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Abstract
Algorithms for approximate Bayesian inference, such as
Monte Carlo methods, provide one source of models of how
people may deal with uncertainty in spite of limited cognitive
resources. Here, we model learning as a process of sequential
sampling, or ‘particle filtering’, and suggest that an individ-
ual’s working memory capacity (WMC) may be usefully mod-
elled in terms of the number of samples, or ‘particles’, that are
available for inference. The model qualitatively captures two
distinct effects reported recently, namely that individuals with
higher WMC are better able to (i) learn novel categories, and
(ii) flexibly switch between different categorization strategies.
Keywords: Bayesian inference; particle filter; working mem-
ory; category learning; knowledge restructuring

Introduction
Humans often behave in a manner consistent with Bayesian
principles (Chater & Oaksford, 2008) yet how they achieve
this is unclear. Though simple in principle, exact Bayesian
calculations are frequently intractable in real-world settings,
leading to a need for approximations. In statistics and com-
puter science, this challenge has been met through the de-
velopment of powerful, general-purpose techniques for ap-
proximate Bayesian inference, such as Monte Carlo meth-
ods, which allow practical application of Bayesian methods
in complex domains. The practical success of these tech-
niques has naturally prompted an interest in whether people
deal with uncertainty in an analogous manner (Griffiths, Vul,
& Sanborn, 2012). Importantly, such algorithms can approx-
imate probabilistic inference arbitrarily well when sufficient
time and memory are available, thereby providing a bench-
mark for ideal performance, but also display systematic de-
viations from the normative solution when resources are lim-
ited. These latter ‘qualitative fingerprints’ may be particu-
larly illuminating when considering human cognition, where
constraints on information-processing capacity are typically
assumed. A salient example is provided by limits on work-
ing memory capacity (WMC; Cowan, 2001). While the exact
nature of these limits remain the subject of debate, one promi-
nent conception is that they reflect a limited resource which is

shared across representations and processes in working mem-
ory (e.g., Just & Carpenter, 1992).

In the current work, we consider WMC limits within the
context of Bayesian inference, asking whether WMC may be
usefully modelled as a constraint on inferential resources. In
particular, we model the learning process as one of particle
filtering, in which a series of probability distributions is rep-
resented by a limited set of samples (‘particles’) which are
sequentially updated over time (Griffiths et al., 2012). Higher
WMC is then assumed to be implemented as a greater num-
ber of particles. This approach is applied to two recent exper-
iments which indicate positive effects of higher WMC on two
distinct aspects of categorization: (i) the facility with which
novel categories are learned (Lewandowsky, 2011); and (ii)
the ability to flexibly switch between different category rep-
resentations or response strategies, referred to as knowledge
restructuring (Sewell & Lewandowsky, 2012). We show that
both of these effects are qualitatively captured by a single
model in which WMC is equated with the number of parti-
cles available for inference — i.e., the number of hypotheses
about category structure that an individual can concurrently
entertain.

WMC and Category Learning

Lewandowsky (2011) measured participants’ WMC before
testing category learning performance on the six classical
problem types of Shepard, Hovland, and Jenkins (1961)
(henceforth ‘SHJ’). Each involves learning to assign a set
of stimuli to category A or B based on their values on bi-
nary dimensions, but the problem types vary in the number of
stimulus dimensions required to correctly perform classifica-
tion. Consistent with the classical results, participants gener-
ally learned the Type I problem fastest, Type VI the slowest,
and Types II-V at an intermediate rate. Crucially, WMC score
was found to be positively correlated with category learning
performance: higher WMC individuals tended to make fewer
errors across all problem types.

767



WMC and Knowledge Restructuring

Sewell and Lewandowsky (2012) assessed the relationship
between WMC and performance in a knowledge restructur-
ing (KR) task. Participants were guided to use one particular
categorization strategy in a binary classification task before
being instructed to switch to an alternative, equally-effective
strategy (Fig 1A). The stimuli, rectangles of varying height
with a vertical bar located at different locations along their
base, belonged to category A or B depending on their position
in category space (Fig 1B). Crucially, training stimuli (filled
circles) were clustered into two separate regions of category
space (as indicated by different colours), with categories ar-
ranged so that partial category boundaries (solid lines) could
not be integrated in a coherent manner; neither partial bound-
ary could be extended so as to allow accurate classification
of all stimuli in the other cluster. A third, binary ‘context’
dimension was systematically mapped onto the two training
clusters so that stimuli belonging to distinct clusters appeared
in different colours (see example stimuli, lower Fig 1B).

At the task outset, participants were given information de-
signed to guide them towards using one of two different
strategies for co-ordinating partial categorization rules: (1)
a knowledge partitioning (KP) strategy was encouraged by
imparting that the context variable (colour) could be used to
determine which dimension to use (rectangle height or bar po-
sition) for categorization; (2) a context-insensitive (CI) strat-
egy was instead encouraged by highlighting that bar position
could be used to determine which partial boundary to apply
(i.e., regardless of context). Both strategies could support per-
fect performance but predicted different patterns of general-
ization when applied to new stimuli (open squares, Fig 1B)
in a transfer test, thereby revealing which strategy was in use
(Fig 1C). A summary ‘context sensitivity’ (CS) measure was
applied to participants’ test patterns to quantify the degree to
which they generalized in a manner consistent with the KP
(high CS) or CI (low CS) strategy (Fig 1D).

Critically, Sewell and Lewandowsky found evidence that
individuals with higher WMC were more adept at switch-
ing between these different categorization strategies when in-
structed to do so, as measured by how much their CS scores
changed between tests. This was interpreted in terms of
greater ‘knowledge restructuring’, i.e., ability to coordinate
different category representations or response requirements.

Modelling Approach

Our model comprises three parts: 1) assumptions about how
participants represent categories, specified in terms of an ex-
plicit generative process; 2) a procedure by which participants
are assumed to infer categories in light of prior assumptions
and experimental stimuli; and 3) a means for translating par-
ticipants’ beliefs into choice (i.e., a predicted category label).
Our description focuses on how the modelling approach is
applied to the KR task; the SHJ tasks are simpler and easily
modelled with only minor modifications.
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Figure 1: (A) Knowledge restructuring (KR) task design. (B)
Experimental stimuli, depicted in category space: position of
a vertically-oriented bar (x-axis) vs. height of rectangle (y-
axis). Filled circles denote training stimuli; open squares de-
note test stimuli; solid lines indicate the partial rule bound-
aries. Two example stimuli are shown underneath. (C) ‘Ideal’
predicted response profiles given exclusive use of a context-
insensitive (CI; top row) or knowledge-partitioning (KP; bot-
tom row) strategy during test. Darker shading indicates a
higher probability of classifying as category A. (D) Aver-
age context-sensitivity (CS) scores across participants during
transfer tests, indicating use of CI (low) or KP (high) strategy.
Figures B–D adapted from Sewell and Lewandowsky (2012).

Category Representation

A number of representational formats for categories have
been discussed in the literature. Here, we opted to use classi-
fication and regression tree (CART) models (Breiman, Fried-
man, Olshen, & Stone, 1984). Firstly, these are well-suited
to cases in which categories are readily described in terms
of simple rules, particularly if an ordering on these rules
is suggested (as in the KR task). Secondly, the classifica-
tion boundaries generated by CART models lead naturally to
‘axis-aligned’ generalization patterns like those observed in
the KR task (participants’ response profiles were very similar
to those shown in Fig 1C), whereas producing this behaviour
is non-trivial for other category models.

Briefly, CART models provide a flexible method for spec-
ifying the conditional distribution of a binary category la-
bel y given a p-dimensional stimulus feature vector x =
(x1,x2, . . . ,xp). In the KR task, for a given stimulus on
trial t, we have yt ∈ {A,B} and a 3-dimensional input xt =
(xt,1 = bar positiont ∈R, xt,2 = heightt ∈R, xt,3 = contextt ∈
{0,1}). The models work by recursively partitioning the
input space into axis-aligned cuboids (similar to the partial
boundaries in Fig 1B) and applying a simple conditional
model to each region (e.g., probability that category label =
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A). The sequence of partitions can be represented as a binary
tree (Fig 2).

Formally, a binary tree structure T consists of a hierar-
chy of nodes η ∈ T. Nodes with children are internal nodes,
while nodes without children are leaf nodes (Fig 2A). Each
node is associated with a block B(η)⊆ Rp of the input space
as follows: the root node is associated with the entire input
space, while each further internal node splits its block into
two halves by selecting a single dimension κ(η) = {1, . . . , p}
and location τ(η) on which to split (Fig 2B). The block of
input space associated with a node η is determined by the
ranges on each dimension j which it covers, and we denote
the corresponding range Rη

j = [Rη,−
j ,Rη,+

j ]. We call the tuple
T = (T,κ,τ) the decision tree.

η

ηL ηR

Internal node

Leaf nodes
Dimension 1

Dimension 2 B(η  ) B(η  )L R

τ(η)

A B Β(η)

Figure 2: (A) Simple binary tree with (internal) root node
η which splits into two ‘leaf’ nodes, ηL and ηR. (B) Cor-
responding split of a two-dimensional input space. The root
node η is associated with the full input space, B(η). Here,
node η is split on dimension 1, κ(η) = 1, at a location τ(η).
This splits the input space into two blocks, B(ηL) and B(ηR),
associated with the leaf nodes ηL and ηR.

In addition to a decision tree T with K leaf nodes, a parameter
Θ = (θ1,θ2, . . . ,θK) associates parameter value θk with the
kth leaf node. If a stimulus x lies in the region of the kth leaf
node, then y|x has distribution f (y|θk) for some parametric
family f . It is typically assumed that, conditional on (Θ,T ), y
values within a leaf node are i.i.d. and that y values across leaf
nodes are independent. Thus, letting nk denote the number
of observations assigned to the kth leaf node and letting yk,i
denote the ith observation of y assigned to leaf k,

p(y1:n|x1:n,Θ,T ) =
K

∏
k=1

nk

∏
i=1

f (yk,i|θk), (1)

where n = ∑
K
k=1 nk is the total number of observations.

Prior beliefs about category structure can be formalized as
a prior distribution on decision trees, specified via a stochastic
generative process. Following Chipman, George, and McCul-
loch (1998), we set the prior probability of a node η in tree
structure T being split into children nodes to

pSPLIT(η,T) =
α

(1+dη)β
, (2)

where dη denotes the depth of the node, and α < 1 and β ≥
0 are parameters controlling expected tree size. Under this
specification, the probability pSPLIT is a decreasing function
of node depth, and decreases more steeply for large β.

In addition to this prior on tree structure T, we generally

assume that the probability of splitting on each dimension is
equal,

p(κ(η) = j) = 1/p, j = 1, . . . , p, (3)

and that split location is then drawn uniformly from the
node’s range,

τ(η)|κ(η) = j ∼U(Rη,−
j ,Rη,+

j ). (4)

However, in the KR task, participants were guided towards
a particular strategy by being told in the first instance that
stimulus colour (KP-first condition) or bar position (CI-first
condition) reliably indicated whether height or bar position
was diagnostic of stimulus category. To incorporate this ad-
ditional information, we assume a bias term b ≤ 1 which as-
signs higher probability to splitting the root node η0 on the
dimension j∗ highlighted by instruction:

p(κ(η0)) =

{
b if κ(η0) = j∗,
1−b

2 otherwise.
(5)

The generative model is completed by the conditional
probabilities of stimulus labels given the tree structure,
p(y1:t |x1:t ,T ). We assume that the kth leaf node has an as-
sociated probability θk of generating label A,

p(yt |θk,xt) = θ
yt
k (1−θk)

1−yt , (6)

and that this probability is an i.i.d. draw from a Beta distri-
bution, θk

iid∼ Beta(a0,b0). Standard analytical simplification
then yields the marginal likelihood

p(y1:t |T ,x1:t) =

(
Γ(a0 +b0)

Γ(a0)Γ(b0)

)K K

∏
k=1

Γ(nt
kA +a0)Γ(nt

k·−nt
kA +b0)

Γ(nt
k·+a0 +b0)

,

(7)

where nt
kA and nt

k· are respectively the number of instances of
category A and the total number of data points in the partition
of leaf k up to trial t. Note that for a given tree, this likeli-
hood is higher for leaves assigned observations with homoge-
nous labels, and these are exactly the partitions that constitute
‘good’ solutions to the categorization problem.

Inference
Participants are assumed to approximate the sequence of pos-
terior distributions {p(T |x1:t ,y1:t)}T

t=1 over trials. Given the
implausibility of enumerating all possible trees, participants
are assumed to represent a relatively small number of sam-
ples, i.e. hypotheses, from these posterior distributions which
can be updated over time. In other words, we assume partici-
pants perform particle filtering.

Two aspects of the inference process which we now de-
scribe draw parallels with working memory. Firstly, simi-
lar to the idea of a limit on the number of items that can be
held in working memory (Cowan, 2001), we assume there is
a bounded number of hypotheses about category structure —
in this case, the particles which correspond to specific tree
structures — that can be entertained at a given time. Sec-
ondly, similar to the notion that working memory is active
(Baddeley, 1992), involving manipulation rather than merely
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passive storage of items, we assume that inference involves
a continual process whereby local transformations to current
hypotheses are proposed, and which may be accepted or re-
jected. The latter process promotes diversity in the hypothesis
set and continuous exploration of the hypothesis space.

In detail, we assume that on trial t, a participant’s beliefs
are represented by a small set of L possible trees {T (l)}L

l=1

with associated importance weights {w(l)
t }L

l=1. This set of
trees constitutes the limited set of hypotheses putatively
maintained in a working memory of capacity L. With the ob-
servation of the stimulus and category label on the next trial
t +1, a proper reweighting of the lth tree is given by the fol-
lowing update (Chopin, 2002):

w(l)
t+1 ∝ w(l)

t p(yt+1|T (l),xt+1,y1:t). (8)

As standard within particle filtering methods, this reweight-
ing process is alternated with a resampling stage in which
very unlikely trees, i.e., those with very low weights, are dis-
carded and replaced by replicates of more probable trees. A
simple way of doing this is to sample L times with replace-
ment from the set {T (l)} with probabilities proportional to
the updated weights {w(l)

t+1}L
l=1 (Gordon, Salmond, & Smith,

1993). Following this resampling step, all particle weights
are equalized to 1/L.

Additionally, this resampled particle set can then be re-
juvinated (Chopin, 2002), reintroducing diversity and allow-
ing continuous exploration of alternative solutions. This is the
‘active’ step which, we suggest, recalls conceptions of work-
ing memory as involving active manipulation of currently-
stored items. Specifically, we may, without altering the tar-
geted posterior distribution, propose transformations of trees
from a Markov chain transition kernel qt+1(·|T (l)) with ap-
propriate stationary distribution p(T |x1:t+1,y1:t+1). Closely
following the transition kernel suggested by Chipman et al.
(1998), we consider the scheme where for each tree {T (l)},
a new tree T (l)∗ is proposed by randomly choosing among
3 possible transformations: (1) grow: randomly select a leaf
node, then draw a splitting dimension and location from the
prior; (2) prune: randomly select an internal node, then turn it
into a leaf node by deleting all nodes below it; or (3) change:
randomly select an internal node, then reassign it a splitting
dimension and location by a draw from the prior. The pro-
posed tree T (l)∗ is then accepted with probability

α(T (l),T (l)∗) = min

{
p(T (l)∗|x1:t+1,y1:t+1)/qt+1(T (l)∗|T (l))

p(T (l)|x1:t+1,y1:t+1)/qt+1(T (l)|T (l)∗)

}
,

as per the standard Metropolis-Hastings algorithm.
We also need to model the effect of an instruction to switch

categorization strategy. We assume that the effect is to change
the prior distribution over trees, which is then combined with
past observations to produce an updated posterior distribu-
tion. This update can be implemented via a simple reweight-
ing operation on the set of trees.

To see how this works, consider the specific example where
a participant has initially been guided to use the CI strategy

and after t training sessions has in mind the set of weighted
trees {T (l),w(l)

t }L
l=1 approximating the target distribution un-

der the prior appropriate to the CI strategy. We denote this
target distribution pCI(T |x1:t ,y1:t). The experimenter then
instructs the participant to change to using the KP strategy.
Assuming that the set of trees remains fixed, the associated
tree weights now need to be changed to reflect the new tar-
get distribution pKP(T |x1:t ,y1:t). This can be achieved by
an importance weighting step, treating pCI(T |x1:t ,y1:t) as the
importance distribution. In particular, denoting a particle’s
weight before and after the instruction to switch as w(l)−

t and
w(l)+

t , respectively, the relevant reweighting is

w(l)+
t ∝ w(l)−

t
pKP(T (l)|x1:t ,y1:t)

pCI(T (l)|x1:t ,y1:t)
. (9)

To switch in the reverse direction — from the KP to CI
strategy — the appropriate reweighting instead uses the ra-
tio pCI(T (l)|x1:t ,y1:t)/pKP(T (l)|x1:t ,y1:t).

Choice
Participants are assumed to predict category labels based on
their current hypotheses. Assuming a newly-resampled par-
ticle set with equal weights 1/L, a sample-based approxima-
tion to the predictive probability that a stimulus xt+1 has label
yt+1 = A is given by

p(yt+1 = A|x1:t+1,y1:t)≈
1
L

L

∑
l=1

p(yt+1 = A|x1:t+1,y1:t ,T (l))

=
1
L

L

∑
l=1

E
θk|x1:t+1,y1:t ,T (l) [θk]. (10)

Thus, an approximation to the predictive probability is given
by an unweighted average of posterior means for θk, where k
for the lth particle is the index of the leaf node relevant to the
input xt+1 in T (l). In our case, the posterior mean is

E
θk|x1:t+1,y1:t ,T (l) [θk] =

nt
kA +a0

nt
k·+a0 +b0

. (11)

Results
Rate of Learning
Lewandowsky (2011) found that WMC was positively corre-
lated with category learning performance. We hypothesized
that a greater number of particles, i.e. increasing L, would
have a similar effect since, on average, one might expect the
search for a ‘good’ (i.e., more probable) category structure to
progress faster, and with less chance of getting stuck in local
maxima, with a higher number of particles.

Figure 3 displays average simulated learning curves for the
SHJ tasks when the number of particles is increased from 1
(Fig 3A) to 100 (Fig 3B). Though the effect is subtle, there is
a general steepening of learning curves and a downward shift
in initial error rate for problem Type I. A more systematic
gauge of the effect is obtained by fitting exponential func-
tions to such learning curves and comparing the size of the
fitted coefficients as the number of particles is increased (a
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Figure 3: Increasing the number of particles leads to faster
category learning. Simulated learning curves for (A) 1 parti-
cle, and (B) 100 particles. Learning curves are averages over
100 simulations with other model parameters fixed (a0 = b0 =
1; α= 0.95,β= 1). (C) Learning rate as a function of number
of particles. For each setting, the model is run 100 times and
exponential curves fit to each individual learning curve. The
resulting coefficients are averaged over both simulation runs
and problem types to yield an aggregate ‘learning rate’.

larger coefficient indicates a steeper learning curve). Figure
3C shows that the learning rate does increase with more par-
ticles, though the effect is small beyond ≈ 20 particles.

Note that even without fitting the model parameters, the
basic SHJ pattern of results — Type I easiest, Type VI hard-
est, and Types II-V clustered in between — is reproduced.
Briefly, this results from the preference for simpler, or more
parsimonious, hypotheses that arises naturally within the
Bayesian framework. An advantage for the Type II problem
relative to types III-V is not produced by the model here, but
we note that any such advantage was extremely marginal in
Lewandowsky (2011), and that the effect may arise only un-
der specific conditions (cf. Kurtz, Levering, Stanton, Romero,
& Morris, 2013).

Knowledge Restructuring
Sewell and Lewandowsky (2012) found a positive association
between WMC and knowledge restructuring. In the model,
increasing the number of particles also has a beneficial effect
on the average degree of knowledge restructuring (Fig 4A),
with an increased probability of being able to successfully
switch strategy (Fig 4B).

This result arises from an enhanced ability to accurately
represent the posterior distribution with a greater number of
particles. Recall that strategy-switching was modelled by a
change in posterior distribution, driven by the different priors
underlying the distinct strategies; a simple way to track this
change was by reweighting particles according to the new dis-
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Figure 4: (A) In both the context-sensitive (CI)-first (left) and
knowledge-partitioning (KP)-first (right) conditions, increas-
ing the number of particles L leads to a greater change in
context sensitivity (CS) score on average when prompted to
change strategy (1500 simulation runs per condition). (B)
This is due to an increased probability P(switch) of a suc-
cessful switch (∆CS > 0.5). Lower inset: with fewer particles
(L = 20), it will frequently occur that the model completely
fails to switch (∆CS = 0). Upper inset: with more particles
(L = 100), such failures are unlikely (3000 simulation runs;
b = 0.9,a0 = b0 = 1,α = 0.95,β = 1).

tribution (Eq. (9)). However, the success of this will depend
on how well the particle set covers the support of the updated
distribution. With a sufficiently large number of particles, at
least some should be allocated to (previously) lower probabil-
ity regions; if the new strategy corresponds to such a region,
then appropriate reweighting can be applied. However, with
a decreasing number of particles, representation of the pos-
terior distribution may be so impoverished that such regions
of low probability may not contain any particles at all, and so
switching is not immediately possible.

Discussion
Experiments suggest that higher WMC benefits learning of
novel categories (Lewandowsky, 2011) and the ability to co-
ordinate different category representations or response strate-
gies (Sewell & Lewandowsky, 2012). We framed such tasks
in terms of inference, where individuals seek to infer the most
probable category structure(s) given their prior assumptions
and experimental observations/instructions. Further, we as-
sumed that individuals approximate inference by represent-
ing and manipulating in working memory a relatively small
number of hypotheses — samples, or ‘particles’ — about
possible category structures. Our principal hypothesis was
that by linking WMC with the number of such particles, we
would observe similarly positive effects of higher WMC on
performance. Simulation results were consistent with this hy-
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pothesis: more particles in the model enhanced both category
learning performance and the ability to switch between dif-
ferent categorization strategies.

These effects respectively arise due to increased search ef-
ficiency and what we might call ‘representational adequacy’.
Conceptualized in terms of search for more probable cate-
gories, the more resources (i.e., particles) available to search
this space — i.e., the greater the number of hypotheses that
one can entertain and manipulate within working memory
— then the more likely it is that one will quickly discover
good solutions, a process which draws natural parallels with
the broader topic of problem-solving (Hambrick & Engle,
2003; Newell & Simon, 1972). Furthermore, a greater num-
ber of particles generally means that the posterior distribution
over categories is more accurately represented — including
those assigned lower probability — and this pluralism means
that the model can more easily express alternative hypothe-
ses when instructed to switch strategy, as operationalized by
a reweighting of particles. This source of flexibility may also
be relevant to so-called ‘insight’ problem-solving (Murray &
Byrne, 2005; Ohlsson, 1992).

The current work is preceded by a number of related lines
of research. The HyGene model (Dougherty, Thomas, &
Lange, 2010; Thomas, Dougherty, Sprenger, & Harbison,
2008), which emphasizes the importance of hypothesis gen-
eration and testing, includes the assumption that the number
of hypotheses that can be entertained at a given time is lim-
ited by working memory constraints. Similarly, in their study
of ‘garden path’ effects in sentence processing, Levy, Reali,
and Griffiths (2008) suggested that difficulties in parsing such
sentences correctly may be explained by constraints on the
resources (i.e., number of particles) available for incremental
parsing; their demonstration that a decreasing number of par-
ticles increases the probability of parse failure is exactly anal-
ogous to the mechanism suggested here in relation strategy-
switching.

There are a number of avenues for future investigation.
We have focused on qualitative effects here, but fitting the
model to individual participants will be necessary for a more
quantitative assessment; the obvious prediction is that high-
WMC individuals should tend to be fit best by a larger num-
ber of particles. Decomposing the relative contributions of
particular features of the model, such as resampling, should
also be explored, and quality of fit directly compared with
‘single-particle’ approaches (e.g., Bramley, Dayan, Griffiths,
& Lagnado, 2017). How the approach fares in domains be-
yond category learning is also of clear interest. More gener-
ally, Monte Carlo methods provide a rich source of ideas for
psychological models — exploring how such methods may
succeed or fail to illuminate aspects of human cognition is a
substantial task for future research.
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