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ABSTRACT 

Inverse modeling is a technique to derive 
model-related parameters from a. variety of 
observations made on hydrogeologIc systems, 
from small-scale laboratory experiments to 
field tests to long-term geothermal reservoir 
responses. If properly .chosen, these observa­
tions contain informatIOn about the system 
behavior that is relevant to the perfprmance of 
a geothermal field. Estimating model-related 
parameters and redu~ing their uncertainty is 
an important step m model development, 
because errors in the parameters constItute a 
major source of prediction errors. This paper 
contains an overview of inverse modelmg 
applications using t~e .. ~TOUGH.2 . c?de, 
demonstrating the pOSSIbIlItIes and lImItatIOns 
of a formalized approach to the parameter 
estimation problem. 

INTRODUCTION 

Numerical modeling of nonisothermal multi­
phase flow in fractured-porous media has 
reached a level of sophistication that allows 
one to accurately simulate coupled flow, trans­
port, and heat exchange proce~ses in a geo­
thermal reservoir under a varIety of natural 
and production-induced conditions (Pruess et 
aI., 1997). However, uncertainties in t~e 
parameters describing the hydro~eologIc 
properties of the ge?therma~ reservo.Ir. often 
obliterate the theoretIcally hIgh preclSlon of 
numerical simulations. An even greater impact 
on the predicted system behavior is ge~erated 
by errors in the conceptual model, makmg the 
identification of the relevant features and 
parameters the most important step in model 
development. 

Data describing the geothermal reservoir 
characteristics are usually obtained using a 
variety of methods, each of which producing 
information pertinent to a s~ecific scal~ a~d a 
particular process. In prevIOu~ publIcatIOns 
(Finsterle and Pruess, 1995; Fmsterle et al., 
1997) we have argued that hydrogeologic 
parameters should be determined based on 
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production data (flow rates, enthalpies,. and 
temperatures) and using a model WIth a 
structure similar to that employed for the 
subsequent predictions. Automatic. history 
matching of relevant test and productIOn data 
assures that model-related parameters are 
estimated; thus increasing the reliability of the 
predictions. 

The project described in this paper aims at 
enhancing automatic history matching and 
optimization techniques for ~nalyzi~g pr.ob­
lems in geothermal reserVOIr engIneenng. 
Developing inverse modeling capa~iliti.es for a 
nonisothermal multiphase reserVOIr SImulator 
provides the means to reduce errors and 
uncertainties in the input parameters. The fact 
that parameter uncertainties constitute a m~jor 
source of prediction uncertainty emp.hasI~es 
the importance of the parameter estImatIOn 
process in general, and the assessment <;>f 
parameter sensitivities and estimation errors In 
particular. 

We have developed inverse modeling capabili­
ties for the TOUGH2 simulator (Pruess, 1991) 
for applications in nUclear waste isolati0l!' 
environmental sciences, and geothermal engI-
neering. The ITOUGH2 code ("Inverse' 
TOUGH2") permits the estimation of 
TOUGH2 input parameters based on any t~pe 
of observation for which a correspondIng 
TOUGH2 output can be calculated (Finsterle, 
1997a). Furthermore, a detailed residual and 
error analysis can be perf?~ed, and the 
uncertainty of model pre.dICtIOnS cal! be 
evaluated using either a lmear analYSIS or 
Monte Carlo simulations. 

The purpose of this paper is ,to provide an 
overview of ITOUGH2 applIcatIOns to a 
variety of multiphase flow problems on a wide 
range of scales and involving different. proc­
esses. The ability of inverse modelIng ~o 
extract information from measured data will 
be demonstrated, along with its limitations, 
which are usually a consequence of systematic 
errors in either the model or the data. 



ELEMENTS OF INVERSE MODELING 

In this section, we briefly summarize the 
various steps involved in the iterative proce­
dure of automatic model calibration. A 
detailed discussion of inverse modeling theory 
can be found elsewhere (e.g., Carrera and 
Neuman, 1986). 

The flow chart shown in Figure 1 illustrates the 
process and main elements of inverse model­
ing. 

prior updated 
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Figure 1. Inverse modeling flow chart 
showing main elements of automatic model 
calibration procedure. 

The core of an inverse modeling code is an 
accurate, efficient, and robust simulation 
program that solves the so-called forward 
problem. It must be capable of simulating the 
flow and transport processes that govern the 
observed system response. As mentioned 
above, we use TOUGH2 (Pruess, 1991) to 
model multiphase fluid and heat flow in 
fractured-porous media. In addition to 
selecting the simulator, a problem- and site­
specific conceptual model has to be 
developed. Note that any error in the 
conceptual model leads to a bias in the 
parameter estimates, which is usually much 
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larger than the uncertainty introduced by 
random measurement errors. 

Next, an objective function has to be selected 
to obtain an aggregate measure of deviation 
between the observed and calculated system 
response. The choice of the objective function 
can be based on maximum likelihood consid­
erations, which for normally distributed meas­
urement errors leads to the standard weighted 
least squares criterion (Carrera and Neuman, 
1986): 

(1) 

Here, r is the residual vector with elements 
ri = Zi * -Zi(P), where Zi * is an observation 
(e.g., pressure, temperature, flow rate, etc.) at a 
given point in space and time, and Zi is the 
corresponding simulator prediction, which 
depends on the vector P of the unknown 
parameters to be estimated. The i-th diagonal 
element of the covariance matrix Czz is the 
variance representing the measurement error 
of observation Zi *. Note that alternative 
objective functions are available, which may 
have significant advantages over the traditional 
least-squares formulation (Fin sterle and Najita, 
1997) . 

The objective function S has to be minimized 
in order to maximize the probability of repro­
ducing the observed system state. Due to 
strong nonlinearities in the functions Zi(P), an 
iterative procedure is required to minimize the 
objective function S. A number of minimi­
zation algorithms are available in ITOUGH2. 
They reduce the objective function by itera­
tively updating the parameter vector P based 
on the sensitivity of Zi with respect to Pj' 

Details about the minimization algorithms 
implemented in ITOUGH2 can be found in 
Finsterle (1997a). 

Finally, under the assumption of normality 
and linearity, a detailed error analysis of the 
final residuals and the estimated parameters is 
conducted. As demonstrated in Finsterle and 
Pruess (1995a,b), these analyses provide 
valuable information about the estimation 
uncertainty, the adequacy of the model 
structure, the quality of the data, and the 
relative importance of individual data points 
and parameters. In addition to its efficiency, it 
is mainly the formalized sensitivity, residual, 
and error analyses that make inverse modeling 
preferable over the conventional trial-and­
error model calibration. 



APPLICA TIONS 

ITOUGH2 has been applied to a number of 
synthetic and actual multiphase inverse prob­
lems on different scales and with different 
objectives. Applications to geothermal engi­
neering problems have been described in 
Finsterle and Pruess (1995b), White (1995), 
Finsterle and Pruess (1997), Finsterle et al. 
(1997), and Guerrero et al. (1998). An addi­
tional set of sample problems with a detailed 
description of the ITOUGH2 program options 
can be found in Finsterle (1997b). Table 1 
shows the four selected applications of 
increasing scale that will be discussed in the 
remainder of this paper. 

Table 1. Summary Description of Selected 
ITOUGH2 Applications 

# AJ2J2lication Parameters Observations 
1 Gas-pressure- Permeability Pressure in 

pulse-decay Porosity upstream and 
experiment Klinkenberg downstream gas 

factor reservoir 

2 Ventilation Permeability Water potentials 
experiment van Genuchten Pressures 

parameters Evaporation rate 

3 Atmospheric Gas diffusivity Pneumatic 
pressure pressure 
fluctuation 

4 Calibration of Permeability Pressure 
geothermal Porosity Enthalpy 
reservoir model Steam saturation 

van Genuchten 
J2arameters 

In Application 1, permeability and porosity of 
a very tight fine-grained graywacke core plug 
from the Geysers Coring Project are 
determined using the gas-pres sure-pulse-decay 
(GPPD) method, in which a reservoir attached 
to the dry sample is rapidly pressurized using 
nitrogen gas (see Figure 2). Gas starts flowing 
through the sample, and the pressure change 
over time is observed in both the upstream and 
downstream reservoirs. Using nitrogen gas as 
opposed to water has the advantage of shorter 
test duration due to the increased mobility of 
the fluid. Furthermore, the high compressibil­
ity allows the determination of a relatively 
independent porosity estimate from the 
steady-state pressure data. Knudsen diffusion 
effects, however, lead to increased gas fluxes 
and thus require estimating a third parameter, 
the Klinkenberg gas slip factor b, along with 
absolute permeability and porosity. Details 
can be found in Finsterle and Persoff (1997). 
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Figure 2. Gas-pressure-pulse-decay 
apparatus. 

Figure 3 shows the data (symbols), the simu­
lated pressures with an initial set of parameters 
(dash-dotted lines), and the match obtained 
after 5 ITOUGH2 iterations (solid lines). 

The almost perfect match shown in Figure 3 
may lead to the conclusion that the parameters 
were estimated with a high degree of precision. 
However, the covariance matrix of the 
estimate.d parameters (Table 2) reveals that the 
very strong negative correlation between the 
permeability k and the Klinkenberg factor b 
yields an estimation uncertainty of more than 
an order of magnitude. 

500r------....,---~-.....,..----~..., 

~ 
~ 300 

~ 
~ 200 

100 

~O' 
Time [sec] 

Figure 3. Inversion of data from a GPPD 
experiment. Comparison between measured 
and calculated pressure transient curves in the 
upstream and downstream gas reservoirs. 



Table 2. Estimation Covariance Matrix, 
Inversion of One GPPD Experiment 

log(k) 
log (b) 
porosity 

log(k) 
1.67 

-1.90 
-5.79E-4 

log(b) 
-0.99 
2.16 
6.59E-4 

porosity 
-0.87 
0.87 
2.64E-7 

Diagonal contains variances, lower triangle is covari· 
ance matrix, upper triangle is correlation matrix. 

Table 3. Estimation Covariance Matrix, 
Simultaneous Inversion of Three GPPD 
Experiments. 

log(k) 
log (b) 
porosity 

log(k) 
1.05E-4 

-1.07E-4 
-1.30E-6 

log(b) 
-0.52 
4.10E-4 

-3.62E-7 

porosity 
-0.12 
-0.02 
1.06E-6 

Diagonal contains variances, lower triangle is covari· 
ance matrix, upper triangle is correlation matrix. 

The two highly correlated parameters can be 
effectively decoupled by simultaneously 
inverting data from three experiments 
performed at three different pressure levels. 
Weakening the correlation coefficient from 
-0.99 to -0.52 allows for a more independent 
determination of all parameters, thus signifi­
cantly reducing the estimation uncertainty as 
shown in Table 3. The match to all three 
GPPD experiments is shown in Figure ~. 

3000~~~~~::.··=··:·.; ... ;.::~::~:::~:::~:=~,.,~0'0~'.~'.~ ... ~ ... ~ .. ~ ... : ... =.-~ ... ~ ... ~ .. i .. =. ;;~~ 
2500 .............. "... . .. 

. Experiment 3 

<;' 2000 
~ • Experiment 2 . • , • 

~ 1500~.~'.~'.~'.'~.'.~'.~'.':.'.;'.:::Z:"':::.~'::'::::::::::'=:'"':o'o:'o:'.': ... : .. : .. : ... : .. -:.::::::::=-- . 
'" e 

Cl... 1000 

I
XData ,I _.- Initial Guess 

• - Best Estimate 'Ex~rimenti 
500 ..... "............. ..... .. 

... .. ............. _ ............. :::::::~:=l.'.' •.•. _'_'_._._ .. 

~O' 10' 10' 10' 
Time [sec] 

Figure 4. Comparison between measured and 
calculated pressure transient curves from three 
simultaneously inverted GPPD experiments. 

This example shows the importance of a 
formalized error analysis for a comprehensive 
interpretation of inverse modeling results. 
More details about correlations, the impact of 
systematic errors and their removal by 
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parameterization, and the use of robust 
estimators can be found in Finsterle and 
Persoff (1997) and Finsterle and Najita 
(1997). 

Application 2 demonstrates the flexibility of 
inverse modeling. A variety of different data 
from an unconventional experiment are used 
for the determination of two-phase hydraulic 
properties. 

Figure 5 shows a schematic of a ventilation 
experiment performed at the Grimsel Rock 
Laboratory, Switzerland. In order to deter­
mine the macropermeability of crystalline 
rocks, the total inflow of moisture into an 
isolated, ventifated drift section is measured in 
a cooling trap. Due to ventilation, the initially 
saturated granodiorite formation starts to dry 
out radially from the drift despite a strong 
water pressure gradient. By measuring the 
water potential using thermocouple 
psychrometers (TP), the gas pressure in two 
boreholes (see Figure 6), and the average 
evaporation rate, it was possible to determine 
the absolute permeability as well as the two­
phase flow parameters of the van Genuchten 
model (Luckner et aI., 1989). The example 
demonstrates that virtually any type of 
sensitive data can be used in a joint inversion 
to estimate parameters that affect the observed 
system behavior. This flexibility of inverse 
modeling can be exploited to conceive new 
experimental designs and to analyze a larger 
variety of observations obtained under natural 
and testing conditions. The ventilation 
experiment, the problem of nonuniqueness, 
and a nonlinear error analysis are discussed in 
detail in Finsterle and Pruess (1995). 

Figure 5. Schematic of ventilation experiment, 
showing thermocouple psychrometer (TP) and 
borehole locations. 



1.00 0.40 
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Figure 6. Calculated gas saturation and pres­
sure profiles after 80 days of ventilation. The 
measured borehole pressures are shown as 
triangles. 

Application No. 3 uses transient gas pressure 
data on a regional scale to estimate gas dif­
fusivity of a thick, heterogeneous, unsaturated 
zone. Atmospheric pressure variations at the 
land surface are damped as they propagate 
through the formation. The pneumatic pres­
sure signals observed at severa11eve1s in a deep 
borehole exhibit a specific time lag and 
reduction in amplitude depending upon gas 
diffusivity. Figure 7 shows the pressure flu~­
tuations at the land surface, and the compan­
son between the measured and calculated 
pneumatic signals. Analyzing pneumatic pres­
sures by inverse modeling provides a means to 
determine effective fracture network properties 
in the unsaturated zone on a large scale. More 
details can be found in Finsterle (1997b). 

91 L--15.J..25--1....J.53~0 ............... 151-35---1..1.54O--~1545~-~15:l::50:-J 
Time [h] 

Figure 7. Match of pneumatic pressures at 
three elevations in a deep borehole. The 
applied boundary pressure fluctuations at the 
land surface (1371 masl) are also shown. 
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The final application presents preliminary 
results of an inversion of pressure and 
enthalpy data from a geothermal well, using a 
simple, one-dimensional, radial model with 
homogeneous rock properties. The thickness 
of the reservoir is assumed to be 200 m; the 
feed zone is at a depth of about 1600 m. 
Initial reservoir temperature was measured to 
be 336°C. 

Note that the pressure and enthalpy data were 
obtained at the wellhead, whereas the simula­
tion results refer to downhole conditions. 
While heat loss and enthalpy changes along 
the wellbore are not expected to be large, the 
pressure drop, a function of flow rates and 
phase composition, is significant. Here, we 
assume that the pressure drop is independent 
of flow rate; it will be treated as an unknown 
parameter to be estimated simultaneously with 
the reservoir properties. 

The parameters to be estimated are selected 
based on a sensitivity analysis .. Only the most 
sensitive parameters of relative low overall 
correlation are subjected to the estimation 
process. They include the logarithm of the 
absolute permeability, porosity, initial vapor 
saturation, residual liquid saturation, the van 
Genuchten parameter n in the relative perme­
ability function (Luckner et aI., 1989), and a 
constant Cwell representing the pressure drop 
along the wellbore. 

Data from 85 days of production were used to 
calibrate the model. The production rate 
during this period varied around 4 kg/so Data 
are again available after t= 1 06 days, when 
production rate was increased to about 10 kg/so 
This latter period was not used for calibration 
but for testing the model predictions. Figure 8 
shows the prescribed production rate, the 
observed and calculated enthalpies and 
pressures for the initial parameter set as well as 
the best estimate, along with the 95% error 
band. The corresponding parameter sets are 
given in Table 4. 

Comparison of the responses obtained with the 
initial and final parameter set demonstrates the 
sensitivity of the modeling results with respect 
to the relatively minor updates needed to 
improve the match. More important, it re~ea1s 
the difficulties of the current model to SImu­
late the relatively strong pressure drop between 
t=55 and t=70 days, without resulting in 
excessively low pressures once the production 
rate is increased. Recall that wellbore effects 
are not modeled. While the entha1pies are 
matched reasonably well (except at early times, 



when fracture flow may be dominant), the 
model fails to predict the enthalpy during the 
last period of high production, when most of 
the produced fluid in the model consists of 
vapor. 

Table 4. Initial Guess, Best Estimate, and' 
Estimation Uncertainty 

Parameter 

log (perm. [m2l) 
porosity [-] 
initial vapor sat. [-] 
res. liq. sat. [-] 
vG parameter n [-] 
ewell [bar] 

Initial 
Guess 

-14.50 
0.02 
0.02 
0.20 
3.00 

40.00 

Time [day] 

Time [day] 

Best 
Estimate 
-14.48 

0.05 
0.01 
0.18 
2.45 

45.40 

Standard 
Deviation 

0.01 
0.01 
0.01 
0.04 
0.08 
1.14 

Figure 8. Calibration and prediction of 
flowing enthalpy and wellhead pressure. The 
top panel shows the prescribed production 
rate. Squares are measured data used for 
calibration. Triangles are measured data used 
for validation. The dash-dotted lines are the 
model results with the initial parameter set (see 
Table 4). Simulation results based on the 
estimated parameter set are shown as solid 
lines. Error bands (dashed lines) are calcu­
lated using linear uncertainty propagation 
analysis. 
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It should be realized that the conditions during 
the validation phase are quite different from 
the ones encountered while calibrating the 
model. Vapor saturation near the well is 
increased, i.e., the relative permeabilities are 
extrapolated beyond the calibrated range. It is 
obvious that the systematic errors in the 
simplified model must be eliminated before 
the parameter set can be further assessed. 

CONCLUDING REMARKS 

The purpose of this paper was to demonstrate 
the power and flexibility of an inverse model­
ing approach for automatic history matching. 
Four selected ITOUGH2 applications on 
different scales have been discussed. It was 
shown that model-related parameters can be 
estimated by performing a joint inversion of a 
variety of data collected under testing condi­
tions or during production. The advantages of 
inverse modeling procedures are that they 
overcome the time and labor-intensive tedium 
of trial-and-error model calibration. More 
importantly, the formalized approach allows 
one to obtain objective measures of estimation 
uncertainty, parameter correlation, and overall 
goodness-of-fit. 

Forward and inverse modeling improve our 
understanding of the basic multi phase flow 
processes and allow us to study the impact of 
parameters on model predictions. The 
reliability of model predictions in complicated 
nonisothermal multiphase flow systems 
strongly depends on the accuracy with which 
the input parameters can be determined. 
Inverse modeling aims at assessing and 
reducing the estimation uncertainties. The 
success of inverse modeling, however, depends 
on our ability to develop a model that is in 
principle capable of reproducing the observed 
system state. This crucial and difficult step of 
model conceptualization is the limiting factor 
in both forward and inverse modeling, because 
any error in the conceptual model leads to 
systematic prediction errors and biased 
parameter estimates. 

The ITOUGH2 code used in these studies is 
continually revised and updated to account for 
newly incorporated physical processes, and to 
improve the robustness and effectiveness of 
the optimization algorithm. 

ITOUGH2 is planned to be released through 
DOE's Energy Science and Technology Soft­
ware Center in the summer of 1998. More 



information can be obtained at the following 
web site: 
http://www-esd.lbl.govIITOUGH2 

ACKNOWLEDGMENT 

This work was supported, in part, by the 
Assistant Secretary for Energy Efficiency and 
Renewable Energy, Office of Geothermal 
Technologies, of the U.S. Department of 
Energy under Contract No. DE-AC03-
76SF00098. We would like to thank K. Pruess 
and G. Moridis for thoughtful reviews. 

REFERENCES 

Carrera, J. and S. P. Neuman, "Estimation of 
Aquifer Parameters Under Transient and 
Steady-State Conditions, 1, Maximum Likeli­
hood Method Incorporating Prior Informa­
tion," Water Resour. Res. 22(2), 199-210, 
1986. 

Guerrero, M. T., C. Satik, S. Finsterle, and R. 
Home, "Inferring Relative Permeability From 
Dynamic Boiling Experiments," Proceedings, 
23rd Workshop on Geothermal Reservoir 
Engineering, Stanford University, Stanford, 
Calif., January 26-28, 1998. 

Finsterle, S., "ITOUGH2 Command Refer­
ence, Version 3.1," Report LBNL-40041, 
Lawrence Berkeley National Laboratory, 
Berkeley, Calif., 1997a. 

Finsterle, S., "ITOUGH2 Sample Problems," 
Report LBNL-40042, Lawrence Berkeley 
National Laboratory, Berkeley, Calif., 1997b. 

Finsterle, S. and J. Najita, "Robust Estimation 
of Hydrogeologic Model Parameters," Report 
LBNL-40684, Lawrence Berkeley National 
Laboratory, Berkeley, Calif., (submitted to 
Water Resour. Res.), 1997. 

Finsterle, S. and P. Persoff, "Determining 
Permeability of Tight Rock Samples Using 
Inverse Modeling," Water Resour. Res., 33(8), 
1803-1811, 1997. 

- 7 -

Finsterle, S. and K. Pruess, "Solving the 
Estimation-Identification Problem in Two­
Phase Flow Modeling," Water Resour. Res., 
31(4), 913-924, 1995a. 

Finsterle, S. and K. Pruess, "Automatic 
History Matching of Geothermal Field 
Performance," Proceedings, 17th New 
Zealand Geothermal Workshop, p. 193-198, 
Auckland, New Zealand, November 8-10, 
1995b. 

Finsterle, S. and K. Pruess, "Development of 
Inverse Modeling Techniques for Geothermal 
Applications," Proceedings, DOE Geothermal 
Program Review XV, p. 2-47 - 2-54, San 
Francisco, Calif., March 24-26, 1997. 

Finsterle, S., K. Pruess, D. P. Bullivant and M. 
J. O'Sullivan, "Application of Inverse 
Modeling to Geothermal Reservoir Simula­
tion," Proceedings, 22nd Workshop on 
Geothermal Reservoir Engineering, Stanford 
University, Stanford, Calif., p. 309-316 
January 27-29, 1997. 

Luckner, L., M. T. van Genuchten, and D. 
Nielsen, "A Consistent Set of Parametric 
Models for the Two-Phase Flow of Immiscible 
Fluids in the Subsurface," Water Resour. Res., 
25(10), 2187-2193, 1989. 

Pruess, K., "TOUGH2-A General-Purpose 
Numerical Simulator for Multiphase Fluid and 
Heat Flow," Report LBL-29400, Lawrence 
Berkeley National Laboratory, Berkeley, Calif, 
1991. 

Pruess, K., C. Oldenburg, G. Moridis and S. 
Finsterle, "Water Injection into Vapor- and 
Liquid-Dominated Reservoirs: Modeling of 
Heat Transfer and Mass Transport," 
Proceedings, DOE Geothermal Program 
Review XV, p. 2-55 - 2-62, San Francisco, 
Calif., March 24-26, 1997. 

White, S. P., "Inverse Modelling of the 
Kawerau Geothermal Reservoir, NZ," 
Proceedings, 17th New Zealand Geothermal 
Workshop, p. 211-216, Auckland, New 
Zealand, November 8-10, 1995. 



@.J~I3F.tii' ~ 11t:.n!AE€!~1!J3 @5I!;J:i!I::IwYN ~ ~ 

~~~'~~I}~~'m.ID 

, 0 

, 0 

" 

. ' 

o 




