
UC Irvine
UC Irvine Previously Published Works

Title
Coordinated parallelizing compiler optimizations and high-level synthesis

Permalink
https://escholarship.org/uc/item/3421b3h6

Journal
ACM Transactions on Design Automation of Electronic Systems, 9(4)

ISSN
1084-4309

Authors
Gupta, S
Gupta, R K
Dutt, N D
et al.

Publication Date
2004-10-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3421b3h6
https://escholarship.org/uc/item/3421b3h6#author
https://escholarship.org
http://www.cdlib.org/

Coordinated Parallelizing Compiler
Optimizations and High-Level Synthesis

SUMIT GUPTA
Tallwood Venture Capital
RAJESH KUMAR GUPTA
University of California, San Deigo
NIKIL D. DUTT
University of California, Irvine
and
ALEXANDRU NICOLAU
University of California, Irvine

We present a high-level synthesis methodology that applies a coordinated set of coarse-grain
and fine-grain parallelizing transformations. The transformations are applied both during a pre-
synthesis phase and during scheduling, with the objective of optimizing the results of synthesis
and reducing the impact of control flow constructs on the quality of results. We first apply a set of
source level presynthesis transformations that include common sub-expression elimination (CSE),
copy propagation, dead code elimination and loop-invariant code motion, along with more coarse-
level code restructuring transformations such as loop unrolling. We then explore scheduling tech-
niques that use a set of aggressive speculative code motions to maximally parallelize the design by
re-ordering, speculating and sometimes even duplicating operations in the design. In particular,
we present a new technique called “Dynamic CSE” that dynamically coordinates CSE and code
motions such as speculation and conditional speculation during scheduling. We implemented our
parallelizing high-level synthesis in the SPARK framework. This framework takes a behavioral
description in ANSI-C as input and generates synthesizable register-transfer level VHDL. Our re-
sults from computationally expensive portions of three moderately complex design targets, namely,
MPEG-1, MPEG-2 and the GIMP image processing tool, validate the utility of our approach to the
behavioral synthesis of designs with complex control flows.

Categories and Subject Descriptors: B.5.1 [Register-Transfer-Level Implementation]: Design
Aids

This project was funded by the Semiconductor Research Corporation (SRC) under Task I.D. 781.001.
Author’s addresses: S. Gupta, Tallwood Venture Capital, 635 Waverley St., Palo Alto, CA 94301;
email: sumit@tallwoodvc.com; R. Gupta, Department of Computer Science and Engineering,
University of California, San Diego, AP&M 3111, 9500 Gilman Drive, La Jolla, CA 92093-0114;
email: rgupta@ucsd.edu; N. D. Dutt and A. Nicolau, Center for Embedded Computer Systems,
444 CS, University of California, Irvine, CA 92697-3425; email: {dutt,nicolau}@ics.uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1084-4309/04/1000-0441 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004, Pages 441–470.

442 • S. Gupta et al.

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Code motions, common subexpression elimination, embedded
systems, dynamic CSE, high-level synthesis, parallelizing transformations, presynthesis

1. INTRODUCTION

Driven by the increasing size and complexity of digital designs, there has been
a renewed interest in high-level synthesis of digital circuits from behavioral
descriptions both in the industry and in academia [Wakabayashi 1999;
Get2Chip; Forte; Celoxica; dos Santos 1998; Haynal 2000; Lakshminarayana
et al. 1999; Gupta et al. 2004]. A key change that has taken place since
high-level synthesis was first explored two decades ago is the widespread ac-
ceptance and use of register-transfer level (RTL) language modeling of digital
designs. In fact, recent years have seen the use of variants of programming
languages such as “C” and “C++” for behavioral level modeling. High-level syn-
thesis and verification tools are essential for enabling widespread industrial
adoption of these system-level programming paradigms.

However, there are several challenges that limit the utility and wider accep-
tance of high-level synthesis. There is a loss of control on the size and quality
of the synthesized result. High-level languages allow for additional freedom in
the way a behavior is described compared to register-transfer level descriptions.
Thus, the style of high-level programming—in particular, the overall control
flow and choice of control flow constructs—often has an unpredictable impact
on the final circuit. Thus, we need techniques and tools that achieve the best
compiler optimizations and synthesis results irrespective of the programming
style used in the high-level descriptions.

Our approach is a parallelizing high-level synthesis methodology that is
outlined in Figure 1. It includes a presynthesis phase that makes available a
number of transformations to restructure a design description. These include
transformations to reduce the number of operations executed such as common
subexpression elimination (CSE), copy propagation, dead code elimination and
loop-invariant code motion [Aho et al. 1986]. Also, we use coarse-level loop
transformation techniques such as loop unrolling to increase the scope for ap-
plying parallelizing optimizations in the scheduling phase that follows.

The scheduling phase employs an innovative set of speculative, beyond-basic-
block code motions that reduce the impact of the choice of control flow (condi-
tionals and loops) on the quality of synthesis results. These code motions enable
movement of operations through, beyond, and into conditionals with the objec-
tive of maximizing performance. Since these speculative code motions often
re-order, speculate and duplicate operations, they create new opportunities to
apply additional transformations “dynamically” during scheduling such as dy-
namic common sub-expression elimination. These compiler transformations are
integrated with the standard high-level synthesis techniques such as resource
sharing, scheduling on multi-cycle operations and operation chaining. Once a
design has been scheduled, in the next step of the methodology in Figure 1, we
use a resource binding and control generation pass, followed by a back-end code

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 443

Fig. 1. An overview of the proposed high-level synthesis flow incorporating compiler transforma-
tions during the presynthesis source-to-source transformation phase and the scheduling phase.

generator that can interface with standard logic synthesis tools to generate the
gate level net-list.

Given the maturity of high-level synthesis techniques and equally antique
compiler techniques, it is natural for the reader to be skeptical about the nov-
elty of the contributions in this work. Several compiler techniques have been
tried before for high-level synthesis, albeit with mixed success. This is partly be-
cause direct application of traditional compiler techniques does not necessarily
optimize hardware synthesis results.

In contrast to high-level synthesis tools, compilers often pursue maximum
parallelization by applying parallelizing transformations. For instance, perco-
lation provably exposes maximal parallelism by moving operations across and
out of conditional branches [Nicolau 1985]. While this is a useful result, in high-
level synthesis, such code transformations have to be selected and guided based
on their effects on the control, interconnect and area costs. Indeed, we show that
the chief strength of our heuristics is the ability to select the code transforma-
tions so as to improve the overall synthesis results. In some cases, this means
that we actually end up moving operations into the conditional blocks.

The rest of this article is organized as follows: we first review previous related
work. In Section 3, we describe our high-level synthesis methodology, followed
by the description of the representation model we use for designs with com-
plex control. In Section 5, we briefly describe the presynthesis transformations.
Next, we present the speculative code motion transformations and dynamic
CSE and dynamic copy propagation. In Section 7, we present a priority-based

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

444 • S. Gupta et al.

list scheduling heuristic that incorporates these transformations, followed by
experimental results and a discussion.

2. RELATED WORK

High-level synthesis techniques have been investigated for two decades now.
Over the years, several books have discussed the advances in high-level synthe-
sis techniques [Gajski et al. 1992; Camposano and Wolf 1991; De Micheli 1994].
Traditionally the focus of high-level synthesis works has been on data flow de-
signs. Researchers have proposed a range of optimizations such as algebraic
transformations [Walker and Thomas 1989], retiming [Potkonjak and Rabaey
1994], use of complex library components [Peymandoust and Micheli 2001], and
throughput improvement using bit-level chaining of resources [Park and Choi
2001]. Over the last decade, several groups have started looking at applica-
tions with a mix of control and data flow. Speculative execution of operations
[Wakabayashi 1999; Radivojevic and Brewer 1996; Lakshminarayana et al.
1999; Rim et al. 1995; dos Santos 1998; Gupta et al. 2001b] and other spec-
ulative code motions [Gupta et al. 2001a, 2003a] are particularly effective in
improving the schedule length and circuit delay through these designs. Presyn-
thesis transformations for these mixed control-data flow designs have focused
on altering the control flow or extracting the maximal set of mutually exclusive
operations [Li and Gupta 1997].

On the other hand, compiler transformations such as CSE and copy propaga-
tion predate high-level synthesis and are standard in most software compilers
[Aho et al. 1986; Muchnick 1997]. These transformations are applied as passes
on the input program code and as cleanup at the end of scheduling before code
generation. Compiler transformations were developed for improving code effi-
ciency. Their use in digital circuit synthesis has been limited. For instance, CSE
has been used for throughput improvement [Iqbal et al. 1993], for optimizing
multiple constant multiplications [Potkonjak et al. 1996; Pasko et al. 1999] and
as an algebraic transformation for operation cost minimization [Janssen et al.
1994; Miranda et al. 1998].

A converse of CSE, namely, common sub-expression replication has been pro-
posed to aid scheduling by adding redundant operations [Lobo and Pangrle
1991]. Partial redundancy elimination (PRE) [Kennedy et al. 1999] inserts
copies of operations present in only one conditional branch into the other con-
ditional branch, so as to eliminate common sub-expressions in subsequent op-
erations. Janssen et al. [1994] and Gupta et al. [2000] propose doing CSE at the
source-level to reduce the effects of the factorization of expressions and control
flow on the results of CSE. Mutation Scheduling [Novack and Nicolau 1994] per-
forms local optimizations such as CSE during scheduling in an opportunistic,
context-sensitive manner.

A range of parallelizing code transformation techniques have been previ-
ously developed for high-level language software compilers (especially par-
allelizing compilers) [Fisher 1981; Ebcioglu and Nicolau 1989; Nicolau and
Novack 1993; Novack and Nicolau 1996]. Although the basic transformations
(e.g., dead code elimination, copy propagation) can be used in synthesis as well,

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 445

other transformations need to be re-instrumented for synthesis by incorporat-
ing ideas of mutual exclusivity of operations, resource sharing and hardware
cost models. Cost models of operations and resources in compilers and synthe-
sis tools are particularly very different. In circuit synthesis, code transforma-
tions that lead to increased resource utilization, also lead to higher hardware
costs in terms of steering logic and associated control circuits. Some of these
costs can mitigated by interconnect aware resource binding techniques [Gupta
et al. 2001a].

3. ROLE OF PARALLELIZING COMPILER TRANSFORMATIONS
IN HIGH-LEVEL SYNTHESIS

As mentioned in the previous section, recent high-level synthesis approaches
have employed beyond-basic-block code motions such as speculation—derived
from the compiler domain—to increase resource utilization. In previous work,
we presented a comprehensive and innovative set of speculative code motions
that go beyond the traditional compiler code motions. We demonstrated their
usefulness in reducing the impact of the choice of control flow in the input
description on the quality of synthesis results [Gupta et al. 2001a, 2001b 2003a].

In this article, we propose a parallelizing high-level synthesis methodol-
ogy that incorporates these and several other techniques derived from the
compiler domain, particularly, from parallelizing compilers. However, we pro-
pose using these compiler techniques not only during the traditional schedul-
ing phase of high-level synthesis, but also, during a presynthesis phase in
which coarse-grain transformations are applied to the input description be-
fore performing high-level synthesis. We built the Spark high-level synthesis
framework to implement this methodology. An overview of the Spark frame-
work is shown in Figure 2. Spark takes a behavioral description in ANSI-C
as input and additional inputs in the form of a hardware resource library, re-
source and timing constraints and user directives for the various heuristics and
transformations.

There are a few restrictions on the input C: we do not support pointers (ar-
rays are supported), unstructured jumps (gotos) and function recursion. Each
function in the input description is mapped to a (concurrent) hardware block. If
one function calls another function, then the called function is instantiated as a
component in the calling function. Currently, we have not implemented support
for continue and break statements, although it is always possible to convert a
program with continues and breaks into a program without them [Girkar and
Polychronopoulos 1992]. Switch statements are reduced to a series of if-then-
else statements. We support all types of loops; this is explained in more detail
in Section 8.1.

The transformations in the presynthesis phase include (a) coarse-level code
restructuring by function inlining and loop transformations (loop unrolling, loop
fusion et cetera), (b) transformations that remove unnecessary and redundant
operations such as common subexpression elimination (CSE), copy propaga-
tion, and dead code elimination (c) transformations such as loop-invariant code
motion, induction variable analysis (IVA) and operation strength reduction,

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

446 • S. Gupta et al.

Fig. 2. An overview of the spark high-level synthesis framework.

that reduce the number of operations within loops and replace expensive oper-
ations (multiplications and divisions) with simpler operations (shifts, additions
and subtractions).

The presynthesis phase is followed by the scheduling and allocation
phase (see Figure 2). In our current approach, we assume the designer has
done the module selection and resource allocation and given us a hard-
ware resource library that describes the type and number of each resource.
Thereafter, the scheduler in Spark does resource constrained scheduling. The
scheduler is organized into two parts: the heuristics that perform schedul-
ing and a toolbox of synthesis and compiler transformations. This allows
the heuristics to employ the various transformations as and when required,
thus enabling a modular approach that allows the easy development of new
heuristics.

The synthesis transformations in the scheduler toolbox include chaining op-
erations across conditional blocks [Gupta et al. 2002a], scheduling on multi-
cycle operations, resource sharing et cetera [De Micheli 1994]. Besides, the
traditional high-level synthesis transformations, the scheduling phase also em-
ploys several compiler transformations applied “dynamically” during schedul-
ing. These dynamic transformations are applied either to aid scheduling, such
as speculative code motions, or to exploit the new opportunities created by

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 447

scheduling decisions, such as dynamic CSE and dynamic copy propagation
[Gupta et al. 2002b]. Scheduling in Spark is done by a priority-based global
list scheduling heuristic. This heuristic employs the transformations from the
toolbox and code motion techniques such as Trailblazing that efficiently move
operations in designs with a mix of data and control flow [Gupta et al. 2003b;
Gupta et al. 2004].

The scheduling phase is followed by a resource binding and control genera-
tion phase. Our resource binding approach aims to minimize the interconnect
between functional units and registers [Gupta et al. 2001a]. The control genera-
tion pass generates a finite state machine (FSM) controller that implements the
schedule. Finally, a back-end code generation pass generates register-transfer
level (RTL) VHDL. This RTL VHDL is synthesizable by commercial logic syn-
thesis tools, hence, completing the design flow path from architectural design
to final design netlist. Additionally, we also implemented back-end code gen-
eration passes that generate ANSI-C and behavioral VHDL. These behavioral
output codes represent the scheduled and optimized design. The output “C” can
be used in conjunction with the input “C” to perform functional verification and
also to enable better user visualization of how the transformations applied by
Spark affect the design.

Several of the transformations from the presynthesis phase and the schedul-
ing phase implemented in the Spark framework are discussed in the following
sections. However, to enable the various coarse and fine-grain transformations
employed by Spark, we require an intermediate representation that main-
tains the structural information about the design, as explained in the next
section.

4. MODELING DESIGNS WITH COMPLEX CONTROL FLOW

In the past, control-data flow graphs (CDFGs) [Gajski et al. 1992; Orailoglu
and Gajski 1986] have been primary model for capturing design descriptions
for high-level synthesis. CDFGs work very well for traditional scheduling and
binding techniques. However, in order to enable the range of optimizations
explored by our work—particularly, source-to-source optimizations and other
coarse grain transformations—the Spark framework uses an intermediate
representation that maintains the hierarchical structuring of the design such
as if-then-else blocks and for and while loops. This intermediate representa-
tion consists of basic blocks encapsulated in Hierarchical Task Graphs (HTGs)
[Girkar and Polychronopoulos 1992; Gupta et al. 2004].

HTGs retain coarse, high level information about program structure and
are maintained in addition to control flow graphs (CFGs) that maintain the
control dependencies between basic blocks and data flow graphs (DFGs) that
maintain the data dependencies between operations [Gajski et al. 1992]. Thus,
whereas CFGs (and CDFGs) are efficient for traversing the basic blocks in
a design, HTGs enable higher order manipulation—for example, they enable
coarse-grain code restructuring (such as that done by loop transformations
[Novack and Nicolau 1996]) and also provide an efficient way to move oper-
ations across large pieces of code [Nicolau and Novack 1993].

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

448 • S. Gupta et al.

Of course, several other representation models have been proposed earlier
for high-level synthesis [McFarland 1978; Brayton et al. 1988; Chaiyakul et al.
1992; Ku and Micheli 1990; Kountouris and Wolinski 1999; Rim et al. 1995;
Bergamaschi 1999]. However, we found HTGs to be a convenient representation
for designs with considerable control constructs and the most natural choice
for our parallelizing transformations [Nicolau and Novack 1993; Novack and
Nicolau 1996].

Note that, basic blocks are an aggregation of a sequence of statements or op-
erations from the input description with no conditionals or loops. Also, whereas
the input “C” description consists only of operations that execute sequentially,
the high-level synthesis scheduler can schedule operations to execute concur-
rently. We aggregate operations that execute concurrently into scheduling steps
within basic blocks. These scheduling steps correspond to control steps in high-
level synthesis [Gajski et al. 1992] and to VLIW instructions in compilers
[Girkar and Polychronopoulos 1992].

4.1 HTGs: A Hierarchical Intermediate Representation for
Control-Intensive Designs

We define a hierarchical task graph as follows:

Definition 4.1. A hierarchical task graph is a hierarchy of directed acyclic
graphs GHTG(VHTG, EHTG), where the vertices VHTG = {htgi | i = 1, 2, . . . , nhtgs}
can be one of three types (we use the terms nodes and vertices interchangeably):

(1) Single nodes represent nodes that have no sub-nodes and are used to encap-
sulate basic blocks. Basic blocks are a sequential aggregation of operations
that have no control flow (branches) between them.

(2) Compound nodes are recursively defined as HTGs, that is, they contain
other HTG nodes. They are used to represent structures like if-then-else
blocks, switch-case blocks or a series of HTGs.

(3) Loop nodes are used to represent the various types of loops (for, while-do,
do-while). Loop nodes consist of a loop head and a loop tail that are single
nodes and a loop body that is a compound node.

The edge set EHTG in GHTG represents the flow of control between HTG nodes.
An edge (htgi, htg j) in EHTG, where htgi, htg j ∈ VHTG, signifies that htg j exe-
cutes after htgi has finished execution. Each node htgi in VHTG has two distin-
guished nodes, htgStart(i) and htgStop(i), belonging to VHTG such that there exists
a path from htgStart(i) to every node in htgi and a path from every node in htgi
to htgStop(i).

The htgStart and htgStop nodes for all compound and loop HTG nodes are al-
ways single nodes. The htgStart and htgStop nodes of a loop HTG node are the loop
head and loop tail respectively and those of a single node are the node itself.
For the rest of this article, we will denote the top-level HTG corresponding to
a design as the Design HTG, GHTG. The design HTG is constructed by creating
a compound node corresponding to each control construct in the design. De-
tailed notes on HTG construction are presented in Girkar and Polychronopoulos

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 449

Fig. 3. (a) The hierarchical task graph (HTG) representation of the “waka” benchmark. Flow data
dependencies are also shown. (b) The HTG representation of a For-Loop.

[1992]. Note that, we denote the control and data flow graphs for the design by
GCFG and GDFG respectively. Together with the design HTG GHTG, these form
the design graph DG [Gupta et al. 2003b].

Figure 3(a) illustrates the HTG for the synthetic benchmark “waka”
[Wakabayashi and Tanaka 1992]; the data flow graph has also been super-
imposed on this HTG representation. Basic blocks are also shown by shaded
boxes within the HTG nodes (bb0 to bb10) and operations are denoted by circular
nodes with the operator sign within (operations a to n). Dashed lines denote
control flow between HTG nodes and solid lines denote data flow between oper-
ations. A fork in the control flow (i.e., a Boolean condition check) is denoted by
a triangle (�) and a merge by an inverted triangle (�). This design contains an
If-HTG node, whose false/else branch contains another If-HTG node. As shown
in this figure, an if-then-else HTG consists of a single node for the conditional
check, compound HTGs for the true and false branches and a single node with
an empty basic block for the Join node. The htgStart node for an If-HTG is the
conditional check single node and the htgStop node is the Join node.

The HTG representation for a For-loop HTG is illustrated in Figure 3(b). The
For-loop HTG, htg0, consists of three subnodes: (a) Loop head (htg1): Consists
of a single node with an optional initialization basic block: (b) Loop body (htg2):

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

450 • S. Gupta et al.

A compound HTG node containing a single HTG node (htg3) for the conditional
check basic block and a compound HTG node (htg4) for the main body of the
loop, and an optional single node (htg5) for the loop index increment basic block;
and (c) Loop tail/exit (htg6): A single node with an empty basic block. There is
a backward control flow edge from the end of the loop body to the conditional
check single node. Maintaining the loop hierarchy allows us to treat the back
edges as implicit self-loops on composite nodes [Girkar and Polychronopoulos
1992]. Therefore, at any hierarchy level, the HTG is a directed acyclic
graph.

Code motion techniques such as Trailblazing [Nicolau and Novack 1993]
can take advantage of the hierarchical structuring in HTGs to move operations
across large pieces of code. For example, when the htgStop node of a HTG node is
encountered while moving an operation, Trailblazing can move the operation
directly to the htgStart node of the HTG node without visiting each node in the
HTG—provided the operation does not have any data dependencies with the
operations in the HTG node [Nicolau and Novack 1993; Gupta et al. 2003b].

For clarity, in the rest of this article, we make several simplifications in the
figures used for the examples. We omit the single HTG node that encapsulates
basic blocks. Control flow edges in HTG representations are shown to originate
from basic blocks and terminate at basic blocks (i.e., these represent the edges
from the control flow graph).

5. PRESYNTHESIS OPTIMIZATIONS

We implemented a number of basic compiler transformations such as common
subexpression elimination (CSE) and loop-invariant code motion, copy and con-
stant propagation, and dead code elimination in the Spark framework. We use
these basic compiler transformations during the presynthesis stage to clean-
up the code, that is, remove redundant and unnecessary operations. Although
these transformations have been used extensively in compilers [Aho et al. 1986;
Muchnick 1997; Bacon et al. 1994], high-level synthesis tools have to take into
account the additional control and area (in terms of interconnect) costs of these
transformations. Also, transformations such as CSE were originally proposed
as operation level transformations. However, recent work has shown that these
optimizations are more effective when applied at the source level with a global
view of the code structure [Gupta et al. 2000].

We found that of the various presynthesis transformations, common subex-
pression elimination (CSE) and loop-invariant code motion (LICM) are partic-
ularly effective in improving the quality of high-level synthesis results for mul-
timedia applications. These applications are characterized by array accesses
within nested loops. The index variable calculation for these array accesses of-
ten contains complex arithmetic expressions that can be optimized significantly
by CSE and LICM. These claims are validated by our results in Section 9. Before
proceeding, we give a brief overview of CSE and LICM.

Common subexpression elimination (CSE) is a well-known transformation
that attempts to detect repeating subexpressions in a piece of code, stores
them in a variable and reuses the variable wherever the subexpression occurs

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 451

subsequently [Aho et al. 1986]. Dominator trees are commonly used to deter-
mine if CSE can be applied to operations [Aho et al. 1986; Sreedhar et al. 1997].

Definition 5.1. A basic block bb1 in a control flow graph (CFG) is said to
dominate another node bb2, if every path from the initial node of the control
flow graph to bb2 goes through bb1.

In order to preserve the control-flow semantics of a CFG, the common sub-
expression in an operation op2 can only be replaced with the result of another
operation op1, if op1 resides in a basic block bb1 that dominates the basic block
bb2 in which op2 resides.

Loop-invariant operations are computations within a loop body that produce
the same results each time the loop is executed. These computations can be
moved outside the loop body, without changing the results of the code. In this
way, these computations will execute only once before the loop, instead of for
each iteration of the loop body. An operation op is said to be loop-invariant if:
(a) its operands are constant, or (b) all operations that write to the operands
of operation op are outside the loop, or (c) all the operations that write to the
operands of the operation op are themselves loop invariant [Aho et al. 1986;
Muchnick 1997].

6. TRANSFORMATIONS EMPLOYED DURING SCHEDULING

One of the aims of the transformations applied in the presynthesis phase is to
increase the applicability and scope of the parallelizing transformations em-
ployed by scheduling. In this section, we discuss some of the compiler trans-
formations employed during scheduling. We start off with a review of a set of
speculative code motions that we presented earlier and then demonstrate how
these code motions can enable new opportunities for applying compiler transfor-
mations such as CSE and copy propagation—dynamically—during scheduling.
Besides these transformations, the scheduler in Spark also employs synthesis
techniques such as chaining operations across conditional boundaries [Gupta
et al. 2002a] and multicycle operation scheduling.

6.1 Speculative Code Motions

To alleviate the problem of poor synthesis results in the presence of com-
plex control flow in designs, we developed a set of code motion transforma-
tions that re-order operations to minimize the effects of the choice of control
flow (conditionals and loops) in the input description. These beyond-basic-
block code motion transformations are usually speculative in nature and at-
tempt to extract the inherent parallelism in designs and increase resource
utilization.

Generally, speculation refers to the unconditional execution of operations
that were originally supposed to have executed conditionally. However, fre-
quently there are situations when there is a need to move operations into
conditionals [Gupta et al. 2001a, 2001b]. This may be done by reverse spec-
ulation, where operations before conditionals are moved into subsequent con-
ditional blocks and executed conditionally, or this may be done by conditional

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

452 • S. Gupta et al.

Fig. 4. Various speculative code motions: operations may be speculated, reverse speculated, con-
ditionally speculated or moved across entire conditional blocks.

speculation, wherein an operation from after the conditional block is dupli-
cated up into preceding conditional branches and executed conditionally. Re-
verse speculation can be coupled with another novel transformation, namely,
early condition execution. This transformation evaluates conditional checks
as soon as possible. This removes the control dependency on the opera-
tions in the conditional branches and thereby, makes them available for
scheduling.

The movement of operations due to the various speculative code motions is
shown in Figure 4 using solid arrows. Also, shown is the movement of operations
across entire hierarchical blocks, such as if-then-else blocks or loops.

6.2 Dynamic Common Subexpression Elimination

We illustrate how the speculative code motions can create new opportunities
for applying CSE with the example in Figure 5(a). In this example, classical
CSE cannot eliminate the common sub-expression in operation 4 with opera-
tion 2, since operation 4’s basic block BB6 is not dominated by operation 2’s
basic block BB3. Consider now that the scheduling heuristic decides to sched-
ule operation 2 in BB1 and execute it speculatively as operation 5 as shown in
Figure 5(b). Now, the basic block BB1 containing this speculated operation 5,
dominates operation 4’s basic block BB6. Hence, the computation in opera-
tion 4 in Figure 5(b) can be replaced by the result of operation 5, as shown in
Figure 5(c).

Since CSE is traditionally applied as a pass, usually before scheduling, it can
miss these new opportunities created during scheduling. This motivated us to
develop a technique by which CSE can be applied in the manner shown in the
example above, that is, dynamically while the design is being scheduled.

Dynamic CSE is a technique that operates after an operation has been moved
and scheduled on a new basic block [Gupta et al. 2002b]. It examines the list
of remaining ready-to-be-scheduled operations and determines which of these
have a common sub-expression with the currently scheduled operation. This
common sub-expression can be eliminated if the new basic block containing the
newly scheduled operation dominates the basic block of the operation with the

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 453

Fig. 5. Dynamic CSE: (a) HTG representation of an example, (b) Speculative execution of
operation 2 as operation 5 in BB1, (c) This allows dynamic CSE to replace the common subex-
pression in operation 4.

common subexpression. We use the term “dynamic” to differentiate from the
phase ordered application of CSE before scheduling.

We can also see from the example in Figure 5 that applying CSE as a pass
after scheduling is ineffective compared to dynamic CSE. This is because the re-
source freed up by eliminating operation 4, can potentially be used to schedule
another operation in basic block BB6, by the scheduler. On the other hand,
performing CSE after scheduling is too late to effect any decisions by the
scheduler.

6.2.1 Conditional Speculation and Dynamic CSE. Besides speculation,
another code motion that has a significant impact on the number of opportu-
nities available for CSE is conditional speculation [Gupta et al. 2001a]. Condi-
tional speculation duplicates operations up into the true and false branches
of a if-then-else conditional block. This is demonstrated by the example in
Figure 6(a). In this example, the common subexpression that operation 2 in BB9
has with operation 1 in BB6 cannot be eliminated since BB9 is not dominated by
BB6. Consider now that the scheduling heuristic decides to conditionally specu-
late operation 1 into the branches of the if-then-else conditional block, IfNode1.
Hence, as shown in Figure 6(b), operation 1 is duplicated up as operations 3 and
4 in basic blocks BB2 and BB3 respectively. These two operations now have a
common sub-expression with operation 2 that exists in all control paths leading

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

454 • S. Gupta et al.

Fig. 6. (a) A sample HTG (b) Operation 1 is conditionally speculated into BB2 and BB3. This allows
dynamic CSE to be performed for operation 2 in BB9. (c) Dominator tree for this example.

up to BB9. Hence, dynamic CSE can now replace the computation in operation
2 with the result, a′, of operations 3 and 4 as shown in Figure 6(b).

This leads to the notion of dominance by sets of basic blocks [Sreedhar et al.
1996]. A set of basic blocks can dominate another basic block, if all control paths
to the latter basic block come from at least one of the basic blocks in the set.
Hence, in Figure 6(b), basic blocks BB2 and BB3 together dominate basic block
BB9. This enables dynamic CSE of operation 2. In this manner, we use this
property of group domination while performing dynamic CSE along with code
motions such as reverse and conditional speculation that duplicate operations
into multiple basic blocks.

6.2.2 Dynamic Copy Propagation. The concept of dynamic CSE can also
be applied to copy propagation. After applying code motions such as specula-
tion and transformations such as CSE, there are usually several copy opera-
tions left behind. Copy operations read the result of one variable and write
them to another variable. For example in Figure 6(b), operations 1 and 2,
copy variable a′ to variables a and d respectively. These variable copy oper-
ations can be propagated forward to operations that read their result. Again,
traditionally, copy propagation is done as a compiler pass before and after
scheduling to eliminate unnecessary use of variables. However, we have found
that it is essential to propagate the copies created by speculative code mo-
tions and dynamic CSE during scheduling itself, since this enables oppor-
tunities to apply CSE on subsequent operations that read these variable
copies. A dead code elimination pass after scheduling can then remove unused
copies.

7. PRIORITY-BASED GLOBAL LIST SCHEDULING HEURISTIC

We now present the scheduling heuristic that guides the application of the
various scheduling transformations in the Spark toolbox. For the purpose of
evaluating the various code motion transformations, we chose a Priority-based

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 455

Fig. 7. Priority assignment for the operations of an example.

list scheduling heuristic, although the transformations presented here are
applicable to other scheduling heuristics as well. Priority list scheduling
works by ordering the unscheduled operations based on a cost determined
by the operation’s priority and picking the operation with the lowest cost for
scheduling.

Our objective is to minimize the longest delay through the design; hence,
priorities are assigned to each operation based on their distance, in terms of
the data dependency chain, from the primary outputs of the design. The priority
of an operation is calculated as the delay of the resource that the operation can
be mapped to summed with the maximum of the priorities of all the operations
that use its result. The algorithm starts by assigning operations that produce
outputs a priority of zero, and subsequently, an operation whose result is read
by an output has a priority equal to the delay of the resource on which the
output operation can be mapped.

The priority assignment of operations of an example design are indicated
next to the operations in Figure 7. In this design, the priority assignment of
the output operations, m and l is 0, and the operations that depend on them
have priority one (since m and l are single-cycle additions). Since operations i
and h are two-cycle multiplications, the priority assignment of operations that
they depend on is two more than that of i and h. The priority of an opera-
tion that creates a conditional check (operation q in the figure) is the maxi-
mum of the priorities of all the operations in the conditional branches of the
If-HTG.

The scheduling heuristic assigns a cost for each operation based on its
priority and favors operations that are on the longest path through the de-
sign. In this way, the objective is to minimize the longest delay through
the design. A different objective such as minimizing average delay can be
achieved by incorporating control flow information into the cost function.
Also, profiling information, if available, can be used to give operations on
paths more likely to be taken a higher priority than operations on less likely
paths.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

456 • S. Gupta et al.

Algorithm 1: PriorityListScheduling (DG(GHTG, GCFG, GDFG), R, CMs) /* Schedules
the Design Graph DG */

1: Pr ← CalculatePriority (GDFG)
2: step ← First step in first basic block in GCFG
3: while step �= φ do
4: for all resources res ∈ R do
5: A ← GetAvailableOperations (DG, step, res, CMs)
6: if (A �= ∅) then
7: Pick Operation op ∈ A with lowest cost
8: TrailblazeOp (op, res, step, DG, CMs)
9: Mark op as scheduled

10: ApplyDynamicCSE (A, op, DG)
11: end if
12: end for
13: step ← GetNextSchedulingStep(GHTG, GCFG, step)
14: end while

The scheduling heuristic is presented in Algorithm 1. The inputs to this
heuristic are the unscheduled design graph DG (that consists of GHTG, GCFG,
and GDFG), and the list of resource constraints, R. Additionally, the designer
may specify a list of allowed code motions (CMs), that is, whether specula-
tion, reverse speculation, early condition execution, and conditional specu-
lation are enabled [Gupta et al. 2003a]. The heuristic starts by calling the
function CalculatePriority to assign a priority to each operation in the input
description as explained above. Then scheduling is done by traversing the ba-
sic blocks in the design starting with the first basic block in the design (initial
basic block in GCFG). The design traversal algorithms are presented later in
Section 8.2. The scheduler schedules each scheduling step in a basic block by
first collecting a list of available operations for each resource in the resource
list (lines 4 and 5 in Algorithm 1).

Available operations is a list of operations that can be scheduled on the given
resource at the current scheduling step. The algorithm that collects the list of
available operations is listed in Algorithm 2. Initially, all unscheduled opera-
tions in the design graph DG that can be scheduled on the current resource type
are added to the available operations list. These unscheduled operations are col-
lected by traversing the basic blocks on the control flow paths from the current
basic block being scheduled (the unscheduled operations from the current basic
block are also added). Operations in the available list whose data dependencies
are not satisfied and cannot be satisfied by variable renaming [Gupta et al.
2003a] are removed from the list. Operations that cannot be moved in the de-
sign to the current scheduling step using the user-defined allowed code motions
(CMs) are also removed from the available operations list. This is shown in lines
3 and 4 of Algorithm 2.

Next, the available operations algorithm determines the list of basic blocks,
BBList, that the operation opi will have to be duplicated into, if it is sched-
uled on stepk . This list, BBList, will be nonempty if the operation opi is be-
ing conditionally speculated. For each basic block bb in BBList, the function

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 457

Algorithm 2: GetAvailableOperations (DG, step, res, CMs)
Returns: Available Operations List A
/* Gets operations available to be scheduled on res in step */

/* Find all unscheduled operations in GCFG that can be scheduled on res */
1: A ← Unscheduled operations in DG that can be scheduled on res
2: for all opi ∈ A do
3: if ((Data dependencies of opi cannot be satisfied) or

(IsTrailblazePossible(opi , step, CMs) = false)) then
4: A ← A − opi /* Remove ops that cannot be moved to step using CMs

*/
5: else /* Check if opi will be duplicated */
6: BBList ← BBs that opi will be duplicated into
7: for all bb ∈ BBList do
8: if (FindIdleRes(opi , bb) = φ) then
9: A ← A - opi

10: end if
11: end for
12: end if
13: end for
14: Calculate cost of operations in A
15: return A

FindIdleRes is called to determine if there is an idle resource1 in bb that the
opi can be scheduled on. If the FindIdleRes function is unable to accommodate
a duplicated copy of opi in even one of the basic blocks in BBList, then the
operation opi is removed from the available operation list. This is shown in
lines 6 to 11 in Algorithm 2.

Finally, the cost for each of the available operations is calculated. Currently,
this cost is the negative of the operations’ priority. Future work entails enhanc-
ing this cost function to include control and area costs for the code transfor-
mations. The scheduling heuristic then picks the operation, op, with the low-
est cost from the available operations list and calls the function, TrailblazeOp
(not presented here) to schedule this operation on stepk (lines 7 and 8 of Al-
gorithm 1). The TrailblazeOp function employs the Trailblazing code motion
technique [Gupta et al. 2003a; Nicolau and Novack 1993] to efficiently move op
to the current scheduling step (stepk) in the design graph DG.

8. DYNAMIC CSE ALGORITHM

Once the chosen operation has been moved and scheduled, the dynamic CSE
algorithm comes into play (line 10 in Algorithm 1). This algorithm, listed in
Algorithm 3, calls the function GetOperationsWithCS to determine the list of
operations csOpsList that have a common subexpression (CS) with the sched-
uled operation op. The GetOperationsWithCS function (not shown here) ex-
amines only the remaining operations in the available list to get csOpsList
since these are the only operations whose data dependencies are satisfied.

1A resource is idle in a scheduling step if there is no operation scheduled on the resource in that
scheduling step.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

458 • S. Gupta et al.

Algorithm 3: ApplyDynamicCSE (A, op, DG)
/* Eliminates operations from A by employing dynamic CSE */

1: csOpsList ← GetOperationsWithCS(A, op)
2: for all operations csOp ∈ csOpsList do
3: if (BBOps(op) dominates BBOps)(csOp) then
4: ApplyCSE(csOp, op, GDFG)
5: end if
6: end for

For each operation csOp in csOpsList, if the basic block of csOp is dominated
by the basic block of op after scheduling, then the common subexpression in csOp
is replaced with the result from op by calling the ApplyCSE function (lines 2
to 4 in Algorithm 3). The ApplyCSE function (not described here) also updates
the data dependencies in GDFG due to the elimination of the computation in
csOp. The functions GetOperationsWithCS and ApplyCSE are part of the basic
CSE algorithm.

We illustrate the dynamic CSE algorithm using the earlier example from
Figure 5(a). Consider that while scheduling basic block BB1, the scheduling
heuristic determines that the available operations are operations 2, 3 and 4.
Of these, the heuristic schedules operation 2 in BB1. Then, the dynamic CSE
heuristic examines the remaining operations in the available list, namely, op-
erations 3 and 4. It then detects and replaces the common subexpression (b+ c)
in operation 4 with the result, e′, of the scheduled operation 5, since BB(op5)
dominates BB(op4).

After applying dynamic CSE, the scheduler repeats the procedure discussed
above for each resource from R in the current scheduling step. It then calls the
function, GetNextSchedulingStep, (discussed in Section 8.2.1) to get the next
scheduling step to schedule and repeats the entire scheduling procedure until
all the operations in the design are scheduled.

8.1 Scheduling Loops

Loops are scheduled in the same manner as described above. However, user-
specified loop transformations such as loop unrolling are applied first. The
scheduler cannot move operations into or out of the loop body. This can only
be done by transformations such as loop-invariant code motion or loop pipelin-
ing. Hence, the unscheduled operations from within the loop body are not col-
lected by the available operations algorithm while scheduling outside the loop
body. Conversely, when the scheduler is scheduling the loop body of a loop node,
available operations are collected only from within the loop body.

Also, no special consideration is required to schedule loops with unknown
loop iteration bounds. Loop bounds are also not required for generating correct,
synthesizable VHDL. This is because, in the finite state machine (FSM) gen-
erated by Spark, at the end of a loop body iteration, the FSM either goes back
to the first state in the loop body or goes to the next state after the loop body,
depending on whether the loop condition evaluates to true or false. However,

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 459

Algorithm 4: GetNextSchedulingStep(stepk)
Returns: Next Step to schedule nextStep after stepk

1: currBB ← Basic block of stepk
2: nextStep ← NextStep(currBB, stepk)
3: if (nextStep = φ) then */ Last step in currBB reached */

/* Traverse to next basic block */
4: nextBB ← GetNextBasicBlock(currBB)
5: if (nextBB �= φ) then
6: nextStep ← FirstStep(nextBB) /* First step in nextBB */
7: end if
8: end if
9: return nextStep

when the loop bounds are not known, several loop transformations cannot be
applied to the design and the cycles that the loop will take to execute cannot be
established.

8.2 Design Traversal Algorithms

The design traversal algorithms perform two tasks: get the next basic block to
schedule and get the next scheduling step within this basic block. We present
the algorithms for these two tasks in the following sections.

8.2.1 Algorithm to Get Next Scheduling Step. The scheduling heuristic in
Spark schedules the design by traversing the design in a top-down manner
starting from the first (or initial) basic block in GCFG. For getting the steps to
schedule in the design, the scheduler calls the GetNextSchedulingStep function
listed in Algorithm 4. This function takes as input the current scheduling step
stepk . First, the basic block currBB that stepk belongs to is determined and
then, the next scheduling step (nextStep) after stepk in currBB is determined
(lines 1 and 2 in the algorithm).

If nextStep is empty—this happens when stepk is the last scheduling step in
currBB—the algorithm proceeds to get the next basic block in the design by
calling the GetNextBasicBlock function (discussed in the next section). If this
function returns a new basic block, then the first scheduling step in the new
basic block is set as the nextStep (lines 4 to 6 in Algorithm 4); otherwise there
are no more steps left to schedule in the design.

8.2.2 Algorithm to Get the Next Basic Block to Schedule. As shown in the
main scheduling heuristic in Algorithm 1, the design is scheduled starting at
the initial basic block in GCFG. Thereafter, the GetNextBasicBlock algorithm re-
turns the next basic block (nextBB) to schedule by traversing the basic blocks in
the design CFG in a topological manner. This algorithm is listed in Algorithm 5.

This algorithm takes the current basic block currBB as input and main-
tains a queue of basic blocks, bbQueue, that it uses to determine the next ba-
sic block to schedule. The algorithm inspects each successor basic block bbi of
currBB by employing the function SUCCs(currBB). It removes currBB from the

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

460 • S. Gupta et al.

Algorithm 5: GetNextBasicBlock(currBB, GCFG)
Returns: Next Basic Block to schedule nextBB
Static: Basic Block Queue bbQueue
/* Traverses basic blocks in GCFG in topological order */

1: for all bbi ∈ SUCCs(currBB) do
2: PREDs(bbi) ← PREDs(bbi) − currBB
3: if (PREDs(bbi) = φ)) then
4: EnqueueAtTail(bbQueue, bbi)
5: end if
6: end for
7: nextBB ← DequeueHead(bbQueue)
8: return nextBB

predecessor basic block list of bbi (PREDs(bbi)). If bbi has no more predecessors,
that is, all predecessors of bbi have been visited and scheduled, bbi is added
to the tail of bbQueue by calling the EnqueueAtTail function. Note that this
algorithm is the same as the topological ordering algorithm. Also, note that in
practice the functions SUCCs and PREDs use information maintained by the
control flow graph GCFG.

Finally, the GetNextBasicBlock returns the basic block at the head of
bbQueue. The algorithm terminates by returning an empty basic block when
the last basic block in the design has been processed. This indicates to the
scheduling heuristic that it has finished scheduling the design. Note that, al-
though not shown in Algorithm 5, the GetNextBasicBlock algorithm does not
traverse the backward control flow edge of a loop, that is, the edge that iterates
over the loop body. For loops, the loop head is scheduled first, followed by the
loop body and then, the loop tail.

9. EXPERIMENTAL SETUP

We implemented the scheduling heuristics along with the pre-synthesis trans-
formations and synthesis and compiler transformations presented in this ar-
ticle in the Spark high-level synthesis framework. Spark provides the ability
to control and thus, experiment with, the various code transformations us-
ing user-defined scripts and command-line options. In this section, we present
the results for our experiments and demonstrate the utility of the parallelizing
transformations in improving the quality of synthesis results. Spark consists of
100,000+ lines of C++ code and is available for download from [SPARK website].

For our experiments, we chose three large and moderately complex real-life
applications representative of the multimedia and image processing domains.
These are the MPEG-1 video compression application [SPARK website], the
MPEG-2 application [MediaBench] and the GIMP image processing tool [Gimp
website]. From these applications, we derived a few functions that have a mix-
ture of control and data. These designs consist of the pred1 and pred2 func-
tions (with the calcid function inlined) from the prediction block of the MPEG-1
application, the dpframe estimate function (shortened to dpframe for the rest

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 461

Table I. Characteristics of the Designs used in Our Experiments, Along with the Resources
Allocated for Scheduling Them

Lines of # # # #
Benchmark C Code Ifs Loops BBs Ops # Resources

MPEG-1 pred1 188 4 2 17 123 2 + −, 1∗, 2 <<, 2 ==, 2[]
MPEG-1 pred2 347 11 6 45 287 2 + −, 1∗, 2 <<, 2 ==, 2[]
MPEG-2 dpframe 238 18 4 61 260 4 + −, 1∗, 2 <<, 2 ==, 2[]
GIMP tiler 93 11 2 35 150 3 + −, 1/, 1∗, 2 <<, 2 ==, 2[]

of this article) from the motion estimation block of the MPEG-2 application and
the tile function2 (with the scale function inlined) from the “tiler” transform of
the GIMP tool. The typical run time of Spark to produce the results for these
designs was in the range of 5 user seconds on a 1.6-Ghz Linux PC.

Table I lists the characteristics of the various designs used in terms of the
number of lines of “C” code and the number of if-then-else conditional blocks, for
loops, nonempty basic blocks and operations in the input description. All these
designs have doubly nested loops. Also, given in this table are the type and
quantity of each resource allocated to schedule these designs for all the experi-
ments presented in the following sections. The resources indicated in this table
are; +− does add and subtract, == is a comparator, ∗ a multiplier, / a divider,
[] an array address decoder and << is a shifter. The multiplier (∗) executes in
2 cycles and the divider (/) in 5 cycles. All other resources are single cycle.

The scheduling results presented in the next few sections are in terms
of the number of states in the finite state machine controller and the cycles
on the longest path (i.e. execution cycles). For conditional (if-then-else) con-
structs, the longest path is the branch with the larger number of scheduling
steps. For loops, the longest path length of the loop body is multiplied by the
number of loop iterations. For all the designs used in our experiments, the loop
bounds are known.

We also present logic synthesis results obtained after synthesizing the RTL
VHDL generated by Spark using the Synopsys Design Compiler logic synthesis
tool. The TSMC 0.13 micron synthesis library is used for technology mapping
and components are allocated from the Synopsys DesignWare Foundation li-
brary. The logic synthesis results are presented in terms of three metrics: the
critical path length (in nanoseconds), the unit area (in terms of synthesis library
used) and the maximum delay through the design. The critical path length is
the length of the longest combinational path in the netlist as reported by static
timing analysis tool and this length dictates the clock period of the design. The
maximum delay is the product of the longest path length (in cycles) and the
critical path length (in ns) and signifies the maximum input to output latency
of the design.

In all the results presented in the next few sections, we start with a “baseline”
case that has all the speculative code motions enabled along with the compiler
passes of copy propagation, constant propagation and dead code elimination.

2Note that, this floating point function has been arbitrarily converted to an integer function for
the purpose of our experiments. This affects the type of data processed and not the nature of the
control flow.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

462 • S. Gupta et al.

Table II. Scheduling Results after Applying Presynthesis Transformations on the Four Designs

MPEG-1 pred1 MPEG-1 pred2
Transformation Num of Cycles on Num of Cycles on

Applied States Long Path States Long Path
Baseline 40 1824 84 4187
+ Loop Inv CM 51 (+27.5%) 1396 (−23.6%) 100 (+19.1%) 3266 (−22%)
+ CSE 36 (−10%) 1504 (−17.5%) 73 (−13.1%) 3482 (−16.8%)
+ LICM + CSE 40 (0 %) 1091 (−40.2%) 74 (−11.9%) 2575 (−38.5%)

MPEG-2 dpframe GIMP tiler
Transformation Num of Cycles on Num of Cycles on

Applied States Long Path States Long Path
Baseline 53 672 42 3931
+ Loop Inv CM 59 (+11.3%) 654 (−2.7%) 48 (+14.3%) 3163 (−19.5%)
+ CSE 50 (−5.7%) 602 (−10.4%) 31 (−26.2%) 2831 (−28%)
+ LICM + CSE 49 (−7.5%) 571 (−15%) 31 (−26.2%) 2534 (−35.5%)

These passes are applied both before and after scheduling. We have shown in
past work that employing these speculative code motions significantly enhances
the quality of high-level synthesis results [Gupta et al. 2003b]. Hence, this base-
line case represents a design that has already been optimized to a great extent.
Using this baseline case, we demonstrate how the various transformations dis-
cussed in this article can further improve the synthesis results, starting with
the presynthesis transformations.

9.1 Results for Presynthesis Optimizations

We begin by studying the impact of the presynthesis optimizations on schedul-
ing and logic synthesis results.

9.1.1 Scheduling Results for Presynthesis Optimizations. In Table II, we
list the scheduling results obtained after the application of the pre-synthesis
transformations to the four designs. The results in the first row are for the
baseline case (as explained above); the second row for when only loop-invariant
code motion (LICM) is applied, the third row for when only CSE is applied
and the fourth row for when both LICM and CSE are applied. The percentage
reductions of each row over the baseline case are given in parentheses.

The results in the second row of these two tables show that when loop-
invariant code motion alone is applied, the number of states in the controller
increases from 11% to as much as 27%, while the cycles on the longest path
through the design decrease by up to 23%. The decrease in cycles is because
when loop-invariant operations are moved out of the loop, the loop body becomes
smaller, hence, fewer operations execute per loop execution. This allows better
compaction (more parallelization) of, and hence, fewer cycles through, the loop
body. However, the operations that have been moved outside the loop body re-
quire more states to execute and often this increase in the number of states
outside the loop is greater than the decrease in the number of states required
to execute operations within the loop. We will explore the trade-off this creates
between area increase due to controller size and performance increase due to
reduced longest path cycles in the next section.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 463

Fig. 8. Effects of the presynthesis transformations on logic synthesis results for the four designs.

The results in the third row of Table II show that when CSE is applied
in addition to the transformations in the baseline case, the number of states
and the longest path cycles decrease for all four designs; the tiler design sees
improvements of up to 28%. Clearly, there exist numerous opportunities to
apply CSE in off-the-shelf industrial application code. Furthermore, when both
LICM and CSE are applied together (last row of the two tables), the reductions
in the number of states due to CSE outweigh the corresponding increases due
to LICM. Also, the improvements in the cycles on the longest path are additive
to some extent, especially for the MPEG-1 designs. These improvements range
between 15% to 40% for the four designs.

9.1.2 Logic Synthesis Results for Presynthesis Optimizations. We synthe-
sized the VHDL generated by Spark corresponding to the presynthesis ex-
periments using the Synopsys Design Compiler. The results for the critical
path length, the total delay and the unit area (see Section 9) are presented in
the graphs in Figure 8. The bars in these graphs represent the baseline case
(1st bar), when only LICM is applied (2nd bar), when CSE is applied (3rd bar)
and finally, when both LICM and CSE are applied (4th bar). All the metrics
mapped are normalized with respect to the baseline case.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

464 • S. Gupta et al.

Table III. Scheduling Results after Applying CSE and Dynamic CSE for the MPEG-1, MPEG-2
and GIMP Designs

Transform MPEG-1 pred1 MPEG-1 pred2
Applied # States Long Path # Regs # States Long Path # Regs

Baseline 40 1824 17 84 4187 31
+ CSE 36 (−10%) 1504 (−18%) 14 (−17.6%) 73 (−13.1%) 3482 (−16.8%) 25 (−19.4%)
+ Dyn CSE 32 (−20%) 1184 (−35%) 10 (−41.2%) 65 (−22.6%) 2906 (−30.6%) 18 (−41.9%)
+CSE+DCSE 32 (−20%) 1184 (−35%) 10 (−41.2%) 65 (−22.6%) 2906 (−30.6%) 17 (−45.2%)

Transform MPEG-2 dpframe GIMP tiler
Applied # States Long Path # Regs # States Long Path # Regs

Baseline 53 672 32 42 3931 14
+ CSE 50 (−5.7%) 602 (−10.4%) 31 (−3.1%) 31 (−26%) 2831 (−28%) 15 (+7.1%)
+ Dyn CSE 50 (−5.7%) 598 (−11%) 28 (−12.5%) 29 (−31%) 2631 (−33.1%) 15 (+7.1%)
+CSE+DCSE 49 (−7.5%) 598 (−11%) 30 (−6.3%) 29 (−31%) 2631 (−33.1%) 14 (0%)

These results show that the critical path length remains fairly constant
when these transformations are applied. This is important because it signi-
fies that the clock period in the design does not increase. Also, the total delay
through the circuit reduces since the cycles on the longest path decrease. With
LICM and CSE applied individually, the total delay through the circuit de-
creases by up to 20%. With CSE and LICM applied together, the total delay for
all the designs decreases by between 20 to 45%.

However, LICM can lead to a higher area (for the pred1 and tiler designs).
This increase is less than 10% and is mainly due to the larger FSM controller
size. However, when CSE is applied with LICM, the area of the circuit reduces
to being almost the same as the baseline case. This is because of two reasons:
(a) reductions in the size of the controller due to CSE, and (b) elimination of
redundant operations by CSE. Hence, the number of operations mapped to the
functional units reduces, thereby, reducing the steering logic (multiplexers and
de-multiplexers) and thus, the area.

9.2 Results for Dynamic Transformations

In this section, we compare the effectiveness of the dynamic CSE transfor-
mation applied during scheduling with that of a traditional CSE pass applied
before scheduling.

9.2.1 Scheduling Results for Dynamic CSE. The scheduling results for ex-
periments with dynamic CSE are presented in Table III for the four designs.
The rows in these tables list results for the baseline case (1st row), for when
only CSE is applied as a pass before scheduling (2nd row), for when only dy-
namic CSE is applied during scheduling (3rd row), and for when both CSE and
dynamic CSE are applied (4th row). In all these experiments, dynamic copy
propagation is done whenever possible (even when dynamic CSE is not ap-
plied). The percentage reductions of each row over the baseline case are also
given in parentheses. These tables also give the number of registers required
to bind the variables in the designs [Gupta et al. 2001a].

The results in the second row in these tables again show that applying CSE
alone leads to improvements up to 26% in the number of states (for tiler) and

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 465

between 10 to 28% in the longest path cycles. In itself, these improvements
are significant. These improvements become even more significant when we
consider that these functions are called multiple times from within loops in the
MPEG and GIMP applications.

When dynamic CSE is applied, the improvements are even more dramatic
as is evident by the results in the third row of the tables in Table III. Clearly,
dynamic CSE eliminates many more operations with common subexpressions
than traditional CSE can. Employing dynamic CSE during scheduling can
at times improve schedule lengths by 41% (compared to a maximum of
28% obtained by applying CSE). The results in the last row in these tables
show that applying both CSE and dynamic CSE together leads to no further
improvements.

Also, our experiments show another important result; contrary to popular
belief, we find that applying CSE and dynamic CSE leads to a reduction in the
number of registers required. This decrease can be attributed to three inter-
related factors: (a) the reduced schedule lengths imply shorter variable life-
times, especially for variables whose results are required for future loop itera-
tions; (b) elimination of an operation by CSE means that instead of requiring
two registers to store the two variables/operands that are read by the oper-
ation, only one register is required to store the result of the operation; and
(c) when operations with the same subexpression are eliminated, then they can
reuse the result of only one of the operations. This saves on storing the results
of several operations.

9.2.2 Logic Synthesis Results for Dynamic CSE. The logic synthesis re-
sults corresponding to the experiments on CSE and dynamic CSE are presented
in the graphs in Figure 9. The values of each metric are mapped as before: for
the baseline case (1st bar), for when only CSE is applied (2nd bar), when only
dynamic CSE is applied (3rd bar), and the last bar is for when both CSE and
dynamic CSE are applied.

The results in these graphs reflect the scheduling results we saw in the
previous section. For all cases of applying CSE and dynamic CSE individually
or together, the critical path length remains fairly constant. This coupled with
the reductions in cycles on the longest path we saw earlier leads to dramatic
reductions in the total delay when dynamic CSE is applied: from about 15%
(for dpframe) to 40% (for the other three designs). Also, dynamic CSE leads to
lower area; sometimes up to 30% less (for pred2). Again the decrease in area is
due to the smaller controller size, fewer number of registers, and elimination
of some operations. Thus, fewer operations are mapped to the functional units
and this leads to reduced interconnect (multiplexers and demultiplexers).

The overall results in the graphs in Figure 9 demonstrate that enabling
dynamic CSE reduces the total delay through the circuit by up to 40% while at
the same time reducing the design area; these improvements are better than
applying only CSE before scheduling. Also, these results validate our belief that
transformations applied dynamically during scheduling can exploit several new
opportunities created by scheduling decisions and the movement of operations
due to the speculative code motions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

466 • S. Gupta et al.

Fig. 9. Effects of CSE and dynamic CSE on logic synthesis results for the four designs.

9.3 Putting It All Together

In this section, we examine how the presynthesis and dynamic transformations
perform when applied together. The rows in Table IV list the results for the base-
line case with only the speculative code motions applied (1st row), when LICM
and dynamic CSE are applied together (2nd row), and when LICM, CSE and
dynamic CSE are all applied (3rd row). These results show that when dynamic
CSE is enabled along with LICM, the cycles on the longest path decrease by 16%
for the MPEG-2 dpframe design and by 35 to 50% for the other three designs.
The reductions in the number of states in the controller are between 7 to 26%.
Applying CSE gives no further improvements over applying only dynamic CSE.

The logic synthesis results corresponding to these experiments are presented
in Figure 10. The bars in these graphs represent results for the baseline case
(1st bar), LICM and dynamic CSE applied together (2nd bar), and LICM, CSE
and dynamic CSE applied together (3rd bar). The improvements in the cycles
on the longest path translate over to the longest delay through the circuit; this
reduces by 20 to 55%. Also, the area of the design decreases by 5 to 20% when
these transformations are applied. Applying CSE along with dynamic CSE and
LICM results in better area results for all four designs. It is important to note
that these improvements are obtained over designs already optimized by the

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 467

Table IV. Scheduling Results (Number of States and Cycles on the Longest Path) after
Applying Loop-Invariant Code Motion, CSE, and Dynamic CSE on the Four Designs

MPEG-1 pred1 MPEG-1 pred2
Transformation Num of Cycles on Num of Cycles on

Applied States Long Path States Long Path
Baseline 40 1824 84 4187
+LICM+DCSE 37 (−7.5%) 899 (−50.7%) 67 (−20.2%) 2127 (−49.2%)
+LICM+CSE+DCSE 37 (−7.5%) 899 (−50.7%) 67 (−20.2%) 2127 (−49.2%)

MPEG−2 dpframe GIMP tiler
Transformation Num of Cycles on Num of Cycles on

Applied States Long Path States Long Path
Baseline 53 672 42 3931
+LICM+DCSE 47 (−11.3%) 563 (−16.2%) 31 (−26.2%) 2534 (−35.5%)
+LICM+CSE+DCSE 47 (−11.3%) 563 (−16.2%) 31 (−26.2%) 2534 (−35.5%)

speculative code motions [Gupta et al. 2001b]. Note that the area for the tiler
design remains fairly high due to the area-intensive resources used in this
design, namely, a divider and a multiplier.

We found that when an optimizing transformation is applied, there are two
conflicting factors that come into play. As the resource utilization increases,
the steering logic (multiplexers and demultiplexers) connected to the functional
units and the associated control logic increases. On the other hand, as the num-
ber of states in the controller decreases, the size and complexity of the controller
decreases. We find that critical paths often originate in the controller, go through
multiplexers, functional units and de-multiplexers, and finally, terminate in the
registers that hold the results. Hence, optimizing transformations often lead
to higher area and longer paths through the steering logic, but lower area and
shorter paths through the FSM controller. Depending on the effectiveness of the
transformation on the particular design being synthesized, one of these factors
may overshadow the other. Also, even though the critical path length remains
fairly constant, the area may increase. This is because we instruct the logic
synthesis tool to sacrifice area to minimize critical path lengths.

10. CONCLUSIONS AND FUTURE WORK

We have developed a methodology for high-level synthesis that first applies
coarse-grain and fine-grain source level transformations during a presynthesis
phase. This presynthesis phase is followed by a scheduling phase that incor-
porates a range of parallelizing compiler transformations besides the tradi-
tional synthesis transformations. The parallelizing compiler transformations
comprise of aggressive speculative code motions aided by transformations ap-
plied dynamically during scheduling such as dynamic CSE. These dynamic
transformations take advantage of the movement of operations by the spec-
ulative code motions. We implemented this synthesis methodology and the
various transformations, along with the heuristics that guide them, in the
Spark synthesis framework. Spark takes a behavioral description in ANSI-C as
input and produces synthesizable RTL VHDL. This enables us to analyze the
impact of the various transformations on the scheduling and logic synthesis

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

468 • S. Gupta et al.

Fig. 10. Logic synthesis results after applying LICM, CSE and dynamic CSE to the four designs.

results. We presented results for experiments on functional blocks derived from
applications that are representative of the multimedia and image processing
domains, namely, the MPEG-1, MPEG-2 and the GIMP applications. These
results demonstrate that when loop-invariant code motion and dynamic CSE
are applied together, improvements of up to 60% can be obtained in the delay
through the design with reductions of up to 20% in the design area. Further-
more, these improvements are over a design that has already been optimized
by the speculative code motions. In future work, we want to study the impact
of loop transformations on the quality of synthesis results.

ACKNOWLEDGMENTS

We would like to thank Nick Savoiu and Mehrdad Reshadi for their contribution
to the Spark framework.

REFERENCES

AHO, A., SETHI, R., AND ULLMAN, J. 1986. Compilers: Principles and Techniques and Tools. Addison-
Wesley, Reading, Mass.

BACON, D. F., GRAHAM, S. L., AND SHARP, O. J. 1994. Compiler transformations for high-performance
computing. ACM Comput. Surv. 26, 4, 345–420.

BERGAMASCHI, R. 1999. Behavioral network graph unifying the domains of high-level and logic
synthesis. In Design Automation Conference. 213–218.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Parallelizing Compiler Optimizations and High-Level Synthesis • 469

BRAYTON, R., CAMPOSANO, R., MICHELI, G. D., OTTEN, R., AND VAN EIJNDHOVEN, J. 1988. The Yorktown
Silicon Compiler System. Addison-Wesley, Chapter in Silicon Compilation.

CAMPOSANO, R. AND WOLF, W. 1991. High Level VLSI Synthesis. Kluwer Academic.
Celoxica. Celoxica incorporated. DK Design Suite.
CHAIYAKUL, V., GAJSKI, D., AND RAMACHANDRAN, L. 1992. Minimizing syntactic variance with assign-

ment decision diagrams. Tech. Rep. ICS-TR-92-34, Department of Information and Computer
Science, Univ. of California, Irvine.

DE MICHELI, G. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York.
DOS SANTOS, L. 1998. Exploiting instruction-level parallelism: a constructive approach. Ph.D.

thesis, Electrical Engineering department, Eindhoven University of Technology.
EBCIOGLU, K. AND NICOLAU, A. 1989. A global resource-constrained parallelization technique. In

3rd International Conference on Supercomputing. 154–163.
FISHER, J. 1981. Trace scheduling: A technique for global microcode compaction. IEEE Trans.

Comput. 30, 478–490.
FORTE. Forte Design Systems. Behavioral Design Suite.
GAJSKI, D. D., DUTT, N. D., WU, A. C.-H., AND LIN, S. Y.-L. 1992. High-Level Synthesis: Introduction

to Chip and System Design. Kluwer Academic.
GET2CHIP. Get2Chip Incorporated (acquired by Cadence). G2C Architectural Compiler.
GIMP WEBSITE. GNU Image Manipulation Program. http://www.gimp.org.
GIRKAR, M. AND POLYCHRONOPOULOS, C. 1992. Automatic extraction of functional parallelism from

ordinary programs. IEEE Trans. Parall. Distrib. Syst. 3, 166–178.
GUPTA, S., DUTT, N., GUPTA, R., AND NICOLAU, A. 2003a. SPARK: A high-level synthesis frame-

work for applying parallelizing compiler transformations. In Proceedings of the International
Conference on VLSI Design. 461–466.

GUPTA, S., GUPTA, R., DUTT, N., AND NICOLAU, A. 2004. SPARK: A Parallelizing Approach to the
High-Level Synthesis of Digital Circuits. Kluwer Academic.

GUPTA, S., KAM, T., KISHINEVSKY, M., ROTEM, S., SAVOIU, N., DUTT, N., GUPTA, R., AND NICOLAU, A. 2002a.
Coordinated transformations for high-level synthesis of high performance microprocessor blocks.
In Proceedings of the Design Automation Conference. 898–903.

GUPTA, S., MIRANDA, M., CATTHOOR, F., AND GUPTA, R. 2000. Analysis of high-level address code
transformations for programmable processors. In Design, Automation and Test in Europe. 9–13.

GUPTA, S., RESHADI, M., SAVOIU, N., DUTT, N., GUPTA, R., AND NICOLAU, A. 2002b. Dynamic com-
mon sub-expression elimination during scheduling in high-level synthesis. In Proceedings of the
International Symposium on System Synthesis. 261–266.

GUPTA, S., SAVOIU, N., DUTT, N., GUPTA, R., AND NICOLAU, A. 2001a. Conditional speculation and
its effects on performance and area for high-level synthesis. In Proceedings of the International
Symposium on System Synthesis. 171–176.

GUPTA, S., SAVOIU, N., DUTT, N., GUPTA, R., AND NICOLAU, A. 2003b. Using global code motions to
improve the quality of results for high-level synthesis. IEEE Trans. CAD 23, 2 (Feb.).

GUPTA, S., SAVOIU, N., KIM, S., DUTT, N., GUPTA, R., AND NICOLAU, A. 2001b. Speculation techniques
for high level synthesis of control intensive designs. In Proceedings of the Design Automation
Conference. 269–272.

HAYNAL, S. 2000. Automata-Based Symbolic Scheduling. Ph.D. dissertation, Electrical and Com-
puter Engineering department, University of California, Santa Barbara.

IQBAL, Z., POTKONJAK, M., DEY, S., AND PARKER, A. 1993. Critical path optimization using retiming
and algebraic speed-up. In Proceedings of the Design Automation Conference. 573–577.

JANSSEN, M., CATTHOOR, F., AND MAN, H. D. 1994. A specification invariant technique for operation
cost minimisation in flow-graphs. In Proceedings of the International Symposium on High-level
Synthesis. 146–151.

KENNEDY, R., CHAN, S., LIU, S.-M., IO, R., TU, P., AND CHOW, F. 1999. Partial redundancy elimination
in SSA form. ACM Trans. Prog. Lang. Syst. 21, 3 (May), 627–676.

KOUNTOURIS, A. AND WOLINSKI, C. 1999. High level pre-synthesis optimization steps using hierar-
chical conditional dependency graphs. In Proceedings of the Euromicro Confernce. 1290–1294.

KU, D. AND MICHELI, G. D. 1990. Relative scheduling under timing constraints. In Proceedings of
the Design Automation Conference. 59–64.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

470 • S. Gupta et al.

LAKSHMINARAYANA, G., RAGHUNATHAN, A., AND JHA, N. 1999. Wavesched: A novel scheduling tech-
nique for control-flow intensive designs. IEEE Trans. CAD, 18, 505–523.

LI, J. AND GUPTA, R. 1997. Decomposition of Timed Decision Tables and its use in presynthesis
optimizations. In Proceedings of the International Conference on Computer Aided Design. 22–27.

LOBO, D. AND PANGRLE, B. 1991. Redundant operator creation: A scheduling optimization tech-
nique. In Proceedings of the Design Automation Conference. 775–778.

MCFARLAND, M. C. 1978. The Value Trace: A database for automated digital design. Technical
Report DRC-01-4-80, Carnegie-Mellon University, Design Research Center.

MEDIABENCH. UCLA Mediabench benchmark suite. http://cares.icsl.ucla.edu/MediaBench/.
MIRANDA, M., CATTHOOR, F., JANSSEN, M., AND MAN, H. D. 1998. High-level address optimisation

and synthesis techniques for data-transfer intensive applications. IEEE Trans. VLSI Syst. 6, 4
(December), 677-686.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann,
Reading, Mass.

NICOLAU, A. 1985. A development environment for scientific parallel programs. Tech. Rep. TR
86-722, Department of Computer Science, Cornell University.

NICOLAU, A. AND NOVACK, S. 1993. Trailblazing: A hierarchical approach to Percolation Scheduling.
In Proceedings of the International Conference on Parallel Processing. 87–96.

NOVACK, S. AND NICOLAU, A. 1994. Mutation scheduling: A unified approach to compiling for fine-
grain parallelism. In Languages and Compilers for Parallel Computing. 16–30.

NOVACK, S. AND NICOLAU, A. 1996. An efficient, global resource-directed approach to exploiting
instruction-level parallelism. In Proceedings of the Conference on Parallel Architectures and Com-
pilation Techniques. 87–96.

ORAILOGLU, A. AND GAJSKI, D. 1986. Flow graph representation. In Proceedings of the Design
Automation Conference. 503–509.

PARK, S. AND CHOI, K. 2001. Performance-driven high-level synthesis with bit-level chaining and
clock selection. IEEE Trans. CAD, 20, 2 (Feb.), 1999-212.

PASKO, R., SCHAUMONT, P., DERUDDER, V., VERNALDE, S., AND DURACKOVA, D. 1999. A new algorithm
for elimination of common subexpressions. IEEE Trans. CAD, 18, 1 (Jan), 58–68.

PEYMANDOUST, A. AND MICHELI, G. D. 2001. Symbolic algebra and timing driven data-flow synthe-
sis. In Proceedings of the International Conference on Computer Aided Design. 300–305.

POTKONJAK, M. AND RABAEY, J. 1994. Optimizing resource utlization using tranformations. IEEE
Trans. CAD, 13, 277-293.

POTKONJAK, M., SRIVASTAVA, M., AND CHANDRAKASAN, A. 1996. Multiple constant multiplications: Ef-
ficient and versatile framework and algorithms for exploring common subexpression elimination.
IEEE Trans. CAD, 15, 2 (Mar), 141–150.

RADIVOJEVIC, I. AND BREWER, F. 1996. A new symbolic technique for control-dependent scheduling.
IEEE Trans. CAD, 15, 45–57.

RIM, M., FANN, Y., AND JAIN, R. 1995. Global scheduling with code-motions for high-level synthesis
applications. IEEE Trans. VLSI Systems, 3, 379–392.

SPARK WEBSITE. SPARK parallelizing high-level synthesis framework website. http://mesl.
ucsd.edu/spark.

SREEDHAR, V., GAO, G. R., AND LEE, Y.-F. 1996. A new framework for exhaustive and incremental
data flow analysis using DJ graphs. In Proceedings of the ACM SIGPLAN Conf. on PLDI, ACM,
New York, 279–290.

SREEDHAR, V., GAO, G. R., AND LEE, Y.-F. 1997. Incremental computation of dominator trees. ACM
Trans. Prog. Lang. Syst. 19, 2 (Mar.), 239–252.

WAKABAYASHI, K. 1999. C-based synthesis experiences with a behavior synthesizer, “Cyber”. In
Proceedings of the Design, Automation and Test in Europe. 390–393.

WAKABAYASHI, K. AND TANAKA, H. 1992. Global scheduling independent of control dependencies
based on condition vectors. In Proceedings of the Design Automation Conference. 112–115.

WALKER, R. AND THOMAS, D. 1989. Behavioral transformation for algorithmic level IC design.
IEEE Trans. CAD, 8, 1115–1128.

Received March 2003; revised August 2003 and May 2004; accepted May 2004

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

