns the identity of one of

the colluding members.

5.2. Basic packet attribution

We apply group signatures to our problem as follows.

Each machine is a member of some group and is pro-

vided with a secret signing key. Exactly how groups

are constructed is very much a policy issue, but one

pragmatic approach is that each computer manufacturer

defines a group across the set of machines they sell. This

is a particularly appealing approach because it side-steps

the key distribution problem, as manufacturers are now

commonly including Trusted Platform Modules (TPM)

that encode unique cryptographic information in each of

their machines (e.g., the IBM Thinkpad being used to type

this paper has such a capability). Moreover, a tamper-

resistant implementation is valuable to prevent theft of

a machine’s signing key. This would also imply that the

manufacturer would either act as group manager in any

investigations (i.e., will execute Open under subpoena) or

would escrow their msk (or shares thereof) to other third

parties. However, this particular decision is not critical to

our technical discussion and we defer further discussion

of the surrounding policy issues until Section 8.

Given a secret signing key, each machine uses it to

sign the packets that they send. This signature covers all

non-variant protocol fields and payload data. The name

of the group and the per-packet signature are included in

a special packet header field that is part of the network

layer. Any recipient can then examine this header, and

use Verify to validate that a packet was correctly signed

by a member of the associated group (and hence could

be authenticated by the group manager). The verify step

does not require the use of any protected key material and,

by virtue of fate sharing, need not be part of the trusted

computing base.

5.3. Design issues

An implementation of group-signature-based packet at-

tribution must address several other challenges before

deployment becomes practical.

Replay. The basic approach we have outlined does not

prevent the adversary from replaying messages sent (and

signed) by other legitimate parties, or shuffling the order in

which a node receives the messages from other legitimate

parties. In some cases such replayed packets will be

immediately discarded by the receiving protocol stack or

application (e.g., because of misaligned sequence numbers

or routing information). On the other hand, an adversary

might be able to mount an untraceable DoS attack or

maliciously change application behaviors by replaying or

shuffling others’ packets over time. We therefore desire

some mechanism to bind these packets to a particular point

in time.

One natural solution requires the sender to include a

monotonically increasing counter in each packet, and the

receiver to discard any packets with duplicate sources and

counters. However, the naive implementation of such an

approach may require the receiver to maintain the list of

source-counter pairs (i.e., through reboots). Our current

implementation assumes loosely synchronized clocks; the

signer includes the current time in each outgoing packet,

and the receiver validate freshness directly. To handle

jitter and various network delays, as well as possible

inconsistencies between different devices’ perceptions of

time, one might employ a hybrid approach, including both

a counter and the time in each packet.

Revocation. To ensure that verifiable packets are at-

tributable back to a single physical machine, we assume

that the group signature secret keys will be stored in

tamper-resistant hardware and will not be copyable to

other devices. However, we anticipate that some secret

signing keys will inevitably be compromised. There are

two general frameworks for revoking these secret signing

keys — the first by Camenisch and Lysyanskaya [17] and

the other by Brickell and others [5], [14], [16], [32]. Since

most parties in our system are both signers and verifiers,

we adopt the Camenisch-Lysyanskaya approach in which

secret keys are revoked by globally updating the group

public key and locally updating each un-revoked party’s

secret signing key. In this scheme, the verifiers do not

need to maintain a list of individual revocations, but public

key updates must be applied universally to ensure that all

subsequent signatures can be verified. If a device misses

an update, then it must obtain those updates through a

back channel before its packets can be verified under the

updated group public key.

Middlebox modification. Middleboxes, like network ad-

dress translators (NATs), create a conundrum. In our

architecture, senders sign all non-volatile [52] contents of



outgoing packets, including the source address. Thus, any

packets that traverse a NAT will no longer verify, as their

contents have been changed. While some may consider

this a shortcoming, we argue that it is a requirement of

true attribution — the signer can only attest to contents

she transmitted. The only other option in our framework

is to deem the source address volatile, and exclude it

from the packet signature. To do so would imply that

the source address has no significance beyond a routing

locater; unfortunately, that is not the case in the current

Internet: end hosts use source addresses to demultiplex

incoming transport connections as well as associate flows

with the appropriate IPsec security associations.

This tension has been observed many times in the

past, and two architecturally pure alternatives exist: fu-

ture Internet architectures can either remove end hosts’

dependence on IP source addresses [28], [24] or make the

presence of middleboxes explicit [54]. For the time being,

deployments requiring NAT-like functionality must make

a tradeoff between deployability and completeness: they

are forced to choose between removing source addresses

from the signature — thereby limiting the scope of the

attribution — or encapsulating the original, signed packets

in an IP-in-IP tunnel [51], thereby exposing the middlebox

to the receiver.

On the choice of group signature schemes. Numerous

group signatures schemes have been proposed following

the seminal work of Chaum and van Heyst [19], each

with different security or performance properties. Since

our ultimate goal is to evaluate the viability of our

overall approach from a holistic perspective, assess the

network implications and challenges, and stimulate further

research, our particular choice of group signature schemes

is somewhat less material, and indeed we expect future

innovations in cryptography to produce even more attrac-

tive schemes. Foreshadowing to Section 6, our prototype

leverages the Boneh, Boyen, and Shacham group signature

scheme [13], which is provably CPA-fully anonymous

and fully-traceable under well-defined assumptions. Our

choice was driven in part because of its short group

signature size and its support under the Stanford Pairing-

Based Cryptography (PBC) Library [40]. While CPA-full

anonymity is a weaker property than CCA-full anonymity,

it is reasonable in many cases [13], and especially for

ours since we expect for the opening of signatures to

be a rare process tightly controlled by a coalition of

multiple parties. Other group signature goals, such as

strong exculpability [3], [4], [10], [33] (where even the

issuer of secret keys cannot forge signatures) do not seem

necessary for our model since the issuer of a private

key might also be the manufacturer of the hardware;

nevertheless, it would be possible to make our system

strongly exculpable using the enhancements in [13].

16 bytes

h (for windowed verification)

Signature (195 bytes)

Length Timestamp

Figure 1. Clue packet trailer format. The shaded
fields are explained in Section 6.2.

6. Clue

To explore the systems issues related to implementing a

real-world group signature scheme, we have developed

a prototype called Clue. Clue uses Stanford’s Pairing-

Based Cryptography (PBC) Library [40] for group sig-

nature operations, which in turn uses the GNU Multiple

Precision arithmetic library (GMP). In order to explore

group signatures in the context of real network packets, we

have implemented Clue as a module in the Click Modular

Router [35]. As PBC and GMP are designed as user-mode

libraries, we run Click as a user-mode process rather than

as a Linux or BSD kernel module. While this does incur

some performance penalty on its own, the cryptographic

operations dominate the user-mode transitions in practice,

and the user-mode penalty does not interfere with the

fundamental system design issues.

Figure 1 shows the packet trailer used by our current

prototype. The Clue module is mostly a straightforward

packet transformation element. When signing, the module:

1) Collects the non-volatile elements of an IP packet

2) Adds an eight-byte, local NTP-derived timestamp to

implement replay detection

3) Feeds the resulting data as input to the group

signature library to generate a signature, and

4) Appends the signature (and additional optimization

information) to the original packet and adjusts the

IP length field accordingly

Tasks such as recalculating checksums are left to other,

standard Click elements in the pipeline that perform these

functions. Similarly, when verifying, the module:

1) Validates a packet’s freshness from its timestamp

2) Collects the non-volatile elements of an IP packet

3) Strips the Clue trailer from the end of the packet

4) Feeds the resulting data and signature to the group

signature library, and

5) Pushes the original packet to one of two output ports

depending on whether verification was successful

We implement Boneh et al.’s revocation scheme [13],

driven by polling a well-known revocation service.

As might be expected, cryptographic operation over-

head can be quite high and dominates most performance



measures. While we have little doubt that more efficient

group signature schemes will emerge with faster imple-

mentations (we note that [55] describes a software-based

public-key implementation with sub-100 microsecond ver-

ify times) and that hardware implementation provides

further capacity, in this paper we have focused on the

optimization opportunities that arise from the interaction

between the dynamics of network protocols themselves

and the underlying cryptographic primitives. We first

describe the particular group signature construction we use

and then a series of optimizations we have implemented.

6.1. BBS Short Group Signatures

Our prototype uses the Boneh, Boyen, and Shacham [13]

short group signature scheme, which exhibits compara-

tively short signatures relative to group signature schemes

based on the Strong-RSA assumption of Baric and Pfitz-

mann [7]. We also refine the BBS group signature scheme

for use with our optimizations. The following summarizes

the basic BBS scheme at a level sufficient to understand

our optimizations; we defer further details of the BBS

scheme to the Appendix and reference [13].

The BBS Sign algorithm, on input a group public

key pk, the signer’s secret key sk[i], and a message

m, first obtains a source of randomness V , derives val-

ues for the variables T1, T2, T3, R1, R2, R3, R4, R5 from

V and pk, and then computes the value c as c ←
H(m,T1, T2, T3, R1, R2, R3, R4, R5) where ← denotes

assignment from right to left and H is a hash function; for

the security proofs, BBS model H as a random oracle [9],

[13]. The signing algorithm then outputs the signature

σ ← (T1, T2, T3, c, sα, sβ, sx, sδ1
, sδ2

) , (1)

where sα, sβ , sx, sδ1
, sδ2

are functions of c,V , and sk[i].
The BBS Verify algorithm, on input a group public key

pk, a message m, and a signature σ = (T1, T2, T3, c, sα,
sβ , sx, sδ1

, sδ2
), derives R′

1, R
′

2, R
′

3, R
′

4, R
′

5 from pk and

σ, computes c′ as c′ ← H(m,T1, T2, T3, R
′

1, R
′

2, R
′

3,
R′

4, R
′

5) and accepts the signature as valid exactly when

c = c′. None of our optimizations or extensions modify

the BBS KeyGen or Open algorithms; we therefore do not

survey their details here.

6.2. Optimizations

There are several approaches for optimizing a BBS-based

packet attribution system. These optimizations exploit

artifacts of the BBS scheme itself as well as properties

of networks protocols and the clients.

Precomputation (for sender). We can take advantage

of client workloads to improve the overhead of Sign in

the sending critical path. The Sign operation has two

components, computing the Tj and Rj values, which are

independent of packet data, and using those values to

sign a packet. The Tj and Rj computation step by far

dominates the overhead of Sign. If we take the Tj and Rj

computation out of the critical sending path by precomput-

ing them, we can greatly improve the throughput of using

Sign. Most client workloads consist of applications that

have low average sending rates, such as email, Web brows-

ing, remote login, etc., allowing signature precomputation

to overlap I/O. Indeed, over long time scales the CPU load

of clients and servers alike are dominated by idle time —

an effect further magnified by multi-core processors. Thus,

periods of idleness can be exploited to buffer signature

precursors for subsequent periods of activity [27]. As we

will show, this precomputation dramatically reduces the

requirements of the sender and verification performance

becomes the dominant bottleneck. Thus, we have not

explored additional performance improvements for the

sender; e.g., scenarios in which the sender only signs

packets in batches, perhaps producing only one signature

every k packets.

Windowed verification (for receiver). We take advantage

of the streaming nature of network protocols like TCP

to amortize verification over multiple packets of data

to reduce the overhead of Verify in the receive critical

path. Deriving the R′

j values from pk and σ creates

a significant fixed overhead for Verify independent of

the amount of signed data. When using Verify on the

receiver, the attribution layer can accumulate a window

of packets (e.g., a flight of TCP segments) and verify

them all together to amortize the per-packet verification

overhead. We stress that the signer signs every window of

k packets, even overlapping windows, and that the verifier

has the option of either verifying the packets individually,

or verifying any window of its choice. However, this

verification optimization slightly increases the length of

a signature.

To accommodate the above scenario, we modify the

BBS scheme as follows. Using our modified scheme, a

verifier can choose to verify the signature on the j-th
packet Pj in isolation (e.g., when there are no other

packets waiting to be verified or when there is packet

loss), or verify in batch the signature on a window of k
packets Pj−k+1, . . . , Pj . We accomplish the above goal

by, on the signing side, first hashing the initial k − 1
packets Pj−k+1, . . . , Pj−1 to a value h, then signing

h‖Pj as before, and finally including h in the resulting

signature tuple; here ‖ denotes string concatenation, the

hash function to compute h is H ′ 6= H , and Pj is

implicitly prefixed with a fixed-width length field. To

avoid trivial hash collisions in h, when hashing the packets

Pj−k+1, . . . , Pj−1 we also prepend each packet with a

four-byte length field, and then concatenate the resulting

length fields and packets together. Including h in the sig-

nature allows for the receiver to verify the signature over

the j-th packet Pj in isolation (by verifying the signature



over h‖Pj). To verify the signature over the entire window

Pj−k+1, . . . , Pj , the receiver first recomputes h.

Security for the above construction follows from the

proof of security for the basic BBS group signature

scheme [13] assuming that H and H ′ are independent

random oracles and that the hash values h are always

the same length. In practice, since the inputs to H and

H ′ are prefix-free [21], one can implement H and H ′

from the same hash function, like SHA-1 or SHA-512, by

prepending the inputs for H with a 0 byte and the inputs

for H ′ with a 1 byte.

In our implementation the window size k is a parameter

provided to the IP layer. While it can be set statically, we

have also modified our TCP implementation to adaptively

set k to match the sender’s congestion window. We believe

this maximizes performance since it reflects the largest

number of packets that can be amortized together without

expecting a packet loss (losing the benefit of amortized

verification).

Asynchronous verification (for receiver). Furthermore,

we can overlap computation with network delay to re-

duce protocol serialization with verification. For example,

rather than wait until Verify completes on a TCP packet

before sending an ACK, TCP can first optimistically

send an ACK back to the sender to overlap the ACK

with the Verify computation. Implementing this feature

is inherently a layer violation since we allow TCP ACK

processing to proceed independent of IP layer verification,

but we prevent unverified data packets from being passed

to the application.

Incremental verification (for receiver). Given the com-

putational costs associated with the Verify algorithm,

under some circumstances, e.g., DoS attacks, we may wish

to be able to quickly reject packets that might not be

attributable. While we currently cannot completely erase

the cost for verification, we can decrease the amount

of time to reject a non-verifiable packet by a factor of

approximately 2, at the expense of increased signature

sizes. The approach we take is to make Verify incre-

mentally verifiable — the average time to process and

reject a non-attributable packet will decrease, though the

time to process and accept a legitimate packet will remain

essentially unchanged.

Our incrementally verifiable version of the BBS group

signature scheme builds on our earlier observation that

(1) the bulk of the computation in Verify is spent on

computing R′

1, . . . , R
′

5 and (2) an implementation can

derive R′

1, . . . , R
′

5 in parallel. Technically, we change the

signature output in Equation 1 to

σ ← (T1, T2, T3, c, sα, sβ, sx, sδ1
, sδ2

, R1, R2, R3, R4, R5) .

We then revise the Verify algorithm to, on input a

signature σ, set c′′ ← H(m,T1, T2, T3, R1, R2, R3,

R4, R5), and immediately reject if c′′ 6= c. The

modified verification algorithm would then derive

the variables R′

1, R
′

2, R
′

3, R
′

4, R
′

5 from pk and

T1, T2, T3, c, sα, sβ , sx, sδ1
, sδ2

in a random order,

immediately rejecting if R′

j 6= Rj . Finally, the

modified algorithm would accept the signature as

valid since the failure to reject above implies that

c = H(m,T1, T2, T3, R
′

1, R
′

2, R
′

3, R
′

4, R
′

5).

This version of Verify is incrementally verifiable since

it is possible for Verify to reject before deriving all of

R′

1, . . . , R
′

5. An adversary cannot force the verification

algorithm to always take the maximum amount of time

since the equalities Rj = R′

j are checked in a random

order unknown to the adversary. This construction also

preserves the anonymity and traceability properties of

the basic BBS scheme. Intuitively, since anyone could

compute the R′

1, . . . , R
′

5 values from the signature itself,

including the R′

j values in the signature does not break the

anonymity property. Additionally, since the Tj values are

untouched and the values R′

j and Rj are always checked

for equality, this variant preserves the BBS traceability

properties. In the common case, this modification does

nothing except consume extra bandwidth (since Verify still

needs to compute R′

1, . . . , R
′

5). But, in the event of an

attack consisting of a set of non-verifiable packets, this

modification allows us to more quickly discard a fraction

of those packets.

Potential optimizations. There is a large class of related

optimizations that relax security guarantees in exchange

for performance. For example, the receiver could ran-

domly verify a packet with probability 1/n for some n.

However, we have explicitly chosen not to explore such

optimizations at this time since our goal with this paper

is to explore an extreme point in the design space —

one where the attributability of each and every packet

can be enforced. For the same reasons, we have not yet

explored protocol-specific fate sharing optimizations such

as only signing and verifying TCP SYN packets. Such

optimizations could dramatically reduce overhead, albeit

in exchange for some increased risk of non-attributability

(e.g., via TCP connection hijacking).

Another possibility for improving performance is to

investigate parallel hardware implementations of the cryp-

tographic operations; such hardware is likely appropriate

at least for router implementations and heavily-loaded

servers. For example, this hardware could contain multiple

cores, each implementing a complete version of the BBS

signing and verification algorithms. Or one could exploit

the fact that, internal to Sign and Verify, the computa-

tions of the Tjs, the Rjs, and R′

js are independent and

parallelizable; see Equations 2–4, 5–9, and 16–20 in the

Appendix. Rather than explore such forms of parallelism

in this paper, we choose to take advantage of properties of



1 packet 8 packets

sign 6.17 6.19
precomputed sign 0.022 0.058
precomputation 6.14 6.14

verify 15.7 15.7
incremental verify 15.6 16.3
corrupted incremental verify 4.85 4.83

Table 1. Overheads (in ms) of cryptographic

operations for both 1 and 8-packet windows.

networking protocols and client behavior to improve the

performance of software implementations.

7. Evaluation

We have verified that Clue provides the security properties

described in Section 4. Here, we quantify the overhead of

the Clue implementation of the basic security operations,

and we measure the impact of this overhead on TCP

performance. We emphasize, however, that benchmark

figures are presented to demonstrate the feasibility of

our approach—in particular, we have not optimized the

cryptographic operations.

As a user-level software prototype, Clue provides ac-

ceptable performance when using the optimizations de-

scribed in Section 6.2. Clue adds about 30 ms of end-

to-end delay to sending a packet. For interactive applica-

tions like ssh, this extra delay is insignificant to users.

Clue achieves a bulk TCP throughput of 17.5 Mbps—

a throughput greater than that enjoyed by the average

wide-area Internet user. A typical Internet user browsing

the Web using Clue would experience roughly the same

performance as without.

7.1. Experimental setup

For our experiments, we use three hosts in a sender-delay-

receiver configuration. The delay host ran Linux 2.6 with

a hardware configuration of dual 2.8-GHz Pentiums with

2 GB of RAM, and ran the NIST Net emulation pack-

age [18] to introduce link delay in our TCP experiments.

The sender was a dual 3.4-GHz Pentium with 4 GB of

RAM, and the receiver ran dual 3.0-GHz Pentiums with

16 GB of RAM. Both the sender and receiver ran the

Click-based implementation of Clue (see Section 6) over

Linux 2.6 and used the default values for send and receive

buffer sizes.

For all experiments, we use the d277699-175-167

parameter file pre-packaged with PBC, which yields a

group signature scheme with strength roughly equivalent

to a standard 1024-bit RSA signature [13]. The BBS

scheme outputs signatures that are 195 bytes long using

this parameter file.

7.2. Microbenchmarks

We start by measuring the overhead of the basic cryp-

tographic operations Sign and Verify and their variants

as described in Section 6. Table 1 shows the average

time taken across 100 iterations of these operations on

the receiver. The first column of results for “1-packet

sign window” show overheads when executing on a single

1277-byte packet as input; we choose 1277 since the

combination of such a packet, 195 bytes for the basic BBS

signature, 8 bytes for the timestamp, and an extra 20 bytes

for the windowed signing optimization will yield a 1500-

byte packet. The second column, “8-packet sign window,”

shows results with eight packets as input; as described in

Section 6.2, one of our optimizations uses windows of

packets to amortize overhead across multiple packets. In

either case, the per-packet overhead is sufficiently small

(10–30 ms in total) to be unnoticeable in interactive traffic,

but substantial enough to have a significant effect on bulk

TCP performance.

The precomputation optimization for the sender sepa-

rates signature computation from signing the packet. The

“precomp sign” result measures the step that remains

on the critical path—signing using a set of precomputed

values—and shows that almost all of the overhead of

Sign comes from generating message-independent crypto-

graphic values (the “precomputation” step) and not from

computing the message-dependent part of the signature

nor signing the packet itself. In the bulk-transfer experi-

ments, we show that removing signature computation from

the critical path of sending packets results in a significant

increase in throughput. Similarly, the row labeled “verify”

represents the average time to verify a single signed packet

of the same size listed above; in our implementation,

verification is about 2.5x slower than signing.

The remaining two rows measure the performance of

our incremental verification scheme designed to defend

against a flood of invalid packets described in Section 6.2.

The “incremental verify” row shows the time required to

verify a valid packet signature using this scheme, which is

essentially identical to the original verification operation,

introducing negligible CPU overhead in the common case.

In contrast, “corrupted incremental verify” measures the

average time required to reject a corrupted signature. For

the original scheme, this time is identical to the “verify”

measurement. However, using incremental verification we

obtain a 70% reduction in overhead.

The only significant difference between the eight-packet

times and the single-packet times occurs when signing a

packet using pre-computed values and arises as a result

of hashing the extra data in the additional packets. Note,

however, that this cost is still roughly two orders of magni-

tude less than any other operation, and, as such, we do not

observe any additional impact on bulk throughput. As a

result, amortizing the attribution operations over multiple

packets is a key mechanism for reducing receive overhead.

In our experiments below, we show that large windows

combined with precomputed signatures can dramatically

improve performance over basic Sign and Verify alone.
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While not time-critical, for completeness we have also

measured the performance of key revocation. It takes our

Clue prototype approximately 21.2 ms to recompute a

group member’s private key on our test hardware. Recall

that each un-revoked group member must recompute her

private key each time the public group key is updated.

The relative speed of this operation, however, indicates

that the coordinated distribution of group key updates—

as opposed to any cryptographic operations—is likely to

be the limiting factor on key revocation rates.

7.3. TCP throughput

Bulk TCP throughput is an important performance metric

for many Internet applications. Experimentally, our goal

is to evaluate the impact of attribution on TCP throughput

in our Clue prototype. We measure the TCP throughput

performance of the our attribution implementation rela-

tive to various baseline configurations across a range of

network round-trip times (RTTs). The implementation of

attribution in Clue achieves a throughput within a factor

of 1.2 of a Click forwarder at typical Internet RTTs. While

privacy-preserving attribution has a non-negligible impact

on bulk throughput on today’s client systems, this cost is

not prohibitive and will continue to decrease over time

as CPU performance increases faster than typical Internet

bandwidths.

We conducted ttcp benchmarks between the sender

and receiver that required those hosts to forward traffic

through a delay host. For every test configuration, we

ran each individual transfer for at least 20 seconds. We

require the sender to transfer all its data before it closes

the connection, and we time the transfer from when the

sender connects to the receiver to when the sender receives

the FIN from the receiver. Figure 2 shows the results of

our experiments for a number of different configurations.

We vary the round-trip time (RTT) between sender and

receiver on the x-axis, while the y-axis plots the through-

put achieved using the ttcp application benchmark; note

that the y-axis is a log scale. Each point is the average of

five runs; error bars show the standard deviation.

As an upper bound, the “Linux” curve plots the for-

warding rate of the default Linux networking stack on

our hardware. To provide a more realistic baseline for

our implementation, we also show the performance of an

unmodified user-level Click installation (“Proxy”); Click

simply forwards packets received on its input to its

output without any processing. The difference between

“Proxy” and “Linux” shows the overhead of interposing

in the network stack at user-level, including the copying

overhead when crossing the kernel boundary, etc. An

optimized, kernel-level packet attribution implementation

need not suffer this overhead. Although not shown, we

also measured the performance of the provided Click IPsec

module and found its performance to be indistinguishable

from the “Proxy” configuration.

The “Sign+Verify” line corresponds to the baseline

performance of Clue using individual Sign and Verify

on each IP datagram. Given the times required for Sign

and Verify as shown in Table 1, one would expect the

29 ms required for the Verify operation to limit long-

term bulk throughput to a maximum of 0.35 Mbps. It

is not surprising, then, that our implementation of the

default “Sign+Verify” attribution process restricts bulk

TCP throughput to approximately 0.33 Mbps independent

of the RTT.

The poor performance of “Sign+Verify” motivates a

need for the optimizations described in Section 6.2. While

precomputation dramatically decreases the overhead the

sender, it has only modest impact in isolation on TCP

throughput, as performance is still receiver limited. Simi-

larly, asynchronous verification allows the receiver to im-

mediately issue ACKs, but the potential for improvement

is bounded by the effective decrease in flow RTT. Indeed,

precomputation and asynchronous verification are most ef-

fective when combined with windowed verification, which

has the potential to move the performance bottleneck back

to the sender.

The line titled “Precomp+Win-8” shows the perfor-

mance of Clue when combining the three optimizations

while using a fixed window size of eight packets. In

theory, the larger the window size, the less overhead veri-

fication imposes. Indeed, progressively increasing the win-

dow size continues to increase throughput performance—

to a point (most of the benefits have been achieved

with a window of 64 packets as indicated by the line

“Precomp+Async+Win-64,” which exceeds 17.5 Mbps

at 20 ms). Recall that windowed verification can only

proceed in the absence of loss; if a packet is lost in

a window, the remaining packets must be verified indi-

vidually, negating any potential for improvement. Hence,

our Clue implementation dynamically adjusts the window



size to match the sender’s TCP congestion window. The

“Precomp+Async+AdaptiveWin” line shows its perfor-

mance approaches the baseline for all but the smallest

RTTs. In fact at an RTT of 80 ms—a typical RTT for

TCP connections on the Internet [50]—this combination

achieves a throughput of 9.6 Mbps, within a factor of

1.2 of “Proxy” itself, and exceeds the capacity of most

consumer broadband links.

8. Technology and politics

We have so far largely evaded the policy question of who

should play the role of group manager and under what

circumstances a packet “opening” should be authorized.

This is not simply because it has no technical answer, but

because it clearly has no single best answer. The Internet

is an international entity and one without any overarching

controlling legal authority. Whose laws should apply in

authorizing attribution? What parties should be involved,

and how? It is inevitable that different prevailing standards

will hold sway and may ultimately require treaty instru-

ments to resolve.4 At the same time, there are choices

in a technical design that can have profound effects on

the manner in which attribution is used or abused. It is, as

David Clark et al. describe, a classic example of a “tussle”

— a point of contention between the interests of law

enforcement, individuals, governments and industry [20].

However, rather than completely ignore this hard issue,

we offer a strawman proposal and argue why it offers a

useful point for debate.

First, as discussed in Section 5, since we assume

that individual group signing keys are installed into per-

computer TPMs it would be expedient to have the man-

ufacturer play the role of group manager. Thus each

packet would include not only the packet’s signature but

also a group identifier associated with the manufacturer.5

This avoids the complexities and political complications

of a PKI and is also a natural role for manufacturers

since they are increasingly multi-national entities who

understand local jurisprudence. Moreover, manufacturers

already maintain records of sale and service that would

inevitably be requested anyway after a packet is attributed

to a particular machine. While it is certainly possible

that some manufacturers may be compromised or may

seek jurisdictional protection from legal subpoena by

incorporating in uncooperative nations, this behavior is

ultimately visible and thus potentially self-policing. If

large numbers of Internet hosts or networks refuse packets

from questionable or non-responsive manufacturers then

their products are unlikely to succeed in the marketplace.

4. The mutual assistance provisions of the European Convention on
Cybercrime would provide such a framework if ratified.

5. We acknowledge that some strong anonymity advocates may view
the mere existence of multiple groups to be a threat to individuals’
privacy, particularly for groups with few members.

However, another concern is that corporations may vol-

untarily share data with government entities (or even third

party corporations) due to extra-legal pressure or simple

economic interest. In a sense this is unavoidable in general

and cannot be solved strictly through technical means.

However, within compatible systems of government, it is

possible to build checks and balances that mitigate this

threat and make such actions transparent — to watch the

watchmen as it were. To wit, suppose that after generating

a stockpile of group keys, the group manager private key

is split into n pieces that are doled out to independent

oversight organizations.6

Attribution can then be performed using standard cryp-

tographic techniques for threshold decryption [25]. In

particular, any t out of n organizations may combine

their pieces to perform the Open operation on a particular

signature, but without any of the organizations recovering

the original private key. Thus, a packet cannot be attributed

without the participation of t parties. This permits a range

of policy choices. The oversight organizations can stymie

extra-legal attribution by requiring a court order. Alter-

natively, they may publish any attribution requests so the

state’s use of this technology and their particular interests

can be scrutinized. Again, this approach is itself imperfect

within a coercive state or against a set of collaborating

rogue oversight organizations, but we believe it is a useful

starting point for discussion.

9. Conclusions

Much of the Internet’s success can be attributed to its

minimalist architecture. By asserting few restrictions, the

same network substrate has allowed connectivity across

heterogeneous communications technologies and has sup-

ported a tremendous variety of application uses. However,

these architectural choices were made without signifi-

cant consideration of the security implications. Indeed, in

David Clark’s classic paper “The Design Philosophy of the

DARPA Internet Protocols”, the word security does not

appear. Today, the Internet’s architectural freedoms have

emerged as ripe vulnerabilities for adversaries trying to

exploit the network to their ends. Chief among these is the

lack of accountability for user actions. Without a plausible

threat of accountability, the normal social processes that

disincent criminal behavior cease to function.

In this paper we consider the possibility of modifying

the Internet architecture to proactively enable network

forensics while still preserving the privacy of network

participants under normal circumstances. Our approach is

to use a tool from cryptography—group signatures—that

enable each participant to sign network packets in such

6. Moreover, it may even be possible with certain group signature
schemes [15] to apply threshold techniques to create the group keys
themselves, thereby ensuring no party ever learns the group manager
private key.



a way that: (1) an authorized party can determine the

physical identity of hardware originating those packets;

(2) no other party can determine the identity of the

originating physical hardware; and simultaneously (3) all

network participants can verify that a packet is well-

formed and attributable by the trusted authority. We have

shown that the technique, while still some distance from

being practicable, is a viable and promising foundation

for future research.
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BBS Group Signature Details

The BBS short group signature scheme [13] is specified

with respect to a bilinear group pair (G1, G2), where G1

and G2 are both multiplicative cyclic groups of prime

order p, and where there exists a computable isomorphism

ψ from G2 to G1. Let e : G1 × G2 → GT denote a

bilinear map. For security, we assume that the “Strong

Diffie-Hellman” assumption holds on (G1, G2) and the

“Linear Diffie-Hellman” assumption holds on G1; we

defer details to [13].

Setup. On input the number of members of the group

n, KeyGen first selects a generator g2 in G2 uniformly

at random and sets g1 to ψ(g2). The KeyGen algorithm

then sets h
$

← G1 − {1G1
} and ξ1, ξ2

$

← Z
∗

p, and sets

u← h1/ξ1 and v ← h1/ξ2 . Then KeyGen selects γ
$

← Z
∗

p

and sets w ← gγ
2 . The global public key then becomes

pk← (g1, g2, h, u, v, w).

Next, for i = 1 to n, KeyGen selects xi
$

← Z
∗

p and

sets Ai
$

← g
1/(γ+xi)
1 . The i-th user’s private key becomes

sk[i] ← (Ai, xi), and the master secret key becomes

msk← (ξ1, ξ2, A1, A2, . . . , An).

Sign. The Sign algorithm, on input the group public key

pk = (g1, g2, h, u, v, w), a signer’s secret key sk[i] =
(Ai, xi), and a message M ∈ {0, 1}∗, proceeds as follows.

First, the signer picks α, β, rα, rβ , rx, rδ1
, rδ2

$

← Zp



and then computes
T1 ← uα (2)

T2 ← vβ (3)

T3 ← Aih
α+β (4)

R1 ← urα (5)

R2 ← vrβ (6)

R3 ← e(T3, g2)
rx · e(h,w)−rα−rβ ·

e(h, g2)
−rδ1

−rδ2 (7)

R4 ← T rx

1 · u
−rδ1 (8)

R5 ← T rx

2 · v
−rδ2 . (9)

Let H : {0, 1}∗ → Zp be a hash function, which the

security proofs for the BBS scheme model as a random

oracle. The Sign algorithm then computes

c← H(M,T1, T2, T3, R1, R2, R3, R4, R5) (10)

and then proceeds to compute

sα ← rα + cα (11)

sβ ← rβ + cβ (12)

sx ← rx + cxi (13)

sδ1
← rδ1

+ cαxi (14)

sδ2
← rδ2

+ cβxi . (15)

The resulting signature is

σ ← (T1, T2, T3, c, sα, sβ, sx, sδ1
, sδ2

) .

Verify. On input the group public key pk = (g1, g2, h,
u, v, w), a message M , and a signature σ = (T1, T2, T3, c,
sα, sβ , sx, sδ1

, sδ2
), the Verify algorithm computes

R′

1 ← usα · T−c
1 (16)

R′

2 ← vsβ · T−c
2 (17)

R′

3 ← e(T3, g2)
sx · e(h,w)−sα−sβ ·

e(h, g2)
−sδ1

−sδ2 · (e(T3, w)/e(g1, g2))
c
(18)

R′

4 ← T sx

1 · u
−sδ1 (19)

R′

5 ← T sx

2 · v
−sδ2 (20)

c′ ← H(M,T1, T2, T3, R
′

1, R
′

2, R
′

3, R
′

4, R
′

5) (21)

If c = c′, Verify accepts, else it rejects.

Open. The Open algorithm takes as input the group

public key pk = (g1, g2, h, u, v, w), the master secret

key msk = (ξ1, ξ2, A1, A2, . . . , An), a message, and a

signature σ = (T1, T2, T3, c, sα, sβ , sx, sδ1
, sδ2

). After

first using Verify to check the validity of the signature,

Open computes A′ ← T3/(T
ξ1

1 · T
ξ2

2 ) and returns the

index i for which A′ = Ai; the integer i identifies the

original signer.

Revocation. Recall that pk = (g1, g2, h, u, v, w) is the

group public key. To revoke the r-th user, with private

key (Ar, xr), an authority publishes the revocation list

RL = {(A∗

r , xr)}, where A∗

r = g
1/(γ+xr)
2 . Note that

Ar = ψ(A∗

r). When G1 = G2, A∗

r = Ar; otherwise,

the computation of A∗

r uses the secret γ from the setup

procedure.

Given RL, verifiers first compute the new public key

pk′ = (g′1, g
′

2, h, u, v, w
′) as: g′1 ← ψ(A∗

r), g
′

2 ← A∗

r , and

w′ ← g2 · (A
∗

r)
−xr . An unrevoked user with private key

(A, x) sets its new private key to be (A′, x) where

A′ = ψ(A∗

r)
1/(x−xr)/A1/(x−xr) .

If m > 1 users are being revoked, the above process

could be executed once for each of the m revoked users,

or m users could be revoked in batch; we omit details.




