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Application of a metric for complex
polynomials to bounded modification of
planar Pythagorean–hodograph curves

Rida T. Farouki1 Marjeta Knez2,3 Vito Vitrih4,5 Emil Žagar2,3

Abstract

By interpreting planar polynomial curves as complex–valued functions of a real parameter,
an inner product, norm, metric function, and the notion of orthogonality may be defined
for such curves. This approach is applied to the complex pre–image polynomials that
generate planar Pythagorean–hodograph (PH) curves, to facilitate the implementation of
bounded modifications of them that preserve their PH nature. The problems of bounded
modifications under the constraint of fixed curve end points and end tangents, and of
increasing the arc length of a PH curve by a prescribed amount, are also addressed.
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1 Introduction

In the complex model [4] for planar PH curves, points (x, y) in the Euclidean plane are identified
with the complex values x+ i y. A planar PH curve r(t) for t ∈ [ 0, 1] may be generated from a
complex pre–image polynomial w(t) by integrating the hodograph expression r′(t) = w2(t). This
guarantees that the components of r′(t) = x′(t) + i y′(t) satisfy [13] the polynomial Pythagorean
condition

x′2(t) + y′2(t) = σ2(t) ,

where σ(t) = |r′(t)| = |w(t)|2 is the parametric speed of r(t) — the derivative ds/dt of the curve
arc length s with respect to the parameter t.

Planar PH curves admit an exact computation of properties such as arc lengths and offset
curves [6], that necessitate use of numerical approximation for “ordinary” polynomial curves.
However, their non–linear nature entails more sophisticated construction algorithms, and renders
a posteriori shape modification a difficult task. To address this latter problem, it is important
to first formulate a measure of “how close” two PH curves are, i.e., to specify a metric for the
space of all planar PH curves.

The complex representation of planar PH curves offers a solution to this task, in terms of the
standard concepts of inner products and norms from functional analysis [18]. By introducing a
bound on the distance between an original and modified pre–image polynomial, it is possible to
characterize the set of changes to its coefficients that define the shape modifications to a planar
PH curve that do not compromise its PH nature.

The focus of the methodology presented herein is on the planar PH curves, although the
approach may be adaptable to the spatial PH curves [3, 10] and the numerous other formulations
of PH curves with distinctive properties that have been proposed [1, 2, 16, 17, 19, 20, 21, 22, 23,
24, 25].

The remainder of this paper is organized as follows. Section 2 introduces the basic concepts
of an inner product, norm, and metric for the space of all polynomials in a real variable t ∈ [ 0, 1 ]
with complex coefficients. Section 3 then shows that this metric allows an angle between such
polynomials to be defined, and gives examples of orthogonal plane curves specified as complex
polynomial functions of a real parameter. Section 4 discusses the application of these concepts
to planar PH curves and it is observed that to maintain the PH nature, modifications should
be made to the pre-image polynomial instead of directly to the curve. Modifications satisfying
a prescribed bound on the distance between the original and modified pre–image polynomials
are discussed in Section 5, and modifications that preserve the end tangents or end points of
PH curves are also formulated. Section 6 shows how complex polynomials orthogonal to a
specified pre–image polynomial may be used to modify PH curve arc lengths. Finally, Section 7
summarizes the contributions of this study and suggests further possible avenues of investigation.
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2 Metric space of complex polynomials

We begin by reviewing some elementary concepts from functional analysis — inner products,
norms, and metrics (see [18] for a thorough treatment).

Let u(t),v(t) ∈ C[t] be complex polynomials in the real variable t ∈ [ 0, 1 ]. Their complex–
valued inner product is defined by

⟨u,v⟩ =

∫ 1

0

u(t)v(t) dt . (1)

For any complex polynomial w(t) ∈ C[t], this inner product induces a non–negative norm spec-
ified by

∥w∥ =
√
⟨w,w⟩ . (2)

A metric, or distance function, for the complex polynomials u(t) and v(t) may be defined in
terms of the norm (2) as

distance(u,v) = ∥u− v∥ . (3)

Since

∥u− v∥2 =

∫ 1

0

(u(t)− v(t))(u(t)− v(t)) dt

=

∫ 1

0

|u(t)|2 + |v(t)|2 − 2Re(u(t)v(t)) dt

= ∥u∥2 + ∥v∥2 − 2Re(⟨u,v⟩) ,

we have
distance(u,v) =

√
∥u∥2 + ∥v∥2 − 2Re(⟨u,v⟩) .

Note that distance(u,v) = 0 if and only if u(t) ≡ v(t).
The metric (3) can be used to define the distance between planar curves, r(t) and s(t),

regarded as complex functions of the real parameter t ∈ [ 0, 1 ] — namely,

distance(r, s) =
√

∥r∥2 + ∥s∥2 − 2Re(⟨r, s⟩) .

Note that, when r(t) and s(t) are orthogonal, i.e., Re(⟨r, s⟩) = 0, the distance is simply√
∥r∥2 + ∥s∥2. The following elementary cases are noteworthy.

1. If s(t) is a translate of r(t) by the complex value d, distance(r, s) = |d|.

2. If s(t) is a rotation of r(t) by angle θ, distance(r, s) = 2 (1− cos θ) ∥r∥.
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3. If s(t) is a scaling of r(t) by the factor c, distance(r, s) = |1− c | ∥r∥.

In some contexts it may be desirable for distance(r, s) to reflect only the differences of shape,
and discount considerations of position, orientation, and scaling. If r(0) = s(0) = 0, this can
be achieved through a rotation/scaling transformation that makes the vectors r(1) − r(0) and
s(1)− s(0) coincident.

The preceding ideas were briefly mentioned in the problem of constructing spatial C2 closed
loops with prescribed arc lengths using PH curves [11] — the solutions can be characterized in
terms of two complex polynomials u(t),v(t) satisfying ∥u∥ = ∥v∥ = 1/

√
2, ⟨u,v⟩ = 0, and thus

distance(u,v) = 1.

3 Orthogonal planar curves

Since |Re(⟨u,v⟩) | ≤ ∥u∥ ∥v∥ from the Cauchy–Schwartz inequality, an angle θ ∈ [ 0, π ] between
u and v may be defined by

cos θ =
Re(⟨u,v⟩)
∥u∥ ∥v∥

,

and we thereby obtain the cosine rule

distance2(u,v) = ∥u∥2 + ∥v∥2 − 2 ∥u∥ ∥v∥ cos θ .

If cos θ = 0 — i.e., Re(⟨u,v⟩) = 0 — we say that u and v are orthogonal, and write u ⊥ v. For
two orthogonal complex polynomials, the distance becomes simply

√
∥u∥2 + ∥v∥2.

Although the focus herein is on PH curves, the above principles apply to any planar curves
represented as complex-valued polynomial functions of a real variable, an approach to the study
of planar curves promoted by Zwikker [27]. If r(t) and s(t) are Bézier curves of degree m and n,
with control points p0, . . . ,pm and q0, . . . ,qn, the product r(t) s(t) can be expressed [7] as

r(t) s(t) =
m+n∑
k=0

zk

(
m+ n

k

)
(1− t)m+n−ktk ,

with

zk =

min(m,k)∑
j=max(0,k−n)

(
m

j

)(
n

k − j

)
(
m+ n

k

) pj qk−j , k = 0, . . . ,m+ n .
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Since the definite integral of every Bernstein basis function of degree m+ n over [ 0, 1 ] is simply
1/(m+ n+ 1), the inner product of r(t) and s(t) is

⟨r, s⟩ =
z0 + · · ·+ zm+n

m+ n+ 1
.

Thus, for given control points p0, . . . ,pm of r(t), the orthogonality condition Re(⟨r, s⟩) = 0
amounts to a single linear constraint on the real and imaginary parts of the control points
q0, . . . ,qn of s(t), so the dimension of the subspace of degree n curves s(t) that are orthogonal
to r(t) is 2n+ 1. To explore this subspace in more detail, we set

(rx(t), ry(t)) = (Re(r(t)), Im(r(t))) , (sx(t), sy(t)) = (Re(s(t)), Im(s(t))) ,

and define

d(t) := Re(r(t) s(t)) = rx(t)sx(t) + ry(t)sy(t) ,

c(t) := Im(r(t) s(t)) = sx(t)ry(t)− sy(t)rx(t) .

Regarding r(t), s(t) as vector functions, d(t) is their dot product and c(t) is the component of
the cross product orthogonal to the (x, y) plane. Moreover, Re(⟨r, s⟩) and Im(⟨r, s⟩) are the
integrals of d(t) and c(t) over t ∈ [ 0, 1 ].

To construct orthogonal curves, it is convenient to employ an orthonormal polynomial basis.
We choose here the Legendre basis on t ∈ [ 0, 1 ] which may be expressed in terms of the Bernstein
basis [5] as

Lk(t) =
√
2k + 1

k∑
i=0

(−1)k+i

(
k

i

)
bki (t) , bki (t) =

(
k

i

)
(1− t)k−iti .

These basis functions satisfy ∫ 1

0

Lj(t)Lk(t) dt = δjk ,

where δjk is the Kronecker delta, and the first few instances are

L0(t) = 1 ,

L1(t) =
√
3 (2 t− 1) ,

L2(t) =
√
5 (6 t2 − 6 t+ 1) ,

L3(t) =
√
7 (20 t3 − 30 t2 + 12 t− 1) .
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For any given curve r(t), t ∈ [ 0, 1 ] of degree m we consider the problem of constructing
curves r⊥(t), of the same degree, that are orthogonal to r(t). Expressing r(t) and r⊥(t) in the
Legendre basis as

r(t) =
m∑
k=0

ak,1Lk(t) + i
m∑
k=0

ak,2Lk(t) ,

r⊥(t) =
m∑
k=0

bk,1Lk(t) + i
m∑
k=0

bk,2Lk(t) , (4)

by the orthonormality of the basis functions we have

Re(⟨r, r⊥⟩) =

∫ 1

0

m∑
k=0

ak,1Lk(t)
m∑
ℓ=0

bℓ,1Lℓ(t) +
m∑
k=0

ak,2Lk(t)
m∑
ℓ=0

bℓ,2Lℓ(t) dt

=
m∑
k=0

ak,1bk,1 + ak,2bk,2 .

Thus, identifying the coefficients bk,1+ i bk,2, k = 0, 1, . . . ,m of an orthogonal curve is equivalent
to finding the set of 2m+ 1 linearly independent vectors

b = (b0,1, b0,2, b1,1, b1,2, . . . , bm,1, bm,2)
T ∈ R2m+2

that are orthogonal to the vector

a = (a0,1, a0,2, a1,1, a1,2, . . . , am,1, am,2)
T ∈ R2m+2

with respect to the Euclidean inner (or dot) product in R2m+2. The basis of the orthogonal
complement a⊥ follows from the extended QR decomposition a = QR, where Q is a (2m+2)×
(2m + 2) orthogonal matrix, and R = (∥a∥2 , 0, . . . , 0)T where ∥ · ∥2 is the standard Euclidean
norm. The matrix Q is the well–known Householder reflection [15], computed as

Q = I − 2

gTg
ggT , g = a+ sign(a0,1) ∥a∥2 e1 , (5)

where e1 = (1, 0, . . . , 0)T . The second through last columns of Q — denoted by q2, . . . , q2m+2

— are the orthogonal basis of a⊥. Thus, any vector

b =
2m+2∑
k=2

ξk−1qk , ξ1, . . . , ξ2m+1 ∈ R

identifies a curve r⊥(t) of the form (4), that is orthogonal to r(t). Moreover, the columns of Q
also define curves that are pairwise orthogonal.
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Example 1. Consider the vector a = (α0, 0, 0, α1, α2, 0, 0, α3) that defines the curve

r(t) = α0L0(t) + α2L2(t) + i (α1L1(t) + α3L3(t)) ,

with Bézier control points

p0 = α0 +
√
5α2 − i (

√
3α1 +

√
7α3) = p3 ,

p1 = α0 −
√
5α2 − i

(
α1√
3
− 3

√
7α3

)
= p2 .

In this case, we obtain

Q =



−α0

α
0 0 −α1

α
−α2

α
0 0 −α3

α

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

−α1

α
0 0 1− α2

1

α2+α0α
− α1α2

α2+α0α
0 0 − α1α3

α2+α0α

−α2

α
0 0 − α1α2

α2+α0α
1− α2

2

α2+α0α
0 0 − α2α3

α2+α0α

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

−α3

α
0 0 − α1α3

α2+α0α
− α2α3

α2+α0α
0 0 1− α2

3

α2+α0α


,

where α = ∥a∥2. From columns 2, 3, 6, 7, we see that any curve of the form

r⊥(t) = β1L1(t) + β3L3(t) + i (β0L0(t) + β2L2(t)) (6)

is orthogonal to r(t). The Bézier control points of such a curve are

q0 = −
√
3 β1 −

√
7 β3 + i (β0 +

√
5 β2) = −q3 ,

q1 = − β1√
3
+ 3

√
7 β3 + i(β0 −

√
5 β2) = −q2 .

Columns 4, 5, 8 of Q define three additional linearly–independent orthogonal curves, that are
symmetric about the real axis.

As an illustrative example, consider the case

α0 = 1, α1 = −2
√
3, α2 =

√
5, α3 =

√
7.

Figure 1 shows the curve r(t) (black) and four curves r⊥(t) orthogonal to it, corresponding to
the columns 4 (red), 5 (green) and 8 (blue) of Q, multiplied by the norm of r(t), while the purple
curve is defined by (6) with

β0 = −1, β1 = 3, β1 = −2, β3 = −4.

Figure 1 also shows the graphs of Re(r(t) r⊥(t)) for these four curves, which exhibit equal areas
above and below the t–axis.

6



-5 1 5

-10

-5

1

5

10

1

-30

-10

10

30

Figure 1: Left: the curve r(t) in Example 1 is indicated in black, and four curves r⊥(t) orthogonal
to it are shown in red, green, blue, and purple. Right: the graphs of Re(r(t) r⊥(t)) for these four
curves.

Example 2. The cubic curve

r(t) = 7 b31(t) +
16

3
b32(t) + i

(
20

3
b31(t)−

11

3
b32(t) +

19

3
b33(t)

)
is a PH curve, since r′(t) = [ 5 b10(t)−3 b11(t)+i (2 b10(t)− 5 b11(t)) ]

2. From its Legendre coefficients,
we obtain the vector

a =

(
37

12
,
7

3
,−

√
3

12
,
13
√
3

30
,−37

√
5

60
,

√
5

6
,

√
7

28
,
4
√
7

15

)
,

and columns 2–8 of its QR decomposition define 7 orthogonal curves r⊥,k(t), k = 1, . . . , 7. We
compute their linear combination

r⊥(t) =
7∑

k=1

ξk r⊥,k(t) ,

so that r⊥(t) is a PH curve. To equate the number of equations and unknowns ξ1, . . . , ξ7 we also
require r⊥(0) = 0, and r⊥(t) to have a prescribed parametric speed, σ(t) = 20 − 40 t + 38 t2.
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The resulting nonlinear system has six different solutions, illustrated in Figure 2. Note that the
prescribed σ(t) implies that curves r(t) and r⊥(t) all have the same arc length, namely 38/3.

-5 1 5

-10

-5

1

5

10

Figure 2: The cubic PH curve r(t) (black) in Example 2, together with the six PH curves r⊥(t)
orthogonal to it (shown in different colors) that possess the same start point (0, 0) and the same
parametric speed σ(t).

4 Planar Pythagorean-hodograph curves

Planar PH curves r(t) are generated from complex pre–image polynomials w(t) by integrating
the derivative or hodograph h(t) := r′(t) = w2(t). If w(t) is of degree m, specified in Bernstein
form as

w(t) =
m∑
k=0

wkb
m
k (t) , (7)

the hodograph may be written as

h(t) =
2∑

k=0

hkb
2m
k (t) ,

with coefficients determined [7] by

hk =

min(m,k)∑
j=max(0,k−m)

(
m

j

)(
m

k − j

)
(
2m

k

) wjwk−j , 0 ≤ k ≤ 2m+ 1 . (8)
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The Bézier control points of the PH curve of degree n = 2m+1 constructed by integrating r′(t)
are then given by

pk+1 = pk +
hk

2m+ 1
, k = 0, . . . , n− 1 , (9)

where we henceforth assume p0 = 0 as the integration constant.
We focus mainly on the planar PH quintics, generated from a quadratic pre–image polynomial

(7), which are widely considered to be the lowest–order PH curves appropriate to free–form design
applications. The control points of the Bézier form

r(t) =
5∑

k=0

pkb
5
k(t) ,

are

p1 = p0 +
1

5
w2

0 , p2 = p1 +
1

5
w0w1 ,

p3 = p2 +
1

5

2w2
1 +w0w2

3
,

p4 = p3 +
1

5
w1w2 , p5 = p4 +

1

5
w2

2 .

(10)

Planar PH quintics are typically constructed as solutions to a first–order Hermite interpo-
lation problem [12] for specified end points r(0), r(1) and end derivatives r′(0), r′(1). It is not
feasible to modify their shape a posteriori by manipulating the control points, since this will
ordinarily compromise their PH nature. Modifications that preserve the PH property of a curve
should be made to its pre–image polynomial, rather than directly to the PH curve. The met-
ric will therefore be primarily used to measure the distance between an original and modified
pre–image polynomial and the PH curve it generates.

5 Perturbation of pre-image polynomials

A key application of the metric for complex polynomials is to provide a means to make “modest”
shape changes to PH curves that preserve the PH property. To achieve this, modifications must
be made to the pre–image polynomial. We consider perturbations δw(t) to a given pre–image
polynomial w(t) that, for a prescribed bound ∆, satisfy

distance(w,w + δw) = ∥δw∥ ≤ ∆ . (11)

The perturbed pre–image polynomial determines a perturbed PH curve, with control points pk

displaced to pk + δpk for k = 1, . . . , n. The perturbations δpk may be obtained by replacing wk
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by wk + δwk in (8) and (9), and they determine a perturbation δr(t), whose norm provides a
measure of the difference between the modified and original curves.

Henceforth, we use the Legendre and Bernstein forms of bothw(t) and δw(t) interchangeably.
Whereas the former offers more concise formulations, the latter is the standard representation
scheme in computer aided geometric design and offers simpler implementation of certain con-
straints, such as the preservation of initial/final tangent directions.

The following lemma [5] describes the transformation between these two representations,
which is known to be quite numerically stable.

Lemma 1. For a polynomial p(t) of degree n expressed in the Legendre and Bernstein bases on
[ 0, 1 ] as

p(t) =
n∑

k=0

ckLk(t) =
n∑

j=0

dj b
n
j (t) ,

the coefficients C = (c0, . . . , cn)
T and D = (d0, . . . , dn)

T are related according to D = MnC,
where Mn is the (n+ 1)× (n+ 1) matrix with elements

Mn,jk =

√
2k + 1(
n

j

) min j,k∑
i=max(0,j+k−n)

(−1)k+i

(
k

i

)(
k

i

)(
n− k

j − i

)
, 0 ≤ j, k ≤ n ,

whose inverse M−1
n has elements

M−1
n,jk =

√
2j + 1

n+ j + 1

(
n

k

) j∑
i=0

(−1)i+j

(
j

i

)(
j

i

)
(
n+ j

k + i

) , 0 ≤ j, k ≤ n .

Note that the columns of the matrix Mn are orthogonal.

Example 3. For the linear, quadratic, and cubic pre–image polynomials of cubic, quintic, and
septic PH curves, the matrices Mn and their inverses are

M1 =

[
1 −

√
3

1
√
3

]
, M−1

1 =

[
1
2

1
2

−
√
3
6

√
3
6

]
,

M2 =

 1 −
√
3

√
5

1 0 −2
√
5

1
√
3

√
5

 , M−1
2 =


1
3

1
3

1
3

−
√
3
6

0
√
3
6√

5
30

−
√
5

15

√
5

30

 ,
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M3 =


1 −

√
3

√
5 −

√
7

1 −
√
3
3

−
√
5 3

√
7

1
√
3
3

−
√
5 −3

√
7

1
√
3

√
5

√
7

 , M−1
3 =


1
4

1
4

1
4

1
4

−3
√
3

20
−

√
3

20

√
3

20
3
√
3

20√
5

20
−

√
5

20
−

√
5

20

√
5

20

−
√
7

140

√
7

140
−3

√
7

140

√
7

140

 .

In the Legendre form, the pre–image polynomial (7) is expressed in terms of coefficients
c0, . . . , cm as

w(t) =
m∑
k=0

ckLk(t) , (12)

and the Bernstein coefficients can be recovered from the Legendre coefficients through the rela-
tions

wj =
m∑
k=0

Mm,jk ck , j = 0, . . . ,m , (13)

from which the Bézier control points (9) may be determined. The Legendre and Bernstein forms
of the perturbation polynomial are

δw(t) =
m∑
k=0

δckLk(t) =
m∑
j=0

δwjb
m
j (t) .

The relations (13) also hold for δwj in terms of δck, i.e.,

δW = Mm δC, δW := (δw0, . . . , δwm)
T , δC := (δc0, . . . , δcm)

T . (14)

In the Legendre form, the norm of the perturbation δw(t) is

∥δw∥ =
√

|δc0|2 + · · ·+ |δcm|2 = ∥δC∥2 , (15)

where ∥ · ∥2 again denotes the standard Euclidean norm. Writing perturbation coefficients as

δck = ρk exp(iφk), k = 0, . . . ,m , (16)

the inequality (11) becomes simply

∥δw∥ =

√√√√ m∑
k=0

ρ2k ≤ ∆ . (17)

For perturbations of equal magnitude ρ := ρ0 = · · · = ρm it further simplifies to

∥δw∥ =
√
m+ 1 ρ ≤ ∆ , (18)
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so choosing ρ ≤ ∆/
√
m+ 1 satisfies the condition (11) for any given ∆.

In the Bernstein form ∥δw∥ may be expressed, using (14) and (15), as

∥δw∥ = ∥M−1
m δW ∥2.

Since
∥M−1

m δW ∥2 ≤ ∥M−1
m ∥2 ∥δW ∥2 ,

where ∥M−1
m ∥2 is the matrix norm induced by the Euclidean vector norm, which is equal to

the largest singular value σmax (M
−1
m ) = 1/

√
m+ 1, any choice of coefficients δW such that

∥δW ∥2 ≤
√
m+ 1∆ ensures satisfaction of (11) for any given ∆. If we express

δwk = rk exp(iϕk) , k = 0, . . . ,m , (19)

then ∥δW ∥2 =
√∑m

k=0 r
2
k, and in the case of equal–magnitude perturbations, r := r0 = · · · = rm,

the simple choice r ≤ ∆ implies that (11) holds true. However, this is just a sufficient condition.
The inequality (11) can be satisfied for larger values of r by using the inequalities

∥δw∥ =

√
Φ01 + 2√

3
r ≤ ∆ ,

∥δw∥ =

√
3Φ01 + Φ02 + 3Φ12 + 8√

15
r ≤ ∆ , (20)

∥δw∥ =

√
10Φ01 + 4Φ02 + Φ03 + 9Φ12 + 4Φ13 + 10Φ23 + 32√

70
r ≤ ∆ ,

for m = 1, 2, 3, respectively, which follow from straightforward computations using the matrices
in Example 3 upon setting Φij := cos(ϕi − ϕj) for brevity. In each case, the factors multiplying
r in (20) are bounded from above by 1.

5.1 Preservation of curve end tangent directions

Although the Bernstein form is more involved in terms of strictly satisfying the bound ∥δw∥ = ∆,
it provides a simple means to preserve the directions of the curve end derivatives r′(0) = w2

0 and
r′(1) = w2

m by, for example, choosing ϕ0 = arg(w0) and ϕm = arg(wm), leaving ϕ1, . . . , ϕm−1 and
r0, . . . , rm as free parameters — subject to (11) and (19) — to manipulate the curve shape. On
the other hand, with the Legendre form and the perturbations (16), the equality ∥δw∥ = ∆ can
be simplify satisfied by e.g. choosing ρ0 = · · · = ρm = ∆/

√
m+ 1, but the analogous method

for preserving the end derivative directions incurs the complicated conditions

arg(w0) = arg

[
m∑
k=0

Mm,0k e
iφk

]
, arg(wm) = arg

[
m∑
k=0

Mm,mk e
iφk

]
. (21)
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The following example illustrates these considerations.

Example 4. Consider the quadratic pre–image polynomial w(t) specified by Bernstein coeffi-
cients

w0 = 5 + 2 i, w1 = − 3− 4 i, w2 = 5 + i ,

with corresponding Legendre coefficients

c0 =
7

3
− 1

3
i, c1 = −

√
3

6
i, c2 =

8
√
5

15
+

11
√
5

30
i ,

on which we impose the perturbations of the form (19) and (16) form = 2 with equal magnitudes
r = r0 = r1 = r2 and ρ = ρ0 = ρ1 = ρ2, satisfying (11) with equality and ∆ = 0.25. With the
Bézier representation, the end tangents are preserved by choosing ϕ0 = arg(w0) = arctan(2/5)
and ϕ2 = arctan(1/5). For ϕ1 = 0, π/4, π/2, 3π/4, we obtain from (20) that the r values for
which ∥δw∥ = 0.25 are r = 0.25245, 0.25661, 0.29620, 0.39083, respectively. Figure 3 depicts
the original and four modified PH quintics, all satisfying ∥δw∥ = 0.25 — their distances from
the original PH quintic are 0.29691, 0.30096, 0.29884, 0.28626, respectively. Also shown is the
envelope of the family of all possible perturbed curves with the prescribed end tangents, for
r = 0.25. Note that all the curves have been shifted so that the centroids of their Bézier control
points are coincident.

With the Legendre representation, the bound ∥δw∥ = 0.25 is attained, for any angles
φ0, φ1, φ2, if and only if ρ = 0.25/

√
3. To also preserve the end tangent directions, these angles

must be chosen (see (21)) so as to satisfy

arg (eiφ0 −
√
3 eiφ1 +

√
5 eiφ2) = arctan(2/5) ,

arg (eiφ0 +
√
3 eiφ1 +

√
5 eiφ2) = arctan(1/5) .

For each of the values φ0 = 0, π/4, π/2, 3π/4, four distinct (φ1, φ2) solutions were identified,
defining four different perturbations of the quintic PH curve. Figure 4 compares the original
PH curve with a representative perturbed PH quintic from each of the sets of four solutions.
The modified PH quintics have distances 0.19350, 0.22553, 0.23572, 0.22451 from the original
PH curve. The envelope of the family of modified curves for all φ0 values and all solutions is
also shown (all the curves are shifted so that the centroids of their Bézier control points are
coincident).

In the preceding discussion, the perturbations incur a global change in the curve. In par-
ticular, the curve end points change, which may be undesirable in common design contexts.
Perturbations to the pre–image polynomial that preserve the curve end points are addressed
next.
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Figure 3: Left: The prescribed quintic PH curve (blue), with four instances modified using
the Bernstein basis (different colors), whose pre–images satisfy ∥δw∥ = 0.25, as described in
Example 4. Right: The envelope of the family of all perturbed curves with preserved end
tangent directions for r = 0.25.

Figure 4: Left: The prescribed quintic PH curve (blue) with four instances modified using
the Legendre basis (different colors), whose pre–images satisfy ∥δw∥ = 0.25, as described in
Example 4. Right: The envelope of the family of all perturbed curves with preserved end
tangent directions for ρ = 0.25/

√
3.

5.2 Preservation of curve end points

To eliminate non–essential freedoms, it is customary to consider construction of PH curves in
canonical form [8, 9] such that r(0) = 0 and r(1) = 1. The mapping of a PH curve with prescribed
end points to and from canonical form can be achieved using a simple translation/rotation/scaling
transformation. Thus, we confine our attention to canonical–form PH curves in investigating
perturbations that preserve the curve end points. Taking r(0) = 0 by choice of the integration
constant, r(1) = 1 is achieved through the condition∫ 1

0

r′(t) dt =

∫ 1

0

w2(t) dt = r(1)− r(0) = 1 . (22)

In the Bernstein and Legendre representations (7) and (12) of the pre–image polynomial w(t),
we set C = (c0, . . . , cm)

T and W = (w0, . . . ,wm)
T . As in (14), the connection between these

coefficients is defined by W = MmC (see Lemma 1). It is easy to see that, for the Legendre
form (12), the constraint (22) reduces to

∥C∥22 =
m∑
k=0

c2k = 1 , (23)
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i.e., the Legendre coefficients correspond to points on the unit sphere in Cm+1. Setting C =
CR + iCI , where CR,CI ∈ Rm+1, we note that equation (23) is satisfied if and only if

∥CR∥22 − ∥CI∥22 = 1 and CT
R CI = 0 .

From C = M−1
m W , the constraint (22) expressed in terms of the Bernstein coefficients becomes

m∑
k=0

c2k = CTC = (M−1
m W )T (M−1

m W ) = W T (M−1
m )TM−1

m W = 1. (24)

Setting Gm = (M−1
m )TM−1

m , we obtain for m = 1, 2, 3 the (m + 1) × (m + 1) matrices with
elements gm,jk for 0 ≤ j, k ≤ m as

G1 =
1

6

[
2 1
1 2

]
, G2 =

1

30

 6 3 1
3 4 3
1 3 6

 , G3 =
1

140


20 10 4 1
10 12 9 4
4 9 12 10
1 4 10 20

 ,

and in the cases m = 1, 2, 3 equation (24) then reduces to

w2
0 +w2

1 +w1w0 = 3,

3w2
0 + 3w2

2 + 2w2
1 + 3 (w0 +w2)w1 +w0w2 = 15 ,

10 (w2
0 +w2

3) + 6 (w2
1 +w2

2) + 10 (w0w1 +w2w3) + 4 (w2w0 +w1w3) +w3w0 + 9w1w2 = 70 .

To ensure that the conditions (23) and (24) are fulfilled upon substituting ck → ck+ δck and
wk → wk + δwk for k = 0, . . . ,m, the coefficients δck and δwk must satisfy

m∑
k=0

δc2k + 2
m∑
k=0

ck δck = δCT (δC + 2C) = 0 , (25)

and

δW TGm(δW + 2W ) =
m∑
j=0

m∑
k=0

gm,jk δwj (δwk + 2wk) = 0 , (26)

for the prescribed ck and wk values satisfying (23) and (24). In addition, the perturbations must
satisfy the bounds ∥δC∥2 ≤ ∆ and ∥M−1

m δW ∥2 ≤ ∆. Writing δC = δCR + i δCI , the condition
(25) is equivalent to two scalar equations in the real vectors δCR and δCI , namely

∥δCR∥22 − ∥δCI∥22 + 2 δCT
RCR − 2 δCT

I CI = 0 ,

δCT
R δCI + δCT

RCI + δCT
I CR = 0 .

(27)
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Writing δW = δWR+ i δWI , we have δWR = Mm δCR and δWI = Mm δCI , so these equations
can also be expressed in terms of δWR and δWI .

This shows that in general the construction of such a perturbation δw that provides the
perturbed curve to be in a canonical form and that ∥δw∥ = d ≤ ∆ for some chosen d requires
the solution of a quite complicated nonlinear system. Thus, we now propose a simple sufficient
way to compute the perturbations focusing on the Legendre representation with coefficients δck
expressed as in (16). The idea is to consider only the coefficients where all the angles are the
same, i.e., φ := φ0 = . . . = φm. Then

∥δCR∥22 − ∥δCI∥22 =
m∑
k=0

ρ2k cos (2φ), δCT
R δCI =

1

2

m∑
k=0

ρ2k sin (2φ),

so the equations (27) together with the condition

∥δw∥2 =
m∑
k=0

ρ2k = d2 (28)

simplify to two linear equations

d2 cos (2φ) + 2
m∑
k=0

ρk(cos(φ) Re(ck)− sin(φ) Im(ck)) = 0,

d2 sin (2φ) + 2
m∑
k=0

ρk(cos(φ) Im(ck) + sin(φ) Re(ck)) = 0,

(29)

for the radii ρk, k = 0, 1, . . . ,m, that depend on the chosen angle φ. Thus, the only nonlinear
part is to satisfy (28). Next example demonstrates this construction.

Example 5. Let us choose the pre-image polynomial of degree 2 with Legendre coefficients

c0 = 2− i, c1 = 1 + 2 i, c2 = −1 + 0 i,

which satisfy (23). Further, let us fix d = 0.1 and observe the perturbations of the form (16)
with φ0 = · · · = φm = φ for any φ ∈ (− π, π ]. From (29) we compute

ρ1 =
ρ0
2

− sin(φ)

400
, ρ2 =

5ρ0
2

− sin(φ)

400
+

cos(φ)

200
,

and (28) reduces to a quadratic equation for ρ0,

15

2
ρ20 +

5 cos(φ) − 3 sin(φ)

200
ρ0 +

cos(2φ)− 2 sin(2φ)− 1597

160000
= 0,
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Figure 5: Left: Perturbed PH quintics (red and green) with ∥δw∥ = 0.1 and with the same end
points as the quintic PH curve (blue) from Example 5, defined by φ = 0. The envelope of all
solutions for φ ∈ (− π, π ] is also shown (light blue). Right: The modified PH quintic curves that
preserve end points and end tangent directions, as described in Example 6, as ∥δw∥ varies.

which has a positive discriminant for any φ. Thus there are always two admissible perturbations
δw, shown in Figure 5 (left) for the choice φ = 0 (red and green curve), together with the original
(blue) curve and the envelope of all solutions as φ ∈ (− π, π ].

With the Legendre representation it is easy to construct perturbations δw(t) that preserve end
points of the given curve, while the Bézier representation is more convenient for preserving end
tangent directions. The constraints on the coefficients of δw(t) imposed by preserving end points
and end tangent directions, coupled with the non–linear dependence of ∥δw∥ on those coefficients,
makes it difficult to formulate schemes that guarantee an a priori satisfaction of the bound (11).
As a practical solution for PH quintics, we consider here coefficients δw0 = r exp(iϕ0) and
δw2 = r exp(iϕ2), where ϕ0 = arg(w0) and ϕ2 = arg(w2), for a prescribed r value, to preserve
the end tangent directions. Preservation of the end points can then be achieved by solving the
m = 2 instance of equation (26) for w0,w1,w2 values that define a canonical–form PH quintic,
as a quadratic equation in δw1. Since this incurs modest computational effort, it is amenable to
real–time user modification of r to ensure satisfaction of (11). However, adding the constraint
∥δw∥ = d for some d ≤ ∆ adds one nonlinear equation, but since the whole nonlinear system is
algebraic, it is possible to compute all the solutions using some computer algebra system.

Example 6. Consider a canonical–form PH quintic defined by the quadratic pre–image poly-
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nomial with Bernstein coefficients

w0 =
√
2 +

√
2

2
i ,

w1 =
1

4

(√
5(9 +

√
97)− 6

√
2

)
+

(
−1

4

√
−27 + 5

√
97 + 6

√
10(

√
97− 9)

)
i ,

w2 =
√
2 +

√
2

2
i .

To preserve the end tangent angles θ0 = arg(w0) and θ2 = arg(w2), we set δw0 = r exp(i θ0),
δw2 = r exp(i θ2) with some chosen r, and compute δw1 from equation (26) for m = 2. For
r = 0.2 we obtain two solutions

δw1 = − 0.33476348− 0.29109547 i , δw1 = − 5.05586773 + 1.05285093 i .

The corresponding ∥δw∥ values are 0.102659, 1.802944. Figure 6 (left) shows the resulting curves.
The first solution (red curve) is evidently a very reasonable modification of the original curve
(blue), preserving its end points and end tangents. Although the second solution (green curve)
also has this property, it exhibits tight loops — a common feature [8, 12] among the multiple
solutions to PH quintics that satisfy given constraints — and is discarded on the basis of the
large ∥δw∥ value. The perturbed curves with ∥δw∥ ≤ 0.25 for r = −0.4,−0.3, . . . , 0.3, 0.4 are
shown (red curves) in Figure 6 (right) together with the two curves (gray) having ∥δw∥ = 0.25,
obtained for r = −0.52962446 and r = 0.47220859.

Choosing the pre-image polynomial defined in Example 5, with Bézier coefficients

w0 = (2−
√
3−

√
5)− (1 + 2

√
3) i , w1 = 2

(
1 +

√
5
)
− i , w2 = (2 +

√
3−

√
5) + (2

√
3− 1) i

and different choices for r, i.e., r = −0.5,−0.4, . . . , 0.4, 0.5, the modified quintic PH curves
that preserve end points and end tangent directions, and satisfy ∥δw∥ ≤ 0.25 are shown (red
curves) in Figure 5 (right) together with the two curves (gray) having ∥δw∥ = 0.25, obtained
for r = −0.59313245 and r = 0.60204179.

6 Modification of PH curve arc lengths

The total arc length S of a planar PH curve r(t) is intimately related to the norm of its pre–image
polynomial w(t), since

S =

∫ 1

0

σ(t) dt =

∫ 1

0

|w(t)|2 dt = ∥w∥2 . (30)
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Figure 6: Left: The given canonical–form PH quintic (blue) with two modifications (red, green)
that preserve the end points and tangent directions for a fixed r = 0.2, as described in Example 6.
Right: The modified curves satisfying ∥δw∥ ≤ 0.25 as r varies.

The arc length S can be changed by a specified amount δS > 0 by choosing δw(t) to have the
norm

√
δS and to be orthogonal to w(t), since∫ 1

0

|w(t) + δw(t)|2 dt = ∥w∥2 + ∥δw∥2 + 2Re(⟨w, δw⟩) ,

where ∥w∥2 = S, ∥δw∥2 = δS, and Re(⟨w, δw⟩) = 0 when w(t) and δw(t) are orthogonal. We
focus here on the Legendre representation

w(t) =
m∑
k=0

ckLk(t) and δw(t) =
m∑
k=0

δckLk(t)

of the pre–image polynomial and its perturbation. Recall the notation from Subsection 5.2.
Setting ck = ck,1 + i ck,2 we form, as in Section 3, the real vectors

a = (c0,1, c0,2, c1,1, c1,2, . . . , cm,1, cm,2)
T and g = a+ sign(c0,1)∥a∥2(1, 0, . . . , 0)T . (31)

The second through last columns of the (2m+2)×(2m+2) matrix Q = (qj,k)
2m+2
j,k=1 defined in terms

of a and g defined in (31) by the formula (5) then identify the coefficients of the polynomials

bk(t) =
m∑
j=0

bk,jLj(t) , bk,j := q2j+1,k+1 + i q2j+2,k+1, k = 1, 2, . . . , 2m+ 1, (32)

that form the orthonormal basis for degree m complex polynomials orthogonal to w(t) with
norms ∥bk∥ = 1, k = 1, 2, . . . , 2m+ 1. Thus, for any real values γ1, γ2, . . . , γ2m+1 a perturbation
polynomial of the form

δw(t) =
2m+1∑
k=1

γkbk(t) (33)
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is orthogonal to w(t) and has the norm ∥δw∥ =
√

γ2
1 + γ2

2 + · · ·+ γ2
2m+1, so by assigning values

γ1, γ2, . . . , γ2m+1 that satisfy
γ2
1 + γ2

2 + · · ·+ γ2
2m+1 = δS , (34)

the perturbed pre–image polynomial w(t) + δw(t) will generate the PH curve with arc length
S + δS.

To ensure that the modified curve has the same end points as the given PH curve r(t),
assumed to be in canonical form, δw(t) must also satisfy the condition (25), which can be
reduced to the quadratic equation

2m+1∑
j,k=1

fj,kγjγk +
2m+1∑
k=1

fkγk = 0, where fj,k :=
m∑
ℓ=0

bj,ℓbk,ℓ, fk := 2
m∑
ℓ=0

bk,ℓcℓ, (35)

in γ1, . . . , γ2m+1. Equation (34) and the real and imaginary parts of equation (35) constitute a
system of three quadratic equations for 2m + 1 factors γ1, . . . , γ2m+1 in (33), which allows the
user to fix 2m− 2 of them, and then solve the system using Newton–Raphson iteration or some
algebraic solvers.

Remark 1. If we denote by QR the sub-matrix of Q with rows 1, 3, . . . , 2m + 1 and columns
2, 3, . . . , 2m+2, and by QI the sub-matrix of Q with rows 2, 4, . . . , 2m+2 and columns 2, 3, . . . , 2m+
2, and we define the complex matrix Q = QR + iQI , then the vector δC of coefficients of δw
can be expressed as δC = Qγ for γ = (γ1, γ2, . . . , γ2m+1)

T , which gives a more compact repre-
sentation of (35), namely

γTFγ + 2γTQC = 0, F := QTQ.

Example 7. Consider the PH quintic specified by the pre–image polynomial in Example 6, with
arc length S = 1.23740482. The complex matrix Q, defined in Remark 1, equals

Q =

 0.048391 + 0.998792, i 0 0 −0.148557 + 0.003707 i −0.305920 + 0.007634 i
0 1 i 0 0

0.003707 + 0.007634 i 0 0 0.988619− 0.023436 i −0.023436 + 0.951738 i

 .

Let us choose δS = 0.01. The perturbation δw(t) is by (33) expressed with five values γ1 . . . , γ5.
We fix two of them and compute the others as the solution of equations (34)–(35). Fixing
γ4 = γ5 = 0 four solutions are identified:

(γ1, γ2, γ3) = (0.0047585271,±0.074073623,∓0.067010856) ,

(γ1, γ2, γ3) = (−0.0047585271,±0.074073623,±0.067010856) .
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Fixing γ2 = γ3 = 0 the sytem has only two solutions:

(γ1, γ4, γ5) = (−0.032364637, 0.094555975, 0.0034202026) ,

(γ1, γ4, γ5) = (0.030467676,−0.094859055, 0.0085720767) .

Using these values, the Legendre coefficients of δw(t) follow from δC = Qγ. The resulting PH
quintics with increased arc length, generated by the modified pre–image polynomials w(t) +
δw(t), are shown in Figure 7.

Figure 7: The PH quintic from Example 6 (blue), together with PH quintics (different colors)
with arc lengths increased by δS = 0.01, sharing the same end points, computed by fixing
γ4 = γ5 = 0 (left) and γ2 = γ3 = 0 (right).

Example 8. As the final example we choose the PH quintic specified by the pre–image polyno-
mial in Example 5, with arc length S = 11, and follow the same steps as in the previous example.
For the choice δS = 0.01 and γ4 = γ5 = 0 there are two solutions,

(γ1, γ2, γ3) = (−0.068622784, 0.069792544,−0.020491812) ,

(γ1, γ2, γ3) = (0.068681604,−0.069717905, 0.020548745) ,

shown in Figure 8 (left). Fixing γ2 = γ3 = 0 we compute

(γ1, γ4, γ5) = (−0.034621641,−0.083559293,−0.042651924) ,

(γ1, γ4, γ5) = (0.031439019, 0.083161950, 0.045778578) .

The corresponding curves are shown in Figure 8 (right).
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Figure 8: The PH quintic from Example 8 (blue), together with PH quintics (red, green) with
arc lengths increased by δS = 0.01, sharing the same end points, computed by fixing γ4 = γ5 = 0
(left) and γ2 = γ3 = 0 (right).

7 Closure

Interpreting planar polynomial curves as complex–valued functions of a real parameter t ∈
[ 0, 1 ] facilitates the introduction of an inner product, norm, and metric function, that permit
measurement of curve magnitudes and of the distances and angles between curves. The concept
of orthogonal curves is then possible, leading to a procedure to construct a basis spanning all
planar curves that are orthogonal to a given planar curve.

These concepts were applied to the complex pre–image polynomials that define planar Pytha-
gorean–hodograph (PH) curves, to develop schemes that allow bounded modifications of a given
PH curve, without compromising its PH nature. Specializations of these schemes that accom-
modate preservation of curve end points and end tangents have also been presented, and the use
of an orthogonal basis for a given PH curve pre–image polynomial to achieve a desired change
in the arc length of the PH curve was demonstrated.

The methodology presented herein may also be generalized to the spatial Pythagorean–
hodograph curves through the quaternion representation [3, 10] and preliminary results have
already been reported in [14]. A further domain of interest concerns a possible adaptation of
the methodology from curves to parametric surfaces, defined as vector quaternion polynomial
functions of two parameters over triangular or rectanuglar domains.
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