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A PHYSICAL INTERPRETATION OF STATIC MODEL PARAMETERS 

F. Landis Markley 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

April 5, 1967 

ABSTRACT 

We show that an approximation to the static crosSing 

matrix leads to a soluble model for the Pll and rcN 

scattering amplitudes in which the parameters are :!'.elated to forces 

due to particle exchanges in the t-channel. Reasonable valu~s 

of these forces give the nucleon bound state and the ~ resonance 

in good agreement with experiment. We investigate further 

properties of the model. 
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I. INTRODUCTION 

Much of our intuition in strong-interaction physics has 

come from the success of the static modell' in explaining low 

energy pion-nucleon scattering. Especially important is the 

reciprocal bootstrap relationship between the ·N and the ~ 

first pointed out by Chew2 and cited by him as evidence for the 

view that pion-nucleon dynamics (and, indeed, all of strong­

interaction dynamics) is determined by self-consistency re-

quirements, with no free parameters allowed. This view is 

extremely attractive; but since a ~N bootstrap calculation 

typically requires a cutoff,) it"hasbeen difficult in practice 

to avoid introducing arbitrary parameters. It is usually 

assumed that a cutoff is needed becau'se the effect of inelastic 

channels and related high-energy behavior has been mistreated 

(if not completely ignored). 

Hendry and Stech4 argued that, although high-energy 

behavior would certainly be critical in a complete calculation, 

it should be possible to do a self-consistent calculation of 

low-energy behavior with a knowledge of only nearby singularities. 

They repre~ented the nearby cuts due to t-channe1 (N& ~ ~~) 

exchanges by a pair of conjugate poles, and showed that the 

position and residue of these poles could be adjusted to ensure 

convergence of their dispersion integrals ~thout a high-energy 

cutoff. In their calculation, the t-channe1" singularities 
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gave rise to an effective cutoff function which was, in principle, 

not arbitrary but ,determined by NN ~ ~n scattering; the re­

sulting ~N, scattering amplitudes contained the N and ~ and 

satisfied the static crossing relations "to a high degree", but 

not exactly. 

We would like to' find, in closed form,. a crossing-symmetric, 

unitary se't of scattering amplitudes in which the only parameters 

introduced are related to t-channel s,cattering, as in the 

calculation of Hendry and Stech. Since the amplitudes and 

f3l (we use the notation f 2I ,2J for the p-wave amplitude~, 

which are the Only ones we consider) are known to be small, and 

since we cannot handle the problem of all four coupled p-wave 

amplitudes, we consider scattering only in the and 

states. Recently, Schwarz5 noticed that the assumption f13 ~ 

f3l ~'O is inconsistent with the static crossing relation if 

fll and f33 both satisfy elastic unitarity, but that a 

suitably modified crossing matrix6 leads to a self-consistent 

soluble model, which, as emphasized by Schwarz, "satisfies an 

approximate crossing relation exactly instead of satisfying an 

,exact one approximately"., 

In Section II below we examine the static crossing relation 

between the direct channel (s-channel) and the 'crdssed~N cha.nnel 

(u-channel) and discuss the approximate crossing matrix. We 

then introduce a modified NjDrepresentation9,lO of the 
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scattering amplitude in which t-channel singUlarities 

(expressing the forces due to exchange of particles in the 

t-channel) are contained in the N function, while the D 

function carries both the s- and u-channel cuts (including 

the nucleon and b. exchange forces),' An especially interesting 

feature of our model is t;hat only the t-channel forces have 

to be specified at the beginning of the calculation; the 

s- and u-channel· forces are generated self-consistently by 

elastic unitarity and the s~u crossing relation. Thus the 

nucleon exchange force is automatically taken into account when 

the nucleon is bound, and the force due tOb. exchange is in­

cludedwhen the b. resonance is formed. Also, since our model 

satisfies s-channel and u-channel, unitarity simultaneously, 

the finite width of the b. is correctly accounted for in theb. 

exchange force. 

It·is probable that the t-channel forces are also de­

termined by a self-consistency requirement arising from t-channel 

unitarity, but it is impossible to include this effect in our 

model. We thus use a simple four-parameter approximation,for 

these forces. The parameters are fixed in Section III by re­

quiring that the b. position and width and the bound nucleon 

mass and coupling constant, which are all dynamically determined 

in our model, agree as closely as possible with the values 

obtained from experiment. In Section IV we show that the 'resulting 
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'values of the parameters correspond to t-channel forces that 

'do approximate the forces expected from the exchange of known 

particles IIi the ,t-channel. 

Section V is a discussion of the behavior of the 

scattering amplitude off the real axis, while Section VI is con-

cerned with Levinson's Theorem and asymptotic behavior. In 

Section VII we consider the superconvergence relationsll ,that 

are satisfied by our amplitude .. It is shown that the i-channel' 

forces make important contributions to these sum rules, thus 

overcoming some of the difficulties that arise from assuming 

saturation of these relations by the s-and u-channel 

'gul 't' 12 s~n ar~ ~es. 

Section VIII, , 

Our results are summarized and discussed in 

i 
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II. THE MODEL 

The analytic structure of ~N partial wave amplitudes 

" 13 
is by now well !mown; in the static limit this structure 

simplifies considerably. The amplitudes are analytic in the 

ill plane cut as shown in Figure 1, where ill = W-M, W being 

the total energy in the ~N center of mass system and M the 

nucleon mass (we take the pion mass as the energy unit). 

The discontinuity across the right-hand cut, from + 1 to 

+ ~ , is given by the unitarity relation, 

(2.1) 

where 
2 1.. " 

q = (ill - 1)2 is the pion momentum in the static limit. 

The choice of phase-space factor in Eq. (2.1) fixes the norma-

1ization of the amplitudes; they are related to the phase shifts 

(2.2) 

in the s-channe1physical region (the upper edge of the right 

hand cut). 

The discontinuity across the left-hand cut, from - ~ to 

- 1, is related to the amplitudes of the crossed ~N reaction 

~he u-channe1). The most advantageous feature of the static 

model is that the crossing relations for the partial waves are 
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particularly simple; the u-channel to s-channel crossing 

matrix does not mix different angular momenta. The crossing 

relation for p-waves is8 

f ll{- m) 1 -4 -4 16 fll (m) 

f
13

(- m)· 1 -2 -1 8 4 f13(m) 
= 9 

f
31

(- m) -2 8 -1 4 f31 (m) 

f33( - m) 4 2 2 1 \ f33 (ill) 

\ 

(2·3) 

Since the problem of finding four unitary amplitudes obeying (2.3) 

is intractable, we must make some approximations. The most 

obvious approach would be to set f13(m)~ f31~m) ~"O, since 

these amplitudes are known experimentally to be small. Then 

we would have 

f (- ill) ( 1 16 fll (m) 

) 
11 1 

f33"( - m) 
= 9 

4 f
33

(m) 
\ 

1 . , 

(2.4-) 

but this cannot ,possibly be right, "since applying the crossing 

relation (2.4) twice gives fll (m) = 2f33 (m) . This relation, 

aside from its.blatant disagreement with experiment, is inconsistent 

with unitarity. This is the conflict noticed by Schwarz,5 who 

\ 
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o 

1 
'2 :) ( 

which does not violate unitarity, and is somehow close to Eq. (2.4). 

The sense in which (2.4) and (2.5) are close can be seen 

by considering an N/D static model in which the left hand cut 

is represented by a finite number of poles and the D function 

is assumed to be linear. 2,14 With these approximations the 

occurrence of bound states and ratios of coupling constants depend 

only on the eigenvalues and eigenvectors of the crossing matrix. 

Now for the crossing matrix in either (2.4) or (2.5) one eigen-

vector, (2;1), has eigenvalue unity and the other, (2, - 1), 

has an eigenvalue far from unity (the latter eigenvalues are 

-7/9 and -1, respectively); thus both-matrices lead to the same 

predictions in t~is simple model. 

Since the crossing relation (2.5) is consistent with 

unitarity and close toethe true crossing relation, and will be 

seen to lead to a soluble model, we shall use it in the following. 

Before we go on, though, it .should be pointed out that there is 

a conflict between (2.3) and (2.5). The two equations together 
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2 3/2 
(m - 1) , m>l, (2.9a) 

'-1 ~ " , 1 3 1 2 3/2 
Im f (m+ iE) = 2 q' = 2(m - 1) ,m < ~ 1 

, 
This makes it convenient to express f(m) as the quotient of two 

real analytic functions 

f (m) = N (m )/D (m) , (2.10) 

where D(m) carries both the left hand and the right hand cuts 

and N(m) carries the singularities off the real axis. Thus 

we have 

Im D(m + iE) = (2.11a) 

(2.l1b) 

The N/D method9,10 is a weJ..l known met 00 dof constructing unitary 

scattering amplitudes, but the D function usually has only the 

right hand cut. That the N/D method can be modified in the 

above manner is due to the similarity between the discontinuity 

relations (2.9a) and (2.9b), which both follow directly from 

unitarity only because of the remarkably simple crossing properties 

of our model. 
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We shall make the bootstrap assumption that the ,D function 

contains all the s- and.u-channelbound ,states and resonances 

as zeros of its real· part. Thus neither the nucleon nor the 

6 has to be put into the N function in our model; they are 

bootstrapped simultaneously. We also assume that the D function 

has no poles; we do n~tallow CDD10,15 poles in our calculation. ) 

A D function with these properties can be given in terms of the 

usual N/D decomposition of the scattering amplitude. Consider, 

for example, the (physical) case where there is a nucleon pole 

at the origin and no I = J = 3/2 bound state. In this case 

where, apart from trivial multiplicative constants, 

and the ~ .(m) are the Omn~s functions,lO,16 
~J . 

(2.12a) 

(2.12b) 

(2.13a) 

(2 .13b) 

(2.14) 
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Now.it is easy to see that the D function in our model is 

given .by 

(2.15)' 

We.shall further assume that D(lli) obeys a once-subtracted 

dispersion relation, which is equivalent to 

I . 

(2.16) 

This is a stronger condition than the usual assumption that Dll 

and D33 obey once-subtracted dispersion relations, as can be 

seen from Eq. (2.15); we shall return to this point in Section VI. 

We now must·consider the cuts' from + i'1: to + ioo and 

from - i'! to - ioo ,wh.ich we have agreed to put into the N 

function. These are the static limit of the circular cut13 in 

the fully relativistic partial wave amplitude and come from 

t-channel exchanges; the mass, m, of the system exchanged 

being related to '1: by 

Two~pion exchange thus leads to a cut along the eritire imaginary 

axis, but we assume that this contribution can be approximated 

by the p, ~(I = J = 0 dipion enhancement), and perhaps 
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other resonances, so that T is finite. Taking m as the p 

,mass, for examp~e, leads to T ~ 2.7. 

We shall go even further, and approximate these cuts by 

a few pairs of poles at conjugate positions on the imaginary, 

axis, following Hendry and Stech. 4 The number of poles needed 

depends on the asymptotic behavior given by Eqs. (2.2) and (2.16) 

and the observation that sinoij(oo) is bounded for positive 

realm, which give 

--->~ 0 . 
00'-',+00', (2.18) 

Since we are assuming N(oo) to be a rational function, the limit 

must hold for 00 ~ 00 in any direction, which implies that we 

need at least two pairs of poles. In this case N(oo) is given 

by 

= ~ + (~-~) 00/0033 
(00

2 
+ ci) (00

2 
+ t32) 

, (2.19) 

which depends on four real parameters;~' The form of the nUmerator 

of (2.19) is chosen for later convenience; 00
33 

is the position 

of the ~ resonance,17 

(2.20) 
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We could, of course, give N(m) additional poles; but a 

proliferation of free parameters is exactly what we want 

to avoid. The interesting feature of our -model is that it 

naturally involves four parameters; there are no a priori 

arguments for determining any of them. These parameters are 

supposed to be related to t-channel forces, though, rather 

than being arbitrary. We shall see if this is the case by 

solving the model, which is determined by Eqs. (2.11) and (2.19), 

together with the assumptions made about the D function. 
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III. THE SOLUTION 

Equation (2.19) shows that if ~ t ~ the N function 

has a zero at mo given by . 

In this case we can perform the subtraction in the'dispersion 

relation for D(m) at mO' where Im D(mo) = 0 and 

Re D{mO) = v, say. This gives 

222 2 
(x + a )(x + ~ )(x - m) 

" 2 3/2 J (x - 1) dx ' 
2 2 2 2 '. 

(x + a)(x + ~ )(x - m) 

In the case that X = ~ we ,can write an unsubtracted dispersion 

'" relation for D(m), but we are then free to add a real constant 

v to the D function to fix its normalization at infinity. We 

thus arrive at Eq. (3.2), in this .case also. 

Now we must consider two possibilities. If v = 0 the 

N and D functions have a coincident zero at (or at 

infinity if ~ = ~). This gives the "extinct bound state" solution 

,18 
of Atkinson and Halpern, in which the dependence of the ampli-

tude on ~ and ~ drops out completely. The resulting 
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ampiitude cannot have a pole at the origin for the nucleon, so 

we ignore this solution. 

,If v is not zero we can set it equal to unity by 
I 

choo~ing the normalization ofN(ill) and D(m) appropriately. 

Then, except in the degenerate case "'A. = if..!. = 0, which gives 

D(m) ~ 1 andN(m) == f(m) ~ 0, we have 

= 

+ 

1 
rc [ 

1 

(m2 + a2)(m2 + ~2) 

2 3/2 
{a + l} . 

2 2 ~ 2 (13 - a ) ( + m ) 

. 3/2 
{rl + l} 

. (~2 _ a2 ) (~2 + m2j 

x [¢«())) ~ ~¢(-w)], 

2 3/2 
(x - 1) dx 

222 2 (x + a )(x + ~ )(x - m) 

2 3/2 ' ] 
(x - 1) dx 
2222· 

(x + a)(x + ~ ) (x - m) . 

[A + 
1 

("'A. - f..!.)m/ m33 

.~ +~ . 2rca Sinh-0 

~+ Sinh-~-~ (m2 _ 1)2 
2rc~ 

(3.3b ) 
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·.where 

- ~1°O· (x2 _ 1) r dx 
JL . X-ill 

·For real or pure imaginary argument, ¢(ill) is given by 

¢(x±iE) ( 2 ) .. 1... { 1 [ (x2 
x - 1 2 ~; l~g x + 

(1 - ·x2) -lfI_l 1. -0 1 < < 1 . I([ + ; s~n ~, . - x 

If f'(ill) is to correspond to the physical amplitudes f'11 

and f'33' it must have a pole at. the origin and a resonance 

at - ill
33 

.. Thus A must be chosen to give nCo) = ° . and ~ 

. to give Re n(- ill33) = 0, or f'rom (3.3) and (3.4) 

2 [ 2 ,3/2 ] 2·[ 2 3/2 ] 
1 = } a (~ + 1) - 1 :- ~ (a+ 1) ~ 1 , 

1+ (3 ·5a) 
A a 2 ~2 (~2 _ a2) 

,-. 
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2 3/2 

G ~ Sinh-9 
1 (0: + 1) = 
I.l (~2 _ 0:

2
)(0:

2 
+ W~3) 2rco: 

3/2 
(~2 + 1) G w33 -l~ + sinh ~ 222 2 4 - 2rc~ (~ - 0: )(~ + W

33
) 

2 3/2 
(w

22 
- 1) 1 

109[W33 + 
2 

- l)t] . (3 ·5b) + (W
33 222 2 2rc 

(0: + W
33

) (~ + (J)33) 

Equations (3.5) can be satisfied for finite A and I.l only if 

the expressions on the right hand side are non-zero; these 

expressions are in fact positive definite for any real 0: and 

~. The positiveness of A and I.l tells us that N(w) is 

positive for - (J)33;:;:; w ~.o: and t.hat , :Lf. ~.i I.l, (J)O·ff«(J)O)'< O. 

Thus our model cannot possibly fit the experimental I'll phase 

shift, which increases through zero near the Nrcrc threshold. 5 ,19 

We can hope, though, that our model will fit the experimentally 

deterIilined nucleon pole residue and f:::" resonance width. 17,20 

Yll = 0.243 ±.0.006, Y
33 

= 0.12 ± 0.01 . 

We thus fix A andl.l by Eqs. (3.5) and compare the above values 

with the predictions of our model, 

= 



= 
d 

-d:n 
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[Re f331((l)) 1 
. ill33 

= 

for a range of values of a and ~. 

The values of -1 
Y . and 
11 

between the two curves shown in Figure 2, . the upper curve giving 

the points for ~:::;: a and the lower curve for ~» a; in-

creasing a moves the points along either curve to increasing 

values. The experimental values (3.6) are indicated by the circle 

with accompanying error bars. Our best fit, corresponding to 

a = 3.8 and ~» a, is shown by the small square; it gives 

For ~» a, the amplitude becomes completely independent of ~ 

in the low-energy region, ill ~ a. This result follows because, 

in this limit, Eqs. (3.5) give, to order l/~, 

where 

1 
jJ. 

ill 1 =.22. . h-1A · r 
2i). . s rn I-' - jJ. , (3. 9b) 

(3·10a) 



(3·l0b) 

'Then for small m, , -l( -1 2' i. e., tQ order Qi3 sinh' (3) " the inverse 

amplitud~ is approximately equal to 

)( [" 2+ .J£... sinh -1) 
4, . 2:rr0! ,~ _ 1)2[¢(0» + ~ ¢(- 0»]. 

(3·11) 

, 
We shall take (3 large enough so that (3.11) is a good approximation 

to (3.3b) for Iml:s 5, giving an effective three-parameter ' 

fit to the low-energy amplitudes. The resulting phase shifts, 
, . 

as given by (2.7) and (2.8) are compared to the 0 - 700 MeV 

val~es of Roper, Wright and Feld19 in Figures 3 and 4. The 

variable' used in the pion lab kinetic energy, T, 'which is related 

tom by 

2 M ,T, - (m - 1) (m + 2. M + 1) (3·12) 

In particular, = 2.17 corresponds to = 200 MeV. The 
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P33 phase shift does not rise steeply enough above the 6, 

.but it does tend .asymptotically to 1! rather than to zero. 

The I'll phase shift, as noted before, is not even qualitatively 
-1 -':1! -1 

correct; it decreases through - 1! atwO ":t ~ /3(sinh /3). 

and eventually goes to -21! at infinite. energy. This somewhat 

surprising asymptotic be~avior will be considered fUrther in 

Section VI. 
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IV. THE t-CHANNEL FORCES 

We have now explicitly constructed an amplitude with 

poles at '± ia and· ±t~ that are supposed to represent the 

forces due to the exchange of particles in the t-channel. For 

the values of the parameters found in the previous section, this 

model gives a good fit to the low-energy P33 and Pll (the 

nucleon pole!) amplitudes. Let us now look more closely at the 

input forces. 

The poles at ± i~, which we shall call the "far poles", 

have residues given by 

(4.1) 

-1 
to order (~2 sinh-l~) The "near poles" at ± iO! have 

residues 

Res [r(rn), ± ia ] ~ f!a [4,d(~. - ~.) /rn33 - a(if + 1) ) 

(2fi 1)(i + l)l Sinh-la]± t [9<> (a2 +l)l - /m.'J}-1 
(4.2a) 

(6.732 ± 10.042 i)-l = 0.0461 + 0.0687 i (4.2b) 

These expressions follow, after some algebra, from Eqs. (3.3), (3.4), 

and (3.11); the numerical values are for a = 3.8 with 
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'c 

~' and~' given by Eqs. (3.10). 

A function obeying a dispersion relation with.no 

singularities other than the near poles is trivially given by 

B(ill) 0.522+0.0922 ill 
2 2 ill + ex 

This / "Born t.erm", together with a similar one for the far poles 

would be the input in a full .N/D calculation in our model. 

For purposes of physical interpretation, it is convenient to 

think of bur four parameters as expressing the positions of·the 

near and far poles, ex and ~, and the residues of the near 

poles. The residues of the far poles are then not independent, 

but are determined by the requirement. that the amplitude have the 

correct behavior both at threshold and asymptotically. Thus it 

is likely that the near poles represent the first Born approximations 

to the exchanges of low-mass particles in the t-channel, while 

the far poles approximate the part of the double spectral function 

arising from the iteration of this lowest order potential in 

. 10 21 . the manner proposed by Mandelstam. ' 

The fact that the best agreement with experiment is for 

~ »ex may be connected with the above interpretation; it also 

agrees with other models of low-energy nN scattering, which 

. generally depend on'only three parameters. In the usual reciprocal 

bootstrap calculation,2 for instance, the position and 

\ 
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residue· of the nucleon pole and a cutoff parameter are needed 

to calculate the· P33 aIllJ?li tude, while a cutoff and the 6. 

position and width suffice to determine the Pll amplitude. 

strong-coupling theories22 for p-wave scattering also have 

three parameters in our sense--the mass and coupling constant 

of the nucleon and a cutoff. 

We shall now investigate the function B(rn) given by 

. Eq. (4.3); to check the interpretation that it represents the 

contribution of low mass exchanges to the t-channel force. 

We first note that the position of the singularities at ± 3.8i 

is reasonable; we can cOIllJ?are this to the end points of the cuts 

due to p exchange at ± 2.7i and to the position of the poles 

used by Hendry and stech,4 ± 5i. These values correspond to 

the mass of the exchanged particles, i.e., to the range of the 

forces. 

As a measure of the strength of the input forces, we shall 

take the value of the Born term at threshold. 3 The forces are 

then found to be attractive (positive Born term), with strength 

channels of 

B(l) 0.040 and (4.4a) 

t B(-l) = 0.014, (4.4b) 

respectively. Donnachie,Hamilton and Lea23 have calculated the 
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Born terms for ~N scattering in some detail, finding the 

threshold values 'in the and channels of the combined 

force due to p and (J exchange to be 0.055 and 0.03, 

;respectively. Our value is very close to theirs in the channel 

with the quantum numbers of the nucleon, and too small by a 

factor of two in the b,. channel. 

The input forces'needed in our model to "predict" th~ N 

and b,. are thus seen to b~ attractive and to have a strength and 

range of the correct order of magnitude. If these forces are 

varied, the position and width of the output N and b,.' will, 

change. To see this let us fix the range of the forces and 

vary their strength. This is done by fixing a and ~ and 

varying ~ and ~ in Eq. (3.3) or equivalently ~r and ~' 

in Eq. (3.11); we shall furthermore vary these parameters together 

in such away that B(ro)' is just multiplied by a real constant, 

its functional form being unaltered. The low-energy approximation 

to the,resulting amplitude is given by 

-1 
where, fO (ro) is given by (3.11) with ~' and ~' obeying 

Eqs. (3.:10), K is a real parameter, and 

(4.6) 
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The above assertion is verified by noting that 

thus forK = 1/9, f (0)') is the amplitude with 1070 smaller Born 
K 

terms, while K = - 1/11 gives an amplitude with the, input force 

increased by 10%. The functions Re fK ..,.1(0)) = Re fO"':l(O)) + Kg(O)) 

for K = 0, Ij9, and - 1/11 are plotted in Figure 5. When 

K =i/9, the nucleon position and residue are 

0·39 = 0.16 

while thet:,. position and width change to 

For K = - 1/11, we have 

0) 1· - - 0.65 , 
·1 

1.42 , 

0.124 

, (4.8a) 

(4.8b) 

(4.9a) 

As K is decreased to ~ 1/10, the t:,. becomes a bound state; 
........ ! 

if K is made still more negative, the Nand t:,. come together 



-26-

and 
-1 f no longer has zeros on the· real axis. 

It 
We shall see 

ip the next section that the zeros have moved off the real axis. 

,to conjugate positions in'the complex plane; our model has 

developed bound states of complex "mass". Conversely,. if . It 

is increased sufficiently, illll becomes greater than unity,; 

i. e., the "nucleon" changes from a bound state to a resonance; 

as would be expected. 

. Of course our model is inconsistent if illll I 0, since 

this means that the "external" nucleon and the·· "internal" nucleon 

have different masses; but it is still instr.uctive to see the 

results of varying the parameters. A 10% change in the strength 

of the t-channel forces causes large chang.esin the N and I:. 

position and. width, as can be seen by'comparing Eqs. (3.8Y, (4.8) 

and (4.9). The reason for this behavior lies in the well known 

reciprocal bootstrap mechanism;2 the nucleon fUrnishes almost 

all the force: needed to form the 1:., and vice versa. Thus a 

small increase in the t-channel forces decreases the mass and 

increases the coupling constant of both the N and the 6, 

which results in a corresponding increase in the dominant s- and 

u-channel forces; a decrease in the input forces acts in just 

the opposite manner. The output (N and I:. masses) varies with 

the input (t-channel forces) by a.large amplification factor 

which ~s due to the positive feedback character of the reciprocal 

bootstrap mechanism. 
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.. 
V. BEHAVIOR OF THE AMPLITUDE OFF .THE REAL AXIS 

In this section we want to study the behavior off the 

real axis of any reasonable scattering function satisfying the 

crossing relation (2.6), whether or not it has an N/D de-

composition. By a .reasonable amplitude we mean one that is a 

real analytic function with no essential singularity at infinity 

and with cuts only from + 1 to + 00 and from - 1 to - 00, 

on which it obeys the unitarity Eq. (2.9). These assumptions 

imply that 

where :R(m) is a rational function and ¢(m) is given by 

Eq. (3.3c). Then asymptotically 

f -l(m) m3 . 3 + r 
---:0» 211: log m + Cro " 
m ~. '00 

(5·la) 

for some non-negative integer r, where C is real and non-zero. 

We shall also insist that a reasonable f(m) not differ 

too greatly from the physical amplitude in its behavior on the 

real axis between the s and u cuts. Specifically, f(m) 

is assumed to have no zeros in [-1, 1] and to fall into one of 

the following'three 'classes: 
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(i)' f(m) has a pole with negative residue at mll in 

(.,,1, '1)" corresponding to the nucleon. It mayor may not 

have a pole with positive residue at , m33 in 

corresponding toa bound 6;, but it has no other poles in 

(-1, 1); 

(ii) f(ili) is positive definite in (-1, 1); Le., the input, 

forces are too weak to bind either the N 'or the 6; 

(iii) f(m) is negative definite in (-1, 1); this amplitude 

will be shown to have "bound state" poles off the real axis 

arising from input forces that are too attractive. 

Now say that f(m) has zeros and poles outside of 

[-1, 1] as follows: 

* poles at the'conjugate points z; z. , 1m z. > 0; i = 1 ... 
~ ~ 

, , 
points * zeros at the cop-jugate mi , mi " 

1m mi > 0; i 1 ... , , 
zeros on the real axis at x. with x.ft(x.) < 0; i = 1 ... 

~ ~ ~ 
, , 

any number 24 of zeros on the real axis with xft (x) > o. 

Then we construct the following function 

p 

hem) _ II 
i=l 

where 

p 

m 

n 



.. 

for case i 

= 0 for cases ii and .. iii , 

and 

~ = + 1 for cases i and ii 

= - 1 for case iii 

This function is analytic in the upper half plane and has neither 

poles nor zeros off the real axis. On the real axis it has no 

poles or zeros other than simple poles with negative residue 

and simple zeros with positive slope. In addition, the limit of 

Im hem) as the real axis is approached from above is non-negative. 

Then, by a theorem due to Symanzik,25 which is outlined in the 

Appendix to this paper, 

Im hem) ? 0 for Im m ? 0 . 

Functions with the property (5.3) are called Herglotz functions; 

such functions have been used by many authors15 ,26 to study 

dispersion relations. The only result of the theory of these 

functions27 that we need.is 
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--->~ C' ~o 
(1) ~ 00 

(5. 4a) 

for € ~ Arg (1) ~ IT '-€, ,€ > O. It is clear that if' h«(1)) is 

a Herg10tz ,function, -1( -h (1)) is also. Thus we also have 

'-1 -1( )' , - (1) h (1)' ___ >~ C I '~O . (5. 4b) 

Equations (5.2) and (5.4) 'imply that 

2(p - m - n) + ~ - r = 2 for r odd, C < 0 , 

= 3 for r even, (5 ·5b ) 

I, 

= 4 for r odd, C> 0 . 

The most obvious consequence of this relation is that p ~ 1; 

any reasonable amplitude must have at least one pair of poles 

off the real axis. An example 'of a reasonable scattering 

amplitude with only one pair of poles is fO,defined by 

Eq. (3.11), which is approximately equal to the N/D solution 

(3.3) with ~» a for low energies. 

Let us now look at the, N/D solution. It has no zeros 

off the real axis, s6 we take m = 0 in Eq. (5.5). Equation (3.3) 

shows that for A. f. 1-1 we have n = 1, r = 0, while for A. = 1-1, 
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n = 0, r = 1, and C > 0. Both possibilities give 

p = ~ (5 - rt) • 

Since the N runction (2.19) has two pairs of poles off the 

real axis,. the D function must have no zeros off the real axis 

in cases i and ii and one pair of zeros at conjugate points 

in case iii. These zeros of D are the bound states with complex 

"mass" referred to in the previous section. The way they develop 
! 

as the input for.ces are increased can be seen by observing the 

motion as K is lowered past - i/10 of the zeros of 

f -1(",) ()2 6 ~ ~ - 3.32 ill + 0.915 + 2.333 + 23. 2 K 
K. 

for OS -:t - 0.915, K '::f - 0.10. 
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VI. ASYMPTOTIC BEHAVIOR 

The asymptotic behavior of the best theoretical phase 

shifts. (Figures 3 and 4) wa.S briefly mentioned at the end 

of Section III. In general, any N/D amplitude with a nucleon 

pole at the origin and no other poles or. zeros in . [-1, 1] that 

corresponds to a solution of Eq. (3.3) with A. < I.l. will have 

---» - 21t' + 21t' (log 0.:» -1 , 
m -. 00 

"o33(m) ')0 1t' - 1t' (log m)-l . 
m-' 00 

(6.1a) 

(6.1b) 

. Then the Dfunctions without CDD poles, defined by Eqs. (2.13), 

(2.14) and (2.15) behave asymptotically like 

IDll(m)I ~ Iml-
l 

(10glml)2 , 
m -. .09 

(6.2a) 

ID
33

(m) I ~ Iml (loglml )-1 , 
m -. 00 

(6. 2b) 

ID(m)I·~ log 1m I . (6.2c) 

These three D functions all obey once-subtracted dispersion 

relations, so no CDD poles are needed . 

. The above phase shifts do not satisfy the usual form of 

10 28 . Levinson's Theorem, ' wh~ch states that 
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o(m) ::> rc (nB - nA) , 
m ~. 00 J \ 

whereo(m) is the ~hase shift, normalized to zero at threshold, 

of an amplitude with nA bound states and nB CDD ~oles. 

" . 29' 
They do satisfy the "weak Levinson's Theorem", 

--->~ rc (nB - nA + r), r ~ 1 , 
m ~ 00 

which is merely a statement that the denominator function of 

the amplitude obeys a once-subtracted dis~ersion relation. The 

reason that (6.3a) holds in ~otential scattering but not in this 

case is that the D, functions of ~otential theory tend to 

constants asym~totically, while those given by Eqs. (6.2) 

certainly do not,. 

to 

We could, save Levinson's Theorem by adding a CDD' ~ole 

and a zero to ' Dll in such a way that they cancel out 

of Eq. (2.15), leaving D unchanged. Since there is no reason 

to 90 this, the CDD ~ole not being needed for convergence 

of the dis~ersion relations, we shall not consider the ~ossibility 

further. 

Althou~h our~hase shifts do not satisfy Levinson's Theorem 

(6.3a), they do sati~fy the' Levinson-like identity 



011 (m) :+ °
33 

(m) .....;...-'-->~ 1! (ri.B, - Ii;) , 
m -+ 00 

(6.4) 

where n ' A 
is the total number of bound states in the Pll and 

P33 amplitudes (one in this case) and nB' is the' total 

number of CDD poles (zero in this case).' Thus in our model·' 

it is possible to get a rising P33 phase shift without adding 

CDD poleS, but only at the expense of a falling 011' 

For values q and ~ other than those giving the closest 

agreement with experiment, Eqs. (3.5) may give values of A. and I-l. 

such that A. ~ I-l.. The phase shifts givenbyEq. (3.3) with ~hese' 

values of the parameters ha.ve the usual asymptotic behavior, 

" -,1! , o , 

which satisfies both (6.3a) and (6.4) with no CDD poles. 

Correspondingly, the functions ' bll', D
33

, and Dall obey 

once-subtracted dispersion relations. 

The above discussion of asymptotics can be extended to 

any reasonable scattering amplitude, in the sense of the 

preceding section, if we keep track of the bound states correctly, 

excepting the "complex bound state" caSe iii. This case could 

be handled only by putting one "bound state" zero into Dll 

and the other into D
33

, which would spoil the'real analyticity 
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of these functions. For all the other cases, the N/D 

solution yields phase shifts satisfying Eq. (6.4). 

Let us finally consider the asymptotics of fO(m) , 

defined by Eqs. (3.10) and (3.11) with ex = 3.8, which differs 

from our N/D solution only in its asymptotic behavior. For 

this amplitude, 

°11 (m) , > - 1( + 21( (log m) -1 , (6.6a) 
m ~ 00 

°
33 

(m) i' 

'1 
:> 1( - 1( (log m)-

m ~ 00 

(6. 6b) 

We can use Eqs. (2.13) and (2.14) to define Dll(m)and D
33

(m) , 

which have asymptotic behavior 

IDll(m)l~ 
, ().) ~ 00 

2 
(loglml) ., 

ID
33

(m) I ~ Iml (log Iml )-1 
().) ~ 00 

Thus the representations 

both lead to NjD equations of the usual kind, with an unsubtracted 

dispersion relation for the N function and a once-subtracted 
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dispersion relation for the D function. However, the D 

function given by Eq. (2.15), which has both the right hand 

and left hand cuts and no CDD poles, behaves asymptotically 

like Iml log Iml and so needs two subtractions. Thus - fO(m) 

does not obey N/D equations of the type introduced in Section II, 

which illustrates the comment made after Eq. (2.16). This 

behavior is consistent with the argUment in Section II that an 

amplitude with the NjDdecomposition (2.10) must have at least 

two pairs of poles off the real axis, since fo(m) has only 

one Buch pair of poles. The above discussion also serves to 

show that the convergence of NjD equations may be critically 

-dependent on asymptotic behavior that does not affect-the 
, 

solution in the low energy region. 

- \ 
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VII. SUPERCONVERGENCE RELATIONS 

Since the model considered in this paper gives phase 

shifts that tend asymptotically to integral multiples of ~, 

the amplitude has the asymptotic behavior 

---'>"lo. 0 . 
(1) -+ 00 

Th · 1 d t th th . 1 t' 11 ~s ea s 0 e ree superconvergence re a ~ons 

Yi + ~ ~1 1m f(x _ i€) dx _ ~ ~oo 1m f(x + i€) dx ~ 0 , 

~ "'iYi+ ~ 1-1 

x 1m f(x - i€) dx - ~ 100 

x Im f(x + iE) 
-00 1 

I 
i 

(7· 2a) 

dx = 0 

(7·2b) 

\' 2 
L· (1)i y. . ~ 
~ 

where the sums run over all the poles of f((1)) at (1)i with 

residues y .• 
~ 

dx = 0 

(7·2c) 

That such superconvergence relations exist in the static 

model has been kno.wn for quite some time. 12 Assuming that (7. 2a) 

is saturated by the nucleon and a zero-width 6 resonance leads 

to the well known prediction2,12 

, 

, 
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. The nucleon pole; does not contribute to the second sum rule (7. 2b) . 

Assuming that only the cuts contribute to this relation leads 

to a. contradiction since from Eqs. (2.7) and (2.8) 

and so 

;J~ Im fix 

-00 

i€) dx 

The left hand side 'of the sum rule is negative definite and is 

large, owing to the contribution of the 6. It has been con­

jectured30that this difficulty is related to the static 

approximation, and can be surmounted by using relativistic kinematics. 

We would like to suggest that the contradiction results 

from the neglect of the t-channel singularities, can be resolved 

within'the static model. In fact, given an amplitude satisfying 

(7:1) the relations (7.2) are just .mathematical identities. We 
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shall investigate the contributions of various singulariti~s 

to the sum. rules for our best fit solution, given by Eqs~ (3.3) 

and (3.5 ) with (3)> ()! = 3.8. .For this amplitude, Eqs. (7. 2a) 

and (7.2b) give 

- 0.2353 + 0.0922 + 0.1554 - 0.0122 = 0, and 

o + 0.522 - 0.452 -.0.071 = 0., 

respectively·. The contributions are lis.ted in the following 

order: nucleon pole, near poles (at ± ia), left hand cut, 

and right hand cut. The far poles at ± i(3 give a negligible 

contribution to these. two sum. rules, but do contribute to 

: '(7.2c). Thus the third sum. rule depends on distant singularities; 

this is also seen in the extremely slow convergence of the 

integrals (the integrands go likex-l(log x)-2 for large x). 

·For this reason we shall only consider the first two sum rules. 

Note that the contribution of the near poles to these sum. rules 

is by-no means negligible relative to the cut contributions. 

The left hand cut contribution to (7.5a) and (7.5b) is 

the same as. would be contributed by a zero-width resonance in 

the amplitude with position and width 
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These values are to be. compared with those given by Eqs. (2.20) 

and (3.8), 

0.136 , 

which would contribute 0.272 and 0.59 to the first and second 

sum rules, respectively, in the zero-width approximation. These 

comparisons cast some doubt on the zero-width approximation, which 

is generally used in sum rule' calculations. 

The right hand cut contribution to (7.5a) and (7.5b) is 

equivalent toa zero width resonance in the Pll channel with 

(1)'11 = 5·S and y' =0.0122, 
11. 

but we know from the exact solution that °11 iS'decreasing and 

approximately equal to· -450 at (1)'11' Although no one would 

say that the sum rules predict a resonance with parameters given 

by (7.7), Eq~ (7.6) could be used to determine the position and 

width of the~. Such a use of partial wave superconvergence 

relations has. been advocated as a dynamical method;30 our model 

shows that this procedure is inaccurate in the static limit. 

Using relativistic kinematics will probably not improve matters, 

because the sum rules tend to emphasize distant portions of the 

left hand cuts, which are then not given directly in terms of 

physical amplitudes, an,d which are not likely to be well 

approximated by the first order Born approximation. 
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VIII. CONCLUSIONS 

We have constructed a model for pion-nucleon scattering 

that can represent the nucleon pole and 6 resonance rather well 

using quite reasonable .t-channel forces. The behavior of o~ 

Pll amplitude in the physical region, though, does not agree with 

experiment. In particular, we cannot predict the zero of this 

amplitude near the Nnn threshold, a common failure of one-

channel calculations, as was emphasized by Schwarz. This defect 

could be remedied in one of two ways; we could put either a 

CDD pole into our D function ·or an extra pair of poles into the 

N function, which could then have a zero in the low energy region. 

If fact, if the extra pair of poles in the second alternative 

represented short range forces, being far from the physical region, 

. the resulting solution would differ from one with a CDD pole 

only in its asymptotic behavior. This situation is similar to 

that discussed in Section VI. 

Although we could fit the Pll phase shift better in our 

one-channel model, the result. would .be suspect because it would 

involve many free parameters. This is especially true since Ball, 

·31 Shaw and Wong have shown that a simple two-channel (Nn and 

Ncr) model can fit the· Pll. data quite well with only four 

parameters. These authors conclude that fll would have a 

resonance rather than a nucleon bound state if the coupling between 

. the channels were turned off, and that therefore a one-channel 

-... 
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calculation of the nucleon mass is unreliable .. In our model 

the forces in the Nrt channel are sufficient to give a 

bound nucleon, but the'considerations of Section IV show that 

the output nucleon parameters are extremely sensitive to .the 

exact value of these forces .. Thus the question of whether the 

nucleon .boundstate is formed almost entirely in the. Nrr. channel 

or whether other' channels (e. g., N ()') are of roughly equal 

importance, cannot be settled at this time in a model-independent 

way. 

The principal result of our work is to show that, in a 

soluble model, elastic unitari ty in the s- and u-channels and' 

the s-u crossing relation are such powerful constraints that 

they completely determine the amplitude for scattering in the 

s- and u-channels once the t-channel singularities are specified. 

The strong s-and u-channel forces are determined self­

consistently, while the relatively weak t-channel forces turn 

out to be very important. We believe that if t-channel unitarity 

and full crossing symmetry could be satisfied, all the forces 

would be determined self-consistently, and one could no longer 

make any clear separation between input and output at all. 
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, , 

APPENDIX 

The theorem used in Section Vis Symanzik t s 25 'adaptation 

, of the Phr~gm~n-Lindel6'f Theorem. 32 We shall outline the proof, 

introducing the assumptions as they are needed. 

(1) Let h(z) be,a function holomorphic in the upper 

half plane. 

Now define w(z) ~ exp[ih(Z)], which will, also be 

holomorphic in the upper half plane. 

(2) Let h(z) have no poles on the real axis other than 

simple poles with negative real residue and let Im h(z) approach 

non-negative values' as the real axis is approached from above. 

Then lim Iw(z)l.:::; 1 everyWhere on the real axis 
,z - real 

and the Phragm~n-Lindeiof Theorem allows only two cases: 

(a) Iw(z)l.:::; 1 everywhere in the upper half plane; 

i.e., Im h(z) ~ 0 for Im z ~O, or 

(b) lim lo~(r)/r > 0 where M(r) ~ 
r;"co 

max Iw(z) I 
Izl = r 

i.e.,Im h(z) _-co as Izl -co in some direction in the 

upper half plane. 

Now we make the following two assumptions: 

(3) h(z) has no zeros in the upper half plane, 

(4) h(z) has no zeros on the real axis except simple, 

zeros at which h'(x) is real and positive. 



Then -1 
-h (z) satisfies assumptions '1) and 2) and so 

the Phragmln-Lindelof Theorem gives the re,sult; either 

(a') 1m[-h-l(z)] ~ ° for 1m z ~ 0, or' 

(b') 1m [_h-l(Z)] .... - co as Izl -+ 00" in some direction 

in the upper half plane. 

Now we only need one more assU1l1.Ption, 

(5),h(z) does not have an essential singularity at 

infinity, to show that the only consistent result is that, (a) and 

(a') hold. Thus the five assumptions are sufficient to prove that 

h(z) is a Herglotz function. 



-46-

FOOTNOTES AND REFERENCES 

L G. F. Chew and F. E. Low,. Phys~ Rev~lOl, 1570 (1956). 

2. G. F. Chew, Phys. Rev. Letters 9, 223 (1962): 

3. See e.g., E. Abers and C. Zemach:, Phys. Rev. 131, 2305 (1963). 

4. A .. W. Hendry and B. Stech, Phys. Rev. ill, B191 (1964).' 

,5. J. H. Schwarz, Phys. Rev. 152, 1325 (1967). 

6. Schwarz. actually rediscovered an approximate crossing re­

lation that had been considered as early as 1957 by Chew 

and Low (Ref. 7) and used by Low in' connection with a model 

that has interesting parallels with ours (see Ref. 8). 

'7.' G. F. Chew, "Theory of Pion Scattering and Photoprod'uction", 

Lawrence Radiation Laboratory Preprint MISC-1957-4'5 (1957), 

(unpublished) . 

8.F. E. LOW, Phys. Rev. Letters 2, 277 (1962); Nuovo Cimento ~, 

678 (1962). 

9. G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 

10. s. C. Frautschi, Regge Poles and S-Matrix Theory (Benjamin, 

New York, 1963). 

11. V~ de Alfaro, S. Fubini, G. Rosetti and G. Furlan, Phys. 

Letters 21,576 (1966). 

12. F.' E. Low, Rapporteur Talk in Proceedings of the XIIIth 

International Conference on High Energy Physics, Berkeley, 

1966, (to be published). 



-47- ' 

13. s. W. MacDowell, Phys. Rev. 116, 774 (1960); 

W. Frazer and J. Fulco, Phys. Rev. 119, 1420 (1960); 

S. Frautschi and D. Wa1ecka, Phys. Rev. ,120, 1486 (1960). 

14. E. S. Abers,'L~ A. P. Ba1tzs and Y. Hara, Phys. Rev. 136, 

B1382 (1964). 

15. L. Casti1lejo, R. H. Dalitz and F. J. Dyson, Phys. Rev. 101, 

16., R. Omn~s, Nuovo Cimento 8, 316 (1958). 

17. s. W. Barnes, B. Rose, G. Giacomelli, J. Ring, K. Miyake and 

K. Kinsey, Phys. Rev. 117, 226 (1960). 

18. D. Atkinson andM. B. Halpern, Phys. R'ev., ,149, 1133(1966). 

19. L.D. Roper, R. M. Wright and B. T. Fe1d, Phys. Rev. 138, 

20. J. Hamilton and W. S. Woolcock, Rev. Mod. Phys . .:22, 737 (1963). 

These authors. determine the effective pseudo scalar coupling 

,constant, f2, which is 1/3 of the resid~e of the nucleon 

pole Y11' 

21. S~ Mande1stam, Phys. Rev. 112, 1344 (1958), 115, 1741, 

1752 (1959)., 

22. C. Goebel, "'The Strong Coupling Limit of Static Models" in 

,Proceedings of the TIlth International Conference on High 

Energy Physics, Dubna, 1964 (Atomizdat, Moscow, 1966), 

Volume I, p. 255. A fourth parameter is needed unless one 

assumes that there are no isobars in the P13 and P31 



/. 

-48-

amplitudes, but this asswnption of a "minimal scheme"., is 

essentially the same asswnption we made in approximating 

the crossing matrix. 

23. A. Donnachie, J. Hamilton and A. T. Lea, Phys. Rev. !22., 

B515 (1964), Ann. Phys. 11, 1 (1962). 

24. The faci that our results do not depend on this number is 

just the· CDD ambiguity (Ref. 15). Symanzik (Ref .. 25) 

refers to these zeros as "CDD zeros" in contra-

distinction to the n· "non-CDD zeros" with xf' (x) < O .. 

25. K. Symanzik, J. Math. Phys. 1, 249 (1960), Appendix B. 

26. S. Weinberg, Phys. Rev. 124,2049 (1961); 

G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963); 

Y. S. Jin and A. Martin, Phys. Rev. !22., B1369 (1964); 

A. P. Balachandran, Ann. Phys.~, 209 (1965); 

Y. s~ Jin and K. Kang, Phys. Rev. 152, 1227 (1965). 

27. 'J. A. Shohat and J. D. Tamarkin, The Problem of Moments 

(Am. Math. Soc., New York, 1943), p. 23; H. S. Wall, 

Analytic Theory of Continued Fractions (Van Nostrand, New 

York, 1948), p. 275. 

28. N. Levinson, Mat. Fys. Medd. Dan. Vide Selsk. ~, No.9 (1949). 

29. Equation (3-16) of Ref. 10. We allow r = 1, unlike 

Frautschi, because logarithmic factors may help the con-

vergence of the dispersion relation for a D function. 

An example isD 3' Eq. (6.2b). 
3 

.,J: 



-49-

30. K. Igi, "Sum Rules for Partial-Wave Amplitudes",· 

University of Tokyo preprint (1967). 

J~ S. Ball, G. L. Shaw and D. Y. Wong, "Two Channel Model 

of Pll n-N Partial Wave Amplitude", University of 

California preprint (1967). 
-

32. R. Nevan1inna, Eindeutige Ana1ytische Funktionen (Springer-

,Ve~lag, Ber11n, 1953), Chapter VII. _ 



~50-

FIGURE CAPTIONS 
..... 

. . Fig. 1. Analytic' structure of the partial wave amplitudes in 

the static limit, showing the various cuts and the 

nucleon pole at ill = O. 

Fig: 2. The inverse of the nucleon pole residue plotted against 

the inverse of the t::,. resonance width; the values 

obtainable in our model fall between the two curves. 

Our best fit to the experimental values, which are 

given by the circle with accompanying error bars"is 

shown by the small square. 

Fig. 3. The phase shift 6
33 

as a fUnction of pion lab kinetic 

energy, .' T, according to Roper et ale (---) and our 

model (- - -). 

Fig.·4. The phase shift 611 as a fUnction of pion lab kinetic 

.' Fig. 5 

energy, T, according to. Roper et al.. (---) and our 

model (:.. - - - -). 

-1 Re fK . (ill) from Eq. (4.5) plotted as'a fUnction of ill 

for K = 0, 1/9, and - 1/11 • 

'. 
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