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ABSTRACT

We show that an approkimation to fhe static crossing
matrix leads to a solublg model for thg Pyy and 933 N
scattering amplitudes in which the parameters are related to forces
due to particle exchanges in thé t-channel. Reasonable values |
of these forces give‘the nucleqn bound state and the A resonance
in good agreement with experiment. We investigate further

properties of the model.
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I | iN_TRODUCTION

Much of our intuition in Strong;interaction‘physics has
come from the success of the stafic modellNin explaining low
energy,pion-nucleoﬁ scattering. Especially important is the
reciprocal bootstrap relationshiﬁ‘betweeh the N and the .Ab
.first pointed out by Chew? and cited by him as evidence for ﬁhe
view that pionfnucleon dynamicsv(and; indeed, all of strong-
intergcfion‘dyﬁaﬁics) is determined by self-consistency re-
~ quirements, with no free parameters alloﬁed. This view is
extremely.attractive; but since a 7N bootstrap calculatioh
typically requires a cutof_f,5 it‘hasvbeen-difficult in practice
to aﬁoid introducing arbitrary parameters. It is usually
‘assumedvthat a cutoff is needed because the effect of inelastic
channels and related high-éﬁergy behavior:has been ﬁisfreated
(if not completely ignored).

. Hendry and Stechh_argued that, although high=-energy
behévior_would certainly'bg critical in a complete calculation,
it should be possible to do a self-cohsistent calculation of
low-energy behavior with a knoWledge of only nearby singularities.
They repiesented the nearby éuts due_to t-channel (NN - )
exchanges by a pair of conjugate poles, and‘showed'that the
positibﬁ~and residue of -these poles could be adjusted tp ensure
convergence of their disﬁersion integrals without a high-energy

cutoff. In their calculation, the t-channel -singularities
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gave rise to an éffectivé Cutoffoungtion whichiwas;:in prindiple;
not arbitrary but‘determinéd'ﬁy Nﬁ_» 1614 1scatteriné; the re- .
sulting nN, scattering amplitudes confained fhe N and A and
satisfied the static croséing relations "to a high degree", but
not exactly. |

We wbuld‘iiké té find; in closed fbrm,-a crossing-symmetric,
unitary set of séattering amplitudes in wﬁich the only parameters:
intfodﬁced.are'related té t-dhahnel scattering, as in the
calculation of Hendry aﬁa Stech. Since,the amplitudes f and

13
f51 (we use the notatipn- f2i,2J for the p-waye;amplitudeg,
which are the only ones we consider) are known to be‘small, and. -
_ siﬁce we cannot handle the problem of all four coupled rp-wave
amplitﬁdés, Qe considef-scattering~only in the P1y apd p33
states. Recently, Sctha.rz5 noticed that the assumption le =

f5 50 is inconsistent with the static crossing relation if

fll and f33 both satisfy elastic unitarity, but that a
,Suitably modifiedvcrossing matrix§ leads to a_self-consistent
soluble model, which, as émphasized by Schwarz, "satisfies an
;approximate-cfossing relatioﬁ exactly instead of safisfying an
,exaét one approximately“. 

In Section II bhelow we_examine'the static crossing felation
between the direct channel (s-channel) ‘and'the~cr6ssed'nN channel

(u-channel) and discuss the approximate crossing matrix. We

then introduce a modified N/D 'representationg’lo of the
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scattering amplitude in which >t¥channel VsingUlarities
~(expressing the forces due to exchange of particles in the
t-chamnel) are contained in the N function, w’hile the D |
function carries both the s- and u—cha.nnel cuts (including
the nucleontand A exchange fofces): Aﬁ especially interesting
- feature of our model is that only the t-channel forces havé
" to be specified a£ the beginning of the calculation; the
s- and u-channel . forces are geﬁerated self-consistently by
.elastic unitarity and thé‘ s;u crossing relation. Thus the
nucleon exchange force is autoﬁatically.taken into.account when
the nucléon is bound, and the force due to ‘A exchange is in-
cluded- when ﬁhe A resonaﬁce is formed. Also, since our model
satisfies s-channel éndv u¥channel.,unifafity'simultaneously,
the finite width of the A 1is cofrectly accounted for in the A
exchange force. |

- -It-is probable that the _t-channel‘ forces are.also de-
termined by a self-conéistency requirement érising from t-chahnel.
" unitarity, but it is impossible to include this effect in our
model. Wé thus‘use a simple féuf-pafameter approximation .for
these forces. The parameters are fixed in Section III by re-
quiring‘thét the A position and width and fhe'bound nucleon
mass and coﬁpling.éonstant, which are al; dynamically determined
in our model, agree as cloéely as possible with the values

obtained ‘from experiment. In Section IV we show that the resulting



values of.thé parameters'correSPOﬁd to"f-channel fdrcés.that
"do approximate the forces exi:eéted fior;x_the exchange of known
particles in the . t-channel. | |

‘Section V is a discussion of i;he behavior of the
scattering amplitude off the real ﬁxis,-While.Secfioﬁ.VI is éon;
.cerned with Le&inson's Théorem and asymptotic behaviér. In
Sectioﬁ-VII we cohsider the superconvergence relationslllthAt'
are satisfied by oﬁr amplitude. "It is shown that the t—channel‘
forces ﬁake important contributions to these sum rules, thus
overcoming some of the difficulties that arise from assuming‘
satqrétion.of these felations by thé s—‘and ﬁ-channel _
singula,rities.l2 Our reéults are summarized and discussed in

. Section VIII..
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II. THE MODEL

The anslytic structure of nﬁ partial wave amplitudes
is by now well known;13 in the static limit this structure
simplifies considerably. The amplitudes are analytic in the
® plane cut as shown in Figure 1, Where »w = W-M, W being
the total energy in the #N center of mass system and. M the
nucleon Mass (we téke the pién mass aé the energy unit).

The discontinuity across the right-hand cut, from + 1 to

+ o , is given by the unitarity relation,

sy 3 2 -
Im fij(w +ie) = q Ifij(w)l , o>1, (2.1)
: c o i ) ' : .
where g =_(w - 1)2 is the pion momentum in the static limit.
The choice of phase-space factor in Eq. (2.1) fixes the norma-

lization of the amplitudes; they are related to the phase shifts

Sij by

'Si (w)
- -3 M1
fijgn) =q "~ e

sinSiJQn) s : (2.2)
in the é—channelfphysical region (the uppér edge of the right
hand cut).

The discontinuity across fhe left-hand cut; from - o to
-1, is related;to the amplitudes of the crossed xN reaction
(the u-channel). The most advantageous feature of the static

model is that the crossing relations for the partial waves are
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partiéularly simple; the u-channel to s-channel crossing.
matrix does not mix different angular momente. The crossing

relation for p-waves is

£1,(- w) B Y A N fll(m)f

£15(- ) ;v%_ 2 -1 8 ko | | R

£ (-0) R I A

f55(-m) o\ 2 2 1 \f53(aj)_.
(2.3)

Since thé problem of finding four unifary.amplitudes obeyiﬁg (2.5)
is.intractéble, we mﬁst make somesapprdximations. The most
obvious approach would be t6 set flﬁ(w):g.fjl(Q) = 0, since
Ithese amplitudés are known ekperimeﬁtglly to be.small. Then

we WOuld have

‘f;Ll(-- a)) ' | 1 16 - fll((n) 1\

O+

e [T e ) |

(2.k)

but this cannotlpossibly be right,gsinCe applying the crossing
relation (2.4) twice gives f;(w) = '2f53(w). This relation,

aside from its blatant disagreement with experiment, is inconsistent

5

with unitarity. This is the conflict noticed by Schwarz, who



proposed instead the ansa.tz6

fllcbj

o
n

1y, (- "D.) N

N~
(@]

f33(- o) . : f55(0)_) ’

(2.5)

whiéh does not violate_unitarity? and is somehow close to Eq. (2.k4),

The sense in which (2.4) and (2;5) are close can be seen
by:cdnsidering an N/b stétié model in which the left hand cut
is represented by a finite number of poles and the D function

2,1k

is assumed to be linear. With these approximations the

-occurrence of bound states and ratios of coupling constants depend

only on the eigenvalues and eigenvectors of the crossing matrix.

Now for the crossing matrix in either (2.4) or (2.5) one eigen-

4 vector, (2;.1), has eigenvalue unity and the other, (2, - 1),

has an eigenvalue far from unity (the latter eigenvalues are

-7/9 and -1, respectively); thus both matrices lead to the same
predictions in this simple model.
Since the crossing relation (2.5) is consistent with

unitarity and close to ‘the true crossing relation, and will be

. seen to lead to a soluble model; we shall use it in the following.

Before we go on, though, it should be pointed out that there is
a conflict between (2.3) and (2.5). The two equations together

imply that £, (w) and fBl(w) are odd functions, and that

3



(w) _+hf§l(w) All(a.s) f.fzfﬁ(w)

L !This la.st rela.tion must lea.d to 8 violation ot u.nita.rity near’ s

):'i'the A resonance, where Im £, > Int.,. ‘8o we e.re forced

- 33 Sy’
. to e.dmit that our model although self-consistent: cfmmt be

ifjreconciled with the full static crossing symmetry (2 3)

Scattering amplitudes filffand st- obeying the crossing

L;;relation (2. 5) can be expressed in terms of a single analytic

ﬂﬁifunction by o

i@Then on the upper edge of the right henabcnfé(figﬁ}evi)-ﬁefhavé f_

1<>

7':while on the lower edge of the left hand cut (the u-channel physical

'V'Qregion)

’ .", ¢ -

33(l l)

.' f((D) = 2C1 3 | sin555( !051) : (2 .8)

e - Equations (2 7) and (2 8) together with the real analyticity |
f}'jv;of flw) - completely determine the discontinuity of the inverse ﬂ“ e

i cfunction across the cuts on the real axis- 7”'&:.”'

L
NP

-
O R
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o), e>1, o (2.9a)

I}
'
o)
]

CIm f-l(a) + ie) ) - ((.l)

. 3/2 _
2w -1)" , w<=1. (2.9)

i
el o
o)

)

Im f-lQp + ie)

This makes it conveniént_fo express f(w) as the quotient of two

real analytic functions

tw) = Nl .  (2.10)

where D(w) carries both_the left hand and the right hand cuts
and N{(w) carries the singularities off the real axis. Thus

we have

5

- M) , 0> 1, . (2.11a)

]

Im D(w + i€)

It
o=

In Dl + ie) qBN(a))i, w<-1. (2.11b)
The N/D 'method9’lolis.a well known method of constructing unitény
séattering ampiitudes, but the D function usually has only the
right hand cut. That the N/D method can be modified in the

above manner .is due to the similarity between the discontinuity
relatioﬁs (2.9a) and (2.9b), which both follow directly from
unitarity only because of the remafkably simple'crossing properties

of our model.
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>We'shall‘m§ke the bootstrap assumption that the /D function
contains all the s--and u-channel 'béund‘statés and resonances
as zeros of its reaiipart. Thus neither the nucleon nor the
A has tp be put iﬁto tﬁe N function in our model; they are

bootstrapped simultaneously. We also assume that the D function
' | 10,15

has no poles; we do not allow CDD poles in our calculation. ’
A D function with these properties can be given in terms of the
usual N/D decomposition of the scattering amplitude. Consider,

for example, the (physical) case where there is a nucleon pole

at the origin and no I = J = 3/2 bound state. In this case

‘.'.Ifll@)) M1 (@)/Dy; (@) , 0 (22e)

£50) = M@)o : (2.120)

)
3

where, apart from trivial multiplicative constants,

I

Dll(w) .=‘(.1) @/ll(w) ’ 4‘ : (2.158,)
DBB((D) = D/BB((D) s | (2.1%b)

- and the é};jﬁp). are the Omnés functions,lo’l6

' ' ‘ ® 5i.(x)‘dx |
[)/l,](w) = exp | - = j —;—%mj— . (2.14)
1. | |
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Now it is easy to see that the D function in our model is

" given by
D(w) = Dllgw) D33(-‘w) .; - A.'(2.l5);

We shall further assume that D{w). obeys a'oncé-subtracted
dispersion relation, which is equivalent to

ot D(do) —> o, . | - (2.16).

D >

This is a stronger condition than the ﬁsugl assumption that Dll
.and D53 bbey once-~-subtracted dispersion relations, as can be
v'seen ffom Eq. (2.15)§:we shall return to this point in Section VI.

We now must.consider the cuts"from  + it to + im and
from - it to = iw. ,‘which we have agreed to put into the XN
function. These are thé static limit of the circular cut13 in
the fully relaﬁivistic partial wave amplitude and come from

t-channel exchanges; the mass, m, of the system exchanged

being-relafed to T by
T 2 3 o
T = (fpmn -t;) . (2.17)

Two-pion exchange thus leads to a cut along the entire imaginary
axis, but we assume/thaf this contribution can be approximated

by the p, o(I =J =0 dipion enhancement), and perhaps

‘
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othér resonances, so that = is‘finite. Taking m as the p
mass, for example, leads to T = 2.7.

We shall go even further, and approximate these cuts by
a few'péirs of poles at conjugate positions on the imaginary .
axis, following Hendry and Stech.% The number of poles needed
depends on the asymptotic behavior given by Eqs. (2.2) and (2.16)
and the observation thét sinaijQD) is bounded for ﬁositive

real w, vwhich give

W >+ oo

o° N(a)) (5 f(w) C D(w) ———)10 . (2._18)

Since we are assuming N(o) ‘to be a rational function, the limit
must hold for w - « in any direction,'which implies that we
need at least two pairs of poles. In this case N(w) is given

by

(2.19)

which depends on four real parameters. The form of the numerator

of (2.19) is chosen for later convenience; @z is the position

17

of the A resonance,

= 2. ' 2.20
s 2.17 . ( )
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Wé‘coﬁld, of course, give  NGm) additional poles; but a

. proliferation of free parameters is exactly what we want

to avoid. The interestiﬁg feature of o?r‘model is that it
natuially involves four paraﬁeters; thefe are no a priori
.arguments for determining any of them. These parameters are
"supposed to be rélated to t-channel f&rces, though, rather
than being arbitrary. We shall see if this is the.éase by
solving the model, which is determined by Egs. (2.11) and (2.19),

together with the assumptions made about the D function.



relation for D(w) at o

iy ) I
III. THE SOLUTION

‘Equation (2.19) shows that if A # p the N function

.has 8 zero at w, given by
AW '
. 23 :
® T wea , : (3'1)

In this case we cah perform the subtraéfion in the dispersion

\

0’ where - Im DQ»O) =_O and

v, say. This gives

Re D{wo) |
(2 - 17" o
"), 646 8 (x - )

=00

N[

D(w) = v +[X-+(x-}ﬂwﬁ%5]

/2

® P 1)3 dx
(xg + ag)(x2‘+ B?)(x - w)

e

(3.2)

“1

'In the case that X = u - we can write an unsubtracted dispersion

- relation for D(w), but we are then free to add a real constant

v to the D function tq fix its normalization at infinity. We

thus arrive at Eq. (3.2) in this case also.

Now we must consider two possibilities. If v = 0 the

‘"N and D functions have a coincident zero at W (or at

infinity if \ = p); This gives the "extinct bound state" solution

of Atkinson and Halpern,l8 in which the dépendence of the ampli-

‘tude on A and u drops out completely. The resulting
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| amplitude cannot have a 'polé.at the origin for the nucleon, so
we ignoré fhis solﬁtion. ;
If v‘ is ﬁot Zero we can setv 1t equal to unity by
_ chooé’ingl.the: ﬁormaliza.ﬁion of N((n) and D(u)') appropriately.
Then, except in the degeneré.te case A = .= 0, which gives

D) =1 end Nlo)

f(w) = 0, we have

_ 1 |
A+ (h - u)w/w33 |

£ ) = 2L = (F + P + D)

3/2

1 -1 ",(::'2--1) o
] A - 0)
oL T (x° -'1)3/2 ax v (5.30)
5 ;(xg + o;g)(x2 + 62)(x - ) -
1 ‘
(2 1 BVE 82 1 |
= (a? + 0 ) (0" + 8%) N T 7y T
(a2 + 1)3/,2

+

S =1
'(;32-062)(O/2+a>2) E‘fgw;a- sinh ~o
M JE2'+1)5/2 o, -1 = '2
el CI- ) M

-*-g[¢<w>+-;-.¢<m>}, o | | 5.30)
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st [l @ o

‘where -

"‘For'real or pure imaginary argﬁment, f(w) is given by

B N N o, ,
B(xtie) =,(x2 - 1) 2¢- % log{x +,(x2 - 1)2]ii ,y x>1  (3.ba)
| | ' . | . !
= (x rJ;yZ f% log{# X +.(x2,- 1)2] , - x<=1" (3.kp)
N ! 1 - < B
= (:Lv-‘xg)' % + %sin'@, - 1<x<1 (3.ke)
o 5 1 . - ‘
p(xix) = (x2 +1) 2 Loy i'Sinh'E;>' , o (3.4a)

If f(n) 1is to correspond to the physical amplitudes 11

and f it must have a pole at.the origin and a resonance

337

at - W5 ‘Thus A must be chosen to give D(0) = 0 and

"to give Re D(- w33) = 0, or from (3.3) and (3.4)

o?[ (s +f1)3/2 -,1]1- 52[(a2'+ 1)5/2 - 1]

1 _ .
~ % - ‘azﬁz - D) | ,» (3.58)
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.2 3/2" ' . W

: + 1) s :

- (Béa- GE)%&2 - 5 ) <3§ - sinh la A
| 53 -

‘ 3/2 - | |
+ = (52 +1) <:%f'- 33 sinh-ié:>
N T |

3/2
- ]_)

TIe

(

. (1)2
3 2 CRVINE
3

L loglo., + @2, - 1)3|. (3.50)
2 33 - 33 71 )

Equations (375) can be satisfied for finite A And u  only if
the expressions on the righf hand side are non-zero; these
ex@ressions are in fact positive definite for any real o and
lB. The positiveness of A and p tells us that N(w) is

positive for - w,, < w <. 0: and that, if. A # u, .a)o"-f':(a)o):,< 0.

33
Thus our model cannot possibly fit the experimental Dyq phase
shift, which increases through zero near the Nnux threshold.5’19

We can hope, though, that our model will fit the experimentally

determined nucleon pole residue and A resonance width.l7’29.

Tiq = 0.243 + 0.006, fﬁ = 0.12 i_o;01 . " (3.6)

We thus fix A and p by Egs. (3.5) and compare the above values

with the predictions'of our model,

.Ylil = = g‘; [f-l(w)]o s | A(3‘-7a)



.for a range of values of -« .aﬁd B.
The-Ya;ues'of .Ylil “and. Y3;l’ éiveﬁ By Egs. (3.7) lie

betwéen the fwo_cﬁrves shown in Figure 2, the upper cﬁrve giving

~the points for B = a .and the lowe? curve for 8 >> a3 in-

_‘creasing o moves the points along either curve to increasing

A values.  The experimental vélues (3.6) aré‘indicated by the circle

with accompaﬁying error bars. Our best fit, corresponding to

a=3.8 and p>>0a, is shown by the small square; it gives

= 0.2355 , 1y = 0.136 . - (3.8) -

LS
.For B >> a, the amplitude'becomeS-cbmpletely indeﬁendént of B
in the low-energy region, w < ¢. This result follows because,

~

in this limit, Egs. (3.5) give, to order 1/B,

= =;§- [E ﬁé’x'], | | (3.9)
L. L2 _O5 ity ] (5.90)
i ;5 B - 23'.81n- B - g s _ | 3.9

where

A = ;i— [(Ot2 + 1)3/2'- JJ ' : (3.10a)
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1
&

(0 +w55 /
3 /2
wg-D" %J |
- 5 — logQ53+_(w33_- 1) - -.(3.10b)

‘Then for small ®, i.e., to order vwﬁ-l(sinhflg)27, the inverse
' -émplitude is approximatel& equal to

| _fdfl(m)_ = - ':('w2_+ ag_')[x"+ (' - u')w/‘”BB}% (o + 1)3/2

R MR CREL e

We.shall téke B large ehough 8o that'(B.ll) is a good approximation
to (3.3b) for l¢|,ﬁ 5 , giving an effécti&e three-parameter :

fit té the léernergy amplitudes. The resulting phase shifts,
aé'givéﬂ by (é77) and (2.8)~aie compared to the O - 700 MeV

values of Roper,_Wright‘and_Feldl9 in Figureé 3 and 4. The

variabié used in the pion lab kinetic energy, T, which is related

- to w by

2M-.T.=='(w_-1) @+2M+1) . (3.12)

In particular, iwj5 = 2.17.'corresponds to T33 = 200 MeV. The



=20~

 §55§.phase éhiftfdoes nottrise steeply enough above the A,
~but it 'dée_s.vfend_.asymptotically to x rather than to zero.
The pii‘ phaée shift, a; noted before,.is ﬁot even quaiitaiively
cdrrect; iﬁfdecregses thrbugh oy at wy ¥ é% B(sinh-lﬁ)f
"~ and evéﬁtually goes to ; Eﬁ' at infinite energy. This somewhat .

.. surprising asymptotic behavior will be considered further in

_ Section VI.
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Iv. THE ‘t-CHANNEL FORCES

We have now explicitly constructed an'aﬁplitude with
poles at '+ i and ’iuiB‘ that are supposed to represent the
forces due tb the exchange of particles in the .t-channel. Fof
the vaiuesvof the parameteré found in the previous section, this
model gives a good fit to the léw-energy p55 and. Pll (the
nucleon pole!) amplitudes. Let us now look more closely at the
“input forces.

The poles:at (+ i, which ve shall cali the "far poles",

have residues given by

. , , s N1
Res[f@n) , % is], - - L (:%; E: §§:> , (4.1)

‘ 1 o
to order (62 sinh lB) . The "near poles" at + ia have

residues

' Res[f(cn), + ia] = -‘é%&'[hﬂop(w - u')/cn55 - oz(oz2 + 1)

b
. i . 1 a1
- (207 - 1)(P + 1) sinhYalx £ oo (&F + 1)2 - 8o
i E A
| ' ' (4.2a)
= (6.732 £10.042 1)™" = 0.0b61 T 0.0687 1 .  (L.2v)

These expressions follow, after some algebra, from Egs. (3.3), (3.4),

and (3.11); the numerical values are for & = 3.8 with
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A and 'pi' given by Eqs. (3.10).
A function obeying a dlsper31on relation with.no

- 31ngular1t1es other than the near poles is tr1V1ally glven by

Bw) - 0.52§f+'oéo922 o ,-- o fh.ﬁ)
. w o ' :

This. "Born term"g-together with a. similar ohe for the far poles
would ‘be the input in a fuil 'N/D calculation. in our,model;
For purpéses of ?hysigal interpretation, it is éonﬁenient'to
think of oﬁf four parametérsvas expressing the positions of the
near and far poles;v & and B, and.the residues‘of the near

oles The residues of the far poles are then not independent,
but are determlned by the requlrement that the amplitude have the
_ cofrect behavior both at thrgshold and gsymptotically. Thus it

- is likely that the neér poles‘représént the first Born apﬁroximationé
to the exchanges of iow-mass particleé in the t-channel, while
:thevfar poles-aéprOXimaté the partvof the double spectral function
“.arising from'the iteratiqn of this lowest 6rder potential in

' the manner proposed by Mandelstam.lo;zl |

The facf that the best agreement with experimeht is for

B 2> o/ may‘bé connected with the abové interpretation; it also
agrees with 6ther models of low-energy naN scattering, which

~generally depend on only three pérameters. In the usual reciprocal

~bootstrap calculation,g'for instance, the position and
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residué. of the‘nucleon pole and a cutoff parameter are needed
to calculate_the; p33 amplitu@e, while a cutoff and the A
position and width suffice to determine the Pyq amplitude.
Strong-coupling theorieseg_for p-%ave- scattering also have
three'parameterS‘in our senée--the mass and coupling constant
of the nucleon and a cutoff. | |
.v 'We shall now investigate the function B(w) given by
lEq. (h.}); to check the interpretation that it.represents the
contribution of low mass exchanges to the t-chénnel force.
We first ane thaf the position ofithe singularities at =+ 3.81
is‘feasonable; WeICan compare this to the end pointé of the cuts
due to p exchange at i 2.71 and to the position of the poles
uséd by Hendry"gnd Stech,u + 51, These values correspond to
£he mass of the exchanged particles, i.e., to the range of the
forces.
| As a measure of the strength of the iﬁput forées, we shall
-take the value of the Born term at fhi'eshold.3 The forces are
fhén found to be attractive (positive Born term), with strength

channels of

in . the Ipll and P35

B(1) = 0.040 and - (4.ha)
1 B(-1) = 0.014 , ' (L.bp)

,respectively; Donnachie,Hamilton and Lea.25 have calculated the



B, I
‘Born termS'for 7N scattering in ste détail,.finding the
threshoid values in the Pqq
force due to. p and 6 exchange to be * 0.055 and 0,03,

and p53 chennels of the combined

respectively. Our value is very close o theirs in the channel
: ﬁith'the quaﬁtum humberé of the nucledn, and too sm@llvby a
factor of two in the A channel.

The inbut forces:neéded'in.our model to "predict" the N
and A arevthﬁs,seen'to.be attfactive and to have a streﬂgth and
range of the_corfect orde? of magnitude. TIf thése forces are |
varied, theﬁposition_dnd width ;f the output N and A will:
chaﬁgel To see this let us fix thé.rénge of the férces and
A.vary their strength. This is_done-by fixing a and B and
varying A 'aﬁd ‘u in Eq. (3.3) or eqﬁivalently A" and u'
fin Eq. (3.11); we_sﬁall’furthermore Qé}y these parémetefs together -
~in such a‘waykthat B(w) - is just multiplied by a real constant;
its functional form being uﬁaltered. The low-energy éﬁproximatibn

to the.resulting amplitude is given by
N 1A
f.lw) = |fy () + welw) -, . (4.5)

where . f -l(w) is given by (3.11) with A' and p' obeying

0
Egs. (3.10), k¢ is a real parameter, and

glw) | a'2 (a)2 + oc2) (19.081 .- 3.366 w) . | (L.6)

F il
¥y
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The above assertion is verified by noting'that
. : ) '. -l _v . : .
Res[f,c«o), : mJ - 1+ %) Res[f(w), : ia]; (5.7)

fthus for k = 1/9; fK¢g> is fhé.amplitude with 1d% smaller Born
terms, while xk = - 1/11 gives.an amplitude Wiﬁh‘thegihput'force
increased by 102.' The fgnctioné Re fK’lQb) = Re'fbflob) + kglw)
for k =0, 1/9, and - 1/11 are plotted in Figure 5. When

K =‘1/9, the nucleon position and residue are

®; = 0.39 , rj; = 0.16 , (4.8a)

vwhile the ‘A position and width change to

1055 = 3.37 , ¥55 = 0.124 - ~ (4.8b)

For k = -1/11, we have

e
i

- 0.65 , = 0.70 , (4.9a)

117 11

W53 - 1. A 0.36 . . - (4.9b)

: As:_n is decreased to 5 l/lO, the A becomes a bound state;

if k is made still mbreﬁnegative, the N and A come together
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fgnd. fn-l no longer_has zeros on the'realiaxis.”‘Wé éhall sée
in the next séction thétvthe zeros have»moﬁed.off'the feal axis. -
Ato'copjugate pésitidns iﬁ'the compiex'plane; our model has.
developed bound states of complex "mess". ~Converseiy;.if- K
is'increased sufficiently, mii becomes greater than unity;
i.e., the "nucleon" changes from a bound state to a resonance;
‘.as would be eﬁpécted. ‘ | .

- of course‘purvmodel is'iﬂconsisteﬁt if éilv¥ 0, since
this meané'that the Vexternai" nucleon and the "internal® nucleon .
have~diff¢rént ﬁésses; but it is still instructive to see the
resuité-of'varying the parameters. A loz,ghange in the étrength.
- of tﬁe t-chanhel- forces causes large changes.in the N énd‘ A
position and,width, as can'be'seen:b&fcomparing Eqs. (3.8), (L.8)
aﬁd:(h.9); :The reason for this behavior lies in the well known
“ reciprocal bootstrgp mechanism;? fhe nucleon fhrniéhes almost
‘all the forcé;:néeded t; féfm the A, and vice versa. Thus a
small increasé in the t;channél forces decreases the mass and
| increases tﬂe éoupling'éonstant of both the N and the A,
which results in a correspondingvincrease in the dominant s- and
u-channel forces; a decreasé in the inﬁuﬁ forces.acts in Jjust
'the‘épposite manner. The output (N.and.A Amasses) varies with
the inpﬁt‘ (t-channel forcés) by a.large aﬁplification factor
which is due to the.pqsitive feedback character of the reciprocal

bootstrdp mechanism.
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Cv. BEHAVIOR OF THE AMPLITUDE OFF THE REAL AXIS

*In this section we went to study the behavior off the
real axis of any reasonable SCattering.function satisfying the
crossing relation (2.6), whether or not it has an N/D' de-
cqmposition.‘ By a reasonable amplitude we mean one that is a
real analytic function with no essentiai singularity at infinity
‘and with cuts oniy from +1 to + o and from; -1 to - o,
on which it obeys the unitarity Eq. (2.9). These assumptions

imply that

A1, 2 a ! :
£ 7)) = Ro) - (@ -1) |fl) +58(-0)f,  (5.1a)
whgré ﬁ(m) is a rational function-aﬁd @(w) is given by
Eq. (5.30). Then asymptoticallj -

- 3. : ‘ |
£ 0) ——> L logo+tw® T, (5.10)
) W - o ’

for éome‘ﬁon;negative.integer r, whefe C is real and non-zero.
We sha;i.also insist that a reasonable fw) ‘not differ
tod éreatly from'thevphysical amplitude in its behavior oﬁ the
real:aXis between the s 'and u cuts. Specifically, w)
is aésumed to have no zeros in [—l, l} and to fall into one of

the following three classes:
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|  (i)t"an) has a pole wiﬁh negative residue;at,‘wil in
(éi,‘l)}Q Eorrespdnding to ﬁhe nucleon. It‘may‘or may not
' héye g ﬁole with positive‘residﬁe at vm53 in (-lg wll),_
qoriesponding to a bound. As. but it has no other poles in
(-1, 1) | | |
. (ii1) f£(®) is positive definite in (-1, 1); i.e., the input.
forces are too weak to bind either the N 'or.fhé A |
.(iii) £ (w) fis negati§e definife in '(-l,.l);_thié amplitude
.will be shown to have hbound_state"'poleé off ‘the real axis
arising from iﬁpuﬁ fofces thét are too attractive.
Now sdy that fQD) has zeros and poles outside of
[—l, l].as follows:. |
poles at the conjugate points z; zi*,  im 2, >03 & =1,", p ;

. ‘ _ *
zeros at the conjugate points Wyy W, ,,Im.a)i >0 i=1,""", m ;

zeros on the real axis at x, with xif}(xi) <0;i=1,""*, n ;
any~number2u of zeros on the real axis with xf'(x) > 0.
" Then we construct the following function
- N . 0 9a1
W)= T (w-z) -2 )T (-0 )e-0, )T (o-x)
i=1 . 15=1 A .
x (o - xo)ﬂ flw) , ' o - (5.22)

where
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xo = wll for case i
=0 for cases 1ii and .iii s o (5.2p)
and
ﬁ =.+ 1 for cases i and ii’
= -1 for case iii . o (5.2¢)

| This function is anglytic in the upper half p;ane and has neither
poles nor zeros off tﬁe real axis. On the real axis it has no
polésfor zeros other than simple poles Wifh negative residue

and simple'zeros with positive slbpe. In addition, the limit of
Im h(w) as'thevreal axis‘is approached from above is non-negative.
Thén, by a theorém due to Syma.nzik,25 which is 6utlined in the

" Appendix to this paper,
Im h{w) 20 for Imw >0 . , (5.3)

Functions with the property (5.3) are called Herglotz functions;

15,26 to study

such functions haﬁe been used by many authors
diépeisionvrelations. The only result of the theory of these

f‘unctions-27 that we need is



-30- -

w-l h(w) 5;;—;—> oM Z,O‘ : ' . (5.4a)

w >
for e<Argw < I -¢€, €>0. It is clear that if " h(w). is

a Herglotz function, fh—lQD) is also. Thus we also have

_aﬂhﬂ@y,;_>c';o. . ) (5.4)

D - o

Equationé (5.2) and (5.14) imply that

t

2(p -m-n) +n-r=-2fr r od, C<O, (5.58)
=3 for r even., R _(5-55)
=L for r odd, C>0 . (5.5¢)

Thevmost ‘o‘bvious cénséquéncé of fhis rélation is that p >1;
a.ny"reasona.ble a’.mplitude must ha.ve_at:least one pair of poles

off the real axis. An exé,_mple ‘of a reasonable scattering

: ampiitude w1th only onelpair of poles‘is fO'; defi_neci by |

- Eq. (3.11), which is approximately.eq'ual‘to the N/D solution

. (35) with B >> a for low energies.

Let us now look at the N/D solution. ‘It has no zeros
voff the 'rea.J; axis, sO we take m = O in Eq. (5.5). Equation (3.3)

shows that for A\ # p we have n = 1, r =0, while for A =,
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n=0, r=1, and C> 0. Both possibilities give
1 ' ' - .
p = 5(5-n). k | (5.6)

Since the 'N' function (2.19) has two pairs of poles off the

real axis,. the .D function ﬁust havé no zeros off the real axis

in céses i ahd ii and one pair of zeros at conjugate points

iﬁ case 1ii., These zerdé of D are the bouﬁd states with complex.
"mass" referred to in the previous section. The way they develop
as the inpﬁt fofcés are increased can be seen by obsérving the -

motion as k is lowered past - 1/10 of the zeros of

£ o) ¥ -3.32 (0 +0.915)° +2.533 + 23.26 k|

for . § ¥ - 0915, k¥ - 0.10. : (5.7)
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VI ASYMPTOTIC BEHAVIOR

| The asymptotlc behavior of the best theoretlcal phase
.shlfts (Flgures5 and 4) was brlefly mentloned at the end

v‘of Sectlon III. In general, any N/D amplltude w1th a nucleon
pole at the origin and no other poles or. zeros in'[-l, 1J that

corresponds to a solution of Eq. (3.3) with A <p will have

6. (0) —— -2r+20 (loga),  (6.1a)

@ > «

Qb) —————-; - (1og w) | ‘ o (6.1p)

~> (2]

53

_Then the D - functions without CDD ‘poles, defined by Egs. (2.13);>

(2.14) and (2.15) behave asymptotically like

: lDll(w)| e lol™ (0gle))®, : (6.22)

D@ ol eglaD, (6
oS oD

)~ oglel . (620)

w -+

These three D functions all obey once-subfracted'dispersion
relations, so no CDD poles are needed.
_ The above phase shifts do not satisfy the usual form of

10,28

Levinson's Theorem, which states that



-33-

S(w) : -ﬂ.(nB - nA) " . '(6.33)
o w > ® . )

where -5(w) is the phase shift, normalized to zero at threshold,

of an amplitude with Ry bound states and np CDD poles.
They do satisfy the "weak Levinson's Thedrem",29
SQD) —_— (nB - nA +r), r<£1, (6.3b)

o - o

which.is mefely a‘statéﬁent that the denominator function of
the'amplitﬁdé obeys a once-subtracted dispergion relation. The
reason that (6.3a) holds in potential ééattering but not in this
case is that the D functions of potential theory tend to
'constanfs ésymptofically; while those given by Egs. (6.2)
certainly‘do not.

We could)save Levinson's Theorem by adding a CDD pole
to D35 and a zerq.to .Dll in such a way that they cancel out
of Eq. (2.15), leaving D unchanged. Since there is no reason
 to do‘this, the CDD pole not being needed for convergence
of thé dispersioﬁnrelations, we shall not consi@er the possibility
further. . .

Although our.phasé shifts do not satisfy Lévinson's Theorem

(6.3a), they do satisfy the Levinson-like identity
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Sll(w). 833(w) ‘”‘”“5>-“;(n5» nA) s - (6.4)
' where nA' is the total numbér'of bound states ih the 'pll and
P33 amplitudes (one in this case) and ng' is the total

‘number of CDD poles (zero in this case). Thus in our model-J

it‘is possiblé.ﬁo gét a rising PBB phase shift without adding
CDD poles, but iny at the expénse of a falling 81

For valueS‘ 0 and B other than those giving'the'closesﬁ
agreeﬁént with experiment, Egs. (3.5) may give values of A and 1
such that A }.u. The phase shlfts given by Egq. (3 3) with these'

values of the parameters have the usual asymptotic behav1or,

6ll((l)) ;r—:i;; -, 855(w) ;“f:T%Z 0, ‘. (6.5)
which satiéfies both (6.3a) and (‘6.1#)' with no CDD poles..
Correspondingiy, thevfﬁngtions .Dll5 ﬁ35, and D all obey
énce—subtracted dispersion reiations. | |

| The above discuésion of aSyﬁptotics can be extended to
ény reasdﬁable scéﬁtering amplitude, in the sense of the
preceding séction,‘if we keep track of the bound states correctly,
excepting the "complex bound state" case. iii. This case could
. be. handled only by puttlng one "bound state" zero into Dll

" and the other into D33, which would spoil the real analyt1c1ty
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of these functions. For all the other cases, the N/D
solution yields phase shifts satisfying Bq. (6.h).

Let us finally con;ider the_asymptotics sf fo(w) B
defined by Egs. (3.10) and (3.11) with o = 3.8, which differs
from our N/D solution only in its asymptotic béhaﬁior. _For

2

this amplitude, -

_Sllﬁb)4————€> -t 2n.(iogfn)-l s : | (6.62)

W - o

835(0)) —> g -7 (log m)"l . . (6.6b)

w —-» o

 We can use Eqs. (2.13) and (2.14) to define Dll(w) ‘and DﬁBQb) ,

which have asymptotic behavior

e}

lDll(w)lf\—‘/ (l°g|wl)2.) : . (678,)
nln CesleD™,
0,50 |~ lol (208 ). (6.7

w - o

Thus thé repreéeﬁtations'
£o11(®) = £5() = N5 (@)/0)1(0) and f0() = 5 (- ) = Nys(e) /D)

both lead to N/D equations of the usual kind, with an unsubtracted

dispersion relation for the N function and a once-éubtracted
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h diSpersioh rélation_for'the D funétién. ‘However, the D
function given by Eq. (2.15), which has both the right»hénd
‘v'and left'hand cuts and no CDD poles; behaves asymptotically
like |w| log |o] and_so needs two subtracﬁions. Thus . £, ()
does no£ obey N/D equatioﬁs of the type introduced in Seétion I1,
which illustrates the comment made after Eq. (2.16). This
behavior is consistent with the argument in Section II that an
aﬁplitude with the N/ﬁ_.decomposition (2.10) must have ét least
‘two pairs of poles off the real axis, since fOQD) has only
-one such pair:of poles. The above discussion also serves to

© show that the’convergence of N/D' équations ﬁay be critically
'dependenﬁ_on asymptotic_behavior'thatvdoes.nqt_affect;the

-solution in the low energy region.
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"VII. SUPERCONVERGENCE RELATIONS

Since the model considered in this paper gives phase
shifts that tend asymptotically to integral multiples of 1,
the amplitude has the asymptotic behavior

-0
w -

o £lo) —> . : (7.1)

This leads to the three superconvergence relationsll

' -1
Zv.+2‘- Imf(x—ie)dx-g'- Im f(x + ie) dx = 0 ,
T 1w 7
- (7.2a)
-1 . ' ) 0
E: aLf‘ + E x Im f(x - ie) dx - L x'Im.f(x +ie) dx = O
T P R ' ?
™ , S (7.20)
: -1 ’ C
EZZ.wigri+ % %% Inm f(x - ie) dx - % *°Tm f(x + ie) d&x = 0 ,
i : ' .

-00 1
' (7.2¢)
where the sums run over all the poles of f(w) at w; with
residues Yi'
That such superconvergence relations exist in the static
model has been known for quite some time.T? Assuming that (7.22)
is saturated by the nucleon and a zero-width A resonance leads

to the well known predictionz’12
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“The nucleon pole; does not contribute tovthe»éecond'sum rule (7.2b).
Assuming that only the cuts contribute to this relation leads

to a. contradiction since from Egs. (2\7) and (2.8)

Im £(x ;1ie)I=.2q_3 sin® 553(]m1) , x< -1, (7.k)
L _ Im:f(x +i€) = q 7 sin -6ll(w) s x> 1, (7.40)
éndléo 
‘ ) -l,. S _. . G . L .
1] Y 1 / . -
=[x In f(x‘e 1§) ax ==} xIm f(x + ie) ax

-0

'_m

A

kqh3[2 sin® Sgé(x) + singkéll(x}}dxv.: (7.%e) .
1

The left hand side of the éum:rule is negative definite and is
large, owing to the'cbntfibution’Of the A. It has beenlcon—
jectﬁredBO'that this difficulty islrglated to the static
appfoximation, and cén.be surmountéd by ﬁsing relativistic kingmaticéz
We would-like to‘suggest that the contradiction results |
from the neglect of the t-channel singularities, can be resolved
within'thé static model. In fact,'given an amplitude satisfying

" (7.1) the relations (7.2) are just mathematical identities. We
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shall investigate the contributions of various singularities
. to the sum rules for our best fit solution, given by Eas. (3.3) .
and (3.5) with B >> o = 3.8. For this amplitude, Eqs. (7.2a)

and (7.2b) give =~ o o . .

- 0.2353 + 0.0922 + 0.155k - 0.0122 = 0, and (7.5a)

0 + 0.522 S 0452 - 0.071 = 0, C (7.50)
resPeétivel&} The contributions afe listed in‘the following
order: nucleoﬁ pole, neaf poles (at + ia) s left hana cut,
~ and right hand cut. The fai éoles aﬁ. + ig give & negligible
contribution to these two sum rules, but do contribute to
*,(7,2g).' Thus_thglthird sum rulé dépeﬁds on distant singularities;
this igvaléo seen'in'the'extremely slow.conQergencé of - the
integrals (the iﬁfegrands go like 'x-l(log x)-g, for large x).
“For thisAreéson we‘shall.only consiaef tﬁe first two sum rules.
'Néte that the contribution of the near poles to these sum rules
is by no means negligible relative to the cut contributions.

| The ‘left hénd cut contribuiion to (7.5&) and (7.5b) is
the samé as_would be contributed byAa zero-width resonance in

the §55 amplitude with position and width

l=.. t = 0.07 . - '.\6
g 2.91 5 ' = 0.0777 | - (7.6)
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' These values are to be. compared with those given by Egs. (2.20)

and (3.8),

o =.é.17',' Ter = 0.136 ,

35 33

| which would contribute 50.272. and 0.59 to the firét'and second
sﬁm rules, resbectiveiy,.in-the zero-width‘approximation, These
'chmparisons cést.some doubt on the zero-width approxiﬁation, whiéh.
*'is generally used in sum rule calculations. |
_Thevfight hand cut contribution fo (7;5a) and (7.5b) is

~equivalent to-a'zero width resonance in the pll"channel with -

@‘ = 5.8 and

11

r'p, =0.0122, °  (7.7)

v _but.we knoﬁvfrom.the eiactisblution that 'éllv is decreasing and
approximately eqﬁél to -45° at 1@'11; Althoughvno one would
say that the sum rules predict a resqnéngerwith.parameters given
by (7.7), Eq. (7.6) could be used to determine the position and
width of the A. Such a use of partial wave superconvergence
relationsvhas.been advocated as a dynamical method;Bo our model
shows that this procédﬁre»is inaceurate in the static limit.
Using relativistic kinematics will.probably not improve matters,
' ‘because‘the sum ruleé tend to emphasize distant portions of the
left hand cuts, which are then not given directly in terms of
physical amplitudes, and which are not likely to be well

approximated by the first order Born approximation.
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VIII. CONCLUSIONS

We have constructed.a model for pilon-nucleon écattering
that can repreéént the‘nuéléon.pole and A resonance -ragther well
usiﬁg quite reasonabieAAt-ChannglA forces. The behavior of our
“py; emplitude in the physical regién, though; does not agree with
experiment. In pértiéulaf, wé:cannot'predict the zefo-of this
“amplitude near the Nun threshold, a common failure of.one-
channél calCulatiqns, as was eﬁphasized by Schwarz. This defect
'could be remedied in one éf two ways; we could put either a
CDD  pole into our D function .or an extra pair of‘polés into the
N funcﬁioh, which could-then have g zero in the low eneigy reéion.'
'If fact, if the extra, pair of poles in the second &lternative
representedvshort.range forces, being far from the physical regionm,
“the resulfing solutién Would‘differ from one with a CDD pole
'onl& in its asymptotic behavior. -This sifuation is similar to
that discussed in Section VI.

‘Although we could fit the p,; Dphase shift better in our
one-éhannel model, the result_Would.be suspect because it would

involve many free pérameters. _This is especially true—since Ball,
Shaw and WOnQBlbhave shown that a. simple two-channel (N ‘and
No) model can fit the p,,  data qﬁite well with only four
parameters. Ihese authors conclu@e that: fll would have a

resonance rather than a nucleoﬂ bound state if the coupling bétween

" the channels were turned off, and that therefore a one-channel
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‘-calculation‘of thevhucleon‘mass is:unreliabie.. In our model
'Lifhe*forces in the Nx channel afé sﬁfficieﬁtlto’éi?e.al
“,bound nuclepn,.Buf“the'considerations of Sectiqn IV’show_that.
: © the éutput nucleon jarameters are éxtremely sénsitive té:the \
.-f-exact valﬁé of these fofées. .Thus ﬁhe questidn‘ofﬂwhether the

B nﬁcleon,bound'state is formed‘almostventirely.in thé, Nﬁ= channel.,-’
‘~v or whetherlothef]channelsv(e.g,,' No) are of roughly equal
importanée, éannot be settled at‘thié time in a model-independent
way. |

The principal result of our work is to show that, iﬁ a‘

solublé model, elastic unitarity in the'.s; and u-channels and’
the s-u crossing felation are éuch powerful conétraints'that
théy coﬁpletely determine thé‘amplitude for scattering in the

s- and u-channels once the 't—channel  singularities aré specified;
‘The. strong s~ and u-channei forces:are determined self- |
cbnsistentiy, ﬁhile the relatively weak vt-chqnnel forces turn
- out to be ver& importanf. We believe that if t-channel unitarity
and full crossing symmetry could be satisfied, all the forces
would be determined self-conéistently, gnd one could ﬁo longer

_ make any clear separation between input and output at all.
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A
APPENDIX -
The theorem used in Seetion V is Symaniik."s25 -adaptation
of the Phragmén-Lindele Theorem. > We shall outline the proof,
introducing the assumptions as they are,ﬁeededl
(1) Let h(z) be a functlonvholomorphic in the upper
half plane.
Now define w(z) = exp[ih(z)],_ which will also be
holomorphic in the upper half plane. v
'(2) 'Let h(z) have no poles on the real axis other than
simple poles with negatlve resl residue and let Im h(z) 'approach
non-negatlve values as the real axis is approached from above
Then |w(z)| < 1 everyvhere on the real axis
Lz - real
and the Phragmen-Llndelof Theorem allows only two cases:
(a) lw(z)‘.s 1 everywhere'ln-the upper half plane;

i.e., Imh(z) 20 for Imz>0, or

l(b) lié‘ logM(r)/r'> 0 where M(r) = max lw( ) o

T - co Z) =

i.e., Imh(z) » - o |z| - o in some direction in the
upper half plane. o |

Now we make the following two assumptlons

(3) h(z) has no zeros in the upper half plane,

(%) h(z) has no zeros on the real axis except simple

zeros at which h'(x) is real and positive.



._)+5_ ' . ) i

o Then -h-l(z). satisfies'assumptions,*l) and 2) ‘and so
the Phrégméh-Lindele'Theorem gives the result; either. |
- (a) im[-h-l(z.)] ;0 for Imz >0, or’
() Im [-h-l(zﬂ-» - o as [zl.» o in some direction
_ih ﬁhe upper half plane.
Now we only need one more assumption,
- (5) .h(z) does not have an essential singularity at
infinity, to show that the only consistent result is that . (a) and
" (a') hold. Thus the five assumptions are sufficient to prove that

h(z) - is a Herglotz function.
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.. FIGURE CAPTIONS

AnalytiC'structpre of the partiél wave amplitudes in

 the static limit, showing the various cuts and the

‘nucleon pole at o = O.

The inverse.df the nucleon pole residue plotted against'

" the inverse of the A resonance width; the values

‘uobtainable in our model fall between the two curves.

. 'Our best fit to the experimental values, which are

:vgiven by the circle with accompanying error bars, is

. shown by the small square.

energy, T, 'according.to Roper et al. (

Fig. 2.
' Fig.‘5. 
Fig.: 4, -

The phase shift 555 as a function of pion lab kinetic

) and our

; @sa function .of pion.lab kinetic

The phase shift &

“energy, T,i according to Roper et al..(—————) and our

- Fig. 5

Re fK-¥(w) from Eq. (4.5) plotted as'a function of

 for k=0, 1/9, and - 1/11 .
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